
SSPOC: Smart Stream Processing Operator
Classification
Master’s thesis in Computer Systems and Networks

Victor Gustafsson, Hampus Nilsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master’s thesis 2019

SSPOC: Smart Stream Processing Operator
Classification

Victor Gustafsson
Hampus Nilsson

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

SSPOC: Smart Stream Processing Operator Classification
VICTOR GUSTAFSSON
HAMPUS NILSSON

© Victor Gustafsson, 2019.
© Hampus Nilsson, 2019.

Supervisor: Vincenzo Gulisano, Department of Computer Science and Engineering
Advisor: Karl Bäckström, Department of Computer Science and Engineering
Examiner: Marina Papatriantafilou, Department of Computer Science and Engi-
neering

Master’s Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

iv

SSPOC: Smart Stream Processing Operator Classification
VICTOR GUSTAFSSON
HAMPUS NILSSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Stream Processing is a rapidly growing field. Efficiently handling a stream pro-
cessing query often requires knowing what type each operator is, as knowing its
behaviour allows for tailored solutions. Today, each framework handles the identifi-
cation of operators in its own way, often using semantics and compile-time info for
this purpose. Having a more general way of classification could be an interesting way
to simplify the creation of such framework. Creating such a general way requires a
change from semantic info, as different frameworks use different semantics, to more
general information. We pioneer a first step in this direction by using metrics avail-
able at runtime to classify a basic set of operators.

In this thesis, we present a machine learning model for classification of stream pro-
cessing operators. The model is a densely connected multi-layer feed-forward neural
network. The operators that are classified are limited to a subset of the standard
set of operators available in the stream processing framework Apache Flink. The
training, validation and test datasets are also a contribution of this thesis. These
were collected from public queries using our collection method. We also propose
a set of features for our classifier, that aid in differentiating operators; we suggest
that other machine-learning based solutions can use them.The model is optimized
for prediction accuracy while training on data collected from 9 different queries. It
reaches a prediction accuracy of 97.51% on the validation dataset and 99.796% on
the test dataset.

Keywords: Computer, science, computer science, engineering, project, thesis, ma-
chine learning, neural networks, stream processing

v

Acknowledgements
We would like to express our gratitude for the expertise and assitance given to us
by Karl Bäckström and Marina Papatriantafilou during the course of this thesis.
We would also like to extend a special thanks to Vincenzo Gulisano, our supervisor
who has been on our side all the way through and has provided us with valuable
feedback and direction. It would not have been possible without you.

Hampus Nilsson & Victor Gustafsson, Gothenburg, March 2019

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 3
1.1 Project Aim . 4
1.2 Limitations . 4

2 Background 5
2.1 Stream Processing . 5

2.1.1 Operators . 6
2.1.2 Steam Processing Engines . 10

2.2 Machine Learning . 11
2.2.1 K-means Clustering . 11
2.2.2 Artificial Neural Networks . 12
2.2.3 Activation Functions . 14
2.2.4 Loss Functions . 17
2.2.5 Backpropagation . 18
2.2.6 Optimization . 19
2.2.7 Over-/Underfitting . 20
2.2.8 Data Pre-processing . 21
2.2.9 Frameworks . 21

3 Methods 23
3.1 Problem Description . 23
3.2 Data Collection . 24
3.3 Problem Assessment . 24
3.4 Classifier . 24
3.5 Classes . 25
3.6 Features . 26
3.7 Contribution . 27

4 Implementation 29
4.1 K-means baseline . 29
4.2 Classification process . 29
4.3 Model . 30
4.4 Hardware setup . 31

ix

Contents

4.5 Data Extraction . 31
4.5.1 Metrics . 33
4.5.2 Data Formatting . 34

4.6 Data . 34
4.7 Pre-processing . 36
4.8 Feature Engineering . 36
4.9 Features . 38

4.9.1 Feature Pruning . 38
4.10 Mapping Classes . 39

5 Evaluation 41
5.1 K-means baseline . 42
5.2 Features . 43
5.3 Model parameters . 45

5.3.1 Network layout . 45
5.3.2 Batches . 47
5.3.3 Activation Function . 48
5.3.4 Min-max vs Z-score normalization 49
5.3.5 Optimizer . 51
5.3.6 Discrete comparisons . 51

5.4 Final Results . 53

6 Related Work 57

7 Discussion & Conclusion 59
7.1 Discussion . 59
7.2 Conclusion . 60
7.3 Future Work . 61

A Appendix 1 I
A.1 Optimizers . I

A.1.1 AdaMax . III

B Appendix 2 V
B.1 Operators . V

x

List of Figures

2.1 An example Stream Processing query. The source produces a stream
with a schema of (value:double, system:char). F1 filters values from
system b to M1, those from system a to M1, and drops data from
system c. M1 converts the value from system b to match the way
system a prints its values. A Union then merges the streams again.
A window with a count of 2 puts both values in one window upon
which the Aggregate is then applied. The aggregate sums the values,
and also shows which systems these values originate from. 9

2.2 A typical MLF network, here with multiple output nodes as it works
in classifiers . 13

2.3 An inside look of a neuron in which j represents the index of the
neuron inside its layer. The output value aj is sometimes also labeled
as y . 13

2.4 Logistic Function . 15
2.5 Hyperbolic Tangent . 16
2.6 ReLU function . 16
2.7 Leaky ReLU function . 17

4.1 An overview of the parts that make up the complete classifier 30

5.1 The results of the k-means clustering experiment on the training data 42
5.2 The results of the k-means clustering experiment on test data 43
5.3 A graph depicting the accuracies that result from using only metrics,

all features and metrics, and a pruned list of features 44
5.4 A graph depicting the maximum and average accuracy over 10 runs

for each network layout . 45
5.5 Accuracy of the network based on the batch size of the training steps 47
5.6 Accuracy for different activation functions 48
5.7 Relu6 vs. Tanh . 49
5.8 A graph depicting the accuracies that result from varying the method

of normalization . 50
5.9 Maximum and average accuracy for different optimizers 51
5.10 A graph depicting the accuracies for different ways of discretizing.

The labels on the y-axis shows what values were real respectively dis-
crete in each test. ’bRrD’ means that the byte ratios were real(byteReal)
and record ratios were discrete (recordsDiscrete). 52

5.11 Accuracy and loss from training and validation. 53

xi

List of Figures

5.12 Confusion matrix from the best classification of the test dataset. . . . 54
5.13 Normalized confusion matrix of the classification run on the test dataset. 55
5.14 Accuracy of the classification runs performed on the test dataset. . . 55

xii

List of Tables

3.1 Basic Operators used in the experiments 25
3.2 Features that were identified as useful 26

4.1 Network Layout . 30
4.2 Adam Parameters . 31
4.3 Default metrics present in Flink in the task/operator scope 33
4.4 Removed metrics . 34
4.5 A table of the queries that metrics were collected from and their

respective datasets . 35
4.6 Operator distribution of the training dataset. This is the final number

after removing stale entries. 35
4.7 Operator distribution of the test dataset. This is the final number

after removing stale entries. 36
4.8 Engineered features . 37
4.9 Features . 38
4.10 Features that were pruned . 39
4.11 Special operator name mappings . 40

5.1 The first plateau and elbow point of the k-means clustering experiment 42
5.2 Accuracy when using only metrics, all the features or with some fea-

tures pruned . 44
5.3 Table showing the network layout each index in the graph corresponds

to and their respective average and maximum accuracy values 46
5.4 Accuracy of the network based on the batch size of the training steps 47
5.5 Accuracy for different activation functions 48
5.6 Relu6 vs. Tanh . 49
5.7 Accuracy for each normalization method 50
5.8 Maximum and average accuracy for different optimizers 51
5.9 Accuracy for each combination of discretization 52
5.10 Model Parameters . 53
5.11 Minimum, average and maxiumum classification accuracy on the test

dataset. 56

xiii

List of Tables

xiv

List of Tables

w

1

List of Tables

2

1
Introduction

As more data is generated and becoming available to us every day, tools are required
to process and analyze this data. Today, the business logic of many applications
require them to provide critical information in real-time, as is the case with au-
tonomous cars and pricing of flight tickets, among others things. When combining
these requirements with the large volumes of data that have to be analyzed, solely
relying on offline data processing is no longer an option. This trend has given rise
to a new paradigm in computer science, which is called Stream Processing. Stream
Processing is a big data technology, that allows for querying streams of data and
processing it before it is stored. The demand for this type of processing has lead to
the introduction of multiple Stream Processing frameworks, such as Apache Storm
[1] and Apache Flink [2]. A Stream Processing program, also known as a query,
consists of an acyclic graph of processing nodes, that perform transformations on a
stream of data and outputs a result. These processing nodes are commonly known
as operators. With frameworks, much of the complexity of Stream Processing is ab-
stracted away, simplifying the process of creating these analyzing queries. They offer
automatic features for aspects such as parallelizing and scaling, they also provide
strong flexibility for the developers. For instance, they allow for extension of oper-
ators that are pre-defined in the framework, and also the creation of custom ones,
which opens up a wide range of possible use-cases. This flexibility, especially in the
case of custom operators, may however prevent the framework from knowing the
exact semantics of an operator, how it behaves and how it should be handled. This
can be an issue, since knowing what type of transformation an operator performs
allows for the possibility of more efficient execution, as the framework can then make
informed decisions on how to manage these operators. For instance, some operators
can be scaled and have multiple copies of itself each taking care of a part of the
stream, executing in parallel. Others require the entire stream to pass through a
single instance in order for a query to return a correct result.

Knowing what type of transformation an operator performs is not always straight-
forward, as while there is a reoccurring set of "basic" operators in Stream Processing,
a user constructing their own operators might combine the semantics of several op-
erators inside a single operator.There is no standardized way of deciding the type of
an operator between frameworks, meaning that each framework uses its own method
of inferring the operator type. As Stream Processing frameworks exist in different
programming languages and for different platforms, any method aspiring to find the
type of an operator, and also work for different frameworks, needs to do so using
information that is not specific to any one framework. We hypothesize that it is

3

1. Introduction

possible to determine the type of an operator using run-time information that should
be available while executing any Stream Processing query, such as metrics and con-
nections between operators. In order to facilitate such a run-time classification,
we propose a method of finding the type of an operator using general run-time in-
formation that is fed to a classifier created using Machine Learning (ML) techniques.

1.1 Project Aim
The objective of this thesis is to investigate whether it is possible to use Machine
Learning to classify Stream Processing operators, based only on general run-time
metrics that keep the anonymity of the data being processed. The lack of available
data to use for this purpose means this thesis also deals with choosing and extracting
metrics from public stream processing queries. Data will also be extracted from
personally created queries, these queries are designed and implemented by us, the
authors, rather than someone else.

1.2 Limitations
This thesis is limited to exploring the use of the Machine Learning concept Neural
Networks to classify Stream Processing operators, based on metrics these operators
generate at run-time. The main focus is to optimize the classification accuracy of
the model. We do not focus on other aspects, such as performance, although they
may still be noted and discussed. Only classification of operators present in the
queries utilized in order to gather training data are considered in the thesis.

4

2
Background

The following sections provide background information necessary in order to follow
the discussions and reasoning in later chapters.

2.1 Stream Processing

Stream Processing is a paradigm that is suited for application in areas where large
amounts of data need to be analyzed efficiently. The term was popularized by
Apache Storm [3], and although similar ideas had existed under other terms, such
as event processing or streaming analytics, they have now mostly converged under
the name of Stream Processing. The paradigm is well suited to near real-time fields
such as sensor data analysis and financial analysis. The strength of Stream Pro-
cessing lies in the fact that instead of storing data and then processing it, like in
traditional databases, SPE:s instead process data on-the-fly. This removes the need
to handle storage of the massive data amounts, and also removes the necessity of
writing the data to disk, which is magnitudes slower than analyzing it in memory.

In Stream Processing, a data stream is defined as a potentially infinite sequence of
tuples, all structured according to the same schema. A tuple schema is denoted as
(A1, A2, A3, ..., An), where Ai is a generic attribute of the tuple which for tuple t is
denoted as t.Ai. The schema defines the types of the attributes and often also a
name. The types are generally common datatypes such as string, double, time, in-
teger etc.. Most tuples have an external timestamp, or one of the generic attributes
Ai can be interpreted as one. In cases which this is not true SPEs generally assign
tuples a timestamp based on the "time of arrival" into the system.

Queries that are used in SPEs are defined as "continuous" as they are performed
on a continuous stream and also continuously push results to the user as the query
predicates are fulfilled. A query, in this case, is a directed acyclic graph where
each edge is a data stream, and each node is an operator. Operators transform
an incoming stream into a new outgoing stream(s). The typical operators can be
seen as analogous to the normal relational algebra operators, with for instance filter
being analogous to select. Operators will be described in 2.1.1. The operators are
distringuished as either stateful or stateless. The stateless operators keep, as the
name suggests, no state, which means the output is solely based on the input tuple.
Stateful operators keep information from tuple to tuple, in essence performing their
computations on a sequence of tuples. Because a stream is theoretically unbounded,

5

2. Background

stateful operators perform their computations on windows of tuples. These windows
can either be sliding count-based (e.g. the last 100 tuples) or sliding time based (e.g.
all tuples received the last minute). Specific versions of these windows are tumbling,
where the window size is equal to the window sliding interval, and jumping windows,
where the sliding interval is larger than the size of the window. The numbers in the
examples, namely the time or the amount of tuples, are parameters for the window.
A very simple example query with some common operators can be seen in Figure 2.1.

Batch Processing
While Stream Processing is necessary for real-time analysis of large continuously
incoming volumes of data, it does not replace offline data analysis (analyzing data
stored on disk). Analyzing data collected over longer periods of time is often an
additional requirement to analyzing it in real-time, therefore storing and analyzing
it later is still necessary sometimes. For this purpose one can use what is known as
batch processing, which has higher performance when analyzing data that is already
available. Batch processing is essentially analyzing a lot of data that is already in
one’s possession, such as data stored on disk, in one batch. This is in contrast to
Stream Processing, which is analyzing a continuous stream of data. Methods for
analyzing data that are different from methods used in Stream Processing may be
used, as they can be more effective in this case.

2.1.1 Operators
An operator is as mentioned previously an entity that performs a transformation on
a data stream. According to IBM there are three overarching types of operators [4]:

• Source Operator - An operator that takes external data and creates a stream
that it then feeds to following operators

• Processing Operator - An operator that takes in a data stream, transforms
it and then feeds it downstream. These operators are the ones mentioned
previously that can be likened to relational algebraic operators.

• Sink Operator - An operator that writes its input data to external systems.

There are many different operators, and although there are some operators con-
sidered basic, available operators vary depending on which SPE is utilized. The
frameworks that act as SPEs have their own set of operators, and also their own
implementation. The ability for users to create own operators, also known as cus-
tom operators, is also present in most SPEs to handle cases the set of operators it
provides is ill-suited for. The basic operators are usually enough, as they are all
based on applying a function that the user has defined, meaning they are already
able to handle most cases.

Basic Operators

There are a few operators that in general are present in most, if not all, SPE:s. We
will here summarize which operators we consider basic and how they work. This
is important as the basic operators are what we base the classifier classes on, and

6

2. Background

the way the operators work is the basis on any discussion regarding if features can
distinguish between them. Here we provide intuitive descriptions for the operators,
but a more in-depth description can be found in Appendix 2.
Source
The Source operator is just what the name suggest, an operator that somehow gets
the data into the query. This could be read from a socket, a file or any other medium.
Source generally convert the data it reads into an appropriate tuple schema for the
query, removing extraneous things such as metadata. A formal function definition
for the Source could not be found, however as its workings is intuitive and heavily
based on implementation it is not a necessity.

Sink
The Sink operator is an endpoint to a query. Sinks generally connect the query to
the "outside" world. This could mean for instance writing to databases, posting to
websites/dashboards, directly sending results to APIs, connecting to elasticsearch
etc.. This means that a Sink operator also needs to convert data from the tuple
schema it receives, to some format that match the system it is interconnected to.
Just like Sources, Sinks also lack a formal description due to its heavy reliance on
implementation and also since it is not part of the actual computation.

Map
The Map operator is a generalized projection operator. It outputs one tuple for ev-
ery incoming tuple, usually performing some transformation of the elements in the
tuple. The incoming and outgoing schema may differ, however the outgoing tuple
preserves the timestamp of the incoming one.

FlatMap
The FlatMap operator is an extended version of the Map operator. While the two
are almost the same, the main difference is that a FlatMap outputs an arbitrary
number of tuples for each incoming tuple. In practice, this means that Map oper-
ators can be considered a subset of the FlatMaps. FlatMaps vary somewhat based
on implementation, but the usual behaviour is that 0, 1 or more output tuples are
created based on each input tuple. Note that this could be 0 for the first tuple, then
4 for the next, meaning the FlatMap decides the number of output tuples based on
the incoming one, rather than it being a chosen constant number.

Filter
The Filter operator is an operator that is used to either discard tuples based on
some predicate, or split them into different outgoing streams. Each outgoing stream
will be associated with one predicate, except a potential default one. Every incom-
ing tuple is forwarded to the first stream whose associated predicate it satisfies. If
a tuple matches none of the predicates, it is either routed to the default stream if
it has been provided, or discarded entirely. A filter never alters the data in the tuples.

Aggregate
The Aggregate operator, as the name suggests, is used on windows of tuples to com-

7

2. Background

pute aggregate functions such as sums or averages. Tuples on the incoming stream
are stored in the window until it is full. The window can be either time-based,
which means the window is based on timestamps, or count-based, which means the
window is based on tuple count instead. A time-based windows it is considered full
if the difference in time between the incoming tuple and the first one in the window
exceeds the configured values. When it is instead count-based a window is instead
considered full if it contains the configured amount of tuples.

An Aggregate only produces output when the window is full (regardless of the type
of window). The output tuples are sent over the output stream and use the times-
tamp of the earliest tuple in the window. The schema of the output tuple represents
the set of user-defined functions (e.g. average, count, sum, etc.) that are computed
over all the tuples in the current window.

The update of the window happens each time an output tuple is propagated. In
this step all stale tuples are discarded from the window according to the parameter.
For time-based windows a tuple is considered stale if its timestamp differs from a
newly receieved timestamp by more than the size of the window. If the window is
count-based, a configurable number of the earliest tuples will instead be considered
stale.

Join
The Join operator is used to, as the name suggests, join multiple streams together.
It has an output stream, and two input streams which are generally referred to as
respectively left and right. The join operators also utilizes windows, however it keeps
track of two separate windows, one for each of input streams. Tuples arriving on
the left side are stored in the left window but are used to slide the right window,
and vice versa for the right side. For time-based windows this means that on arrival
of a tuple in the left window, the right window is updated by removing all tuples
that are considered stale compared to the incoming one.

After the window has been updated, each tuple in the right window is concatenated
with the incoming tuple which produces output tuples which, provided that a pred-
icate is fullfilled, results in a positive outcome.

The updating of windows, evaluation of the predicate and propagation to the output
for input tuples of the right stream are done in the same fashion.

Reduce
The Reduce operator continuously combine sequential tuples with the current result.
It utilizes the same sort of windows (count-/time-based) as the other stateful oper-
ators. The reduce operator performs a set of functions that combine an incoming
tuple with the current output value to produce a new output value. This is simple
in theory, however it still utilizes windows, which means that the "current output"
needs to be recalculated once tuples used to calculate it grow stale.

8

2. Background

Figure 2.1: An example Stream Processing query. The source produces a stream
with a schema of (value:double, system:char). F1 filters values from system b to
M1, those from system a to M1, and drops data from system c. M1 converts the
value from system b to match the way system a prints its values. A Union then
merges the streams again. A window with a count of 2 puts both values in one
window upon which the Aggregate is then applied. The aggregate sums the values,
and also shows which systems these values originate from.

Operator Properties

It can be seen in the description that operators have properties that depend on
their type, they also have some that depend on their implementation, the query
they are a part of, the environment they are run in etc.. The properties consist of
more common ones like latency, processing time, parallelism etc. that could all be
discussed in regards to most types of distributed programs, and but also some more
defining ones. These properties can be used to derive the operator’s type and are
therefore important to the thesis. One such property which is of interest to this
project is selectivity. Selectivity is a measurement on the output to input ratio of
an operator. For example, if for every incoming tuple two tuples are output, the
selectivity would be 2.

S(out, in) = out/in (2.1)

It can be inferred that some operators, such as filters, do not have a constant se-
lectivity, since it is based on the operators interaction with data, and data varies.
For instance, in the case of filter, an entry could either be passed on, resulting in a
selectivity of 1, or thrown away, resulting in a selectivity of 0. Therefore selectivity
is often calculated using a statistical measure, such as an average over a period of
time.

S(out, in, t) = 1
t

∫ t

0
out/in, dt (2.2)

Another heuristic is to instead use an average over a set amount of tuples.

Additional properties to the ones just mentioned, that can be considered as more
defining ones according to the operator definitions above, are:

1. Number of input streams - some operators only handle one stream
2. Number of output streams - some operators output to only a single stream(e.g.

a Map), some to multiple (e.g. a Filter)
3. Memory usage - Stateful operators generally use more memory than stateless

ones in order to keep their state

9

2. Background

4. Tuple sizes - Differing input tuple and output tuple sizes indicate that an
operator changed the data, which some operators never do (e.g. Filter). The
size could be considered to be two different properties, one based on the size
of the schema (the amount of entries in the tuple) and another based on the
actual byte sizes of the tuple.

2.1.2 Steam Processing Engines
Stream Processing systems often use frameworks, or Stream Processing Engines
(SPE:s) as they are also known as, such as Apache Flink [2] or Apache Storm [1]
to ease development of these complex applications. These engines provide API:s
for among other things, creating queries, streaming data and storing responses to
queries without writing custom code. These frameworks automate the communica-
tion between operators, and also aid with different aspects including parallelization,
fault-tolerance and state management. They are generally intended to work for any
streaming application and therefore provide extensive customization options for the
developers. Extension of the basic operators and also the creation of custom ones
are possible, which, for the framework, complicates knowing the internal semantics,
in turn making automatic optimization a hard task.

Apache Flink

Apache Flink [2] is a framework and distributed processing engine for stateful
computations over unbounded and bounded data streams. [2] Although it has
support for both batch processing, which is the standard way of processing
where data is first stored and then later processed, and also Stream Process-
ing, it can be considered as a Stream Processing Engine when run using its
DataStream API rather than its DataSet API. Flink programs can be created
using either Java or the script language Scala. More information regarding Scala
can be found here [5]. Queries written using this framework are primarily in-
tended to be placed on a networked cluster, but can also be run on a single machine.

Queries run using Flink are linked to a dashboard. This dashboard fetches data
using a REST API built into the Flink queries, and this API is also available to
external applications meaning an arbitrary script can obtain exposed information
regarding the query execution. Some metrics are present for any Flink query and
users can also create custom metrics of different types that are also accessible
through the same API. The metrics in the REST API exists in different scopes, or
levels as it is also known, such as at "Task" level. The metrics at this level has its
own values for each chain of operators in the query.

One feature that Flink has, that is of importance to this thesis, is automatic
operator chaining. This allows Flink to automatically create chains of operators
where it thinks it could improve performance. These chains are considered a single
entity when being assigned as tasks, meaning they all end up at a single task node.
A task can in this way be either an operator, or a chain of operators. This becomes

10

2. Background

a problem when extracting native Flink metrics, since values such as bytes in or
bytes out only exist at the task level, resulting in a chain of operators only having
a single entry for these. This prevents using the data to classify an operator, as it
is not possible to separate these values into those applying to each operator in the
chain. There is however an option to disable operator chaining entirely, allowing
one to bypass this issue entirely. For more information on this or other Flink
features we refer the reader to the Apache Flink web page [2].

2.2 Machine Learning
In this section we explain aspects of Machine Learning (ML) relevant to this thesis.
We introduce a machine learning algorithm called "K-means Clustering", which will
be utilized as a baseline comparison. We also more thoroughly explain a family of
ML algorithms known as artificial neural networks ((A)NNs), which is the core of
the method proposed by this thesis.
Machine Learning is a paradigm in computer science in which a general inductive
process automatically builds a model. There are many approaches to this inductive
process, such as neural networks, support vector machines etc. but this thesis will
mainly discuss NNs and K-means clustering. A neural network can utilize a method
known as Supervised Learning(SL). SL is a method where each point of training data
comes as a pair consisting of input data and the expected output of the network.
This has some inherent benefits since it allows the use of backpropagation(BP), which
can be leveraged by other methods to find local minima, however it requires knowing
the expected answer and manually labeling every data entry.

2.2.1 K-means Clustering
In this thesis we use K-means clustering as a baseline to compare to our custom
classifier. K-means clustering is an unsupervised learning clustering algorithm,
used to group unlabeled data into k clusters. The algorithm groups the data into
k clusters, where each data point belongs to the cluster to which it is closest. The
goal of the algorithm is to group the data points such that the average euclidean
distances between each data point and the center of a cluster is minimized [6]. By
using k-means clustering, one can build a notion of what underlying groups exists
in the data. Once these groups have been found, subsequently collected data can
directly be put into any of these groups. It works similar to a classification algorithm
where each cluster corresponds to a class. How many clusters to use is often based
on what is called the elbow principal. The elbow principal states that: there exists
a point at which the average total distance between data points and clusters sees
a sharp drop off in how much it decreases if another cluster is added. Plotting a
graph over the relationship between the number of clusters and the average distance
between cluster and data point will have the shape of an elbow, hence the name. [7].

The algorithm is defined in the following way [8]:

11

2. Background

Initialization
Each centroid ci ∈ C is a assigned a random point in the data space.

Data Assignment Step
Each data point x is assigned to the cluster ci which is closest to it, from the
collection of clusters C.

argmin
ci∈C

dist(ci, x)2 (2.3)

Centroid Update Step
Each centroid is assigned a new position, based on the mean of the distances to all
data points which belongs to it.

ci = 1
|Si|

∑
xi∈Si

xi (2.4)

The algorithm terminates when it converges and there are no changes to the position
of the cluster centroids.

2.2.2 Artificial Neural Networks
A neural network is a computational model inspired by how neurons activate
and fire in the brain. The original phrase neural network has nothing to do with
computers, however its counterpart Artificial Neural Networks (ANN), which are a
computer adapted version of the neural networks, is often labeled as simply neural
network.

A neural network consists of many interconnected computational units known as
neurons, each producing a sequence of real-valued activations [9]. These neurons are
generally organized into three different types of layers: input, output and hidden
layers. The neurons in the input layer react to environmental changes, or as is
usually the case, the input data. The neurons in the hidden layers instead react
and value the activation’s of neurons from previous layers which allows for learning
non-linear casual relations between input and output. The output layer is where the
activations of the neurons are measured and interpreted as the result of the network.
The concept of Learning in such a network is to change how neurons activate, and
the difficulty lies in credit assignment [9], namely knowing what to change in order
to improve. For networks with a small number of layers, or Shallow networks, a
method known as Back-propagation (BP) was developed for this purpose as early
as the 1960s and 1970s, and is still effective today.

Multi Layer Feed-Forward Neural Networks

Multi layer feed-forward (MLF) neural networks consists of neurons organized into
multiple layers. Any MLF network will have an input layer (the first layer), output
layer (the last layer) and some number of hidden layers (the layers in-between).
We will be focusing on a specific version of the MLF called Multi-Layer Perceptron

12

2. Background

(MLP), in which the number of hidden layers is always at least one. The neurons
in each of these layers feed their result to the neurons in the subsequent layer and
in the densely connected version, this output is fed to every neuron in that layer,
which is illustrated in Figure 2.2.

Figure 2.2: A typical MLF network, here with multiple output nodes as it works
in classifiers

The neurons in the network all represents a function f : X− > Y that takes an
input vector X and outputs a single value Y. The internal structure of one such
neuron can be seen in figure 2.3.

Figure 2.3: An inside look of a neuron in which j represents the index of the
neuron inside its layer. The output value aj is sometimes also labeled as y

As can be seen in the figure, a biased weighted sum is run through some activation

13

2. Background

function g. A single neuron can be expressed mathematically as

aj = g(zj) = g(b+
n∑

m=1
xmwmj) (2.5)

Extending this function from a single neuron to the whole layer in order to utilize
matrix operations changes the equation to:

a[l] = g(z[l]) = g(b[l] + w[l]Ta[l−1]) (2.6)

Other Neural Network Types
There are many other types of neural networks, with 2 specific architectures often
mentioned in the contemporary literature. These are the convolutional NNs (CNN),
which are usually a form of MLF, and the recurrent NNs (RNN), in which cycles are
permitted and which are therefore never feed-forward. Any non-feed forward NN is
referred to as an RNN. Both of these are tailored to specific problem spaces, with
convolutional NNs being very effective at image recognition and any other problem
with large amount of input features in which subpatterns should be recognized.
Recurrent neural networks on the other hand also feeds previous answers back into
the network, allowing data with temporal connection such as words in a sentence
to influence following results. This means that recurrent networks are capable of
learning an order of results, and not just singular ones.

2.2.3 Activation Functions

An activation function is a function that maps a set of inputs to some output.
The purpose of activation functions in artificial neural networks is to introduce non-
linearity to the model. A non-linear model can be used to solve non-linear problems.
If the network model was linear, the model could be collapsed into a single layer
and it would not be able to solve the complicated tasks they are used to solve
today. Activation functions are present in each neuron of every layer, they compute
a weighted sum based on the inputs received from neurons in the previous layer, its
bias and the weights of its connections. The output of the activation function of
this weighted sum becomes the output of the neuron.
There are many different activation functions, the ones used in the context of this
thesis are presented below.

Sigmoid

The logistic function, or the sigmoid, is a very common activation function. It is
defined as:

f(x) = 1
1 + exp(−x) (2.7)

14

2. Background

−4 −2 2 4

0.2

0.4

0.6

0.8

Figure 2.4: Logistic Function

It has the characteristics of an S-shaped curve, and that its output is squashed
between 0 and 1, which makes it a good choice for binary classification. The input,
which is to be classified as either class A or class B, will be squashed a value between
0 and 1 using the sigmoid function. The output spectrum can be interpreted as class
A is closer to 0, and class B if it is closed to 1. It has been historically popular since
it has a nice interpretation as a saturating firing rate of a neuron, when the output
is close to 0 it is interpreted as a neuron which is stale, not firing at all. When the
output is close to 1, the neuron is interpreted as firing constantly, at the maximum
possible frequency. It has since been surpassed in popularity by other functions, as
the sigmoid suffers from what is known as dead gradients, or "the vanishing gradient
problem". This means that neurons with very largely negative or positive weights
will always produce an output close to the boundaries of the activation function,
independent of the input. Additionally it suffers from the fact that it does not have
zero-centered output, which will lead to very inefficient gradient updates.

Tanh

The hyperbolic tangent function, or Tanh, is another sigmoidal activation function
which is very similar to the logistic function. What differentiates it from the logistic
function is its range. Tanh ranges from -1 to 1, as opposed to the logistic function
which ranges from 0 to 1. This gives Tanh an advantage over the logistic function,
as negative values will be mapped strongly negative, positive values will be mapped
strongly positive, and zero values will be mapped close to zero [10].

Tanh is defined as:

f(x) = sinh(x)
cosh(x) = ex − e−x

ex + e−x
(2.8)

15

2. Background

−4 −2 2 4

−1

−0.5

0.5

1

Figure 2.5: Hyperbolic Tangent

ReLU

ReLu (recitifed linear unit) is a popular activation function in modern neural net-
works [11]. It does not suffer from the problems of zero gradients for positive inputs
as is the case with sigmoid. It is also computationally efficient and converges faster
than the sigmoid in practice. However ReLU has its drawbacks, it is not zero-
centered and it suffers from the issue of zero-gradients in the negative domain [12].
ReLu is defined as:

f(x) = max(0, x) (2.9)

−4 −2 2 4

1

2

3

4

5

Figure 2.6: ReLU function

Leaky ReLU

Leaky ReLU is a variant of ReLU that has a slight negative slope at values x < 0
[13]. This remedies the problem of dead gradients, while reaping the benefits of

16

2. Background

standard ReLU [12]. Leaky ReLU is defined as:

f(x) = max(0.01x, x) (2.10)

−4 −2 2 4

1

2

3

4

5

Figure 2.7: Leaky ReLU function

Softmax

The softmax function is generalization of the sigmoid function to several classes.
The softmax function is defined as

pc = eyc∑
j e

yj
(2.11)

It is often used for the output layer of neural networks performing classification
tasks, as the output can be seen as a probability that an input to the network
belongs to some class C.

2.2.4 Loss Functions

In order to measure how well a network is performing on a given task, loss functions
are used. A loss function takes as input the network’s prediction and the actual
value, or ground truth, that the network should have given as its prediction. The
function produces a score that reflects the difference between the network’s output
and the correct output. The smaller the value produced by the loss function, the
more accurate the prediction was. The goal of an artificial neural network is to
minimize its loss function.

17

2. Background

Cross-Entropy

One loss function that sees common use in classification problems is the cross-entropy
function, or logarithmic loss function. It is defined as

F (y, ŷ) = −
∑
i

yi log ŷ (2.12)

where y is the ground truth and ŷ is the network’s prediction. The output scales in
a logarithmic manner with the divergence between y and ŷ.

2.2.5 Backpropagation
Backpropagation(BP) is a technique used in Machine Learning in the process of
training artificial neural networks. It is used to calculate the gradients for the
weights and biases for each neuron throughout the network, in regard to the loss
function. The gradients are the directions in which the weights and biases should
be moved for the network to produce results which will decrease the output of the
loss function. The gradients of a layer l are calculated using recursive application of
the chain rule, with its origin at the loss function. The gradients we are interested
in are ∂L

∂w[l] and ∂L
∂b[l] , for each layer l. These gradients can be calculated using the

gradients of the following layer l + 1, which are propagated back up the network.

δ[l] = ∂L

∂z[l] = ∂L

∂z[l+1]
∂z[l+1]

∂a[l]
∂a[l]

∂z[l] = δ[l+1]∂z[l+1]

∂a[l]
∂a[l]

∂z[l] =
∑
j

δ
[l+1]
j w

[l]
ij g
′(z[l]) (2.13)

Here zl denotes the input wl · al−1 + bl to the activation function of layer l, and a is
the activation function of layer l. g denotes the activation function used whilst wij
denotes the weight applied to the output of node i to node j.

The formulas for how the weights and biases affect the cost can now be expressed
in terms of the gradient from the previous layer:

First we have the base case, namely the last layer l where no l + 1 exists. For this
layer the the recursive definition of δ is defined as

δ[l] = ∂L

∂z[l] = ∂L

∂a[l]
∂a[l]

∂z[l] = δ[l]a[l−1] (2.14)

For all other layers, the recursive definition of δ is defined as:

∂w[l] = ∂L

∂w[l] = ∂L

∂z[l]
∂z[l]

∂w[l] = δ[l]a[l−1] (2.15)

∂b[l] = ∂L

∂b[l] = ∂L

∂z[l]
∂z[l]

∂b[l] = δ[l] ∗ 1 (2.16)

18

2. Background

In 2.14, ∂L
∂a[l] is the partial derivative of the loss function, meaning its result will

depend on which type of loss function is used. In a similar vein, ∂a[l]

∂z[l] is the par-
tial derivative of the activation function and therefore instead depends on which
activation function is used in the system.
The result of using BP is a matrix of the gradients of each weight. The next step of
the training process then uses these values to alter the weights in order to get closer
to a good result.

2.2.6 Optimization
The process of training a neural network is in this context known as optimization,
and a function known as the optimizer is used to carry this process out. It is during
optimization that the weights and biases in the network are updated in order to
minimize the loss function and achieve results that are closer to the ground truth
which the network is designed to produce.

Gradient Descent

Gradient descent is an algorithm used to optimize the parameters of neural networks
and it is one of the most popular today. It is an algorithm that minimizes an
objective function, by updating the function’s parameters to give the minimum
result. Good results using a neural network are achieved by minimizing its loss
function, this is what gradient descent does. Basic gradient descent is a simple
algorithm defined as:

θ = θ − η · ∇θJ(θ) (2.17)
Where θ are the parameters of the loss function J , ∇θ are the gradients w.r.t θ
and η is the learning rate. The learning rate is used to determine the magnitude of
the update done to the parameters. This form of gradient descent is also referred
to as Batch Gradient Descent (BGD). It has the drawback of possibly being very
slow, because the gradients for the entire dataset have to be calculated in order to
perform a single update of the parameters. If the dataset does not fit into memory,
the method is not applicable.
Another variant of gradient descent is Stochastic Gradient Descent (SGD). Instead
of calculating gradients for the entire dataset, SGD updates parameters for single
training examples and labels. It is defined as:

θ = θ − η · ∇θJ(θ;xi; yi) (2.18)
Performing updates on a training example/label basis removes the redundant com-
putations of BGD, as it does not recalculate similar training examples. SGD perform
frequent, high variance updates which makes the loss function very noisy. This noise
can be good as it allows SGD to escape local minima valleys and find lower minima,

19

2. Background

but can also cause the opposite. By reducing the learning rate slowly over time
this behaviour can be mitigated, causing BGD and SGD to converge in similar ways.

A third variant, the most popular variant, is Mini-batch Gradient Descent, which
combines BGD and SGD by performing SGD on small batches of training examples
(typically 50-256 samples). Mini-batch Gradient Descent is often referred to as
SGD, as it practically is SGD performed in batches.

Optimization is performed in what is known as epochs. One epoch corresponds
to one complete training session over the entire dataset. A validation/prediction
run, during which no learning/optimization takes place, is generally performed
when an epoch has terminated, in order to assess the parameter tuning of the epoch.

When solving complex problems using neural networks, gradient descent alone is
not enough to converge to global minima or a proper local minima. In modern
neural networks it is a building block in more complex algorithms that yield better
results. Examples of algorithms that are built upon gradient descent are Adam
and AdaMax. In this paper, we use Adam to minimize the loss function. Adam,
and its predecessors on which it is based are listed in A. These are Momentum[14],
Nesterov Accelerated Gradient[14], AdaGrad[15], RMSprop[16]

2.2.7 Over-/Underfitting

Overfitting and underfitting are two concepts that regard poor fitting of a Machine
Learning model to data. In the context of a classifier model, overfitting is when
the model is able to make accurate predictions on the training data, but not on
data that was not part of the training. Underfitting on the other hand, is when the
model is unable to make accurate predictions all together. Van der Aalst et. al
[17] describes it as allowing behaviour for which there is not enough support. For
instance; the classifier is trying to predict whether a data point is of class A or B,
but the model is not able to make this distinction.

Overfitting can arise for several reasons, a few examples being; a model is over
parameterized for the problem it is trying to solve, or a model has redundant
features that are not distinct between classes [18]. There are many techniques
in place to combat this problem, ranging from simple techniques such as early
stopping, cancelling the training when a drop in validation accuracy is detected, to
more complex ones such as dropout [19].

Underfitting can also occur for many reasons. Such as having a too simple model,
insufficient data or data of insufficient quality. Techniques for overcoming this prob-
lem are for instance; feature engineering, trying to introduce new features that can
distinguish data points of different classes, acquiring more data and increasing the
complexity of the model [17].

20

2. Background

2.2.8 Data Pre-processing
Most ML algorithms require not only enough data to train on, but also data that
is carefully prepared. It is a requirement for most ML algorithms to normalize
any data that spans varied intervals. This is because although methods such as
NNs can scale data using smaller or greater weights, these weights will be set after
training. If values of a different magnitude appears when the system is applied to
new data, this scaling will no longer be enough, and that feature may then disrupt
the classification completely. As such it is very common to pre-process(normalize)
data using one of these methods:

Min-Max Normalization

Normalize data to a 0-1 interval based on following equation

x′ = x−min(x)
max(x)−min(x) (2.19)

This approach is simple, yet works well on well-defined data sets. It is however
sensitive to outliers, since a single high or low outlier can greatly affect the resulting
interval.

Z-score normalization

Normalize the data to have a mean of 0 and a standard deviation of 1 using this

x′ = x− x̄
σ

(2.20)

Using this approach outliers have little to no effect on other values since they
should not affect the mean or standard deviation by any great margin. Because the
distribution is scaled down, but not normalized inside a specific interval, outliers
also remain as outliers even after standardization.

2.2.9 Frameworks
When working with Machine Learning, it is typical to use some kind of framework
that provides tools to build and train Machine Learning models. Below we present
two frameworks used in this thesis.

TensorFlow
TensorFlow is an open-source framework for high performance numerical computa-
tions. It comes with easy deployment of programs to both CPUs and GPUs, and
likely because it was developed by Google Brain, it comes with a strong support for
Machine Learning and deep learning. The framework can be used in any python

21

2. Background

program and provides many features to quickly get a project going. It is well doc-
umented and has an active community, making development using it less likely to
stall due to unanswered questions. TensorFlow also has other software libraries built
on-top of it providing additional functionality and ease of use. One such software li-
brary, or API, is Keras. For more information on TensorFlow see their webpage [20].

Keras
Keras is a high-level API for constructing neural networks. It is written in python
and runs on top of TensorFlow. It provides fast experimentation with different
Machine Learning models. In Keras, neural layers, loss functions, optimizers, acti-
vation functions, initialization schemes and regularization schemes are stand alone
modules that can easily be combined and interchanged to test many different mod-
els in quick succession and evaluate the results. According to Keras’ website, it is
highly adopted in the research community, as well as in the industry. It ranks as
the second most mentioned framework in scientific papers regarding deep learning,
and it is used by tech giants such as Netflix and Uber. The development of Keras is
backed by companies like Google, Microsoft and Nvidia, and the Keras API comes
packaged with TensorFlow as the tf.keras module, which has been used in this thesis
to reap the benefits mentioned. [21]

22

3
Methods

In this chapter we present our method. We start by providing a more in-depth prob-
lem description, followed by descriptions of the methods used. Finally we summarize
our contribution.

3.1 Problem Description

Stream processing frameworks each have their own method of handling operators of
different types, and also of finding this type (e.g. map, filter, join etc.). This poses
a problem in a world where for instance cloud providers and frameworks coexist,
as efficient resource-allocation in distributed computing depends on knowing the
semantics of the application being executed. In the case of stream processing
engines, it is the semantics of the operators that define how resources should be
allocated, and these semantics are often known only by the framework itself, not by
the party deploying applications and allocating resources. There is a demand for a
method of analyzing semantics of stream processing queries that is not framework
specific, such that for instance cloud providers can make more informed decision in
terms of resource allocation and routing of data between allocated machines. As a
first step towards this goal, we propose a method of classifying stream processing
operators using machine learning, specifically artificial neural networks, that relies
solely on information available to the cloud providers.

We achieve this by using only run-time metrics generated by the operators that,
while in this case taken from a specific framework, theoretically should be available
in any Stream Processing system. Additionally, we refrain from inspecting actual
content of the data being processed in the query. Furthermore, in order to create
a classifier using ML techniques, we require a dataset to use during training and
validation. As no such dataset to our knowledge exists, part of this thesis is also ded-
icated to creating a data collector, choosing the data to collect, and finally using this
collector to create a varied dataset. The method we propose is limited to classifying
basic operators present in the public queries used, however a future direction of im-
provement could be expanding this to include custom or more rare operators as well.

23

3. Methods

3.2 Data Collection
The classifier we propose requires the collection of data that represents operator
behaviour without looking into the specifics of the data values being processed.
Early investigations revealed that, to our knowledge, no prior data set of this type of
data was available. All data that is to be fed into the Machine Learning algorithm
must therefore be collected in the context of this project. A simple method to
collect this data, which can easily be replicated on multiple different queries is
therefore required. Our proposed method is to periodically get data regarding the
state of each operator while running a query. This allows for many measurements
for each query, and also preserves the potential of running the classifier at runtime,
which is a future goal of this project. The exact type of data that was extracted
is based on the implementation specifics of the collection method, which will be
elaborated on in Chapter 4.

This method was applied to multiple public queries, which utilize different data sets
in order to keep the resulting data varied and as representative of the whole problem
space as possible. We also complemented this data by crafting simple queries on
a public data set ourselves and collecting data from these. We opted to keep data
collected from queries we crafted ourselves to a small portion of the total data, in
order to keep the variation in the data and the integrity of the results high.

3.3 Problem Assessment
In order to get an estimation of the difficulty of the task of classifying stream pro-
cessing operators operators using this data, a basic clustering algorithm was imple-
mented. The k-means clustering method is utilized to establish a baseline, as it is
relatively easy to implement and has previously proven useful for Machine Learning
purposes. It shows how distinct the data points are. If the data points are already
distinctly separated into clusters, the problem can be solved using a much simpler
technique. The results of the algorithm is also used to measure the magnitude of
improvement of our contribution.

3.4 Classifier
There are many different ML algorithms that can be utilized to create a classifier.
The primary method used in this project is the MLF Neural Network. There are
many other valid options for algorithms, but as we could not find any prior attempts
at creating a classifier for this purpose in the literature that could show which types
would be suitable, we chose to use MLF. The choice was based on the fact that
MLF is a general type of NN with a wide range of application which has shown good
results in earlier classification attempts within many different fields. It also has
the benefits of being easy to implement and being able to quickly create different
prototypes. The newer versions of NNs, and many other ML algorithms, have been
created to solve more specific issues, as can be seen from the image recognition

24

3. Methods

focus of convolutional NNs [22], and the focus of a time-/sequence-dimensional
relationship in recurrent NNs [23]. With the limited information on if these types
of special issues will occur in this case, a more general method was prioritized.

In addition to the MLF NN, the classifier construct also contains a pre-processing
step, in which input data is prepared before being fed to the NN. This is in order
to allow easier classification for the NN.

3.5 Classes

The operator classes that the classifier handles are a subset of the basic operators
defined in 2.1.1 as these are the ones present in the collected data. The operators
that are used in the experiments are listed in Table 3.1.

Source The source of a stream. This can be a file, database,
websocket etc.

Filter
Evaluates a Boolean function for each element and
forwards those for which the function returns true.
[24].

Map Takes one element and produces one element [24].

Reduce
A "rolling" reduce on a keyed data stream. Combines
the current element with the last reduced value and
emits the new value [24].

Flatmap Takes one element and produces zero, one, or more
elements [24].

Tumbling Join A join over fixed size, non-overlapping, contiguous
time intervals .

Aggregation An aggregation of incoming values. This can be used,
for instance, to keep track of a sum.

Sliding Aggregate
Aggregation over time windows of a given length.
The window moves in time, aggregating over the in-
terval it is currently overlapping.

Tumbling Aggregate Aggregation over fixed size, non-overlapping, contigu-
ous time intervals [25].

Sink The end/output of a stream. This can be a file,
database, console window, websocket etc.

Table 3.1: Basic Operators used in the experiments

While the the implementation specifics can vary between different Stream Processing
Engines, the specification of the tasks these operators carry out is more or less
standardized. As such, we chose to classify only these operators, which should be
present in all Stream Processing Engines and frameworks, making the proposed
solution more general.

25

3. Methods

3.6 Features

The features that are fed to the classifier need to be chosen so that they can be
used to distinguish classes from each other. Features such as selectivity, the number
of operators sending input to, and receiving output from, an operator, and the
difference in bytes flowing in versus bytes flowing out are all good candidates as
these features characterize certain operators. For instance; a filter will never have
a selectivity higher than 1, as filters should only remove elements, never add them.
A map on the other hand should always have a selectivity of 1, as it only modifies
elements, however the difference in bytes coming in and out can be different. We can
see that there are certain aspects of the metrics that can be useful to distinguish
operators, and the features used to classify operators are chosen based on these
aspects. The theoretical features we considered part of the method can be seen in
Table 3.2. These differ slightly from the actual features used during implementation
because of implementation specific details that will be further elaborated on in
Chapter 4.

Feature Idea

of incoming bytes This is intended as a supplementary feature to let the
NN see patterns we might have missed.

of outgoing bytes This is intended as a supplementary feature to let the
NN see patterns we might have missed.

of incoming records This is intended as a supplementary feature to let the
NN see patterns we might have missed.

of outgoing records This is intended as a supplementary feature to let the
NN see patterns we might have missed.

of input streams
Sources should never have any input operators. In-
puts can therefore be used to identify this operator
class.

of output operators
Sinks should never have any output operators. Out-
puts can therefore be used to identify this operator
class.

Size ratio of records
in/out

Shows if the records were altered inside the operators.
This never happens for filters, but generally happens
in for instance maps.

Selectivity As discussed before, this can separate filters or win-
dowed operators from maps (generally)

Memory allocated
The allocation of memory for an operator is a possi-
ble indication on whether it is a stateful or stateless
operator.

Table 3.2: Features that were identified as useful

26

3. Methods

3.7 Contribution
We have created a classifier for Stream Processing operators using a shallow MLF
neural network. The classifier takes metrics generated by operators as input and
produces an N-element vector of probabilities, where N is the number of operators
which can be classified. The probabilities are corresponding to how certain the
classifier is that an operator is of a certain class. The sum of all the elements in
the vector is always 1. Hence, the vector [0.1, 0.2, 0.7] corresponds to that the
classifier is 70% certain that the operator is of class 3, where 3 corresponds to some
operator. The data set used for training and validation is based on the metrics
that each operator produces during runtime when executing a Stream Processing
query using a SPE. We have also designed a group of custom domain-specific
features based on the metrics, that help the classifier differentiate operators. The
metrics we use are filtered in order to remove intervals in which some essential
feature is 0. This is done as the metrics are collected in intervals over time, and
in some cases no data has passed through the operator during a time interval.
This corresponds to no action taken by the operator, which provides no distinc-
tion as there is no data (e.g. two operators doing nothing are externally inseparable).

We show the effect of: varying certain hyper-parameters, utilizing the domain-
specific features, varying the NN neuron layout, and finally, we also show the accu-
racy of our classifier with the optimal hyper-parameters active and compare it to a
basic implementation of the k-means algorithm.

27

3. Methods

28

4
Implementation

In this chapter we present our details regarding our implementation of the K-means
algorithms, our classifier model and how data used to train the model was collected.
We also present the origin of the extracted data, how the data was pre-processed,
the features that were used, and finally, how the operators were mapped to our
classes.

4.1 K-means baseline
As mentioned in 3.3, we use k-means clustering in order to establish a baseline to
which our results are compared, and to get an understanding of how clustered the
data is in the feature space. Since the data is already labeled, the algorithm is
not used in the traditional sense. First, it is run like normal until it converges and
there is no movement of the clusters centroids. The clusters are then given a class
based on the class of which it has the highest amount of operators. For instance, a
cluster with more maps than anything else would be considered a map cluster. All
operators that belong to a cluster of its own class are considered correctly classified,
while operators that belong to a cluster of a different class from itself are considered
incorrectly classified. The number of clusters are chosen according to the elbow
method. The algorithm is implemented in python using the scikit learn library.

4.2 Classification process
In order to classify operators using only stream processing queries, we go through
a series of steps. We will present an overview of these steps in this section, however
they will be elaborated on in the coming sections.

The dataset is extracted from a running query. This is then stored and repeated
with multiple different queries. The data is then cleaned (e.g. removing empty
intervals etc.) and formatted. The formatted data is what is then used to both
act as, and also create new, features. The features are then normalized, following
which the classes of the operators are remapped.

The end-result of this process is what the ML model utilizes to train and out-
put validation results. These validation results are what will be shown in the
majority of the evaluation, however for the final result, we will instead utilize
the trained MLF to attempt to classify another set of data known as the test dataset.

29

4. Implementation

An overview of the entire classification process, including data collection and
formatting, can be seen in 4.1

Figure 4.1: An overview of the parts that make up the complete classifier

4.3 Model

The model consists of an MLF Neural Network. Like any MLF, it has an input
layer, a set of hidden layers and an output layer. The input layer has 19 nodes, one
for each feature. The three hidden layers have 64, 64 and 512 nodes respectively.
All hidden layers use the Tanh function as their activation function. The output
layer consists of 10 nodes, one for each class. It uses the softmax function to
produce a probability distribution, corresponding to how certain the network is that
the operator to be classified is of a certain class. The optimizer function used is
Adam which is presented in Section A.1. The entire model is summarized in table 4.1

The model was fully implemented using keras base implementations of layers, loss
functions, activation functions and optimizers. Keras’ default parameters were used
for all of these implementations, these can be seen in table 4.2.

Layer Index 1 2 3 4 5
Layer Type Input Hidden Hidden Hidden Output

Amount of Neurons 20 64 64 512 9
Activation Function - Tanh Tanh Tanh Softmax

Table 4.1: Network Layout

30

4. Implementation

Parameter Value
Learning Rate 0.001
Beta 1 0.9
Beta 2 0.999
Epsilon None
Decay Rate 0.0

Table 4.2: Adam Parameters

4.4 Hardware setup
We utilized 3 different computers in this thesis. Machine 3 was only utilized during
the data-collection phase, primarily due to its abundance of RAM. Machine 1 and
2 were each used to perform some of the experiments presented in this thesis. Each
experiment will denote which machine setup was used to run it.

Machine 1 :
Processor: Intel(R) Core(TM) i5-4670K CPU @ 3.40GHz (4CPUs)
GPU: Nvidia GeForce GTX 1060 6GB
RAM: 16GB
Python version: 3.6.2
Node version: 8.10.0

Machine 2 :
Intel(R) Core(TM) i5-4690K CPU @ 4.0GHz (4CPUs)
GPU: Nvidia GeForce GTX 970 3.5GB
RAM: 16GB
Python version: 3.6.2
Node version: 8.9.4

Machine 3 :
Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz (4CPUs, 8 logical CPUs)
GPU: NVIDIA Quadro M1200
RAM: 32GB
Python version: 3.6.2
Node version: 10.15.3

4.5 Data Extraction
Apache Flink is the stream processing engine used as the platform for collecting
operator data. The framework is popular and well documented and we also had
access to some queries that use this SPE when the work initiated. Flink provides
a convenient REST-API for fetching data during runtime of queries, which serves
the needs and purposes of this thesis. Additionally, at the moment of writing, there

31

4. Implementation

are public queries, along with the corresponding datasets they are intended to run
on, available for Flink from which data can be collected.

An application was created that utilizes the aforementioned REST-API to peri-
odically gather metrics from running queries. The interval at which the API is
polled is kept as low as possible in order to keep realtime viability and maximize
the number of data points. Empirical testing led to an interval of 5 seconds, as
shorter intervals often resulted in getting the same values multiple times. For every
request, all the metrics generated for the total duration of the query execution is
given in response. For instance, the response from the API always contains the
total number of bytes sent or received since the query started executing. In order
to get interval specific metrics, we calculate the difference for each metric between
interval i and interval i-1 and store the result.

In order to utilize the data extraction application on an arbitrary query written
in Flink, it can be necessary to perform some minor alterations on it. The main
thing to note is that for the metrics to actually be collected on a per-operator
basis, operator chaining needs to be disabled, as otherwise metrics will be collected
"per-chain" instead. Except for that, no other changes to such a query should be
required.

32

4. Implementation

4.5.1 Metrics
The metrics that are collected are all the ones available at the task/operator-level
scope. This will include both the default metrics and any user-defined metrics.
However since the user-defined metrics vary from query to query, they will not be
considered, nor listed here. The default metrics that are always present can be seen
in Table 4.3.

Metric Explanation

numBytesInRemote Number of bytes that have flowed
in via remote channels

numBytesInRemotePerSecond The rate of bytes per second re-
ceived via remote channels

numRecordsOutPerSecond The rate of records(tuples) output
per second.

currentInputWatermark The watermark of the last pro-
cessed tuple

numBytesOut Number of bytes that have been
output

numRecordsInPerSecond
The rate of records(tuples) re-
ceived per second via remote chan-
nels

numBytesInLocal Number of bytes that have flowed
in through local channels

numRecordsIn Number of records that have been
received

checkpointAlignmentTime
Time in nanoseconds that the last
barrier alignment took to com-
plete.

numRecordsOut Number of records(tuples) that
have been output

numBytesOutPerSecond The rate of bytes output per sec-
ond

numBytesInLocalPerSecond The rate of bytes per second re-
ceived via local channels

nrOfInputs The number of operators who feed
their output to this task

parallelism The current parallelism of the task

Table 4.3: Default metrics present in Flink in the task/operator scope

There is one metric one would expect to be in the list that is missing, namely the
number of outputs, since the number of inputs exists. Although this metric is not
present natively, it can be derived by looking at which nodes have which inputs. As
it seems to be a natural extension of the metrics, and is also something that clearly
denotes at least one operator (e.g. Sinks have 0 outputs), we have chosen to create

33

4. Implementation

a nrOfOutputs feature when extracting the other metrics. Some of these metrics
will be considered features for the ML algorithm to consume.

Out of the default metrics, we consider some to be too dependent on external factors
to say anything about the operator itself, and as such chose to exclude these. These
can be seen in table 4.4 and are not part of any evaluation in Chapter 5.

Metric Explanation

currentInputWatermark
Not used in all applications, also
only depends on how "far" the
query has come along.

checkpointAlignmentTime
Says nothing of interest regarding
the operator, but is susceptible to
the environment which it is run in.

Table 4.4: Removed metrics

4.5.2 Data Formatting

The metrics are cleaned up before being fed to the classifier. This is done in a
stand-alone data formatter. This formatter removes the metrics shown in Table 4.4.
Furthermore it also combines the remote and local input values for bytes and bytes-
PerSecond into "bytesIn"(numBytesInLocal+numBytesInRemote) and "bytesInPer-
Second" (numBytesInLocalPerSecond+numBytesInRemotePerSecond) respectively.
Finally it compounds an arbitrary number of JSON data structures into a single
"comma-seperated values" (.csv) file, which is what the classifier consumes. Any
other data manipulation is part of the classifier and will be further elaborated on
when discussing pre-processing.

4.6 Data

The dataset used to train the model was as mentioned prievously extracted from
Flink. Queries from different flink applications were executed, and metrics produced
by the operators of these queries were co llctedein real-time.
The queries and corresponding data sets used are presented in table 4.5. References
to the queries and datasets can be found in Appendix X.

34

4. Implementation

Query Dataset
Flink ICU Generated at run-time

QCLCD Flink Experiments[26] QCLCD Weather Data 200705 ->
201712[27]

Genealog [28] Dataset accompanying paper[28]
Twitter Sample Query (Provided
by V. Gulisano) Provided by V. Gulisano

Flink Aggregation Sample Query
(Provided by V. Gulisano) Provided by V. Gulisano

Taxi Combination Query (Self-
made) [29]

Public data-set from the New York
City Taxi and Limousine Commis-
sion (TLC) [30] [31]

TaxiRides (Multi-query project)
[29]

Public data-set from the New York
City Taxi and Limousine Commis-
sion (TLC) [30] [31]

Stormbreaker [32] Data-set from the DEBS 2016
Grand Challenge [33]

IOT Traffic Monitor [34] Generated at run-time

Table 4.5: A table of the queries that metrics were collected from and their
respective datasets

The data collected while running the queries on the entire respective dataset will
be called the training dataset. In addition to this training dataset, a test dataset
was also created. This test dataset was made by collecting data only from the
Stormbreaker query, with slightly differing interval and delay.
The operators the training dataset contains, and their distribution, can be seen in
Table 4.6. The same information for the test dataset can be seen in Table 4.7.

Operator Name # of Entries %
Source 6432 14.12%
Map 14067 30.9%

Aggregate Sliding 431 0.95%
Sink 6960 15.29%

FlatMap 2272 5%
KeyedReduce 1506 3.31%

Filter 3511 7.71%
AggregateTumbling 9133 20.06%

JoinTumbling 1212 2.66%
Total 45524 -

Table 4.6: Operator distribution of the training dataset. This is the final number
after removing stale entries.

35

4. Implementation

Operator Name # of Entries %
Source 1798 8.35%
Map 5795 26.92%

Aggregate Sliding 0 0%
Sink 4487 20.85%

FlatMap 1784 8.29%
KeyedReduce 0 0%

Filter 104 0.48%
AggregateTumbling 6558 30.47%

JoinTumbling 998 4.64%
Total 21524 -

Table 4.7: Operator distribution of the test dataset. This is the final number after
removing stale entries.

4.7 Pre-processing
Before the data is fed to the neural network it is processed. As mentioned in 2.2.8
all entries that are fed to the neural network need to be converted to vectors of
equal length, containing numerical values. In the case of our implementation, all
features (except the labels) are already of numerical nature, and as such only need
to be compounded into a vector.

Input vectors are constructed for each interval in the dataset, for every operator
present in that interval. Every slot of a vector corresponds to a feature, such as
bytes sent and bytes received. In this step, a numerical label corresponding to the
operator type is appended to the vector. Additionally, during pre-processing the
data is also normalized using min-max normalization. We opted to use this method,
as it produced the best results in terms of accuracy. The experiment showing this
will be presented in detail in Section 5.3.4.

The pre-processing step is also where the engineered featured are created based on
incoming metrics. The metrics are also analyzed, and any row for which the essential
bytes/record in/out values are 0, is removed. This applies to both training data and
test data.

4.8 Feature Engineering
The metrics that were obtained from extraction do not cover the ones listed as
potential features in Section 3.6. While humans are able to derive a ratio between
bytes using bytes-in and bytes-out, the network was not able to. As such we
resorted to employ Feature Engineering.

The features we engineered are derived from the metrics we have available, and
aim to cover as much of the desired features that were discussed in the method

36

4. Implementation

as possible. Outside of these primary features, we also added others that we
hypothesized could improve the accuracy of the network. These were then tested
empirically and kept if they improved the results. The specific features that
provided improvements, and as such were a part of the final classifier can be seen
in table 4.8.

Feature Explanation
recordsOutInRatio Intended to substitute selectivity

recordsOutInRatio2 Calculated using the "perSecond" values instead of abso-
lutes. More stable than its absolute equivalent.

bytesOutInRatio Created on the idea of using something similar to selec-
tivity, but in data size instead of tuple amount

bytesOutInRatio2 Calculated using the "perSecond" values instead of abso-
lutes. More stable than its absolute equivalent.

bytesPerRecordIn Combined with its output counterpart it should help char-
acterize changed to tuples in the operator

bytesPerRecordOut Combined with its input counterpart it should help char-
acterize changed to tuples in the operator

bytesPerRecordIn2 Calculated using "PerSecond" values. More stable than its
absolute equivalent.

bytesPerRecordOut2 Calculated using "PerSecond" values. More stable than its
absolute equivalent.

byteDiff Differences in bytes in and out, shows if an operator is
adding or removing data. Found empirically.

recordDiff
Differences in records in and out, shows if an operator
is dropping, adding or just forwarding records. Found
empirically.

bytesPerRecordDiff Difference in the bytes per record of incoming versus out-
going data. Complements the similar ratio values.

bytesPerRecordOutInRatio The ratio of the bytes per record going out versus coming
in.

inputsPerOutput Part of a successful empirical test, very marginally affects
accuracy

Table 4.8: Engineered features

Out of the listed features, the ones that created to cover selectivity initially only
resulted in small increments in accuracy. We noted that the use of selectivity in
differentiating between basic operators can be seen to largely consists of answering
which of these predicates are fulfilled; Is selectivity greater than 1, smaller than 1
or equal to 1? It can be seen in the definition of the basic operators in 2.1.1 that
these are the 3 points of interest when trying to classify the operator. For instance,
Maps have a selectivity of 1, FlatMaps have a selectivity of either 1 or, more often,
greater than 1. Filters generally have a selectivity of smaller than 1 (could also be
1 at times where no tuples are discarded). As such, we simplified these features
to only denote which one of the 3 points of interest it belonged to, in this case

37

4. Implementation

represented by -1 (S < 1), 0(S = 0) or 1(S > 1). We refer to this as discretization.
The effect of this discretization on the results can be seen in Section 5.3.6.

4.9 Features
All the features that are used in training and validation are presented in table 4.9.
Note that in this table some of the original metrics are absent. These were removed
since early experiments showed that they either decreased or had no impact on the
performance of the classifier. The decision to remove rather than keep those which
had no impact is elaborated on in the feature pruning subsection.

Feature Origin
bytesIn Metric (combined local and remote)
recordsIn Metric (combined local and remote)
inputs Metric
outputs Metric (calculated during data collection)
parallelism Metric
bytesInPerSecond Metric
bytesOutPerSecond Metric
inputsPerOutput Engineered
bytesPerRecordIn Engineered
bytesPerRecordOut Engineered
byteDiff Engineered
recordDiff Engineered
bytesPerRecordIn2 Engineered
bytesPerRecordOut2 Engineered
bytesOutInRatio Engineered
bytesOutInRatio2 Engineered
recordsOutInRatio Engineered
recordsOutInRatio2 Engineered
bytesPerRecordDiff Engineered
bytesPerRecordOutInRatio Engineered

Table 4.9: Features

4.9.1 Feature Pruning
As previously mentioned, some metrics were absolved from being considered
features. This was mainly because part of the aim of this thesis was to lay a
foundation for future work, and as such, we attempted to prune (remove) any
feature that did not result in improved performance.

The features that were pruned were chosen based on experiment results. These
experiments consisted of removing a feature and running tests to see how the results

38

4. Implementation

were affected. If the results were better or unchanged after pruning the feature,
it was no longer considered a feature. This type of test was then also run with
removing multiple of the "bad" features at once, to make sure that removing them
together also had no adverse effect. The features that ended up being pruned can
be seen in Table 4.10.

Feature
recordsOut
recordsInPerSecond
recordsOutPerSecond
bytesOut

Table 4.10: Features that were pruned

4.10 Mapping Classes

In order to achieve high accuracy with a low rate of false positives and false
negatives, accurate labeling is important. Many of the queries from which training
data was acquired contain operators that are custom, created by a Flink user, while
still performing identical operations to standard Flink operators. They also contain
operators that are part of the standard Flink operators, but that has been given
more descriptive names, by the user, for the context it runs in.

Using the names of these operators poses a problem for the classification process,
as two different operators of type T , might have different names, A and B. Us-
ing the names as labels without any modification will make A and B two different
types from the perspective of the neural network, while in reality they are of the
same type T . Given an operator of type A, the network might predict that the
operator is of type B, which would be considered a faulty prediction, while in re-
ality it is a valid prediction. For this reason, manual work is put into relabeling
A and B to T . This is sometimes trivial as many operators have names that give
away their type. For instance; "Sink-print-to-std-out" and "Sink-write-to-file" are,
given their names, obviously of type Sink. Other operators; such as "Friendship-
Count-24hours" requires more thorough inspection of the source code to determine
the correct type. An overview of the special mappings can be seen in table 4.11
with the rest of the mappings being straightforward mapping on partial names
(e.g. TumblingWindow(10000)_Aggregate maps to Aggregate_Tumbling and Cus-
tom_File_Source maps to Source).

39

4. Implementation

Operator name Mapping
FriendshipCount24hours Aggregate_Tumbling
FriendshipCount7Days Aggregate_Tumbling
FriendshipCount60Minutes Aggregate_Tumbling
Window...LinearRoadVehicles Aggregate_Sliding
Window...LinearRoadAccidents Aggregate_Sliding

Table 4.11: Special operator name mappings

40

5
Evaluation

In this chapter we will present the results of our experiments. First we present the
results of the K-means baseline experiment, followed by experiments on how engi-
neered features alter the accuracy. This is then followed by the results of altering
values for the hyper-parameters of the model in order to find an optimal configu-
ration. We conclude with the final results, which were acquired using the optimal
hyper-parameter values found previously, as well as the optimal features. The re-
sults of each experiment will be discussed separately in its own section. In every
experiment except for the last test of the final model, section 5.4, the training and
validation sets are used exclusively. In the last experiment for the final results the
test data set is used as well for evaluation of the final model.

41

5. Evaluation

5.1 K-means baseline
The k-means clustering experiment to establish the baseline was run 200 times
using Machine 2, 5 times for each cluster amount and running with a k value of
1-40 clusters, which was enough to find the elbow point. The results are presented
in figure 5.1 and table 5.1.

Figure 5.1: The results of the k-means clustering experiment on the training data

Amount of clusters Average Accuracy Maximum Accuracy Comment
1 0.3074 0.3074 Minimum
9 0.6732 0.6878 Amount of classes
10 0.7719 0.7907 Elbow Point

Table 5.1: The first plateau and elbow point of the k-means clustering experiment

The elbow is found to be at 10 clusters, which is one more than the 9 classes
that the classifier has to choose from. The maximum accuracy at this point was
0.79076, and the maximum accuracy at 9 clusters was 0.6878 as can be seen in
table 5.1. There is an initially steep climb in accuracy when adding more clusters,
this is because for each added cluster, another operator group can be assigned
its own cluster which will count them as correctly classified. The steepest climb
is at the five first clusters, after this point it slows down rapidly, which to an
extent reflects the distribution of the operators within their respective categories,
however it is far from a strict correlation. The elbow point is observed at 10

42

5. Evaluation

clusters, with an accuracy of 0.7907. This suggests that there is some organic
clustering of the data, however there is no distinct separation between every oper-
ator class in the feature dimensions that we have been able to identify as meaningful.

Figure 5.2: The results of the k-means clustering experiment on test data

The same algorithm was also run using the test dataset in order to better compare
it with our final results. This experiment shows a higher accuracy across the
board, indicating that the test dataset has more distinguishable operators. The
elbow starts at 10 clusters here as well, however there is still a noticeable increase
at 11 clusters. In order to compare this to a classification algorithm, we should
however use the amount of clusters that were determined using the training dataset.
As such, we consider the k-means algorithm to have achieved an accuracy of 0.89667.

The results presented here indicated that regular k-means clustering performs fairly
well, however it is not sufficient to solve the problem of operator classification using
this dataset.

5.2 Features

This experiment was conducted in order to quantify the effect of the engineered
features we proposed in 4.9 versus utilizing only the original metrics described
in 4.5.1. The experiment compare three different attempts: MetricsOnly which
is only utilizing the collected metrics listed in 4.3, FullFeatures which has the

43

5. Evaluation

engineered features in addition to all the metrics, which are listed in table 4.9, and
PrunedFeatures which has the features in table 4.10 removed. This experiment did
20 tries for each version and was run on Machine 1

MetricsOnly Full Features Pruned Features
Max 0.8704 0.97310 0.97340

Average 0.8700 0.97148 0.97120

Table 5.2: Accuracy when using only metrics, all the features or with some
features pruned

Figure 5.3: A graph depicting the accuracies that result from using only metrics,
all features and metrics, and a pruned list of features

As can be seen in the graph, utilizing only the original metrics results in significantly
worse results than adding our proposed engineered features. Pruning some of the
original metrics shows almost no difference in accuracy compared to FullFeatures.
Originally we had a thought that the information most of the engineered features we
propose provide should have been figured out by the model itself when training using
the metrics, however it can be clearly seen in the graph that this is not the case.
Whether FullFeatures or PrunedFeatures is the superior way to proceed is hard to
definitively say as they both have their potential benefits for future work. FullFea-
tures preserves the most amount of information about operators, meaning it might
result in reaching higher accuracy if the training data is expanded. FullFeatures is
the opposite, however this can also be a benefit as it will be more resilient to overfit-

44

5. Evaluation

ting and also might succeed better in generalization. To know for sure would require
more training data and more validation/testing data, so verification will be left as
future work. In following experiments we will proceed utilizing PrunedFeatures.

5.3 Model parameters
This section contains results and descriptions of the different hyper parameter ex-
periments. Here we discuss in detail how the experiments were conducted, what the
results were and what hyper-parameters we chose for the final model.

5.3.1 Network layout
A good neural network layout was found through testing many different layouts.
The experiment consisted of two runs. The first run was an semi-exhaustive search
of all combinations between node and layer amounts, with {8,16,32,...,1024} nodes
per layer, and 1 to 4 hidden layers. In this run, one test per network layout was
performed, and the tests were split between Machine 1 and Machine 2. In the
second run, the top 20 models were tested again, with five runs each, in order to
determine which network layout had the best accuracy. This run was only run on
Machine 1. The results of the second run are presented in table 5.3 and figure 5.4.
The data of the first run is not presented.

Figure 5.4: A graph depicting the maximum and average accuracy over 10 runs
for each network layout

45

5. Evaluation

Index Network layout Max Average
0 32 −→ 32 −→ 16 0.9053 0.9017
1 8 −→ 64 −→ 256 0.9004 0.8990
2 64 −→32−→ 8 0.9025 0.9006
3 8 −→ 32 −→ 64 0.9047 0.9014
4 16 −→ 1024 −→ 32 −→ 16 0.9067 0.904
5 64 −→ 64 0.9018 0.89951
6 16 −→ 1024 −→ 8 −→ 256 0.9015 0.9006
7 256 −→ 512 0.9035 0.9016
8 64 −→ 64 −→ 64 0.9029 0.9015
9 64 −→ 16 −→ 128 0.9059 0.9048
10 32 −→ 256 −→ 16 0.9063 0.9042
11 16 −→ 1024 −→ 1024 0.9064 0.9050
12 32 −→ 1024 −→ 1024 0.9058 0.9047
13 128 −→ 128 0.9068 0.9051
14 128 −→ 64 0.906 0.90478
15 64 −→ 64 −→ 512 0.9071 0.9055
16 16 −→ 1024 −→ 16 −→ 256 0.9058 0.9048
17 128 −→ 1024 0.9079 0.9062
18 64 −→ 64 −→ 256 0.9068 0.9059
19 32 −→ 512 −→ 32 0.9066 0.9059

Table 5.3: Table showing the network layout each index in the graph corresponds
to and their respective average and maximum accuracy values

It is apparent from figure 5.4 that there is no clear correlation between the amount
of nodes and layers and the accuracy. The difference in maximum accuracy between
the worst of these networks and the best is 0.0075 (0.9079 and 0.9004 respectively),
which is not much of a difference. The variation of the networks, meaning their
maximum value against their average are also stable, and there is no apparent
connection between the sizes of the networks and their stability. Because of the
very similar results, we chose to move forward using the best layout in each of the
2, 3 and 4 layer categories. These can be seen in table 5.3 and are #17, #15 and
#4 respectively. Experiments done using these layouts showed over time that #15
(the 3 layer layout) had the best, and most stable results. Each experiment takes a
fair amount of time to run, which is multiplied by how many models they are run
for. As such, we chose to only run the coming tests using #15.

It should also be noted that although the results for this second run are extremely
similar, there were layouts with up to 10% less accuracy (e.g. sub 80%) in the first
run. Most of these were simplistic layouts such as one-layer ones, but some larger
networks also showed this trend.

46

5. Evaluation

5.3.2 Batches

According to Masters et al. a good batch size for accuracy is somewhere between
2-32 [35]. In an earlier paper, Bengio [36] suggest that while 32 is a good default
value, batch sizes of up to approximately 200 are typically chosen. We found that
having a too small batch size had a large impact on the time each experiment
took to complete. Through experiments with different batch sizes, performed using
Machine 2, a good trade-off between accuracy and run time was found. The results
of the batch size experiments are shown in the graph and table below.

Batch size 4 8 16 32 100 200 500 1000
Max 0.9503 0.9505 0.9505 0.9513 0.9511 0.9501 0.9468 0.9424

Table 5.4: Accuracy of the network based on the batch size of the training steps

Figure 5.5: Accuracy of the network based on the batch size of the training steps

In table 5.4 and figure 5.5, we see that the best accuracy is achieved with a batch
size of 32, as suggested above. However, with a batch size of 32, an epoch would take
approximately 5 seconds to complete on one of our test rigs. A typical experiment
in the context of this thesis runs between 1000-1500 epochs, which would yield a run
time of 5000-7500 seconds for a single experiment. We therefore decided to settle
for a batch size of 200 when tuning hyper-parameters, as this resulted in a good
trade-off between run time and accuracy. For the final experiment, we instead used
a batch size of 32 as this was the best result in this experiment, in order to represent
the highest possible accuracy we could currently achieve.

47

5. Evaluation

5.3.3 Activation Function
Determining which activation function to use was done through testing different
activation functions that are suggested in literature to be good choices. The tradi-
tional Sigmoid and Tanh, which as pointed out in 2.2.3 and 2.2.3 have some flaws,
were also tried for good measure. We also tested some less common ones, such as
SeLU and ReLU6, which are available in Keras. Each function candidate was tried
five times using Machine 2. The results from the activation function experiments
are presented in table 5.5 and figure 5.6.

Sigmoid tanh Leaky ReLU SeLU PReLU ReLU ReLU6
Max 0.9455 0.9543 0.9515 0.9528 0.9534 0.9533 0.9540

Average 0.9441 0.9516 0.9509 0.9520 0.9522 0.9530 0.9538

Table 5.5: Accuracy for different activation functions

Figure 5.6: Accuracy for different activation functions

The function yielding the best result in terms of maximum accuracy was Tanh. As
Tanh suffers from the vanishing gradient problem, it was surprising it performed
better than leaky ReLU, which is supposed to amend this flaw. However, the
results indicate that the characteristics of Tanh fit the properties of the problem
better than the other candidates. Another candidate that should be considered
is relu6, as although it has a lower maximum, it has a higher average, indicating
that it might be a more stable choice. Because tanh and relu6 showed such similar
results, an extra round of experiments were performed on just these two to decide

48

5. Evaluation

which one to proceed with.

Tanh ReLU6
Max 0.9734 0.9732

Average 0.9725 0.9711

Table 5.6: Relu6 vs. Tanh

Figure 5.7: Relu6 vs. Tanh

This second round displayed in Figure 5.7 shows Tanh with both a higher maximum
and average accuracy. While this clearly displays that the accuracy is prone to
variation, Tanh still showed the best maximum results in both tests, and the best
average in one.As such, we opted to go for Tanh as the activation function of the
hidden layers in the final model.

5.3.4 Min-max vs Z-score normalization
This experiment was done to see the effect of changing the normalization method
on the result. Intuitively this should result in almost no difference when only using
training and validation datasets, as the network will learn using the normalized
values, and all values are included in the normalization setup. The two methods
compared are the Z-score normalization and min-max normalization described in
section 2.2.8. This experiment was run using Machine 1

49

5. Evaluation

Min-Max Normalization Z-score normalization
Max 0.975 0.9734

Average 0.9725 0.97115

Table 5.7: Accuracy for each normalization method

Figure 5.8: A graph depicting the accuracies that result from varying the method
of normalization

It is clear in the graph that min-max-normalization performs best for our current
setup. Both the average and the maximum accuracy shows slight improvements
over the z-score normalization method. This is a slightly surprising results, as
z-score normalization is often referred to as the superior method, because of its
better handling of outliers. One reason could be that the data used in this test
contain few outliers, however we hypothesize that the main reason that z-score
normalization performs worse is that this test only uses training and validation
datasets, meaning no real "unknown" data can occur. This greatly reduces the risk
of outliers, as all the data used is part of the establishing of min-max boundaries
(standard deviation and mean for z-score) during normalization, meaning no data
ever ends up outside the 0-1 range.

Although we speculate that Z-standardization may be the superior method once test
data is introduced, we still opted to go for min-max normalization moving forward
as it is the clear choice from the results we presented.

50

5. Evaluation

5.3.5 Optimizer
Which optimizer to use for our model was determined in the same way the
activation function was. The accuracy of the model was measured using different
optimizers. Each experiment was conducted five times using Machine 2, in order to
exclude the possibility of a good result just being a lucky run. The results of the
optimizer experiments are shown in table 5.8 and figure 5.9 below. All algorithms
use the parameters that are default in Keras.

Adadelta SGD RMSProp AdaMax Nadam Adam Adagrad
Max 0.8679 0.9318 0.9726 0.9751 0.9754 0.9747 0.8981

Average 0.8583 0.9274 0.9700 0.9718 0.9738 0.9730 0.8934

Table 5.8: Maximum and average accuracy for different optimizers

The optimizer that proved to be the best candidates for our model is Adam or
Nadam, with RMSProp and AdaMax closely behind. We opted to go for Adam for
the final model.

Figure 5.9: Maximum and average accuracy for different optimizers

5.3.6 Discrete comparisons
This experiment tests the hypothesis presented in Section 4.8. The experiment test
each combination of using the real or discrete value for bytes/records. Each com-
bination was run a total of five times using in order to lower the risk of accidental

51

5. Evaluation

outliers. The results of the runs are presented in Figure 5.10 and a clearer view of
the results can be seen in Table 5.9. This experiment was performed usingMachine 1

bDrD bDrR bRrD bRrR
Max 0.9731 0.9479 0.9743 0.9355

Average 0.97138 0.944 0.97239 0.93358

Table 5.9: Accuracy for each combination of discretization

Figure 5.10: A graph depicting the accuracies for different ways of discretizing.
The labels on the y-axis shows what values were real respectively discrete in each
test. ’bRrD’ means that the byte ratios were real(byteReal) and record ratios were
discrete (recordsDiscrete).

It can be clearly seen in Figure 5.3 that using our discretization scheme is superior
to utilizing the real values. This is shown as ’bRrR’, which is the test where both
values are real, lends the worst possible result. The best result is achieved when
the ratios for records are discretized and the byte ratios are real (’bRrD’). This
can be considered slightly strange when looking at the result for ’bDrR’ as this
shows a clear improvement when swapping from real byte values used in ’bRrR’.
We hypothesize that the reason that discretizing the byte values lends worse results
when the record values are already discrete is because the classes the byte values
helped identify in the ’bDrR’ case are already covered in this instance. Therefore,
using real byte values could instead add extra information that potentially helps
differentiate additional classes. In the final test the ’bRrD’ setup is used.

52

5. Evaluation

5.4 Final Results
This experiment was performed in order to quantify how well the classifier performs
when operating on unknown data. The classifier was setup according to the val-
ues yielding the highest accuracies in the previous experiments presented in this
thesis. A concrete summary (and reminder) of the network layout and hyper pa-
rameters utilized can be seen in Table 4.1 and Table 5.10 respectively. The network
was trained using the same validation and training data as previous experiments.
This experiment consists of using the trained network to classify the entries in the
Test dataset presented previously. There are multiple facets to the results that
warrant presentation. As such, we present below: A graph showing the learning
process(best run), a normalized confusion matrix, a regular confusion matrix and
finally an overview of the accuracy of each run in the experiment. The experiment
was run 47 times in order to prevent outliers from influencing the overall result. It
was run using Machine 1.

Parameter Value
Optimizer Adam

Error Function Spare Categorical Cross Entropy
Batch Size 32
Features ’Pruned’

Discretization bRrD
Normalization Min-max normalization

Table 5.10: Model Parameters

53

5. Evaluation

Figure 5.11: Accuracy and loss from training and validation.

Figure 5.12: Confusion matrix from the best classification of the test dataset.

54

5. Evaluation

Figure 5.13: Normalized confusion matrix of the classification run on the test
dataset.

Figure 5.14: Accuracy of the classification runs performed on the test dataset.

55

5. Evaluation

Max 0.99796
Average 0.99588
Minimum 0.96409

Table 5.11: Minimum, average and maxiumum classification accuracy on the test
dataset.

The best run yielded a validation accuracy of 97.51%, and a test accuracy of
99.796%. From the overall results we can see that the classifier performs very well
on the test dataset we have used, with accuracy higher than on the validation
set. It is not normally the case that the test accuracy outperform the validation,
however in this case, we can see some possible reasons for this. First and foremost,
we hypothesize that it comes down to the similarity between the test and the
training data. The test dataset is as mentioned collected from the same project
(Stormbreaker) as part of the training data, which makes the test data to some
extent "known" by the classifier. This is further augmented by the fact that the
Stormbreaker project is responsible for close to 50% of the training data. With
these factors in mind, the about 2.3% increase from validation to test classification
no longer seems strange.

The operators that are missing in the test dataset compared to the validation are
as shown in Table 4.7, KeyedReduce and AggregateSliding. These are 2 of the
3 least represented classes in the training dataset, which could lead to them also
being the classes that the classifier has the hardest time generalizing. This could
be an additional reason for the success of the test dataset.

Comparing the results to that of our implementation of the k-means baseline
algorithm, it is safe to say that this neural network approach is better in terms of
classification accuracy, and that the steps taken in order to improve has proven
fruitful.

It should be noted that while the test results may be slightly inflated, the fact that
the validation accuracy lies at 97.51%, with test accuracy even higher, means that
the method itself shows promise. To confidently state whether out method can work
in the general case it needs to be trained and tested on much larger and more varied
datasets, however, this is something we leave for future work.
.

56

6
Related Work

While there are many papers regarding Stream Processing, and also regarding
Machine Learning and classification, there are very few combining the few that
we could find. Papers we could find were about issues unrelated to this thesis,
often related to for instance using a Stream Processing framework to run Machine
Learning algorithms. This lack of directly related work can be considered to, to
some extent, cement the pioneering status of the work. It also means there is fairly
little to discuss in terms of related work, however there are still some aspects for
which such a discussion could be had.

What our topic is related to network traffic classification, as we also perform
classification based on metrics generated by a network, such as records, byte sizes
and neighboring nodes. This field has seen much research, below are summaries of
a few representative articles that use Machine Learning in order to classify internet
traffWhat our topic is related to is related to network traffic classification using
Machine Learning, or other similar techniques.

Bar-Yanai et al. [37] present a method for classifying encrypted traffic using
Machine Learning where they reach a classification accuracy of up to 99.9%. They
use a Machine Learning model which is a hybrid of the k-means and the k-nearest
neighbours algorithms. They also use a normal k-means clustering algorithm as the
baseline of their measurements, which is also done in this thesis. The paper is vague
in what exact metrics or data it is utilizing, however the notion of looking at general
data in classification was inspired by this paper. It should be noted that whilst it
was a necessity in their case, with the data being encrypted and as such unreadable,
it was for us mostly to future-proof our method, since almost no users wants to use
programs that inspect their data content. Their data collection also share a simi-
larity to the way it is handled in this thesis. Bar-Yanai et. al used multiple sources
of data, only one of which was a generated database. As this dataset was missing
specific types of data, it was then complemented by manually recording data from
a controlled environment. We chose to follow a similar route, meaning manually
complementing the public data, with our self-created queries, although in our
case it was more to complement the data volume rather than some missing types.
Overall it can be said that while our paper is very loosely related to that of Bar-
Yanai et. al, it has still been a source of ideas and guidance on some specific aspects.

Nguyen and Armitage present a survey of different Machine Learning techniques
used to classify network traffic. The approaches that are brought up are cluster-

57

6. Related Work

ing algorithms, supervised learning and hybrid solutions. They find that Machine
Learning is well suited for the task of network classification, and that techniques such
as neural network based approaches and feature space reduction (feature pruning)
were able to achieve high accuracy (up to 99%) [38]

58

7
Discussion & Conclusion

In this chapter we have a small discussion regrading this thesis as a whole. This is
then followed by a conclusion regarding the results of the thesis. Finally we attempt
to concretize some directions for future work.

7.1 Discussion

This section will be an overall discussion where we highlight some points that were
made in previous chapter, delve deeper into some, and also discuss new points of
interest.

The data collection that was a part of this thesis ultimately came with a few issues.
Finding public queries with accompanying datasets (to operate on) presented a
larger challenge than initially anticipated. This is the main reason why the test
dataset is generated from the same project as part of the training data, which
is something that would have been preferable to avoid. There are a few basic
operator types that are never classified because they did not appear in any of the
queries used to create the datasets. Some of the classes, which we actually classify,
are underrepresented in the data, namely AggregateSliding(0.95%), JointTum-
bling(2.66%) and KeyedReduce(3.31%). The classifier currently handles these very
well, however it is hard to say if that just comes down to the locality of the data.
Investigating how well the features which we have provided manage to distinguish
these with more varied measurements is something we would have liked to include,
but will have to be left for future work.

Another thing to note about the collected data is that it was slightly flawed. When
we attempted to retrieve data from the Flink API at higher frequency, it was often
observed that the metrics of some operators did not update, even though logically
a fair amount of data should be flowing through the operator at that time. We
also observed some strange measurements where for instance a map had no records
in during an interval, but multiple records out. We believe both of these issues
are related to how, and mainly when, the metrics are updated by Flink, which
sometimes led to what seemed to be half-updated or stale values. This is however
just a hypothesis as we never managed to pinpoint the origin of the issue. This is
of course something to take note of in regards to our results, however it should be
noted that the data generally aligned with expectations.
Certain limitations were established for this thesis. One such limitation was that

59

7. Discussion & Conclusion

we only implemented a neural network as our machine learning algorithm. Whilst
we discussed our choice of using MLF NN instead of other NN options such as
recurrent or convolutional, it was not weighed against other options. It would
be an interesting approach to take the classifier, and compare using different
machine learning algorithms commonly used in classification such as for instance
the Support-vector machine. This is a venue for future work wanting to optimize
the solution.

Another limitation was that only basic operators were considered, and any custom
operators, unless easily mappable to a basic type, were not considered. While this
method is not intended to classify custom operators as "custom operator type 1",
or another arbitrary classification, there is a benefit this method could provide in
the future once it has reached high enough accuracy. This benefit is that custom
operators can be classified as one of the basic operators, and this would (if done
successfully) indicate that this custom operator behaves very similarly to that basic
operator, and can be handled the same way in terms of efficient handling. This
will however only be applicable once the confidence in the method becomes very high.

It has been mentioned a few times throughout this thesis that our solution is
intended to be a first step toward a general method of classifying operators. This
has characterized some decisions when it comes to features and data-collection.
Firstly, it can be seen that we avoid any direct information about the data. The
number of records, and bytes is the most information that is collected, and that in
itself reveals little about the data. Secondly, as we want future implementations of
the classifier to be able to operate on other frameworks than Flink, we attempted
to keep the metrics we collected to metrics that are potentially acquirable by
analyzing network packets. This assumes of course that each operator is alone
on a single node, and all communication takes place over network, which is not
generally the case, but workarounds for this is another angle of future work. The
final features we use are all based on these metrics, meaning that the potential for
more general use, while untested and unfinished, exists.

7.2 Conclusion
In this thesis, we set out to investigate the possibility of using machine learning in
order to classify stream processing operators. In this context, based on the results
of running the model on the test dataset, our conclusion is: yes, it is very much
possible. Additionally, our conclusion is that the classifier performs well in the
context of this thesis. It achieves a high accuracy, well above the baseline k-means
implementation we compare it to, on the data we used. The features we propose,
which are used in the classifier, allow the NN to distinguish between all the basic
operators we attempt to classify. However, it should be noted that the volume
of data, both for training and testing, is not large enough to be able to make
a statement regarding how the model would perform outside the context of this
thesis. While the classifier is able to distinguish between these basic operators with

60

7. Discussion & Conclusion

high accuracy, there is much room for improvement for the future, especially in the
realm of data analysis. We believe that by analyzing the data thoroughly, patterns
could be detected that one can base new features on that will help the classifier
to generalize to more varied data and that could increase the accuracy even more.
This is especially the case if more data is available. The decisions and actions
that have been taken in order to improve the accuracy in this thesis are mostly
based upon hypotheses and trial and error, not so much upon analysis of the dataset.

7.3 Future Work
In this section we will present, and summarize previously mentioned, ideas and
suggestions for future work.

Part of the purpose of this thesis is to investigate the possibility of more generalized
operator classification, and lay the groundwork for such classification. This
inherently comes with an idea for future work, which is to build upon either our
discoveries or our method toward a generally applicable classifier. We do however
not see this as a single endeavour, but rather as a few parts.

One such part is data collection. In order to use a general classifier it is necessary
to be able to extract the same information from a query, regardless of framework.
Possible directions for this is firstly to get the metrics via network packet analysis
or statistics, as operators need to communicate regardless of framework. This poses
many challenges in how to properly interpret information, but also on how this
could be extended to work when multiple operators possibly could be present on
the same node. Another way would be for the frameworks themselves to make sure
they provide a way to extract these metrics from a running query, similar to the
way Flink exposes the metrics this thesis collects. Other methods could also be
possible, but we leave that up to future papers to explore.

Another part is extending and optimizing the classifier itself. This is also a
problem with multiple avenues of inquiry available. A first step would be fur-
ther verifying and possibly extending the set of proposed features used in this
thesis. It would also be interesting to compare utilizing different ML algorithms
in the classifier in order to find if another type or implementation would work better.

The results of the model proposed in this thesis operating on test data shows
promise, however in order to verify the model’s viability as a general purpose
operator classifier, the model needs to undergo heavier scrutiny using a larger
dataset. This data has to be more varied, including more operator classes, and
should be collected from a much wider range of queries, such that the full scope
of stream processing use cases is included. As part of this we would also suggest
developing a more accurate data collector, that can give more exact metrics than
what could be done in this thesis. Having data which is accurate would be of great
benefit to the classification process, as some operators produce metrics which are

61

7. Discussion & Conclusion

very similar, it is sometimes important to have data which is exact down to the
byte. As mentioned in the conclusion 7.2, we would also recommend thorough
statistical analysis of the dataset, to find characteristics in the data on which new
features can be based. An example would be to look at the distribution of the
operators in each feature dimension, which could help with pin-pointing which
features heavily characterize certain operators and derive new better features from
these.

In the discussion we mention the classification of custom operators. More specifi-
cally, to classify a custom operator as the basic operator it is most similar to. This
could bring a twofold benefit. First, it could allow frameworks to handle these
custom operators the same way that the corresponding basic operator would be,
allowing potential performance improvements. This is especially interesting in the
case of custom operators as, while frameworks differentiates between a "map" and
"filter" already, they can’t accurately cater to the need of custom ones. Secondly,
users that create a custom operator may realize that their custom operator is
actually just for instance an aggregate. This could allow users, especially inexpe-
rienced, to take a step back and consider if the custom operator could be written
as the corresponding basic operator instead. This would be the best outcome as
frameworks know exactly how to handle these basic operators as efficiently as
possible.

Another task for left for future work is to make the classifier operate in real-time
as part of a stream processing engine or other stream processing pipeline. This is
arguably essential in order to get the full potential out of a stream processing opera-
tor classifier, as a lot of the value lies in being able to perform fine-grained operator
placement, to boost the performance of stream processing. This applies both to the
learning process, having the classifier constantly learning on new incoming data, as
well as the actual classification and making decisions based on the information that
is gained regarding what operators a query consists of.

62

Bibliography

[1] Apache, Apache Storm, 2016. [Online]. Available: http://storm.apache.
org/%20http://storm.apache.org/index.html.

[2] ——, Apache Flink: What is Apache Flink? [Online]. Available: https://
flink.apache.org/flink-architecture.html.

[3] S. Perera, What is Stream Processing?, 2018. [Online]. Available: https://
wso2.com/library/articles/2018/05/what-is-stream-processing/.

[4] IBM, IBM Knowledge Center - Streams processing applications. [Online]. Avail-
able: https://www.ibm.com/support/knowledgecenter/SSCRJU_4.0.0/
com.ibm.streams.dev.doc/doc/streaming_applications.html.

[5] Scala, The Scala Programming Language. [Online]. Available: https://www.
scala-lang.org/.

[6] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means Clustering
Algorithm”, Applied Statistics, vol. 28, no. 1, p. 100, 1979, issn: 00359254. doi:
10.2307/2346830. [Online]. Available: https://www.jstor.org/stable/10.
2307/2346830?origin=crossref.

[7] Andrea Trevino, Introduction to K-means Clustering, 2016. [Online]. Available:
https://www.datascience.com/blog/k-means-clustering.

[8] P. Jeffcock, K-Means Clustering in Machine Learning, Simplified | Oracle Big
Data Blog, 2018. [Online]. Available: https://blogs.oracle.com/bigdata/
k-means-clustering-machine-learning.

[9] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview”, Neural
Networks, vol. 61, pp. 85–117, Apr. 2015. doi: 10.1016/j.neunet.2014.
09.003. [Online]. Available: http://arxiv.org/abs/1404.7828%20http:
//dx.doi.org/10.1016/j.neunet.2014.09.003.

[10] S. Sharma, Activation Functions: Neural Networks – Towards Data
Science, Available: https://towardsdatascience.com/activation-functions-
neural-networks-1cbd9f8d91d6, 2017. [Online]. Available: https : / /
towardsdatascience . com / activation - functions - neural - networks -
1cbd9f8d91d6.

[11] Yann Lecun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, International
Journal of Science, vol. 521, no. 1, pp. 436–444, 2015. doi: doi:10.1038/
nature14539. [Online]. Available: https://www.nature.com/articles/
nature14539.pdf.

63

http://storm.apache.org/%20http://storm.apache.org/index.html
http://storm.apache.org/%20http://storm.apache.org/index.html
https://flink.apache.org/flink-architecture.html
https://flink.apache.org/flink-architecture.html
https://wso2.com/library/articles/2018/05/what-is-stream-processing/
https://wso2.com/library/articles/2018/05/what-is-stream-processing/
https://www.ibm.com/support/knowledgecenter/SSCRJU_4.0.0/com.ibm.streams.dev.doc/doc/streaming_applications.html
https://www.ibm.com/support/knowledgecenter/SSCRJU_4.0.0/com.ibm.streams.dev.doc/doc/streaming_applications.html
https://www.scala-lang.org/
https://www.scala-lang.org/
https://doi.org/10.2307/2346830
https://www.jstor.org/stable/10.2307/2346830?origin=crossref
https://www.jstor.org/stable/10.2307/2346830?origin=crossref
https://www.datascience.com/blog/k-means-clustering
https://blogs.oracle.com/bigdata/k-means-clustering-machine-learning
https://blogs.oracle.com/bigdata/k-means-clustering-machine-learning
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
http://arxiv.org/abs/1404.7828%20http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://arxiv.org/abs/1404.7828%20http://dx.doi.org/10.1016/j.neunet.2014.09.003
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://doi.org/doi:10.1038/nature14539
https://doi.org/doi:10.1038/nature14539
https://www.nature.com/articles/nature14539.pdf
https://www.nature.com/articles/nature14539.pdf

Bibliography

[12] S. Y. Fei-Fei Li Justin Jognson, (44) Lecture 6 | Training Neural Networks
I - YouTube. [Online]. Available: https://www.youtube.com/watch?v=
wEoyxE0GP2M&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=6.

[13] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Im-
prove Neural Network Acoustic Models”, in Proc. icml, vol. 30, 2013,
p. 3. [Online]. Available: https : / / pdfs . semanticscholar . org / 367f /
2c63a6f6a10b3b64b8729d601e69337ee3cc.pdf.

[14] S. Ruder, “An overview of gradient descent optimization algorithms”, CoRR,
vol. abs/1609.0, pp. 1–14, 2016, issn: 0006341X. doi: 10.1111/j.0006-341X.
1999.00591.x. [Online]. Available: http://arxiv.org/abs/1609.04747.

[15] J. Duchi JDUCHI and Y. Singer, “Adaptive Subgradient Methods for On-
line Learning and Stochastic Optimization * Elad Hazan”, Tech. Rep.,
2011, pp. 2121–2159. [Online]. Available: http : / / delivery . acm .
org / 10 . 1145 / 2030000 / 2021068 / p2121 - duchi . pdf ? ip = 129 .
16 . 140 . 73 & id = 2021068 & acc = OPEN & key = 74F7687761D7AE37 .
3C5D6C4574200C81 . 4D4702B0C3E38B35 . 6D218144511F3437 & _ _ acm _ _ =
1541446280_6ea446be214762a4593164f933be45f5.

[16] G. E. Hinton, “06 Optimization: How to make the learning go faster”, Cours-
era, vol. 4, pp. 26–31, 2012. doi: https : / / www . coursera . org / learn /
neural-networks/lecture/YQHki/rmsprop-divide-the-gradient-by-
a-running-average-of-its-recent-magnitude. [Online]. Available: http:
//www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.
pdf.

[17] W. M. P. Van Der Aalst, ·. V. Rubin, ·. H. M. W. Verbeek, ·. B. F. Van
Dongen, ·. E. Kindler, and ·. C. W. Günther, “Process mining: a two-step
approach to balance between underfitting and overfitting”, Softw Syst Model,
vol. 9, pp. 87–111, 2010. doi: 10.1007/s10270-008-0106-z. [Online]. Avail-
able: http://www.processmining.org.

[18] D. M. Hawkins, “The Problem of Overfitting”, Journal of chemical information
and computer sciences, vol. 44, pp. 1–12, 2004. doi: 10.1021/ci0342472.
[Online]. Available: https://pubs.acs.org/doi/full/10.1021/ci0342472.

[19] N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, “Dropout:
A Simple Way to Prevent Neural Networks from Overfitting”, Tech. Rep.,
2014, pp. 1929–1958. [Online]. Available: http : / / www . jmlr . org /
papers / volume15 / srivastava14a / srivastava14a . pdf ? utm _ content =
buffer79b43 & utm _ medium = social & utm _ source = twitter . com & utm _
campaign=buffer.

[20] TensorFlow, TensorFlow, https://www.tensorflow.org/. [Online]. Available:
https://www.tensorflow.org/.

[21] Keras, Keras. [Online]. Available: https://keras.io/.

64

https://www.youtube.com/watch?v=wEoyxE0GP2M&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=6
https://www.youtube.com/watch?v=wEoyxE0GP2M&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=6
https://pdfs.semanticscholar.org/367f/2c63a6f6a10b3b64b8729d601e69337ee3cc.pdf
https://pdfs.semanticscholar.org/367f/2c63a6f6a10b3b64b8729d601e69337ee3cc.pdf
https://doi.org/10.1111/j.0006-341X.1999.00591.x
https://doi.org/10.1111/j.0006-341X.1999.00591.x
http://arxiv.org/abs/1609.04747
http://delivery.acm.org/10.1145/2030000/2021068/p2121-duchi.pdf?ip=129.16.140.73&id=2021068&acc=OPEN&key=74F7687761D7AE37.3C5D6C4574200C81.4D4702B0C3E38B35.6D218144511F3437&__acm__=1541446280_6ea446be214762a4593164f933be45f5
http://delivery.acm.org/10.1145/2030000/2021068/p2121-duchi.pdf?ip=129.16.140.73&id=2021068&acc=OPEN&key=74F7687761D7AE37.3C5D6C4574200C81.4D4702B0C3E38B35.6D218144511F3437&__acm__=1541446280_6ea446be214762a4593164f933be45f5
http://delivery.acm.org/10.1145/2030000/2021068/p2121-duchi.pdf?ip=129.16.140.73&id=2021068&acc=OPEN&key=74F7687761D7AE37.3C5D6C4574200C81.4D4702B0C3E38B35.6D218144511F3437&__acm__=1541446280_6ea446be214762a4593164f933be45f5
http://delivery.acm.org/10.1145/2030000/2021068/p2121-duchi.pdf?ip=129.16.140.73&id=2021068&acc=OPEN&key=74F7687761D7AE37.3C5D6C4574200C81.4D4702B0C3E38B35.6D218144511F3437&__acm__=1541446280_6ea446be214762a4593164f933be45f5
http://delivery.acm.org/10.1145/2030000/2021068/p2121-duchi.pdf?ip=129.16.140.73&id=2021068&acc=OPEN&key=74F7687761D7AE37.3C5D6C4574200C81.4D4702B0C3E38B35.6D218144511F3437&__acm__=1541446280_6ea446be214762a4593164f933be45f5
https://doi.org/https://www.coursera.org/learn/neural-networks/lecture/YQHki/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude
https://doi.org/https://www.coursera.org/learn/neural-networks/lecture/YQHki/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude
https://doi.org/https://www.coursera.org/learn/neural-networks/lecture/YQHki/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1007/s10270-008-0106-z
http://www.processmining.org
https://doi.org/10.1021/ci0342472
https://pubs.acs.org/doi/full/10.1021/ci0342472
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
https://www.tensorflow.org/
https://keras.io/

Bibliography

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, Going Deeper With Convolutions, 2015.
doi: 10.1109/CVPR.2015.7298594. [Online]. Available: https://www.cv-
foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_
Deeper_With_2015_CVPR_paper.html.

[23] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?”, in Proceedings of
the ACL-02 conference on Empirical methods in natural language processing
- EMNLP ’02, vol. 10, Morristown, NJ, USA: Association for Computational
Linguistics, 2002, pp. 79–86. doi: 10.3115/1118693.1118704. [Online]. Avail-
able: http://portal.acm.org/citation.cfm?doid=1118693.1118704.

[24] Apache, Apache Flink 1.7 Documentation: Operators. [Online]. Available:
https://ci.apache.org/projects/flink/flink- docs- stable/dev/
stream/operators/.

[25] M. Kinsman, M. MacReady, and A. Raizman, Tumbling Window (Azure
Stream Analytics) - Stream Analytics Query | Microsoft Docs, 2016. [Online].
Available: https : / / docs . microsoft . com / en - us / stream - analytics -
query/tumbling-window-azure-stream-analytics.

[26] P. Wagner, FlinkExperiments. [Online]. Available: https : / / github . com /
bytefish/FlinkExperiments.

[27] QCLCD, QCLCD Weather Data. [Online]. Available: https://www.ncdc.
noaa.gov/orders/qclcd/.

[28] D. Palyvos-Giannas, V. Gulisano, and M. Papatriantafilou, GeneaLog: Fine-
Grained Data Streaming Provenance at the Edge. New York, USA: ACM, 2018,
pp. 227–238.

[29] DataArtisans, TaxiRides. [Online]. Available: https : / / github . com /
dataArtisans/flink-streaming-demo.

[30] New York City Taxi and Limousine Commission (TLC), TLC Yellow Rides
Janaury 2010. [Online]. Available: https://s3.amazonaws.com/nyc-tlc/
trip+data/yellow_tripdata_2010-01.csv.

[31] ——, TLC Yellow Rides January 2017. [Online]. Available: https :/ /s3 .
amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2017-01.csv.

[32] BigDataPlayground, Stormbreaker. [Online]. Available: https://github.com/
BigDataPlayground178/Stormbreaker.

[33] V. Gulisano, Z. Jerzak, S. Voulgaris, and H. Ziekow, The DEBS 2016 Grand
Challenge, DEBS ’16. Irvine, California: ACM, 2016, pp. 289–292, isbn: 978-
1-4503-4021-2. doi: 10.1145/2933267.2933519. [Online]. Available: http:
//doi.acm.org/10.1145/2933267.2933519.

[34] S. B. Gdaim, IoT Traffic Monitor, 2016. [Online]. Available: https://github.
com/harsh86/iot-traffic-monitor-flink.

[35] D. Masters and C. Luschi, “Revisiting Small Batch Training for Deep Neu-
ral Networks”, arXiv preprint arXiv:1804.07612, vol. abs/1804.0, Apr. 2018.
[Online]. Available: http://arxiv.org/abs/1804.07612.

65

https://doi.org/10.1109/CVPR.2015.7298594
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://doi.org/10.3115/1118693.1118704
http://portal.acm.org/citation.cfm?doid=1118693.1118704
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/
https://docs.microsoft.com/en-us/stream-analytics-query/tumbling-window-azure-stream-analytics
https://docs.microsoft.com/en-us/stream-analytics-query/tumbling-window-azure-stream-analytics
https://github.com/bytefish/FlinkExperiments
https://github.com/bytefish/FlinkExperiments
https://www.ncdc.noaa.gov/orders/qclcd/
https://www.ncdc.noaa.gov/orders/qclcd/
https://github.com/dataArtisans/flink-streaming-demo
https://github.com/dataArtisans/flink-streaming-demo
https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2010-01.csv
https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2010-01.csv
https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2017-01.csv
https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2017-01.csv
https://github.com/BigDataPlayground178/Stormbreaker
https://github.com/BigDataPlayground178/Stormbreaker
https://doi.org/10.1145/2933267.2933519
http://doi.acm.org/10.1145/2933267.2933519
http://doi.acm.org/10.1145/2933267.2933519
https://github.com/harsh86/iot-traffic-monitor-flink
https://github.com/harsh86/iot-traffic-monitor-flink
http://arxiv.org/abs/1804.07612

Bibliography

[36] Y. Bengio, Practical recommendations for gradient-based training of deep ar-
chitectures. Jun. 2012, pp. 437–478. [Online]. Available: http://arxiv.org/
abs/1206.5533.

[37] R. Bar - Yanai, M. Langberg, D. Peleg, and L. Roditty, “Realtime Classifica-
tion for Encrypted Traffic”, in International Symposium on Experimental Al-
gorithms, Springer, Berlin, Heidelberg, 2010, pp. 373–385. doi: 10.1007/978-
3-642-13193-6{_}32. [Online]. Available: http://link.springer.com/
10.1007/978-3-642-13193-6_32.

[38] T. T. T. Nguyen and G. Armitage, “A Survey of Techniques for Internet Traf-
fic Classification using Machine Learning”, IEEE Communications Surveys &
Tutorials, vol. 10, no. 4, 2008. doi: 10.1109/SURV.2008.080406. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.474.858&rep=rep1&type=pdf.

[39] D. P. Kingma and J. Lei Ba, “Adam: A method for stochastic optimization”,
arXiv preprint arXiv:1412.6980, 2014. [Online]. Available: https://arxiv.
org/pdf/1412.6980.pdf.

[40] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and P. Val-
duriez, “StreamCloud: An Elastic and Scalable Data Streaming System”, IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 12, pp. 2351–
2365, Dec. 2012, issn: 1045-9219. doi: 10.1109/TPDS.2012.24. [Online].
Available: http://ieeexplore.ieee.org/document/6127868/.

[41] Arvind Rai, Java 8 Stream reduce() Example, 2018. [Online]. Available: https:
//www.concretepage.com/java/jdk-8/java-8-stream-reduce-example.

66

http://arxiv.org/abs/1206.5533
http://arxiv.org/abs/1206.5533
https://doi.org/10.1007/978-3-642-13193-6{_}32
https://doi.org/10.1007/978-3-642-13193-6{_}32
http://link.springer.com/10.1007/978-3-642-13193-6_32
http://link.springer.com/10.1007/978-3-642-13193-6_32
https://doi.org/10.1109/SURV.2008.080406
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.474.858&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.474.858&rep=rep1&type=pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://doi.org/10.1109/TPDS.2012.24
http://ieeexplore.ieee.org/document/6127868/
https://www.concretepage.com/java/jdk-8/java-8-stream-reduce-example
https://www.concretepage.com/java/jdk-8/java-8-stream-reduce-example

A
Appendix 1

A.1 Optimizers
This section contains more detailed explanations of the different optimizer algo-
rithms that are either used in this thesis, or that algorithms used in the thesis are
built upon.

Momentum

Momentum improves SGD’s ability to navigate in areas which contain surfaces that
are steeper in one direction than in others. By adding a momentum term γ, it makes
SGD move in the right direction and prevents it from going back and forth between
the steeper parts of the area. γ is a fraction of the update vector of the past time
step, which is added to the current update vector [14].
The momentum term can intuitively be interpreted as the physical momentum of a
ball rolling down a hill and into a small valley. With enough momentum, the ball
will escape the valley. Without enough momentum, the ball can stop and remain
trapped.

Nesterov Accelerated Gradient (NAG)

A drawback of Momentum is that it might overshoot, due to too much momentum
carrying over from the previous step. NAG mitigates this problem by approximating
where the parameters are going to be after the next update, and calculating the
gradients w.r.t to these approximated future parameters [14]. Returning the the
example with the ball in the previous section, NAG approximates where the ball
will be some small amount of time in the future, and takes this into consideration
when calculating the gradients. This prevents the ball from escaping a global
minima, due to too much momentum.

Adagrad

Adagrad [15] improves NAG by adapting the learning rate η w.r.t to the significance
of the parameters, for each parameter indivudially. Frequent parameters require
smaller updates, while infrequent parameters require greater updates. This makes
Adagrad well suited for working with sparse datasets, or datasets with features that

I

A. Appendix 1

have low occurrence. Adagrad’s update rule can be defined as:

θt+1 = θt −
η√

Gt + ε
� gt (A.1)

Here, gt are the gradients of the loss function at time step t, Gt is a diagonal matrix
in which the elements are the sum of the squares of the gradients w.r.t θi up untill
time step t. ε is a term added to avoid division by zero. � denotes element wise
matrix-vector multiplication. Because Gt contains the sum of the squares of past
gradients, during training the sum will keep growing and in turn will cause the
learning rate to keep decreasing. Eventually it becomes so small that learning is
effectively stopped.

RMSprop

RMSprop [16] tries to remedy the problem of accumulating squared gradients which
cause learning to eventually halt. It is accomplished by dividing the sums by a
exponentially decaying running average of the squared gradients [14].

E[g2]t = γE[g2]t−1 + (1− γ)g2
t (A.2)

θt+1 = θt −
η√

E[g2]t + ε
gt (A.3)

Here, γ is the momentum term, E[g2]t is the running average of the squared
gradients at time step t.

Adam Optimization

Adam [39] (Adaptive Moment Estimation) is an optimization function used in
neural networks, which builds on gradient descent. Like RMSprop, Adam utilizes an
exponentially decaying average of the past squared gradients, vt to combat the decay
of the learning rate. The difference from RMSprop is that it also uses an exponen-
tially decaying average of past gradients, mt, which works similar to momentum [14].

mt = β1mt−1 + (1− β1)gt (A.4)

vt = β2vt−1 + (1− β2)g2
t (A.5)

β1 and β2 ∈ [0, 1) are hyper-parameters that control the rates of the exponential
decay of the moving averages. mt and vt are estimates of the 1st moment (the mean)
and the 2nd raw moment (uncentered variance) of the gradient. A problem arises
as these moving averages are initially 0-vectors, causing the moment estimates to be

II

A. Appendix 1

biased towards 0. This is countered by calculating bias corrected terms for vt and
mt respectively [39]:

m̂t = mt

1− βt1
(A.6)

v̂t = vt
1− βt2

(A.7)

These terms are then used to construct Adam’s update method.

θt+1 = θt −
η√
v̂t + ε

m̂t (A.8)

Kingma and Lei-ba emiprically show in their paper that this method produces results
better than their adaptive-learning competitors such as Adagrad and RMSprop [39].

Below follows the algorithmic procedure:

Algorithm 1 Adam Algorithm
Require: α: Step size
Require: β1, β2 ∈ [0, 1): Exponential decay rates for moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
m0 ← 0: Initialize 1st moment vector
v0 ← 0: Initialize 2nd moment vector
t0 ← 0: Initialize time step
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2

t (Update biased second raw moment estimate)
m̂t ← mt/(1− βt1) (Compute bias-corrected first moment estimate)
v̂t ← vt/(1− βt2) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 − α · m̂t/(

√
v̂t + ε): Update parameters

end while
Return θt (Resulting parameters)

A.1.1 AdaMax
Adamax is an extension of Adam. In Adam, the vt factor is scaling the gradient
inversely to a scaled L2 norm of the current and past gradients. This L2 norm can
be generalized to an Lp norm in the following way:

vt = βp2vt−1 + (1− βp2)|gt|p (A.9)

When p is large, these norms can become numerically unstable, however Kingma
and Lei-ba show that if p → ∞ they become stable. This fact is used to derive a

III

A. Appendix 1

new update rule, based on the infinity norm constrained version of vt, here called
ut, which is used in AdaMax.

ut = β∞2 vt−1 + (1− β∞2)|gt|∞ = max(β2 · vt−1, |gt|) (A.10)

Note that the decay terms, β2, are parameterized as βp2 .
This then yields the AdaMax algorithm:

Algorithm 2 AdaMax Algorithm
Require: α: Step size
Require: β1, β2 ∈ [0, 1): Exponential decay rates for moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
m0 ← 0: Initialize 1st moment vector
u0 ← 0: Initialize the exponentially weighted infinity norm
t0 ← 0: Initialize time step
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
ut ← max(β2 · ut−1, |gt|) (Update the exponentially weighted infinity norm)
θt ← θt−1 − (α/(1− βt1)) ·mt/ut: Update parameters

end while
Return θt (Resulting parameters)

IV

B
Appendix 2

B.1 Operators

Here we provide a more in-depth and formal description of some of the basic
operators mentioned in this thesis. The algebraic portions are heavily paraphrased
from the supplementary material provided by Gulisano et. al for this paper [40].

Map
The Map operator is a generalized projection operator. It is defined by

M{A′1 ←− f1(tin), ..., A′n ←− fn(tin)}(I, O).

In this function I and O represent the input stream and the output stream
respectively. tin is the input tuple to the operator and A (A′1, ..., A′n) is the
schema of the output stream. The operator transforms the input tuple using the
provided set of user-defined functions {f1, ..., fn}, in effect mapping the incoming
tuple onto the schema of the outgoing stream. The incoming and outgoing schema
may differ, however the outgoing tuple preserves the timestamp of the incoming one.

FlatMap
The FlatMap operator is an extended version of the Map operator. While the two
are almost the same, the main difference is that a FlatMap outputs an arbitrary
number of tuples for each incoming tuple. In practice, this means that Map
operators can be considered a subset of the FlatMaps. FlatMaps vary somewhat
based on implementation, but the usual behaviour is that 0, 1 or more output
tuples are created based on each input tuple. Note that this could be 0 for the
first tuple, then 4 for the next, meaning the FlatMap decides the number of output
tuples based on the incoming one, rather than it being a chosen constant number.

Filter
The Filter operator is an operator that is used to either discard tuples based on
some predicate, or split them into different outgoing streams. It is defined by

F{P1, ..., Pm}(I, O1, ..., Om, [Om+1])

In this function I represents the input stream and O1, ..., Om, [Om+1] represents
an ordered list of output streams. P1, ..., Pm is an ordered set of user-provided

V

B. Appendix 2

predicates. As can be seen in the function definition, the amount of predicates
is either equal to the number of output streams, or there is one extra output
stream. Each incoming tuple is forwarded to the first stream whose associated
predicate it satisfies. In a more formal definition, tin is forwarded over Oj where
j = min1≤i≤m {i | Pi(tin) = TRUE}. If a tuple matches none of the predicates, it is
either routed to the Om+1 stream if it has been provided, or discarded entirely. It
can be seen in this function definition that the incoming tuples are never altered,
and as such the output tuple remains the same as the input tuple.

Aggregate
The Aggregate operator, as the name suggests, is used on windows of tuples to
compute aggregate functions such as sums or averages. It is defined as :

Ag{Wtype, Size, Advance, A′1 ←− f1(W), ..., A′n ←− fn(W),
[Group− by = (Ai1 , ..., Aim)]}(I, O)

In this definition, tuples on the incoming stream I are stored in the window
W until it is full. The type of window is determined by Wtype and can be
either Wtype = time, which means the window is based on timestamps, or
Wtype = numTuples, which means the window is based on tuple count instead.
The parameter Size determines the size of the window. When Wtype = time a
window is considered full if the difference in time between the incoming tuple and
the first one in the window exceeds the value of Size. When Wtype = numTuples
a window is instead considered full if it contains Size amount of tuples.

An Aggregate only produces output when the window is full (regardless of the type
of window). The output tuples are sent over the output stream O and use the
timestamp of the earliest tuple in the window. The schema of the output tuple
is represented by {A′1, ..., A′n}, and {f1, ..., fn} represents the set of user-defined
functions (e.g. average, count, sum, etc.) that are computed over all the tuples in
the current window.

The update of the window happens each time an output tuple is propagated. In
this step all stale tuples are discarded from the window according to the parameter
Advance. For time-based windows (Wtype = time) a tuple t is considered stale
if, for an incoming tuple tin, tin.ts − t.ts > Size. If the window is count-based
(Wtype = numTuples), the earliest Advance number of tuples will instead be
considered stale.

The final part of the definition, Group-by, is optional, and is utilized to separate
tuples into different windows based on some properties. Consider a case where
Group-By = Ai where Ai is one attribute of the input schema. In this case,
operators will be divided into separate windows for each possible value of Ai.

Join
The Join operator is used to, as the name suggests, join multiple streams together.

VI

B. Appendix 2

The operator is defined by:

J{P,Wtype, Size}(Sl, Sr, O)

It has an output stream denoted by O, and two input streams Sl, Sr which are
generally referred to as respectively left and right. P denotes a predicate over a
pair of tuples (one from the left and one from the right). Wtype and Size are
parameters for the windowing similar to how they are defined for the Aggregate
operator.

The operator keeps track of two separate windows, Wl,Wr, one for each of input
streams. Tuples arriving on the left side are stored in the left window but are used
to slide the right window, and vice versa for the right side. For time-based windows
(Wtype = time) this means that on arrival of tuple tin ∈ Sl, window Wr is updated
by removing all tuples t such that tin.ts − t.ts ≥ Size. For count-based windows
(Wtype = numTuples) on arrival of tuple tin ∈ Sl, window Wr, if full, is instead
updated by removing the earliest tuple.

After the window has been updated, for each tuple t ∈ Wr, the concatenation of
tin and t is produced as a single output tuple provided that the predicate P (tin, t)
results in a positive (TRUE) outcome.

The updating of windows, evaluation of the predicate and propagation to the
output for input tuples of the right stream are done in the same fashion (simply
swap r for l and vice versa for the windows and input streams in every step).

Reduce
The Reduce operator continuously combine sequential tuples with the current
result. We have only found implementation specific definitions and descriptions
of this operator, and will as such not provide a formal definition, but instead an
explanation and example based on documentation from java [41] and Flink [24].

This operator works by combining its "current" value (its last output tuple) and the
incoming tuple using a set of user defined functions f1, ..., fn. Consider a case where
the input sequence consists of tuples [t1, t2, ..., tm]. The operator would output its
first tuple once the first two tuples were received following. The output tuple would
be constructed using this definition

O′2 ←− {A′1 ←− f1(t1, t2), ..., A′n ←− fn(t1, t2)}
In this case O′2 denotes the tuple that is output on the arrival of t2. For any other
tuple it instead follows the more general definition

O′i ←− {A′1 ←− f1(Oi−1, ti), ..., A′n ←− fn(Oi−1, ti)}

where i (2 < i ≤ m) is an arbitrary index of the incoming tuple. Reduce operators
also have an optional Group − by operation that works in the same way as for the
Aggregate operator, but where the window only contains the last output tuple O′i−1
and the incoming tuple ti.

VII

	List of Figures
	List of Tables
	Introduction
	Project Aim
	Limitations

	Background
	Stream Processing
	Operators
	Steam Processing Engines

	Machine Learning
	K-means Clustering
	Artificial Neural Networks
	Activation Functions
	Loss Functions
	Backpropagation
	Optimization
	Over-/Underfitting
	Data Pre-processing
	Frameworks

	Methods
	Problem Description
	Data Collection
	Problem Assessment
	Classifier
	Classes
	Features
	Contribution

	Implementation
	K-means baseline
	Classification process
	Model
	Hardware setup
	Data Extraction
	Metrics
	Data Formatting

	Data
	Pre-processing
	Feature Engineering
	Features
	Feature Pruning

	Mapping Classes

	Evaluation
	K-means baseline
	Features
	Model parameters
	Network layout
	Batches
	Activation Function
	Min-max vs Z-score normalization
	Optimizer
	Discrete comparisons

	Final Results

	Related Work
	Discussion & Conclusion
	Discussion
	Conclusion
	Future Work

	Appendix 1
	Optimizers
	AdaMax

	Appendix 2
	Operators

