Extensible in-vehicle ITS system for location based
traffic information

A design proposal and implementation for the NS-FRITS project
Master of Science Thesis in Networks and Distributed Systems

Jonas Fardig
Carl Jonsson

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, June 2010



The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Extensible in-vehicle ITS system for location based traffic information.
A design proposal and implementation for the NS-FRITS project.

Jonas Firdig
Carl Jonsson

© Jonas Firdig, June 2010.
© Carl Jonsson, June 2010.

Examiner: Arne Dahlberg

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden June 2010



Abstract

As the European population grows, the freight movement and transport sector in the
North Sea Region increases, leading to a higher load on existing road networks, ports
and intermodal interchanges. Rather than only focusing on expanding existing phys-
ical infrastructure, the introduction of Intelligent Transport Systems (ITS) have been
predicted to have crucial role in improving efficiency and safety in the transport sector.

In 2009 the Furopean Union started the NS-FRITS project, which aims to develop an
ITS system to enable drivers and fleet managers in the North Sea Region to get location
based information about current events such as road conditions, road weather and traffic
congestions. The NS-FRITS system should also present information about secure parking
spots, crime spots, customs stations and other Point of interests relevant to heavy goods
drivers.

The work of this thesis has suggested a system design and architecture of the NS-FRITS
system and implemented it into a working prototype. The implementation includes: A
server providing location based services, a graphical interface for adding location based
information, a client application to be used in trucks and a truck fleet management sys-
tem. The communication is based on streaming XML through the Extensible Messaging
and Presence Protocol (XMPP) protocol.

This report will describe this proposed design, what technologies and protocols are being
used, alternative technologies, and suggestion for improvements towards the final NS-
FRITS system, which is scheduled to be completed in December 2011.

This report is written in English.



Preface

This report emerges from a master thesis work under the department of Computer Science
and Engineering (CSE) at Chalmers University of Technology, and was conducted at
Volvo Technology, both located in Géteborg, Sweden.

We would like to thank our examiner Arne Dahlberg at the department of computer
science and engineering, Chalmers University of Technology and the people at Tullverket
in Svinesund.

Special thanks goes to our supervisor at Volvo Technology, Claes Pihl.

ii



Contents

(1._Introduction| 1
[1.1. Background| . . . . . . . . . ... L 1
[1.2. The NS-FRITS Project| . . . . .. .. . .. ... ... ... ..... 1
(3. Related Actorsl . . . . . . . . . .. o 2

[1.3.1. Volvo Technology|. . . . . . . . . . .. ... ... ... ..., 2
[.5.2. Tullverket - Swedish Customs| . . . . . .. . ... ... ... ... 2

1.4. Purposel . . . . . . . e 3
M5 Goald . . . . . . 3
[1.6. Constraintsl . . . . . . . . . . L 3
[1.7. Disposition] . . . . . . . . . 3
Ko Glossary| . . . . L o 4

[2. Methodology]| 6

[3. Problem Analysis| 7
[3.1. NS-FRITS Actors and Concept Overview] . . . . . .. ... ... .. ... 7
[3.2. System Requirements|. . . . . . .. . . ... L oL 7
[3.3. System Architectures|. . . . . . . . . .. L 9

8.3.1. Client-server Architecturel . . . . . . . . . . ... ... ... 10
3.3.2. Distributed architecturel . . . . . .. .. ..o 10
13.3.3. Hybrid architecture|. . . . . . . . ... ... o 11
3.3.4. Stateful vs, stateless server] . . . .. . . . . ... .. L. 11
[3.3.5. Amalysis| . . . . . . .. 11
[3.4. Communication Technologies| . . . . . . .. ... ... ... ... ..... 11
3.4.1. Mobile telecommunicationl . . . . . . . . . . ... L 12
3.4.2. WLAN/IEEE 802.11| . . . . . .. ... ... . ... ... ..... 13
343, WAVE/AEEE B020L0 « -« o o ooeoeeeee e 14
3.4.4, CALM|. . . . . . . 14
345, GPS ... 14
[3.4.6. Summaryl . . . . .. ... 15
[3.5. Map projection| . . . . . .. 15
[3.5.1. Map providers| . . . . . .. ... 15
[3.0.2.  Geographical coordinate standards| . . . . . . ... ... ... ... 16
[3.5.3.  Geographical data formats|. . . . . . .. .. ... oL 16
[3.6. Data Storagel . . . . . . . . 18
13.6.1.  GI5, OpenGIS and Spatial databases| . . . . ... .. ... ... .. 18

1l



BT _WVisuall . . . . oo 19
B.22. Audiblel . . . ... 19
B.7.5. Translation| . . . . . . . ... Lo L o 20

[3.8. Communication protocols| . . . . . . . ... . ... ... 21
B.8.1. Web servicesl . . . . . . .. . 21
BBZCORBAL . . . . . 21
BRI _XMPPI. . . oo o 22
13.8.4. Custom protocoll . . . . . . .. . ... 22
(5.9, Data Providers - DATEX IIl . . . ... ... ... ... ... ... ... 23
18.9.1. Technical Overviewl. . . . . . . . .. . . . . ... ... .. ..... 23
13.9.2. "Trafikverket, the Swedish National Road Administration| . . . . . . 23

[4. System design| 25
4.1. Modules of the NS-FRITS system|. . . . .. . ... ... ... ... .... 25
4.1.1. NS-FRITS Core server| . . . . . . .. ... . ... .. ... ..... 25
4.1.2. NS-FRITS Data provider| . . . . .. ... ... .. .. 25
415, NS-FRITS extension| . . . . . . . . ... . ... 28
4.1.4. NS-FRITS clientl . . . . ... . ... ... .. ... ... .... 29

[4.2. System design choices| . . . . . . . ... L. e 30
4.2.1. Low level communicationl . . . . . . . . . . ... ... .. ..... 31
422, Client to server communicationl . . . . . . . . . . . . ... 31
[4.2.3.  Geographical data storage| . . . . . . . . ... 31

43, Therole ot XMPP| . . . . . . . .o o o oo 32
[4.3.1. XMPPdesign|. . . . ... .. . 32
4.3.2. PFxternal servers|. . . . . . . . ... L 0oL 32

4.4. NS-FRITS methods and tunctionalityl . . ... .. ... ... ... .... 33
4.4.1. Methods controlling user datal . . . . . . . . ... .. .. ... ... 33
4.4.2.  Getting information for aroutel . . . . . . . ... ... 35
4.4.3.  Getting information for coordinate] . . . . . . .. ... 36
4.4.4. Searching tor a POIl . . .. ... ... ... ... ... 36
[4.4.5. Storing of sent objects| . . . . . . ... 36
|4.4.6. Subscribing to an information object| . . . . .. ... ..o 36
[4.4.7. The NS-FRITS alert system|. . . . . . ... ... ... ... ... . 37

4.5. Data protocol| . . . . . . . . 38
45.1. Methodcalls . ... ... .. o 38
4.5.2. Method responses|. . . . . . . . . .. ... .. o 39
|4.5.3. Updates and Asynchronous messages| . . . . . . . . . ... .. ... 39
4.6, NS-FRITS datamodell . . . . . .. . . . oo oo o 40
4.6.1. InfoObject|. . . . . . . . . . . . 40
4.6.2. DataNodel . . . . . . .. . 41
4.6.5. Tocation|. . . . . . . .. oL Lo 42
[4.6.4. Description| . . . . . . . . .. 42

v



[5. Prototype implementation|

EI _Overview . .........
b1.1. XMPP serverl . . . .

5.2.1. Overviewl . .. ...

[5.3. Fleet management| . . . . .

[9.4. NS-FRITS backend applications|. . . . . ... ... ... ... ... ....

b.4.1. Overviewl . .. ...

[5.4.5. DATEX II parser| . .
[5.5. Time agreement application|

[6. Improvements|
[6.1. Route planning| . . . . . . .

|6.1.1. Basic principles of route planning| . . . . . . ... .. ... .. ...

6.1.2. Route planning with NS-FRI'TS data). . . . . ... ... ... ...

[6.1.3. Integration with NS-FRITS prototype design| . . . . . .. .. . ..

[6.1.4.  Example Implementation with OpenStreetMaps and pgRouting| . .

[6.1.5. Third party route planningl . . . ... ... ... .. ... .....

|6.2. Spatial algorithmg . . . . .

6.3.1. SOAPlI . .. ... ..

[A._Use casel

[A.1. Driver A traveling Warsaw to Oslo via Svinesund| . . . . . . . . . ... ..

|A.2. Driver A traveling Oslo to Warsaw via Svinesund| . . . . . . . . . ... ..

[B. Case study: The Swedish Customs’ office in Svinesund|

IB.1. Description| . .. ... ...

B2 Probleml . . . .. ... ...
C. API

IC.1. Location based information|

46
46
47
47
47
48
51
ol
52
52
o4
54
95
56

59
99
99
60
60
61
62
63
64
64
64
64

65

66
66
66

72
72
72

73
73
73
75

76



[C.2. Time agreement|. . . . . . . . . . oL 83

|C.3. Fleet management| . . . . . . . .. . . . 84
D. XML-schemas| 86
D.1. NSFRITS Data model 86
[D2NSFRITSTQ] . . . . . . 88
ID.3. NSFRITS Message| . . . . . . . .. . . . o 90
ID.4. NSFRI'TS Agreement|. . . . . . . . . . . oo oL o 92
ID.5. Fleet management| . . . . . . . .. . . . . L 93

vi



1. Introduction

1.1. Background

During the last 20 years, many industries have been transformed by the use of Informa-
tion Technology (IT). Lately, the transport sector have realized that the key to efficient
transport systems lies in the use of IT rather than only focusing on reparation of old
infrastructure and building new roads|17].

Intelligent Transport Solutions (ITS) is the way of improving the transport sector by
introducing information and communication systems. This is a broad concept that can
be realized in many different ways:

e Optimizing vehicle routes based on current road congestions can reduce fuel con-
sumption and transportation time.

e By maximizing the load of each vehicle in a freight company depending on route,
will reduce the amount of trips per goods.

e By giving the driver information about Point of Interests (POI), such as safe parking
spots or resting places, reduces the down time having to search for them manually.
It can also affect planning and driving decisions by the driver and its operator.[28].

Research of ITS systems have been in major focus of many countries during the last years,
South Korea spends 100-200 million USD per year in ITS research and China has already
deployed ITS systems in major cites such as Beijing, Guangzhou and Shenzhen[23)].

In December 2008 the European Union (EU) adopted an action plan containing measures
and directives for ITS development. According to the EU, traffic congestions which are
estimated to 1% of the European GDP could be reduced with 10% with the introduction
of ITS. The EU also argues that I'TS systems leads to lower carbon dioxide emissions
and could prevent more than 5000 deaths in road accidents|5] by reduced congestion.

1.2. The NS-FRITS Project

In January 2009 the Furopean Union started the NS-FRITS project. NS-FRITS, which
stands for North Sea Freight Intelligent Transport Solutions, is a project which aims
to improve the accessibility and efficiency for the freight sector in the North Sea region
by introducing I'TS[37]. The project is a public/private sector partnership with actors



from the UK, Germany, the Netherlands and Sweden. These actors together represents
high-tech communication, logistics, crime reduction, education, policing and transport
planning.

The goal of the NS-FRITS project is to provide a multilingual system for drivers, trans-
port managers and freight managers. A driver should be able to use an in-vehicle com-
puter or a smartphone connected to the NS-FRITS system while the transport and freight
managers are connected to the NS-FRITS system via a desktop computer. The system
should be able to provide driver-to-manager communication as well as providing position
based information to clients. Amongst the information NS-FRITS will provide include:
Poor weather conditions, road accidents, traffic disruptions and general road information.

The NS-FRITS system will also reduce the security threats for the driver by for example
providing information about crime hot spots, secure parking locations and local policing
practices. The driver should also be able to report security or safety related issues through
the NS-FRITS system, such as suspected crime or accidents.

From the freight managers point of view NS-FRI'TS provides a possibility to contact the
driver about driving jobs, get updates about the drivers position and live text commu-
nication.

The requirements of the NS-FRITS system has been concluded by a number of interviews
with drivers, transport managers and haulers.

1.3. Related Actors

The NS-FRITS project is divided into several work packages, each responsible of a certain
area. The main work package that this project has been working with is the package
responsible for design and implementation of the NS-FRITS project. This section will
describe all actors that this project have cooperated with during the design of the NS-
FRITS system.

1.3.1. Volvo Technology

Volvo Technology (VTEC) is the center for innovation, research and development in the
Volvo Group[49]. It is located at Lundbystrand and Chalmers Science Park in Géteborg,
Sweden and at Volvo’s establishments in Lyon, France and Greensboro, USA. Volvo
Technology is one of the partners in the NS-FRITS project.

1.3.2. Tullverket - Swedish Customs

Along with the development of this project, contact with the Swedish customs in Svi-
nesund have been made. The Swedish customs is a stakeholder and a potential data



provider for the final NS-FRITS system.

1.4. Purpose

The NS-FRITS project have several purposes, but the main purposes can be simplified
to the following: Improving the quality of life for individual workers in the logistics
and transport sector and increasing efficiency and lowering environmental impact of the
transport sector around the north sea area|37].

The purpose of this thesis is to develop and design a prototype system for the NS-
FRITS project. The results of this thesis can then be used as a foundation for further
development of the NS-FRITS system or other ITS-projects in the same area. The final
NS-FRITS system is scheduled to be completed in the end of 2011.

1.5. Goals

There are two main goals for this thesis:

The first goal is to design a system for collecting information from different data providers
and compile it into a format that can be sent to vehicles interested in this information.
The design involves specifying an API and a data model for the communication between
the vehicles and the system backend.

The second part is to implement parts of this system into a working server backend and
a desktop client. The main purpose of this implementation is to be used as a showcase
in one of the NS-FRITS pilot demonstrations in June 2010. This implementation could
later on be used as a model for future work in the NS-FRITS project.

1.6. Constraints

e The prototype implementation only needs to work on a desktop system, there is
no need to implement an actual embedded in-vehicle system.

e All parts of the system will have a constant Internet connection.

e No security implications will be considered since its only a showcase.

1.7. Disposition

The main parts of this report are divided into a problem analysis, a system design, a
prototype implementation and an improvements chapter.



The problem analysis chapter presents the requirements of the system and gives a tech-
nical background to the technologies and protocols used in the designed system. This
chapter also describe alternative technologies and their respective pros and cons.

In the system design chapter, the resulting design of the thesis’s work is presented. This
chapter explains which technologies were chosen in the final design and argues why. All
actors of the NS-FRITS system and their respective roles are described here. In this
chapter, the report also goes into details about protocols and data models used.

The prototype implementation chapter explains the implementation of the system, what
each application developed in the project do and how it was implemented (programming
languages, libaries etc).

The improvements chapter discusses what improvements can be made into the designed
system and how it could be extended. Since the NS-FRITS project continues after this
thesis work is done, this is considered a large part of the project and is separated from
the discussion chapter.

Finally, the results and discussion chapter summarize the work done in this thesis and
discusses its outcome.

1.8. Glossary

API
Application Programming Interface.

CORBA
Common Object Request Broker Architecture.

DAO
Data Access Object.

DATEX Il
A European standard specification for traffic data exchange.

GPRS
General Packet Radio Service, a system for sending data packets over GSM or 3G
networks.

GUI
Graphical User Interface.

ITS
Intelligent Transport System.

JSON
JavaScript Object Notation.



NS-FRITS
North Sea Freight Intelligent Transport Solutions, an EU project in the North Sea

area.

OSM
OpenStreetMaps, a community based map service.

POI
Point of interest.

Qt
A cross-platform C++ application and UI framework developed by Nokia.

WKB
Well Known Binary, the binary form of WKT.

WKT
Well Known Text, a format for geographical data.

XML
Extensible Markup Language.

XMPP
Extensible Messaging and Presence Protocol, a protocol for streaming XML data.



2. Methodology

Since the requirements and goals of this project were not fixed, the development was
carried out according to an iterative model rather than a fixed workflow like the wa-
terfall model. The methodologies used in the project can be divided into five different
phases: Information gathering, requirements analysis, system design, implementation
and evaluation.

The information gathering phase consists of reading existing literature, thesises and doc-
uments on the subject and conducting inteviews. In this phase, the project team also
researched about data providers, data formats and communication protocols.

In the requirements analysis phase, the project team summarized the requirements of
the system and how it would work. Parts of this phase is performed concurrently with
the end of the information gathering phase.

During the design phase, the system was designed according to the requirements previ-
ously specified. The project team also selected what technologies to use in the imple-
mentation phase, and what to use them for.

In the implementation phase, parts of the design were to be implemented into a prototype
model of the system. During the implementation stage, the technologies selected in the
design stage were being tested and in case of anything not working properly, the design
was revisited.

Finally, the implementation of the system were evaluated and tested until it satisfied all
requirements of the system. When something did not work as expected, previous stages
of the development were revisited until the evaluation succeeded.



3. Problem Analysis

This chapter’s goal is to analyze the requirements of the system and present different
technologies and techniques relevant to the project. Many different subjects will be
discussed, and their respective pros and cons investigated. The results of this chapter
was used as a base for the design of the system.

3.1. NS-FRITS Actors and Concept Overview

To get an overview of the concept of NS-FRITS, the main actors of the system will be
presented. Three groups of actors, as seen in has been recognized in the
NS-FRITS system: Data providers, transport managers and drivers.

Data providers are responsible for entering data into the NS-FRITS system, they might
include road administration authorities, police stations, weather stations, etc.

Transport managers are units communicating directly with the drivers. A transport
manager can see where drivers are located, send jobs to drivers, plan routes and query
the NS-FRITS system for information regarding routes. The transport manager role is
expected to be handled by hauling or logistic companies, not by NS-FRITS employees.

The driver is the person inside the truck, connecting to the NS-FRITS system with either
an onboard computer or a smartphone. Each driver can both query the NS-FRITS system
for certain information and receive location based information while driving. Drivers also
uses the NS-FRITS system for communicating with their respective transport manager.

3.2. System Requirements

A number of system requirements have been concluded from NS-FRITS project requirements|35][36]
and scenarios[34], and from the case study of the Swedish customs office in Svinesund,

see [Appendix Bl for more information.

For simulating features and functionality for the client in the NS-FRITS system, a desk-
top simulator will be developed. By developing it as a desktop application the devel-
opment time can be reduced since it does not need to be customized for a mobile or
otherwise limited hardware platform.



Transport managers

Drivers

NS-FRITS
system

Data providers
(road information, crime hot spots, etc)

Figure 3.1.: An overview of the NS-FRITS concept and its actors.

A server application will handle the communication to the clients and also import and
process the incoming data from the different data providers. A web based administration
interface will also be implemented to allow manual editing of the information in the
system, this interface will be used by administrators and data providers.

To handle the communication, a simple and extensible protocol will be designed. It
should be fairly simple to make the implementation as simple as possible, but still allow
for more complex operations by allowing for easy extensibility.

To show the extensibility of the protocol and make the system more interesting in demon-
strations a limited fleet management system will be implemented. It will not be described
in detail here since it is not part of the core protocol and will only be used for demon-
stration purposes.

One of the key requirements of the NS-FRITS system is scalability. Since NS-FRITS is
expected to work with thousands of simultaneous clients, is it important that technologies
and protocols used scale well.

Each requirement has a priority of either mandatory (M) or desirable (D), and is either
a functional (F) or non-functional (NF) requirement.



Part Name Priority Category
F

Set preferred languages

Set categories

Get available categories

Set a route

Plan a route

Request a route

Search for a POI

Get updates during trip
Client Play voice messages

Display images

Display webpages

Show information points

Send alerts

Receive alerts

Send current location

Receive an order

Send order updates

Receive data from external sources

Parse DATEX II data
Server Edit information manually
Translate text
Store information points
Show location of trucks
Assign orders to trucks
Attach routes to orders
Show status of trucks

==

Fleet management

eSS Mol el Mo e Mol R s Bl Mo Mo B B Mo Mo e e Mo BE s BLE Y B e Bies|

vlvividivivivlviEddd-dvivivivivividvivivid-dolvid

Support multiple languages NF
Common Low bandwidth usage NF
Scalable server design NF
Extensible protocol NF

3.3. System Architectures

In the design process of a system there are several different system architectures available
for use. A couple of commonly used architectures has been selected for an overview. By
analyzing existent architectures and their respective advantages and disadvantages, a
suitable architecture can be chosen for the NS-FRITS project prototype.



3.3.1. Client-server Architecture

The Client-server architecture, is the simplest and most commonly used architecture in
system design. In this model processes are divided into two different groups, clients and
servers[48]. The client sends a request to the server and then waits for a response from
the server. When the server receives a request it processes the request and send a reply
to the client. A server never initiates the communication with the client, it only sends
replies to requesting clients.

Multi-tiered Architectures

One issue with the standard client server architecture is the problem of separating be-
tween clients and servers roles. A common scenario is a client sending a request to a server
where the server has to gather data from a database to be able to process the clients
request. Since the server then has to query the database for the information, this in fact
makes the server a client to the database. In the multi-tiered architecture, sometimes
called n-tier architecture, the whole process is separated into several logical layers. The
most common case of a multitiered architecture involves three different layers, also called
Three-tier architecture. Like the name suggest it uses three different layers, presentation
layer, application layer and data layer.

The presentation layer is the layer closest to the end user, responsible of presenting the
information to the user in an understandable way, for example with a GUI. The second
layer, the application layer, is responsible for the application logic and handling user
requests. It also moves information between the data layer and the presentation layer.
The data layer handles connections with data sources, such as databases or file systems.
It is connected with the application layer, either serving it with data after a read, or
writing data to the data source.

3.3.2. Distributed architecture

Unlike the client server architecture the distributed architecture, or peer-to-peer archi-
tecture, does not have certain nodes dedicated as servers and clients. Instead nodes in
the system acts as both clients and servers. The most commonly used method to achieve
this is by distributing all processes using a distributed hash table (DHT). In a DHT-
system data is mapped to large number keys which are stored among the nodes in the
DHT. Any node can retrieve the data by searching the DHT with the key. How this
search is performed is implementation dependent. The most notable advantages of using
a distributed architecture is that there is no single point of failure and that the system
provides high scalability[I3] due to the distribution of services. A disadvantage is that
distributed solutions often have a higher complexity which can lead to more software
errors.

10



3.3.3. Hybrid architecture

The hybrid architecture is like the name implies a hybrid of the client server architecture
and the distributed architecture. Hybrid architectures have some parts of the system
distributed, and other parts as client server[48]. One notable system using the hybrid
architecture is the file sharing system BitTorrent. In BitTorrent files are split into small
pieces, distributed over the network using a DHT. For a node to be able to see which
other active node have the requested file, a central server is used called a tracker. The
file sharing itself is done in a peer-to-peer manner, while a client server architecture is
used between the tracker and the clients.

3.3.4. Stateful vs. stateless server

A server that remembers information about the state that the clients or sessions are in is
said to be a stateful server[48]. This makes the server more complex since it has to store
the states in some way, which could be a problem if it is dealing with a large amount
of clients. By storing the state on the server the communication between server and
client can be made simpler. A stateless server on the other hand, does not store any
client states. Each request to a stateless server need to contain enough information in
the request itself to get the desired response. An example of a stateless server is a basic
web server.

3.3.5. Analysis

Several requirements need to be considered while choosing a suitable architecture for
the NS-FRITS system. Some parts of the system is expected to work centralized, such
as planning and getting information for a particular route, while other parts, such as
communication between the driver and the truck manager can be handled peer-to-peer.
The NS-FRITS system should be available with different functionality to several different
platforms, so some kind of multi tiered architecture would make it easy to extend. For
example, the driver’s NS-FRITS client do not have to be very advanced, while the plan-
ner/manager need more functionality. The requirement that the driver should be able
to receive alerts about local events indicates that at least some parts of the NS-FRITS
system need to be stateful.

3.4. Communication Technologies

There are a variety of different communication technologies available for use, this section
will discuss a selected part of them and their respective weak and strong areas of use.
Since the resulting design will be implemented as an in-vehicle unit communicating out-
wards, the focus will be on wireless technologies. One of the constraints of the project

11



was that the prototype only would run on a desktop system, so this section is just meant
as a background to existing technologies and does not affect the actual implementation
of the prototype. However, the different pros and cons of each technology are considered
in the system design phase when different protocols and techniques are chosen.

3.4.1. Mobile telecommunication
GSM

Global System for Mobile Communication (GSM) is the leading standard for mobile
communication today, representing over 80% of todays wireless market[51]. GSM is a
circuit switched technology but unlike its predecessor it is handles signals digitally, it is
therefore considered a second generation (2G) technology. One of the great advantages
of GSM networks is the roaming capabilities between networks[47]. Every device has a
Subscriber Identity Module (SIM), this allows devices to be bound to a certain subscrip-
tion. In this way a unit can roam all over the world with one subscription if the mobile
unit used supports all frequency bands used in GSM.

GPRS/EDGE Generation 2.5

To be able to handle packet switched data an extension was introduced to GSM, General
Packet Radio Service (GPRS). Since GPRS is just an extension to GSM it is often called
2.5G[47]. The transfer rates can reach up to 115 kbit/s[47], but usually around 40-60
kbit/s is to be expected.

Later on an improvement of GPRS called Enhanced Data Rates for GSM Evolution
(EDGE) was released. EDGE is deployed as an addon to existing GSM/GPRS networks
with data rates up to 384 kbit/s.

3G

Both EDGE and GPRS uses the same frequency spectrum as GSM and is therefore
still considered to be part of the 2nd generation of cellular networks[33]. The third
generation of systems consist of several different technologies conforming to a standard
by the International Telecommunication Union (ITU) called IMT-2000. One of the main
groups working to specify third generation systems conforming to the IMT-2000 standard
is 3rd Generation Partnership Project (3GPP). One of the earliest 3G technologies is
Universal Mobile Telecommunications System (UMTS), where a user can expect data
rates from 144-384 kbit/s or up to 2Mbit/s in good conditions|33]. Later on UMTS was
extended with High Speed Packet Access (HSPA), providing downlink speed up to 7.2
Mbit/s and uplink up to 5.4 Mbit/s.

12



LTE and 4G

The next step of mobile telecommunication was Long Term Evolution (LTE) specified
by 3GPP[32]. As of April 2010, this is not in wide deployment yet, but several operators
have plans for it [3]. LTE downlink speed is specified to reach over 100 Mbit /s and over 50
Mbit /s uplink. The LTE standard also specifies the use Multiple Input Multiple Output
(MIMO), which is a technique to improve throughput by using multiple antennas at both
senders and receivers side. With MIMO the downlink peak rate is further increased up
to 326.4 Mbit/s.

However, LTE does not conform to the 4G standard as specified by ITU. A new standard
called LTE-Advanced is being worked on by the 3GPP to conform to these standards.
This standard is supposed to be compatible with LTE equipment and its release is ex-
pected in 2011. Peak data rates of LTE Advanced is up to 1 Gbit/s downlink and 500
MBit /s downlink[39].

Summary

The main pros of using mobile telecommunication as communication technology is the
long range, wide deployment and good roaming capabilities. These properties are espe-
cially important for an in-vehicle system. The downsides are the uncertain data rates,
the transfer rate of second generation networks are low, but later networks like 3G can
reach high data rates. Future networks like LTE and 4G are expected to have even higher
data transfer rate. Another downside that often has been discussed most notably in the
EU is the high roaming costs for data services between countries. Standard prices goes
from €5-10 per megabyte, sometimes even higher[15].

3.4.2. WLAN/IEEE 802.11

A Wireless Local Area Network (WLAN) is a way for several computers to communicate
wirelessly with each other. The standard for WLAN:s are specified in IEEE 802.11 by
the Institute of Electrical and Electronics Engineers (IEEE). Commonly this standard
is referred to just as Wi-Fi (Wireless Fidelity). The original 802.11 standard specified
data rates of 1-2 Mbit /s at the 2.4 GHz ISM band|21], but since then new standards has
evolved. The 802.11a standard can reach data rates of 54 Mbit/s at 5.7 GHz. The most
common standards as of 2010, 802.11b and 802.11g, still operates in the 2.4 GHz band
with data rates of 11 respectively 54 Mbit/s.

WLAN:s can work in either ad-hoc or Access point (AP) mode. In ad-hoc mode com-
puters communicate with each other without any intermediate part. The more common
mode is the AP mode, here nodes send their data via a special node called Access point.
The access point then forwards data to other nodes or the internet. An access point

13



operate in a certain channel, which is a part of the frequency band used. The 2.4 GHz
band allows for 3 non-overlapping channels, with 32 users per access point[21].

The latest standard as of 2010 is the 802.11n standard with peak data rates at 600 Mbit /s
and a throughput of over 100 Mbit/s [40]. The higher data rates are achieved with a

combination of larger frequency bands and the use of MIMO antennas, the same concept
as in LTE.

3.4.3. WAVE/IEEE 802.11p

[EEE 802.11p, also known as Wireless Access in Vehicular Environments (WAVE), is a
protocol providing wireless access for moving vehicles[38]. WAVE was originally designed
to provide support for ITS applications for the 802.11 standard[29]. These applications
involve vehicle-to-vehicle communication, such as alerting vehicle behind of fast breaking,
or communication between vehicles and road side units, a road-side-unit can for example
alert nearby vehicles of queues or accidents ahead. WAVE uses the Dedicated Short
Range Communications (DSRC) spectrum at 5.9 GHz for communication.

3.4.4. CALM

Communications access for land mobiles (CALM) is a ISO approved framework for pro-

viding transparent communication over a variety of different technologies like WLAN(802.11a/b/g/n),
WAVE(802.11p) and mobile telecommunications(2G/3G/4G)[16]. Like WAVE, CALM’s

main focus is to provide communication in the ITS sector[27]. The main concept of

CALM is to not limit individual stations to a single communication technology, instead

a CALM system provides the ability to handover between different technologies.

3.4.5. GPS

The final technology that will be discussed in this section is the Global Positioning System
(GPS). GPS is a satellite based positioning system developed by the U.S Department of
Defense in the beginning of the 1970:s[I4]. Originally GPS was only intended for military
use, but later on it was also made available for civilian use. Nowadays GPS functions as
a dual system both for military and civilian use. GPS is a passive system, meaning that
there only is communication from one side. Because of this GPS can serve an unlimited
amount of clients.

There are 24 operational satellites orbiting the earth, each of these sending out messages
about their current position and time. Anyone with a GPS receiver and antenna can
receive and decode the civilian GPS signals, free of charge. By using trilateration, re-
ceivers can calculate their position by receiving the position and time from four different
satellites. In theory only three satellites are needed, but in practice four is needed to
compensate for the receiver clock offset.

14



There are many other factors to consider when calculating a position, doppler effect, mul-
tipath errors, ionospheric and tropospheric delay, satellite clock and relativistic effects[30].
Several subsystems has been developed to aid the calculation further, like using known
fixed ground positions such as cell towers. Accuracy of a standard consumer grade GPS
using the civilian system is about 7m in good conditions|30].

3.4.6. Summary

Due to the requirements of being able to reach a driving truck wherever it is, mobile
telecommunication is the most probable candidate for NS-FRITS due to its wide coverage.
It is also possible to envision the use of WLAN hot spots for larger data downloads, like
preloading data for a longer route, although the main parts of the communication will go
through mobile telecommunications. WAVE/802.11p/CALM is not as probable option
as short range communication, like vehicle-to-vehicle communication, is not a part of
the NS-FRITS requirements. However, there could be a use of these techniques, by for
example sending information about road conditions or accidents through road side units.
GPS will almost certainly be used by the drivers NS-FRITS client, because it needs to
know where the user is located so the correct information can be displayed. The operator
or fleet manager however, do not need any GPS unit for NS-FRITS to function normally.

3.5. Map projection

To be able to provide location based services there is a need for a system that handle
maps and coordinates.

3.5.1. Map providers

There are several different ways of implementing map support in an application. Com-
mercial map databases such as Navteq and Tele Atlas are commonly used by navigational
GPS providers such as TomTom and Garmin and proprietary web map services such as
Google Maps and Bing Maps. Amongst the free alternative there is OpenStreetMapﬂ,
which is a collaborative project that aims to create a free road map spanning the entire
world. Map databases services generally works by symbolizing areas and roads as poly-
gons and vectors. The maps are further divided into square sized tiles which are stored
in a database to avoid too much compilation by the client.

"http://www.openstreetmap.org/

15


http://www.openstreetmap.org/

T W N =

Listing 3.1: Example of WKT data.

POLYGON ((11.33514404312 58.845779573283,
11.33514404312 59.162607462219,
11.142883300941 59.162607462219,
11.142883300941 58.845779573283,
11.33514404312 58.845779573283))

3.5.2. Geographical coordinate standards

Modeling a spheroid like the earth is not a trivial task, many different methods exists
for this purpose. GPS uses a reference system called WGS84, which models the earth
as an spheroid with a slightly higher radius at the equator. This system uses standard
latitude and longitude coordinates with the zero degree longitude meridian around 100m
from the Greenwich meridian. The WGS84 system is also referenced by its European
Petroleum Survey Group (EPSG) code “EPSG:4326”. [12]

The other broadly used coordinate system is the Mercator system, or with its EPSG
code “EPSG:900913”. This system is used by several web map services such as Google
Maps, Bing Maps and OpenStreetMaps. Unlike the WGS84 projection the Mercator
system treats the earth as a sphere and uses x/y coordinates instead of latitude/longitude
values. Mercator uses a cylindrical approach to project the map. This can be illustrated
by placing the earth inside a cylinder perpendicular to the earths meridians, then drawing
the viewable area onto the cylinder. In this projection areas closer to the poles will be
distorted, appearing larger than they actually are.

3.5.3. Geographical data formats

The simplest way of modeling geographical features is by just storing its coordinates
together with data or an identifier. However this type of approach can be very limit-
ing when modeling more complex structures. For this purpose several specialized data
formats have been developed.

Well Known Text(WKT)

Well known text is a format defined by the Open Geospatial Consortium(OGC) and used
for specifying geometrical object with vectors. WKT support multiple shape types like
polygons, lines, multilines (several lines combined) and points[25]. The data format is
presented in plain text, although it can easily be converted to its binary equivalent Well
Known Binary (WKB). Coordinates are not limited to two dimensional space, so data
stored in WK'T can eagily be extended to store altitude if needed. An example of a WKT
entry is shown in listing

16




Listing 3.2: Example of GML data.

0 ~J O O W N =

<gml:Polygon>
<gml:outerBoundaryIs>
<gml:LinearRing>
<gml:coordinates>0,0 100,0 100,100 0,100 0,0
</gml:coordinates>
</gml:LinearRing>
</gml:outerBoundaryIs>
</gml:Polygon>

Listing 3.3: Example of KML data.

O O 00~ Uk WN -

—_

<?7xml version="1.0" encoding="UTF-8"7>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Placemark>
<name>New York City</name>
<description>New York City</description>
<Point>
<coordinates>-74.006393,40.714172,0</coordinates>
</Point>
</Placemark>
</kml>

Geography Markup Language(GML)

Geography Markup Language is a XML based language and like WKT also defined by
OGCJ24]. While WKT is a more general language for all type of coordinates and vectors,
GML is focused on modeling geographical data. GML consists of a large set of different
types such as geometry, time, topology, direction, coordinate system and features. Since
GML is XML-based a GML-file does not have to contain all of these object, only the
ones relevant to ones application. An example of a GML entry is shown in listing [3.2]

Keyhole Markup Language (KML)

Like GML, the Keyhole Markup Language is also a XML based standard. It was first
used by Google in its Google Earth application to symbolize locations. The main focus of
KML is to easily visualize geometrical features, therefore is consist of much fewer types
compared to GML. Unlike GML, KML only supports the use of WGS84 as a coordinate
system[26]. An example of a KML entry is shown in listing [3.3]

17




T W N

Listing 3.4: Example of GeoJSON data.

{ "type": "Polygon",
"coordinates": [
[ [100.0, 0.0], [101.0, O0.0], [101.0, 1.0],
[100.0, 1.0], [100.0, 0.0] 1
1

GeoJSON

GeoJSON is geographical data format based on JavaScript Object Notation (JSON). It
supports several shape types much like GML or WKT and it supports several coordi-
nate systems, although WGS84 is the default choice|2]. The main advantage with using
GeoJSON is JSON’s compact size compared to XML-data. An example of a GeoJSON
entry is shown in listing

3.6. Data Storage

In a project like this, where large amount of spatial data need to be gathered and stored,
a more advanced storage medium than an ordinary relational database should be con-
sidered. Common scenarios would involve finding out if geographical objects intersect,
checking if a point is inside an area or finding the closest geographical object to a point.
In a regular database this could be achieved by either storing all object coordinates as
numeric values or by storing the string value of WKT/GML/KML/GeoJSON objects.
Then one would have to fetch all coordinates, parse them, and compare each value to the
current object with the appropriate function, like intersects() or isInside(). However, this
approach does not scale very well when there are thousands of entries in the database.

3.6.1. GIS, OpenGIS and Spatial databases

A Geographic Information System (GIS) is a system specialized at storing, managing
and accessing geographical data[ll]. In a GIS system data can be selected by several
geographical parameters, for example all objects within a radius of a point or all object
intersecting a certain route.

A standardized way of realizing GIS systems is defined in several OpenGIS standards
which are maintained by the OGC. The OpenGIS Simple Feature standard defines an
interface for storing and accessing geospatial data in relational databases|25].

The standard describes how objects like points, lines, curves and polygons can be modeled
and ways of querying data based on properties like if an object is within another object, if
two objects intersects or by selecting all objects within a distances from a certain object.

18




Data can be inserted in the database by using standard formats like WKT or WKB. There
are several existing projects implementing OpenGIS functionally to existing Database
Management Systems (DBMS). For example PostGISE] is a project implementing the
OpenGIS Simple Feature standard for PostgreSQL and SpatiaLiteF’j provides geographical
functionality for SQLite.

The main advantages of using a spatial database is the higher performance due to faster
data selection and the ability to perform spatial operations at the database level instead
of the program level. Spatial databases also reduces the programmers workload, by not
having to implement spatial functions[4].

3.7. Presentation

The presentation layer is the last step before information reaches the user of the system.
This section will describe how different parts of the presentation layer will function and
what their respective role is in the NS-FRITS system.

3.7.1. Visual

The most basic form of presentation is visual presentation. The visual view of the NS-
FRITS system varies because there will be different implementations for different roles.
The drivers view of the NS-FRITS system is similar to a commercial GPS system. The
main view will display the drivers current position on a map and a menu system will
display all NS-FRITS dependent methods, such as search after POI, communicate with
operator and plan route.

The operators view instead displays a list of all managed clients and their current status
(online/offline/driving/etc). It should also consist of some kind of way to be able to
create and assign jobs to drivers. To ease the planning job of the operator, the interface
should also contain buttons to call NS-FRITS methods like search after POI and plan
route.

3.7.2. Audible

Reading a text while driving can be both difficult and dangerous. The NS-FRITS system
therefore offers the possibility to also present text data as sound. When a driver enters
a zone where information is available, the drivers NS-FRITS client should play a sound
file reading the text of the information. A driver might not be interested to get all types
of information read to him, so it should be possible to only specify certain categories of
interest.

*http://www.postgis.org/
®http://www.gaia-gis.it/spatialite/

19


http://www.postgis.org/
http://www.gaia-gis.it/spatialite/

3.7.3. Translation

One of the requirements of the system was that it should be multilingual, so an important
topic is how text translation is handled. The project has defined three different types of
translation:

o Automatic translation, where a server or a software receives a text and then trans-
lates it automatically.

o Manual translation, where the text or document is translated manually by an em-
ployed translator.

o Partially automatic translation, in this approach the text is first translated auto-
matically, then verified manually by a translator to make sure that the text fulfills
the required text standard. If the automatic translation fails to translate certain
parts of the text, they are corrected by the manual translator.

Automatic and manual translation

Each of these translation methods have different uses. Which one to choose depends on
the requirements of the text. Automatic translation works well with non-critical data
that does not have any major impact on the driver. It is also an option for volatile data
like road conditions and weather information, which might not be feasible to translate
manually. Certain data can also be transformed into numerical data types, like for
example temperature, speed limit or weight limit. Direct translation can then be avoided
since the data only need to be presented in the correct language at the client side. The
obvious advantage with automatic translation is the shorter translation time. Manual
translation is still needed for more critical documents, like for example legal documents or
contracts. Documents like customs formsﬁ are not allowed to be translated automatically,
since the correctness of these kind of documents need to be very high.

Partially automatic translation

The third option of partially automatic translation can be used in different ways, the
first way is just as an aid to the translator. If the translating software has a certain
grade of correctness, the time spent verifying and correcting an automatically translated
text is lower than translating it manually from scratch. The other way of using partially
automatic translation is to make the automatically translated documents available di-
rectly to the user, however, tagged in some way so the user understands that the text is
an automatic translation and can not be completely trusted. The document is then sent
to a translating/verification center where the text is queued for verification. The text is

* According to interviews with the Swedish Customs service in Svinesund, translation of customs forms
is a strongly restricted procedure.

20



then verified by an employed translator and corrected if needed. The employee then sets
the text tag to verified. It is also possible, if NS-FRITS would host a translation service,
that the actor giving the translation job would have to accept the translation before it
being published in NS-FRITS.

3.8. Communication protocols

The communication protocol is the protocol used on top of the communication technology.
Many different communications protocols exist today, so the purpose of this section is to
examine a few selected ones and their respective pros and cons. This information is then
useful when selecting the ones to be used in the NS-FRITS prototype.

3.8.1. Web services

Web services are services that communicate over the HTTP protocol and data transmit-
ted is usually formatted in XML, but JSON is also often used|[13].

Because of the way the HT'TP protocol works there is no native callbacks, but there
exist some technologies that provide a similar functionality. HI'TP was not designed to
keep persistent states and requires all communication to be initialized from the client|[7].
Without callbacks it is not possible for the server to push data to the clients.

The techniques involves different ways for the client to keep a connection to the server
alive, for example by using a hidden iframe that the server can send data to in the form
of Javascripts that gets parsed as they are received. Another way is to have a Javascript
on the client that opens a connection to the server which the server keeps in an idle loop
until some data is to be sent. When the data is received and the connection closed the
Javascript will again open a new connection.

Almost all of these techniques are using some kind of functionality in the modern web
browsers and thus are much harder to use in a custom application that only sends and
receives custom data and not interpreting it as a webpage.

3.8.2. CORBA

The Common Object Request Broker Architecture is a communication middleware that
allows applications to communicate independent of their programming language, hard-
ware platform or operating system. It was introduced in 1997 by the Object Manage-
ment Group (OMG) and provided programmers a tool for developing distributed systems
with relative ease, but it has since then largely been replaced by, amongst others, web
services|22].

21



Interfaces between CORBA clients and servers are defined in a Interface Definition File
(IDL). The IDL is used to implement CORBA objects which are then used within the
application as ordinary objects in the used language. An Object Request Broker (ORB)
is used to handle the communication between the programming language’s native objects
and the CORBA objects and deal with the communication with other ORBs on other
CORBA nodes[I3].

A change in the IDL interface requires that all nodes in the system to be upgraded to
support the new version[22].

3.8.3. XMPP

The Extensible Messaging and Presence Protocol (XMPP) defines a protocol for stream-
ing XML data. It is the foundation for the Jabber/XMPP instant messaging (IM) service
which is an open alternative to proprietary IM services as ICQ, Windows Live Messenger
and Yahoo! Messenger. However, the XMPP protocol is not limited to providing IM
services, it can also be used as a building block in a wide range of XML applications[44].

The protocol is designed to be a secure, decentralized, scalable and extensible way to ex-
change XML data[45]. In addition to the instant messaging service XMPP has been used
in many areas such as game communication, voice over IP (VoIP) and social networking.

Instead of dealing with XML data as documents, as is the ordinary case, XMPP deals
with XML data in the form of streams. A stream is a container for exchange of XML
elements between two parties on the network. These XML elements are called XML
stanzas, and the XMPP core specification defines three stanzas; <message/>, <iq/> and
<presence/>[42]. The <message/> stanza is used to “push” information from one party
to another. The <iq/> stanza is used for queries, similar to HT'TP requests where one
party makes a request and the other party sends a response. Finally the <presence/>is a
form of broadcast mechanism which sends information to all subscribed parties. Usually
used to send availability information.

The stanzas can be extended by introducing new XML namespaces. This is how the
IM part is specified, the Instant Messaging and Presence extension[43] extends the three
stanzas with more attributes and child elements to describe the IM data.

3.8.4. Custom protocol

Instead of selecting an existing communication protocol, one could instead define a new
protocol specialized for the task. This approach has a number of advantages, it is possible
to add specialized functionality not supported in existing protocol and the performance of
the protocol can be increased by optimizing the data flow for the specific task. However,
there are several down sides with this approach too. Existing standardized protocols
are already well tested and evaluated so they are less likely to fail by design errors.

22



Well known protocols, like CORBA or XMPP, have already been implemented in sev-
eral platforms and programming languages, so one could use existing libraries to ease
development. This also makes the application easier to port to different platforms.

3.9. Data Providers - DATEX Il

As an example of a data provider for NS-FRITS, the traffic data exchange standard
DATEX II was chosen for further explanation.

DATEX II is a standard for traffic data exchange between different actors. It is being
developed by the Furopean Union and is in use at various locations in Europe. The
original DATEX was first developed to provide information exchange between traffic
management centers, traffic information centers and service providers[§]. The second
version, DATEX TII, has been extended to include all actors in the traffic and travel
information sector. One of the purposes with DATEX II is to facilitate development of
pan-Furopean services providing road information directly to the users.

3.9.1. Technical Overview

The DATEX 1II architecture consists of three different components, the management
subsystem, the publisher subsystem and the delivery subsystem[9]. The management
subsystem is the component where management administrators handles information such
as which type of data is being published or what subscriptions are allowed to use the
system. The publisher subsystem is the part where data suppliers access to upload data.
The delivery subsystem is the component respounsible for providing data to clients. Only
the delivery subsystem is specified by the DATEX II standard, the other components are
up to the developer to implement.

DATEX II supports three different operating modes, publisher push periodic, publisher
push on occurrence and client pull. In the publisher push modes, the publisher initiates
data delivery in either a fixed periodic time or when data is changed. In client pull mode
the client initialize the data retrieval and the publisher responds with the data. The
data itself is transfered either with HT'TP GET:s or published via Web services. The
structure of the response messages are XML based, defined by a Web Service Description
Language (WSDL) or an XML-schema.

3.9.2. Trafikverket, the Swedish National Road Administration

The Swedish National Road Administration Trafikverket, former Végverket, has imple-
mented DATEX 1II for publication of information about Swedish roads. Users can get
information such as traffic conditions, road construction work, frost damaged roads and

23



road weather. The data is available in a web portal, for regular usezrs{l:_’"]7 and as raw data
requests for developers and professional users. Trafikverket’s implementation of DATEX
IT has support for both PUSH and PULL for data retrieval.

Shttp://trafikinfo.vv.se/triniMenu/trinimenu.html?startmenu=1

24


http://trafikinfo.vv.se/triniMenu/trinimenu.html?startmenu=1

4. System design

As a result of this project a design suggestion for the NS-FRITS system has been devel-
oped. This chapter will present and explain this design in detail.

4.1. Modules of the NS-FRITS system

The designed NS-FRITS system can be concluded in a number of interconnecting mod-
ules. This section will describe each module and their respective role. An overview of
the designed system with modules and actors is illustrated in

4.1.1. NS-FRITS Core server

The NS-FRITS core server is the central server in NS-FRITS, it is responsible for the NS-
FRITS data model, the NS-FRITS user base and the NS-FRITS API. Its basic purpose
is to provide data to users via a defined API that should be supported by all NS-FRITS
clients. Examples of API-calls include searching for a POI and getting information
about a route. This will be explained further in [section 4.4] The NS-FRITS core server
is stateful, storing entries about each connected user. Examples of data stored for users
are: Preferred languages, selected categories and stored route.

4.1.2. NS-FRITS Data provider

An NS-FRITS Data provider is a company or an organization providing data for the NS-
FRITS system. When a data entry has been stored in NS-FRITS, it is directly available
for users when searching after POIs or planning routes. Two main types of data providers
has been identified in the NS-FRITS system, legacy providers and NS-FRITS providers.

Legacy providers

A legacy provider is an existing data provider, providing data in a format not compatible
with NS-FRITS. These providers are already publishing data today accessible with some
sort of API, for example a web service. An example of a legacy provider is providers of
road and traffic information using the DATEX II format, for example the Swedish Road
Administration.

25



Vagverket
| (DATEX I1)

German Road
Administration
(DATEX 1)

S:S;‘_'nbe Periodic fetch
( ) (PULL)
DATEX Il Crime hotspot
Module Module
NS-FRITS

Data converter

UK Police
(Crime hotspots)

Legacy Providers

| NS-FRITS Providers: Manual insertion

NS-FRITS r

— —
Subscribe
(PUSH) HTML/AJAX
NS-FRITS
Data provider )
Data Insertion
Web Interface
Module

Format |

SQL
SQL
sQL

NS-FRITS
Database

{

NS-FRITS

Get location based information,
searching for POI, etc

Core Server

search PO,
get NS-FRITS
data for route

Send job, job status,
current position,

| NS-FRITS Provider: Automatic

i

send time agreement/booking id

| Book service/set up agreement

Truck Client (In-vehicle)

Drivers

Send updates of delays,
queues, etc

Extension Service Providers
| (Time agreement, Booking, etc)

Figure 4.1.: Overview of the proposed NS-FRITS system design.

NS-FRITS will deal with legacy providers by periodically fetching data from them or

| 5 Truck Client (Smartphone) |

subscribing to their PUSH-service. Incoming data will be converted into the NS-FRITS
format through a NS-FRITS data converter module, the data will then be inserted into
the NS-FRITS data model. The data converter module is a service that has specially
written routines to convert the existing formats into the NS-FRITS format. The example

26



in shows how data from different legacy providers can be converted into NS-
FRITS format.

Legacy Providers

Traffic Information Providers
| Sweden, UK, Germany, etc j“
(DATEX II)

- \, Weather Providers |

\ Crime Hotspot Providers ‘ \ (RSS)
_ | Sweden, UK, Germany, etc /
. (RSS) e
NsFRITS | T T - - - - - = -
Data converter
Modules
DATEX I Crime hotspot Weather Weather
converter converter
converter ) converter
(Web services) (RSS)

NS-FRITS
Objects

Object Insertion Layer

NS-FRITS
Database Insertion
Module

- = = - - - - — = = —
Database Layer Q \ 4

NS-FRITS
Database

Figure 4.2.: This figure shows how legacy providers insert data into NS-FRITS.

NS-FRITS providers

An NS-FRITS provider is a provider that directly inserts data in the NS-FRITS data
format. This could be done in different ways, either by manually entering the data
through a web interface or by providing the data automatically through a service. An
example of entering data manually could be a customs officer entering information about
rules at certain customs stations through an application connected to the NS-FRITS
database. An automatical data provider could for example be a road service company,
providing data about road conditions through sensors.

An illustration of the workflow of NS-FRITS providers can be seen in Manual

27



providers enters data through a web interface connected to the NS-FRITS database.
Automatic providers periodically sends new data to an NS-FRITS Data insert server,
which then inserts the data into the NS-FRITS database. This data is then accessible
by the NS-FRITS core server.

NS-FRITS Providers - Automatic | NS-FRITS Providers - Manual

l l {
l Company #1 ﬁ
Automatic Updates of existing

| Manual Updater c w

NS-FRITS data (parking spots { ompany
Manual Updater

Data Providers left at safe parking, list of P

- depanmg ferries, etc)
. - HTML/AJAX
— T T X NsFITs - - - -
NS-FRITS Data Format
Inserters (XML)

Data Provider
Web Interface

Road sensor

NS-FRITS
Objects

NS-FRITS
Automatic Insertion
Server

Object Insertion Layer

NS-FRITS
Database Insertion
Module

Database Layer SQL

NS-FRITS
Database

Figure 4.3.: Figure showing different NS-FRITS providers adding data into the system.

4.1.3. NS-FRITS extension

An NS-FRITS extension is an application that does not have to use the NS-FRITS
database but resides in the same overlay network. Examples of these types of applications
include fleet management systems, time agreement services or booking systems. These
applications does not have to be hosted by NS-FRITS, instead anyone can host their own
NS-FRITS extension. The idea of using an NS-FRITS extension instead of just using a
separate application is that it can be integrated in the NS-FRITS Client (which will be
explained in . An NS-FRITS extension will also get the benefits attached
to the usage of XMPP, like for example ability to reach users directly no matter where
the user is and server caching of messages to offline users.

28



NS-FRITS extensions can generally be divided into two different groups, public exten-
sions and private extensions.

Public extensions

Public extensions are like the name suggest, available for public use. Access to these
extensions are shared through links stored in the NS-FRITS database. For example, the
customs service at the border station in Svinesund might use a public extension to let
trucks register their arrival and in case of queue times, send out updates to registered
drivers. By then storing a link to the extensions attached to the “Svinesund Customs”
object in the database, users searching for information about the Svinesund customs
station will receive the information that Svinesund also contains a public extensions for
queue updates. Users can then optionally choose to register their arrival to the extensions.

Private extensions

Private extensions are extensions that only a selected group of users can access, links to
these extensions are not stored in the NS-FRITS database. Access to private extensions
are usually gained by pre-configuring their address and protocol in the NS-FRITS client.
An example of a private extensions is a fleet management system, i.e. an extensions
that keeps track of trucks in a vehicle fleet. This type of extensions does not have any
connection with the NS-FRITS core system, but can still benefit from running inside the
NS-FRITS network. For example it can be run inside the same client application and
the XMPP network makes it easy to maintain a direct connection to all trucks in the
network.

4.1.4. NS-FRITS client

The NS-FRITS Client is the client that communicates with the NS-FRITS core server or
an NS-FRITS extensions. This client can be deployed on different platforms depending
on needs. For example a transport manager might run a desktop version, while a truck
driver might run a version implemented on a smartphone or a mounted in-vehicle system.
However, all clients should implement the NS-FRITS core server API and support a set
of pre-defined protocols.

It is also assumed that mobile NS-FRITS clients have access to a GPS device to provide
their current position. Although GPS is not a part of the NS-FRITS system, a mobile
NS-FRITS client is assumed to have access to one, otherwise the NS-FRITS system would
not be very useful since it depends on location based information.

29



Pre-defined protocols

Each NS-FRITS client should support a fixed group of pre-defined protocols, providing
common functionality to users. One example of these pre-defined protocols are the time-
agreement protocol mentioned in [section 4.1.3] The reason NS-FRITS clients should
support these pre-defined protocols is to make the deployment of NS-FRITS extensions
easier. A provider can write applications following these pre-defined protocols and expect
that they works with any NS-FRITS client. The relations between extensions and pre-

defined protocols is shown in

Public Extensions Private Extensions

Pre-defined
Protocols

Figure 4.4.: Illustrates the relation between extensions and pre-defined protocols. An
extension can either be a public extension or a private extension. If the
extension uses a pre-defined protocol, it will function with every NS-FRITS
client; otherwise the protocol for the extension need to be provided in some
other way.

4.2. System design choices

The proposed design of the NS-FRITS system is a hybrid architecture based on the
XMPP protocol. There were five main reasons why XMPP was preferred over its alter-
natives:

e Existing pre-defined support for different message types such as asynchronous mes-
sages(the <message/> stanza) and remote function calls(the <iq/> stanza).

e [t solves the problem of not being able to reach trucks remotely. Trucks are always
connected to the XMPP network, and in case of network problems, the XMPP

30



server can cache messages for offline trucks. In the case where the truck switches
network, the truck just reconnects to the server.

e Not limited to one server. XMPP has excellent support for inter server commu-
nication. This allows fleet operators to use their own XMPP server in connection
with the NS-FRITS platform.

e Possibility to see which users are online and connected to the NS-FRITS network
with the presence information.

e Good extensibility, in addition to the possibility of defining your own protocol inside
XMPP, XMPP have also defined a list of XMPP Extension Protocols (XEPs).
These describe how different technologies such as SOAP, Publish-subscribe, RPC
etc, can be implemented inside XMPP.

4.2.1. Low level communication

For high level communication XMPP is being used, which operates on top of TCP. The
lower level communication requirements of the system are not as strict, any technology
that can carry IP will work. However, most design choices were based on the assumption
that telecommunication, such as GPRS, GSM or 3G, would be used in the majority of
all cases.

4.2.2. Client to server communication

For client to server communication and vice versa, an XML protocol was designed. The
designed protocol can be seen as a combination of XML-RPC and SOAP, but unlike
XML-RPC the designed protocol supports custom tags[50]. This protocol is then used
inside XMPP for transferring requests, responses and updates, see for how
all layers interconnect. Data objects are transfered by first serializing the objects into
XML and then sending them inside this protocol, for more information about the data
structure see

4.2.3. Geographical data storage
For storing geographical data the Well Known Text(WKT) format was chosen. The three
main reason for this decision are:

e [t is a overall commonly used standard for simple coordinate data.

e Good support in spatial databases where WK'T can be stored efficiently by con-
verting it into its binary equivalent WKB. In this form it can also take advantage
of spatial operations directly at database level.

31



GPRS/3G/4G/WLAN

TCP/IP

XMPP

Custom XML-protocol

Figure 4.5.: Shows how different protocols and technologies are layered in the NS-FRITS
design proposal.

e The extra functionality in KML and GML is not needed since a more complex data
structure for information objects is needed.

4.3. The role of XMPP

As mentioned before, the communication protocol used in the NS-FRITS proposal is
XMPP. The XMPP protocol is used for all client-to-server and client-to-application com-
munication in NS-FRITS. This section will explain further how this is handled.

4.3.1. XMPP design

In this design, the NS-FRITS core server will act as a client to the XMPP server just
like the other users of the system. It is possible to visualize the NS-FRITS core server
as a bot to the XMPP server. The other users; truck drivers, transport managers, etc,
will send updates and function calls to the NS-FRITS core server through the XMPP
server. This architecture also allows direct communication between transport managers

and truck drivers (see [Figure 4.6)).

4.3.2. External servers
This first simple model might not be enough for a real system, but since the XMPP

protocol supports interaction with multiple servers, it is very easy to extend. For example,
communication between a transport manager and its trucks does not involve the central

32



transportmanagerl@service.nsfrits.eu

= —
il

s

XMPP server NSFRITS Server
service.nsfrits.eu nsfrits@service.nsfrits.eu

truck2@service.nsfrits.eu

truckl@service.nsfrits.eu

Figure 4.6.: Simple overview of the XMPP architecture for the NS-FRITS system

NS-FRITS server. Therefore it is possible for each freight company to use their own
XMPP server (see . In this way, internal data stays on the companies own
XMPP network, while request to the NS-FRITS core system is passed on to the central
network. There are two main benefits by separating a network like this. First, the security
is improved, by involving less parts and keeping the information as local as possible the
risk of security breaches decreases. Secondly, by splitting up the users so not all data
have to pass through the NS-FRITS system, the load of the central NS-FRITS server(s)
will be reduced and the central XMPP network will scale better with many users.

4.4. NS-FRITS methods and functionality

The NS-FRITS server supports several method calls through a defined API. This section
will explain the functionality of the NS-FRITS API and how each method works.

4.4.1. Methods controlling user data

The first methods to be explained are the ones controlling information stored to a par-
ticular user. There are five methods for NS-FRITS client to control what information
the NS-FRITS server knows about them:

33



\
\\;
/y P ~_ \ XMPP server |
\ ) /

\ service.company2.com
/ \ \ pany. y
// trangpoigmanager@serwce.companyff\:’éﬁ""\\\ T\ yZ ,,/

o]
.

| m——wF}

“\ truck2@service.company.com XMPP server
service.company.com

]

NSFRITS Core Server
nsfrits@service.nsfrits.eu

XMPP server
service.nsfrits.eu

~_A , /
\wckl@service.company.cgg/ / R REEER frits.
S rucl service.nsfrits.eu

Figure 4.7.: XMPP architecture involving multiple servers, trucks communicating with
transport managers stay inside their respective network. The transport com-
panies networks are isolated from each other.

Get and set categories

By using these methods the client can inform the server of what data categories the client
is interested in. Fach data provider belongs to one or more categories, for example the
Swedish Road Administration and the German Road Administration might belong to the
“Road Updates” category. By calling the “Get categories” command the server returns a
list of all available categories and a description to each one. The client can then call the
set categories command and as an argument include a list of all categories the client is
interested in. When the client later asks the server for information for a certain route or
coordinate, it will only get information in the previously set categories. Subsequent calls
of the set categories command will overwrite the previous values.

Set languages

The third available function for controlling user data, is the set language method. By
setting a list of known languages, the client can control what languages the server will
send information in. Languages are encoded according to the international standard for
language codes, ISO 639-1[18], so there is no need for the server to provide the client
with all available languages with a get languages method.

34



As an argument to the set languages method, the client sends a list of what languages
it is interested of receiving data in. The list should be ordered by the highest priority
language first. After languages has been set, the client will only receive data in the
highest available language in the priority list. If the information is not available in any of
the languages the client has set, it will receive the data in one of the available language
as default.

For example, a Polish driver sets his languages in the following order, Polish, German and
English. When his NS-FRITS client asks the central NS-FRITS system for data, it will
only receive data in one of those language if available. If the data is available in Polish,
the server will only send the polish version of the data object. If the data is available in
German and English, the server will send the German object since its priority is higher
set than English. If the data is not available in any of those three language, the server
will send whatever version it has.

Set a route

The set route method is used by clients to inform the server of what route the client is
planning to use. This method is tightly bound to the get information for route function
which will be explained in The argument for this function is a WKT
Linestring of all coordinate along the route.

Clearing of history

The clear history command removes the history of InfoObjects already sent to the client.
The storage of sent objects is explained more under [section 4.4.5

4.4.2. Getting information for a route

The command for getting information for a route requires no arguments, instead it relies
on that the user has uploaded a route prior to using this command. When this command
is called, the server first checks what categories the user is interested in (given that the
user has run the set categories command at least one time before), then retrieves all
information objects along the previously set route. The server will then filter out objects
that it already have sent to the client. Finally the server will fetch the description of
each object in the highest available language in the users language priority list. The list
of objects will then be sent to the client.

If the client calls the get information for route more than one time, it will only get new
or updated objects in the latter calls, see [section 4.4.5 for more about storage of sent
objects.

35



4.4.3. Getting information for coordinate

The get information for coordinate method is similar to the get information for route
method with the difference that the client instead sends a coordinate as method argu-
ment. Upon reception the server will fetch all object that the specified coordinate is
within and return them to the client. Like the get information for route method this
method will not resend already sent objects unless they have been changed or the history
has been cleared. This method can be called periodically by driving trucks to receive
local data from NS-FRITS if no route has been set.

4.4.4. Searching for a POI

The search for Point of Interest (POI) method is used for searching for a particular POI
on the map. This method has two difference from the get information for coordinate
method, first, the category is specified as an argument to the function and secondly,
searchPOI is not limited by a distance radius; it simply retrieves the closest POI, no
matter the distance from the given point. The main intended usage of this function is to
find a location in a wanted category at a certain spot, like for example the closest safe
parking spot. Another difference compared to the get information for coordinate method
is that the wanted number of results is passed as an argument. This can be used if a
driver for example want to find the five closest safe parking spots to a location where
he/she plans to stay.

4.4.5. Storing of sent objects

Since data sent over the telecommunications network can be both expensive and slow,
unnecessary data traffic want to be avoided. For this reason a functionality to avoid
resending of objects has been designed. Whenever an object is sent through the get
information for route or get information for point method, the objects id and its sequence
id is also added to a user unique list of sent objects. If the user later calls any of these
functions again, the server will not resend any object that are already sent, unless the
object has been updated with a newer version(i.e its sequence number has been changed).
When a client is reset, this list need to be cleared with the clear history command

explained in [section 4.4.1

4.4.6. Subscribing to an information object

The subscribe to information object method is used by clients that want to receive
updates when a certain information object has changed. For example, a safe parking
company might use an information object to store how many parking spots is left at
a certain location. A truck might then subscribe to the information object bound to
several safe parking locations. Whenever any of these objects are changed, updates will

36



be sent out to all subscribing clients. The method only have one argument, the id of
the object the client want to subscribe to, this id can be retrieved by earlier running the
get information for point/route or search POI command. When the object is updated,
the server sends an asynchronous message to the client containing the update object, for

more about asynchronous messages see [section 4.5.3

4.4.7. The NS-FRITS alert system

The NS-FRITS alert system is an optional add-on to the standard NS-FRITS service,
clients can participate in it by sending out coordinates about their current position
periodically. The purpose of the NS-FRITS alert system is to keep clients updated of
local alarms, important messages and accidents. Whenever an event occurs, the NS-
FRITS system will locate all trucks in a radius of the event and sent out a message to
each of them containing the event message.

Alert central

- Xy
7Alert at x,y g
Alert at x,y
‘: - Alert at x,y
7 |
| —Ta} |
il |

‘ NS-FRITS server
NS-FRITS alert server : @

Figure 4.8.: Illustration of how distributions of alerts from an external authority is han-
dled. Only the trucks in the proximity of the alert position is noticed.

Alert can come from different sources, either centrally from an authority or an information

central((Figure 4.8)), or from other trucks(Figure 4.9)). By sending a special alert message

to NS-FRITS, trucks can inform other trucks in the area of an accident or an alarm. It
can also be connected to the vehicle’s crash sensors, if it is equipped with such system,
and automaticaly send alerts to the main NS-FRITS system.

37



Accident at a,b

Accident at a,b

% ] Accident at a,b
1]

NS-FRITS server

Figure 4.9.: Clients reporting directly to the NS-FRITS server of an accident, the alert
is sent to nearby trucks.

4.5. Data protocol

The data protocol is the protocol used inside XMPP for function calls and object trans-
fers. There are several ways of transferring data over the network, which were explained
in more detail in For function calls, the XMPP stanza <iq/> is being used,
as explained before this is the XMPP feature for standard querying mechanism.

The protocol selected was a custom XML-based protocol. The main advantages with
specifying an XML-based protocol is platform independence, easy to implement and high
readability. At the top level of iq stanza there can be one of either tags, <methodcall>
or <methodresponse>. The methodcall tag is used for function calls, while the method-
response tag is used for function responses.

4.5.1. Method calls

The methodcall tag is also accompanied by an <arguments> tag, which contains all
arguments passed to the method as a map. When the driver executes a command the NS-
FRITS client converts this command into its corresponding XML-format. This command
is then inserted into a XMPP message in an iq stanza and sent over the network. See

Listing 4.1| for examples of how a method response might look like.

38



Listing 4.1: Example of a method call to NS-FRITS, this function returns all InfoObjects
inside the coordinate of the argument

—_

= O © 00~ O Ui Wi

— =

<iq id=’qxmppl0’ to=’nsfrits@VTECW389.vcn.ds.volvo.net/nsfrits’ type=’get
>
<query xmlns="nsfrits:iq">
<methodcall>getInfoForPoint</methodcall>
<arguments>
<argument>
<key>point</key>
<value>POINT (11.878967 57.737883)</value>
</argument >
</arguments>
</query>
</iq>

When the packet reaches the server, the server will parse the content of the tags and
execute the called function. When the function returns, the result is placed inside a
methodresponse tag which is placed inside an iq result packet. The packet is then sent
back to the client.

4.5.2. Method responses

The content of the methodresponse tag is either empty (for a void function) or a list
of InfoObjects, which is the main data type. Each InfoObject corresponds to a certain
location on the map and contains information such as coordinates, descriptions and links
to attachments. The structure of InfoObjects are explained in more detail in [section 4.6
When a function is called through a methodcall tag, the server will select the appropriate
InfoObjects from the database, convert them into XML-form then put them inside the
methodresponse tag.

4.5.3. Updates and Asynchronous messages

The other main functionality supported by the server is the possibility to send updates
and alert to clients asynchronously, i.e the server does not expect any response. One
of the functions available through the NS-FRITS API is the subscribe-to-InfoObject
method. This function is called with an InfoObject id as an argument, and in case that
particular InfoObject is modified by the provider, a update message containing the new
InfoObject is sent to the respective client. This update message type is also used the
other way around, where clients are sending updates about their current position to the

server, which is used in the NS-FRITS alert system (see [section 4.4.7)).

Unlike the previously mentioned method calls and response, the update message type
uses the <message/> stanza instead of the <iq/> stanza. The message stanza is XMPP’s

39




N OO W N

Listing 4.2: Example of an asynchronous update sent by the server. The content of the
InfoObject is left out.

<message id=’Frmwt-10’ to=’truckl1@VTECW389.vcn.ds.volvo.net/nsfrits’>
<updates xmlns=’nsfrits:async’>
<InfoObject>

</Infolbject>
</updates>
</message>

solution to asynchronous messages type, and it provides the ability for the server to cache
messages if the client is offline. The <message/> stanza is used by extending it with an

extension for updates (see |Listing 4.2/ for an example).

4.6. NS-FRITS data model

This section will explain in more detail how the NS-FRITS data model looks like and
how data is represented in it. An overview of the NS-FRITS data model is presented in
Figure 4.10]

4.6.1. InfoObject

The main object used for representation of location based information is the InfoObject.
Each InfoObject is mapped to one Location object, which symbolize the place where the
InfoObject’s data is relevant, and one DataNode which is the object where the informa-
tion itself is stored. Further more, an InfoObject contains two more values, Validity and
Sequence 1d.

Validity

The InfoObject has a certain time interval when it is valid, which is implemented by
using two fields, ValidFrom and ValidTo. For example a road accident might have a
validity of only a few hours, while a text describing customs regulation perhaps have a
validity of several years. The ValidFrom field also makes it possible for data providers to
enter data which will not be valid until a certain date or amount of time has passed, for
example new rules or regulations. When the NS-FRITS server sends out data to clients,
it will ignore objects outside the valid time frame.

40




Sequence Id

Inside the InfoObject there is also a field called sequenceid, this fields purpose is to
differentiate different versions of the same InfoObject. If a data provider updates an
existing InfoObject in any way, this counter is incremented. When a client fetches a
certain InfoObject from the server, the server stores which version number of the object
was sent. If the client later tries to fetch the same object, the server compares the
InfoObject’s current sequenceid with the sequenceid stored for that particular client. If
the current InfoObject has a larger sequenceid, the new version of the object is sent to
the client, otherwise the client already have the latest version so the InfoObject is not
included in the response.

4.6.2. DataNode

Each InfoObject is mapped to one DataNode, where the information itself is stored. The
information in a DataNode is stored as a data tree, this is implemented by storing a
field in each DataNode called children. The children field links to zero or more other
DataNodes. The root element of the tree is then stored in the InfoObject, so when an
InfoObject is fetched, the tree can be constructed by recursively fetching by all childrens.

The DataNode tree structure is illustrated in [Figure 4.11}

This tree approach also make it possible to reuse the same DataNode in several InfoOb-
jects. For example the customs service might want to upload a form for declaration of
goods into the NS-FRITS system. Since they want this form to be presented at every
customs station, they only need to create one DataNode where they store the form and
then link to this DataNode form the respective tree of each customs station.

Information can be stored in DataNodes in three different forms, Descriptions, Attach-
ments and ParameterData. Attachment and ParameterData will be explained is this

section, Description will be explained in [section 4.6.4]

Attachment

The Attachment data type is used for the purpose of attaching files such as images, PDF
documents or videos to DataNodes. The file itself is not stored in the Attachment object,
instead only an URL link to its location is stored. The reason for doing this is to save
unnecessary data traffic. When a driver receives InfoObjects for a planned route, he/she
will probably only be interested in a small amount of all attached files, so instead files
are fetched when requested.

In addition the URL link to the file, the Attachment object contains three more fields,
mime—typﬂ size and language. The mime-type contains what sort of content type the

!See more at http://www.iana.org/assignments/media-types/index.html

41


http://www.iana.org/assignments/media-types/index.html

file has, the size is an integer containing the number of bytes in the file and the language
what language the file is in. The reason for storing the file size is so that clients can see
how large a file is before deciding to fetch it. If a DataNode contains several Attachments
in different languages, the server will only use the link in the highest preferred available
language to clients (See more about client language preferences insection 4.4.1)). There is
also a special language key word, “all”, which represents that the Attachment is language
independent.

ParameterData

ParameterData is used for sending out specialized language independent information
such as temperature, speed limit, length or maximum weight. Except for the parame-
ter type, the ParameterData also contains a field for the value of the parameter. The
advantages of using ParameterData instead of one or several Descriptions is except for
language independency, the possibility for clients to display this field in a special ways.
For example, if a client receives an InfoObject containing an updated speed limit, it
might pop up on the screen with a special icon with the new speed limit value. Each
DataNode can contain zero or more ParameterData objects.

4.6.3. Location

The Location object is one-to-one mapped to the InfoObject, each Location object can
contain four fields for representing where the InfoObject is of use, point, polygon, place
and road. The most basic field is the point field, it represents a location on the map with
a latitude and longitude coordinate in the WKT format. The polygon field represents
what area a driver should receive notifications of the InfoObject. The value is stored as
a WKT polygon, which is simply a list of coordinates together representing a polygon.

Each Location can also have a place and a road attached to it. A place is a general term
used for symbolizing locations that are too complex to describe with geometrical objects,
it is stored as a string. This type could for example be used for countries: Instead of
sending a large polygon representing each edge of the country border, the place field can
instead be used, containing the name of the country. The client can then find out what
country it is in by using some sort of external service, like for example the GSM-network.
A road is just a string describing which road the information is relevant in. This could
be used in combination with a polygon to describe certain strips of a road.

4.6.4. Description
The Description object is the general object used for descriptions, both DataNodes and

Categories can have one or more descriptions. Each Description consists of a title, text,
language and sound URL. The title is the description of the description object itself,

42



while the text is the message of the object. Since DataNodes and Categories can have
several Descriptions, it allows them to store one description for each language, which is
stored in the language field encoded in the ISO 639-1 standard. Reading a text can be
difficult and even dangerous while driving at the same time, therefore each Description
can have a sound file attached to it. The sound URL field is an optional field that stores a
link to a sound file that the client should load when opening the message. This sound file
should preferably contain a voice reading the description text in its specified language. It
can either be recorded manually by a person, or generated by a text-to-speech software

43



Buuys : adAy-swnw

74N : punos

BuLns : 1xa
wnan| |G
1 : 9zIs HS - op!

Buls : abenbueg)

‘[opour ®1ep S LIHA-SN OU} JO MOIAIOAQ (T} oanSiy]

uonduosag
jusuwiyoepy
‘ « b
0]
«... —‘ —‘hO
ualp|iyo eje(Jajoweled : sisjpweled
SPONE}E( : UBIP|IYD e
b JUsSWIYoeRY : Juswyoepe
) uonduose( : uonduossap

apoNeleq

ST

Ul : pleousnbas
jurpl

apoNeje( : elep
Aypijen : pijea
uonedOoT : UoNEDO|

108lgooyu|

yibus

L pl

paadg
ainjesadws |

a|gnop : anjea
adA ] 1e1oweled : adAy

dwejsawy : 0}
dwejsawn : wouy

adA | Jeloweled

<<uolelswnuas>

elje./alsweled

Aypiep

L'0 Japinold : siepinoid
uonduosa( : suonduosap
Alobaje)
Bbuyg : eoed | | Buyg : uobAjod
aoe|d ealy
10 L0
Bulys : peol
peoy
b b L0
I
aoe|d : @oe|d .
ealy : eale oI1qnop - Je|
. a|qnop : Buo|
peoy : peol
uiod :juiod | b 10 JuI0d

uoneoso

44



Attach.
Data ac
Node Descrip.
.4 Children |—

Attach.

/ 3| Data ac

Node Descrip.

I Children
Attach.
\ _|_) Data ac
Attach. Node Descrip.
—) o i Children

\ Node Descrip.

Children

N
- ) Attach.
InfoObject . —
Node Descrip.
Children
Attach.
—p| Data ac
Node Descrip.
Attach. Children
Data
_) Node Descrip.
Children

Figure 4.11.: A tree of DataNodes, each DataNode can have several children DatalN-
odes, together building a tree. Each InfoObject is linked to one DataNode

corresponding to the root of the tree.

45



5.

Prototype implementation

This chapter describes what has been implemented in the prototype implementation of
the NS-FRITS system and what technologies the implementation relies on.

5.1.

Overview

Six different applications have been developed for the NS-FRITS prototype:

NS-FRITS Client application, this is a desktop application that simulates a truck on
a road and its in-vehicle unit. This application communicates with the NS-FRITS
core server through the XMPP protocol.

NS-FRITS core server, the NS-FRITS core server communicates with NS-FRITS
clients through an XMPP-server. This applications purpose is to provide NS-
FRITS data to clients through a common API.

Provider interface, this application provides a user interface to the NS-FRITS
database. An administrator can via a web application add and remove locations
and points of interest. To each location, the administrator can add text, pictures,
documents and audio files in different languages. The main role of this application
is to simulate content providers.

DATEX II Parser, an application for converting DATEX 1II data into the NS-
FRITS format has been developed. This application loads DATEX II XML-files
and inserts their content into the NS-FRITS database.

Time agreement application, is an NS-FRITS extension that has been developed to
show case external communication over XMPP. The application developed is based
on a simple time agreement protocol. This protocol is used by trucks to register
an estimated time of arrival and send messages to the server in case the truck gets
delayed. The server operator will be able to see all registered clients on screen, and
in case of delays such as queues, the operator can send messages to them. This
time agreement protocol has been proposed to be one of the NS-FRITS systems

pre-defined protocol (See more in [section 4.1.4)).

Fleet management/dispatcher system, a very basic fleet management system that
can assign orders to trucks and get updated information about the trucks current
location and status. It is not part of the NS-FRITS protocol and is only used

46



to show the possibility of implementing a fleet management system using the NS-
FRITS XMPP network. It can use the information provided by the NS-FRITS
system to help the dispatcher make a fast and safe route for its trucks.

5.1.1. XMPP server

The XMPP server used in this implementation is Ejabberd from ProcessOne, but any
compliant XMPP server would work. Ejabberd is a cross-platform open-source XMPP
server written in Erlang and is well known for its good performance and scalability[45].
Other XMPP server alternatives include jabberd2 [[] and Openfire P|

5.2. Truck client

5.2.1. Overview

The truck client implementation is a standalone PC application written in C+-+ with
cross-platform libraries making it easy to port to different platforms. This implemen-
tation is not meant to be used in an actual truck, but used as a demonstration of the
capabilities of the system.

The implementation is built on the framework built for the L-ViS application. In addition
to this framework a group of other libraries are used to provide additional functionality.
This section describes the L-ViS framework and the additional libraries.

In the main window, see there is a zoomable and scrollable map with an
icon showing the current location of the vehicle. The maps used are provided by Open-
StreetMapf| which are licensed under the Creative Commons Attribution-ShareAlike 2.0
licence (CC—BY—SA)ﬁ The vehicle can be moved around on the map by dragging and
dropping it on the desired location.

From here the user can choose the desired languages and information categories, see
which decides which data the server will send back to the client. Information
can be requested either by requesting information close to the current location or by
uploading a route and requesting all points along that route.

All nearby information points are shown in a list, and from which the user can choose
to get more information on each item. The extended information is shown in a new
window, see The information can be in many forms, for example as text,
images, PDF-documents or web links. The text descriptions can be played out through
a speaker if a voice file has been attached to the description. The built-in web browser,

"http://jabberd2.xiaoka.com/
"http://www.igniterealtime.org/projects/openfire/
®http://www.openstreetmap.org/
*http://creativecommons.org/licenses/by-sa/2.0/

47


http://jabberd2.xiaoka.com/
http://www.igniterealtime.org/projects/openfire/
http://www.openstreetmap.org/
http://creativecommons.org/licenses/by-sa/2.0/

[Figure 5.4]is used to reach external web applications so that already existing services can
be reached and used without any modifications on the existing system.

I L-Vis Viewer
Layers Map NSFRITS

MSFRITS Info Layer g x
|

mdlndal
~|svenska lagar

() More info |

Place % |T|me | Original =

| | ©

i Change agreed time

“Z; Fetch info for point

[5] set routs

[ Plan route

“=, Fetch info for route | P

Figure 5.1.: Main window of the PC-based truck client. Visible is the current position
of the vehicle and a planned route. In the information overview table the
currently nearby information points are visible.

5.2.2. Libraries
L-ViS - LDM Visualization System

The LDM Visualization System is a system for visualization of global state information
from CVIS/Safespot systems|31I]. It consists of three parts, a state reporting application,
a server and a visualization application.

The visualization part of the system provides a solid framework for development of ap-
plications that need to render maps and information related to coordinates. It is written
in the language C++ for performance and library support reasons. Libraries used, in
addition to the C++ standard library, include Qtﬂ for GUI, GEOSﬂ for spatial opera-

5Qt - Cross-platform application and UI framework. http://qt.nokia.com/
6GEOS - Geometry Engine, Open Source. http://geos.osgeo.org/

48


http://qt.nokia.com/
http://geos.osgeo.org/

cughonns

Crime data is statistics about crime

rL':'a'j SSEWi':.? Boad Condit activities for roads, parking places
[] Lomy Specific Road Condttions | and districts. It could be statistic

W data that iz calculated over marny

. wearz, ar it could be dynaric
zafe parking information bazed on current crime
activities,

“7 Update | Ok

Figure 5.2.: The window were the user can choose the wanted categories. All supported
categories are fetched from the NSFRIS system when the update button is
pressed. The new categories are then uploaded to the users account on the

server.
= Allm&n information .
B B votsvenoe Mot Sverige
*..-'L- Broschyr - Tullverket Text om saker att
: Reqler . .
[ ] Blanketter tanka pé vid passage

i ’ Karta -Tullstation ... | jpy | S"u"erige. &) Mare |
Pl Taric

- Mot Morge =5 Open flle |
I Play voice |

Figure 5.3.: When the user wants to get more information about an information point
this window is shown. Texts can be read out if a voice file as been attached,
and attached documents can be opened and shown to the user.

49



[ _ioix)
Qe W

®l Tullverket

Startsida = Marukeder klassificering | Import Export Rapporter | Waruhandbocksr (o]

Om Taric Soksystem

Att kKlassificera varor 20100507
- Forklarande anmarkning till den kombinerade nomen
In English
(FAKHN) -

«J | 3

4

Figure 5.4.: A link to a web service provided by the Swedish customs has been opened
in the built in web browser. By allowing links to external web pages already
existing systems can be easily reached without any modifications.

tions, PROJ 4IZ] for transformation of coordinate systems and Boostﬂ for shared, reference
counting pointers.

All the libraries used are platform independent and no code in the visualization appli-
cation itself is platform dependent and is known to compile on both Microsoft Windows
XP and Linux according to the developers.

QXmpp

QXmpp is a cross-platform XMPP library for C++ built on Qt. It offers support for the
basic XMPP concepts and some of the many extensions for the protocol. The library
deals with the XMPP communication behind the scenes and transforms incoming XMPP
packets into objects that are sent to the main application.

Other libraries considered were libstrophe, iksemel and Iris. QXmpp was chosen primarily
because of the suitable license (GNU LGPL) and the fact it offered easy integration into
the existing Qt environment.

"PROJ.4 - Cartographic Projections Library. http://proj.osgeo.org/
®Boost C++ libraries. http://www.boost.org/

20


http://proj.osgeo.org/
http://www.boost.org/

Simple DirectMedia Layer (SDL)

The SDL library is used to play the sound and voice files. The core SDL library together
with the extensions SDL _sound and SDL _mixer form an easy to use package for playing
audio files encoded in different codecs. The library is cross-platform and precompiled
binaries exist for many platforms. Both the main library and the extensions are licensed
under the GNU LGPL license.

Other considered sound libraries were Port Audio, OpenAL and Phonon.

Speex

As codec for the audio files the Speex codec was chosen. It is an open and royalty free
format for voice audio and provides very good performance at low bitrates.

Webkit

Webkit is a web browser engine used by some of the major web browsers such as Google
Chrome|20] and Apple Safari[I]. It is available under a mix of the LGPL and BSD
licenses. shows the Webkit library as used in the NS-FRITS client application.

5.3. Fleet management

The fleet management application is also built around the L-ViS framework and uses the
same libraries as the truck client. It allows the operator to see the current location and
status of the trucks and assign new orders to them. Information from the NS-FRITS
system is used to allow the operator to make decisions about the truck routes.

The fleet operator can also in beforehand set up time agreements to external actors and
provide these to the truck. When an order gets assigned to a truck the driver gets a
notification and responds by either accepting or rejecting the order. If accepted the
truck will load the new route, upload it to NSFRITS and get the associated information
points along the route.

During the trip the truck will send its coordinates back to the fleet management system
and at the end of the drive reply back that the order has been completed.

5.4. NS-FRITS backend applications

The applications connected to the server side of NS-FRITS can be summarized under
the umbrella term NS-FRITS backend applications. This consists of four different ap-

ol



Il L-Vis Viewer - O]
Layers Map MNSFRITS

ht'i'ei{:‘cente_r_ @ Lat: 57.7092830309 Lng: 11.9385337830

& L : ; 2 vl Goteborg” |
" s - [ a nam:Valkgraven
N / 7 AN -
T 1 “ - k_“ﬂ—-,-——'t’\ @@ﬁﬁ
i _,' Va '.'.\.'
Al S\ =
e, V| b
A A -
o> 8 LS Masthugget 2 3
MSFRITS Dispatcher g X
spataTuck | [name T [jid [ state id | state [t [JAddomer |
S truckd truck1@seq... 3 Available 3 new
.:'ERemoveTruckl =3 pidgin  pidgin@vtec... £ Driving 2 assigned |-d Remove Orderl
1 accepted
|,¢ vl [1] SetRoute |
“=, Fetch Info |
BAssigntotruckl
4 | ol | 1l Clear History

A

Figure 5.5.: Main window of the dispatcher client. Here the operator can see the status
of trucks and orders, and the trucks current location.

plications, the NS-FRITS server, the NS-FRITS database interface, the Administrator
interface and the DATEX II parser.

5.4.1. Overview

All NS-FRITS backend applications are written in Java and are interconnected with
each other as shown in figure 5.6, The NS-FRITS database interface is the component
responsible of storing and loading data from the database. The NS-FRITS core server
provides access to NS-FRITS Clients through XMPP. The Administrator interface lets
operators modify the data objects stored inside NS-FRITS. The DATEX II parser loads
DATEX IT XML files, converts them into NS-FRITS format, then inserts them into the
NS-FRITS database.

5.4.2. NS-FRITS database interface

The NS-FRITS database interface is the module that provides objects to access the
backend NS-FRITS database. It has been implemented through the design pattern Data

92



NS-FRITS database

NS-FRITS
Database Interface

NS-FRITS NS-FRITS NS-FRITS
Admin Interface Core Server DATEX2 Parser

Figure 5.6.: Overview how the components in the NS-FRITS backend interrelate with
each other

Access Object (DAO).

Data Access Object

A DAO is an object that provides certain functions to modify the underlying database.
Three different DAOs has been created: ZoneDAO, ServiceDAO and UsersDAO. Each
of these DAO provides CRUD (Create, Read, Update and Delete) functions for different
underlying database tables. The ServiceDAQ is responsible for categories and providers,
the UsersDAO for users in the NS-FRITS system and the ZoneDAO for location based
data such as infoobjects, descriptions and datanodes. Each of these objects also performs
ORM (Object Relational Mapping), that means that the relational data in the database
is mapped into Java objects when retrieved through the DAO functions. For example
if the ZoneDAO function getInfoObject(id) is called, which retrieves the infoobject with
the argument id, the result is a java object of the type “InfoObject”.

Converting objects into other formats

Each object representing data in the NS-FRITS data model, such as InfoObject, Descrip-
tion, Category and DataNode, have been extended with a toXML function. The toXML
function converts the object into an XML string, which is used by the NS-FRITS core
server before sending the object to the NS-FRITS user. Some objects also have a toJSON
function implemented, which is used to convert the object into JSON-format which is
used by the administrator interface (See more in [5.4.4)).

23



Database

The backend database selected in the implementation was SQLite. The main reason for
this selection was that it can very easily be moved between different systems, as the
database consists of a single file and no external services are needed.

5.4.3. NS-FRITS Server

The NS-FRITS server is the application responsible of connecting to the XMPP server
and providing an API to NS-FRITS clients. The library selected for XMPP communi-
cation was the Smack API’] The methods described in Section is implemented by
writing custom packet listeners. Since the incoming data is in XML format, the data is
first parsed into Smack Java objects, which are then handled by the appropriate custom
packet listener. The custom packet listeners then call the right DAO method from the
NS-FRITS database interface and in case the method has any results, it is converted into
XML and inserted into the response packet.

5.4.4. Administrator interface

The administrator interface is an application that connects to the NS-FRITS database
through a Java web application, the implementation is based on the three tiered architec-
ture. The technologies used for implementation is a mixture of Java servlets, Java Server
Pages (JSP) and Asynchronous Javascript and XML (AJAX). The web application is
then deployed on Apache Tomcat.

Functionality

There are two main functionalities in the administrator interface, editing providers in NS-
FRITS (Figure 5.7) and editing locations and InfoObjects bound to a certain provider
(Figure 5.8). The edit provider part simply provides a CRUD interface for all data
providers in NS-FRITS. It is possible to set what category each provider belongs to,
change their name etc. For each provider in NS-FRITS it is also possible to create
locations on a map and bind an InfoObject to them. The administrator can also modify

each InfoObject by creating a tree of datanodes (See [section 4.6.2), adding descriptions
and uploading files.

Libraries

The library used for drawing maps is OpenLayers. OpenLayers is a Javascript library
with support for fetching map tiles from several major map providers and draw overlays

http://www.igniterealtime.org/projects/smack/

o4



Ci| |~ e Ao ||j|http:,’ﬂocalhost:8084ﬂ45FR1‘I"S—AdminInterfacefprouideredit.jsp b I'-.'v|6c-c-gle j_

| ) ns-FRITS - Provider Editor [ +] |-

NS-FRITS - Provider Editor

Home
Create ‘Welcome to M5-FRITS provider editor!
Provider
Hame Category
Itustnms service, Sweden I customs jl Edit Zones I Delete Provider |
IGm.henburg parking company I safe parking jl Edit Zones I Delete Provider |
Ipnlish park secure I safe parking jl Edit Zones I Delete Provider |
Ideutsche zollen I customs dl Edit Zones I Delete Provider |
Iswedish Hational Road .ASSD{iiJ.I road service ﬂl Edit Zones I pelete Provider |
Iswed ish police I Crime jl Edit Zones I pelete Provider |
Innrwegian police I Crime jl Edit Zones I pelete Provider |
Inccident Reporter | Lorry Specific Road Conditions || editzones | belete provider |
IDle parking company I safe parking ﬂl Edit Zones I pelete Provider |
Save

Figure 5.7.: Screenshot of the the editing providers view of the administrator interface.
By clicking on the “Edit Zones” button, an administrator can edit the loca-
tions of each provider.

on them. The map provider chosen for this project was OpenStreetMaps(OSM) (more

about map providers and projection in [section 3.5). For AJAX calls the Javascript
framework, Prototypelﬂ was selected and for file upload, the script Uploadiny[

5.4.5. DATEX Il parser

The last NS-FRITS backend application is the DATEX2 parser. This program simply
loads DATEX II XML-files, parse the data and then converts it into the NS-FRITS
format. This data is then stored into the NS-FRITS data model. For demonstrating
this application, a couple of XML DATEX II files from the Swedish National Road
Administration were gathered. A special data provider called “Swedish National Road

Ohttp:/ /www.prototypejs.org/
Hhttp://www.uploadify.com/

29



NS-FRITS - ZoneEditor

Provider

Editor
Add Zone
+

Delete Zone

Delete All
Zones

Gétetarg
\
\
N\
\

InfoObject 19Valid From:|1om-o4-m'ri4:34:4:\"al1’d To:|2040-04-24T04:24:2: Sequence id: 4 5
-DatadNode 22
[ & A i | [ | TR I 2 At et bt 578

Figure 5.8.: Screenshot of an administrator editing the locations of a particular provider.
The box in the middle represents the area where the location is active.

Administration” was then created through the administrator interface. The application
were then set to parse these XML-files and then insert them into the NS-FRITS database
for this particular data provider.

5.5. Time agreement application

The time agreement application was developed to showcase an example of a public NS-
FRITS extension described in [section 4.1.3] This application is also an example of an
implementation of one of the pre-defined protocols mentioned in The
scenario used for implementation was an application for the customs station in Svinesund.
Trucks would be able to register their arrival time to the customs station. The customs
personnel at the station would in their turn be able to see registered trucks through a
graphical interface and inform them directly of delays at the station. If a truck notice
that it cannot keep its registered time, it can send an update to the customs station
containing a new arrival time.

Like the NS-FRITS backend applications, the time agreement application is also imple-
mented in Java. It consists of two different parts, a Java web application for customs
personnel to see registered trucks and a regular Java application to connect the appli-
cation to the NS-FRITS XMPP server. The regular Java application will then act as
a server storing registrations in a local database, the same database is then read by

26



the Java web application and displayed to customs personnel. A screenshot of the web

application can be seen in

L - €@ X || rteiecahosta0s4NSFRITS ExtemaloperatorGUI/ - I'-'._-l"||

| | NS-FRITS - External Operator ] -

MNS-FRITS - Agreement Operator

Welcome to NS-FRITS agreement operator
User Externalld Agreement time Delayed arrival Select  Message
test2@vtecw389.von.ds.volvo.net /nsfrits 11343212 2010-05-12T11:11:17+0200  2010-05-12T11:16:54+0200 - Miew
test@viecwdB9.ven.ds.volve.net/ nsfrits BF315222 2010-05-12T11:39:05=0200 - r
Update I select all_ || peselect all Send Update(s)
Select which users the message should be sent to.
newarrivaldate:lmioonz 14:40:36+0200
message text:

Figure 5.9.: Screenshot from the operators view of the implemented time agreement
application.

Since the customs time agreement application is as a public NS-FRITS extension(see
section 4.1.3), a link to its address is stored inside the NS-FRITS system. Whenever a
truck gets information about the customs station in Svinesund, for example by planning a
route through Svinesund, it will get the information that the Svinesund customs station
also contains a time agreement application. An example of a user registering a time

arrival can be seen in

o7



INS-FRITS client INS-FRITS core server /Svinesund Time agreement

Get Information Svinesund

<_ ______________

I
I
I
I
:
I
InfoObject :
I
I
I
I
I
I
]

I
I
I
I
Register arrival, 13:00 :
I
I
I
I
]

Queues id:35, new arrival, 13:45

Update id:35, new arrival 14:00

Figure 5.10.: Sequence diagram of a user registering an arrival time to the customs sta-
tion. The customs station can in its turn send new arrival time to the user
because of for example queues. The client will lastly send an updated time
of his arrival.

28



6. Improvements

Since the goal of this project only was to design a prototype of the upcoming NS-FRITS
system, there were several topics that could not be included in the project design because
of the limited time frame. Some of these topics will be discussed in this chapter, which
will be devoted to improvements and extensions of the NS-FRITS systems. These are
some of the topics that might be interesting in future work and when the real NS-FRITS
system is to be developed. This section will not only discuss what can be done in the
future, but also give examples of how it could be implemented and extended into the
current NS-FRITS prototype developed by this project.

6.1. Route planning

One topic that was discussed from the beginning of this project but not implemented
in the NS-FRITS prototype was route planning. The idea is that a user would send a
start, a destination and a set of parameters to the NS-FRITS system. Parameters can
for example be, avoid crime zones if possible, visit a certain set of POIs in a certain
order, avoid routes with certain road conditions such as construction work or optimize
the route depending on variable road speed limits. The NS-FRITS system will then plan
a route matching these parameters and send it back to the client.

6.1.1. Basic principles of route planning

Although route planning can be a very difficult and complicated task, there are some
basic principles that applies to most route planning algorithms. Usually the roads are
modeled as weighted edges in a graph. The weight of the edges can either be the length of
the road or a product of the road length and the allowed driving speed of the road. The
user gives a starting point and a destination point to the algorithm, then the fastest route
is found via a shortest path algorithm such as Dijkstras[6] or A*. The user might not
know the exact coordinates of its destination, so there need to be an intermediate layer
transforming locations described in strings, such as “Street x, City y”, to geographical
coordinates, this process is called geocoding. After transformation, the only task left is
to find the closest road to the coordinate.

Even if the algorithm used has a big impact on the quality of the route planner, the biggest
and most crucial step for an efficient route planner is the road map used. There are many

29



parameters that need to be stored about each road to be able to build an efficient graph,
for example: The size of the road(i.e no Heavy Goods Vehicles), speed limit, traveling
directions, turning restrictions, no through traffic, etc. All these parameters can have a
major effect on the route chosen.

6.1.2. Route planning with NS-FRITS data

When NS-FRITS data is considered in the planning, the process gets more complicated.
The NS-FRITS data model need to be extended to support these various plans, for
example a crime hot spot need to be stored so the route planner understands that it
should avoid this route. The simplest way to deal with the problem mentioned above is
to simply increase the weight of the edges passing through crime hot spots, so the route
planner is less likely to pick them.

One of the other premises that would be considered when planning routes is traffic in-
cidents, such as construction works, road accidents or bad road weather. By parsing
certain DATEX II tags, it is possible to calculate a new weight of an edge. For ex-
ample, the <overallImpact> tag contains information about the severity of the event
and the <situtionRecord> tag contains a time interval when the event is expected to
occur and the type of the event, like for example ConstructionWorks, AbnormalTraffic
or WeatherRelatedRoadConditions|10)].

By then taking all these tags into consideration when NS-FRITS receives a DATEX 11
update, it is possible to calculate a new weighted value and apply it to the edge at the
location described in the DATEX II message. This new weight can be applied temporarily
until the expire date of the situation has passed. However, to find a good weighting value
that can be used in the real world, one need to analyze how the DATEXII standard are
implemented today by road administration services in different European countries.

6.1.3. Integration with NS-FRITS prototype design

Route planning would be easy to integrate with the current NS-FRITS prototype, the
only change that would be needed to the server is an update of the API to include the
route planning method. Since route planning can be computationally heavy it might be
a good idea to deploy the route planning algorithm it self on a separate machine.

When route planning with NS-FRITS data is considered, it can be accomplished in
different ways: Either one can change the NS-FRITS data model to include how each
event affects the weight of the route planning algorithm, or one could keep the old
data model unchanged and instead, in parallel, feed new NS-FRITS objects directly into
route planner graph. An illustration of the first method can be seen in Figure [6.2] and
the second method in Figure [6.]] The obvious advantage with the second method is
that is can be built on top of the original NS-FRITS prototype without any changes,
however, one will then need to maintain two different data structures, which leads to

60



higher system complexity. Another advantage with the first method is that the route
planning functionality are not limited to the NS-FRITS system. If NS-FRITS stores
event in a more formal way, third party developers can build their own route planner
service by using data from the NS-FRITS system (more about how this can be achieved
in[G.1.51

{—a]

NS-FRITS [11111]

database NS-FRITS
data insert

i Plan route E

Plan route == w > WH WD‘
NS-FRITS NS-FRITS Data provider
core server routeplanner

Truck

Figure 6.1.: Illustrates how route planning would be implemented without changing the
original NS-FRITS system. When a data providers inserts new data, it is
both inserted into the NS-FRITS database and the NS-FRITS route plan-
ner’s data model.

6.1.4. Example Implementation with OpenStreetMaps and pgRouting

To demonstrate route planning, a simple route planner was implemented for the NS-
FRITS prototype. This was just implemented as a proof-of-concept, and should not be
considered to be part of the NS-FRITS design. Although some of its principles could be
used for an implementation of a real route planner.

The example implementation uses road maps from OpenStreetMaps, storage in an Post-
greSQL databaseE] with PostGIS supportE] and routing algorithms from the PostLBS
project pgRoutingﬂ The pgRouting project consists of a set of functions implementing
route planning functionality directly at database level[41]. Several searching algorithms
are implemented, like Dijkstras algorithm, A* and a heuristic approximation to the trav-
eling salesperson problem.

"http://www.postgresql.org/
*http://postgis.refractions.net/
*http://pgrouting.postlbs.org/

61


http://www.postgresql.org/
http://postgis.refractions.net/
http://pgrouting.postlbs.org/

NS-FRITS

database NS_F_RITS
data insert
Plan route
Plan route o T
il 1]
NS-FRITS NS-FRITS Data provider
core server routeplanner

Truck

Figure 6.2.: Illustrates how route planning would be implemented by changing the NS-
FRITS data model. In this method all data is inserted into the NS-FRITS
database. The route planning server updates its internal data structure by
querying the NS-FRITS database.

Implementation process

First, road maps was downloaded from OpenStreetMaps. The maps are downloaded as
large XML-files, each containing data for different parts of the world. The downloaded
maps are then inserted into the PostgreSQL/PostGIS database with the osm2pgrouting
script. This script converts OpenStreetMaps data to a graph network readable by the
pgRouting algorithms. When the data is inserted in the database, the pgRouting search-
ing algorithms are run as SQL functions, returning the set of nodes visited for that par-
ticular route. Finally, the project wrote a wrapper to these functions in the java server,
which queried the pgRouting algorithms and converted the result into a WKT Linestring.
The routeplanning method was then added to the NS-FRITS API, taking a starting and
a destination point as arguments and returning a WKT Linestring of the planned route.
A screenshot representing the clients view of the route planning implementation can be
seen in figure [6.3

6.1.5. Third party route planning

Rather than letting NS-FRITS plan the route, another option is to just present data in a
way so third party developers can utilize NS-FRITS in their own route planners. In the
current NS-FRITS prototype this is possible to some extent by using existing NS-FRITS
methods like searchPOl, getInfoForPoint and getInfoForRoute to get information about

62



Wl L-Vis Viewer i ] 4|
Layers Map MNSFRITS

MSFRITS Info Layer & X Map center @ Lat: 57.6806600298 Lng: 12.2387695313
Oslo Ay

Drarmimen

Fredristad ("
.-jl- 14
i "-_ i

y
Flace W | Time Kestandand

Orebiro

(L) More info |

Jonkiping

[« | i

i Change agreedtimel

“Z, Fetch info for point |

i
“%, Fetch info for route | =

[ setroute | Danmar

| EsbirgKaiding™

[ P1an route

Y

Figure 6.3.: Screenshot of the client using the example route planning implementation.
The client sets a start and a destination point and then sends it to the server.
The server calculates a route and then responds with a linestring, which the
client draws out on the map.

specific routes. In the future the NS-FRITS data model might be extended to store
more extensive information in each InfoObject to allow more advanced planning. With
that in mind, the real bottleneck of being able to provide detailed data for third party
route planners is not inside NS-FRITS, it is instead the quality and level of detail of the
provided data from data providers.

6.2. Spatial algorithms

When the final NS-FRITS system is to be deployed, it is expected to work well with
thousands of users and information objects. One of the areas that could be improved is
the spatial algorithms used for finding out which information objects to send a user when
he/she is planning a route. The geometrical object intersection algorithm used today’s
complexity scales with the number of edges in an object, so the obvious first measure to
provide higher scalability is to simply limit how many edges an object can have. The
computations needed at the client side can be reduced by more extensive use of the place

63



data type, which was described in [section 4.6.3] Instead of sending a large polygon with
a large amount of edges to represent, for example, a country or a city, a string can be
used to describe the location. The client can then find out where it is located by using
the local GSM network.

6.3. Further extensions

6.3.1. SOAP

The current design uses a custom protocol for method calls and responses. In the final
NS-FRITS system, one might want to use a standardized protocol instead, like SOAP.
The XMPP standards foundation has defined an extension for SOAP communication
over XMPP in extension XEP-0072[19].

6.3.2. Translation and text-to-speech

Another possible area of improvement is translation and text-to-speech. In [section 3.7.3]
different translation principles were mentioned, a future project might want to refine
these suggestions and design an infrastructure for them. Future projects might also want
to look more deeply into text-to-speech. Text-to-speech can be implemented in either
server side or client side. In the first option, the server uses a text-to-speech algorithm
or library, converts the text into an audio file and then ingerts a link to the file in the
soundURL field of the description (see . In the second option, the client
implementation of NS-FRITS instead runs the text-to-speech software, thus the audio is
never sent over the network. There are several text-to-speech libraries available today:
Eyes-free for the Android platform [ Natural Voices from AT&T P or Festival [f] which
is an open source project.

6.3.3. NS-FRITS data converter module

In [section 4.1.2] a data converter module was mentioned for insertion of data in a non-
NS-FRITS format, for example DATEX II. The data converter would either subscribe
to an existing feed of information or periodically fetch the data itself, the data would
then be converted and inserted into NS-FRITS. As a future project, one might want to
implement one of these data converter modules, for example for DATEX II data. Since
a parser for DATEX II already has been implemented (see , the purpose
of this module would just be to connect to existing DATEX II providers around europe
and insert data into NS-FRITS whenever an update occurs.

*http://code.google.com/p/eyes-free/
Shttp://www2.research.att.com/ ttsweb/tts/demo.php
Shttp://www.cstr.ed.ac.uk/projects/festival/

64


http://code.google.com/p/eyes-free/
http://www2.research.att.com/~ttsweb/tts/demo.php
http://www.cstr.ed.ac.uk/projects/festival/

7. Results

The following results was presented at the end of this thesis work:
e A proposed system design for the NS-FRITS system was presented.
e The proposed design was implemented into a working prototype.
e Improvements for further development of the NS-FRITS system was suggested.

At the end, all goals set in were reached. The achieved results of this project
was presented at the NS-FRITS project conference in Bremerhaven, Germany in June

2010.

65



8. Discussion

The outcome of this project can be considered a success, since the goals set in the start of
the project has been reached and a working prototype of the system has been developed.
The development process has worked out according to schedule with no major changes.
The only problem the project had was that the system requirements changed several times
during the design and implementation stages. However, since an iterative development
methodology was chosen in the start of the project, this was to be expected.

We believe that the developed prototype design for the NS-FRITS system can both be
used for the final NS-FRITS system which will be completed in late 2011 and for future
ITS project within the area of location based services.

8.1. Technology evaluation

The XMPP protocol, which was used for communication was a good choice for data
transfer since it brings always-on-functionality to roaming trucks and clients. XMPP
seems to be a good choice since it provides a lot of extensibility and scalability by using
multiple servers, seelsection 4.2] In the future, when IPv6 has been more widely deployed,
the need of an intermediate communications layer such as XMPP might not be needed
anymore. The communication can then be handled directly by host-to-host techniques
like MobilelPv6. However, this does not affect the NS-FRITS system developed in this
thesis work since the same data protocol and server mechanisms can be used, the only
part that needs to be changed is the communications layer.

8.2. Future work

In the thesis also discussed how the design and implementation of the NS-
FRITS prototype could be extended and improved for future work. One major area was
the topic of automatic route planning. An interesting future project would be to design
and implement an advanced route planner that considers NS-FRITS data while planning.
Another interesting project would be to investigate more rigorously how NS-FRITS data
could be used to improve existing route planners in the market.

In [section 4.1.3] the concept of a NS-FRITS application was introduced, an example
of this kind of application was introduced with the time agreement protocol. A future

66



project could consist of designing and implementing more NS-FRITS applications. For
example for booking services or electronic document transfer and signing.

Lastly, the prototype developed need to be tested and evaluated in a real environment
with real data providers.

67



Bibliography

1]

2]

[11]

[12]

Apple Developer: Safari Dev Center. http://developer.apple.com/safari/,
April 2010.

Howard Butler, Martin Daly, Allan Doyle, Sean Gillies, Tim Schaub, and Christo-
pher Schmidt. The GeoJSON Format Specification. http://geojson.org/
geojson-spec.html (accessed 2010-05-06), June 2008.

lan  Channing. Twelve  operators commit to LTE  deploy-
ment in 2010. http://www.fiercewireless.com/europe/story/
twelve-operators-commit-lte-deployment-2010/2009-06-17, June 2009.

Sanphet Chunithipaisan and Soravis Supavetch. The development of web processing
service using the power of spatial database. Emerging Trends in Engineering &
Technology, International Conference on, 0:832-837, 2009.

European Commission. Intelligent Transport Systems and Services: initiative for
accelerated deployment across Europe IP/08/1979. http://europa.eu/, December
2006.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. The MIT Press, 2nd edition, September
2001.

Dave Crane and Phil McCarthy. Comet and Reverse Ajax: The Next-Generation
Ajaz 2.0. Apress, Berkely, CA, USA, 2008.

DATEX Background. http://www.datex2.eu/content/datex-background, 2009.

DATEX II V2.0 Software Developers Guide. http://www.datex2.eu/sites/www.
datex2.eu/files/sites/test.datex2.eu/files/DATEXIIv2.0-DevGuide_v1.0.
pdf, July 2009.

DATEX II V 2.0 User Guide. http://www.datex2.eu/sites/www.datex2.eu/
files/sites/test.datex2.eu/files/DATEXIIv2.0-UserGuide_v1.0.pdf, July
20009.

Michael N. DeMers. GIS For Dummies. Wiley Publishing, Inc., Hoboken, NJ, USA,
2009.

OpenLayers Developers. Open Layers Library Documentation. http://docs.
openlayers.org/library/spherical_mercator.html.

68


http://developer.apple.com/safari/
http://geojson.org/geojson-spec.html
http://geojson.org/geojson-spec.html
http://www.fiercewireless.com/europe/story/twelve-operators-commit-lte-deployment-2010/2009-06-17
http://www.fiercewireless.com/europe/story/twelve-operators-commit-lte-deployment-2010/2009-06-17
http://europa.eu/
http://www.datex2.eu/content/datex-background
http://www.datex2.eu/sites/www.datex2.eu/files/sites/test.datex2.eu/files/DATEXIIv2.0-DevGuide_v1.0.pdf
http://www.datex2.eu/sites/www.datex2.eu/files/sites/test.datex2.eu/files/DATEXIIv2.0-DevGuide_v1.0.pdf
http://www.datex2.eu/sites/www.datex2.eu/files/sites/test.datex2.eu/files/DATEXIIv2.0-DevGuide_v1.0.pdf
http://www.datex2.eu/sites/www.datex2.eu/files/sites/test.datex2.eu/files/DATEXIIv2.0-UserGuide_v1.0.pdf
http://www.datex2.eu/sites/www.datex2.eu/files/sites/test.datex2.eu/files/DATEXIIv2.0-UserGuide_v1.0.pdf
http://docs.openlayers.org/library/spherical_mercator.html
http://docs.openlayers.org/library/spherical_mercator.html

[13]

[14]

[15]

[28]

Jean Dollimore, Tim Kindberg, and George Coulouris. Distributed Systems: Con-
cepts and Design (International Computer Science Series). Addison Wesley, 4th
edition edition, May 2005.

Ahmed El-Rabbany. Introduction to GPS: The Global Positioning System. Artech
House, Sussex Street, London, 2. ed. edition, 2006.

Roaming: High Prices of SMS & Data Services . http://europa.eu/rapid/
pressReleasesAction.do?reference=MEM0/08/505, July 2008.

Knut Evensen. IEEE 802 CALM Tutorial. http://grouper.ieee.org/groups/
802/11/Reports/Nov_2006_CALM_Tutorial/IEEE_802_CALM_Tutorials_PPT.zip,
2006.

Stephen Ezell. Explaining International IT Application Leaderhip: Intelligent Trans-
portation Systems. Technical report, ITIF, January 2010.

International Organization for Standardization. Codes for the Representation of
Names of Languages Part 2: Alpha-3 Code. http://www.loc.gov/standards/
150639-2/php/code_list.phpl, 2002.

Fabio Forno and Peter Saint-Andre. XEP-0072: SOAP Over XMPP. Technical
report, XMPP Standards Foundation, December 2005.

Google Chrome: FAQ for web developers. http://www.google.com/chrome/intl/
en/webmasters-faq.html, April 2010.

Lawrence Harte. Introduction to Wireless Local Area Network (WLAN) technology,
market, operation, profiles and services. ALTHOS Publishing Inc, Fuquay Varina,
N.C., 1. ed. edition, 2004.

Michi Henning. The rise and fall of CORBA. Commun. ACM, 51(8):52-57, 2008.

Ailing Huang, Jinsheng Shen, and Wei Guan. ITS planning methodology for Chinese
cities and its evaluation model. In Intelligent Transportation Systems Conference,
2006. ITSC '06. IEEE, pages 1125 —1130, 2006.

Open Geospatial Consortium Inc. OpenGLS Geography Markup Language (GML)
Implementation Specification, 3.1.1 edition, February 2004.

Open Geospatial Consortium Inc. OpenGIS Implementation Specification for Ge-
ographic information - Simple feature access - Part 1: Common architecture, 1.2
edition, October 2006.

Open Geospatial Consortium Inc. OGC KML, 2.2.0 edition, April 2008.

ISO TC 204 WG 16. What is Working Group 16 CALM Concept. http://www.
isotc204wgl6.org/concept, 2008.

Bonghyun Jeong. Institutional issues to successful ITS implementation in Korea. In

69


http://europa.eu/rapid/pressReleasesAction.do?reference=MEMO/08/505
http://europa.eu/rapid/pressReleasesAction.do?reference=MEMO/08/505
http://grouper.ieee.org/groups/802/11/Reports/Nov_2006_CALM_Tutorial/IEEE_802_CALM_Tutorials_PPT.zip
http://grouper.ieee.org/groups/802/11/Reports/Nov_2006_CALM_Tutorial/IEEE_802_CALM_Tutorials_PPT.zip
http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.google.com/chrome/intl/en/webmasters-faq.html
http://www.google.com/chrome/intl/en/webmasters-faq.html
http://www.isotc204wg16.org/concept
http://www.isotc204wg16.org/concept

[29]

[32]

[33]

[41]

[42]

Vehicle Navigation and Information Systems Conference, 1996. VNIS °96, volume 7,
pages 118 — 125, 1996.

Daniel Jiang and Luca Delgrossi. IEEE 802.11p: Towards an international standard
for wireless access in vehicular environments. In Mario Gerla and Yuming Jiang,
editors, VT C2008-Spring, 67th IEEE Vehicular Technology Conference, pages 2036—
2040, Los Alamitos, CA, USA, May 2008. IEEE Computer Society.

D. Elliott Kaplan and Christopher J. Hegarty. Performance of Stand-Alone GPS.
Artech House, Sussex Street, London, 2. ed. edition, 2006.

Martin Karlsson and Edvin Valtersson. L-ViS - LDM Visualization System. De-
partment of Computer Science and Engineering, Chalmers University of Technology,
Goteborg, Sweden, 2009.

Farooq Khan. LTE for 4G Mobile Broadband: Air Interface Technologies and Per-
formance. Cambridge University Press, Brook Hill Drive West Nyack, NY, 1. ed.
edition, 2009.

Juha Korhonen. Introduction to 8G mobile communications. Artech House, Sussex
Street, London, 2. ed. edition, 2003.

North Sea Freight and Intelligent Transport Solutiuons (EU project 35-2-38-08).
Scenario - actors and use cases. (work in progress), February 2010.

North Sea Freight and Intelligent Transport Solutiuons (EU project 35-2-38-08).
System design. (work in progress), March 2010.

North Sea Freight and Intelligent Transport Solutiuons (EU project 35-2-38-08).
System requirements. (work in progress), March 2010.

NS FRITS Aims and Objectives. http://www.nsfrits.eu/en/ns-frits/
aims-and-objectives.html] 2009.

IEEE P802.11 Task Group p. Status of Project IEEE 802.11 Task Group p, Wireless
Access in Vehicular Environments (WAVE). http://grouper.ieee.org/groups/
802/11/Reports/tgp_update.htm, 2010.

S. Parkvall, E. Dahlman, A. Furuskar, Y. Jading, M. Olsson, S. Wanstedt, and
K. Zangi. LTE-Advanced - Evolving LTE towards IMT-Advanced. In Vehicular
Technology Conference, 2008. VTC 2008-Fall. IEEE 68th, pages 1-5, Sept. 2008.

Eldad Perahia and Robert Stacey. Nexzt Generation Wireless LANs: Throughput,
Robustness, and Reliability in 802.11n. Cambridge University Press, Brook Hill
Drive West Nyack, NY, 1. ed. edition, 2008.

pgRouting  Documentation . http://pgrouting.postlbs.org/wiki/
pgRoutingDocs/, June 2009.

Peter Saint-Andre. Extensible messaging and presence protocol (XMPP): core. RFC
3920, IETF, October 2004.

70


http://www.nsfrits.eu/en/ns-frits/aims-and-objectives.html
http://www.nsfrits.eu/en/ns-frits/aims-and-objectives.html
http://grouper.ieee.org/groups/802/11/Reports/tgp_update.htm
http://grouper.ieee.org/groups/802/11/Reports/tgp_update.htm
http://pgrouting.postlbs.org/wiki/pgRoutingDocs/
http://pgrouting.postlbs.org/wiki/pgRoutingDocs/

[43]

[44]

[45]

[46]

[47]

Peter Saint-Andre. Extensible messaging and presence protocol (XMPP): instant
messaging and presence. RFC 3921, IETF, October 2004.

Peter Saint-Andre. Streaming XML with Jabber/XMPP. Internet Computing,
IEEE, 9(5):82 — 89, sept.-oct. 2005.

Peter Saint-Andre, Kevin Smith, and Remko Trongon. XMPP: The Definitive Guide:
Building Real-Time Applications with Jabber Technologies. O’Reilly Media, Inc.,
Sebastopol, CA, USA, May 2009.

Svensk forfattningssamling: Foérordning om grinstullsamarbete med Norge, SFS
2002:1054. Stockholm, 2002.

William Stallings. Wireless Communications € Networks. Prentice Hall, Upper
Saddle River, NJ, 2. ed. edition, 2005.

Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems. Principles and
Paradigms. Prentice Hall International, 2nd rev. ed. edition, October 2006.

Volvo Technology webpage. http://www.tech.volvo.com/, February 2010.

Dave Winer. XML-RPC Specification. http://www.xmlrpc.com/spec#update3/,
June 2003.

GSM World. Market Data Summary (Q2 2009). http://www.gsmworld.com/
newsroom/market-data/market_data_summary.htm, October 2009.

71


http://www.tech.volvo.com/
http://www.xmlrpc.com/spec#update3/
http://www.gsmworld.com/newsroom/market-data/market_data_summary.htm
http://www.gsmworld.com/newsroom/market-data/market_data_summary.htm

A.l.

A.2

Use case

Driver A traveling Warsaw to Oslo via Svinesund

Driver A is scheduled to run goods from Warsaw, Poland to Oslo, Norway. This
is the first time driver A is driving goods to Norway, so the driver is not familiar
with the customs procedure when leaving EU to enter Norway.

When driver A is 50 km away from the Sweden-Norway border at Svinesund the in-
vehicle device alerts the driver. A question is asked by a voice in the native language
of the driver, the same text is displayed on the screen: You are approaching the
Svinesund customs station, would you like to know more about the procedure at
this station? (Yes/No)

Since the driver never has traveled through this border before the driver selects yes.
A voice starts to speak in polish about how the customs are handled there, and
where to go for goods declaration. A map of the border station is also shown on
the screen so the driver can see key points where to go. The driver can anytime via
the in-vehicle system read more or listen to more detailed description if he wishes
to know more about the customs station and the procedures there.

Driver A approaches the station, since he already received information about where
to go for goods declaration and what papers he need to sign he does not need to
ask for help at the station and his passing through customs will be as effective as
possible.

. Driver A traveling Oslo to Warsaw via Svinesund

Driver A has reached his goal in Oslo and delivered his goods. The driver will now
return to Warsaw without any cargo.

When driver A is 50km away from the Norway/Sweden border the driver gets info
on what to do when crossing the border with an empty truck. He is not required
to stop at the customs station, instead can drive though without stopping.

Driver A can drive past the station without having to stop to ask what to do.

72



B. Case study: The Swedish Customs’
office in Svinesund

The following is a case study of the Swedish customs’ office in Svinesund at the Norwegian
border. The information is, unless specified, from interviews with customs employees and
visits to the customs office.

B.1. Description

The border between Sweden and Norway is interesting not only because of being an outer
EU border, but also for the unique treaty that allows the both countries’ customs agencies
to collaborate very closely at and around the border[46]. This treaty allows a customs
officer to take the role of both parties and do both the import and export declarations
at the same time. This is important since the border is very long and, except for a few
places, very sparsely trafficked and by dividing the customs offices between them a lot of
money and resouces can be saved. Only at the larger border crossings in Svinesund and
Han/Orje are officers from both countries present.

At the south most point on the border between Sweden and Norway lies the small com-
munity of Svinesund. Here the road E6 leave the EU and enter Norway. This road is
one of the main roads for cargo transports to and from Norway and the customs office
gets visited by drivers from all over Europe.

The traffic from Sweden to Norway is not stopped on the Swedish side as customary,
instead the traffic is allowed over the border into Norway where the Norwegian customs
handles both the export from the EU and the import into Norway. For traffic traveling
in the other direction it is the opposite, here the Swedish customs do both the export
from Norway and import into EU.

B.2. Problem

e Customs inspection is located after the border crossing for transports in both di-
rections. This is unique for the Swedish-Norwegian border. See figure

e A toll plaza for the border bridge is located close to the customs building on the
Swedish side. Toll in Norwegian means customs.

73



//Swedish Customs

U b,)

Figure B.1.: Map view of the Svinesund area. The circles represents the customs offices,
where the Norwegian handles the northbound traffic and the Swedish office
handles the southbound traffic. ©OpenStreetMap| & contributors, (CC-BY-
SA

e No gates or armed guards to clearly show where to drive. Very low security com-
pared to many places in especially eastern Europe, which makes it possible to miss
the station if the driver expects a different form of station.

e Many drivers can not speak or understand English. Translating information to
other languages is hard since all information has to be written and verified at a
higher level in the organization.

e Empty transports does not have to stop for clearance, they can just drive by. Even
though there are signs that informs about this, many drivers still stop.

74


http://www.openstreetmap.org/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/

B.3. Possible NS-FRITS Solution

The NS-FRITS system can improve the situation by helping the drivers to understand
how the border passing works here and also help the customs officers to get important
information out to the drivers quickly, all in a language the driver understands.

More specifically:

The driver will be notified in advance that he is going to pass the border and have
to have his documents ready and in order. The nofitication will be given so early
so that the driver still has the option to stop at a appropriate location and fix his
documents.

The information point covering the border area will contain information about how
to drive when passing the border in each direction.

Maps over the area and other documents can be attached to the information point.

General information will be automatically be translated and then proof read by
NS-FRITS personel and by the agencies themselves.

Important legal information will be translated into multiple languages by autho-
rized translators to avoid confusion and misunderstandings.

The customs agencies will get advance notice of arriving trucks that have announced
that they will pass the border using the agreement service, and can thus plan the
work load easier.

Urgent updates can be sent to the trucks informing them about for example delays
and accidents.

75



0 ~J O O W N =

16
17
18
19
20
21
22
23
24
25
26

27
28

C. API

C.1. Location based information

Synchronous commands using the 1Q) stanza for communication with the NSFRITS lo-
cation based information system.

Method: getInfoForPoint
Argument: point
Argument type: WKT Point

Expected response: list of infoobjects

Listing C.1: Example of a getInfoForPoint request and response.

<!-- Request -->
<iq id=’qxmppl0’ to=’nsfrits@service.nsfrits.eu/nsfrits’ type=’get’>
<query xmlns="nsfrits:iq">
<methodcall>getInfoForPoint</methodcall>
<arguments>
<argument >
<key>point</key>
<value>POINT (11.878967 57.737883)</value>
</argument>
</arguments>
</query>
</iq>

<!-- Response -->
<iq from=’nsfrits@service.nsfrits.eu/nsfrits’ to=’truckl@service.nsfrits.
eu/QXmpp’ id=’qxmppl0’ type=’result’>
<query xmlns=’nsfrits:iq’>
<methodresponse>
<infoobject>
<id>20</id>
<validity>
<from>2010-03-30 10:09:39</from>
<t0>2010-04-10 23:56:19</to>
</validity>
<sequenceid>1</sequenceid>
<location>
<area>POLYGON ((11.546630859516 57.554946161479,11.546630859516
57.825065399809,11.975097656374 57.825065399809,11.975097656374
57.554946161479,11.546630859516 57.554946161479) )</area>
<point>POINT (11.644134521626 57.701266095542) </point>
</location>

76




29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45

0 ~J O O W N =

© 00~ O Ok W N

<datanode>
<id>23</id>
<description>
<title>(ckerd parking</title>
<text>Parking space for the (ckers ferry.</text>
<language>en</language>
</description>
<attachment>
<mime -type>image/png</mime-type>
<size>389878</size>
<url>http%3A%2F%2F127 .0.0.1%3A8084%2FServiceAdmin%2Fuploads%2F237%2
Fcar.PNG</url>
</attachment>
</datanode>
</infoobject>
</methodresponse>
</query>
</iq>

Method: getInfoForRoute
Argument: -
Argument type: -
Expected response: list of infoobjects

Listing C.2: Example of a getInfoForRoute request and response.

<!-- Request -->
<iq id=’qxmpp31’ to=’nsfrits@service.nsfrits.eu/nsfrits’ type=’get’>
<query xmlns="nsfrits:iq">
<methodcall>getInfoForRoute</methodcall>

</query>
</iq>
<!-- See getInfoForPoint for ezample response -->
Method: getCategories
Argument: -

Argument type: -
Expected response: list of categories

Listing C.3: Example of a getCategories request and response.

<!-- Request -->
<iq id=’qxmpp34’ to=’nsfrits@service.nsfrits.eu/nsfrits’ type=’get’>
<query xmlns="nsfrits:iq">
<methodcall>getCategories</methodcall>
</query>
</iq>

<!-- Response -->

<iq from=’nsfrits@service.nsfrits.eu/nsfrits’ to=’truckl@service.nsfrits.
eu/QXmpp’ id=’qxmpp34’ type=’result’>

77




10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

34
35
36
37
38
39
40

0 ~J O O W N =

<query xmlns=’nsfrits:iq’>
<methodresponse>
<category>
<id>1</id>
<description>
<title>customs</title>
<text>some text</text>
<language>en</language>
</description>
</category>
<category>
<id>2</id>
<description>
<title>road service</title>
<text>Road services</text>
<language>en</language>
</description>
</category>
<category>
<id>4</id>
<description>
<title>Foreign Law</title>
<text>Foreign laws deal with the fact that different countries, and
other
regions like federal states or individual cities, may have different
rules and r
egulations concerning truck transports. </text>
<language>en</language>
</description>
</category>
</methodresponse>

</query>
</iq>
Method: setCategories
Argument: categories
Argument type: comma separated list of category id:s

Expected response: -

Listing C.4: Example of a setCategories request and response.

<!-- Request -->
<iq id=’qxmpp37°’ to=’nsfrits@service.nsfrits.eu/nsfrits’ type=’set’>
<query xmlns="nsfrits:iq">
<methodcall>setCategories</methodcall>
<arguments>
<argument >
<key>categories</key>
<value>42,123,9</value>
</argument>
</arguments>
</query>
</iq>

78




13
14
15

16
17

0 ~J O Ok W N =

0 ~J O O W N =

<!-- Response -->
<iq from=’nsfrits@service.nsfrits.eu/nsfrits’ to=’truckl@service.nsfrits.
eu/QXmpp’ id=’qxmpp37’ type=’result’>

<query xmlns=’nsfrits:iq’/>
</iq>
Method: setLanguages
Argument: languages
Argument type: comma, separated list of language codes according to ISO 639-1

Expected response: -

Listing C.5: Example of a setLanguages request and response.

<!-- Request -->
<iq id=’qxmpp38’ to=’nsfrits@service.nsfrits.eu/nsfrits’ type=’set’>
<query xmlns="nsfrits:iq">
<methodcall>setLanguages</methodcall>
<arguments>
<argument >
<key>languages</key>
<value>sv,en</value>
</argument>
</arguments>
</query>
</iq>

<!-- Response -->

<iq from=’nsfrits@service.nsfrits.eu/nsfrits’ to=’truckl@service.nsfrits.
eu/QXmpp’ id=’qxmpp38’ type=’result’>
<query xmlns=’nsfrits:iq’/>

</iq>
Method: setRoute
Argument: route
Argument type: WKT Linestring

Expected response: -

Listing C.6: Example of a setRoute request and response.

<!-- Request -->
<iq id=’qxmpp41l’ to=’nsfrits@service.nsfrits.eu/nsfrits’ type=’set’>
<query xmlns="nsfrits:iq">
<methodcall>setRoute</methodcall>
<arguments>
<argument >
<key>route</key>
<value>LINESTRING (11.948318 57.714785, 11.961365 57.724319,
11.981277 57.726519, 11.992264 57.715518, 11.995010 57.696809,
12.039642 57.617095, 12.065048 57.585455, 12.051315
57.508447, 12.046509 57.477450, 12.075348 57.466374, 12.019043
57.410941)

79




10
11
12
13
14
15
16

17
18

© 00~ O O i W N

11

0~ O O W N

</value>
</argument>
</arguments>
</query>
</iq>

<!-- Response -->
<iq from=’nsfrits@service.nsfrits.eu/nsfrits’ to=’truckl@service.nsfrits.
eu/QXmpp’ id=’qxmpp4l’ type=’result’>

<query xmlns=’nsfrits:iq’/>
</iq>
Method: clearHistory
Argument: -

Argument type: -
Expected response: -

Listing C.7: Example of a clearHistory request and response.

<!-- Request -->
<iq id=’qxmpp44’ to=’nsfrits@service.nsfrits.eu/nsfrits’ type=’set’>
<query xmlns="nsfrits:iq">
<methodcall>clearHistory</methodcall>
</query>
</iq>

<!-- Response -->

<iq from=’nsfrits@service.nsfrits.eu/nsfrits’ to=’truckl@service.nsfrits.
eu/QXmpp’ id=’qxmpp44’ type=’result’>
<query xmlns=’nsfrits:iq’/>

</iq>
Method: searchPOI
Argument: category, point, results
Argument type: id of category(int), WKT point, number of maximum wanted results(int)

Expected response: -

Listing C.8: Example of a searchPOI request and response.

<!-- Request -->
<iq id=’qxmpp44’ to=’nsfrits@service.nsfrits.eu/nsfrits’ type=’set’>
<query xmlns="nsfrits:iq">
<methodcall>searchP0I</methodcall>
<arguments>
<argument >
<key>category</key>
<value>2</value>
</argument>
<argument >
<key>point</key>
<value>POINT (23.7 51.1)</value>
</argument>

80




14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37

© 00~ O O W -

= e e
U W N = O

16
17
18

<argument >
<key>results</key>
<value>3</value>
</argument>
</arguments>
</query>
</iq>

<!-- Response -->
<iq from=’nsfrits@service.nsfrits.eu/nsfrits’ to=’truckl@service.nsfrits.
eu/QXmpp’ id=’qxmpp44’ type=’result’>
<query xmlns=’nsfrits:iq’>
<methodresponse>
<infoobject>
<!-- content is left out -->
</infoobject>
<infoobject>
<!-- content is left out -->
</infoobject>
<infoobject>
<!-- content is left out -->
</infoobject>
</methodresponse>

</query>
</iq>
Method: addSubscription
Argument: id
Argument type: id of infoobject of that should be subscribed to

Expected response: -

Listing C.9: Example of a addSubscription request and response.

<!-- Request -->
<iq id="1cRWE-4" to="nsfrits@service.nsfrits.eu/nsfrits" type="get">
<query xmlns="nsfrits:iq">
<methodcall>addSubscription</methodcall>
<arguments>
<argument >
<key>id</key>
<value>34</value>
</argument>
</arguments>
</query>
</iq>

<!-- Response -->

<iq from=’nsfrits@service.nsfrits.eu/nsfrits’ to=’truckl@service.nsfrits.
eu/QXmpp’ id=’1cRWE-4’ type=’result’>
<query xmlns=’nsfrits:iq’/>

</iq>

81




19

20

21
22
23
24
25
26

© 00~ O Ui WN -

© 00~ O Ui W

= e
B W N = O

<!-- This is send by the server whenever the subscribed infoobject s
updated -->
<message from=’nsfrits@service.nsfrits.eu/nsfrits’ to=’truckl@service.
nsfrits.eu/QXmpp’ id=’U4QAq-4’>
<updates xmlns=’nsfrits:async’>
<infoobject>
<!-- content is left out -->
</infoobject>
</updates>
</message>

Method: clearSubscriptions

Argument: -

Argument type: -

Expected response: - removes all subscriptions for that user

Listing C.10: Example of a clearSubscriptions request and response.

<!-- Request -->

<iq id="1cRWE-4" to="nsfrits@service.nsfrits.eu/nsfrits" type='"get">
<query xmlns="nsfrits:iq">
<methodcall>clearSubscriptions</methodcall>

</query>

</iq>

<!-- Response -->

<iq from=’nsfrits@service.nsfrits.eu/nsfrits’ to=’truckl@service.nsfrits.
eu/QXmpp’ id=’1cRWE-4’ type=’result’>
<query xmlns=’nsfrits:iq’/>

</iq>
Method: planRoute
Argument: start,destination
Argument type: WKT point

Expected response: route containing a WKT linestring

Listing C.11: Example of a planRoute request and response.

<!-- Request -->
<iq id="1cRWE-4" to="nsfrits@service.nsfrits.eu/nsfrits" type="get">
<query xmlns="nsfrits:iq">
<methodcall>planRoute</methodcall>
<arguments>
<argument >
<key>start</key>
<value>POINT (18.009 59.304)</value>
</argument>
<argument >
<key>destination</key>
<value>POINT (12.493 55.795)</value>
</argument>
</arguments>

82




15
16
17
18
19
20
21
22

23
24
25
26

N =

—_
= O © 00~ Ui Ww

—_

13
14
15

</query>
</iq>

<!-- Response -->
<iq id="1cRWE-4" to="truckl@service.nsfrits.eu/nsfrits" type="result">
<query xmlns="nsfrits:iq">
<methodresponse>
<route>LINESTRING (18.0075321 59.3037806, 18.0067597 59.3036404,
18.006485 59.3032592, 18.0058842 59.3023186, 18.0056381
59.30213565, 18.0051136 59.3017654, 18.0042667 59.3009262,
12.4928965 55.7937747)
</route>
</methodresponse>
</query>
</iq>

C.2. Time agreement

Registration of a new time agreement is done by synchronous 1Q stanzas as shown in
The registration contains one mandatory field, agreetime, which contains
the time of the agreement. Another two fields can optionally be used, jid and externalid.
The jid field is used if the agreement is set up by a third party, like for example a fleet
operator setting up an agreement for one of its trucks. The jid field should then contain
the address of the truck. The external id field is used to link the agreement to an already
existing agreement between the parties, like for example a booking number.

If the agreement is successful, the server will respond with an id of the created agreement.
This id is later used to send and receive updates about the agreement.

Listing C.12: Example of a time agreement request.

<!-- Request -->
<iq id="qxmpp27" to="customsoperator@customsservice.domain/
customsoperator" type="get">
<query xmlns="operator:iq:register">
<agreetime>2010-05-17T08:25:56+0200</agreetime>
<jid>truckl@freightercompay.domain/QXmpp</jid>
<externalid>0002312</externalid>
</query>
</iq>

<!-- Response -->
<iq from=’customsoperator@customsservice.domain/customsoperator’ to=’
dispatcher@freightercompay.domain/QXmpp’ id=’qxmpp27°’ type=’result’>
<query xmlns=’operator:iq:register’>
<id>4</id>
</query>
</iq>

83




[N

© 00~ O Utk W

11

N OO W N

A w

The client can anytime unregister an agreement with the server. If the agreed time and
all optionally sent delays has expired, the server will automatically delete the agreement.

Listing C.13: Example of a unregistration agreement request.

<!-- Request -->
<iq id="qxmpp27" to="customsoperator@customsservice.domain/
customsoperator" type="get">
<query xmlns="operator:iq:unregister">
<id>3</id>
</query>
</iq>

<!-- Response -->
<iq from=’customsoperator@customsservice.domain/customsoperator’ to=’
dispatcher@freightercompay.domain/QXmpp’ id=’qxmpp27’ type=’result’>
<query xmlns=’operator:iq:register’/>
</iq>

Updates to the agreement can be sent by both parties and contains the agreement id and
a new updated time. An optional text message can be added to give extra information
regarding the update.

Listing C.14: Example of an update to an agreement sent from a customs office to an
expected truck telling him to expect an hour delay time.

<message from=’customsoperator@customsservice.domain/customsoperator’ to=
>truckl@freightercompay.domain/QXmpp’ id=’rnv7I-11°>

<updates xmlns=’operator:message:updates’>
<arrivaltime>2010-05-17T08:45:56+0200</arrivaltime>
<text>Long queues, expect delays.</text>
<id>4</id>

</updates>

</message>

C.3. Fleet management

A very simple fleet management system where a fleet operator can assign orders to trucks
and get updates about the trucks locations in almost real time. The basic element is
an order which has a state of either new, assigned, accepted, rejected or completed. A
pre-planned route can be attached to the order if the operator wants the truck to take a
specific route. If any agreements have been set up for this job they will also be attached.

Listing C.15: Example an order being sent from a fleet operator to a truck.

<message from=’dispatcher@freightcompany.domain/QXmpp’ to=’
truckl@freightcompay.domain/QXmpp’>
<order type=’request’ xmlns=’nsfrits:message’>
<route>LINESTRING (11.085205 59.500880, 11.447754 58.608334)</route>
<id>1</id>

84




DO W N

<state>assigned</state>
<agreements>
<agreement>
<time>2010-05-17T12:13:39+0200</time>
<id>4</id>
<servicejid>customsoperator@customsservice.domain/customsoperator
</servicejid>
<clientjid>truckl@freightcompany.domain/QXmpp</clientjid>
<extermalid/>
<infoid>27</infoid>
</agreement >
</agreements>
</order>
</message>

When an order is received by the truck the driver can choose to either accept or reject
the order and sending the response back to the fleet operator.

Listing C.16: Example of a message where the truck accepts the given order.

<message from=’truckl@freightcompany.domain/QXmpp’ to=’
dispatcher@freightcompany.domain/QXmpp’>
<order type=’response’ xmlns=’nsfrits:message’>
<id>1</id>
<state>accepted</state>
</order>
</message>

The truck will send its current position back to the fleet operator by certain intervals,
either a time limit or a distance interval, or both. More often means that the operator
gets a more updated view of the trucks, but will also increase the traffic sent of the
network.

Listing C.17: Example of a truck sending its current location to the fleet operator.

<message to="dispatcher@freightcompany.domain/QXmpp">
<position xmlns="nsfrits:message">POINT (11.832275 58.048818) </position>
</message>

85




D. XML-schemas

D.1. NSFRITS Data model

1 <?xml version="1.0" encoding="UTF-8"?7>

2 <xsd:schema targetNamespace="nsfrits:data" elementFormDefault="qualified"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns="nsfrits:data">

3

4

)

6 <xsd:element name="infoobject">

7 <xsd:complexType>

8 <xsd:sequence>

9 <xsd:element name="validity" maxOccurs="1"

10 minOccurs="1">

11 <xsd:complexType>

12 <xsd:all>

13 <xsd:element name="from" type="xsd:dateTime"

14 max0ccurs="1" minOccurs="1">

15 </xsd:element>

16 <xsd:element name="until"

17 type="xsd:dateTime" maxOccurs="1" minOccurs="1">

18 </xsd:element>

19 </xsd:all>

20 </xsd:complexType>

21 </xsd:element>

22 <xsd:element name="parameterdata" maxOccurs="unbounded"

23 minOccurs="0">

24 <xsd:complexType>

25 <xsd:attribute name="type" use="required">

26 <xsd:simpleType>

27 <xsd:restriction base="xsd:string">

28 <xsd:enumeration

29 value="temperature">

30 </xsd:enumeration>

31 <xsd:enumeration value="length"></xsd:enumeration>

32 <xsd:enumeration value="speed"></xsd:enumeration>

33 <xsd:enumeration value="weight"></xsd:enumeration>

34 </xsd:restriction>

35 </xsd:simpleType>

36 </xsd:attribute>

37 <xsd:attribute name="value" type="xsd:float"

38 use="required">

39 </xsd:attribute>

40 </xsd:complexType>

86



41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

79
80
81
82
83
84
85

86

87

88

89

</xsd:element>
<xsd:element max0Occurs="1" minOccurs="0"
ref="datanode">
</xsd:element>
<xsd:element name="location" maxOccurs="unbounded"
minOccurs="0">
<xsd:complexType>
<xsd:choice>
<xsd:element name="area">
<xsd:simpleType>
<xsd:restriction
base="xsd:string">
<xsd:pattern
value="POLYGON\(.+\)">
</xsd:pattern>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="road"
type="xsd:string">
</xsd:element>
<xsd:element name="point">
<xsd:simpleType>
<xsd:restriction
base="xsd:string">
<xsd:pattern
value="POINT\ (.+\)">
</xsd:pattern>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="place"
type="xsd:string">
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="agreementservice" type="xsd:string"
max0Occurs="1" minOccurs="0"></xsd:element>
</xsd:sequence>
</xsd:complexType></xsd:element>

<xsd:element name="description">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="language" type="xsd:string" maxOccurs="1"

minOccurs="1"></xsd:element>

<xsd:element name="title" type="xsd:string" maxOccurs="1"
minOccurs="1"></xsd:element>

<xsd:element name="text" type="xsd:string" maxOccurs="1"
minOccurs="0"></xsd:element>

<xsd:element name="sound" type="xsd:string" maxOccurs="1"
minOccurs="0"></xsd:element>

</xsd:sequence>

87



90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

</xsd:complexType></xsd:element>

<xsd:element name="datanode">
<xsd:complexType>
<xsd:sequence>
<xsd:element minOccurs="1" maxOccurs="1"
ref="description">
</xsd:element>
<xsd:element ref="datanode" maxOccurs="unbounded"
minOccurs="0">
</xsd:element>
<xsd:element name="attachment" max0Occurs="1" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="mime-type" type="
xsd:string">
</xsd:element>
<xsd:element name="size" type="xsd:int">
</xsd:element>
<xsd:element name="url"
type="xsd:string">
</xsd:element>
</xsd:sequence>
</xsd:complexType></xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="category">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="id" type="xsd:string"></xsd:element>
<xsd:element ref="description"></xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="language'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="id" type="xsd:string"></xsd:element>
<xsd:element name="name" type="xsd:string"></xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

D.2. NSFRITS 1Q

<?7xml version="1.0" encoding="UTF-8"7>

<xsd:schema targetNamespace="nsfrits:iq" elementFormDefault="qualified"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns="nsfrits:iq"
xmlns:Q1l="nsfrits:data">

88



= w

28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

<xsd:import schemalocation="nsfrits-data.xsd" namespace="nsfrits:data
"></xsd:import>
<xsd:element name="query">
<xsd:complexType>
<xsd:choice maxOccurs="1" minOccurs="0">
<xsd:all maxOccurs="1" minOccurs="0">
<xsd:element name="methodcall" maxOccurs="1"
minOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration
value="getInfoForPoint">
</xsd:enumeration>
<xsd:enumeration
value="getInfoForRoute">
</xsd:enumeration>
<xsd:enumeration value="getRouteTo"></xsd:enumeration>
<xsd:enumeration value="searchP0I"></xsd:enumeration>
<xsd:enumeration
value="getCategories">
</xsd:enumeration>
<xsd:enumeration
value="setCategories">
</xsd:enumeration>
<xsd:enumeration value="setLanguages"></xsd:enumeration
>
<xsd:enumeration value="setRoute"></xsd:enumeration>
<xsd:enumeration value="clearHistory"></xsd:enumeration
>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="arguments" maxOccurs="1"
minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="argument"
max0ccurs="unbounded" minOccurs="1">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="key"
type="xsd:string">
</xsd:element>
<xsd:element name="value"
type="xsd:string">
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:all>

89



54
55
56
57
58
59
60
61
62
63
64

65
66

67
68
69
70
71
72
73
74
75
76

= w

© 00~ O Ot

10

12
13
14
15
16
17
18
19
20
21
22

<xsd:sequence maxOccurs="1" minOccurs="0">
<xsd:element name="methodresponse" maxOccurs="1"
minOccurs="1">
<xsd:complexType>
<xsd:choice>
<xsd:sequence>
<xsd:element ref="(Ql:language"
max0ccurs="unbounded" minOccurs="0">
</xsd:element>
</xsd:sequence>
<xsd:sequence><xsd:element ref="(Ql:category"
max0ccurs="unbounded" minOccurs="0">
</xsd:element></xsd:sequence>
<xsd:sequence><xsd:element ref="Ql:infoobject"
max0ccurs="unbounded" minOccurs="0">
</xsd:element></xsd:sequence>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:choice>
</xsd:complexType>
</xsd:element>

</xsd:schema>

D.3. NSFRITS Message

<?7xml version="1.0" encoding="UTF-8"7>

<xsd:schema targetNamespace="nsfrits:message" elementFormDefault="
qualified" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns="
nsfrits:message" xmlns:p="nsfrits:data">

<xsd:import schemalocation="nsfrits-data.xsd" namespace="nsfrits:data
"></xsd:import>
<xsd:element name="position">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="POINT\(.+\)"></xsd:pattern>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

<xsd:element name="order">
<xsd:complexType>
<xsd:annotation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="route" maxOccurs="1" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="LINESTRING\(.+\)"></xsd:pattern>
</xsd:restriction>

90



23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

</xsd:simpleType>
</xsd:element>
<xsd:element name="id" type="xsd:string" maxOccurs="1"
minOccurs="1">
</xsd:element>
<xsd:element name="state" maxOccurs="1" minOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="accepted"></xsd:enumeration>
<xsd:enumeration value="rejected"></xsd:enumeration>
<xsd:enumeration value="completed"></xsd:enumeration>
<xsd:enumeration value="assigned"></xsd:enumeration>
<xsd:enumeration value="new"></xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element ref="p:description" maxOccurs="1"
minOccurs="0">
</xsd:element>
<xsd:element name="agreements" maxOccurs="1"
minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="agreement"></xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="type" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="request"></xsd:enumeration>
<xsd:enumeration value="response"></xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>

</xsd:complexType>
</xsd:element>

<xsd:element name="updates">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="p:infoobject"></xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="alert" type="xsd:string"></xsd:element>

<xsd:element name="agreement">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="id" type="xsd:string" maxOccurs="1"
minOccurs="1">

91



T
78
79
80
81
82
83
84
85
86
87

88
89
90
91

[y
= O © 00~ Ui Ww

—_

[y
N

13
14
15

16
17
18
19
20
21
22
23
24

25

26

</xsd:element>

<xsd:element name="time" type="xsd:dateTime"
maxOccurs="1" minOccurs="1">

</xsd:element>

<xsd:element name="jid" type="xsd:string" maxOccurs="1"
minOccurs="1">

</xsd:element>

<xsd:element name="extermnalid" type="xsd:string"
maxO0ccurs="1" minOccurs="0">

</xsd:element>

<xsd:element name="infoid" type="xsd:string" maxOccurs="1"

minOccurs="1"></xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

D.4. NSFRITS Agreement

<?7xml version="1.0" encoding="UTF-8"7>

<xsd:schema targetNamespace="nsfrits:agreement" elementFormDefault="
qualified" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns="
nsfrits:agreement">

<xsd:element name="query">
<xsd:complexType>
<xsd:choice>
<xsd:sequence>
<xsd:element name="agreetime" type="xsd:dateTime"
maxOccurs="1" minOccurs="1">
</xsd:element>
<xsd:element name="externalid" type="xsd:string" maxOccurs="1
" minOccurs="0"></xsd:element>
<xsd:element name="jid" type="xsd:string" maxOccurs="1"
minOccurs="0"></xsd:element>
</xsd:sequence>
<xsd:sequence>
<xsd:element name="id" type="xsd:string" maxOccurs="1"
minOccurs="1"></xsd:element>
</xsd:sequence>
</xsd:choice>
</xsd:complexType>
</xsd:element>

<xsd:element name="updates'">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="arrivaltime" type="xsd:dateTime" maxOccurs="
1" minOccurs="1"></xsd:element>
<xsd:element name="text" type="xsd:string" maxOccurs="1"
minOccurs="0"></xsd:element>
<xsd:element name="id" type="xsd:string" maxOccurs="1"
minOccurs="1"></xsd:element>

92



27
28
29
30

N =

20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

D.5. Fleet management

<?7xml version="1.0" encoding="UTF-8"7>
<xsd:schema targetNamespace="nsfrits:fleet" elementFormDefault="qualified
" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns="nsfrits:fleet">

<xsd:element name="order">
<xsd:complexType>
<xsd:choice>
<xsd:element name="route" maxOccurs="1" minOccurs="0">
<xsd:annotation>
<xsd:documentation>Optional preplanned route.</
xsd:documentation>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern
value="LINESTRING\ ((\d+\.\d*\s\d+\.\d*(,)?\s*)+\)">
</xsd:pattern>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="id" type="xsd:string" maxOccurs="1"
minOccurs="1">
<xsd:annotation>
<xsd:documentation>0rder id.</xsd:documentation>
</xsd:annotation></xsd:element>
<xsd:element name="state" maxOccurs="1" minOccurs="1">
<xsd:annotation>
<xsd:documentation>The state of the order, can be
either new, assigned, accepted, rejected or
completed.</xsd:documentation>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="new"></xsd:enumeration>
<xsd:enumeration value="assigned"></xsd:enumeration>
<xsd:enumeration value="accepted"></xsd:enumeration>
<xsd:enumeration value="rejected"></xsd:enumeration>
<xsd:enumeration value="completed"></xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="agreements" maxOccurs="1"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>Set of agreements associated
with this order.</xsd:documentation>

93



41
42
43
44
45
46
47

48
49
50

51
52

53
54
55
56
57
58

59
60
61
62
63
64

65
66
67
68
69
70

71
72
73
74
75
76

7
78
79
80
81
82
83
84
85

</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="time" type="xsd:dateTime"
max0Occurs="1" minOccurs="1">
<xsd:annotation>

<xsd:documentation>Agreement time</

xsd:documentation>
</xsd:annotation>
</xsd:element>

<xsd:element name="id" type="xsd:string" maxOccurs="1"

minOccurs="1">
<xsd:annotation>

<xsd:documentation>Agreement id</

xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="servicejid"
type="xsd:string" maxOccurs="1" minOccurs="1">
<xsd:annotation>

<xsd:documentation>Jid for the service
in the agreement</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="clientjid"
type="xsd:string" maxOccurs="1" minOccurs="1">
<xsd:annotation>

<xsd:documentation>Jid for the client
in the agreement</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="externalid"
type="xsd:string" maxOccurs="1" minOccurs="0">
<xsd:annotation>

<xsd:documentation>External id for use

by external services</
xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="infoid"
type="xsd:string" maxOccurs="1" minOccurs="1">
<xsd:annotation>
<xsd:documentation>Id for the
associated InfoObject</
xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:choice>

<xsd:attribute name="type">
<xsd:annotation>

94



86

87
88
89
90
91
92
93
94
95
96
97

<xsd:documentation>Type of order message, either
request to the client or response back to the
operator.</xsd:documentation>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="request"></xsd:enumeration>
<xsd:enumeration value="response"></xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>

95



	Introduction
	Background
	The NS-FRITS Project
	Related Actors
	Volvo Technology
	Tullverket - Swedish Customs

	Purpose
	Goals
	Constraints
	Disposition
	Glossary

	Methodology
	Problem Analysis
	NS-FRITS Actors and Concept Overview
	System Requirements
	System Architectures
	Client-server Architecture
	Distributed architecture
	Hybrid architecture
	Stateful vs. stateless server
	Analysis

	Communication Technologies
	Mobile telecommunication
	WLAN/IEEE 802.11
	WAVE/IEEE 802.11p
	CALM
	GPS
	Summary

	Map projection
	Map providers
	Geographical coordinate standards
	Geographical data formats

	Data Storage
	GIS, OpenGIS and Spatial databases

	Presentation
	Visual
	Audible
	Translation

	Communication protocols
	Web services
	CORBA
	XMPP
	Custom protocol

	Data Providers - DATEX II
	Technical Overview
	Trafikverket, the Swedish National Road Administration


	System design
	Modules of the NS-FRITS system
	NS-FRITS Core server
	NS-FRITS Data provider
	NS-FRITS extension
	NS-FRITS client

	System design choices
	Low level communication
	Client to server communication
	Geographical data storage

	The role of XMPP
	XMPP design
	External servers

	NS-FRITS methods and functionality
	Methods controlling user data
	Getting information for a route
	Getting information for coordinate
	Searching for a POI
	Storing of sent objects
	Subscribing to an information object
	The NS-FRITS alert system

	Data protocol
	Method calls
	Method responses
	Updates and Asynchronous messages

	NS-FRITS data model
	InfoObject
	DataNode
	Location
	Description


	Prototype implementation
	Overview
	XMPP server

	Truck client
	Overview
	Libraries

	Fleet management
	NS-FRITS backend applications
	Overview
	NS-FRITS database interface
	NS-FRITS Server
	Administrator interface
	DATEX II parser

	Time agreement application

	Improvements
	Route planning
	Basic principles of route planning
	Route planning with NS-FRITS data
	Integration with NS-FRITS prototype design
	Example Implementation with OpenStreetMaps and pgRouting
	Third party route planning

	Spatial algorithms
	Further extensions
	SOAP
	Translation and text-to-speech
	NS-FRITS data converter module


	Results
	Discussion
	Technology evaluation
	Future work

	Use case
	Driver A traveling Warsaw to Oslo via Svinesund
	Driver A traveling Oslo to Warsaw via Svinesund

	Case study: The Swedish Customs' office in Svinesund
	Description
	Problem
	Possible NS-FRITS Solution

	API
	Location based information
	Time agreement
	Fleet management

	XML-schemas
	NSFRITS Data model
	NSFRITS IQ
	NSFRITS Message
	NSFRITS Agreement
	Fleet management


