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Real-time characteristics of marine object detection under low light conditions
Marine object detection using YOLO with near infrared camera
Emil Emanuelsson, Lin wang
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
This work discusses how a near infrared camera can be used to detect objects in a
marine environment. The goal is to identify marine objects in real-time under low
light conditions using object detection algorithm Yolo v3. Some different image pro-
cessing methods were analyzed, such as saliency, edge detection and convolutional
neural networks (CNN). Then the implementation of a scalable collision avoidance
was presented. The system uses Intel Realsense camera, OpenDLV software frame-
work, and the Linux operating system. For this work, an OpenDLV interface was
implemented for the camera, and OpenDLV perception microservice was used to
run its built-in Darknet-based Yolo v3 implementation.

Then the real-time characteristics of the system and the performance were evaluated.
It was proven that the system does not have real-time characteristics because of the
underlying OS and sensor communication protocol. The system achieved 0.71 mean
average precision (mAP) on boats with the test images. It was concluded that the
system still need more complete training and testing. Finally, a suggestion on how
to implement a similar system with real-time capabilities was given. This includes
changing camera, OS and some part of the software that was used.

Keywords: object detection, CNN, neural network, NIR, camera, RTS, Yolo v3.
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1
Introduction

Night vision technology exists to extend human activity beyond natural light for
surveillance, monitoring, or low-light detection [5]. In this work, the focus was low-
light detection using image processing, examples of other ways of achieving low-light
detection are radar detection and multi-sensor fusion.

Collision avoidance is widely implemented in modern road vehicles but the marine
environment adds different challenges. For example, compared to a road vehicle,
a marine vehicle is harder to control, both in lateral and longitudinal directions.
Secondly, traffic organization is not as strict in marine environments as in road
networks. Furthermore, perception algorithms might be harder to be implemented
due to water reflections and water fluctuations, especially surface motions. Colli-
sion avoidance can be divided into two kinds, independent and collaborative. The
collaborative way of it usually involves communications between vehicles. For ex-
ample, by broadcasting the current coordinates and predict the future position can
be an effective way to avoid collisions. However, there are certain limitations, as it
only works with the vehicles that have the corresponding system, and it does not
work with the collision between vehicles and other objects. Another way is more
independent, it uses sensors to build an image of the objects around the vehicle,
then identifies the objects in the image in order to avoid the collision between the
vehicle with any object.

For a collision avoidance system to be considered formally safe, it is vital that it
is designed both in terms of hardware and software, as a real-time system. This
can be done by putting formal constraints on system reaction times on all system
layers. If the system does not comply to such formal real-time constraints, it might,
in some rare cases, fail to properly react to collision scenarios by missing to process
sensor data, or by failing to send actuation signals to the vehicle. Even though lack
of action is the most likely outcome of non-compliance to real-time conditions, one
might even imagine cases such as delayed action or behavior oscillation, that might
in turn lead to a increased scenario severity. Apart from the system performance,
formal real-time compliance is also a vital component for formalized system verifi-
cation [6].

This work built a real-time collision avoidance system for marine application under
none-ideal lighting environment.
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1. Introduction

1.1 Scope and limitations
The goal of the work was to design and implement a prototype of a collision avoid-
ance system with both real-time and night vision capabilities, intended for marine
applications. In addition, the system should be able to detect collision threats both
above and under water. The focus of the prototype was the detection of collision
scenarios, and therefore the work will not consider object tracking or vehicle actua-
tion.

1.2 Problem questions
The following research questions were investigated as part of this work:

RQ1 How can NIR or IR cameras be integrated in an embedded Linux-based com-
puter system in an instrumented marine vehicle platform?

RQ2 Using this system, can an algorithm be designed to detect and identify other
marine vehicles up to 20 m distance from the camera?

RQ3 Given the general software and hardware requirements above (especially con-
nected to low light conditions), processing data from the camera image sensor
with a fixed exposure time (rolling or global shutter) to a stream of identified
objects (bounding boxes), how well can it be proven to fulfil formal real-time
characteristics suitable for a collision avoidance system?

1.3 Thesis outline
The next section provides the current technical background related to this work, in-
cluding sensor technology, machine learning, computer vision, image processing and
marine applications. Then the third section reviews the basic theory used, It in-
cludes camera technology, infrared technology, neural network. After the theory, the
fourth section explains the methods used and how design decisions were made. The
section is divided into seven parts: camera calibration, system integration, algorithm
selection, software platform, data collection, model training and test methodology.
Then the fifth section presents the results of this work. It elaborates the overview
of the system, also shows the results in both accuracy and real-time aspect. In the
sixth section, the limitations and potential improvements of this work are discussed.
Finally in the seventh section, the work is summarized and the answers to the re-
search questions are evaluated.
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2
Background

This section provides the background for this work, first a brief introduction to
sensor technology, then some relevant machine learning, computer vision, image
processing techniques, and neural networks are introduced.

2.1 Sensor technology
In Latin, the word sensor has its root in sentire, meaning to perceive [7]. So from
the middle English era, sensor started meaning a device that respond to a stimuli
received by a sensitive element as input and generate a corresponding output. But
now sensor can also mean the sensitive element itself. For most systems, sensors
service as the eyes for the system, collecting the sensor-perceived environment data
and feed it to the system for future processing. Different sensors are now fusion
together in more complex systems to get more detailed information.

Together with the rapid development of operational systems over recent years, sen-
sors are widely used in industry for such systems. The process of generating output
from input can be seen as a conversion of energy from one to another form [7]. With
different input energy type, sensors can be divided. For example, gravitational sen-
sors use gravitational attraction, mechanical sensors takes motion, mechanical forces
or displacement as occurrence, electromagnetic sensors like infrared sensors or UV
sensors, are sensitive to electrical charge, current or electromagnetic wave energy.

Safety related systems built base on sensor technology are commonly found in the
whole transportation industry. Due to the perceiving ability of sensors, engineers
use them to be the eyes of the system, providing detailed environment information,
so that the features like collision avoidance can be achieved.

2.1.1 Collision avoidance
There exist systems for vehicle collision avoidance [8][9]. For marine vehicles, these
are based on radio signal or communication between them. This require all vehicles
to have the same equipment which would require either laws or a industry standard
to make ideal use of this kind of systems. These systems only avoid collision with
other vehicles not any shallows or docks. This work differentiates from such systems
by focusing on independent collision avoidance based on sensors. At the same time,
it differentiates from similar systems of road-vehicle by being implemented on ma-
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2. Background

rine vehicles.

Collision avoidance systems often consist of many sensors which result in very large
images. Object detection in such large images require large amount of computations
that is very expensive to perform in the desired time frame. To decrease the compu-
tational power needed, Uzkent proposed an algorithm that chooses a low resolution
version of the image if the image is dominated by large object and high resolution
if it is dominated by small objects [10]. Collision avoidance systems need to be very
accurate to protect users, people around the vehicle and the vehicle itself. As Pan
Wei writes, there is different strengths and weaknesses for different kinds of sensors.
Cameras have poor vision in mist and rain but a LiDAR works as usual in such cir-
cumstances. A LiDAR however have no color vision and can be unreliable for long
distances [11]. For this reason it is preferred to create collision avoidance systems
with different types of sensors.

These goals can be achieved through different algorithms while using a camera image.
Some examples being edge detection, saliency and convolutional neural networks.

2.2 Machine learning
The process of a computer learning a specific task is called machine learning [12]. It
is a series of artificial intelligence. An old definition for machine learning, according
to Arthur Samuel, is “the field of study that gives computers the ability to learn
without being explicitly programmed.” [13]. Similar to how human learns, the com-
puter uses the features of the learning task to reproduce the result in the future.
The systems might improve with experience and time. For example, children learn
that the open-top, thin wall container that is usually used to hold liquids for pouring
or drinking is a cup. The feature for the cup then is the open-top trait, or that most
of the time it is used to drink water from. After some times of seeing the cup, and
being told it is a cup, the children are then learn to classify a cup in the future when
they see one.

As for machines, if the task is to have the machine do the same with the children—
learning to classify cups. Then the computer is first given lots of examples, in
another word, the material to learn from. An ideal set of machine learning data
should contain the input variables, the features of the cups in this case, and the su-
pervision like a class or label, that tells the computer this is a cup!. The computer
then start learning, by extracting the same features from different examples. Like
children extract the characteristic of the cups as top-open container with thin wall.
Different from the kinds, the computer needs a classifier function to maps the set
of features into labels in the future, in which way the computer learns how a cup
looks like.

The previous example shows how supervised learning is done. The computer receives
pre-labeled input examples and converge to a classifier function. However, there is
another area of machine learning with out supervision. Non-supervised learning is
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2. Background

associated to the process of building up models without pre-labeled data but to ana-
lyze the similarities among input data [14]. So there will be no classifier function but
functions that analyze how points are organized in input data, then the results will
be checked manually, therefore, large data does not suit for non-supervised learning
algorithm.

Machine learning has many uses. Software use it for learning user’s behavior, mail-
boxes use it for spam detection. Smart phones achieve voice recognition using ma-
chine learning, as well as stock trading. It is also widely used in robotics, healthcare,
e-commerce, gaming analysis, Internet of things, and so on.

2.3 Computer vision
One big area of machine learning comes with computer vision. It is the artificial in-
telligence that is trained to understand and make use of the visual data. As human
brain transform the two dimensional image projected on our retina into a mean-
ingful three-dimensional world. It is easy for us to separate the object from the
background of the scene, make judgement of someone’s mood base on the person’s
face. The purpose of computer vision is to replicate similar action with computers.
It is widely used in technologies like activity recognition and object classification.

A common goal of computer vision is to detect objects and map the environment
of the device [15]. Computer vision can be applied in many different fields such
as automotive, surveillance and medical industry. Object detection can be imple-
mented thought several different methods. Relevant methods of collision avoidance
for marine environment are introduced later in this chapter. There exist a number
of object detection methods for IR images. Some typical methods uses machine
learning, background subtraction, optical flow, frame difference or saliency [16].

2.3.1 Image processing
The first step in most computer vision applications is image processing. As shown
in Fig. 2.1a–2.1d, images can be pre-processed so that it is more suitable for the
future analysis.

Mapping pixel values from one image to another is the standard image processing
operator [17]. When each pixel is manipulated independently it is called point op-
erators. Fourier transform and image pyramid consider the neighbour pixel values
when a new pixel comes in. These kind of neighborhood operators are especially use-
ful when the input images have a variety of resolutions. Geometric transformations
as global operators are used to analyze images with deformation and rotations.

2.3.2 Edge detection
D. Sangeetha and P. Deepa [18] suggested a Canny edge detection algorithm de-
veloped on an FPGA. They stated that Canny edge detection algorithm has poor
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2. Background

(a) The original image (b) Image with increased exposure

(c) Image with increased contrast (d) Blurred image
Common image processing operations. image(b),(c),(d) are post-processed image

from image(a)

real-time characteristics, and developed their algorithm on an FPGA to combat this
defect. If Canny edge algorithm should be used in a real-time critical system, and
that the system needs high computational power [19]. the Canny edge algorithm
have performance limitations from the Gaussian filter witch is traditionally used in
the Canny edge algorithm. This filter is considered to be not sufficient to decrease all
types of noise. Other limitations are the high and low thresholds, they are assigned
manually which limits the adaptability of the algorithm [20][21]. This result in that
conventional canny edge algorithms did not perform as well on IR images from the
sea, as IR images from the sea tend to have lower SNR [21]. Because of this, Liu
et al. developed an improved canny edge algorithm for IR cameras at sea. They
used contrast limited adaptive histogram equalization (CLAHE) filter to improve
the image quality, and instead of Gauss filter, they used morphological filtering.
They also implemented the improved OTSU method to assign the threshold values.
This algorithm improved the suppression of the noise from the sea and thus resulted
in less false edges.

2.3.3 Saliency
Saliency algorithms is widely used for object detection for it’s accuracy [16]. L.
Huo et al. suggested an algorithm for object detection in an RBG image based on
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2. Background

saliency and sparse representation [22]. Their algorithm used superpixels to identify
the background and thus also identifies the target. It was shown that the algorithm
needs 0.18 second per image on an Intel Core i3-550 3.2 GHz and 4 GB RAM
coded in Matlab. Zhang et al proposed an saliency algorithm for infrared moving
objects [16]. Their algorithm used local saliency based on the correlation between
gray features and motion features. The algorithm has higher precision than other
infrared object detection algorithms. It was tested on a PC with 2.8 GHz Intel CPU
and 8 GB RAM and a 15 fps image stream.

2.3.4 Convolutional neural network
Convolutional neural network has been around since 1980 and was introduced by
K. Fukushima [23][24]. CNN has since been used to recognize various objects in
images, such as handwriting on checks. CNN was not used in large scale object
detection until 2012 when A. Krizhevsky won the Imagenet objecet classification
competition with an algorithm based on CNN [25]. The algorithm is called AlexNet
and achieved 15% top-5-error which was 10% better top-5-error than the runner
up [26]. Since then, CNN has been the dominating algorithm used for object detec-
tion, and been improved massively. Recently the networks has become much deeper
and more complex after the implementation of residual units [3]. The top algorithms
are now down to 2% to 4% error rate for object classification [26]. The current main
challenges for object detection are the bounding box precision, often measured in
mean average precision (mAP), and the calculation load [4][26][27].

2.3.5 Night vision
Night vision technology that aids human to see in night condition can be achieved
with different approaches. For those that involves imaging systems, the system
usually includes three parts: optical objective, image intensifier tube and optical
ocular [28]. In this work, these three parts are expected to be integrated in the
cameras that are used.
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3
Theory

This chapter gives a more in-depth description of the technology and algorithms used
in this work. First, night vision technology is introduced implemented by camera
technologies. The second part of the chapter provides a brief description of the
object detection method used during this work. First an overview of convolutional
neural networks (CNN) then a description of the specific algorithm used, Yolo v3.

3.1 Camera
Camera is a common component used in night vision. Due to the limited humanly
visible illumination in the environment and it is possible to illuminate the area with
IR without disrupting the environment as much IR cameras are usually chosen.
With different settings of the camera, the output frame may vary a lot. This section
talks about related camera parameters and IR cameras.

3.1.1 Exposure
In photography, total amount of light incident on a sensitive material is defined
as exposure [29]. Exposure is the product of the quantity of illumination on the
imaging sensor and the duration of the exposure, as defined by Eq. 3.1.

H = E · t (3.1)

Eq. 3.1 is called the reciprocity equation. Where H is the exposure, E is the
illumination and t is exposure time. For night vision technology, due to the limitation
of natural light, a light projector can be useful to increase the illumination of the
environment, increase exposure time is also beneficial for gaining more information.
However, the longer the exposure time, the more time between frames it would
be, so finding the optimal combination of illumination and exposure time is crucial
for night vision technology, though the optimal combination depends on both the
lighting condition and specific scene.

3.1.2 Global and rolling shutter
Image sensor, usually camera, can capture frames with different methods. Global
shutter and rolling shutter are two of them. Exposure time, also called shutter speed
is an important factor when choosing the frame capture method.
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3. Theory

When all pixels are exposed and sampled at the same time, the image sensor is using
global shutter [30]. Since all pixels are exposed at the same time there will not be
any spatial distortion. However, depending on the exposure time and movement
of the object there can still be motion blur. After the exposure, all light across
the image sensor is blocked at the same time, while the data is to be sampled and
written to the memory, then the sensor will be reset for the exposure of the next
image.

Rolling shutter means that the image sensor is samples one pixel row at a time,
see Fig. 3.1. The benefit with rolling shutter is that it is possible to have longer
exposure time than global shutter with the same fps. The downside is that it can
create motion distortion when there is a moving object in the frame, see Fig. 3.2.
As in this work the camera is used for machine learning where spatial distortion is
unacceptable and the frame is expected to be taken during the same time duration,
global shutter is the preferred method.

Figure 3.1: Rolling shutter scheme: The time between the image sensor read out
the first line and the next line is the exposure time [1].

10



3. Theory

Figure 3.2: Spatial distortion of a windmill caused by rolling shutter method [2]

3.2 Infrared Technology

3.2.1 NIR FIR camera

NIR and FIR cameras are commonly used in night vision technology. They are
distinguished by the difference on the wavelength of the electromagnetic wave. Fig-
ure 3.3 demonstrates the definition of electromagnetic wave.

11



3. Theory

Figure 3.3: Electromagnetic wave: when vibration happens at right angles to the
direction of waves traveling, the waves can be defined as electromagnetic waves, λ
is the wavelength of the radiation, it is defined as one cycle of the distance of the
wave in the travel directioncamera1.

Electromagnetic waves with wavelength between 700 and 3000nm are defined as
NIR [30]. NIR image contains more information than what human eyes can perceive,
which is a big advantage when it comes to night vision. Also, when adding NIR
illumination to the environment targeted by a camera the human eye perception
would not be effected. Together with accurate real-time characteristic, NIR cameras
are widely used in object detection.

Figure 3.4: IR image of a tea jar in the dark with exposure time of 0.165 seconds,
no extra illumination support.

FIR, on the other hand, indicates electromagnetic waves with wavelength between

12



3. Theory

3 and 40um [30]. FIR cameras are usually used for thermal image creation, and
detection for pedestrians and animals in automotive industry.

3.3 Convolutional neural network

Convolutional neural networks, CNN, are a commonly used method for object de-
tection. CNN based systems has won the ImageNet large-scale visual recognition
challenge (ILSVRC) several times in recent years [31][26]. It is a neural network
type that mainly uses the convolutional operator in network layers, rather than
being fully connected, to extract the features of test samples. After the feature ex-
traction, fully connected layers calculates the probability of an feature in the image.
The current state-of-the-art architectures, including residual layers, make it possible
to train deeper networks for higher performance.

3.3.1 Convolutional layers

The goal of a CNN is to match a part of the test sample to a feature. To do this, it
extracts the features of the training set. Convolutional layers are the main calculat-
ing layer of a CNN for features extraction. Convolutional layers consist of a stack of
three dimensional matrix filters with learnable parameters [32]. The matrix size is
most commonly 3x3x3 and 1x1x3, though 5x5x3 and 7x7x3 are also common. The
third dimension depends on how many channels are used. Most commonly three
channels, for example RGB images. The filters are slid over all of the images, usu-
ally using one pixel steps. Thus the output of each filter is a two dimensional image
with slightly reduced height and width of the input image. If a 3x3 filter is used,
the output will be two rows and columns smaller if no padding is used. The step
size can be larger than one pixel, the step size affects the size of the output. The
output of the layer is an image with input width and height, the depth depends on
how many filters are used in the layer. Padding is often used as a tool to enable the
filters to be applied on the edges of the image, thus not losing any information on
the edges. Padding is implemented as dummy pixels around the image, the amount
of padding depends on the size of the filters used, for example 1 bit for a 3x3 filter.

3.3.2 Pooling

After the convolutional layers, one image becomes a stack of filtered images, to
shrink the image stack, pooling is needed. By setting a window size, usually 3x3,
and a stride, usually 2. Then move the window across the filtered images, taking the
corresponding value to represent the window.(Max pooling is to take the maximum
value of each window, shown in Fig. 3.5). Then every window becomes one pixel,
thus the image stack is reduced.
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(a) Filtered Image after convolutional layers

(b) Shrink image

Figure 3.5: Max pooling. The red triangle in panel (a) is the window, the size in
this case, is 2*2. Max pooling tasks the max value in each window. Panel (b) shows
the image after max pooling. It can be easily seen that the pattern of the image is
still kept thought the size is reduced.

3.3.3 Activation function
Every neuron created by the convolutional layers is going to be activated from the in-
put. Common activation functions include sigmoid and rectified linear unit (ReLU).
For sigmoid, when the input is close to 1, the output is 1, when the input is -1, the
output is 0, when the input is 0, the output is around 0.5. For ReLU, all negative
input will have an output as 0, while positive inputs stay as they are.

3.3.4 Fully connected layers
The main difference between convolutional layers and fully connected (FC) layers
is that a neuron in FC is connected to all neurons in the previous layers while in
convolutional layers they are only connected to local neurons, size of the filter. Be-
cause of this FC has many more parameters to learn than the convolutional layers.
An CNN usually includes a few FC layers in the end of the architecture to compute
the probability of classes.

3.3.5 Residual units
When linear CNN starts to become very deep, more than 20 layers, the performance
starts to degrade. This means that a network with 40 layers with similar architecture
as a network with 15 layers can have more errors than the shallower network [3].
Then residual units can be used to combat the degradation. Residual units use
forward feed from previous layers, see Fig. 3.6. The residual unit can be described
as y = F (x,Wl) + x. Where x and y are the input and output, Wl is the weights
associated with the convolutional layers. The residual units add the forwarded layer
element wise, thus the layers need to have the same dimension. The layers can be
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feed forward any number of layers, ResNet uses stacks of 2 residual unit with two
convolutional layers [3].

Figure 3.6: Residual unit example [3]
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4
Method

In this chapter, the methods used in this work is described. First, the complete
system is demonstrated, then how the camera is calibrated is presented, followed by
each part of the system and how they were integrated. Finally, training and testing
methodologies are explained.

4.1 System overview
The complete system is shown in figure 4.1. The camera sends the image through
USB to the PC where the Linux kernel and a modified video for linux (V4L) kernel
receives the image. The camera sends an image in Y8 format to the PC. After the
image is received, it can be accessed by the Intel librealsense SDK. With the SDK,
an OpenDLV camera interface receives the signal. The interface converts the image
to I420 and ARGB format, and stores it in two shared memories. An OpenDLV
perception microservice then fetches the image from the ARGB shared memory.
The OpenDLV perception microservice uses Yolo on the fetched image to identify
any marine vehicles in the image and highlights them. Finally the processed image
is displayed to the user.

Figure 4.1: System overview

4.2 Camera calibration
The camera settings that need to be tested are the exposure time and the gain.
The exposure time is desired to be as short as possible. This is because the shorter
exposure time used, the higher FPS is available. With long exposure time, relatively
strong light sources in the image appear larger than they actually are. As most
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maritime vessels have some light sources on them, the features of the vessel might
be covered by the light source when using to long exposure. The gain is used
to amplify the image and thus enhance the features in the image. The gain has
no desired limits, for the camera used in this work, the minimum gain is 16 and
maximum 248. The exposure times used in the tests are 15ms, 30 ms and 60 ms,
this enables FPS of 30 and 15. More detail of the tests can be seen in Table 4.1.

Test number Exposure time (ms) Gain
1 15 16
2 15 50
3 15 80
4 15 110
5 15 140
6 15 170
7 15 210
8 15 248
9 30 16
10 30 50
11 30 80
12 30 110
13 30 140
14 30 170
15 30 210
16 30 248
17 60 16
18 60 50
19 60 80
20 60 110
21 60 140
22 60 170
23 60 210
24 60 248

Table 4.1: Used values for gain and exposure time for tests

4.3 OpenDLV
OpenDLV is a Chalmers developed microservice software framework for robot con-
trol. It is created with the header only library libcluon, which enables shared mem-
ory and communication between different microservices. This feature enables easy
scaling of the system and add functions to the system by adding a new or a copy of a
microservice. For this work, that enabled the system to be tested with several cam-
eras and adapted to different marine vehicles types and models. The microservices
in OpenDLV run inside Linux Namespace, typically using Docker, which enables
easy portability as the microservices can be run on any system with the same kernel
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without installing dependencies. Docker also makes the system language indepen-
dent.

The system designed for this project are built on top of OpenDLV framework. The
units inside works as separate microservices.

4.4 OpenDLV integration of the camera
The camera was integrated into a Linux based system where the images are pro-
cessed by the object detection algorithm. To integrate the camera, an interface for
OpenDLV was written in C++. A Docker image was then built from the OpenDLV
camera interface to be able to scale the system easily to include several cameras.

The interface first fetches the relevant options supplied by the user when starting
the interface. These include options such as FPS, which camera to start, resolution,
shared memory name, etc. Then the shared memories and camera are initiated. The
camera is controlled by functions supplied in the librealsense library. The camera
is set to only supply one infrared stream out of two available. After initiation the
interface enters a loop that handles the data from the camera. In the start of the
loop the most recent image is fetched. The images from the camera use the Y8 pixel
format, this is a format that neither OpenDLV or Yolo support thus it is converted
to I420 and optionally to ARGB. The converted image is then stored in a shared
memory where an OpenDLV container can access, for this system, a Yolo container
should access the image.

The conversion from Y8 to I420 format is done by copying the Y bits from each
pixel in Y8 format to corresponding I420 pixel. I420 uses U and V bits that Y8 does
not use, these has to be assigned 128 to each byte of U or V bits. I420 uses one byte
each for U and V values for two pixels. Thus, the amount of U and V bytes is width
times height divided by two. The I420 format is used as base to convert to ARGB
pixel format. The C++ library libyuv supplies a function for conversion from I420
to ARGB.

4.5 Yolo
When developing CNN system,s the main focus has been to make them more ac-
curate. This has made the systems larger and more complex, many state-of-the-art
architectures use 50–65 million parameters [33]. But in recent years the interest of
real-time embedded object detection systems has increased. Some existing archi-
tectures with potential for live object detection are Faster R-CNN, Tiny Yolo v2,
Yolo v3 and Yolo v3 nano [34].

Faster R-CNN uses two different stages. One stage where the regions of interest,
ROI is identified and one where the objects are classified [35]. Yolo has a more
linear architecture than faster R-CNN. This enables Yolo’s run-time to be more
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predictable.

Algorithm Name Size
mAP
(VOC
2007)

Ops (VOC
2007)

mAP
(COCO)

FPop/s
(COCO) FPS

Tiny
Yolo v2 [34][35] 60.5 MB 57.1% 6.97B - -

Tiny
Yolo v3 [34][35] 33.4 MB 58.4% 5.52B 33.1% 5.56B 220

Yolo nano [34] 4.0 MB 69.1% 4.57B - - -
Yolo v3 416x416 - - - 55.3 65.86B 35
Faster R-CNN [35] - 69.9% - 41.5 - 0.5

Table 4.2: Comparison of object detection algorithms.

Yolo combines the two stages of object detection into one neural network instead
of having separate network for the two tasks [36]. The system divides the input
image into a SxS grid. Each grid cell predicts bounding boxes and confidence score
of objects in the cell. The confidence score is defined as the probability of an object
in the box times the IOU with the ground truth. If there is an object in the cell
the desired score should be equal to the intersection over union (IOU) between the
ground truth and the predicted box. If there is an object that spans several cells
the cell that is in the center of the object is responsible to detect it. The bounding
boxes are defined by 5 values, x, y, w, h and confidence score. The x and y values
are the coordinates (x,y) of the center of the bounding box. The w and h values are
width and height of the bounding box and the confidence is the IOU between the
ground truth and the bounding box. The grid cell also predicts one class probability
set, no matter how many bounding boxes there are in the cell. Finally, to classify
the object, the class probability and bounding box confidence are multiplied to give
a class-specific score for each bounding box [36].

Yolo v3 uses a feature extractor with 53 convolutional layers called Darknet-53. It
is a hybrid of the network used in Yolo v2, Darknet-19, and residual networks [4].

4.6 Data collection and training
Two data sets were used, one recorded in Gothenburg for this project and the other is
the NIR subset from the Singapore Maritime Dataset [37]. The Gothenburg dataset
was recorded with the camera used in this work from the shore of Götaälv and
Saltholmen harbour with varying light conditions. The city light in the background
during the night is a potential limitation for the result of this work.

When training the weight file, a model for Darknet-53 that is pre-trained on ima-
genet was used as base model. Since the purpose of this work was to identify marine
vehicles for night vision, with pre-trained classes, this work could benefit from the
training for marine vehicles before. It made the training process shorter and more
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type filters size output
Convolutional 32 3x3 256x256
Convolutional 64 3x3/2 128x128
Convolutional 32 1x1

1x Convolutional 64 3x3
Residual 128x128

Convolutional 64 3x3/2 64x64
Convolutional 64 1x1

2x Convolutional 128 3x3
Residual 64x64

Convolutional 256 3x3/2 32x32
Convolutional 128 1x1

8x Convolutional 256 3x3
Residual 32x32

Convolutional 512 3x3/2 16x16
Convolutional 256 1x1

8x Convolutional 512 3x3
Residual 16x16

Convolutional 1024 3x3/2 8x8
Convolutional 512 1x1

4x Convolutional 1024 3x3
Residual 8x8
Avgpool Global

Connected 1000
Softmax

Table 4.3: Architecture of Darknet-53 [4]

effective.

Yolo achieves machine learning using supervised learning. As mentioned in Sect. 2.2,
supervised learning requires labeled images with bounding boxes. More specifically,
for training Yolo, each images need a corresponding text file with the information
about the relevant objects in the image. The text file includes all objects’ class index
and box’s relative coordinates in separate lines for each image as shown in Fig. 4.2.
A software was used to generate the text file for each picture.

Before the training, Yolo v3 configuration file was also modified in order to define
the iteration times and classes. Files that specify the training data and classes list

Figure 4.2: Example of text file used for training Yolo.
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Figure 4.3: Error over number of iterations with given data set

were also created.

While training, several versions of weights were saved in different stages of the
training. The different weights were then tested on the test data to find the best
one as the weights with most training iterations was and are most likely over-fitted.
If the training would avoid the over-fitting, it would risk training the model less
than ideal. Over-fitting refers to the situation when the model is too closely fit
to the training data that the model fails to classify the object that it has been
trained for [12]. The model can then only detect objects on the training image,
but not general objects in the same class. The relationship between performance of
the model on test data and training data to number of iterations are compared in
figure 4.3.

4.7 Test methodology
Due to limitations, the test was not done in the live system, but with pre-recorded
videos taken by the OpenDLV microservice. The video images were not used for
training and is recorded with the same light condition. Yolo v3 with re-trained
weights are used to test if the model can recognize desired object in certain environ-
ment.
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In this section the results of the tests and a software evaluation are presented. First
the results from camera settings test are shown. Following the camera settings, the
training results, and finally the process times of the system are presented.

5.1 Camera settings

The results from the camera setting test can be seen in figure 5.1a. The target was
an stationary ferry approximately at about 50m distance. As seen in the figures the
camera image got more noisy with higher gain and exposure time. The images in
figure 5.2c and 5.2i are deemed to be the best, as the details of the targeted marine
vehicle are easier to extract compared to the other ones. However, no image is ideal,
the most detailed images are too sensitive to strong lights and still doesn’t supply
strongly defined details. Thus it was decided to use the cameras auto exposure
function for this work.

(a) Exposure time 15 ms,
gain 16

(b) Exposure time 30 ms,
gain 16

(c) Exposure time 60 ms,
gain 16

(d) Exposure time 15 ms,
gain 50

(e) Exposure time 30 ms,
gain 50

(f) Exposure time 60 ms,
gain 50
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(a) Exposure time 15 ms,
gain 80

(b) Exposure time 30 ms,
gain 80

(c) Exposure time 60 ms,
gain 80

(d) Exposure time 15 ms,
gain 110

(e) Exposure time 30 ms,
gain 110

(f) Exposure time 60 ms,
gain 110

(g) Exposure time 15 ms,
gain 150

(h) Exposure time 30 ms,
gain 150

(i) Exposure time 60 ms,
gain 150

(j) Exposure time 15 ms,
gain 180

(k) Exposure time 15 ms,
gain 180

(l) Exposure time 15 ms,
gain 180

(m) Exposure time 15
ms, gain 248

(n) Exposure time 15 ms,
gain 248

(o) Exposure time 15 ms,
gain 248
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5.2 Training results
The first training used only 50 images from Göta älv in a very dark envirionment.
The resulting mAP was 0.243 and learning rate of 0.001. Figure5.3 shows the detec-
tion before and after the training. The pre-trained weights does not detect anything
on the image. Whereas on the predication with post-trained weights, two pink
bounding boxes are put around marine vehicles on the image with none-ideal light
condition with confidence score of 81% and 78%. It shows the trained model ob-
tained the ability to detect marine vehicles in none-ideal light environment.

(a) Prediction with pre-trained weights file

(b) Prediction with post-trained weights file

Figure 5.3: Prediction before and after training

Second, more complete training was done with 500 training images and 70 test
images. This training was performed with 18000 iterations. The best test result was
found after 10000 iterations where the mAP was 0.71 on the test data. Examples of
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predictions can be seen in figure 5.4. When testing with the training data the mAP
was 0.95 after 10000 iterations and 0.97 after 18000 iterations.

Figure 5.4: Prediction results after the training
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5.3 Process time
The real time characteristics of the system was tested by measuring the execution
time of the different processes separately. The OpenDLV camera interface was
measured by taking a timestamp after an image was received and one after the
conversions to I420 and ARGB pixel format was performed. Then the timestamps
was printed to a text file. The text file was then processed by a Python script to
calculate the process times and extract the longest process time. The results can be
seen in Table 5.1 below

Process Max Time Mean time
OpenDLV camera interface 883 us 410 us

OpenDLV YOLO 55232 us 47092 us
Rendering images 6137 us 2846 us

Table 5.1: Process times of the various components of the system.

The camera feed was set to 15 fps. When worst case scenario occurs, fully serial
computation and slowest processing times, the system can achieve 16 fps. The
process times were measured using Intel(R) Core(TM) i7-9800X @ 3.80 and Nvidia
Quadro RTX 4000. The resulting schedule can be seen in figure 5.5

Figure 5.5: Schedule of a worst case cycle of the system. Green = Camera interface,
Black = Yolo and red = Rendering.
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6
Discussion and improvements

In this chapter, the evaluation for the system’s real-time characteristics are elab-
orated. Some potential improvements of the work are also presented, followed by
possible future work.

6.1 Real-time analysis
With the result presented in section 5.2, the process times can be considered to be
fast enough for most marine implementations. When traveling in 50 km/h or 27
knots, which is a high speed for most marine vehicles, the vehicle travels almost 1
m between each frame. This distance should not make any difference if an object
appears between two frames. This however, does not prove the that the system
fulfill real-time requirements. While some parts of the system does, not all parts do
such as the USB connection between the camera and PC and some are unknown.
See Table 6.1 for all components.

Even through the Linux kernel and the USB protocol can execute very similar in
most executions, they are not formally real-time systems as they are not theoretically
predictable. The Linux kernel can use a real-time patch but the patch is only soft
real-time which means that it only optimizes to reach as many deadlines as possible,
not every deadline. The same logic can be applied to the parts in Table 6.1 that are
tagged as Unknown. The difference with these are that they are not open source
and the supplier has not specified any real-time characteristics thus it is unknown
if they are predictable. The OpenDLV camera interface is a real-time software if
the camera firmware and operating system are real-time systems as the OpenDLV
interface waits for a new image every time. If the time it takes to receive an image

System part Real-time (RT) characteristics
Linux kernel Soft RT

Camera firmware Unknown
USB connection Not RT [38]

OpenDLV camera interface dependable RT
OpenDLV perception (Darknet) Unknown

Intel camera driver Unknown
Nvidia driver Unknown

Table 6.1: Real-time characteristics of the system parts
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can be predicted, the interface then can be considered to be a real-time software.
The OpenDLV perception microservice however is not a real-time software as it uses
darknet to run Yolo v3 which has unknown characteristics, thus it is assumed not to
be formally real-time proven. At the same time, OpenDLV perception microservice
uses a loop to report the objects found, which means the execution time depends
on how many objects are found, so it is not real-time.

Depending on how the system result will be used, the real-time characteristics of
the system might has stricter requirements. If the system is used as a assistance
tool for a captain, soft real time can be good enough. Soft real-time system has
value because the decisions of the captain are not fully reliant on the result from it.
In another cases, if the system is used in an autonomous system the decisions are
more reliant on the result. Late results from the system has the possibility to cause
incorrect decisions of an autonomous vehicle thus the requirements of the system is
hard real-time.

6.1.1 Yolo v3 real-time analysis
Yolo v3 is a residual CNN with all the standard layer types and special Yolo lay-
ers. All standard layers are fixed for an application and are mainly dependent on
the input image size. The special Yolo layers are also predefined but also depends
on number of classes and predefined bounding boxes used. Thus, the amount of
computations in a Yolo v3 network are predictable and Yolo v3 has real-time char-
acteristics as a network architecture. The last layer of a CNN network is a fully
connected (FC) layer, the FC layer computes the result of the CNN. Normally, only
the positive results are interesting and reported to the user or next module in the
system, but then the system becomes unpredictable as the amount of reported data
depends on the input image. To make the result report predictable it is possible to
report all of the result from the last FC, both positive and negative results, or a
limit of the number of reported objects can be implemented.

6.1.2 Convert the system to a real-time system
From the real-time analysis it is concluded that the system is not a real-time system
but it is possible to make a real-time system with the same concept by changing
or modifying some components. First, the camera need to exhibit real-time charac-
teristics. Possibly, the camera used in the project might on some level show such
characteristics, but this is not clearly specified by the supplier. However, since the
communication protocol (i.e the USB link) is not real-time capable, a camera change
is required in any case. The communication protocol used must be fast enough to
transfer an image for every deadline and have time for the other processes. Se
Table 6.2 for examples of how much data need to be transferred. When choosing
camera, it is important that the exposure time can be controlled, because it is es-
sential for the real-time characteristics. It is enough that the exposure time have
a upper limit but otherwise reactive to the light conditions which should be better
for performance. To achieve the suggested real-time schedule in Fig. 6.1 A two-
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Image format kB/deadline
Y8 640x480 307,2
Y8 1024x768 786,4
I420 640x480 614,4
I420 1024x768 1572,9
ARGB 640x480 1228
ARGB 1024x768 3147,7

Table 6.2: Amount of data needed to be transferred from the camera to PC each
deadline.

Figure 6.1: Suggested real-time schedule

way memory is needed to enable the camera CPU to start reading the data to the
communication link in parallel to the image sensors writing the image.
A GPU can be used in a real-time system but they are usually not designed with
real-time in mind [39] [40]. Thus, there are missing or incomplete real-time docu-
mentations. If NVIDIA GPU is used such as in this work, one need to be aware
of the pitfalls identified by M. Yang et. al. [40] for real-time programming of CUDA.

Next the Linux kernel can use a real-time option but then is only soft real-time
which might be good enough depending on application. If not, the Linux kernel will
have to be changed to a real-time one. A real/time operating system that is suitable
is Blackberry’s QNX OS. Because it has the ISO 26262 ASIL D certification, the
international safety standard for automotive. Lastly the OpenDLV perception will
have to be changed to not call Darknet to do the detection, and the result reportage
have to be changed. The report loop can be limited to a fixed amount or the method
has to be changed. An option for reporting the result is to report the results for all
neurons in the in the FC layers.

It is also possible to implement the algorithm on an FPGA instead of CPU and GPU.
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As an FPGA design would remove obstacles as operating system and other third-
party software, then only the used algorithms need to have real-time characteristics
which they are already proven to have. An added benefit is that the algorithm
could potentially be executed with more parallelism than in a GPU. The downside
of using FPGA is higher development cost and time, it is also more difficult to make
changes to the system. For these reasons, it is recommended to implement an FPGA
design when the algorithm is fully developed and is not expected to have any major
changes.

6.2 Potential improvements
This project used a NIR camera, an option would be to use FIR camera. The bene-
fits of choosing a FIR camera are that there would be no need for any complimentary
light source. It is unknown if the features from a FIR camera would be as useful
for the Yolo algorithm. But the features should be more consistently captured com-
pared to a NIR camera without complementary light source. The largest drawback
for FIR camera is the field of view. Many FIR cameras has around 10° while NIR
camera has around 90°. FIR cameras are also generally more expensive than NIR
cameras. The field of view is the main reason why FIR cameras was not used in this
project as it was desired that the system should be scalable to include 360° view
around a boat. FIR is still an interesting possibility for improvement of the system
if the cost of large field of view can be decreased.

Another improvement is to change the image format used by Yolo v3 to a grey scale
format. This would decrease the amount of channels of the layers in Yolo v3 from
three to one and thus decrease the amount of computations.

The final training used 500 images. It did not result in a weight file suitable for
general usage. To create a better training it is recommended to gather more and
more varied data than used in this work.

6.3 Future work
If this system should be used or be further developed it is recommend to include
more object classes, as there are more than boats that should be avoided for a marine
vehicle. Examples of such classes could be buoys, rocks, and swimmers. Another
improvement can be to determine the distance to an object found.

In the systems current form it could be used as helping tool for a captain by display-
ing the result image. To use the system in a safe way it is recommended to implement
the system in a real-time environment as discussed in section 6.1.2. When imple-
mented as a real-time system it could also be used together with a more active
system, such as path planning or steering assistance.
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In this work, it was demonstrated that a NIR camera could be integrated in an
embedded Linux-based computer system. Using this system, an algorithm to detect
other marine vehicles, it was not limited to the 20 m requirement. The system could
not be proven to fulfill real-time characteristics but it was discussed how the system
needs to be modified to fulfill such requirements.

The possibility of integrating a NIR camera into a Linux system for object detection
has been tested by using a camera interface for the chosen camera. The camera in-
terface was built into OpenDLV, a layered software framework that is intended for
autonomous vehicles. By combining the camera interface with the framework and
connecting the microservices’ data flow with OpenDLV standard message set.

The object detection algorithm used in this work was Yolo v3. The camera and
Yolo v3 was then evaluated on how suitable they are for marine application with
non-ideal light. The camera device is with an NIR camera and an embedded IR pro-
jector enabling it to have a better night vision image quality. Yolo v3 as a real-time
object detection algorithm has the potential to be trained with low-light marine ve-
hicle data, then later be used for detection. Even though the model still need more
training to be properly evaluated, it was concluded that the system has potential
for object detection in both non-ideal light and marine environment.

The system’s real-time characteristics were then evaluated. The system is currently
not a real-time system but it is possible to use Yolo v3 in a real-time system. How-
ever, it was found that the system need to change operating system and communi-
cation protocol to meet formal real-time requirements.
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