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Abstract 
 

 
 
Electrostatic screens and electrodes used in high voltage apparatuses and in test setups in 
high voltage laboratories are essential for proper operation of the equipment and for 
performing high voltage withstand tests. Electrostatic fields generated on their surfaces must 
be minimized to prevent parasitic discharges in surrounding air especially under conditions of 
limited space. To realize this, shape of the electrodes can be optimized in a way that the 
maximum electric field strength is kept below the critical level corresponding to the initiation 
of breakdown in air. 
In the thesis, the optimization methods provided in COMSOL Multiphysics software were 
examined and shape optimization was employed in the electrostatic problem for minimizing 
the maximum field strength. Several 2D study cases reflecting typical electrode shapes 
providing different field enhancement factors were implemented. The effects of various 
parameters in the optimization algorithms on the shapes of the electrodes and respective 
reductions of the maximum field were analyzed. The influence of the proximity of the 
boundaries to the energized electrodes was also investigated and best practices for selecting 
numerical parameters for the optimization were established. Furthermore, 3D scanning of the 
real 400 kV high voltage divider equipped with a toroidal electrostatic screen was performed 
using Scaniverse software installed on iPhone. The obtained scan was cleaned up and 
imported into COMSOL Multiphysics for conducting electrostatic field calculations. The 
procedure developed with the 2D study cases was used for shape optimization of the 3D high 
voltage divider to demonstrate the validity of the method for real scale high voltage devices. 
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1. Introduction 
 
This thesis aims to explore the shape optimization of high voltage electrodes. More 
specifically it aims to study different techniques required to solve problems related to having 
oversized high voltage equipment and test setups enclosed in tight laboratory spaces, to 
ensure reliable operation when conducting high voltage tests. This thesis is part of a 
collaboration between Chalmers and Nexans Norway AS focusing on establishing best 
practices in shape optimization of high voltage electrodes via computer simulations. Hence, 
results and conclusions from the thesis are intended to serve as contribution to the 
development of optimized test setups and equipment. This chapter begins with an overview 
of the background that frames the thesis. Following this is the problem statement which 
describes why the study should be conducted. Finally, the thesis’ purpose, specification of the 
objectives needed to fulfil it is described. 

 

1.1 Background 
 
Normally, high voltage laboratories are equipped with test setups, equipment which can vary 
in sizes ranging from small to bigger equipment, necessary to conduct different laboratory 
tests. Various laboratories can have different dimensions depending on the size and the 
number of equipment to be accommodated. However, intermediate (not big enough) test 
setups and equipment are needed to facilitate conducting high voltage tests. Different 3D- 
optimization techniques based on a computational approach are used in the design of 3D-
optimized shapes to solve the issues related to having oversized equipment in tight spaces.  
 

1.2 Problem statement 
 
The main questions to be answered are; 

 How can shape optimization be used to optimize the design of HV electrodes? 
 How can it be run to gain the maximal impact at minimal computational time/resource 

expenditure? 
 Are the final shapes relevant and in what way do they reflect a geometric optimum? 
 Will it make sense to 3D print the new shapes?  i.e., can the 3D-shapes be 

manufactured in a cost-efficient manner? 

1.3 Aim 
 
The main idea is to perform a study with the purpose of acquiring knowledge about the state-
of- the art inspection and computation. Various steps including 3D-scanning of the high 
voltage laboratory whereby important connections are computed to generate an optimized 
shape that meets the fixed stress criteria all over the whole electrode surface with minimal 
material usage.  
 

1.4 Objectives 
 
Specific tasks to be implemented to achieve the above-mentioned aim are briefly outlined 
below; 
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 To investigate capabilities of the optimization module in COMSOL Multiphysics 
software for shape optimization of high voltage electrodes. 

 To test simple scanning tools for recording 3D-geometrically complex small-scale 
HV set-up and generating geometry files that can be imported into FEM calculation 
software. 

 To analyse feasibility of performing shape optimization using scanned 3D images. 
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2 Literature review 
 
This chapter covers the analysis of literature related to the thesis topic with the purpose to 
provide a brief comprehension of important background theory. It outlines a description of 
the electrostatic fields in HV equipment, methods of mitigating strong electric field 
enhancement in engineering designs of high voltage electrodes, and a description of how 3D-
scanning and electrostatic field mapping by means of the Finite Element Method (FEM) 
works. 
 

2.1 Electrostatic fields in HV equipment 
 
Electrostatic fields are defined as steady electric fields produced by stationary electric 
charges [1]. In this section, the main idea is to explain theories that mainly describe how high 
voltage electrodes behave under the influence of high voltage electric field stresses in relation 
to their engineering design. Furthermore, for a clear understanding of electrostatic fields in 
ambient air, it is important describing the origin of electric field stress, the numerical field 
calculations in relation to the finite element method used in computing electric field stresses. 
 

 
 

Figure 1: Source of Electric field (From Kuchler, High voltage engineering, 2018). 

It is known that in high voltage engineering, high voltage apparatus makes use of insulations 
such as solids, liquids, gases, vacuums, or a combination of all these as clearly illustrated in 
in modern engineering applications, the necessity of using high voltage AC or DC in research 
laboratories, and in the transmission of electricity from the source until the final consumer is 
something very common. However, this calls for advanced research in fields of high voltage 
engineering like insulation systems, given the fact that technology is ever evolving. 
 
According to [1], electric field strength is defined as a ratio of mechanical force to the 
positive test charge. This means that the electric field strength will be in the same direction as 
the electric force, F applied on the positive test charge, q+ [Coulombs]. This is however 
contrary to the case of a negative charge, q- because here the electric field strength acts in the 
opposite direction to the mechanical force applied. Therefore, as illustrated in [1], the electric 
field strength, E is described mathematically in equation (2.1) as; 
 

𝐸   =  
⃗

                            (2.1) 
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where; E is a vector quantity, Electric field strength in [N/C], F is vector quantity, electric 
force in Newtons [N] , q is scalar quantity, charge in Coulombs [C] 
 
In relation to the theory of electric field strength described in [1], it is characterised by having 
electric field lines originating from positive and negative charges which act as sources and 
sinks of the electric field; as described in the figure 1.Additionally, other sources of electric 
field strength exist but such depend on time as for time-varying magnetic fields inducing 
electric fields; which are the basis of Maxwell’s equations. However, the most relevant of 
Maxwell’s equations is “Gauss law for electric fields” as explained in [1]expressed 
mathematically in equation (2.2). It describes what happens to electrically charged objects 
placed in a region where electric field appears to be active. Here the net electric field entering 
and leaving a defined volume of space is not balanced, because it is scaled by the amount of 
charges existing within that volume of space. This is represented by the space charge density 
term, ρ [C/m3] whereby the net electric field is now determined by the relative permittivity, εr  
[F/m] and the permittivity of free space, εo  [F/m] [1]. 
 

𝛻 ∙  �⃗� =                               (2.2) 

 
The capacitive electric field is here calculated from the electric scalar potential field, VI. The 
electric scalar potential field is important in determining the electric field, where E defined as 
the gradient of the electric potential, V (i.e., �⃗� = -∇V). Based on the Poisson’s equation to be 
derived it is possible to ultimately find the Laplace expression as in the equation (2.5) [1] [2]. 
 
The electric field strength, E can be expressed in terms of the gradient of the electric 
potential, V as; 
 

�⃗� =  −∇𝑉                                       (2.3) 
 
 
The Poisson equation which states “the Laplacian of the electric potential is equivalent to the 
ratio of the volume charge density to the permittivity of the medium with a change of sign” is 
determined as in equation (2.4) [1] [2]. 
 

∇ 𝑉 = −                                     (2.4) 

 
In a source- free region but also no permittivity gradients, the Poisson equation in the 
equation (2.4) becomes the Laplace’s equation as described in the equation (2.5). The 
electrostatics problem formulation involves setting up of the boundary conditions needed to 
calculate field quantities like the electric displacement field, electrostatic field strength, etc. 
This explains why it is important to understand the basic electrostatic theory behind this 
problem. In the “charge conservation node”, that is where theories related to Gauss’ law are 
added such that constitutive relations of electrostatic fields can be applied in the FEM 
calculation of electric field strength [1] [2]. 
 

∇ = 0                                           (2.5) 
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2.2 Electrostatic field mapping 
 
Numerical field calculations are applied when calculating field stresses in complex insulation 
arrangements, this method of analytically calculating the magnitude of electric field strength 
is attributed to the application of Maxwell’s equations over a specific interval of points 
created because of discretizing a volume into smaller individual surfaces that can be split into 
upper and lower boundaries of an integration, thus allowing the calculation of various field 
quantities. However, numerical field calculations in engineering designs can be used in 
various computational approaches including; the FEM (Finite Element Method); Integral 
Equation Method; FDM, Monte-Carlo Method, etc, which make use of differential equations 
in describing electric fields, hence making them important tools for researchers, developers, 
and designers in the field of high voltage engineering. However, the focus of the thesis is to 
use the FEM approach in the optimization and the electrostatic study of high voltage 
electrodes. 
 

 
 

Figure 2: FEM discretization (From Kuchler, High voltage engineering 2018). 

 
Finite element method is a powerful computational tool for performing numerical 
calculations. It has been widely used in solving complex engineering problems in the fields 
related to electromagnetics, solid mechanics, fluid mechanics. The finite element method 
approaches complex problems by simply using the discretization of the whole volumes as 
illustrated in figure 2, this technique involves the breaking down of the whole volume into 
smaller element shapes connected to each other at nodes (p, q, r), thus the whole discretized 
volume is referred to as mesh. 
 
Several element shapes can be used in the discretization of volumes such as surface or 2D 
elements which include shapes like triangles, quadrilaterals [1]. Such a method of 
discretization is specifically suitable for problems involving complex structures, thin 
surfaces. Solid elements including cuboids, pyramids are suitable in solving problems related 
to 3D bodies. Other possible way of discretization is the use of line elements. It is after 
discretization that the finite element method starts computing different shapes of how the 
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structure will change by constantly moving the nodes until an optimal solution is reached. 
This process can be described as an iteration because when errors occur either the parameters 
are adjusted or the mesh around the geometry of interest is refined. The summarised steps 
taken by the FEM in solving for any type of engineering problems is listed below as: 

 Defining the problem; which involves defining the relevant material properties as well 
as the boundary conditions, defining the relevant physics. 

 Discretization of the whole volume into smaller finite elements. 
 Run the study, by applying suitable solver options depending on the type of problem. 
 Modification of the parameters and the validation of the results. 

 

2.2.1 Topology optimization 
 
Topology optimization consists of the re-arrangement of the distribution of materials that 
make up a given structure, this method of optimization is performed with a purpose of 
obtaining a final optimized structure that is cost-beneficial, stiff, with a maximal performance 
by applying constraints, boundary conditions on the original structure that is to be optimized. 
The topology optimization algorithm involves setting an objective function and set of 
constraints (optional) defined in the topology optimization interface  which will generate new 
optimized structures with design variables characterized by the presence, absence of 
materials from the original structure as shown in the figure 3 in solid mechanics whereby a 
bracket geometry’ s topology is optimized to create holes in the structure such that the total 
weight, cost of the material is minimized [3]. 

 
 

Figure 3: Topology optimization of a bracket geometry (from COMSOL webpage). 

 

2.3 Optimization for mitigating strong electric fields 
 
In this part, field distributions and breakdown in various kinds of fields in different media 
will be addressed as well as breakdown under uniform field conditions. That is because it is 
easier to predict breakdown processes that under uniform field conditions but in practice, 
uniform field conditions seldom apply and for non-uniform fields the exact mechanism by 
which a breakdown may progress until catastrophic failure which might occur can be 
complex. 
Assuming a parallel plate capacitor with a dielectric material of a suitable permittivity and 
breakdown strength. If now needed to utilize the material to its fullest capability, voltage will 
be continuously applied hence the material withstands the applied voltage at which the 
material is stressed, until it reaches the breakdown strength. If the field is uniform, high 
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voltages can be achieved across the capacitor plates; as the voltage is increased, the field in 
most of the material is below the breakdown strength of the dielectric material [2] [4]. 
 
 However there exists a region close to the tip where the field is high because of local field 
intensification and within that region if the electric field strength exceeds the breakdown 
strength of the material, partial discharges occur hence degradation and deterioration of the 
neighbouring material proceeds. Therefore, voltage is applied such that local electric field is 
not above the dangerous level [4]. 
 

2.3.1 Schweiger factor 
 
As perfectly uniform field cannot be achieved a certain degree of non-uniformity is to be 
accounted for. For this reason, the Schweiger Factor, η is introduced as a measure of the non-
uniformity of the field as defined in equation (2.6); 
 

Η =  =           (2.6) 

 
The Schweiger factor, or the field efficiency factor, is defined as a ratio of the average to the 
maximum value of the electric field strength [2]. Emean is obtained by calculating the average 
of the electric field at each point of the entire volume of the dielectric which is close to the 
mean of an average field; calculated as v/d. Thus, in a uniform field distribution, a voltage v 
is applied across the capacitor plates whereby; the field is constant everywhere equivalent to 
the mean value of the field which is v/d [2]. However, in a non-uniform field, the value of the 
electric field strength will deviate from the mean value. The maximum electric field does not 
necessarily happen at a predestined point in fact it is difficult to predict where the maximum 
value will occur. Thus, computation of the electric field is needed from which the field 
efficiency factor can be derived. Here uniform electric fields will yield a Schweiger factor 
equal to unity, and hence the electrical optimization process shall approach unity as the 
computational steps progress. On the other hand, for severely non-uniform fields, the 
Schweiger factor is reduced, and this fractional value may approach zero in the worst-case 
examples typically for infinitely sharp corners in the mesh, sharp needle tips, etc. 
 

2.3.2 Uniform field arrangement 
 
It is important to design electrodes in any insulation system such that nearly- uniform fields 
are available everywhere and when impossible field intensifications, characterized by a local 
maximal field Emax should be as close to the average electric field as possible. This requires 
choosing electrode geometries appropriately such that the field is uniform. High voltage tests 
in the lab typically use uniform, or on purpose non-uniform electrode arrangements such as 
parallel plate assemblies, rod-plane gap, rod-rod gap, sphere-sphere gap, etc. While ideal 
parallel plate capacitors arrangement provides an ideal field distribution such uniform field 
distribution will only be obtained in between the capacitor plates [2]. However, at the edges 
of the plates, instead a concentration of field lines will occur and that will depend upon the 
radius of curvature of the edges, thus the smaller the radius, the higher will be the 
concentration of field lines and higher will be the local field intensification. This 
intensification may well exceed local dielectric breakdown strength of adjacent air causing a 
flashover along the surface. This will happen nowhere close to the critical breakdown 
strength of the material, and the average value of the electric field strength will be low. To 
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avoid this there are proposals to profile the parallel plates in such a way that the local field 
intensification can be minimized. This means that it is not zero or perfectly uniform, but it 
will have uniform field between the plates while at the edges the field can be reduced. Such 
profiles addressed in the next section [2] [4]. 
 

2.3.3 Rogowski profile 
 
For axially symmetric systems shown in figure 4 describing the Rogowski profile follows the 
analytical function introduced by Maxwell where z and w are complex coordinates in the z-
plane and w-plane respectively as defined below. 

 
 

Figure 4: Rogowski profile (From Kuffel & Zaengl, High voltage engineering fundamentals (2nd edition), (2000)) 

Assuming two infinite parallel plates in the w-plane; 
 

                                                    𝑣 =  ±𝜋 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡             (2.7)  
 
Assuming the horizontal lines between the parallel plate electrodes are equipotential lines; 
 

𝑣 = 𝑐𝑜𝑛𝑠𝑡 with -π < v < + π             (2.8) 
 
The perpendicular lines to these equipotential lines are the field lines in the w-plane, 
representing a uniform field distribution. 
 

𝑢 = 𝑐𝑜𝑛𝑠𝑡 with −∞ < 𝑢 < +∞        (2.9) 
 

Since, the Rogowski profile models electrodes in such a way that they lie along the 
equipotential v-lines choosing (𝑣 =  ±𝜋) to be equipotential along which the electrodes lie in 
the z-plane [2]. These lines appear to be equivalent to an electric field distribution for parallel 
plates which can no longer go up to infinity, but which will be terminated at x=0. Along the 
line x=0, if electrodes within this region, a perfectly uniform field distribution will be  
obtained. Similarly, from -inf to x=0, a uniform field distribution will also occur. However, at 
the edges of 𝑣 =  +𝜋 and 𝑣 =  −𝜋, there will be a high concentration of field lines [2].  
 
Breakdown due to local field enhancements at these two points is likely, hence this 
concentration of field lines not acceptable. Conclusively, the parallel plates placed at 𝑣 =
 ±𝜋, do not fulfil the requirements for obtaining a uniform field distribution. However, the 
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field enhancement decreases when moving away from the equipotential lines at 𝑣 =  ±𝜋 
towards the centre [2]. 
 

2.4 3D-scanning 
 
3D-scanning refers to the transformation of physical objects into digital information by the 
help of using a camera or any other equipment that uses light detection and ranging (LIDAR); 
sensors or Lasers to generate the coordinate positions of a surface. The physical object is 
digitally recreated by the help of coordinate positions that are created at the scanned surface 
locations, the created point cloud is later compiled together to form a mesh that covers the 
surface of the physical object with a high degree of detail and accuracy, hence forming a 
newly built digitized object [5]. 
 
Physical objects within a few meters are typically scanned using a short-range scanner, these 
objects  can vary from a tiny up to fully- built high voltage setup while a long-range scanner 
is typically needed for large objects, big spaces that are beyond the range of 1[m]. For this 
project, a mobile-based software known as Scaniverse that uses the LiDAR technology is 
used for generating digitalized high voltage electrodes like voltage dividers, etc. From this 
process an STL file containing the scanned physical high voltage electrode as a surface mesh 
is generated. However, 3D-scanning has advantages and disadvantages and is used for a 
range of applications summarized in the table below. 
              
Table 1: Pros and cons & applications of 3D-scanning 

Pros of 3D-scanning Cons of 3D- scanning  Applications 
Fast Low degree of accuracy 

for some techniques 
Education, art, 
Medical and 
industrial uses, 
Animations, 
construction, cinema 
production 

Ease of use Periodical upgrading of 
features for proper 
function 

More reliable mesh 
generation compared to 
photogrammetry. 

Significantly affected 
by the reflection from 
shinny objects 

 
There are also other scanning methods such as; 
 

 Laser scanners: They perform the scanning task by capturing surface components of 
the physical object, however the only difference with the LIDAR technology is that 
they are suitable for projects requiring high accuracy [5]. 

 

 Laser pulse-based 3D scanning technology: It performs scanning by applying the 
speed of light and the sensor in a way that millions of pulses from the Laser are sent 
to the surface of the physical object whereafter they are reflected to the sensor thus 
enabling the capturing of surface components of the high voltage electrodes. In 
addition to this, a rotating mirror enables this kind of scanning method to collect data 
in 360 degrees [5]. 
 



 

22 
 

2.4.1 How to obtain better 3D-scans 
 
Below, a summary describing how to obtain good quality 3D-scans using the Scaniverse 
software is provided; 

 Properly adjusting the scanning distance of the camera from the real object: It is 
advisable to maintain a range of 0.8-1.5 [m] from the scanned object because for the 
mostly featureless high voltage components it is advantageous for the whole object to 
fit-in in the screen of the phone. This enables the phone LiDAR to track its position 
better thus preventing un-conventional placements of the camera that are most of the 
times prone to scanning errors. 

 Minimal lighting in the room: An indirect light intensity range of 100-200 [lumens] 
is normally advisable, this allows the preventing glare which reduces the quality of 
the scans. 

 Avoiding abrupt movements of the camera: Sudden movements of the camera may 
cause a delay of 2-5 [seconds] in the response to the scanning of objects by the light 
sensor. Thus, it is recommended to slowly turn the camera for the sensor to adjust to 
changes in position. 

 

2.4.2 The clean-up of scans 
 
Step1: Importing the scan in Meshmixer. There are cases when the geometry must be 
redesigned using Meshmixer. 
 
Step2: Apply the “smooth model” feature, this will allow the use of the “brush” function on 
to the surface of the scan. This is more less like sculpting the object itself such that the 
surfaces are uniform as shown in the figure 6. 
 
Step3: Export or save the .STL file for further studies. 

 
 

Figure 5: Voltage divider with unwanted reflections vs the cleaned-up geometry. 
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Figure 6: Cleaned up geometry of the high voltage transformer. 

 

 
 

Figure 7: High voltage transformer with un-wanted reflections. 

Scans of 3D-spheres have problems in their scans such as having bumps and un-wanted 
reflections from their surfaces due to the incoming light intensity in the high voltage 
laboratory as shown in the figure 8. 
 
The clean-up of the spheres in mesh mixer software is not complicated since it has a few in- 
built basic geometries for instance spheres, trapeziums, etc. Therefore, it was only a matter of 
re-drawing the spheres with the same dimensions as the physical ones as shown in the figure 
9. 



 

24 
 

 
 

Figure 8: Scanned 3D-sphere. 

 

 
 

Figure 9: Cleaned up spheres using mesh mixer. 
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3 Method and results 
 
In this section, the focus is based on the methods used for implementing the thesis objectives. 
It mainly comprises of the geometries of the test-cases used in studying the behavior of the 
electric field strength by considering their symmetrical and un-symmetrical cases, their 
boundary conditions, the formulation of the optimization problem. This will therefore form a 
basis of concluding and discussing about the suitable design parameters needed in obtaining 
optimized shapes with a minimized electric field strength on their surfaces. 
 

3.1 Model set up and results 
 
The points of discussion in this section include the development of a methodology that helps 
in the analysis of the electrostatic study of the 2 different test cases involving the two 2D-
spheres & squares located at different positions in an enclosed box and 3D-voltage divider.  
 

3.1.1 2D- circles & squares at the center of the box 
 
The electrostatic study of 2D- circles of diameter 0.1 [m] & squares of side 0.005 [m] 
enclosed in a box of length 0.5 [m] and height 0.035 [m] are shown in the figures 10 to12 
below. The 2D- geometries are assigned a higher relative permittivity, εr = 80. The average 
and maximum values of the electric field strength in the air medium are used to establish the 
field efficiency factor. Therefore, the field efficiency factor is set as the objective function for 
the optimization, and it should be close to unity. 
 
 
 
 

 
 

 Figure 10: 2D-circles at the center 

 
 
 

Zero charged. Electric potential =1[V] 

ground 
Zero charge 

Zero charged. 

Zero charged. 
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Figure 11:2D side-side squares at the center 

 
 
   
 
 
 
 

 
 

Figure 12: 2D corner-corner squares at the center 

 
 
 

Zero-charge Electric potential = 1[V] 

Zero-charge 
Zero-charge 

 ground 
 

Zero-charge 

ground 
 

Electric potential = 1[V] Zero-charge 
 

Zero-charge 
 

Zero-charge 
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3.1.1.1 Mesh adjustments 
 
The mesh on the boundaries of the 2D-geometries is refined to a much smaller mesh element 
to enhance the electrostatic and optimization study results. 
 

 
 

 

 

 
 

Figure 13: Meshing of 2D- squares & circles at the center of the box. 
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3.1.1.2 Es-study of 2D- circles & squares (symmetric case) 
 
A pure electrostatic study allows the calculation of the maximum electric field, which serves 
as the reference in performing shape optimization. From the figure 14, the reference 
maximum electric field stress is 6.52 [V/m]. 
  
 

 
 

Figure 14: Electrostatic study of 2D-circles at the center of the box. 

The electrostatic study of 2D- side by side squares placed at the center of the box is shown in 
the figure 15. The electric field strength is stronger at the corners of the squares because of 
sharp corners which have a higher surface charge density. The maximum electric field of the 
2D-squared electrodes is expected to be slightly close to the sharp corners. Therefore, the 
reference maximum electric field strength is 30.3 [V/m] as shown in figure 15. 
 

 
 

Figure 15: Electrostatic study of 2D- side- side squares at the center of the box. 
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For the corner-corner adjacent squares, there is almost no concentration of field lines around 
the corners except in the region between the electric potential and the ground. Field 
enhancements at sharp corners are minimized by modifying the initial geometry of the 
squares whereby a slight curvature of radius = 0,001 [m] is introduced at the sharp corners as 
shown in the figure 16 below. 
 

 
 

Figure 16:  Electrostatic study of 2D corner-corner squares at the center of the box. 

 

3.1.1.3 Shape optimization of circles & squares (at the center) 
 
The shape optimization of 2D-spheres is performed by adding a “free-shape domain” to the 
domain of the sphere to allow the control variables features in the “polynomial boundary & 
free-shape boundary method” perform optimization on the boundaries. Boundaries that are 
not part of the “polynomial boundary & free shape boundary” list of selected boundaries are 
fixed. The polynomial boundary method uses maximum displacement, dmax to regulate the 
change of the original geometry whereby the default value in 2D is 0.07 [m] while for 3D is 
0.5 [m]. Additionally, the polynomial boundary method uses the type of polynomial feature 
that contains a set of equations like the Bernstein, Lagrange equations; these are 
mathematical expressions that define how curved the edges of the boundaries of the 
optimized shape appears depending on the order, n of the Bernstein, Lagrange polynomial 
equations [3] [6]. Their mathematical formulation is based on the binomial expression below. 
 

(𝑥 + 𝑎) = 𝑥 𝑎    (2.12) 

  
Where. 
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combination formula = 
!

!( )!
 

 
n= degree of freedom of the polynomial 
k= number of choices in the sample space to choose from 
a, x = variables. 
 
The free-shape boundary method consists of the maximum displacement (dmax), filter size 
(Rmin) to perform shape optimization. The filter size allows the filtering of data to improve 
the model performance. Therefore, the formulation of the shape optimization algorithm 
requires adding features outlined below. 

1. Probe selection: The objective function is added by selecting a boundary probe 
which calculates the maximum electric field strength on the boundaries of the 2D-
geometries. Depending on the type of optimization problem, the objective 
function is formulated by scaling the electric field strength using the E-factor 
(field efficiency factor). 

 
2. Shape Optimization solver: There are several types of optimization solvers in 

COMSOL to choose from depending on the type of problem as described in the 
table. 

 
Table 2: Different types of Shape optimization solvers. 

Types of solvers Names Description 
Gradient- based solvers SNOPT This optimizer is suitable for 

non-linear problems [6]. 
IPOPT Uses interior points to solve 

non-linear problems. 
MMA It is robust compared to the 

rest of the gradient-based 
solver [6]. 
It is accurate and efficient. 

Gradient- free solvers  Nelder-mead, BOBYQA 
(Bound optimization by 
quadratic approximation), 
the Coordinate search 
solver, COBYLA 
(Constrained optimization 
by linear approximation), 
etc. 

Well-known for versatility 
in the prediction of 
outcomes from the raw data 
input [6]. 
 

Other type Levenberg Marquardt solver It is designed to solve 
objective functions 
involving least square types 
[6]. 
 

Monte Carlo Relatively slower in 
choosing data points used in 
the analysis of the objective 
function [6]. 
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1. Using polynomial boundary method at dmax= 0,07 [m] and n= 1 
 
The electric field strength calculated after the shape optimization of 2D-circles at the center 
of the box is 5.68 [V/m] as shown in the figure 19. The shape of the optimized circle is flat 
because COMSOL constructs new shapes of boundaries (Bezier curves) based on Bernstein 
polynomial equation. 
 

 
 

 

 

 

Figure 17: The selected boundaries of the 2D-circles to be optimized. 

 

 
 

Figure 18: The displacement of the boundaries using the polynomial boundary method at dmax=0.07 [m] & n=1. 

Boundaries of the circles to be optimized using the 
polynomial boundary method. 
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Figure 19: Shape optimization of 2D-circles using polynomial boundary method at dmax= 0,07 [m] & n=1. 

 
However, to evaluate the flexibility of this method, some boundaries are fixed while others 
are subjected to shape optimization. In the figure 20, the blue boundaries describe those 
selected for shape optimization. 

 
 

 

 

Figure 20: Boundaries selected for shape optimization using the polynomial boundary method at dmax=0.07[m] & n=1. 

Selected boundaries for shape optimization using the polynomial boundary method. 
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Figure 21: Overall displacement of the boundaries using the polynomial boundary method at dmax=0.07 [m] & n=1. 

 

 
 

Figure 22: Shape optimization of 2D-circles (with fixed boundaries) at dmax= 0,07 [m] and n=1. 
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2. Using the free-shape boundary method at dmax = 0.07 [m], Rmin=medium. 
 

The electric field strength calculated after the shape optimization of 2D-circles at the center 
of the box is 6.24 [V/m] as shown in the figure 25. The elapsed time of computation is 26 
[minutes] because the SNOPT solver takes long to select the initial values used in 
optimization solver settings. However, this issue is solved by increasing the value of the 
tolerance of the optimal solution under the solver settings that results in a significant decrease 
of the elapsed time of computation. 
 

 

 

 

 

 

Figure 23: Boundaries selected for shape optimization. 

 

 

Figure 24: Overall displacement of the boundaries after shape optimization. 

Boundaries of the circles to be displaced during 
optimization.  
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Figure 25: Shape optimization at dmax= 0.07 [m], Rmin=medium. 

The findings from several simulations using the free-shape boundary method and the 
polynomial boundary method are shown in the table of results, as this will allow the 
discussion about the: 

 The initial area of the geometries before optimization and the optimized area obtained 
after optimization thus forming the basis of calculating the percentage change in the 
geometries. 

  The initial and optimized maximum electric field strength which is measured on the 
surface of the geometries using boundary probes. 

 
Table 3: Results showing the shape optimization of circles located at the center of the box using the free-shape boundary 
method. 

Minimum 
filter size, 

Rmin 

dmax, 
[m] 

Initial 
area, 
[m2] 

Optimized 
area, [m2] 

% 
change 
in the 
area 

Initial 
max 
E-
field, 
[V/m] 

Optimized 
max E-
field, 
[V/m] 

Elapsed 
time, 
[min] 

 
Rmin = 
large 

0.07  
 
 
0.062 

0.068 9.6  
       
 
    
6.52 

4.12 6 
0.075 0.069 11.2 4.96 5 
0.08 0.070 12.9 4.97 8 

 
Rmin = 
medium 

0.07 0.065 4.83 6.33 4 
0.078 0.066 5.22 3.40 3 
0.089 0.063 1.61 3.45 3 

 
Rmin = 
small 

0.07 0.063 1.61 3.50 2 
0.081 0.063 1.61 2.70 1 
0.091 0.063 1.61 3.90 1 

 
By keeping some boundaries fixed as shown in the figure 26, it is expected that the maximum 
electric field strength after optimization slightly decreases compared to when the entire 
geometry is selected as it was the case in the figure 25. The type of iteration solver used here 
is “Nelder -mead” since it is a gradient free- solver that relies on the selection of several 
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control variable points on the geometry to generate expansions and/or contractions such that 
the worst points in the sequence are improved, thus resulting in changes of the maximum 
electric field strength. 
 

 
 

 

 

Figure 26: Shape optimization of circles (with fixed boundaries) using the free-shape boundary method. 

 
 

Figure 27: Overall change of shape of the boundaries after shape optimization using the free-shape boundary method. 

Boundaries of the circles to be displaced by optimization.  
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Figure 28: Shape optimization (with fixed boundaries) using free-shape boundary method. 

 
3. Using the polynomial boundary method at dmax = 0.075 [m], n=2  
 
By increasing the maximum displacement and the order of the Bernstein equation the 
geometry of the optimized circle undergoes significant shape change whereby the elapsed 
time is 2 [minutes] which is relatively faster because of running the simulation with the 
MMA optimization solver known for its robustness to deal with large control variables. 
 

 
 

 

 

Figure 29: Boundaries selected for shape optimization. 

Boundaries of the circles to be displaced during optimization.  
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Figure 30:Overall change of shape of the boundaries at dmax=0.075 [m] & n=2. 

 

 
 

Figure 31: Shape optimization at dmax= 0.075 [m] & n=2. 

The change in the shapes of circles at the center of the box, is governed by the control 
variables of the free-shape boundary method like the filter size, maximum displacement as 
described in the table 3 which results in the relative decrease of the electric field strength. 
Additionally, the table 4 describes how the polynomial boundary method affects the decrease 
in the electric field strength and the overall change in the shape. 
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Table 4: Results showing the shape optimization of circles located at the center of the box using the polynomial boundary 
method. 

 
Conclusively, the minimum filter size must be within a range of 1.5 to 2 times the selected 
maximum displacement hence should be carefully selected not to generate error messages 
shown in the figure 32, caused by having a very large dmax and a very small filter size, Rmin 
resulting in having the returned solutions that are not converged [7] [8]. 
 

 
 

Figure 32: Convergence error message from COMSOL caused by having a large dmax, small Rmin. 

 
For the 2D-side by side squares, the initial geometry of the squares has “2 fixed points at the 
center” to allow boundaries of the square to be more flexible to move outwards to minimize 
the chances of having field enhancements at the sharp corners as shown in the electric field 
plot obtained after shape optimization in the figure 35. 
 

1. Using polynomial boundary at dmax= 0.1 [m], n=2  

Bernstein 
order, n 

dmax, 
[m] 

Area 
before 
opt, 
[m2] 

Area 
after opt, 
[m2] 

% 
change 
in the 
area 

Max E-field 
before opt, 
[V/m] 

Max E-field 
after 
optimization, 
[V/m] 

Elapsed 
time, 
[min] 

 
n=1 

0.07  
 
 
0,062 

0.067 8  
       
 
    6,52 

5,68 1,0 
0,075 0,063 1.61 5,6 1,0 
0,08 0,063 1,61 5,58 1,0 

 
n=2 

0,07 0,064 3,22 6.18 2.0 
0,078 0,064 3,22 5,15 3,1 
0,089 0.065 4.83 5.11 3.0 

 
n=3 

0,07 0,066 6,45 5.52 4,1 
0,081 0,065 4.83 4.12 4.1 

0,091 0,063 1,61 5,22 5,2 
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Figure 33: Boundaries selected for shape optimization. 

 

 
 

Figure 34: The displacement of the boundaries at dmax=0.1 [m] & n=2 

Boundaries of the squares to be optimized. 2 fixed points at the center 
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Figure 35: Shape optimization of side-by-side squares at dmax= 0.1 [m] and n= 2. 

The electric field strength distribution on the surface of the squares is shown in the figure 36. 
At the start of the optimization process, the electric field strength measured by boundary 
probe is higher on the surface of the squares due to the presence of sharp corners in the initial 
geometry thus as several iterations in the optimization are performed, the sharp corners 
become curved hence there will be a decrease in the magnitude of electric field strength until 
an optimal solution is reached as shown in the table 5. 

 
 

Figure 36: Electric field distribution on the surface of the side-side squares (at the center of the box). 

Table 5: Data showing the variation of electric field strength versus successive iterations using polynomial boundary. 

 
 
 
 
 
 
 

 

Iterations, n Electric field strength, [V/m] 
n=0 13 
n=1 12 
n=2 10 
n=3 9 
n=4-25 7 



 

42 
 

Table 6: Results of shape optimization of side-by-side squares located at the center of the box using the polynomial 
boundary method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Using free-shape boundary at dmax= 0.09 [m], Rmin=small 
 
With the same fixed points as the previous case, the boundaries of the optimized geometry 
will not be displaced that much due to a relatively small maximum displacement and a small 
filter size as shown in the figures 37 & 38. 
 

 
 

Figure 37: Shape optimization of side-by-side squares (free-shape boundary) 

Bernstein 
order, n 

dmax, 
[m] 

Initial 
area, 
[m2] 

Optimized 
area, [m2] 

% 
change 
in the 
area 

Initial 
max 
E-
field, 
[V/m] 

Optimized 
max E-
field, 
[V/m] 

Elapsed 
time, 
[min] 

 
n=2 

0.1  
 
 
0,08 

0.082 2.50  
       
 
30.9 

18,4 11 
0.2 0.083 3.75 18.4 12 
0.3 0.085 6.25 12.3 14 

 
n=3 

0.1 0.081 1.25 13.0 27 
0.2 0.082 2.50 11.6 31 
0.3 0.083 3.75 17.9 30 

 
n=3 

0.1 0.082 2.50 22.8 23 
0.2 0.089 11.25 17.4 18 
0.3 0.090 12.50 15.7 15 
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Figure 38: Boundary displacements of side-by-side squares (free-shape boundary) 

 
Table 7: Results showing the shape optimization of side-by-side squares located at the center of the box using the free-shape 
boundary method. 

Minimum 
filter size, 

Rmin 

dmax, 
[m] 

Initial 
area, 
[m2] 

Optimized 
area, [m2] 

% 
change 
in the 
area 

Initial 
max 
E-
field, 
[V/m] 

Optimized 
max E-
field, 
[V/m] 

Elapsed 
time, 
[min] 

 
Rmin = 
large 

0.07  
 
 
0.08 

0.10 25,0  
       
 
    
30.9 

15.10 6 
0.08 0.11 37.5 14.94 5 
0.09 0.11 37.5 14.97 8 

 
Rmin = 
medium 

0.07 0.09 12.5 18.90 7 
0.08 0.09 12.5 18.40 7 
0.09 0.10 25.0 18.45 5 

 
Rmin = 
small 

0.07 0.11 37.5 19.50 9 
0.08 0.09 12.5 18.70 6 
0.09 0.09 12.5 23.30 4 

 
The E-factor (objective function) is obtained by taking the ratio of the average to the 
maximum electric field strengths. In the figure 39, at the start of optimization (i.e., at 
optimization solution=0), the E-factor is minimal, thus the electric field strength on the 
surface of the squares is maximum, as the optimization progresses the E-factor starts to 
increase until the optimal solution is achieved hence overcoming the influence of the 
maximum electric field strength on the surface of the squares. When the shape optimization 
converges to a solution at the 4th iteration, a constant value of the E-factor is achieved hence 
the maximum electric field on the surface of the squares is minimized to an optimal solution. 
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Figure 39: Electric field distribution of the side-side squares (at the center of the box) using the free-shape boundary 
method. 

The shape optimization for corner-corner squares is done by fixing a point on the edges to 
allow the boundaries move freely hence allow the deformation of the boundaries as shown in 
the figures 40-42. 
 

1. Using the polynomial boundary at dmax= 0.05 [m], Bernstein order, n=2  
 

 
 

 
 
 

 
 

Figure 40: Boundaries selected for shape optimization. 

2 center fixed points  Boundaries of the squares 
to be optimized. 
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Figure 41:  Boundary displacement of corner-corner squares (polynomial boundary). 

.

 

 

Figure 42: Shape optimization of corner-corner squares using polynomial boundary. 
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Table 8: Results of shape optimization of corner-corner squares located at the center of the box using the polynomial 
boundary method. 

 
2. Using the free-shape boundary method at dmax= 0.05 [m], Rmin= medium 

with all points in the corners fixed. 
 

 
 

Figure 43: Boundary displacement of corner-corner squares (polynomial boundary). 

Bernstein 
order, n 

dmax, 
[m] 

Area 
before 
opt, 
[m2] 

Area after 
optimization, 
[m2] 

% change 
in the 
area 

Max E-
field 
before 
opt, 
[V/m] 

Max E-
field after 
opt, [V/m] 

Elapsed 
time, 
[min] 

 
n=2 

0.050  
 
 
0.079 

0.080 1.26  
       
 
  53.7 

43.8 6 
0.055 0.081 2.53 48.0 6 
0.060 0.082 3.79 42.3 7 

 
n=3 

0.050 0.080 1.26 35.5 11 
0.055 0.084 6.32 36.1 13 
0.060 0.085 8.10 36.1 15 

 
n=4 

0.050 0.095 11.1 36.5 22 
0.055 0.095 11.1 26.5 15 

0.060 0.083 5.06 26.5 12 
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Figure 44: Shape optimization of corner-corner squares using free-shape boundary (all corners fixed) 

 
Table 9: Results of shape optimization of corner-corner squares at the center of the box using the free-shape boundary 
method. 

Minimum 
filter size, 

Rmin 

dmax, 
[m] 

Initial 
area, 
[m2] 

Optimized 
area, [m2] 

% 
change 
in the 
area 

Initial 
max 
E-
field, 
[V/m] 

Optimized 
max E-
field, 
[V/m] 

Elapsed 
time, 
[min] 

 
Rmin = 
large 

0.05  
 
 
0.08 

0.082 25.0  
       
 
   
53.7 

51.10 6 
0.06 0.084 37.5 44.94 5 
0.07 0.082 37.5 34.97 8 

 
Rmin = 
medium 

0.05 0.083 12.5 53.30 7 
0.06 0.084 12.5 48.40 7 
0.07 0.085 25.0 38.45 5 

 
Rmin = 
small 

0.05 0.081 37.5 39.50 9 
0.06 0.090 12,5 38.70 6 
0.07 0.082 12.5 27.90 4 

 
The objective function for corner-corner squares is to maximize the E-factor. From the figure 
45 below, at the start of the optimization process the E-factor is minimal, due to the 
maximum electric field strength; as the optimization progresses towards the optimal solution 
where the electric field strength is minimum; the E-factor increases until the third iteration 
where the E-factor is no longer increasing. 
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Figure 45: The E.factor distribution for corner-corner squares (at the center of the box). 

 

3.1.2 2D-circles & squares (non-symmetric case) 
 
 
 
 

 
  
 
 
 
 
 
 

 
 

 

Figure 46: Boundary conditions for side-side squares & circles. 

Ground Electric potential = 1 V Zero charge 

Zero charge  

Zero charge 
 

Ground Electric potential = 1 V 

Zero charge 
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Figure 47: Boundary conditions for corner-corner squares (at the corner). 

 

 
 

Figure 48: Meshing of circles (at the corner). 

 

 
 

Figure 49: Meshing of corner-corner squares (at the corner). 

 

 
Figure 50: Meshing of side-side squares (at the corner). 

 

Ground Zero charge 

Electric potential = 1 V 
 

Zero charge Zero charge 
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3.1.2.1 Es-study of the 2D-circles & squares (at the corner) 
 

 
 

Figure 51: Es-study of circles at the corner of the box. 

 

 
 

Figure 52: Es-study of side-side squares at the corner of the box. 
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Figure 53: Es-study of corner-corner squares at the corner of the box. 

 

3.1.2.2 Shape optimization of circles & squares (at the corner) 
 
The shape optimization of 2D-circles and squares is done by adding a “free-shape domain” to 
the shape optimization algorithm to enable control variables in the “polynomial boundary” 
and the “free-shape boundary” perform optimization on the selected boundaries of the 
respective geometries [8]. 
 

1. Using the polynomial boundary at dmax= 0.07[m], n=2 
 

  
 

 

 

 
Figure 54: Boundaries selected for shape optimization. 

Boundaries to be optimized. 
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Figure 55: Boundary displacement of circles (polynomial boundary). 

 

 
 

Figure 56:Shape optimization of circles (at the corner of the box) using polynomial boundary. 
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Table 10: Results of shape optimization of circles at the center of the box using the polynomial boundary method. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
2. Using the free-shape boundary at dmax= 0.07[m], Rmin=large 

 

 

 

 

Figure 57: Boundaries selected for shape optimization. 

Bernstein 
order,n 

dmax, 
[m] 

Area 
before 
opt, 
[m2] 

Area after 
optimization, 
[m2] 

% 
change 
in the 
area 

Max 
E-field 
before 
opt, 
[V/m] 

Max E-
field 
after 
opt, 
[V/m] 

Elapsed 
time, 
[min] 

 
n=2 

0.050  
 
 
0.052 

0.058 11.5  
       
 
  6.77 

6.3 15 
0.065 0.059 13.4 5.0 16 
0.070 0.058 11.5 5.7 7 

 
n=3 

0.050 0.055 5.76 4.5 11 
0.065 0.054 3.82 5.1 13 
0.080 0.056 7.70 4.1 15 

 
n=4 

0.052 0.055 5.76 3.5 12 
0.055 0.055 5.76 3.5 15 
0.060 0.054 3.82 4.5 12 

Fixed boundaries Boundaries to be optimized. 



 

54 
 

 
 

Figure 58: Boundary displacement of circles with fixed boundaries (using free-shape boundary method). 

 

 
 

Figure 59: Shape optimization of circles (at the corner) using free-shape method. 
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Table 11: Results of shape optimization of circles (at the corner) using free-shape boundary method. 

Minimum 
filter size, 

Rmin 

dmax, 
[m] 

Initial 
area, 
[m2] 

Optimized 
area, [m2] 

% 
change 
in the 
area 

Initial 
max 
E-
field, 
[V/m] 

Optimized 
max E-
field, 
[V/m] 

Elapsed 
time, 
[min] 

 
Rmin = 
large 

0.05  
 
 
0.052 

0.053 1.92  
 
 
6.77 

5.1 6 
0.06 0.056 7.69 4,9 5 
0.07 0.057 9.60 5.9 8 

 
Rmin = 
medium 

0.05 0.053 1.92 6,3 7 
0.06 0.055 5.76 4.4 7 
0.07 0.056 7.69 6.4 5 

 
Rmin = 
small 

0.05 0.054 3.84 6.5 9 
0.06 0.055 5.76 6.7 6 
0.07 0.053 1.92 4.9 4 

 
There is a small difference in the magnitudes of the electric field strength obtained after the 
shape optimization of circles regardless the method used because the type of solver used is 
similar however there is significant difference in the elapsed time because of dependence on 
the number of iterations to be used until the solution is reached, thus, the greater the number 
of iterations used, the longer time it takes the solver to generate a solution. In case, a quick 
solution is required, one can introduce constraints in the solver settings as this will limit the 
solver from generating random shapes. 
 
For side-side squares at the corner of the box. 
 

1. Using the polynomial boundary at dmax= 0.02 and n=2 
 

 
 

 

 
Figure 60: Boundaries selected for shape optimization. 

Fixed point Boundaries to be optimized. 
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Figure 61: Boundary displacement for side-side squares (polynomial boundary). 

 

 
 

Figure 62: Shape optimization of side- side squares (at the corner of the box) using polynomial boundary. 
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Table 12: Results of shape optimization of side-side squares (at the corner) using polynomial boundary method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The polynomial boundary method of shape optimization is advantageous when applied on 
geometries with flat boundaries unlike the free-shape boundary method because it allows the 
smoothening of corners by fixing a point along the boundaries to be optimized as this allows 
the curving of the boundaries with respect to the fixed point hence describing why the free-
shape boundary method is not applied to this geometry because the results are not satisfactory 
[8]. 
 
For corner-corner squares at the corner of the box, 
 

Using polynomial boundary at dmax= 0.028 [m], n=5. 
 
 
 

 
 

 

 

Figure 63:Boundaries selected for shape optimization. 

Bernstein 
order,n 

dmax, 
[m] 

Initial 
area, 
[m2] 

Optimized 
area, [m2] 

% 
change 
in the 
area 

Initial 
max 
E-
field, 
[V/m] 

Optimized 
max E-
field, 
[V/m] 

Elapsed 
time, 
[min] 

 
n=2 

0.02  
 
 
0.020 

0.0210 5.0  
       
 
  18.4 

12.2 3 
0.03 0.0202 1.0 11.0 4 
0.04 0.0210 5.0 12.3 7 

 
n=3 

0.02 0.0220 10 13.5 5 
0.03 0.0205 2.5 10.1 5 
0.04 0.0208 4.0 11.1 6 

 
n=4 

0.02 0.0210 5.0 10.5 3 
0.03 0.0204 2.3 12.5 6 
0.04 0.0209 4.8 10.0 8 

Boundary to be 
optimized. 

Fixed point Boundary to be optimized. 
 

Fixed point 
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Figure 64: Boundary displacement for corner-corner squares 

 

 
 

Figure 65: Shape optimization of corner-corner squares. 

 
 
 



 

59 
 

Table 13: Results of shape optimization of corner-corner squares using polynomial boundary method (at the corner). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 66: Electric field distribution on the surface of corner-corner squares versus iteration number. 

Conclusively, different formulations of the objective function generate relatively similar 
results regardless of the shape optimization method used.  

 When the objective function of optimization is formulated to be the E-factor; ideally 
the aim is to maximize it to unity, thus as the E-factor increases, the field distribution 
becomes uniform unlike cases when the E-factor approaches zero where the field is 
non-uniform; thus, causing local field intensifications on the surface of the geometry. 
Figure 67 describes how the formulation of the objective function (E-factor) is 
implemented in the solver settings. 

Bernstein 
order,n 

dmax, 
[m] 

Initial 
area, 
[m2] 

Optimized 
area, [m2] 

% 
change 
in the 
area 

Initial 
max 
E-
field, 
[V/m] 

Optimized 
max E-
field, 
[V/m] 

Elapsed 
time, 
[min] 

 
n=2 

0.028  
 
 
0.079 

0.082 3.79  
       
 
53.7 

53,3 11 
0.031 0.084 4.05 48.4 12 
0.034 0.085 7.59 43.3 14 

 
n=3 

0.028 0.081 2.52 40.0 27 
0.031 0.082 3.79 39.6 31 
0.034 0.083 5.05 37.9 10 

 
n=5 

0.028 0.082 3.70 32.8 23 
0.031 0.082 3.79 37.4 8 
0.034 0.081  2.52 35.7 5 
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Figure 67: The formulation of the objective function (E-factor) in the shape optimization solver settings. 

 The objective function can be formulated as the minimization of the maximum 
electric field strength as shown in figure 66 and 68. 

 

 
 

Figure 68: The formulation of the objective function (electric field strength) in the solver settings. 
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3.1.3 3D-voltage divider 
3.1.3.1 3D-voltage divider at the center 
 
The electrostatic field was computed in 3D whereby the materials assigned to the imported 
geometry are. 

1. Aluminum: which is assigned to the cone-shaped top, toroid of the voltage divider. 
2. FR4 circuit board is assigned to the vertical cylindrical support to the top-part. 
3. Air medium: is assigned to the cubical box that encloses the voltage divider. As 

shown in figure 69 below. 
 

 
 

Figure 69: Test set-up of the voltage divider in COMSOL. 

3.1.3.2 The boundary conditions 
 
In the physics interface, the nodes added are the “ground” and “electric potential”. These 
nodes are assigned to different boundaries of the finalized imported geometry whereby the 
cone-shaped, toroidal top part is assigned a nominal voltage of 400 [kV]. The bottom surface 
of the vertical cylindrical part and the walls of the cubical box are assigned to be the ground 
as such typically is used to ensure the safety of the measuring device and other equipment 
outside the HV laboratory. However, the top part of the box is set to be the zero-charge, as 
shown in figure 70 below. 

Air medium 

aluminium 

FR4 Circuit 
board 
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Figure 70: Finalized geometry of the voltage divider with boundary conditions. 

 

3.1.3.3 Mesh adjustments 
 
COMSOL provides different mesh generation options and sizes depend on the physical 
problem to be computed. However, depending on the users need to obtain accurate results 
during post-processing part, it is important to use built-in algorithms of mesh generators as a 
way of adjusting the mesh distribution along the areas of interest. A typical example is 
described in figure 71. However, for the necessity of reducing the number of degrees of 
freedom and the size of the problem, it is recommended to use a physics-generated mesh to 
avoid overwhelming the optimization solver which slows down the simulation speed to a 
halt. 
In figure 71 it is clearly observed that the regions of interest defined as the regions where the 
electric field strength is expected to be enhanced requiring meshing of the boundary elements 
to a much finer mesh such that the results of the computation are accurate. Other regions of 
the box assigned to be the ground thus don’t need to be re-meshed because the field strength 
is expected to be lower and are of less interest in the analysis. 

the bottom surface of 
the vertical 

cylindrical part 
(ground) 

walls of the cubical box 
(ground) 

cone-shaped, toroidal top part 
(Electric potential 400 [kV]) 

Zero-charged 
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Figure 71: Meshing of the voltage divider at the center of the box. 

 

3.1.3.4 Es-study of 3D-voltage divider (center) 
 
The simulation results allow to establish a reference value of the maximum electric field 
during the optimization process. The maximum value of the electric field on the initial 
geometry of the voltage divider is 2.4 [kV/mm] as seen from figure 72 The voltage divider is 
geometrically and electrically symmetrical amongst 2 planes since it is placed at the center of 
the box. Furthermore, the electric field appears nearly axisymmetric since the separation 
distance between the high electric potential toroidal screen is far from the ground and thus the 
field enhancement will not be very significant. The top part of the box which can be 
considered as the ceiling of the high voltage laboratory, will experience negligible electric 
field strength as it is assigned to be zero-charged. 
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Figure 72: Es-study of voltage divider at the center of the box. 

 

 
 

Figure 73: (Bottom view) of the es-study of voltage divider at the center of the box. 
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Figure 74: (Top view) of the es-study of voltage divider at the center of the box. 

 

3.1.3.5 Shape optimization of 3D-voltage dividers at the center 
 
The shape optimization of 3D- voltage dividers is performed by adding a “free-shape domain 
and the “free-shape boundary node” to perform optimization on the selected boundaries. 
Free-shape boundary uses features like the maximum displacement, dmax in [meters] to 
regulate the percentage change of the original geometry whereby the default value is dmax = 
0.2 [m] which is equivalent to 5% of the boundary box. Another feature of the free-shape 
boundary method of shape optimization is the “minimum filter size, Rmin” which 
corresponds to 1.5 and 2 times the maximum displacement [9] [10]. Therefore, this requires a 
careful selection of dmax and Rmin parameters, whereby it is advisable to select a maximum 
displacement, dmax not too large or the minimum filter size, Rmin not too small to avoid 
convergence errors during the computation. Additionally, the shape optimization algorithm of 
3D- voltage dividers consist of the following features: 
 

1. Probe selection: An objective function is added by using a boundary probe that 
computes the maximum electric field strength on the boundaries of the cone-
shaped & toroidal part of the 3D-voltage divider. It is used in the shape 
optimization solver settings as the objective function such that the maximum 
electric field strength is minimized. 

 
2. Shape Optimization solver: A shape optimization study is performed based on the 

initially computed electric field strength value = 2.41 [kV/mm]. In this case the 
method of optimization used in this problem is “MMA” because it is characterized to 
be faster than the other gradient-based solver types.  
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Figure 75: (Top view) of the optimized voltage divider at the center. 

 

 
 

Figure 76: (Side view) of the optimized voltage divider at the center. 
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Figure 77: Inner view of the voltage divider. 

 

 
 

Figure 78: Optimized voltage divider (center) with dmax= 0,2 [m] and Rmin= small. 

Conclusively, it is observed that the toroidal screen of the voltage divider is not subjected to 
significant shape deformation because of the selected minimum filter size, Rmin= small as 
this will not influence any change in the circumference of the toroidal screen. 
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3.1.3.6 3D-voltage divider at the corner 
 
The electric field strength of the voltage divider is analyzed by considering two important 
cases, which involve the computation of electric field strength at different locations of the 
voltage divider which will helps drawing a conclusion about the effectiveness of the shape 
optimization. Hence, the magnitude of the electric field strength at the top of the toroid of the 
voltage divider when placed at different locations enclosed in a box is evaluated. 
 
The procedure of performing the electrostatic study is identical to the previous case with the 
only aspect that changed being the location of the initial geometry as described in figure 79. 

 
 

Figure 79: Meshing of the voltage divider (at the corner). 

 

3.1.3.7 Es-study of the 3D-voltage divider (at the corner) 
 
As the voltage divider approaches the proximity of the wall, the maximum electric field 
strength also increases as shown in the figure 80. Due to this proximity the field strength on 
the surface of the toroidal screen is expected be significantly increased, because of the field 
enhancements caused by the decreased distance between the grounded walls and the high 
voltage potential at the top part of the voltage divider. As observed during the shape 
optimization, when the electric field strength was minimized the overall shape of the toroidal 
part of the voltage divider was flattened and deformed to relieve this enhancement. 
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Figure 80: Es-study of voltage divider at the corner of the box. 

 

3.1.3.8 Shape optimization of 3D-voltage dividers (at corner) 
 
The shape optimization of the 3D- voltage divider was performed by adding a “free-shape 
domain and the” free-shape boundary” node for adding the control variables such as the 
maximum displacement, “dmax” which was set at 0.2 [m] and the minimum filtering size 
was selected to be small.  

 
 

Figure 81: (Front view) of shape optimization of the voltage divider. 
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Figure 82: (Inner view) of shape optimization of the voltage divider.  

 

 

Figure 83: (Top view) of shape optimization of the voltage divider. 

  



 

71 
 

 

4 Discussion 
 

4.1 3D-scanning 
 
It is important take into consideration suggestions summarized below to ensure the scanning 
process goes smoothly, ensuring increased quality in the scans; 

 If possible, it is important to perform the scanning process after clearing the space 
around the physical object to be scanned.  Thereby other objects in proximity, or in 
the background which are not supposed to appear don’t hinder the process of 
scanning. Otherwise, if a congested room or laboratory full of equipment is to be 
scanned as it is, the physical objects to be optimized have at least to be enough away 
from other equipment to avoid accidents during the scanning, and in post-processing 
it is possible to exclude regions not of interest. 

 From a technical perspective, it is important to check the accuracy of the 3D-scanner 
by means of calibration. Here, commercial products typically feature built-in 
methodology. 

4.2 Shape optimization 
 

4.2.1 2D- circles (symmetric case) 
 
Using the free-shape boundary method from table 3, the following aspects were observed: 
 

 As the maximum displacement, dmax increases the percentage change in the area 
also relatively increases as it is the maximum displacement that determines how 
much the boundaries of the circle will be expanded or contracted. Thus, any form 
of deformation in the shape of the circle must correspond to an areal change. 

 
Using the polynomial boundary method for 2D-circles (symmetric case) from table 4 it is 
observed that: 
 

 For the first iteration at n=1 the average shape increase is 3.74% while for the second 
iteration at n=2 is 3.75%, and the third iteration is 4.29%. This is caused by the higher 
the degree of the Bernstein equation, creating a more significant effect of the 
smoothing equations on the circle boundaries. 

 
  As the order of the Bernstein polynomial increases, the elapsed time of computation 

increases accordingly, because the optimization solver is trying to generate new 
shapes of the boundaries that are largely dependent on the formulated equation of the 
Bezier curve, the latter now having a much bigger degree of freedom. Since volume 
constraints are not applied, it will take more time for the solutions to converge. 

 

 The lower the order of the Bernstein polynomial, the larger the change in the overall 
area of the initial geometry of the circle, yielding for this case a sharper decrease in 
the magnitude of the maximum electric field strength. 
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4.2.2 2D-circles (corner) 
 
Using the polynomial boundary optimization results in the table 10, from which the following 
observations were made: 
 

 At n=2, there is not much change in the surface area even though the maximum 
displacement is increasing; this is because the gradient- based solver, MMA which 
was used in this problem takes into consideration the order of the polynomial degree, 
meaning that when it derivates the second degree polynomial of n=2, which can be  
mathematically described as a parabola, the result of the derivation will be 
approximately a linear function hence the boundaries will tend to be straight. 
Therefore, while the degree of the optimized shape tends to be reduced, it will make 
the optimization process more robust. 

 
 In case significant shape changes are demanded, it is advisable to increase the degree 

of the polynomial, i.e., n>2. However, this increases the computation time 
accordingly. 
 

4.2.3 2D-squares 
 

4.2.3.1 Side-side (symmetric case) 
 
The shape optimization of side-side squares, at the center of the box, using the free-shape 
boundary method from the table 7 yielded the following findings: 

 
 When the minimum filter size, Rmin is large and the maximum displacement, 

dmax increases; the incremental surface area of the squares increases from 25% to 
37.5%, because the solver is given more freedom to move the boundaries in any 
direction since the solver is using the method of iteration of points to perform 
optimization. This will also increase the elapsed time of the computation. 

 
 As the minimum filter size decreases, the solution converges more quickly, which 

is shown by how much the elapsed time decreases, this is because the amount of 
iteration points that are handled by the solver are decreased thus increasing the 
speed of its performance.  

 

4.2.3.2 Corner-corner (symmetric case) 
 

For the corner-corner squares, using the polynomial boundary method with results 
shown in the table 8, further insight was made: 
 

 A bigger change in surface area occurred at higher orders, i.e., at n>2, as observed in 
the table 8, the average increase at n=4 is approximately 9%, and at n=3 it is 6%. For 
this specific type of problem, “fixed points” played a key role in making the 
boundaries flexible to move, hence making them to be more curved after 
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optimization, thus strongly affecting to which degree the electric field is minimized 
since the sharp points were eliminated at the points of interest.  

 

4.2.3.3 Side-side squares (corner) 
 
From table 12, showing the optimization using the polynomial boundary, it was observed 
that: 

 The average elapsed solving time is lower compared to the other cases. This is 
because the solver’s performance was enhanced by using a smaller tolerance in the 
solver settings, leading to a decrease in accumulated errors, resulting in a faster 
convergence time since the time steps were smaller. 

 

4.2.3.4 Corner-corner squares (corner case) 
 
From the table 13 it is observed that: 

 The changes in the surface area resulting from the optimization are quite minimal 
whereby the average change in the surface area for n=2 is 3.47%, for n=3 is 3.78%, 
n=5 is 5.33%. This shows how the boundaries of the squares resist to changes, thus 
requires adding features to the algorithm like adding “fixed points” to render more 
flexibility to the free displacement of the boundaries about the fixed point. 

 

4.2.4 Voltage divider 
 
The free-shape boundary method of adding control variables to the optimization problem is 
suitable for problems involving the 3D-geometries such as the 3D-voltage divider. The free-
shape boundary method utilizes a maximum displacement, dmax which was set to a default 
value 0.2[m] controlling the change in the overall geometry from the initial one. The errors 
associated with using the free-shape boundary method arise as forementioned in the 
polynomial boundary method. It is recommendable to use a maximum displacement in range 
of 0.2 up to 0.8 [m] for the optimization problem to function smoothly without any 
computational errors. The convergence rate can be improved through careful selection of the 
initial values. 
 
In the optimization of the 3D-voltage divider, the vertical cylinder was not subjected to shape 
optimization, this means that it should not appear in the selection list of boundaries to be free-
shape boundary optimized. Including it could result in the deformation of the vertical 
cylindrical part, which is impractical in the design of the voltage divider and typically 
manufacturable. 
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5 Conclusion and suggestions for the future work 
 
The conclusions of this work are as follows: 
 

 Optimization tools provided in COMSOL Multiphysics have been adopted for 
electrostatic studies, whereby it has enabled the possibility to merge the objective 
functions of the shape optimization with stationary solvers hence allowing to choose a 
suitable optimization solver. 

 Best practices for the selection of parameters of the optimization algorithms i.e., 
gradient based, and gradient-free solvers have been established whereby gradient 
based optimization solvers such as SNOPT, IPOPT are selected based on the number 
and complexity of constraints dealt with while MMA was selected to handle problems 
with many control variables such as some cases of shape optimization of 3D-voltage 
dividers. 

 The results of shape optimization of a voltage divider show that the shape of the 
toroidal screen can be adapted to changes in the position of the voltage divider. The 
final optimized shape of the 3D-voltage divider can be manufactured using 3D- 
printing. 

 
 

Even though, a large percentage of this project was implemented, there is still room for 
further studies to be performed. However, the fundamental theory and test simulations 
using high voltage test setups from the Chalmers High voltage laboratory have been done. 
 
Different methods of controlling the electric field strength like using grading rings were 
not explored, although there was a high possibility that using these would achieve the 
objective of further minimizing the electric field strength below the breakdown value. 
 
The implementation of this project in COMSOL Multiphysics has helped in providing a 
deep understanding of what is happening in the real world of high voltage engineering in 
which if the optimization module is fully explored would bring a much deeper 
understanding about the optimal shape for individual applications. 
 
Lastly, the practical aspects of geometry optimization involving scanning certain setups, 
calculating their electric field strength, manufacturing optimized electrodes, and 
performing withstand tests of the printed high voltage electrodes remains a topic to be 
covered in future work. 
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