
Evaluation of models for forecasting traf-
fic speed and classifying traffic delay in
European cities

Exploring the ability of classification models to make predic-
tions on unseen city data

Master’s thesis in Computer science and engineering

ARMAND GHAFFARPOUR, OSCAR HANSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Evaluation of models for forecasting traffic speed
and classifying traffic delay in European cities

Exploring the ability of classification models to make predictions on
unseen city data

ARMAND GHAFFARPOUR, OSCAR HANSSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Evaluation of models for forecasting traffic speed and classifying traffic delay in
European cities
Exploring the ability of classification models to make predictions on unseen city
data
ARMAND GHAFFARPOUR, OSCAR HANSSON

© ARMAND GHAFFARPOUR, OSCAR HANSSON, 2021.

Supervisor: Vilhelm Verendel, Computer Science and Engineering
Examiner: Daniel Johansson, Space, Earth and Environment

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Evaluation of models for forecasting traffic speed and classifying traffic delay in
European cities Exploring the ability of classification models to make predictions on
unseen city data
ARMAND GHAFFARPOUR, OSCAR HANSSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Congestion and traffic delays are big challenges that cities face today. In this the-
sis, we use traffic speed data from 2018 for forecasting traffic speeds and classifying
traffic delays. The data consists of 15-minute time-intervals and covers 15 European
cities. As a starting point we investigate if machine learning can be used to forecast
traffic speeds, specifically if more advanced forecasting models improve upon simple
statistical models. It is also investigated if weather variables such as precipitation
and temperature improve the forecasting models. Forecasting models require con-
tinuous traffic speed input data in order to make predictions about the future. To
create more generic models capable of making predictions regardless of the current
traffic speed, binary classification models are used with the goal of classifying if
there is a delay or not at some point in time. The traffic speed data is transformed
into a binary value, 1 for when there is a delay and 0 for when there is no delay.
This is used as the target variable of the models. For the classification models, we
use temporal features, weather features and graph-related centrality features that
describe the road location. We also take into account the infrastructure along a
road as well as the area around a road that might have an impact on traffic con-
gestion. A larger portion of this work is focused on the binary classification with
regards to traffic delay. The classification is done to answer three questions. What
are the most important features for creating classification models? How well do the
models perform on untrained city data? Do the models improve when increasing
the number of training cities?

Regardless if weather data was used in conjunction with traffic speed data as input
to the model, more advanced forecasting models didn’t improve the performance
significantly. With regards to the classification results, the most important features
were found to be related to public transportation, where bus stops were the most
prominent feature followed by schools. Moreover, it was shown that generalizing the
trained models to new city data was indeed possible and that it performed better
than a random classifier (a classifier that guesses the class for an input). Finally the
results showed an overall increase in performance of the classifiers when increasing
the number of training cities but more work is needed for optimizing the models in
the future.

Keywords: computer science, thesis, traffic data, machine learning, classification,
forecasting, congestion, time series.

v

Acknowledgements
We would like to thank our supervisor Vilhelm Verendel for his advise and insights
throughout the course of this thesis. His guidance was vital for its success. We
would also like to thank our examiner Daniel Johansson for his time and expertise
regarding climate-related issues.

Armand Ghaffarpour & Oscar Hansson, Gothenburg, August 2021

vii

Contents

List of Figures xiii

List of Tables xix

1 Introduction 1
1.1 Thesis Goal . 2
1.2 Limitations . 2

2 Theory 3
2.1 Evaluation strategy . 3

2.1.1 Baseline Model . 3
2.2 Missing Data . 3

2.2.1 Mean Imputation . 3
2.2.2 Train and Test split . 3

2.3 Forecasting Models . 4
2.3.1 Time Series . 4
2.3.2 Autocorrelation . 4
2.3.3 Forecasting Model . 4
2.3.4 Auto- Regressive Model(AR) 4
2.3.5 Stationary time series . 5
2.3.6 Differencing . 5
2.3.7 Unit Root tests . 5
2.3.8 White noise time series . 6

2.4 Graph centrality . 6
2.4.1 Degree centrality . 6
2.4.2 In-degree centrality . 6
2.4.3 Out-degree centrality . 6
2.4.4 Closeness centrality . 7

2.5 Artificial Neural Network . 7
2.5.1 Neuron . 8
2.5.2 Activation function . 9
2.5.3 Supervised Training . 9
2.5.4 Weights . 9
2.5.5 Layers . 10
2.5.6 Loss Function . 10
2.5.7 Gradient descent methods/Optimization strategies 10

ix

Contents

2.5.8 Back-propagation . 11
2.5.9 Multi Layer Perceptron (MLP) 12
2.5.10 Error measurement . 12

2.6 Classification models . 12
2.6.1 Logistic Regression Classifier 13
2.6.2 Decision Tree . 15
2.6.3 Random Forest Classifier . 16
2.6.4 Cross validation . 16
2.6.5 Accuracy Measurement . 17

3 Data 21
3.1 OpenStreetMap . 21
3.2 HERE Traffic Data . 21

3.2.1 Speed data . 21
3.2.2 Road coordinate representation 22
3.2.3 Road length . 22
3.2.4 Cities . 23
3.2.5 Road Coverage per city . 24
3.2.6 Road Coverage in a city . 25

3.3 Weather data . 26

4 Methods 27
4.1 Analysis . 27

4.1.1 Traffic speed data . 27
4.1.2 Stationary or non-stationary and transformations 29

4.2 Weather . 29
4.3 Forecasting . 29

4.3.1 Preprocessing . 29
4.3.2 Baseline model . 30
4.3.3 AR . 30
4.3.4 MLP . 30
4.3.5 Evaluation . 30

4.4 Feature Extraction . 31
4.4.1 POI . 32
4.4.2 Centrality . 32

4.5 Classification . 33
4.5.1 Transforming the traffic speed into delays 33
4.5.2 Naive Majority-Based Classifier 34
4.5.3 Logistic Regression Classifier 34
4.5.4 Random Forest Classifier . 34
4.5.5 Feature vector . 35
4.5.6 Selecting subset of cities . 36
4.5.7 Preprocessing . 39
4.5.8 Evaluation . 41

5 Results 45
5.1 Analysis . 45

x

Contents

5.1.1 Checking for stationarity . 45
5.2 Forecasting . 45
5.3 Classification . 46

5.3.1 Sampling roads . 46
5.3.2 Scenario I . 47
5.3.3 Scenario II . 73
5.3.4 Scenario III . 76

6 Conclusion 79
6.1 Discussion . 79

6.1.1 Forecasting . 79
6.1.2 Classification . 80

6.2 Future considerations . 85
6.2.1 Refined feature selection . 85
6.2.2 Static and non-static features 86
6.2.3 Climate change and extreme weather 86
6.2.4 Final words . 86

Bibliography 89

A Appendix 1 I
A.1 Scenario I: Naive Majority Classifier I

A.1.1 Metric Scores . I
A.1.2 ROC-curves . I
A.1.3 Precision-recall-curves . II

A.2 Scenario I: Logistic Regression Classifier III
A.2.1 Metric Scores . III

A.3 Scenario I: Random Forest Classifier VII
A.3.1 Feature Importance . VII
A.3.2 Metric Scores . IX

A.4 Scenario I: Comparison . XIV
A.5 Scenario II: Random Forest Classifier XV

A.5.1 Feature Importance . XV
A.5.2 Metric Scores . XVI

xi

Contents

xii

List of Figures

2.1 A simple neural network architecture comprised of the input layer
containing two neurons and the output layer containing one neuron. . 7

2.2 A neural network architecture comprised of the input layer containing
two neurons, the hidden layer containing one neuron and the output
layer containing one neuron. 8

2.3 A plot of the generic sigmoid function sig(t) = 1
1+e−t 14

2.4 A plot of the log10 function, y = log10(x) 15
2.5 An example of a ROC-curve. The dotted line represents the case

where a model cannot discern two classes and essentially guesses the
class. The black line represents a good model where the true positive
rate is high and the false positive rate is low. Figure source: [21]. . . 19

2.6 The left precision-recall-curve is for a balanced data set and the right
shows an imbalanced data set. y-axis represents the precision and the
x-axis represents the recall. 20

3.1 Map of Europe showing the selected cities as colored dots. 23
3.2 Map showing road coverage in Gothenburg, Sweden. 25

4.1 Box plot showing the mean value observed on each road. 28
4.2 Box plot showing the auto-correlation lags for each road. 28
4.3 Plots showing the centrality distribution in each city used in the eval-

uation of the classifiers. 37
4.4 Plots showing the road length distribution in each city used in the

evaluation of the classifiers. All cities have a large portion of roads
longer than 100 meters. 38

4.5 Normal distribution plot showing the range of medium density roads
as the area in the middle, the range of low density roads to the left
and high density roads to the right. 40

5.1 A line plot showing the average RMSE score for the Baseline, AR,
univariate MLP and multivariate MLP model. 46

5.2 The maps show the roads in the city of Gothenburg, Sweden. The
gray roads represent all roads of the city whereas the highlighted
roads are the ones corresponding to the HERE data. 47

xiii

List of Figures

5.3 A stacked bar chart showing the importances of every feature for
each fitted pair of capital cities. The x axis shows the pairs of cities
that were used when fitting the classifier and the y axis shows the
percentage of contribution of the features. Each feature is color-
coded separately but similar features are coded in different shades of
the same color. One example is temperature and precipitation where
both are of a different shade of orange. The feature importances are
sorted on the grouped similar features. One such group is Highway
Bus Stop Area & Corridor. 48

5.4 A stacked bar chart showing the importances of every feature for each
fitted pair of non-capital cities. The colors of each feature is the same
as the capitals bar chart for easier comparison. Since there can be
differences in the feature importances compared to the capitals the
sort order might differ. 49

5.5 Metric Scores for each configuration. For each train configuration the
Accuracy, Precision, Recall and AUC is plotted on a straight line for
easy comparison between configurations. The top plot corresponds to
the average test score acquired from the cross validation folds. The
test cities (used for calculating the validation scores for the plot in
the bottom) are Gothenburg, Florence, Barcelona, Berlin, Stockholm
and Madrid in that order. Note: Each plot consists of both non-
capital and capital configurations. The first three entries from the
left corresponds to the non-capital configurations and the remaining
three entries corresponds to the capital configurations. 51
(a) Cross Validation . 51
(b) Validation i.e test city . 52

5.6 Train set: {Gothenburg, Florence} Test set: {Barcelona}. 53
(a) Cross Validation . 53
(b) Validation i.e test city . 53

5.7 Train set: {Gothenburg, Florence}. Test set: {Barcelona}. 55
(a) Cross Validation . 55
(b) Validation i.e test city . 55

5.8 Metric Scores for each configuration. The cross validation scores
are on the plot in the top. The test cities (used for calculating the
test validation scores for the bottom plot) are Gothenburg, Florence,
Barcelona, Berlin, Stockholm and Madrid in that order. 57
(a) Cross Validation . 57
(b) Validation i.e test cities . 58

5.9 Train set: {Gothenburg, Florence}. Test set: {Barcelona}. 59
(a) Cross Validation . 59
(b) Validation i.e test city . 60

5.10 Train set: {Stockholm, Madrid}. Test set: {Berlin} 61
(a) Cross Validation . 61
(b) Validation i.e test city . 61

5.11 Train set: {Gothenburg, Florence}. Test set: {Barcelona}. 62
(a) Cross Validation . 62

xiv

List of Figures

(b) Validation i.e test city . 63
5.12 Train set: {Stockholm, Madrid}. Test set: {Berlin}. 64

(a) Cross Validation . 64
(b) Validation i.e test city . 64

5.13 Metric Scores for each configuration. The test cities (used for cal-
culating the validation scores for the bottom plot) are Gothenburg,
Florence, Barcelona, Berlin, Stockholm and Madrid in that order. . . 65
(a) Cross Validation . 65
(b) Validation i.e test cities . 66

5.14 Train set: {Gothenburg, Florence}. Test set: {Barcelona}. 67
(a) Cross Validation . 67
(b) Validation i.e test city . 68

5.15 Train set: {Stockholm, Madrid}. Test set: {Berlin}. 69
(a) Cross Validation . 69
(b) Validation i.e test city . 69

5.16 Train set: {Gothenburg, Florence}. Test set: {Barcelona}. 70
(a) Cross Validation . 70
(b) Validation i.e test city . 71

5.17 Train set: {Stockholm, Madrid}. Test set: {Berlin}. 72
(a) Cross Validation . 72
(b) Validation i.e test city . 72

5.18 A stacked bar chart showing the importances of every feature for
averaged samples of 10 configurations for each test city. One sample
contains 10 configurations of city pairs used for training the model.
Each configuration will have a feature importance list. Since there are
10 configurations for each test city there will be 10 such lists in total
so these are averaged in order to get the above feature importance
plot. 74

5.19 Averaged metric scores of sampled configurations compared to Sce-
nario I. The scores from Scenario I have decreased size and are trans-
parent in order to distinguish them from Scenario II. The upper plot
corresponds to the scores of the Cross Validation case and the lower
plot corresponds to the scores of the Validation case. The test city
for each set of samples is shown on the x-axis. 75
(a) Cross Validation . 75
(b) Validation i.e test cities . 76

6.1 The figures are two box plots illustrating the difference in performance
between Random Forest and the Logistic Regression for the cross
validation case. The top figure shows a comparison in precision while
the bottom figure shows the comparison in Recall. 82
(a) Precision Box plots . 82
(b) Recall Box plots . 83

A.1 Metric Scores for each configuration. The test cities (used for calcu-
lating the validation scores for the plot to the right) are Gothenburg,
Florence, Barcelona, Berlin, Stockholm and Madrid in that order. . . I

xv

List of Figures

A.2 Train set: {Berlin, Madrid}. Test set: {Stockholm}. II
A.3 Train set: {Berlin, Madrid}. Test set: {Stockholm}. II
A.4 Metric Scores for each configuration. The test cities (used for calcu-

lating the validation scores for the plot to the right) are Gothenburg,
Florence, Barcelona, Berlin, Stockholm and Madrid in that order. . . III

A.5 Train set: {Florence, Barcelona}. Test set: {Gothenburg}. III
A.6 Train set: {Gothenburg, Barcelona}. Test set: {Florence}. IV
A.7 Train set: {Gothenburg, Florence}. Test set: {Barcelona}. IV
A.8 Train set: {Stockholm, Madrid}. Test set: {Berlin}. IV
A.9 Train set: {Berlin, Madrid}. Test set: {Stockholm}. V
A.10 Train set: {Berlin, Stockholm}. Test set: {Madrid}. V
A.11 Train set: {Florence, Barcelona}. Test set: {Gothenburg}. V
A.12 Train set: {Gothenburg, Barcelona}. Test set: {Florence}. VI
A.13 Train set: {Gothenburg, Florence}. Test set: {Barcelona}. VI
A.14 Train set: {Stockholm, Madrid}. Test set: {Berlin}. VI
A.15 Train set: {Berlin, Madrid}. Test set: {Stockholm}. VII
A.16 Train set: {Berlin, Stockholm}. Test set: {Madrid}. VII
A.17 Showing feature importances in non-capital-configurations. VIII
A.18 Showing feature importances in capital-configurations. IX
A.19 Metric Scores for each configuration. The test cities (used for calcu-

lating the validation scores for the plot to the right) are Gothenburg,
Florence, Barcelona, Berlin, Stockholm and Madrid in that order. . . IX

A.20 Train set: {Florence, Barcelona}. Test set: {Gothenburg}. X
A.21 Train set: {Gothenburg, Barcelona}. Test set: {Florence}. X
A.22 Train set: {Gothenburg, Florence}. Test set: {Barcelona}. X
A.23 Train set: {Stockholm, Madrid}. Test set: {Berlin}. XI
A.24 Train set: {Berlin, Madrid}. Test set: {Stockholm}. XI
A.25 Train set: {Berlin, Stockholm}. Test set: {Madrid}. XI
A.26 Train set: {Florence, Barcelona}. Test set: {Gothenburg}. XII
A.27 Train set: {Gothenburg, Barcelona}. Test set: {Florence}. XII
A.28 Train set: {Gothenburg, Florence}. Test set: {Barcelona}. XII
A.29 Train set: {Stockholm, Madrid}. Test set: {Berlin}. XIII
A.30 Train set: {Berlin, Madrid}. Test set: {Stockholm}. XIII
A.31 Train set: {Berlin, Stockholm}. Test set: {Madrid}. XIII
A.32 Box-plot showing precision scores for Logistic Regression Classifier

and Random Forest Classifier side-by-side. XIV
A.33 Box-plot showing recall scores for Logistic Regression Classifier and

Random Forest Classifierside-by-side. XIV
A.34 A stacked bar chart showing the importances of every feature for

averaged samples of 10 configurations for each test city. XV
A.35 Averaged metric scores of sampled configurations. The test cities

for the average score for each set of 10 samples (used for calculat-
ing the validation scores for the last plot) are Gothenburg, Florence,
Barcelona, Berlin, Stockholm and Madrid in that order. XVI

A.36 Train set: {Barcelona, Florence}. Test set: {Berlin}. XVII
A.37 Train set: {Barcelona, Gothenburg}. Test set: {Berlin}. XVII

xvi

List of Figures

A.38 Train set: {Florence, Madrid}. Test set: {Berlin}. XVII
A.39 Train set: {Stockholm, Barcelona}. Test set: {Berlin}. XVIII

xvii

List of Figures

xviii

List of Tables

3.1 Table showing road coverage per city. Each row includes the exact
amount of edges covered, total number of edges and the coverage. . . 24

4.1 Table showing Univariate Input Vector, speed is the only feature. . . 31
4.2 Table showing the Multivariate Input Vector. It includes speed mea-

sured in km/h, precipitation measured in meters and temperature
measured in Kelvin. 31

4.3 Table showing the 6 corridor features 32
4.4 Table showing the 6 area features . 32
4.5 Table showing the three centrality metrics used 33
4.6 Example of a Feature Vector. Each column in the table represents

one feature. 36
4.7 Evaluation group of non-capitals . 42
4.8 Evaluation group of capitals . 42

xix

List of Tables

xx

1
Introduction

Congestion and traffic delays are still one of the largest challenges that big cities
face today. In 2004 transportation accounted for 33% of the total CO2 emissions in
USA and 80% of these were coming from cars[12]. Furthermore, the estimated total
delay caused by traffic congestion was 6 billion hours each year in the United States
in 1994[13]. The societal costs of congestion are high and besides lost wages and
inconvenience costs in disrupting economic activity, there are also costs of extra fuel,
air pollution and many others. This makes analyzing traffic speeds very important
for prediction and prevention of traffic congestion.

The area of traffic congestion prediction has been explored before. Kong, et al.
looked at the use of floating car trajectory data for estimation and prediction of
traffic congestion[16]. Another study conducted at the University of Texas investi-
gated the use of deep neural networks to track traffic congestion and predict short-
term traffic congestion where the congestion states were calculated using neighboring
measuring stations found in California[18].

The amount of traffic delay is closely correlated to traffic speed since a low traffic
speed can be translated to some measure of delay or congestion. One aim is there-
fore to evaluate different forecasting models, both statistical and machine learning
models, in terms of predicting traffic speed. Forecasting models require continuous
input data in order to make predictions about the future. This is not ideal if the
goal is to use a trained model on new cities that don’t have any traffic data. In that
context, a classification model is more suitable. The original traffic speed data will
be transformed into a measurement of delay and used as the output vector during
training and evaluation of the classification models. The input vector will instead
consist of features such as time of day, week day, weather etc. Focus will therefore
be on developing binary classification models for determining if there is a delay at
a road at a given time.

The traffic speed data used in this project was collected from 50 cities during all of
2018. Each city contains traffic data for a number of roads covered in that city. The
traffic speed data for each road was gathered in 15-minute time intervals. For this
thesis, 6 months of the traffic data was used from 15 European cities. The data was
acquired using the HERE framework[42].

1

1. Introduction

1.1 Thesis Goal
There are two main goals of this thesis work. One is to explore different statistical
and machine learning models for forecasting traffic speeds. Are there any benefits
to using more advanced models when forecasting traffic speeds? How will weather
affect our predictions? These might be important factors to consider when building
models with extreme weather in the future based on climate change. Today’s world
is ever-changing, as are weather conditions, temperatures and other areas related to
climate change. As we move into the future this is an important factor to consider.
Transportation is one of many areas in our society that will be affected. Koetse et
al. presents empirical findings on the effect on transportation world-wide due to
climate change[15]. Unforeseen precipitation such as heavy rain- or snowfall proved
to increase the risk of fatal accidents by up to 75% according to the overview study.

Another important goal is to develop classification models for classifying traffic
delay. This includes the following steps. The translation of traffic speed data into a
measurement of delay. Retrieval of relevant features used for training classification
models on input-output data, where the input consists of several retrieved features
and the output consists of a binary class (1 if there is a delay and 0 if there is no
delay). By exploring different classification models and different ways of training
the models the aim is thereafter to answer the following questions:

• What features have the best predictive capabilities?
• How well does generalization of the models between cities really work? Does

it only work when the cities share a lot of features such as structure, culture
and technology?

• Will training on more cities improve the performance of our models on new
data? If so, how much?

1.2 Limitations
Due to changes in data collection for the first six months of 2018 and the last six
months we chose to exclude the later part of 2018 and only work on the first six
months of data. Furthermore, only a subset of the original cities were used.

2

2
Theory

In this chapter the theory used during analysis, forecasting and classification will
be explained. This will be done in chronological order, starting with the theory for
analysis.

2.1 Evaluation strategy
This section deals with a typical evaluation strategy for model evaluation where the
data is split in training and test data.

2.1.1 Baseline Model
Often when comparing models’ performance some kind of model is used as a baseline
for achieving a good comparison. This baseline model is often a naive implementa-
tion which often means that it wont be good enough for real-world use.

2.2 Missing Data
When working with large data sets acquired over a period of time there is often the
case that some values are missing for one reason or the other. In machine learning
and time series forecasting missing data are not allowed. There are different ways
of handling missing data but many focus on filling in (imputing) the data in some
way. A few strategies for filling in missing data are presented here.

2.2.1 Mean Imputation
A mean imputation strategy takes the mean value of the data set and uses that to
replace the missing values.

2.2.2 Train and Test split
A train and test split is a way of evaluating a model and is often used in machine
learning but can also be used for evaluating statistical models such as AR. The
technique involves splitting a data set that will be used for modelling into a train
and test subset of the original data. The train subset will be used to fit or "train"
the model and the test data will be used to evaluate its performance. Usually one

3

2. Theory

allocates more data to the train subset in order to better fit the data to a given
model.

2.3 Forecasting Models
This chapter explains different models commonly used for time series forecasting.
The models explained are AR and Multi layer Perceptron (MLP). An error measure-
ment for comparing and evaluating models is also explained. Before proceeding with
an explanation of AR, the concepts Time series, Autocorrelation and Forecasting
model will be explained. After that, the concepts of stationary time series, differ-
encing, unit root test and white noise time series will be explained before proceeding
with the rest of the forecasting models.

2.3.1 Time Series
A Time series is a representation of the data as a sequence of data-points ordered
by time.

2.3.2 Autocorrelation
The auto-correlation of a variable in a time series is how that variable correlates
to a lagged version of itself. A higher value indicating a higher correlation. The
lag is usually expressed as a difference in time. To determine auto-correlation the
following auto-correlation function ρ = cov(X,X′)

σX
2 is used[45].

2.3.3 Forecasting Model
A forecasting model is a model applied to time series data in an attempt to predict
future values of one or several variables of that time series from previously observed
values.

2.3.4 Auto- Regressive Model(AR)
The most simple statistical model used in our work will be the Auto-Regressive
Model. An Auto Regressive model is, as the name entails, a model where regression
is performed on the same variable evaluating that variable as both input and output.
A time series can be modeled by a certain number of regressed variables and an error
term or white noise term ε. More formally it can be defined as a value y at time
t, that is linearly dependent on some number of previous values yt−1, yt−2, ..., yt−k.
Where k is the number of previous values that yt depends on. To this we also add a
stochastic term denoted by ε that represents the random nature of that value. The
equation for an AR(k) process is:

yt = c+
k∑
i=1

φi ∗ yt−i + εt

4

2. Theory

Where c is a constant[38]. Note that the amount of previous values a.k.a. the lag
needs to be determined. Auto-correlation is used to calculate the lag.

2.3.5 Stationary time series
A stationary time series is a series that exhibit the same properties as a stationary
process. In this context a stationary process is a time series where the properties of
that time series remain unchanged after shifting the series a certain number of steps
t in any direction[31]. Because of this a stationary time series have constant mean,
variance and auto-correlation. A stationary time series is a requirement for some
statistical regression models such as AR. Wold’s theorem states that any stationary
time series can be approximated using a linear representation of the data. Since AR
is a linear representation of the data, it needs to be stationary in order to achieve a
good approximation[32].

2.3.6 Differencing
The process of converting non-stationary time series data to stationary time series
data by calculating the difference between each consecutive data point and using
these calculated data points instead of the previous time series.

2.3.7 Unit Root tests
A unit root test can be used to determine if a time series is stationary which otherwise
might be hard to determine if the trend or other properties of the time series don’t
remain constant over time[39]. The Augmented Dickey-Fuller unit root test is one
such test which is often used[22]. To illustrate how the test works we can take an
arbitrary time series represented by an AR process with lag 1 (AR(1)):

yt = ρyt−1 + εt

The ρ is a coefficient, t is the time index and ε the error term. If |ρ| = 1 a unit root
exists and the time series is considered non-stationary, otherwise it is stationary.
Lets assume a unit root exists, with ρ = 1, it is possible to expand the equation and
get

yt = y0 +
t∑

j=1
εj

This works because ε is just the error term which is assumed to have a 0 mean
and constant variance σ2. Using the above equation and knowledge the expectation
value (mean) and variance becomes:

E(yt) = y0

VAR(yt) = σ2(ρ0 + ρ2 + ...+ ρ2(t−1))

5

2. Theory

Since ρ is a constant 1 this can be further simplified to:
VAR(yt) = σ2 ∗ t

In this case the AR(1) process violates the constant variance requirement of a sta-
tionary process and thus is not stationary. To make it stationary different trans-
formations can be used. One such transformation is to take the difference of all
consecutive values in the time series.

2.3.8 White noise time series
A white noise time series is a series with a constant mean equal to zero and a
constant variance and where the auto-correlation is close to zero. White noise time
series cannot be used for meaningful prediction. It is therefore important to first
verify that the data intended for evaluation is not a form of white noise[37].

2.4 Graph centrality
In graph theory there are many different centrality metrics, all of which aim to
calculate the importance of each vertex in a graph in some way. In this section a
sub-set of these centrality metrics are presented. These include degree centrality,
in-degree centrality, out-degree centrality and closeness centrality.

2.4.1 Degree centrality
Degree centrality is a measure of the number of adjacent neighbors to a given vertex
in a graph[58].

Cd(v) = deg(v)

where deg(v) is the number of adjacent vertices to v and Cd(v) is the degree centrality
of vertex v. Oftentimes the centrality is normalized by dividing by the maximum
possible degrees n− 1 in a graph of size n.

Cd(v) = deg(v)
n− 1

If the graph is multi-directional the maximum possible degrees can be more than
n− 1 due to loops and thus the centrality value can be more than 1.

2.4.2 In-degree centrality
In a directed graph in-degree centrality is calculated as the number of incoming
edges ein to a vertex v.

2.4.3 Out-degree centrality
In a directed graph out-degree centrality is calculated as the number of outgoing
edges eout from a vertex v.

6

2. Theory

2.4.4 Closeness centrality
The closeness measures how close, on average, a vertex is to all other vertices in a
graph[59]. It is defined as the inverse of the average distance to all other vertices:

Cc(v) = n− 1∑n−1
i=0 dist(v, vertex(i)

where dist(v, vertex(i)) is the distance between a vertex v and vertex number i in
a graph. n− 1 is the number of all other vertices in the graph.

2.5 Artificial Neural Network
An artificial neural network model aims to use features of the human brain to math-
ematically model complex problems[20]. The artificial neural network model is one
kind of machine learning model often applied in data science. In this section the
aim is to describe the different parts of a neural network to understand MLP.

The overall aim for a neural network model is to learn some behavior based on
training data. A neural network has the possibility to model both linearly separable
data as well as data which is not linearly separable where ordinary statistical models
such as linear regression or AR might fail. As the name entails a neural network is
a network of connected neurons[40]. The neurons in the network are organized in
layers that serve different purposes. In its simplest form the network has an input
layer and an output layer. The inputs correspond to the predictor variables and the
output to the explanatory variable(s). In this case the network is equivalent to a
linear regression. Figure 2.1 shows all components included in this simple neural
network. The input layer consists of two input neurons and the output layer consists
of one neuron.

Figure 2.1: A simple neural network architecture comprised of the input layer
containing two neurons and the output layer containing one neuron.

7

2. Theory

Each predictor variable has an attached coefficient called the "weight" as seen in the
connected edges from the input layer to the output layer in 2.1. This weight value is
estimated when training the model. In this example the predictory variables x1, x2
that corresponds to "Input 1" and "Input 2" will both have their own weight value,
denoted w1 and w2. Combined, the equation becomes y = x1 ∗ w1 + x2 ∗ w2 where
y is the output value.

The weight values are estimated using a learning algorithm such as back-propagation.
In essence back-propagation will make adjustments to the weight values after ev-
ery training sample. The details of back-propagation will be explained further down.

More advanced neural networks also include a number of so-called "hidden layers"
that are used when modeling non-linearly separable problems. A network with a lot
of hidden layers is often referred to as a "Deep neural network". A network that con-
tains one or more hidden layers is also called a multi-layered neural network. Since
the input is propagated through the layers such a network is usually referred to as
a multi-layered feed-forward neural network. This network architecture is presented
in Figure 2.2 containing one input layer, one hidden layer and one output layer.

Figure 2.2: A neural network architecture comprised of the input layer containing
two neurons, the hidden layer containing one neuron and the output layer containing
one neuron.

2.5.1 Neuron
The neurons in an artificial network are present in all layers of of the network
architecture. The value of the neurons in the input layer is determined by the
numerical input value for that neuron. The value of the connected neuron in the
next layer of the network is a linear combination of the input values/neurons and
the weights connected to the next neuron in the next layer. In this example the
value for a next neuron j can be represented by the following equation:

zj = bj +
2∑
i=1

wij ∗ xi

where wij is the weight value between the input neuron i to the hidden layer neuron

8

2. Theory

j and xi is the value of the input neuron i. bj is the bias value for hidden layer
neuron j. This is then fed through an activation function[40].

2.5.2 Activation function
The activation function is the final step, after summing the linear combination
of weights and inputs and adding the bias, to get an output value. There exists
several different activation functions for different purposes and can be categorized
into linear activation function and nonlinear activation functions. One example of a
linear activation functions is the binary threshold activation function suggested by
Mculloch-Pitts[20]. The binary threshold activation is defined as:

y = 1 if z ≥ Θ

y = 0 if z < Θ

where Θ = −b

An example of a nonlinear activation function is a sigmoid function. A sigmoid
function has the characteristics of an "s-shaped" function and one such function is
the logistic function:

f(z) = 1
1 + e−z

Cybenko, G. showed that a neural network with only one hidden layer and a nonlin-
ear activation function such as a sigmoid function can approximate any continuous
function f[47].
Rectifier Linear Unit (relu) is another commonly used activation function and is of-
ten the preferred choice for performance and accuracy for deep learning architectures[48].

f(z) = max(0, z)

2.5.3 Supervised Training
Supervised training is done by providing training samples where the output of those
training samples are known. The network is "supervised" in the sense that after
each run-through of the layers with a set of input values the output generated
by the network is checked against the correct output. A cost function is used to
calculate the cost using the difference between the generated output and the correct
output. An example of a cost function is the Mean Squared Error (MSE). The
cost is then used to update the weight values using a learning algorithm such as
back-propagation.

2.5.4 Weights
Each connection between one neuron in a layer to a neuron in another layer has a
weight value. This weight value is continuously modified after each training round
in order to minimize the loss function.

9

2. Theory

2.5.5 Layers
In the most simple case a neural network only has an input layer and an output
layer. For modelling more complex problems a neural network architecture is often
comprised of at least one hidden layer as well. All layers contain a pre-determined
amount of neurons. All neurons in the input layer is connected to every neuron in
the next layer and the same applies to the next layer except for the output layer.

2.5.6 Loss Function
A loss function maps the output of the neural network to some value representing
the cost of that value. The goal is often to minimize the loss function and thus
minimize the cost of the outputs of the network. An example of a loss function is
the mean squared error (MSE).

2.5.7 Gradient descent methods/Optimization strategies
Gradient methods are used to iteratively change the weight values of a network in
order to minimize the loss function. This is done by calculating the gradient of the
loss function in respect to the weight.

2.5.7.1 Gradient Descent

Gradient Descent finds a local minimum in an iterative manner. Observe the func-
tion below:

xj+1 = xj + ηjdj (2.1)

where ηj is the step length and dj is called the search direction at xj. The idea is to
get a little closer to the local minimum after each iterative step. Now observe the
Taylor expansion of the first order of f(x) at x = x0, where f is the loss function.

f(~x) ≈ f(~x0) +∇f(~x0)T (~x− ~x0)

As (Wahde, 2008, p.19) explains, the most effective way to traverse to the local
minimum from x0 such that f(x) < f(x0), is by setting the search direction to the
negative gradient at x0[4].

d0 = −∇f(x0)

With this in mind the eqn (2.1) now takes the form:

xj+1 = xj − ηj∇f(xj)

This iterative step is repeated until the gradient vanishes(convergence).

2.5.7.2 Stochastic Gradient Descent

Stochastic gradient descent(SGD) is one of the most used optimization strategies
in machine learning. SGD is in principle the same as gradient descent, the differ-
ence is that SGD selects a sample in a stochastic manner from the whole dataset

10

2. Theory

and performs gradient descent on that sample to decrease the running time of the
algorithm[5].

2.5.7.3 ADAM

ADAM is one variant of gradient descent that is common for training forecasting
methods. It uses gradient of the first order. It also performs moving average on the
portentially noisy data and gets a smoother moving average function as illustrated
below:

vt = β ∗ vt−1 + (1− β) ∗ g2
t

where β is set to a value between [0, 1) and g2
t is the element-wise square of all

gradients at time t. gt = ∇fθ(θ) where θ are the parameters.
With this in mind the algorithm for ADAM is illustrated below:

Require : α : S t ep s i z e
Require : β1, β2 ∈ [0, 1) : Exponent ia l decay r a t e s f o r the moment

e s t imate s
Require : f(θ) : S t o cha s t i c o b j e c t i v e func t i on with parameters θ
Require : θ0 : I n i t i a l parameter vec to r

m0 ← 0 (I n i t i a l i z e 1 s t moment vec to r)
v0 ← 0 (I n i t i a l i z e 2nd moment vec to r)
t← 0 (I n i t i a l i z e t imestep)
whi l e θt not converged do

t← t+ 1
gt ← ∇θft(θt−1) (Get g r ad i en t s w. r . t . s t o c h a s t i c o b j e c t i v e

at t imestep t)
mt ← β1 ∗mt−1 + (1− β1) ∗ gt (Update b iased f i r s t

moment es t imate)
vt ← β2 ∗ vt−1 + (1− β2) ∗ g2

t (Update b iased second raw moment
es t imate)

m̂t ← mt/(1− βt1) (Compute bias−co r r e c t ed f i r s t moment
es t imate)

v̂t ← vt/(1− βt2) (Compute bias−co r r e c t ed second moment
es t imate)

θt ← θt−1 − α ∗ m̂t/(
√
v̂t + ε) (Update parameters)

end whi l e
re turn θt (Resu l t ing parameters)

The algorithm above is taken from the paper "Adam: A Method for Stochastic
Optimization"[3]. Where it is covered in more detail.

2.5.8 Back-propagation
A neural network with only an input and output layer has no internal representation
(the hidden layers containing neurons) that has to be learned and can be solved
using the perceptron convergence procedure detailed in Minsky, M. et al[50]. For

11

2. Theory

multi-layered networks back-propagation has been shown to be an efficient way of
computing the gradients of the loss function in respect to the weights of the network.
The Back-propagation is used in conjunction with some kind of gradient method
where a typical method is the stochastic gradient descent method[49].
Back-propagation works by iterating backwards, starting from the output neuron,
and calculating the updates to the each weight value by:

∆wij = −η ∂E
∂wij

[49]

where i is the neuron in the previous layer and j is the neuron in the current layer,
η is the learning rate of the network which is often very small and ∂E

∂wij
is the the

derivative of the error term with respect to the current weight value. The error term
here is equivalent to the cost function. All of the weights in the network is updated
according to this rule.

2.5.9 Multi Layer Perceptron (MLP)
MLP is a type of feedforward neural network. This means that the neurons in each
layer is only connected to the next layer in a list of consecutive layers. The last layer
is the output layer [1].

2.5.10 Error measurement
An error measurement is often used to measure the error of a model’s predictions
in the case of time series analysis and forecasting. This is usually done by some
kind of difference between the data predicted at a certain time step by the model
and the observed correct value at that time step. As explained in the previous
section about splitting the data in a train and test subset, the test set usually acts
as the observed data that is compared to the model predictions. A commonly used
error measurement is the Root Mean Squared Error (RMSE). This can be formally
defined as:

RMSE =

√√√√ 1
N

N∑
t=0

e2
t

where the error et is defined as:

et = pt − ot
for a time t for the predicted value pt and the observed value ot.

2.6 Classification models
Classification models classify data points into some category based on the features
of that data point. This section will explain two common classification models as
well as cross validation as an evaluation strategy to mitigate the risk of overfitting
the training data to a model. The models include a logistic regression classifier
and a random forest classifier. Accuracy, precision, recall and reciever operating
characteristic (ROC) as measurement scores will also be introduced and explained.

12

2. Theory

2.6.1 Logistic Regression Classifier
The Logistic Regression Classifier(LRC) analyzes data with arbitrary many param-
eters in order to classify data to either true or false based on a probability that has
been evaluated. It is labeled as a supervised machine learning method.

2.6.1.1 Input & Output Data

The input data for the LRC comes in form of vectors. Where xi is the i’th vector of
a total of n vectors. Each vector also has a number of k parameters. So for instance,
xij would represent the j’th parameter of the i’th x-vector in an input matrix X.
The output data Y is a n× 1 vector where each feature of that vector is evaluated
to either 1 = TRUE or 0 = FALSE in accordance to the the respective vector in
the matrix X.
The input data X and the output data Y can be illustrated as the following:

X =

x1,1 x1,2 · · · x1,k
x2,1 x2,2 · · · x2,k
...

xn,1 xn,2 · · · xn,k

 , Y =

y1
y2
...
yn

Say we have access to some arbitrary input X ′ and output Y ′.
The posterior probability P (Y = Y ′|X ′) defines how likely it is to receive that
output based on the input. The probability p ranges from [0-1].

2.6.1.2 Decision function

However a probability is another word for uncertainty, since the classifier need to
decide whether to classify each data point as true or false the uncertain posterior
probability needs to be converted to a differentiable decision function. The decision
function, also known as the sigmoid function has the general form sig(t) = 1

1+e−t

and is shown in Figure 2.3. It has an upper bound of 1 and lower bound of 0.

13

2. Theory

Figure 2.3: A plot of the generic sigmoid function
sig(t) = 1

1+e−t

In our case we can re-write the posterior as

P (Y |X) = 1
1 + e−f(x)

, where f(x) consists of the features with their corresponding weights in linear form:

f(x) = x0 + x1β1 + x2β2 + xkβk + ε

where x, β, f(x) ∈ Rk, ε is the random measuring error estimation. The last two
equations can be combined and re-written to form the log of odds ratio:

log

[
P (Y |X)

1− P (Y |X)

]
= x0 + x1β1 + x2β2 + xkβk + ε = f(x)

It is necessary to adjust the weights (β′s) in order to reach the maximum-likelihood
estimation(MLE). Meaning that the estimation of p should be as close to 1 as
possible for samples labeled as 1 and as close to 0 as possible when the samples are
labeled as 0[10][11].

2.6.1.3 Classification step

Given that we have reached MLE let’s observe the log10(x) function. This is shown
in figure 2.4.

14

2. Theory

Figure 2.4: A plot of the log10 function, y = log10(x)

Upon passing x = 1 where y = 0 we can classify according to this ratio

log

[
P (TRUE)
P (FALSE)

]
= log

[
P (Y |X)

1− P (Y |X)

]
The ratio will evaluate as a positive value if P (TRUE) > P (FALSE) and negative
if P (FALSE) > P (TRUE) leading us to classify as TRUE if positive and FALSE
if negative[9].

2.6.2 Decision Tree
A decision tree is created from mappings of input-output data. The input of a
decision tree is a 2-dimensional vector (X1, X2, ...XN) where each Xi is a feature
vector representing the values for that feature. The output is a 1-dimensional vec-
tor Y = (y1, y2, ..., yN) where each yi is a class label. A decision tree is a directed
tree and consists of a Root Node corresponding to the start of the decision tree,
several internal nodes at each point where the tree splits left tl or right tr creating
two outgoing edges. The nodes that have no outgoing edges are referred to as leaf
nodes and contains the best guess for that path[29]. A tree is generated from top to
down with some splitting criterion at each new node. This splitting criterion checks
all feature values and determines the best feture value to split based on the lowest
impurity measure calculated for each split variation[27]. There are several impurity
metrics used for determining the splits. Gini impurity is one of them and will be
explained below.

The feature value to split on is based on the maximum expected decrease of some
impurity measure when considering all kinds of splits possible at some point in the

15

2. Theory

tree[27]. The splitting rule of a decision tree is defined as:

∆I = Imetric(X)− Imetric(tl) ∗ p(tl)− Imetric(tr) ∗ p(tr)

where ∆I is the decrease in impurity, Imetric(X) is the impurity score with set X,
p(tl) is the proportion of the set split to the left and p(tr) is the proportion of the
set split the right.

2.6.2.1 Gini Impurity/Mean decrease impurity (MDI)

The Gini Impurity is defined as:

Igini(X) =
k∑
i=0

pi(1− pi)

where X is a set of input data and pi is the proportion of input data belonging to a
certain class k.

2.6.3 Random Forest Classifier
A Random Forest Classifier uses an ensemble of regular decision trees in order to
improve the general performance of the classifier. The number of trees used to build
the forest will differ depending on the purpose but generally one uses around 100
trees or more. The trees are built using a bootstrapped data set from the original
data set X and the number of features used in X is selected at random. Thus, a
bootstrapped data set originally containing X = (X1, X2, X3, X4) might result in a
subset of features S = (X2, X4) where two of the original four features were picked
at random. A decision tree is built using the data for these two inner vectors. This
is done until the predetermined number of decision trees have been created. When
predicting a class label on new data, the data is propagated through each sub-tree
and the majority class from all of the trees is selected as the guess of the forest[24].

2.6.4 Cross validation
Cross validation aims to estimate the general performance of a statistical- or machine
learning- model. Instead of only evaluating a model on one train-test split the model
is evaluated several times in order to gauge general performance. There are several
different cross validation methods and in this section K-fold cross validation and
Grouped Shuffled cross validation will be explained.

2.6.4.1 K-fold cross validation

K-fold cross validation is one of the most used cross validation methods. This
method shuffles the data and split it into k equally sized sub-samples containing
train and test data. During each evaluation it is split differently, meaning that dif-
ferent parts of the data will end up in the train and test set during each fold[44].
To better illustrate this, take an example where the data set contains 9 values
d = [1, 2, 3, 4, 5, 6, 7, 8, 9] and k is chosen to be 3. The data set is shuffled around

16

2. Theory

and a third of the data set is used as test data during each fold. Shuffled data
d = [5, 2, 6, 1, 3, 4, 8, 9, 7] where the three folds are:

Original data set. d = [1, 2, 3, 4, 5, 6, 7, 8, 9]
Shuffled data set. d = [5, 2, 6, 1, 3, 4, 8, 9, 7]

Fold 1. Train = [1, 3, 4, 8, 9, 7] Test = [5, 2, 6]
Fold 2. Train = [5, 2, 6, 8, 9, 7] Test = [1, 3, 4]
Fold 3. Train = [5, 2, 6, 1, 3, 4] Test = [8, 9, 7]

By training and evaluating on different parts of the data set one can get an estimate
of the general performance by averaging the scores acquired from each fold.

2.6.4.2 Grouped Shuffled Cross Validation

Oftentimes it is interesting to evaluate the data with specified fractions of train and
test data. This can be done by creating several randomly shuffled data sets from
the original data set and then picking a fraction to be train and another fraction to
be test. Unlike K-fold cross validation this doesn’t guarantee that all data will be
used both for training and testing. The data can also be grouped on domain-specific
features of the data such as the year the data was gathered for example. In this way
the same year won’t be included both in the train and test set simultaneously but
one year is restricted to either the training set or test set[43].

2.6.5 Accuracy Measurement
Typical measurements for classifier evaluation include accuracy, precision, recall
scores. Receiver Operations Characteristics (ROC) are also very common. These
terms will be explained in this section.

2.6.5.1 Accuracy

This is a measurement of the proportion of inputs that got correctly classified.

A = CC

N

where A is the accuracy, CC is the amount of correctly classified inputs (positive
and negative) and N is the number of inputs.

2.6.5.2 Precision

Precision, also known as positive predictive value, is a measurement of the proportion
of positively classified entries (1) that are true positives[56].

P = TP

N+
where P is the precision, TP is the true positive amount and N+ the amount of
inputs classified as positive.

17

2. Theory

2.6.5.3 Recall

Recall, also known as true positive rate, is the number of correctly classified positives
out of all positive classes (1)[2].

R = TP

TP + FN

where R is the recall, TP is the number of true positives and FN the amount of
false negatives.

2.6.5.4 ROC-curve and Area under curve (AUC)

ROC-curve can be used to evaluate and visualize the performance of classifiers. In
the binary case the curve is defined by the true positive rate and the false negative
rate of the positve and negative classes (1 and 0). The vertical axis of the graph
represents the true positive rate (TPR) i.e recall and the horizontal axis represents
the false positive rate FPR = FP

FP+TN where FP is the amount of false positives
and TN the amount of true negatives[57]. Some classifiers returns the probability
scores for its instances and uses a threshold to decide which class an instance should
be classified as. The ROC-curve can be used to measure the performance classifiers
at different thresholds. This can be very valuable in order to create a more "conser-
vative" classifier i.e one that aim to reduce the number of false positives, or a more
"liberal" classifier that aims to increase the number of true positives while not caring
about also classifying false positives. Furthermore, the area under the curve (AUC)
can be used to measure the overall performance of a classifier and is useful when
comparing different types of classifiers[7]. An example ROC-curve is presented in
Figure 2.5.

18

2. Theory

Figure 2.5: An example of a ROC-curve. The dotted line represents the case where
a model cannot discern two classes and essentially guesses the class. The black line
represents a good model where the true positive rate is high and the false positive
rate is low. Figure source: [21].

This is commonly used in machine learning to measure the performance of a model.
A line that passes through the top-left corner value of 1 tells us that there is a
threshold where the model perfectly distinguishes the classes. A classifier that fol-
lows the dashed line is as good as a classifier that chooses the class at random.
Oftentimes the area under the curve (AUC) is used to measure the performance of
a model if no plot is generated. A high AUC is good, an AUC of 0.5 is a model with
no decision-capability (bad) and 0 is consistently wrong decision.

2.6.5.5 Precision-Recall Curve

The precision-recall curve is another important tool to measure the effectiveness of
a classifier. It is valuable in situations when the data set has an imbalanced propor-
tion of classes[7]. The precision is often worse on imbalanced data set compared to
balanced data sets. Since the ROC-curve doesn’t display precision, any reduction
in performance usually goes unnoticed and that’s where the Precision-Recall-curve
is a good complement.

In order to determine if the classifier performs better than a random classifier a
baseline threshold is established[2]. This baseline is calculated differently compared
to the ROC-curve baseline. It is the proportion of positive classes among the data:

B = P

P +N

19

2. Theory

where P is the number of positive classes in the data set and N is the number of
negative classes in the data set. Two examples of precision-recall-curves, including
their baselines, are shown below for a balanced and imbalanced data set. Figure 2.6
shows the precision-recall curve for a balanced data set to the left and the curve for
an imbalanced data set to the right.

Figure 2.6: The left precision-recall-curve is for a balanced data set and the right
shows an imbalanced data set. y-axis represents the precision and the x-axis repre-
sents the recall.

For the balanced data set, observe the threshold at y = 0.5 for when the classifier is
considered random. In almost all cases the curve is above this line which is indicative
of a good classifier. The imbalanced data set contains 5 times more negative classes
compared to positives as is reflected by the threshold at y = 0.2. The imbalanced
data set shows a slightly steeper curve but since the threshold is lower it is still
considered a good classifier.

20

3
Data

In this chapter the different types of data used in this project will be explained in
detail. These include OpenStreetMap data, HERE traffic data and weather data.

3.1 OpenStreetMap
OpenStreetMap started as a crowd-sourced project where users could map out build-
ings, landmarks and other points of interest (POI) on a publicly available world
map[46]. Today the users are in the millions and OpenStreetMap provide valuable
information about buildings, roads, landmarks and other POI around the world for
everyone to access for free. Because of the easy accessibility and the amount of data
available, OpenStreetMap is chosen for gathering extra features for forecasting and
classification.

3.2 HERE Traffic Data
The data used in this project was gathered using the location data provider HERE[42].
This data was gathered 50 cities during the entire year of 2018 and analyzed by
Verendel et al.[19]. In this paper, a subset of 15 European cities were selected for
further analysis and forecasting. These are presented in the table further below.
A subset of 6 cities from the 15 cities were selected for classification due to time-
constraints and hardware-limitations. In this section the different types of data will
be explained. These include real-time measured traffic speed data, average traffic
speed data, coordinates representing a road and road length. The data from HERE
covers a subset of all roads that exist in each city.

3.2.1 Speed data
Speed measurements were collected approximately every 5 minutes for each road
in every city. Due to potential time differences or network/power outages the data
collected during a 15-minute time interval was averaged to one value. This results
in 96 time intervals per day. Because of a change of how the data was collected by
HERE midway through 2018, only the data from the first half of 2018 was selected,
resulting in 17280 time intervals of data. The traffic data is shifted to match the
local time zone of each city.

21

3. Data

3.2.1.1 Real-time traffic speed data

Real-time traffic speed data is the measured speed at every time interval in km/h
for each road.

3.2.1.2 Average free-flow speed data

Average free-flow speed data is the calculated average by HERE in km/h.

3.2.2 Road coordinate representation
Each road is represented as edges by a list of consecutive WGS84/GPS coordinates
in latitude, longitude format.

3.2.3 Road length
Each road has its own road length measured in km.

22

3. Data

3.2.4 Cities
The selected subset of 15 cities is visualized in Figure 3.1. The figure shows Europe
and the colored dots correspond to the selected cities. The legend shows the city
names.

Figure 3.1: Map of Europe showing the selected cities as colored dots.

23

3. Data

3.2.5 Road Coverage per city
The road coverage is a proportion of roads covered by the HERE data. An Open-
StreetMap graph is generated by taking the northen-most latitude, sorthern-most
latitude, eastern-most longitude and western-most longitude coordinates from the
roads of a city. The proportion of roads covered by the HERE data in the generated
graph is then considered the coverage. The coverage is presented in Table 3.1. Most
cities achieve a coverage of at least 10% and some cities have a coverage of over 30%
which is good. In the table, each road covered refers to an edge in the generated
graph. To exemplify, the first row shows the city Gothenburg. In Gothenburg the
HERE data covers 16115 roads out of the 62917 generated by the graph. This works
out to a coverage of 25.61%.

City Roads covered Roads total Coverage
Gothenburg 16115 62917 25.61%
Stockholm 22149 113079 19.59%
Amsterdam 70024 728645 9.61%
Barcelona 75075 228369 32.87%
Berlin 36206 161867 22.37%
Florence 16181 73348 22.06%
Glasgow 9601 112620 8.53%
Helsinki 15981 34329 46.55%
London 102869 596486 17.25%
Madrid 36553 114370 31.96%
Marseilles 5307 35570 14.92%
Oslo 10015 29306 34.17%
Oxford 1680 13933 12.06%
Tallinn 7080 24845 28.50%
Vienna 28153 75279 37.40%

Table 3.1: Table showing road coverage per city. Each row includes the exact
amount of edges covered, total number of edges and the coverage.

24

3. Data

3.2.6 Road Coverage in a city
To exemplify how coverage may look like in a city we present Figure 3.2 showing the
road coverage in Gothenburg, Sweden. The colored edges represent roads covered
and gray edges roads not covered by the data.

Figure 3.2: Map showing road coverage in Gothenburg, Sweden.

The figure shows that the coverage is greater towards the center of the city where
the green roads are more closely packed. Moving outside of the center the covered
roads are more sparse. Generally there are more roads in a city center compared to
the outside of a city which makes the coverage representative of that.

25

3. Data

3.3 Weather data
Copernicus Climate Data Store’s ERA5-LAND hourly data set is used to get accu-
rate measurements for a given area in Europe for precipitation and temperature[36].

26

4
Methods

In this chapter we present our methods. These include analysis of the data and the
evaluation of both the forecasting and the classification methods.

4.1 Analysis
Analysis of the data is a crucial first step for determining the next steps in our
work. The analysis will be performed on the traffic speed data gathered through
the HERE API. The traffic speed time series data will be checked for stationarity
to guarantee good performance of the AR model in the forecasting part.

4.1.1 Traffic speed data
The traffic speed data is assumed to not be white noise based on a non-zero auto-
correlation and a non-zero mean. This is observed when plotting the mean speed
values of each road and city in Figure 4.1 and the significant auto-correlations of
each road and city in Figure 4.2.

Looking at 4.1 the mean is always above zero which is a good indicator that the
traffic speed data is not white noise. The median represented by the green line shows
a speed of around 30 km/h. The lower limit, represented by the lowest horizontal
black line, shows the lowest mean speed value of around 5 km/h and the upper
limit(upper horizontal line) shows the highest mean speed of around 80 km/h. Out-
liers are represented by the black circles creating a vertical line on top of the box-plot.

Looking at 4.2 the auto-correlation is never zero which is a good indicator that
the traffic speed data is not white noise. The upper limit is 40 since that was the
limit chosen when calculating the significant number of auto-correlations. The lower
limit is slightly below 10 and the outliers are never zero.

27

4. Methods

Figure 4.1: Box plot showing the mean value observed on each road.

Figure 4.2: Box plot showing the auto-correlation lags for each road.

28

4. Methods

4.1.2 Stationary or non-stationary and transformations
To use the data for fitting an AR model stationarity needs to be checked. This
will be done using the Augmented Dickey-Fuller test. If the data is non-stationary
a transformation by difference will be applied before fitting any statistical models.
The Augmented Dickey-Fuller test is performed with a confidence interval set to
95%.

4.2 Weather
The ERA5-Land data-set was chosen for gathering weather data [36]. This data set
was chosen because of its large data availability and the resolution of the data on
the hour. Since the HERE API records traffic data at a 15-minute time-interval, the
weather data is post-processed by copying the hour value 4 times in order to match
the HERE data. Since the weather data comes in Universal Time Standard (UTC)
format a city’s data is shifted to its local time zone.

An Australian study (Keay et al, 2005) looked at the impact on different weather
variables and traffic flow and found that the strongest correlation was found with
rainfall and that it had the greatest impact in spring and winter[35]. The attributes
of interest are therefore temperature and precipitation. The reason being that a
combination of these attributes can affect the flow of traffic. Snowfall, rain or lack
there of may affect the traffic in different circumstances. The weather data is ac-
quired from an area defined by the northern-most latitude, southern-most latitude,
eastern-most longitude and western-most longitude of the coordinates from all roads
of a city.

4.3 Forecasting
This section will present the different models used for forecasting traffic speed and
our evaluation strategy. The models include AR, MLP and a Naive Baseline model.
The overall aim of forecasting is to answer the following questions:

• Are there any benefits to using more advanced models when forecasting traffic
speeds?

• How will weather affect our predictions?

4.3.1 Preprocessing
Before evaluation the data will be preprocessed. The preprocessing include filtering
roads based on missing values.

4.3.1.1 Missing Values

The original HERE traffic speed data includes missing values at times where real-
time measurements weren’t available. A subset of roads are chosen based on the

29

4. Methods

percentage of missing values. The threshold is set to 20% so that all roads that
have more than 20% missing values are excluded from the models. This is to get
sufficient quality training samples from each road.

4.3.2 Baseline model
To properly evaluate the models a Baseline model will be established. If a model
performs worse than the baseline model it either needs tuning or is not worth using
for predicting traffic speeds. The baseline model in the forecasting case will use the
previous value in the time series to predict the next value. It is essentially a lagged
version of the original time series[6].

4.3.3 AR
The order of the AR model will be determined by the mean of the number of
significant partial autocorrelation lags of the preprocessed roads[8]. Thus, the order
is set to 7.

4.3.4 MLP
The MLP model consists of one input layer, one hidden layer and one output layer.
There are 25 neurons in both the input layer and the hidden layer. This number
stems from the mean of the significant autocorrelation lags. The output layer has
1 neuron, since we are only looking at the one-step forecasting ability.Relu will be
the choice of activation function in the hidden layer. Stochastic gradient descent
method used is the Adaptive Moment Estimation (Adam) optimizer with a learning
rate set to 0.01.

4.3.5 Evaluation
This section will detail how the data is split before training a model, how missing
values are imputed, what error measurement is used and how the model results will
be compared.

4.3.5.1 Train-test split

The traffic speed data for each road will be split in a train and test set with 80%
train data and 20% test data.

4.3.5.2 Imputation

Mean imputation will be performed on the traffic speed data set for each road. The
train data set is imputed separately from the test data set. This is done to avoid
data leakage that might occur if data from the test set is used to infer data in the
train set.

30

4. Methods

4.3.5.3 Error measurement

A RMSE score is calculated based on the difference in predicted values compared
to the real values.

4.3.5.4 Evaluation strategy

The aim is to evaluate the one-step forecasting ability which is equivalent to a 15-
minute prediction into the future. This will be done for a uni-variate case that only
considers the traffic speed and also a multi-variate case that considers weather data
as well. The multi-variate case will only be evaluated using the MLP model since
the other models are uni-variate-based.

The models will be evaluated on a subset of the first 10 preprocessed roads from
each city. A model is built and evaluated for each road in each city. The RMSE
scores are then averaged over all roads and all the cities used. Since the purpose is to
observe any improvements in forecasting when switching to more advanced models
this should suffice.

4.3.5.5 Input vector Univariate

Table 4.1 shows the univariate input vector that only consists of the speed in km/h.

Speed (km/h)

Table 4.1: Table showing Univariate Input Vector, speed is the only feature.

4.3.5.6 Input vector Multivariate

Table 4.2 shows the multivariate input vector that consists of the speed, precipitation
and temperature.

Speed (km/h) Precipitation(m) Temperature (K)

Table 4.2: Table showing the Multivariate Input Vector. It includes speed mea-
sured in km/h, precipitation measured in meters and temperature measured in
Kelvin.

4.4 Feature Extraction
In order to improve the performance of our models certain relevant features need to
be compiled. These features include a set of geographical points of interest (POI)
in proximity to all roads and different measures of centrality. These will be used for
the classification models.

31

4. Methods

4.4.1 POI
The POI will be gathered from OpenStreetMap for each road. These will be split
into two groups, one in close proximity along a road and another larger area sur-
rounding the road. These groups will be referred to as corridor features and area
features respectively.

A study conducted in Beijing, China looked at the impact of differences in infras-
tructure on traffic congestion[34]. In this study they performed a detailed survey
to gather information about the most popular POI in terms of travel purposes of
individuals. They found that "“work,” “school,” “shopping,” “leisure,” and “return
home” were the primary traveling purposes of Beijing residents, accounting for about
85% of the total travel". We have chosen our POI based on this knowledge and our
own intuition of what places might attract more people and thus influence traffic
flow. For example one can assume that a trash bin wont affect the traffic situation
as much as a bus stop or a library. The following categories were chosen as POI:

Main Category Sub Categories
Amenity School, Hospital and Bus station
Railway Station and Platform
Highway Bus stop

These POI will be gathered both as corridor features and area features yielding 12
features in total.

4.4.1.1 Corridor features

Corridor features will be gathered within a 50 meter radius of a road. These are
shown in Table 4.3.

School(50m) Hospital(50m) Bus Station(50m) Station(50m) Platform(50m) Bus stop(50m)

Table 4.3: Table showing the 6 corridor features

4.4.1.2 Area features

Area features will be gathered within a 500 meter area extending the road area.
These are shown in Table 4.4.

School(500m) Hospital(500m) Bus Station(500m) Station(500m) Platform(500m) Bus stop(500m)

Table 4.4: Table showing the 6 area features

4.4.2 Centrality
Three different features regarding centrality are taken into account. Closeness, in-
degree and out-degree. The centrality value is calculated differently for each. Cen-
trality is calculated on each node of a graph generated as in Section 3.2.6. The roads

32

4. Methods

are then matched to the nodes of this graph as explained in Section 3.2.6. Each road
will then be represented by a list of nodes. In order to associate one centrality value
to each road, the sum of all centrality values of the nodes along a road are averaged.
The centrality features are shown in Table 4.5.

In-degree centrality Out-degree centrality Closeness centrality

Table 4.5: Table showing the three centrality metrics used

4.5 Classification
The classification will be performed using binary classifiers, that given an input at
a 15-minute time interval, classifies it as either 0 (no delay) or 1 (delay). In order to
classify delays the original traffic speed data will be transformed to a measurement
of delay at each time. The models include a Naive Majority-Based Classifier
which will act as the baseline, a Logistic Regression Classifier and a Random
Forest Classifier.

To perform classification we present the necessary transformations applied to the
traffic speed data in order to get the delay classes. Furthermore, we describe the
final feature vector containing our 20 features used for training and evaluation of the
classifiers. The evaluation strategy and evaluation metrics of choice are presented.
Finally, we present the three scenarios used for evaluating the generalization perfor-
mance of the models. The scenarios are evaluated on a subset of the cities of size
6. These include Gothenburg, Florence, Barcelona, Berlin, Stockholm and Madrid.
The overall aim of the classification-step is to answer the following questions:

• Will training on more cities improve the performance of our models on new
data? If so, how much?

• What features have the best predictive capabilities?
• How well does generalization of the models between cities really work? Does

it only work when the cities share a lot of features such as structure, culture
and technology?

4.5.1 Transforming the traffic speed into delays
In order to classify delays, the traffic speed data for each road at each 15-minute
time-interval have to be transformed into a measurement of delay. The delays will
then be compared to calculated delay thresholds in minutes in order to generate the
classes (1 or 0) for the classification models. This will be the output vector used
during training and testing of the models. This transformation will be performed on
each city’s traffic speed data set. The following formula will be used to transform a
traffic speed (km/h) at time t into a delay (minutes):

delay(t) = 60 ∗ rl
(

1
ts(t) −

1
ats(t)

)

33

4. Methods

where ts(t) is the traffic on a road at time t, ats is the average traffic speed on a
road at time t and rl is the road length of the given road.

In order to determine the threshold we convert the average traffic speed measured
on a road into the average time in minutes it takes to travel the road. The following
formula is used:

average_travel_time(t) = 60 ∗ rl
(

1
ats(t)

)
The delay threshold value is calculated by increasing the average_travel_time(t)
by 50% and then subtract it by the average_travel_time(t):

threshold(t) = (average_travel_time(t) ∗ 1.5)− average_travel_time(t)

The delay at a 15-minute time interval is then compared to this threshold in order
to determine the class for that time interval t:

delay(t) > threshold(t)→ 1
delay(t) < threshold(t)→ 0

4.5.2 Naive Majority-Based Classifier
As the name suggest the naive majority-based classifier will take the majority class
observed in the training set and use that for predictions in the test set during each
train-test fold. This model will act as a baseline for comparison against both the
Logistic Regression- and Random Forest-Classifier.

4.5.3 Logistic Regression Classifier
In this section we explain how the ROC curve is generated for the Logistic Regression
Classifier. The class probabilities used to generate the ROC-curve is calculated using
the decision function of the Logistic Regression Classifier.

4.5.4 Random Forest Classifier
The Random Forest Classifier is constructed by 100 smaller decision trees. In this
section we explain how the ROC-curve is generated for this classifier. The class
probabilities used to generate the ROC-curve is calculated by taking the mean of
the predicted class probabilities of the individual trees in the forest. In a single
decision tree the class probability is calculated as the fraction of samples of that
class in the leaves.

4.5.4.1 Feature Importance

The feature importance is calculated using the Gini Impurity. It is defined as the
normalized total reduction of the Gini Impurity caused by the introduction of the
feature[25]. This will be a percentage for each feature showing an estimate of that

34

4. Methods

feature’s influence for the model predictions. The score is between 0 and 1 for each
feature importance and all feature importances will sum to 1.

4.5.5 Feature vector
Classification models are trained using input data containing several features as
mentioned before in Section 4.4. The input data is constructed as a 2-dimensional
feature-vector where each column corresponds to a feature. This feature-vector will
contain weekday, time of day, corridor features, area features and centrality features
in that order.
As for the number of rows in the feature vector it is defined as:

rows = number_of_cities∗
(time_intervals_half_year∗

number_of_sampled_roads_per_city)
(4.1)

where time_intervals_half_year is the number of 15-minute time intervals in the
span of 6 months and will result in 17280 intervals per road. We sample 100 roads
from each city which will be number_of_sampled_roads_per_city.

Weekday: This includes the days of a week encoded as a range [0,6] where 0
is Monday and 1 is Tuesday etc. To account for each 15-minute time interval each
day is copied 96 times creating a weeks worth of values. This is then repeated for
180
7 weeks since we are dealing with half a year of values.

Time of day: This includes the time of day as represented by the current 15-
minute time interval. The values range from 0 to 95 where 0 is at time 00:00 and
1 is at 00:15 etc. This is also repeated for 180 days.

Temperature The third column is the temperature measured in Kelvin acquired
from the ERA-5-LAND data set.

Precipitation the fourth is the amount of precipitation measured in meters ac-
quired from the ERA-5-LAND data set.

Corridor: This column includes all 6 corridor features as shown in Table 4.3.
They are copied 17280 times in order to match the row length of the other columns.

Area: This column includes all 6 area features as shown in Table 4.4. They are
copied 17280 times in order to match the row length of the other columns.

Centrality: This includes the in-degree centrality, out-degree centrality and close-
ness centrality. All of these three are copied 17280 times in order to match the row
length of the other columns.

35

4. Methods

All features can be compiled into one feature vector where an example of such a
feature vector is shown in Table 4.6. WD refers to Weekday, TS refers to Time
of day, Temp refers to Temperature, Corridor refers to Table 4.3, Area refers
to Table 4.4 and Centrality refers to Table 4.5.

WD TS Temp Precipitation Corridor Area Centrality
0 0 293.15 0.0001
0 1 293.15 0.0001
0 2 293.15 0.0001
0 3 293.15 0.0001
0 4 295.15 0.0000
0 5 295.15 0.0000
0 6 295.15 0.0000
0 7 295.15 0.0000
...

Table 4.6: Example of a Feature Vector. Each column in the table represents one
feature.

4.5.6 Selecting subset of cities
The subset of cities were chosen based on comparable centrality distributions and
road length distributions. The cities are European-based and include three non-
capitals and three capitals.

Non-capitals Capitals
Gothenburg Stockholm
Florence Berlin
Barcelona Madrid

The centrality distribution of each city is presented in Figure 4.3 and the road length
distribution of each city is presented in Figure 4.4.

Looking at 4.3, all cities follow a normal distribution and are quite comparable
which is good. Some exhibit more skewness than others such as Berlin.

Looking at 4.4, all cities have a different number of roads but the overall shape
seems to be quite similar between the cities. The majority of roads are 100 meters
or less in length which is to be expected in cities.

36

4. Methods

Figure 4.3: Plots showing the centrality distribution in each city used in the
evaluation of the classifiers.

37

4. Methods

Figure 4.4: Plots showing the road length distribution in each city used in the
evaluation of the classifiers. All cities have a large portion of roads longer than 100
meters.
38

4. Methods

The reason behind only selecting six out of all cities is due to our limited time and
hardware capabilities. Furthermore only European cities were selected, this is due
to the weather data only covering Europe. The selected cities are evenly distributed
between non-capitals and capitals. The rationale is that there are possible differences
between capitals and non-capitals that may affect the outcome of our models. For
example, capitals are in general larger and more populated and because of this the
HERE data may have better coverage in the capitals compared to non-capitals.

4.5.7 Preprocessing
Since the number of roads from each city is often in the thousands we will perform
a number of pre-processing steps to select a subset of the roads. The pre-processing
steps include filtering roads based on missing values, filtering on road length and
sampling 100 roads per city. Since the number of available roads differ between
cities, this guarantees equal contribution from each city when training the models.
It also makes training the models feasible within the time-frame of this project.

4.5.7.1 Missing values

The original HERE traffic speed data includes missing values at times where real-
time measurements weren’t available. A subset of roads are chosen based on the
percentage of missing values. The threshold is set to 20% so that all roads that
have more than 20% missing values are filtered out from the models. This is to get
sufficient quality training samples from each road.

4.5.7.2 Imputation

The remaining roads after filtering will be imputed using a mean-based imputation
strategy.

4.5.7.3 Filtering on road length

The roads are filtered on road length so that all roads less than 100 meters are
excluded.

4.5.7.4 Sampling roads

The roads are randomly sampled from the set of roads acquired after accounting for
missing values and road length. The sampling is done using the closeness centrality
metric. Each road has an associated closeness value which gives useful information
in what part of the city that road is situated. A higher closeness means that a lot
of other roads are close to the current road. This probably indicates a road more
towards the center of the city. A medium closeness probably indicates a road that
is a little further from the center but still in the city. A low closeness probably
indicates a road in the outskirts of the city. The roads will be split into these three
groups based on the distribution of their closeness values. Plotting the distribution
of the closeness values in each city we can see normal distributions in every case.

39

4. Methods

We define the mean of the centrality values of a city as µcentrality(city) and the stan-
dard deviation as σcentrality(city). Using this and the fact that the centralities are
normally distributed the three groups can be defined as:

Low density roads: All centrality values below the first quantile. This can be
defined as the range [mincentrality(city), µcentrality(city)−σcentrality(city)]. This range
will contain 15.9% of the roads.
Medium density roads: Between first and third quantile. This can be defined as
the range [µcentrality(city) − σcentrality(city), µcentrality(city) + σcentrality(city)]. This
range will contain 68.2% of the roads.
High density roads: All centrality values above the third quantile. This can be
defined as the range [µcentrality(city)+σcentrality(city), maxcentrality(city)]. This range
will contain 15.9% of the roads

This can be further illustrated by a normal distribution plot. Figure 4.5 shows a
normal distribution with a mean of 0 and standard deviation of 1. The purple area
shows 68.2% of the values which will correspond to the medium density roads. The
black areas to the left and right of the purple will correspond to the low density
roads and high density roads respectively.

Figure 4.5: Normal distribution plot showing the range of medium density roads
as the area in the middle, the range of low density roads to the left and high density
roads to the right.

40

4. Methods

4.5.8 Evaluation
This part will go over the evaluation metrics , the cross validation strategy and the
different evaluation scenarios used in this thesis. We propose three different evalu-
ation scenarios in order to answer the questions presented in the beginning of this
chapter.

The metrics used for evaluation will be accuracy, precision, recall and ROC/AUC.

5-fold Group Shuffle split-cross validation will be used. The data will be grouped
based on the road id’s generated from the concatenation of the city name and the
current road index in the list of roads. This is to ensure that the same road doesn’t
end up in both the train and test set in a cross validation fold. The train-test data
will be split in 80% train data and 20% test data for each fold.

We define three evaluation scenarios in order to test out the generalization per-
formance of the models. Scenario I aims to test the generalization performance
between a smaller group of non-capitals and capitals separately, Scenario II aims to
test the generalization performance for a mixed smaller group of non-capitals and
capitals and Scenario III aims to test the performance when the group of Scenario II
is increased in size. All three models will be evaluated in scenario I while the other
scenarios will be evaluated using the best performing model from scenario I.

In all scenarios one city will be reserved for testing. The remaining cities are used to
construct the input features from sampled and filtered roads. Accuracy, precision,
recall and ROC/AUC are calculated in each fold for performance evaluation. A plot
containing the 5 folds’ ROC-curves and an averaged ROC-curve across all folds is
generated and saved. Furthermore, a plot containing the precision-recall curves for
each fold will be generated and saved for both the cross validation set and test city
validation set. For the Random Forest Classifier the importance of every feature is
also saved and presented for all Scenarios. This will yield a value for each feature
that represents the importance of that feature in proportion to all other features.
The value is between 0 and 1 where a higher score corresponds to a higher impor-
tance.

Scenario I
In Scenario I, non-capitals and capitals are treated and evaluated as two separate
groups. Scenario I will produce 6 classification models for each type of classification
model yielding a total of 18 models. The performance will be assessed according
to the evaluation metrics and a few examples of ROC-curves and precision-recall-
curves. The examples will include one configuration from the non-capital group
(first entry in Table 4.7) and one from the capital group (first entry in Table 4.8).
The different configurations of train- and test-sets for the non-capitals are shown in
Table 4.7. For the capitals they are shown in Table 4.8.

41

4. Methods

Table 4.7: Evaluation group of non-capitals

Train Test
Gothenburg, Florence Barcelona
Gothenburg, Barcelona Florence
Florence, Barcelona Gothenburg

Table 4.8: Evaluation group of capitals

Train Test
Stockholm, Madrid Berlin
Stockholm, Berlin Madrid
Madrid, Berlin Stockholm

Each evaluation group contains three configurations of cities. Looking at the con-
figurations in the non-capital group we can take the first row as an example. Here
the training set consists of Gothenburg and Florence. Data will be gathered from
100 roads sampled from Gothenburg and 100 roads sampled from Florence and will
be the input vector to the model. The test set is Barcelona and will be used to test
the fitted models created during cross validation. Since we are using 5-fold cross
validation, 5 models will be created. These will be used to predict the classes in
the data of Barcelona. The different metrics are calculated based on the predicted
classes during each fold. The returned metric values of all folds are averaged and
saved as a final result.

Scenario II
Scenario II incorporates both non-capitals and capitals in the same configurations
in order to observe any performance differences when they are mixed. In order to
make the comparison fair the size of each configuration is still kept to 3 cities, with
2 training cities and 1 test city. Every city will be used as a test city, giving a total
of 6 test cities, for better comparability to Scenario I. In order to mitigate the effect
of certain city configurations performing better we will randomly sample the set of
train cities in order to create 10 configurations for each test city. Accounting for the
6 test cities this will yield a total of 60 models.

Each test city will have 10 values per metric. The mean of every metric value
can be compared to the corresponding metric value from scenario I in order to mea-
sure the effect on performance when mixing capitals and non-capitals.

Scenario III
In Scenario III we want to further measure how the performance is affected when
increasing the number of cities used for training. Scenario III is constructed in the
same way as scenario II by randomly sampling the training cities for each test city.
The following configurations will be used during scenario III:

• Scenario III: Configuration 1

42

4. Methods

– Scenario II 3 training cities, 1 test city. 60 model configurations in total.
• Scenario III: Configuration 2

– Scenario II 4 training cities, 1 test city. 60 model configurations in total.
• Scenario III: Configuration 3

– Scenario II 5 training cities, 1 test city. 60 model configurations in total.

This will in total create 180 models all of which will be compared in the same way
as scenario II using box plots of the acquired metric scores. In order to compare the
different scenario III configurations the scores of the 60 models constructed during
each variation of scenario II will be aggregated into one box plot for each metric
and scenario III-configuration.

43

4. Methods

44

5
Results

In this chapter the analysis results are presented in Section 5.1, in Section 5.2 the re-
sults from forecasting are presented and in Section 5.3 the results from classification
are presented.

5.1 Analysis
This section will present the results from the Augmented Dickey-Fuller tests that
were performed in order to check if the data was stationary or not.

5.1.1 Checking for stationarity
Augmented Dickey-Fuller test was performed on all roads with less than 20% missing
values. Using a 95% confidence interval it was concluded that the data is stationary.
Thus, no transformations were needed in order to perform forecasting using AR.

5.2 Forecasting
In this section the results from the forecasting are presented. The aim was to see
if more advanced models achieved a better result by looking at the RMSE scores of
the individual models. The scores are rounded to 2 decimal places.

A line plot showing the scores for each model is presented in Figure 5.1. The
Baseline model achieved an average score of 7.50. The AR model achieved a lower
score of 6.98 and the MLP univariate model achieved a marginally lower score of
6.89 compared to the AR model. Interestingly, adding precipitation and tempera-
ture data of a city to the MLP model resulted in a worse score of 6.93 compared to
the univariate case. The difference is marginal when looking at all models except
for the Baseline case.

45

5. Results

Figure 5.1: A line plot showing the average RMSE score for the Baseline, AR,
univariate MLP and multivariate MLP model.

Going by these results a small improvement can be seen when using more advanced
models although quite insignificant in this case. The use of weather variables in the
form of precipitation and temperature doesn’t improve the model either.

5.3 Classification
In this section, an example of sampled roads are presented in Section 5.3.1. In
Section 5.3.2 the results from the Naive Majority Classifier, Logistic Regression
Classifier and Random Forest Classifier are presented. These are presented in the
form of metric plots covering the scores of each metric for both Cross Validation and
for the evaluation city. The feature importances are also presented using a color-
coded plot for each feature. Lastly, the resulting ROC-curves and precision-recall
curves for two configurations are presented.

5.3.1 Sampling roads
In order to get a good picture of how the sampling works an example of sampled
roads is presented in Figure 5.2. The left map of 5.2 shows the sampled roads
highlighted in cyan and the right map shows all the roads in green. The city used
for this example is Gothenburg, Sweden.

46

5. Results

Figure 5.2: The maps show the roads in the city of Gothenburg, Sweden. The
gray roads represent all roads of the city whereas the highlighted roads are the ones
corresponding to the HERE data.

The left map shows quite a good distribution of the kind of roads that were picked
in the sampled case. There are more roads picked that are towards the center of the
city as expected by the design of the sampling method described in Section 4.5.7.4.

5.3.2 Scenario I
In this section the results from Scenario I are presented. In Section 5.3.2.1 the
feature importance plot for both capitals and non-capitals is presented. In the
following sections the different classifiers’ results are presented in the form of ROC-
curves, precision-recall-curves and other summary statistics plots. For each classifier
one non-capital configuration and one capital configuration is used to illustrate the
results. The two configurations are shown below:

Non-capital configuration: Train set: {Gothenburg, Florence}. Test set: {Barcelona}.

Capital configuration: Train set: {Stockholm, Madrid}. Test set: {Berlin}.

For all the configurations see Appendix A.

5.3.2.1 Feature Importances

In this part, the feature importances are presented in Figure 5.3 for capitals and
in Figure 5.4 for non-capitals. These are calculated on the fitted Random Forest
Classifiers.

47

5. Results

Capitals

The feature importances for the capital configurations are presented below in 5.3.
Each pair of train cities for the capitals is presented below on the x axis. The
three configurations of train cities include Berlin & Madrid, Berlin & Stockholm
and Stockholm & Madrid. The corresponding test cities are Stockholm, Madrid and
Berlin in that order.

Figure 5.3: A stacked bar chart showing the importances of every feature for each
fitted pair of capital cities. The x axis shows the pairs of cities that were used
when fitting the classifier and the y axis shows the percentage of contribution of the
features. Each feature is color-coded separately but similar features are coded in
different shades of the same color. One example is temperature and precipitation
where both are of a different shade of orange. The feature importances are sorted on
the grouped similar features. One such group is Highway Bus Stop Area & Corridor.

The bar chart for the capital pairs shows that the most important features out of the
19 features for predicting traffic delays are bus stops. The Highway Bus Stop Area
& Corridor accounts for over 20% of the feature importance in all three pairs and
over 25% in Stockholm & Madrid. Hospital Area, Hospital Corridor, Bus Station
Area and Bus Station Corridor are consistently the least important features for the
capital cities. All other groups contribute roughly around 10% to the importance
more or less. Interestingly, the Area seems to be more important the Corridor. The
different kinds of centrality metrics don’t contribute that much to the predictability,
only accounting for a couple of percentages each.

48

5. Results

Overall, Highway Bus Stop Area and School Area are the top features in the capital
configurations.

Non-capitals

The feature importances for the non-capital configurations are presented below in
5.4.

Figure 5.4: A stacked bar chart showing the importances of every feature for
each fitted pair of non-capital cities. The colors of each feature is the same as the
capitals bar chart for easier comparison. Since there can be differences in the feature
importances compared to the capitals the sort order might differ.

Compared to the capitals group, the non-capitals group has a different overall order
of the feature importances. Highway Bus Stop Area & Corridor is still considered
the best performing group of features accounting for over 20% of the importance.
School Area accounts for a smaller percentage of importance compared to the cap-
itals group but is still one of the top contributors together with time of day and
Railway Platform Area.

Despite some small differences, the importances seem to follow quite closely be-
tween the two groups.

49

5. Results

5.3.2.2 Naive Majority Classifier

In this section the results of the Naive Majority Classifier are presented. Summary
statistics showing the metric scores for different configurations are presented first,
followed by ROC-curves and precision-recall-curves.

Summary statistics

The metric scores for each configuration are presented below. Cross Validation
results are shown in Figure 5.5a and Validation results are shown in Figure 5.5b.

50

5. Results

Figure 5.5: Metric Scores for each configuration. For each train configuration the
Accuracy, Precision, Recall and AUC is plotted on a straight line for easy comparison
between configurations. The top plot corresponds to the average test score acquired
from the cross validation folds. The test cities (used for calculating the validation
scores for the plot in the bottom) are Gothenburg, Florence, Barcelona, Berlin,
Stockholm and Madrid in that order.
Note: Each plot consists of both non-capital and capital configurations. The
first three entries from the left corresponds to the non-capital configurations and
the remaining three entries corresponds to the capital configurations.

(a) Cross Validation

51

5. Results

(b) Validation i.e test city

The summary statistics show for both the cross validation and test validation scores
a high accuracy of over 75% in all configurations. As expected by the Naive Majority
Classifier, both precision and recall is 0 showing that the classifier cannot correctly
separate the classes. This is supported by the AUC score which is representative
of a classifier that picks the classes at random (random classifier). In both plots
the accuracy is lower for the capital configurations compared to the non-capital
configurations. This shows that there are more delays in the capital configurations
compared to the non-capital ones.

ROC-curves

In this section the ROC-curves for one configuration are presented in Figure 5.6.
The configuration includes Gothenburg and Florence in the train set and Barcelona
in the test set used for validation. The curves for cross validation is presented in
Figure 5.6a. For the validation set the results are shown in Figure 5.6b.

52

5. Results

Figure 5.6: Train set: {Gothenburg, Florence} Test set: {Barcelona}.

(a) Cross Validation

(b) Validation i.e test city

Both figures are identical showing an AUC score of 0.50 for the classifiers in each
fold. This results in the blue mean curve that can be observed in the figures. The
curve covers the dashed red curve representing a random classifier which means

53

5. Results

that the classifier is as good as a random classifier and has no ability to separate
the classes.

54

5. Results

Precision-recall-curves

In this section the precision-recall-curves for the same configuration as before are
presented in Figure 5.7. The curves for cross validation is presented in Figure 5.7a.
For the validation set the results are shown in Figure 5.7b.

Figure 5.7: Train set: {Gothenburg, Florence}. Test set: {Barcelona}.

(a) Cross Validation

(b) Validation i.e test city

55

5. Results

Both figures show similar results with slight variations in the cross validation figure.
This is expected in the cross validation case since during each fold the data is split
differently, creating different imbalances in the resulting splits. The test set for Fold
0 in 5.7a for example has around 20% delay classes and 80% non-delay classes which
can be observed by looking at the precision value for the rightmost recall value. This
is also known as the baseline of the classifier which shows if the classifier is random
or not. Since the majority classifier only guesses the majority class an adjustment of
the threshold won’t change the precision and recall values. Moreover, the extreme
values in the top left of each figure and bottom right of each figure are always plotted
by the design of the plotting function. Since the values of recall and precision don’t
change with the threshold these will be the only two resulting points in this case,
creating the diagonal lines in the figures. This might be misleading since it appears
to be above the baseline. Because of this, precision-recall curves are not suitable for
evaluating this type of classifier.

56

5. Results

5.3.2.3 Logistic Regression Classifier

In this section the results of the Logistic Regression Classifier are presented. Sum-
mary statistics showing the metric scores for different configurations are presented
first, followed by ROC-curves and precision-recall-curves.

Summary statistics

The metric scores for each configuration are presented below. Cross Validation
results are shown in Figure 5.8a and Validation results are shown in Figure 5.8b.

Figure 5.8: Metric Scores for each configuration. The cross validation scores are
on the plot in the top. The test cities (used for calculating the test validation scores
for the bottom plot) are Gothenburg, Florence, Barcelona, Berlin, Stockholm and
Madrid in that order.

(a) Cross Validation

57

5. Results

(b) Validation i.e test cities

The accuracy scores are high for the Logistic Regression Classifier and around the
same as the Naive Classifier. For both the cross validation and validation case a
higher AUC can be observed in all configurations compared to the Naive Classifier
which shows that the classifier is also better at separating the classes and performs
better than a random classifier. For the test validation set, the mean AUC score
is around 0.5 for most of the configurations which is not very good. This indicates
performance of a random classifier when testing the models on new cities.

58

5. Results

ROC-curves

In this section the ROC-curves for a non-capital configuration are presented in Fig-
ure 5.9 and for a capital configuration in Figure 5.10. The non-capital configuration
is the same as for the Naive Majority Classifier and includes Gothenburg and Flo-
rence in the train set and Barcelona in the test set used for validation. For the
non-capital configuration the curves for cross validation is presented in Figure 5.9a
and for the validation set the results are shown in Figure 5.9b. The capital config-
uration includes Stockholm and Madrid in the train set and Berlin in the test set
used for validation. For the capital configuration, cross validation and validation
results are presented in Figure 5.10a and Figure 5.10b respectively.

Figure 5.9: Train set: {Gothenburg, Florence}. Test set: {Barcelona}.

(a) Cross Validation

59

5. Results

(b) Validation i.e test city

The ROC-curves for the cross validation case show a classifier that performs better
than a random classifier in the majority of folds except for fold 3 where it falls below
the 50% line in some cases. As for the test validation case it performs conceivably
worse where all folds fall below the 50% line at different points. The mean AUC
score for the cross validation case is 0.71 but for the test validation case is only 0.48.

60

5. Results

Figure 5.10: Train set: {Stockholm, Madrid}. Test set: {Berlin}

(a) Cross Validation

(b) Validation i.e test city

The performance is considerably worse for the capital configuration in the cross val-
idation case. In both the cross-validation case and test validation case the curves
for all folds are consistently close to the 50% line. Both curves have a mean AUC

61

5. Results

score at 0.5 making this model no better than a random classifier.

Precision-recall-curves

In this section the precision-recall-curves for the non-capital configuration and capi-
tal configuration are presented in Figure 5.11 and Figure 5.12 respectively. The cross
validation and validation results for the non-capital configuration are presented in
Figure 5.11a and Figure 5.11b. The corresponding results for the capital configura-
tion are presented in Figure 5.12a and Figure 5.12b.

Figure 5.11: Train set: {Gothenburg, Florence}. Test set: {Barcelona}.

(a) Cross Validation

62

5. Results

(b) Validation i.e test city

The precision-recall curves for the cross-validation case show that the classifier over-
all performs better than a random classifier. The majority of folds manages to stay
above the baseline thresholds (the rightmost y values for the fold curves), with the
exception of fold 3. This can be observed in the ROC-curve (5.9a) in the corre-
sponding TPR range of [0.4,0.8] and FPR range of [0.5, 0.8]. In the test validation
set all folds are quite flat and also around the baseline thresholds. The classifier
can’t be considered better than a random classifier for the test city of Barcelona.

63

5. Results

Figure 5.12: Train set: {Stockholm, Madrid}. Test set: {Berlin}.

(a) Cross Validation

(b) Validation i.e test city

Looking at the precision-recall curves once again show sub-par performance for the
capital configuration, where several folds fall below the baseline threshold at various
recall values in both the cross-validation case and test validation case. The classifier
can’t really be considered better than a random classifier based on these results.

64

5. Results

5.3.2.4 Random Forest Classifier

Summary statistics

The metric scores for each configuration are presented below. Cross Validation
results are shown in Figure 5.13a and Validation results are shown in Figure 5.13b.

Figure 5.13: Metric Scores for each configuration. The test cities (used for calculat-
ing the validation scores for the bottom plot) are Gothenburg, Florence, Barcelona,
Berlin, Stockholm and Madrid in that order.

(a) Cross Validation

65

5. Results

(b) Validation i.e test cities

Looking at the cross validation results in 5.13a, it is apparent that the accuracy and
the AUC are consistently scoring higher for non-capitals compared to the capitals.
The precision also seems to be consistently higher compared to the recall values
for each configuration. For the validation set (5.13b) the accuracy and AUC are
still higher for non-capital test cities compared to capital test cities. Generally the
scores seem to follow the same pattern for both the cross validation and validation
results. Overall, the scores for the Random Forest Classifier are higher compared to
the scores for the Logistic Regression Classifier in Figure 5.8.

66

5. Results

ROC-curves

In this section the ROC-curves for one non-capital configuration are presented in
Figure 5.14 and for one capital configuration in Figure 5.15. For the non-capital
configuration the curves for cross validation is presented in Figure 5.14a and for the
validation set the results are shown in Figure 5.14b. For the capital configuration
cross validation and validation results are presented in Figure 5.15a and Figure 5.15b
respectively.

Figure 5.14: Train set: {Gothenburg, Florence}. Test set: {Barcelona}.

(a) Cross Validation

67

5. Results

(b) Validation i.e test city

As can be seen in both the cross validation curves and test validation curves the
classifier trained on this configuration manages to separate the classes quite well,
achieving an AUC score well-above a random classifier. Interestingly, the model is
slightly better when looking at the validation set compared to what it was trained on,
achieving a mean AUC score of 0.77 compared to 0.73 in the Cross Validation-case.

68

5. Results

Figure 5.15: Train set: {Stockholm, Madrid}. Test set: {Berlin}.

(a) Cross Validation

(b) Validation i.e test city

The ROC-curves for the capital configuration show a model with considerably worse
performance compared to the non-capital configuration. The test validation curves
have a mean AUC score of 0.57 compared to 0.55 in the cross validation case. In
the cross validation case the standard deviation is considerably larger at 0.06 com-
pared to the test validation case of 0.01. The cross validation curves fall below the

69

5. Results

performance of a random classifier for some thresholds.

Precision-recall-curves

In this section the precision-recall-curves for the non-capital configuration and capi-
tal configuration are presented in Figure 5.16 and Figure 5.17 respectively. The cross
validation and validation results for the non-capital configuration are presented in
Figure 5.16a and Figure 5.16b. The corresponding results for the capital configura-
tion are presented in Figure 5.17a and Figure 5.17b.

Figure 5.16: Train set: {Gothenburg, Florence}. Test set: {Barcelona}.

(a) Cross Validation

70

5. Results

(b) Validation i.e test city

The precision-recall-curves differ between the cross validation and validation case.
The test validation set is more stable in the precision range [0.15, 0.2] for the most
part whereas the cross validation case has a range of roughly [0.2, 0.8]. This is quite
expected due to the difference in the amount of positive classes in each cross vali-
dation fold. Since all folds stay above the thresholds for the cross validation figure
it can be considered better than a random classifier.

In the test validation case the amount of positive classes doesn’t change between the
evaluation of the folds. This makes the precision-recall curves more stable. They
also follow the same pattern across folds. The curves are lower on the precision-axis
but still manages to perform above the threshold, showing that it is better than a
random classifier.

71

5. Results

Figure 5.17: Train set: {Stockholm, Madrid}. Test set: {Berlin}.

(a) Cross Validation

(b) Validation i.e test city

In the capital configuration the cross validation set appears to be more stable, in-
dicating less variety in the amount of positive classes in each fold. Several folds
in the cross validation case fall below the threshold value for lower recall values,
which once again shows that for some folds and thresholds it performs worse than
a random classifier.

72

5. Results

The validation set shows the precision around the threshold value for all the recall
values indicating barely better performance compared to a random classifier. For
all capital city configurations, results can be seen in Appendix A.3. For the capital
configurations the performance is consistently worse compared to the non-capital
cities.

5.3.3 Scenario II
For Scenario II the Random Forest Classifier was chosen. The results of the Ran-
dom Forest Classifier and Logistic Regression Classifier from Scenario I show that
the Random Forest Classifier performed better in general. Furthermore, the Ran-
dom Forest Classifier has the ability to calculate feature importance and is faster at
training the model compared to Logistic Regression. This makes it the best choice
for Scenario II and Scenario III where the training data increases. In this section
the feature importances from Scenario II are presented as the average feature im-
portance for each sub-sample of the 10 samples per test city in Section 5.3.3.1. For
convenience, the main results of Scenario II are also summarized below in a metric
plot of the averaged scores per sample set in Section 5.3.3.2.

5.3.3.1 Feature Importance

In this part, the feature importances are presented in Figure 5.18 containing each
test city with 10 sample configurations.

73

5. Results

Figure 5.18: A stacked bar chart showing the importances of every feature for
averaged samples of 10 configurations for each test city. One sample contains 10
configurations of city pairs used for training the model. Each configuration will
have a feature importance list. Since there are 10 configurations for each test city
there will be 10 such lists in total so these are averaged in order to get the above
feature importance plot.

As observed in the figure, the feature importances are similar across all averages
of samples. This is to be expected since for each set of samples there are various
combinations of training cities that can be similar or the same across sample sets.
For example, both test cities Gothenburg and Florence may share the combination
{Stockholm, Madrid}. As the feature importances are averaged for each set of
samples, this similarity is reflected in that all test cities share the same order of
feature importances. Once again, Highway Bus Stop is the most important feature.
This is followed by School and then Time of Day & Weekday. The rest of the
features contribute roughly the same amount, except for the last features Hospital
and Bus Station, accounting for a few percentages each.

5.3.3.2 Summary statistics

The metric scores for each test city in the sampled configurations are presented
below. Cross Validation results are shown in Figure 5.19a and Validation results are
shown in Figure 5.19b.

74

5. Results

Figure 5.19: Averaged metric scores of sampled configurations compared to Sce-
nario I. The scores from Scenario I have decreased size and are transparent in order
to distinguish them from Scenario II. The upper plot corresponds to the scores of the
Cross Validation case and the lower plot corresponds to the scores of the Validation
case. The test city for each set of samples is shown on the x-axis.

(a) Cross Validation

75

5. Results

(b) Validation i.e test cities

Despite the mix of non-capitals and capitals there are no major changes in the scores.
The accuracy and AUC remains around the same scores as before for both the cross
validation and test validation case. Looking at the precision and recall values these
fluctuated a bit between Scenario I and Scenario II which can be observed in both
figures. Generally, the scores are worse when the capitals are used as test cities
compared to when non-capitals are used, this can be observed in the validation
figure. In the cross validation figure all metrics are more stable. Since for each
test city in Scenario II there are 10 models these can be similar or even the same
between different cities. One such example could be the test cities Gothenburg and
Florence that both might contain the configuration {Barcelona, Berlin} since all
configurations are randomly sampled to acquire the 10 samples for each test city.
This is a reason for the similar scores between the test cities in the cross validation
plot.

5.3.4 Scenario III
In this section the results from Scenario III are presented for each metric. The
results are presented using tables where each column corresponds to the number of

76

5. Results

used training cities and the rows correspond to the test cities that were used for
evaluation. The color coded values for the 5 training cities show whether the score
increased or decreased compared to 2 cities.

Accuracy

Test City 2 cities 3 cities 4 cities 5 cities
Gothenburg 0.87 0.88 0.87 0.89
Florence 0.78 0.79 0.80 0.77
Barcelona 0.85 0.84 0.83 0.84
Berlin 0.67 0.69 0.68 0.76
Stockholm 0.72 0.73 0.72 0.79
Madrid 0.70 0.69 0.71 0.65

Looking at the accuracy metric it improved for 3 cities but also decreased for 3
cities. Overall the increases are larger than the decreases but not by much compar-
ing 5 cities to 2 cities.

AUC
Test City 2 cities 3 cities 4 cities 5 cities
Gothenburg 0.73 0.74 0.75 0.80
Florence 0.66 0.67 0.64 0.72
Barcelona 0.68 0.65 0.66 0.63
Berlin 0.57 0.60 0.60 0.70
Stockholm 0.58 0.61 0.60 0.68
Madrid 0.60 0.59 0.58 0.58

Area under the curve shows an improvement for 4 out of 6 cities. The improve-
ments are more prominent here compared to the accuracy and the improvements
are larger compared to the decreases.

Precision
Test City 2 cities 3 cities 4 cities 5 cities
Gothenburg 0.17 0.22 0.25 0.27
Florence 0.39 0.36 0.40 0.57
Barcelona 0.12 0.11 0.12 0.20
Berlin 0.43 0.41 0.40 0.36
Stockholm 0.30 0.34 0.30 0.41
Madrid 0.38 0.34 0.35 0.37

Precision also improves in 4 out 6 cases and for some cities by quite a lot. Florence
increased with 18 percentage points which is really good. Overall, the increases are
more than the decreases.

77

5. Results

Recall
Test City 2 cities 3 cities 4 cities 5 cities
Gothenburg 0.18 0.16 0.23 0.17
Florence 0.09 0.08 0.06 0.08
Barcelona 0.17 0.16 0.29 0.16
Berlin 0.12 0.09 0.10 0.07
Stockholm 0.11 0.10 0.11 0.26
Madrid 0.10 0.07 0.07 0.03

Recall was the only metric that decreased for the majority of the cities when com-
paring 5 cities to 2 cities. The only case where it increased was for Stockholm with
15 percentage points.

78

6
Conclusion

6.1 Discussion
In this section we will discuss the forecasting and classification results. The aim is
to answer the questions posed in the thesis goal:

• Forecasting
1. Are there any benefits to using more advanced models when forecasting

traffic speeds?
2. How will weather affect our predictions?

• Classification
1. What features have the best predictive capabilities?
2. How well does generalization of the models between cities really work?

Does it only work when the cities share a lot of features such as structure,
culture and technology?

3. Will training on more cities improve the performance of our models on
new data? If so, how much?

6.1.1 Forecasting
By the results in Section 5.2 there doesn’t seem to be any strong evidence that
forecasting performs better for the MLP model compared to the more simple AR
model. There could be a number of reasons why this is the case. One might argue
that the size of the training data was too small for the models to perform better.
Furthermore, an increase in the number of time steps in the input vector in the
MLP case, might improve the performance further compared to the other models.
A more thorough investigation, including more features, is needed in order to con-
clude if more advanced models really improve the forecasting ability.

In this paper, no improvement was seen when including the features precipitation
and temperature in the MLP model. Since the same weather data is provided for
every road in a city at any given time, it could explain its incapability to provide
useful information to the model. Another reason could be, once again, the size of
the training data. Yearly training data might be needed for the model to make more
informative decisions on how the different seasons might affect the predictions.

79

6. Conclusion

6.1.2 Classification
This section will focus on the discussion of the classification results. These include
a discussion of the metric score plots, the best features and how well the models
generalize to the test city data.
To further analyze the classification results, lets first review the metric formulas one
more time:

Accuracy = All correctly classified data / All data

ROC-curve = TPR plotted on the y-axis against the FPR on the x-axis.

AUC = The area below the ROC-curve.

Precision = TP

TP + FP

Recall = TP

TP + FN

Metric Scores

Generally, the metric plots 5.8 and 5.13 show a very high accuracy for both the
Logistic Regression Classifier and Random Forest Classifier. This is to be expected
and is not a good indication of the actual ability of the classifier to classify delays.
Since the data is imbalanced (usually 1:10 ratio in favor of non-delays) the classifier
can have an accuracy of 90% but might only predict the majority class. Looking
at the Precision and Recall we can see Precision being larger than Recall for the
most part. This indicates that the amount of FN is larger than FP. This means that
the models are worse at identifying positives (delays) as opposed to negatives (non-
delays). This is understandable, since our data is very imbalanced with far more
negatives compared to positives. It is however unfortunate since we want to build
models that are good at predicting delays i.e positive classes. One potential way
to mitigate the effect of the imbalance is to introduce an upsampling technique in
order to equalize the amount of positive and negative classes in the training samples.

That being said, looking at the AUC score in Figure 5.8b, we cannot say from
our results that the Logistic Regression Classifier is better than a random classifier.
Looking at the AUC score in Figure 5.13b we are able to produce Random Forest
classifiers that have a higher AUC score than 0.5 in general. The TPR is higher
compared to the FPR, meaning that these models correctly classifies more positives
than they incorrectly classify positives, which is encouraging. This also shows that
our Random Forest classifiers are better than a random classifier.

6.1.2.1 Comparing the classification models

In this section we will discuss the differences between the classification models and
how to choose the best model for classifying delays. In this paper we compared
a Naive Majority Classifier, a Logistic Regression Classifier and a Random Forest

80

6. Conclusion

Classifier. To measure the applicability of each model to a real-world scenario we
didn’t just use accuracy as a measure of performance, but also ROC AUC, Precision
and Recall. Together, these provide a much better picture of the actual performance
of a classifier. In a real-world scenario the importance of classifying the delays cor-
rectly is of great importance since that can have potentially large consequences
depending on how such a system might be used. It is therefore essential to reduce
False Negatives as much as possible. In order to measure the model’s ability to do
this we use Precision and Recall. As mentioned before, Recall is the proportion of
true positives that a model managed to classify. The Precision is the proportion
of correctly classified positives. Since it is of great importance to know if a delay
prediction is correct, both of these have been taken into account. An optimal model
would have a high Precision and Recall.

The Naive Majority Classifier had a Precision and Recall of 0 and is therefore not
a good model to use in practice. The Logistic Regression Classifier and Random
Forest Classifier both had a precision and recall above 0 except for one occasion
for the Logistic Regression Classifier. This was when Berlin and Madrid were the
cities included in the training configuration. The mean AUC value averaged over
the 6 different configurations of Scenario I is 0.56 for Logistic Regression and 0.64
for the Random Forest Classifier rounded to two decimal places. This translates to
roughly an increase of eight percentage points of AUC score for the Random Forest
Classifier. This, paired with the overall average higher standard deviation of the
Logistic Regression Classifier makes the Random Forest Classifier appear better.
The differences in Precision and Recall between the Logistic Regression Classifier
and Random Forest Classifier are significant. In order to confirm this, one box-plot
containing the Precision values for each configuration and fold is presented in Figure
6.1a and one box-plot containing the Recall values is presented in 6.1b.

81

6. Conclusion

Figure 6.1: The figures are two box plots illustrating the difference in performance
between Random Forest and the Logistic Regression for the cross validation case.
The top figure shows a comparison in precision while the bottom figure shows the
comparison in Recall.

(a) Precision Box plots

82

6. Conclusion

(b) Recall Box plots

Looking at 6.1a we see that the precision for Random Forest almost always outper-
forms the Logistic Regression. The only difference is in the configuration: Train
set: {Florence, Barcelona} Test set: {Gothenburg} and even then the difference is
not very large. In 6.1b we observe the Recall, it is shown that the Random Forest
outperforms the Logistic Regression for every configuration. For both 6.1a and 6.1b
the median of the box-plots is always higher with the exception of the configuration
previously mentioned. It is now clear that for our models, the Random Forest Clas-
sifier is the obvious choice.

Since the goal is to create a model that is good at classifying delays i.e. a model
with high Recall, analyzing the results presented in the Precision-Recall curves are
necessary. This can be illustrated by taking the example configuration with train
cities {Gothenburg, Florence} and test city {Barcelona}. If the requirement is to
cover 80% of the delays by the model the Recall needs to be 0.8. When this con-

83

6. Conclusion

figuration achieves a recall of 0.8 we can observe the corresponding Precision value
is roughly below 0.2 in the Precision-Recall Figure 5.16 to the right (the test city).
Since we allow for more false positives this is an okay performance of the model. In
our opinion all of the scores should be higher in order to apply the model in practice.
In this example configuration the scores were on an okay level but looking at the
other configuration used in the results, Figure 5.17, we can observe considerably
worse precision when choosing the same Recall value of 0.8. Because of this we
think that the classification results of this thesis can advantageously be used as a
good base for further research. By selecting a subset of the most important features
found in this thesis and using the same method of building the input vector and
evaluating the results, one can further improve the model result.

Selecting the best features

Going by the feature importance bar chart from Scenario II, the most important fea-
tures for predictability are Highway Bus Stops and Schools, as well as other forms
of public transportation. This is understandable since many people commute by
public transportation which usually is more available in the central parts of the city.
Moreover, places like schools usually have restrictions in terms of traffic speed which
might lend themselves towards a higher probability of congestion. Since the features
hospital and bus station didn’t provide much useful information according to the
generated feature importances, these could be removed in favor of other features in
the future. One potential flaw of the Gini Impurity as the method for assessing the
feature importances is that features with high cardinality have a tendency to get
a higher importance. A high cardinality refers to the uniqueness of values. This
essentially means that if a feature has a lot of unique values it might rank higher in
the feature importance list[28].

In order to further improve upon the classifiers it is essential to explore different
feature sets and assess their importance. Some examples of such features are dis-
cussed in Section 6.2.2.

Generalizability

The results from the different Scenarios show that it is possible to train a model
on some cities which is generalizable to other cities. The degree of success varies
between the different configurations of train cities and test cities but overall the
models perform better than random classifiers on the test city (which is what mea-
sures the actual real-world generalizability). In some cases the performance of the
model was barely able to perform better than a random classifier as can be seen in
Figure 5.15. This can probably be attributed to fundamental differences between
the training cities and the test city, which in this case was Berlin. Looking at other
configurations where Berlin is the test city we can observe the same pattern of worse
performance on the validation set i.e Berlin compared to the Cross Validation folds
(where Berlin is not present). This is supported by other configurations where Berlin
acted as the test city. For examples see Figure A.36, Figure A.37 and Figure A.39.
This is interesting because this might mean that Berlin has some fundamental dif-

84

6. Conclusion

ferences in how the city is structured that contributes to the performance decrease
when the city is included in models. Looking at the distribution of centrality in
Figure 4.3 we can also see that Berlin has a right-skewed distribution whereas the
other cities have considerably less skewness. This might invalidate the sampling
technique since the right-skewed distribution of Berlin doesn’t reflect that of the
others. Since Berlin contains more roads with less centrality the model might need
training on more roads that are in the higher range in order to more accurately re-
flect the other cities. Another way of looking at it is that Berlin doesn’t have a lower
density of roads but rather that the center point of the city is not clearly defined.
Other metrics could be introduced in order to sample the roads on more than just
the centrality metric. One final suggestion is to introduce some adjustments for the
skewness.

Increasing the number of training cities

Going by the results from Scenario III we generally see an improvement in the
metric scores when increasing the number of training cities with recall being the
only exception. One reason for this could be that it has to do with the random
elements involved during training of the models and more specifically the cross
validation splits. We believe that recall can be improved by adjusting the classifiers
probabilistic threshold which could vary between the number of training cities used.
We also believe that the reason for a decrease in the score for some cities could be
due to some cities not performing well together as we have stated previously. Since
the cities that had a skewed normal distribution performed worse in some cases, one
example being Berlin, it would be interesting to choose cities that share a similar
closeness distribution.

6.2 Future considerations
In this section we explore in what ways our work can be further developed.

6.2.1 Refined feature selection
The features selected for our models were selected roughly by intuition and by
influence from the study conducted in Beijing (see Section 4.4.1). It is reasonable
to expect that roads that have close proximity to schools or junctions such as bus
stops where overcrowding occurs are more prone to traffic delays. Despite this rather
rough selection of features, the models do improve over the Naive Classifier. It is
therefore interesting to explore the improvements that can be made if the feature
selection were to be more refined. To refine the feature selection one need to have
a clear understanding of where people are gathering at specific times. One way of
doing this is to gather location data on the movement of people in order to determine
where overcrowding occurs.

85

6. Conclusion

6.2.2 Static and non-static features
In this work we only accounted for mostly different kinds of static features that are
more or less consistent over longer periods of time. It would also be interesting to
analyze features that are of non-static nature, which may lead to non-reoccurring
traffic patterns. Examples of such features are road maintenance and accidents that
could negatively affect the traffic flow. By expectation, the current classification
models will perform poorly in these circumstances.

6.2.3 Climate change and extreme weather
Because of the ongoing climate change and the extreme weather that may follow as
a consequence, it would be interesting to see how extreme weather conditions affect
the traffic. This is however very hard to do due to the few instances of extreme
weather across European cities. Furthermore what classifies as extreme weather?
People residing in different geographical areas may have different opinions on that
definition based on the weather that they are accustomed to.

Let us, for the sake of simplicity, classify extreme weather as weather that affect in-
frastructure. For example, the weather might prevent people from driving through
roads that have been destroyed or are now deemed too dangerous to use due to
the current weather conditions. In order for the models to take extreme weather
into account the models must be trained in cities where extreme weather is more
prevalent.

6.2.4 Final words
As we move into the future where more people will likely live in great urban areas,
the planning and flow of a city is crucial for reducing congestion and the pollution
that follows. In this thesis we investigated different ways of working with traffic
speed data in the form of forecasting and classification. In our thesis we didn’t
see an improvement when using more advanced models for forecasting traffic speed.
We didn’t see any improvements when adding weather variables either but rather
a decrease in performance. In our case the RMSE scores were averaged over all
cities and roads which makes it hard to know if weather variables had a positive
effect on prediction in some cities. An interesting follow-up on this would be to
evaluate each city on its own and see if some cities actually benefit from the use
of weather variables or not. A major focus was put on the classification of traffic
delays which could be very interesting for determining when and where congestion
occur in different cities. This could be used as more knowledge when planning
new cities or improving the cities that we have in order to reduce congestion and
CO2 emissions. In this paper we presented three different Scenarios in order to
determine if it was even possible to classify traffic delays in cities where no traffic
data is available. Our results suggest that this is possible but more work is needed
in order to improve the performance of the models for practical applications. We
also saw that increasing the number of training cities overall improved the metric
scores. The most important features in our case proved to be the area features

86

6. Conclusion

bus station and school. Suggestions of future work include refined sampling and
feature selection, including non-static features and looking at larger sets of cities.
All things considered, the potential for future improvements are promising and it
will be interesting to see how models built using traffic speed data as well as other
data can be used to improve the infrastructure of the future.

87

6. Conclusion

88

Bibliography

[1] Gardner, M. W., Dorling, S. R. (1998). Artificial neural networks (the multi-
layer perceptron)—a review of applications in the atmospheric sciences. Atmo-
spheric environment, 32(14-15), 2627-2636.

[2] Saito, T., Rehmsmeier, M. (2015). The precision-recall plot is more informative
than the ROC plot when evaluating binary classifiers on imbalanced datasets.
PloS one, 10(3), e0118432.

[3] Kingma, D. P., Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[4] Wahde, M. (2008). Biologically inspired optimization methods: an introduction.
WIT press, 17-21

[5] Ketkar, N. (2017). Stochastic gradient descent. In Deep learning with Python
(pp. 113-132). Apress, Berkeley, CA.

[6] Deo, R., Samui, P., Roy, S. S. (Eds.). (2020). ch. 9. Predictive Modelling for
Energy Management and Power Systems Engineering. Elsevier.

[7] Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition let-
ters, 27(8), 861-874.

[8] PennState Eberly College of Science. 14.1- Autoregressive Models. https://
online.stat.psu.edu/stat501/lesson/14/14.1. (accessed on < 2021-05-28
>).

[9] Subasi, C., (2019, Mars 4). Logistic Regression Classi-
fier. towards data science. https://towardsdatascience.com/
logistic-regression-classifier-8583e0c3cf9. (accessed on < 2021-
05-11 >.

[10] Norton, E. C., Dowd, B. E. (2018). Log odds and the interpretation of logit
models. Health services research, 53(2), 859-878.

[11] Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of
mathematical Psychology, 47(1), 90-100.

[12] Barth, M., Boriboonsomsin, K. (2008). Real-world carbon dioxide impacts of
traffic congestion. Transportation Research Record, 2058(1), 163-171.

[13] Arnott, R., Small, K. (1994). The economics of traffic congestion. American
scientist, 82(5), 446-455.

[14] Colon, C., Hallegatte, S., Rozenberg, J. (2021). Criticality analysis of a coun-
try’s transport network via an agent-based supply chain model. Nature Sus-
tainability, 4(3), 209-215.

[15] Koetse, M. J., Rietveld, P. (2009). The impact of climate change and weather
on transport: An overview of empirical findings. Transportation Research Part
D: Transport and Environment, 14(3), 205-221.

89

https://online.stat.psu.edu/stat501/lesson/14/14.1
https://online.stat.psu.edu/stat501/lesson/14/14.1
https://towardsdatascience.com/logistic-regression-classifier-8583e0c3cf9
https://towardsdatascience.com/logistic-regression-classifier-8583e0c3cf9

Bibliography

[16] Kong, X., Xu, Z., Shen, G., Wang, J., Yang, Q., Zhang, B. (2016). Urban
traffic congestion estimation and prediction based on floating car trajectory
data. Future Generation Computer Systems, 61, 97-107.

[17] Polson, N. G., Sokolov, V. O. (2017). Deep learning for short-term traffic flow
prediction. Transportation Research Part C: Emerging Technologies, 79, 1-17.

[18] Fouladgar, M., Parchami, M., Elmasri, R., Ghaderi, A. (2017, May). Scalable
deep traffic flow neural networks for urban traffic congestion prediction. In 2017
International Joint Conference on Neural Networks (IJCNN) (pp. 2251-2258).
IEEE.

[19] Verendel, V., Yeh, S. (2019). Measuring traffic in cities through a large-scale
online platform. Journal of Big Data Analytics in Transportation, 1(2), 161-173.

[20] McCulloch, W. S., Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.

[21] Wikimedia. 2021. https://commons.wikimedia.org/wiki/File:Threshold_
roc.wikipedia_edit.svg (accessed on < 2021-06-03 >)

[22] Dickey, D. A., Fuller, W. A. (1979). Distribution of the estimators for au-
toregressive time series with a unit root. Journal of the American statistical
association, 74(366a), 427-431.

[23] Görtler, J., Kehlbeck, R., Deussen, O. (2019). A visual exploration of gaussian
processes. Distill, 4(4), e17.

[24] Louppe, G., Wehenkel, L., Sutera, A., Geurts, P. (2013). Understanding vari-
able importances in forests of randomized trees. Advances in neural information
processing systems 26.

[25] Scikit-learn: Machine Learning in Python. Pedregosa, F., Varoquaux,
G., Gramfort, A. et al. 2011. Journal of Machine Learning Research,
12, 2825–2830. https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.
RandomForestClassifier.feature_importances_. (accessed on < 2021-05-
31 >).

[26] Ahmed, N. K., Atiya, A. F., Gayar, N. E., El-Shishiny, H. (2010). An empirical
comparison of machine learning models for time series forecasting. Econometric
Reviews, 29(5-6), 594-621.

[27] Xia, F., Zhang, W., Li, F., Yang, Y. (2008). Ranking with decision tree.
Knowledge and information systems, 17(3), 381-395.

[28] Breiman, L., Friedman, J., Stone, C. J., Olshen, R. A. (1984). Classification
and regression trees. CRC press.

[29] Rokach, L., Maimon, O. (2005). Top-down induction of decision trees
classifiers-a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 35(4), 476-487.

[30] Melikov, P., Kho, J. A., Fighiera, V., Alhasoun, F., Audiffred, J., Mateos, J.
L., González, M. C. (2021). Characterizing Urban Mobility Patterns: A Case
Study of Mexico City. Urban Informatics, 153.

[31] Park, K. I., Park. (2018). Fundamentals of Probability and Stochastic Processes
with Applications to Communications. Springer International Publishing.

[32] Wold, H. (1938). A study in the analysis of stationary time series (Doctoral
dissertation, Almqvist Wiksell).

90

https://commons.wikimedia.org/wiki/File:Threshold_roc.wikipedia_edit.svg
https://commons.wikimedia.org/wiki/File:Threshold_roc.wikipedia_edit.svg
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.feature_importances_
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.feature_importances_
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.feature_importances_

Bibliography

[33] Chow, A. H., Santacreu, A., Tsapakis, I., Tanasaranond, G., Cheng, T. (2014).
Empirical assessment of urban traffic congestion. Journal of advanced trans-
portation, 48(8), 1000-1016.

[34] Zhang, T., Sun, L., Yao, L., Rong, J. (2017). Impact analysis of land use on
traffic congestion using real-time traffic and POI. Journal of Advanced Trans-
portation, 2017.

[35] Keay, K., Simmonds, I. (2005). The association of rainfall and other weather
variables with road traffic volume in Melbourne, Australia. Accident analysis
prevention, 37(1), 109-124.

[36] Muñoz Sabater, J., (2019). ERA5-Land hourly data from 1981 to present.
Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Ac-
cessed on < 2021-04-19 >), 10.24381/cds.e2161bac Copernicus.

[37] Hyndman, R.J., Athanasopoulos, G. (2021). Forecasting: principles and prac-
tices 3rd edition. ch. 2.9. OTexts: Melbourne, Australia. OTexts.com/fpp3.
(accessed on < 2021-05-06 >.

[38] Hyndman, R.J., Athanasopoulos, G. (2021). Forecasting: principles and prac-
tices 3rd edition. ch. 8.3. OTexts: Melbourne, Australia. OTexts.com/fpp3.
(accessed on < 2021-05-06 >.

[39] Hyndman, R.J., Athanasopoulos, G. (2021). Forecasting: principles and prac-
tices 3rd edition. ch. 8.1. OTexts: Melbourne, Australia. OTexts.com/fpp3.
(accessed on < 2021-05-06 >.

[40] Hyndman, R.J., Athanasopoulos, G. (2021). Forecasting: principles and prac-
tices 3rd edition. ch. 12.4. OTexts: Melbourne, Australia. OTexts.com/fpp3.
(accessed on < 2021-05-07 >.

[41] Copernicus. (2021). Copernicus API Reference. https://cds.climate.
copernicus.eu/toolbox/doc/api.html. Accessed on < 2021-05-06 >.

[42] HERE. (2021). HERE API Reference. https://developer.here.com/. Ac-
cessed on < 2021-05-05 >.

[43] Group Shuffle Split Cross Validation. (2021). SkLearn Reference Doc-
ument. https://scikit-learn.org/stable/modules/generated/sklearn.
model_selection.ShuffleSplit.html. Accessed on < 2021-05-24 >.

[44] Hastie, T., Tibshirani, R., Friedman, J. (2001). The elements of statistical
learning, Data Mining, Inference, and Prediction (2nd ed.). Springer.

[45] Weisstein, Eric W. Statistical Correlation. MathWorld: A Wolfram Web Re-
source. https://mathworld.wolfram.com/StatisticalCorrelation.html.
Accessed < 2021-05-06 >

[46] OpenStreetMap. (2017). https://www.openstreetmap.org
[47] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.

Mathematics of control, signals and systems, 2(4), 303-314.
[48] Glorot, X., Bordes, A., Bengio, Y. (2011, June). Deep sparse rectifier neural

networks. In Proceedings of the fourteenth international conference on artifi-
cial intelligence and statistics (pp. 315-323). JMLR Workshop and Conference
Proceedings.

[49] Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1985). Learning internal
representations by error propagation. California Univ San Diego La Jolla Inst
for Cognitive Science.

91

OTexts.com/fpp3
OTexts.com/fpp3
OTexts.com/fpp3
OTexts.com/fpp3
https://cds.climate.copernicus.eu/toolbox/doc/api.html
https://cds.climate.copernicus.eu/toolbox/doc/api.html
https://developer.here.com/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html
https://mathworld.wolfram.com/StatisticalCorrelation.html
 https://www.openstreetmap.org

Bibliography

[50] Minsky, M., Papert, S. A. (2017). Perceptrons: An introduction to computa-
tional geometry. MIT press.

[51] Hopfield, J. J. (1982). Neural networks and physical systems with emergent col-
lective computational abilities. Proceedings of the national academy of sciences,
79(8), 2554-2558.

[52] Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J. (2001). Gradient flow
in recurrent nets: the difficulty of learning long-term dependencies.

[53] Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural com-
putation, 9(8), 1735-1780.

[54] Hochreiter, S. (1998). The vanishing gradient problem during learning recur-
rent neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 6(02), 107-116.

[55] Ho, T. K. (1995, August). Random decision forests. In Proceedings of 3rd inter-
national conference on document analysis and recognition (Vol. 1, pp. 278-282).
IEEE.

[56] Trevethan, R. (2017). Sensitivity, specificity, and predictive values: foundations,
pliabilities, and pitfalls in research and practice. Frontiers in public health, 5,
307.

[57] Brown, C. D., Davis, H. T. (2006). Receiver operating characteristics curves
and related decision measures: A tutorial. Chemometrics and Intelligent Lab-
oratory Systems, 80(1), 24-38.

[58] Freeman, L. C. (1978). Centrality in social networks conceptual clarification.
Social networks, 1(3), 215-239.

[59] Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4),
581-603.

92

A
Appendix 1

A.1 Scenario I: Naive Majority Classifier

A.1.1 Metric Scores

Figure A.1: Metric Scores for each configuration. The test cities (used for cal-
culating the validation scores for the plot to the right) are Gothenburg, Florence,
Barcelona, Berlin, Stockholm and Madrid in that order.

A.1.2 ROC-curves
The Naive Classifier achieves no precision nor recall so just one example will be
shown here since every plot is essentially the same.

I

A. Appendix 1

Figure A.2: Train set: {Berlin, Madrid}. Test set: {Stockholm}.

A.1.3 Precision-recall-curves

Figure A.3: Train set: {Berlin, Madrid}. Test set: {Stockholm}.

II

A. Appendix 1

A.2 Scenario I: Logistic Regression Classifier

A.2.1 Metric Scores

Figure A.4: Metric Scores for each configuration. The test cities (used for cal-
culating the validation scores for the plot to the right) are Gothenburg, Florence,
Barcelona, Berlin, Stockholm and Madrid in that order.

A.2.1.1 ROC-curves

Non-Capitals

Figure A.5: Train set: {Florence, Barcelona}. Test set: {Gothenburg}.

III

A. Appendix 1

Figure A.6: Train set: {Gothenburg, Barcelona}. Test set: {Florence}.

Figure A.7: Train set: {Gothenburg, Florence}. Test set: {Barcelona}.

Capitals

Figure A.8: Train set: {Stockholm, Madrid}. Test set: {Berlin}.

IV

A. Appendix 1

Figure A.9: Train set: {Berlin, Madrid}. Test set: {Stockholm}.

Figure A.10: Train set: {Berlin, Stockholm}. Test set: {Madrid}.

A.2.1.2 Precision-recall-curves

Non-Capitals

Figure A.11: Train set: {Florence, Barcelona}. Test set: {Gothenburg}.

V

A. Appendix 1

Figure A.12: Train set: {Gothenburg, Barcelona}. Test set: {Florence}.

Figure A.13: Train set: {Gothenburg, Florence}. Test set: {Barcelona}.

Capitals

Figure A.14: Train set: {Stockholm, Madrid}. Test set: {Berlin}.

VI

A. Appendix 1

Figure A.15: Train set: {Berlin, Madrid}. Test set: {Stockholm}.

Figure A.16: Train set: {Berlin, Stockholm}. Test set: {Madrid}.

A.3 Scenario I: Random Forest Classifier

A.3.1 Feature Importance
Non-Capitals

VII

A. Appendix 1

Figure A.17: Showing feature importances in non-capital-configurations.

Capitals

VIII

A. Appendix 1

Figure A.18: Showing feature importances in capital-configurations.

A.3.2 Metric Scores

Figure A.19: Metric Scores for each configuration. The test cities (used for cal-
culating the validation scores for the plot to the right) are Gothenburg, Florence,
Barcelona, Berlin, Stockholm and Madrid in that order.

IX

A. Appendix 1

A.3.2.1 ROC-curves

Non-Capitals

Figure A.20: Train set: {Florence, Barcelona}. Test set: {Gothenburg}.

Figure A.21: Train set: {Gothenburg, Barcelona}. Test set: {Florence}.

Figure A.22: Train set: {Gothenburg, Florence}. Test set: {Barcelona}.

Capitals

X

A. Appendix 1

Figure A.23: Train set: {Stockholm, Madrid}. Test set: {Berlin}.

Figure A.24: Train set: {Berlin, Madrid}. Test set: {Stockholm}.

Figure A.25: Train set: {Berlin, Stockholm}. Test set: {Madrid}.

A.3.2.2 Precision-recall-curves

Non-Capitals

XI

A. Appendix 1

Figure A.26: Train set: {Florence, Barcelona}. Test set: {Gothenburg}.

Figure A.27: Train set: {Gothenburg, Barcelona}. Test set: {Florence}.

Figure A.28: Train set: {Gothenburg, Florence}. Test set: {Barcelona}.

Capitals

XII

A. Appendix 1

Figure A.29: Train set: {Stockholm, Madrid}. Test set: {Berlin}.

Figure A.30: Train set: {Berlin, Madrid}. Test set: {Stockholm}.

Figure A.31: Train set: {Berlin, Stockholm}. Test set: {Madrid}.

XIII

A. Appendix 1

A.4 Scenario I: Comparison

Figure A.32: Box-plot showing precision scores for Logistic Regression Classifier
and Random Forest Classifier side-by-side.

Figure A.33: Box-plot showing recall scores for Logistic Regression Classifier and
Random Forest Classifierside-by-side.

XIV

A. Appendix 1

A.5 Scenario II: Random Forest Classifier

A.5.1 Feature Importance

Figure A.34: A stacked bar chart showing the importances of every feature for
averaged samples of 10 configurations for each test city.

XV

A. Appendix 1

A.5.2 Metric Scores

Figure A.35: Averaged metric scores of sampled configurations. The test cities
for the average score for each set of 10 samples (used for calculating the validation
scores for the last plot) are Gothenburg, Florence, Barcelona, Berlin, Stockholm and
Madrid in that order.

XVI

A. Appendix 1

A.5.2.1 ROC-curves

Figure A.36: Train set: {Barcelona, Florence}. Test set: {Berlin}.

Figure A.37: Train set: {Barcelona, Gothenburg}. Test set: {Berlin}.

Figure A.38: Train set: {Florence, Madrid}. Test set: {Berlin}.

XVII

A. Appendix 1

Figure A.39: Train set: {Stockholm, Barcelona}. Test set: {Berlin}.

XVIII

	List of Figures
	List of Tables
	Introduction
	Thesis Goal
	Limitations

	Theory
	Evaluation strategy
	Baseline Model

	Missing Data
	Mean Imputation
	Train and Test split

	Forecasting Models
	Time Series
	Autocorrelation
	Forecasting Model
	Auto- Regressive Model(AR)
	Stationary time series
	Differencing
	Unit Root tests
	White noise time series

	Graph centrality
	Degree centrality
	In-degree centrality
	Out-degree centrality
	Closeness centrality

	Artificial Neural Network
	Neuron
	Activation function
	Supervised Training
	Weights
	Layers
	Loss Function
	Gradient descent methods/Optimization strategies
	Back-propagation
	Multi Layer Perceptron (MLP)
	Error measurement

	Classification models
	Logistic Regression Classifier
	Decision Tree
	Random Forest Classifier
	Cross validation
	Accuracy Measurement

	Data
	OpenStreetMap
	HERE Traffic Data
	Speed data
	Road coordinate representation
	Road length
	Cities
	Road Coverage per city
	Road Coverage in a city

	Weather data

	Methods
	Analysis
	Traffic speed data
	Stationary or non-stationary and transformations

	Weather
	Forecasting
	Preprocessing
	Baseline model
	AR
	MLP
	Evaluation

	Feature Extraction
	POI
	Centrality

	Classification
	Transforming the traffic speed into delays
	Naive Majority-Based Classifier
	Logistic Regression Classifier
	Random Forest Classifier
	Feature vector
	Selecting subset of cities
	Preprocessing
	Evaluation

	Results
	Analysis
	Checking for stationarity

	Forecasting
	Classification
	Sampling roads
	Scenario I
	Scenario II
	Scenario III

	Conclusion
	Discussion
	Forecasting
	Classification

	Future considerations
	Refined feature selection
	Static and non-static features
	Climate change and extreme weather
	Final words

	Bibliography
	Appendix 1
	Scenario I: Naive Majority Classifier
	Metric Scores
	ROC-curves
	Precision-recall-curves

	Scenario I: Logistic Regression Classifier
	Metric Scores

	Scenario I: Random Forest Classifier
	Feature Importance
	Metric Scores

	Scenario I: Comparison
	Scenario II: Random Forest Classifier
	Feature Importance
	Metric Scores

