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Static solutions of the Einstein-Dirac system for an increasing number of particles
behave as solutions of the Einstein-Vlasov system.
A Study of the transition to classical behaviour of a quantum system and comparing
properties of a classical and quantum matter distribution.
JOAKIM BLOMQVIST
Department of Mathematics
Chalmers University of Technology

Abstract
In this thesis we will study static solutions to the spherically symmetric Einstein-
Dirac system. This system couples Einstein’s theory of general relativity to Dirac’s
relativistic description of quantum mechanics. The goal was to study the transi-
tion from a quantum mechanical description to a classical description by comparing
properties of the solutions to the Einstein-Dirac system to solutions of the Einstein-
Vlasov system as the number of particles of the former system increases. In 1999
Finster et al. [10] found for the first-time static solutions to the Einstein-Dirac sys-
tem in the case of two fermions with opposite spins. Recently this study has been
extended to a larger number of particles by Leith et al [14]. In particular, they
construct highly relativistic solutions. The structure of the solutions is strikingly
similar to the structure of highly relativistic solutions of the Einstein-Vlasov sys-
tem. In both cases multi-peak solutions are obtained, and moreover, the maximum
compactness of the solutions is very similar. The compactness is measured by the
quantity m/r, where m is the mass and r the areal radius, and in both cases the
maximum value appears to be 4/9. Furthermore, in quantum mechanics the pres-
sure may be negative whereas classically it is non-negative. We find that already
for 16 particles the pressure is non-negative and thus behaves classically. In order
to compare the solutions, I need to construct solutions numerically to the Einstein-
Dirac system in the case of a large number of particles. This requires a delicate
procedure with significant numerical precision when the number of particles in the
system grows.

Keywords: General relativity, relativistic quantum mechanics, phenomenological
matter model, field theoretic matter model.
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1
Introduction

This thesis work investigates properties of two matter distributions emergent from
two seemingly very different relativistic matter models. The models are in order of
emphasis, the Einstein-Dirac system, and the Einstein-Vlasov system. Physically,
both models are phenomenologically very different, the first named system involves
matter described by a quantum wavefunction, making the matter model stochas-
tic, while the latter is a matter model describing the distribution of deterministic
classical matter. Microscopically all matter is modelled using wavefunctions, but
given enough particles, there is a limit where matter is purely deterministic and
thus classical in nature. This implies that there is a transition occurring or simply
that the random nature of individual particles, akin to the central limit theorem,
averages out to deterministic behavior. This is a philosophical question many physi-
cists have grappled with during the emergence of quantum mechanics, in particular,
Albert Einstein famously disliked the idea that the fundamental building blocks of
the universe are not deterministic; one of his many famous quotes are ”God does
not play dice with the universe”.

Putting that philosophical question aside, quantum theory despite this, has proven
itself by experiment to be a theory with great predictive power and accuracy. One
important branch of quantum theory is Dirac’s relativistic description of quantum
mechanics, which gave birth to the field of quantum field theory, and predicted with
great accuracy, the fine structure splitting of quantum states caused by the spin of
electrons. Another great accomplishment of the theory is also the at first, paradox-
ical prediction of anti-matter, which is due to the mathematical formulation of the
governing equation. As was discussed previously there should exist a transition of
quantum behavior towards classical behavior, and this is the main motivation for
studying both the Einstein-Vlasov and the Einstein-Dirac system.

On the surface, the main similarity between both systems, is that gravitational
interaction is described by Einstein’s field equations. The underlying theory behind
the equations are flexible enough to model gravitational effects in terms of space
time curvature, for many kinds of matter behavior. Similarly, to quantum mechan-
ics, Einstein’s general theory of relativity has also proven itself to be an accurate
model based on several experimental observations, most recently is the detection of
gravitational waves. Thus, studying a model constructed by coupling both theo-
ries must yield interesting results. However, it is worth remarking that in modern
physics, physicists are searching for a quantized theory of gravity, as general relativ-
ity breaks down at small scales. Hence, a quantum model affected by gravitational
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1. Introduction

effects described Einstein’s field equations, is physically an approximation.

The Einstein-Dirac system was at first studied by Felix Finster, Joel Smoller and
Shing-Tung Yau in their paper [10]. In said paper they both derived the system
for two fermions in a spherically symmetric static spacetime and generated nu-
merical solutions for the resulting differential equations. These solutions had two
key properties, and those are in no particular order, a non-singular center and an
asymptotically flat metric tensor. The final property implies that the resulting met-
ric tensor from the Einstein-Dirac system converges to the Minkowski tensor, while
also intersecting with the Schwarzschild metric. More recently a series of papers
have been published by a group from the University of St Andrews, see for example
[14] & [5]. In these papers they considered a more general version of the Einstein-
Dirac system, to be more specific, they studied a system with an arbitrary number
of fermions. These solutions with a certain level of central redshift, appeared to be
very similar to matter distributions produced by the Einstein-Vlasov system. This
apparent similarity acted as the main motivation for pursing this project. Since the
Einstein-Vlasov system is constructed by a classical matter distribution, also known
as a Boltzmann distribution. Based on these similarities and the phenomena of a
quantum system acting more classically for an increasing number of particles, there
seemed to be an interesting connection between a quantum system and classical
system, which was previously unknown territory. At a first glance these models
appear to form an interesting pairing for studying the transition from quantum to
classical matter behavior. Hence, the aim of thesis is to explores the Einstein-Dirac
and Einstein-Vlasov systems, to shed light on this transition from quantum to clas-
sical matter behavior and uncover the connections between these seemingly distinct
systems.

2



2
Mathematical preliminaries

This chapter will provide some necessary mathematical background for the interested
reader and give them a better foundation to grasp the results and analysis performed
in this work. Note that the mathematical foundations for general relativity are both
complex and extensive and is built on different branches of mathematics such as
differential geometry, differential forms, topology, and group theory to name a few.

2.1 The Einstein summation convention

The equations of general relativity are constructed using tensors V i
j, where the

elements of a tensor are referenced by indices i, j ∈ N . The location of the indices is
important, since they refer to different vector spaces; the upper indices V i are known
as contravariant tensor components while lower indices, Vi are known as covariant
components. The meaning of these will be made more precise shortly. The Einstein
summation convention is a shorthand notation for sums over tensor components. To
be more precise, it is a convention that implicitly defines a summation over upper
and lower indices if they possess matching symbols,

V iVi =
∑
i∈I

V iVi, (2.1)

where I denotes a general index set. It is nonetheless a popular convention, since
it simplifies equation by removing any summation symbols, which would quickly
become cumbersome, for Einstein’s field equations. In general relativity the letters
used to denote indices are sometimes used to identify the basis for which the com-
ponent of the tensor emerges from. According to convention, Greek letters signify
elements of a Minkowski or Lorentzian space, while Latin letters are used either
to denote components of a Riemannian space or a general undefined space, where
the index is not identified with a basis. Given the nature of this work, all relevant
equations are written in a Lorentzian spacetime, and thus all tensor components in
the theory section and beyond, will be referenced with Greek letters.

2.2 Definition of a spacetime
In opposition to the conventional theory for partial differential equations, the do-
main is not static, more concretely, the geometry of the region is coupled to matter
behavior. This key idea distinguishes the classical theory of gravity constructed
by Isaac Newton and general relativity founded by Albert Einstein. The region of
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2. Mathematical preliminaries

interest in this case is known as a spacetime, which is constructed by a manifold M
and an object which can be applied to study the local geometry about a point in M,
a metric g. Together they yield a spacetime description (M, g). The definition of
the metric will be introduced in its own subsection, and we will therefor concentrate
on the definition of a manifold for the remainder of this section.

A manifold is a set made up of smaller constituents, which are open subsets that
can smoothly be joined together. General relativity employs real manifolds, and we
will define them using the definition provided by Wald.

Definition 2.2.1 (Smooth real manifolds [26]) A n dimensional C∞ real man-
ifold M, is a set together with a collection of subsets {Oα} satisfying.

• Each p ∈ M lies in at least one subset Oα, i.e. subsets {Oα} cover M.

• For each α there is a bijective map ψα : Oα → Uα, where Uα is an open subset
of Rn.

• If any two sets Oα, Oβ overlap, then Oα ∩ Oβ ̸= ∅, we can consider a map
ψβ ◦ ψ−1

α which takes points in ψα[Oα ∩ Oβ] ⊂ Uα ⊂ Rn to points in ψβ[Oα ∩
Oβ] ⊂ Uβ ⊂ Rn. We require that Uα, Uβ are open and that this map is C∞.

The maps ψ, are both known as charts or coordinate system maps, the latter ter-
minology will henceforth be used.

A point p on a manifold M, is represented using an upper index pi, where the
index i ∈ {0, 1, 2, 3}, for a (1+3) dimensional manifold. Conventionally, the first
index p0, specifies the time coordinate of a point while the remaining indices speci-
fies a spatial coordinate, defined by a coordinate system. In the case of a spherical
coordinate system, the remaining indices {1, 2, 3} is associated with the radial basis-
e1 = er, and the angular basis functions e2 = eθ and e3 = eφ, which are defined by
the regular Cartesian basis {x̂, ŷ, ẑ} as follows:

er = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ,
eθ = cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ,
eφ = − sinφ x̂+ cosφ ŷ.

2.3 Dual spaces and tangent spaces
Let V be a vector space and let V ∗ denote a set of linear maps L : V → R. Since
the family of maps L, are linear, we immediately recover a vector space structure
for V ∗ as-well.

Indeed, let u, v ∈ V, then L(u+ v) = L(u) + L(v);
furthermore, let α, β ∈ C, then L(αv + βv) = L(αu) + L(βv) = αL(u) + βL(v).

4



2. Mathematical preliminaries

The set of linear maps can therefore be shown to obey all axioms for a vector space.
This new vector space V ∗ is known as the dual space to V . As a matter of fact, the
natural norm for this space is the operator norm,

∥L∥ = sup
∥x∥=1

∥L(x)∥.

Elements of a dual space are known as dual vectors. In general relativity V is de-
fined locally on a manifold, and in particular in this work M ⊆ R(1,3), where the
notation (1, 3) implies an inherent distinction between one time dimension and three
spatial dimensions. This distinction will be made more mathematically precise in
the section about the metric tensor. The dual space for the vector space in general
relativity is a linear functional also defined by the metric tensor; the linear func-
tional is in this case a special inner product.

Vector spaces employed in general relativity are known as tangent spaces. All ten-
sors or tensor fields are defined locally on a point’s tangent space, p ∈ M. These
spaces were introduced to give rise to a vector space structure on a manifold, since
manifolds does not naturally exhibit the necessary properties. To illustrate this fact,
consider a manifold defined by

M :=
{
x ∈ R3 : ∥x∥2 = x2

1 + x2
2 + x2

3 = c2, where c ∈ R
}
.

Take two arbitrary elements u, v ∈ M, and consider the image of an arbitrary linear
combination of these elements,

f(u, v; a, b) := au+ bv, a, b ∈ R.

To prove that f is not in general an element of M, consider the following argument,

f ∈ M ⇔ ∥f∥ = c,

∥f∥ = ∥au+ bv∥ ≤ |a|∥u∥ + |b|∥v∥ = c(|a| + |b|) ̸= c ∀ a, b ∈ R.

By the analysis above, f is not in general a map into M, and hence M is not
a proper vector space. We can therefor assert that points on manifolds does not
inherently have properties of a vector space, which necessitates the introduction of
tangent spaces. Opposed to vector spaces in the theory of differential equations,
tangent spaces are defined locally for all points on a manifold.

Definition 2.3.1 (Tangent vectors and tangent spaces [18][26]) Let M be a
smooth differentiable manifold, and F(M) be the set of smooth functions (C∞) on
M. Then a tangent vector v is a map v : F(M) → R, with the following properties:

(1): v(af + bg) = av(f) + bv(g), ∀a, b ∈ R and ∀f, g ∈ F(M);
(2): v(fg) = v(f)g + v(g)f, ∀f, g ∈ F(M).

A tangent space centred at p on M, is then the set of all such tangent vectors and
is denoted by TpM. The basis for TpM is given by differential operators, that are
locally mapping functions f ∈ F(M) to real numbers, Di|p : F(M) → R,

Di|p := ∂

∂xi

∣∣∣
p
, ∀f ∈ C1(M) : Di|p(f) = ∂f

∂xi
(p). (2.2)
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2. Mathematical preliminaries

Finally, let xi = (x0, . . . , xn) when n ∈ N, be a coordinate system with a corre-
sponding basis x̂i. Then using the basis Di|p, we can represent all elements of TpM
by the possible linear combinations of the basis and tangent vectors v

∀v ∈ TpM, v =
n∑
i=0

v(xi) ∂

∂xi

∣∣∣
p
, v : F(M) → R.

Tangent spaces, employs directional derivative operators to yield locally defined
vectorspaces. Indeed, since differential operators are linear, all relevant properties
follow as a result. Furthermore, due to the restriction of differentiable manifolds,
the class F(M) will ensure that they are bounded.

2.4 Tensor formalism
In this section we will discuss some necessary theory used to rigorously define tensors,
to give some background to Einstein’s field equations. All the provided equations and
information about the theoretical background of general relativity, unless explicitly
stated otherwise, are based on material found in either [26] or [27]. Both books are
classics and provides a solid theoretical foundation for the subject.

2.4.1 Tensor definitions
Tensor equations are central to general formulations of physical laws, since the un-
derlying formalism, yields equations whose corresponding physical laws are invariant
to the coordinates in which the theory is formulated. In physics the philosophy, “if
it looks like a duck, acts like a duck and quacks like a duck, then it is a duck” is of-
ten applied to define tensor objects. More concretely, through this lens, they can be
viewed as objects whose components transform in a special way. The transformation
laws are different for contravariant- and covariant components. These components
are elements of tangent spaces and their dual spaces, respectively. To discuss and
introduce these laws, we will introduce two sets of coordinates xi and ξj, where the
first is informally known as the “un-primed coordinates” and the latter are known
as the “primed coordinates”. More formally, to define the first transformation law,
we require two sets of coordinate systems generated by two sets of basis elements.

Definition 2.4.1 (Prime and un-primed coordinate systems) Let xa denote
a set of elements emergent from the basis {va}a∈I where I ⊂ N. The basis elements
va, naturally, span the vector space V . Correspondingly, let ξa denote a set of
elements emergent from the basis

{
(v′)b

}
b∈J

where J ⊂ N, which spans another
vector space V ′.
Given this definition, a tensor transformation, is a map u 7→ u′, that maps elements
from a proper vector space u ∈ V , to another vector space u′ ∈ V ′, described by two
different coordinate systems xa and ξa, according to the following transformation
law,

(u′)a = ∂ξa

∂xp
up. (2.3)

6



2. Mathematical preliminaries

Similarly, the corresponding transformation law for a dual space element ua 7→ u′
a

is defined as
(u′)a = ∂xp

∂ξa
up. (2.4)

Both transformation laws define maps for tensors of rank one, between vector spaces
or dual spaces. The transformation laws generalize to higher rank tensor with the
tensor product, that is T ab = Ua ⊗ V b, and hence, a transformation of a degree two
or higher tensor, is defined by component wise, applying the appropriate rank one
transformation law:

(T ′)ab = (U ′)a ⊗ (V ′)b =
(
∂ξa

∂xp
Up

)
⊗
(
∂ξb

∂xq
V q

)

= ∂ξa

∂xp
∂ξb

∂xq
Up ⊗ V q = ∂ξa

∂xp
∂ξb

∂xq
T pq,

(T ′)ab = (U ′)a ⊗ (V ′)b =
(
∂xp

∂ξa
Up

)
⊗
(
∂xq

∂ξb
Vq

)

= ∂xp

∂ξa
∂xq

∂ξb
Up ⊗ Vq = ∂xp

∂ξa
∂xq

∂ξb
Tpq.

Higher order transformation laws can be derived using the same procedure by writing
T a1a2 ... an = T a1 ⊗T a2 . . . T an−1 ⊗T an , where n, an ∈ N. Finally, we will also study an
equation, constructed by tensors with mixed indices. To define their transformation
behavior, consider a rank two case T ab = Ua ⊗ Vb, each component in the tensor
product transforms using its previously defined transformation map, and hence the
tensor transforms according to

(T ′)ab = (U ′)a ⊗ (V ′)b = ∂ξa

∂xp
∂xq

∂ξb
T pq. (2.5)

Transformations of higher ranked mixed index tensors, generalizes precisely as a
tensor with only one type of index, using the same tensor product formalism.

This more pragmatic definition is useful in a physical context but must be expanded
upon to discuss it more rigorously. To this end let V be a finite dimensional vector
space and let V ∗ denote its dual space. Then a tensor T , of type (k, l) over V is a
multilinear map

T : V ∗ × V ∗ × . . .× V ∗︸ ︷︷ ︸
k-times

×V × V × . . .× V︸ ︷︷ ︸
l-times

→ R, (2.6)

using index notation it can be written as T a0a1 ... al
b0b1 ... bk

. The multilinearity property also
implies that a tensor is an element of a vector space denoted by I (k, l). There are
a few tensor operations, one of them is contraction. Contraction directly operates
on the indices of a tensor, and redefines the symbol used for either a covariant or
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2. Mathematical preliminaries

a contravariant index to gain a matching pair of indices. Consequently, the tensor
reduces in order due to the resulting summation:

V ijV kl
l=j→ V ijV kj =

∑
j

V ijV kj. (2.7)

Circling back to the tensor product discussed earlier, which is also known as an
outer product, can be made more precise using this formalism. Take two tensors
U ∈ IU(a, b) and V ∈ IV (c, d), where a, b, c, d ∈ N, then the operation U⊗V , yields
a new tensor, T = U⊗V , from the corresponding tensor space T ∈ IU⊗V (a+c, b+d).

2.4.2 The metric tensor
Linear algebra, or elementary vector calculus, studies vectors from an elementary
vector space V = Rn, using an inner product ⟨·|·⟩ : V × V → R,

⟨u|v⟩ =
∑
i

uivi, u, v ∈ Rn. (2.8)

In conjunction the vector space and the inner product forms a metric space (Rn, d),
where d(x, y) = ∥x− y∥ =

√
⟨x− y|x− y⟩. Using the inner product (2.8), we can

define lengths of vectors, and angles between vectors in our vector space V

∥x∥ =
√

⟨x|x⟩, cos(θ) = ⟨x|y⟩
∥x∥∥y∥

. (2.9)

It also follows that these metric spaces, are natural for so-called flat Euclidean or
Riemannian geometries, which is the fundamental spaces of classical physics. In gen-
eral relativity however, the inherent spatial and temporal dimensions are not static,
and can be intrinsically curved, which requires more complex mathematical formal-
ism. For all vector fields (or events) in the spacetime manifold M, a corresponding
inner product operation g, is known as a metric or metric tensor [18]

g ≜ ⟨·|·⟩ = gab, a, b ∈ N. (2.10)

With the metric, an inner product between spacetime vectors u, v ∈ M can be
written as follows

g(u, v) = ⟨u|v⟩ = gabu
avb. (2.11)

The metric naturally, acts as an isomorphism between the regular vector space and
its dual V ∼= V ∗. Hence, elements of the dual space ua can be accessed or defined
by employing the metric,

ua = g(u, ·) = gabu
b. (2.12)

Note that the use of repeated upper and lower indices, implicitly defines a summation
over them. Also make a note of the fact that the metric tensor yields a weighted
version of the regular Euclidean scalar product (2.8). These weights are impor-
tant, as they will be used to transmit the influence of intrinsically non-flat or non-
Riemannian geometry upon lengths of, and angles between vectors. Minkowskian
spacetimes, in contrast to Riemannian geometries have a non-definite metric tensor,
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2. Mathematical preliminaries

since in a Riemannian spacetime gab = δab where δ is the well-known Kronecker delta
tensor, also known as an identity matrix, yields a positive definite norm induced by
the inner product ∥u∥2 = ⟨u|u⟩ = gabu

aub. In Minkowskian spacetime, this definition
of a norm is not positive definite any longer, and hence does not obey the properties
of a metric, to form a metric space. This fact is caused by a deliberate partitioning
of the dimensions of a Rn space into two distinct categories, where one is the time
dimensions and the other are the spatial dimensions. Elements of the metric tensor
associated with each set, are distinguished by a relative minus sign; this defines
the signature of the metric, and is often denoted by the notation (−,+,+,+) or
R(1,3). The set incurring the negative metric tensor components is arbitrary, and
in the previous example, the first dimension x0 is by convention a time dimension,
this implies that g00 < 0. In physics there is an important distinction between
a Minkowski and Lorentzian spacetime, the latter is a more general environment,
where the spacetime is allowed intrinsic curvature, while Minkowskian spacetime,
technically, is the region of special relativity, which studies physical phenomena in a
geometrically flat spacetime. Furthermore, the metric tensor in a Minkowski space-
time is often denoted by ηab, and is defined explicitly below for Cartesian- (t, x, y, z)
and spherical coordinates (t, r, θ, φ):

ηab = diag(−1, 1, 1, 1), for xa = (t, x, y, z); (2.13)
ηab = diag(−1, 1, r2, r2 sin(θ)), for xa = (t, r, θ, φ). (2.14)

The indefinite property of the metric tensor in these spacetimes, by construction to-
gether with the axiom of the fixed speed of light in all reference systems, generates
different classifications of spacetime vectors va ∈ M. Each type of vector is used
to span a surface known as the light cone, which describes the causal horizon of an
observer at a point in space. To be more precise, the nature of a spacetime vector
is determined by the inner product ⟨v|v⟩. The size of the light cone is restricted
because the axiom of a fixed speed of light, or as it is sometimes known as the speed
of causality.

For physicist it is often customary to denote the invariant infinitesimal distance
squared ds2, between two vectors as

ds2 = gab dxadxb. (2.15)

This length or metric as physicists sometimes refer to it, is similar to the definition
of a line element for a line integral∫

γ
f(γ) ds =

∫
γ
f(γ)

√
dx2 + dy2 + dz2, γ : R → R3, & f : R3 → R. (2.16)

By comparing the term for the line element in the integral and ds2, it is clear by
inspection, that the metric tensor generalizes the notion of a line segment to more
complex geometries. Another necessary definition is the length of a proper time
interval, which relates to ds2 in the following manner,

dτ 2 = −ds2. (2.17)
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2. Mathematical preliminaries

The metric is also able to generalize other geometrical quantities. One example is
integral measures, for example dµ = dV is generalizable by employing the metric.
An integral metric can be invariant to changes in coordinates. One example is a
differential volume measure. We will define it by applying it for a region of spacetime
Ω ⊆ M, ∫

Ω
f dµ =

∫
Ω
f
√

|det(gab)|dV =
∫

Ω
f
√

|g|dV, (2.18)

where g acts as a shorthand notation for det(gab).
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3
Theory

3.1 Outline of the theory section
The purpose of this section is to introduce the reader to the major theoretical con-
cepts applied in this work. At first, we will discuss the theory behind all tensors in
the Einstein equation. After introducing the necessary tensors, we will briefly dis-
cuss the difficulties involved with finding general solutions to the Einstein equation
and introduce the important Schwarzschild solution. After discussing the Einstein
equation, we will start to discuss Dirac’s equation and some of its properties. After
introducing both the Dirac equation and the Einstein equations, we will conclude by
introducing the Einstein-Dirac equation, by discussing its derivation and imposed
boundary conditions.

3.2 Curvature tensors
This section will not generically define the necessary tensors describing the curvature
of spacetime, instead we will only consider their tensor index representation, since
this constitutes the minimal definitions required for defining the Einstein Equation.
We begin with defining the tensors used in the left-hand side of the Einstein’s equa-
tion, to do so, we first require an object which is not in general, a tensor object. In
the literature it is known as the levi-cevita connection or Christoffel symbols. For
our purposes, it is a (2,1)-tensor-like object, defined as follows [26]

Γδαβ = 1
2g

δσ

[
∂gσα
∂xβ

+ ∂gσβ
∂xα

− ∂gαβ
∂xσ

]
. (3.1)

Take note that it is constructed using first order differential operators acting on
the metric tensor, gαβ. Using the Christoffel symbols, we can define a new set of
differential operators. One such operator is known as the covariant derivative Dα,

DαVβ = ∂Vβ
∂xα

− ΓσαβVσ. (3.2)

This operator is key to defining the notion of parallel transport of vector fields, as
the Christoffel symbol considers any deviation of a vector’s direction, as it is ”trans-
ported” through an intrinsically curved space.

Using the covariant derivative and the Christoffel symbols, we can define the Rie-
mann curvature tensor, by computing the commutator of the covariant derivative
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3. Theory

(3.2), with two different indices, acting on a general covariant (1,0) tensor Vσ

[Dα, Dβ]Vσ = Dα(DβVσ) −Dβ(DαVσ)
(3.2)= {∂βΓδασ − ∂αΓδβσ + ΓτασΓδτβ − ΓτβσΓδτα}Vδ.

It is a quite lengthy computation but can be done by hand. As a result we can
explicitly define the Riemann curvature tensor Rδ

αβσ, using the following equation

Rδ
αβσ := ∂βΓδασ − ∂αΓδβσ + ΓτασΓδτβ − ΓτβσΓδτα. (3.3)

Note that the Riemann tensor is a rank four tensor, and to be more precise it
is a (3,1)-tensor. The tensor’s components are constructed by derivatives of the
Christoffel symbols (3.1), which in turn are constructed by derivatives of the metric
tensor. Hence, we can claim that the Riemann tensor, is a tensor containing up to
second order differential operators, acting on gµν . To define Einstein’s field equation,
we require two lower order tensors, derived from the Riemann tensor. These are in
order of tensor order, the Ricci tensor, and the curvature scalar. To obtain these
tensors, we need to contract some, or all the indices in the Riemann tensor. At
first, the Ricci tensor Rµν , is defined by contracting two indices, which reduces the
corresponding tensor space from (3,1) to (2,0),

Rδ
αδσ = Rασ.

Finally, we will define the Ricci curvature scalar R. This scalar value is also known
as the Ricci scalar, which, is a (0,0)-tensor. Construction the Ricci scalar requires
a contraction operation on the Ricci tensor. To achieve this result, we must first
multiply with a contravariant metric tensor. The introduced metric tensor, then
allows for a final contraction, which effectively, removes any remaining indices.

R = gασRασ.

3.3 The energy momentum tensor and energy con-
ditions

A crucial part of Einstein’s field equations is a term describing the flow and location
of matter. Since axiomatically, the mere presence of matter in general relativity,
causes the spacetime geometry to curve, as a response to its corresponding mass and
energy. The tensorial object used to describe the mass and energy of any kind of
matter, occupying a region of space time, is the stress-energy momentum tensor Tµν .
Using this tensor, it is easy to write down a compact equation used to describe the
conservation of mass and energy, namely DµT

νµ = 0. In spherical coordinates, the
corresponding basis vectors {er, eθ, eφ}, implies that the energy momentum tensor
can be written on a diagonal form [15],

T µν = diag(ρ, pr, p⊥, p⊥). (3.4)

The T 00 = ρ component, represents the energy density, T 11 = pr denotes the radial
pressure, and T 22 = T 33 = p⊥ are the symmetrical tangential pressures. All the
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3. Theory

described components are physical properties of the matter distribution, and thus
play a central role in defining what are known as energy conditions. These conditions
can be employed to test if the current matter model is physically sound, by properly
conserving mass and energy. The standard energy conditions are in no particular
order [15]

• The null energy condition (NEC): ρ+ p ≥ 0 where p is used to represent pr or
p⊥.

• The weak energy condition (WEC): ρ ≥ 0 in conjunction with the NEC con-
dition.

• The dominant energy condition (DEC): ρ− p ≥ 0 where p is used to represent
pr or p⊥, this condition also requires the conditions from WEC.

• The strong energy condition (SEC): ρ+ pr + 2p⊥ ≥ 0 together with NEC.

Beyond these conditions we will introduce another energy-like condition, which will
be directly employed to study the Einstein-Dirac system. It is defined using the
components outlined above.

pr + 2p⊥ ≤ Ω · ρ, where Ω ∈ R+ = {x ∈ R : x ≥ 0} . (3.5)

There is no standard methodology for deriving T µν , due to the physical association
of the tensor. One method used to derive the tensor, applies methods from the
calculus of variations, on the very popular action functional.

S(f) =
∫

Ω
f dx, ∀f ∈ C0, Ω ⊂ Rd.

For physical applications, the action functional is operating on the Lagrangian den-
sity, LM =

√
|g|LM , where LM represents a Lagrangian functional, defined by the

matter model [26]. More explicitly, S(Lm) can be written as

S(LM) =
∫

Ω
LM dx =

∫
Ω
Lm

√
|g| dx, where g = det(gµν) & Ω ⊆ M. (3.6)

Using this action, the elements of the energy momentum tensor, can be derived as
follows [26]

Tµν = CM
8π

1√
|g|
δS(LM)
δgµν

. (3.7)

In the above equation, CM is used the represent a constant which depends on the
matter model, and δS(LM)/δgµν denotes the functional derivative, or variation of
the action S, with respect to metric tensor’s components.

3.4 Einstein’s field equations
Einstein’s equations or Einstein’s field equations is a tensorial equation, which on
the left-hand side is constructed by tensors describing the space time’s curvature.
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These are in order of occurrence, the Ricci-tensor Rµν , the Ricci-scalar R and the
metric tensor gµν . While the right hand side of the equation, is constructed using
constants and the energy-momentum tensor Tµν = gµηgννTην . Mathematically, the
resulting equation, for a mostly positive metric signature, is defined as [27]

Rµν − 1
2Rgµν = 8πTµν . (3.8)

Due to the presence of the Ricci-tensor and scalar, it is in general, a second or-
der, non-linear partial differential equation, describing the dynamics of the metric
tensor’s components. The resulting number of equations naturally depends on the
dimension of the employed manifold and symmetry of the coordinate system. For
physical applications, the spacetime is modelled using four dimensions, one time
and three spatial dimensions, resulting in sixteen possible equations. Naturally,
it follows that certain coordinate systems can reduce the number of independent
equations. This effect is compounded when assuming that gµν is symmetric, which
further reduces the number of equations to ten. The differential equations resulting
from Einstein’s field equations, are inherently complex, due to the complex defini-
tion of the curvature tensors, and the multitude of possible independent equations.
Consequently, any general analytic solutions, are very difficult to find. Some of
the most famous solutions are the Schwarzschild solution and the Kerr solution.
The first named is important for the analysis performed in this thesis work, since
it by construction, describes the geometry of a static spherically symmetric space-
time, outside a generating mass M ∈ R+. One important property of this solution
is its asymptotic behavior far away from the mass, namely, asymptotic flatness.
Physically, this formalizes the transition into a flat or non-curved spacetime, and
mathematically, it can be formalized as follows.

lim
r→∞

gµν = ηµν . (3.9)

3.5 The Schwarzschild metric and compactness
results

A very important, and historically influential solution, to the spherically symmetric
static Einstein equations (3.8), is the well-known Schwarzschild metric [[18][26][27]]

gµν = diag
(

−
(

1 − 2M
r

)−2
,
(

1 − 2M
r

)−1
, r2, r2 sin2(θ)

)
. (3.10)

This metric has two important singularities at r = 0 and r = 2M/r. Where the latter
is of great importance, since it used to define a metric known as the compactness of
a solution to (3.8). This metric is characteristic of a particular solution to Einstein’s
equations and is defined by the ratio between the accumulated mass, up until a
radius r, m(r), and the radius r. For our analysis, the supremum of the quantity
will act as our main metric,

Γ := sup
r>0

2m(r)
r

. (3.11)

14



3. Theory

The mass term, m(r) is known as the quasi-local mass of a solution and is calculated
by integrating the energy density ρ,

m(r) =
∫
R3
ρ(r) d3x = 4π

∫ r

0
s2ρ(s) ds. (3.12)

For highly compact solutions to (3.8), the value of Γ is very close to one. A histor-
ically significant result involving the compactness of some static, spherically sym-
metric solutions, to the Einstein equation, is known as the Buchdahl inequality [4]

2M
R

<
8
9 . (3.13)

At the left hand side of the inequality, M represents the total mass enclosed by the
distribution ρ and R represents the smallest radius enclosing M , m(R) = M . The
assumptions of the proof produced by H.A Buchdahl, assumes a few properties of
ρ, among which is a non-increasing energy density, and isotropic pressure pr = p⊥.
Both assumptions are not valid for the systems, which we will discuss in this thesis.
A more general result was proved by Andréasson in 2008; this more general result
does not require that ρ is strictly increasing.

Theorem 3.5.1 (Compactness bound [1]) Let Ω, ρ and pr be non-negative, and
let the pressures pr, p⊥ and the energy density ρ satisfy

∃Ω > 0 : pr + 2p⊥ ≤ Ω · ρ.

Then the following compactness bound holds

sup
r>0

2m(r)
r

≤ (1 + 2Ω)2 − 1
(1 + 2Ω)2 . (3.14)

Note that this bound can reproduce Buchdahl’s result, when Ω = 1.

3.6 The Dirac equation

Schördinger’s famous equation Ĥψ = i∂ψ
∂t

was very influential during the evolution
of quantum mechanics as a field of study. Written more explicitly, the equation is a
parabolic partial differential equation.

i
∂ψ(x, t)
∂t

− (∆ + V )ψ(x, t) = 0, (3.15)

where ∆ is Laplace operator and V is an unspecified potential. The initial strategy
to derive a relativistic version of Schrödinger’s equation involved including extra
terms in the Hamiltonian, in a similar manner to perturbation theory. But the first
truly relativistic quantum mechanical theory was provided by the Klein Gordon
equation, which was derived by quantizing Einstein’s energy, mass, and momentum
relation.

E2 = (mc2)2 + ∥p∥2c2. (3.16)
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The Klein-Gordon equation did however display some inherent flaws. One important
flaw is that the corresponding probability density fX = Ψ∗Ψ, is not positive definite
[20], as a result the axioms of probability theory is violated. Ergo, the Born rule, is
unable to define a valid probability measure. This property, alongside the fact that
the Klein-Gordon equation is only valid for spin zero particles (Bosons), motivated
Paul Dirac among others, to find an equation to model spin 1/2 particles. In 1929
Dirac succeed and found an equation which later was named after him, the famous
Dirac equation [23]

(i /D −m)Ψ = 0.

The form given above is known as the free Dirac equation, where the included terms
describe the momentum /D and the mass of the particle m. It is also possible to
write in a more general form using the Hamiltonian formalism as ĤΨ = EΨ, where
Ĥ := −iℏcα · ∇ + βm+ V [23], but we will mostly concern ourselves with the more
explicit from given above. The Dirac equation has since its invention been very
successful. One such result, is the highly accurate prediction of the fine structure
splitting of the energy levels in the hydrogen atom, which is one of the most accurate
theoretical predictions in modern physics.

3.6.1 Derivation of the Dirac equation
In the following derivation, we will be considering a free particle (no potential,
such as gravity or Coulomb potentials) moving in a Minkowski spacetime, which
is the realm of special relativity. In this realm, the linear momentum p, must be
replaced by the four momentum pµ = (E,p). All upcoming equations, and previous
equations are formulated using natural units, furthermore ηµν = diag(1,−1,−1,−1),
will denote the Minkowski metric, with a mostly negative signature, in a 1 + 3
spacetime. By contracting pµ with pµ we can rewrite equation (3.16), in terms of
the four momentum,

pµpµ = pµηµνp
ν = E2 − ∥p∥2 (3.16)⇒ pµpµ −m2 = 0. (3.17)

The final resulting equation pµpµ −m2 = 0, is the starting point used to derive the
Dirac equation. If, we are able to factorize it, into two terms akin to the algebraic
identity (a2 − b2) = (a + b)(a − b), we would be able to define the Hamiltonian
operator, using only one momentum operator. For this purpose, the equation needs
to be reformulated, because the pµ-term is a four vector, while m is a scalar. This is
where Dirac’s ingenuity started. He studied a general expression for the factorization
and during the working procedure, decided what objects needed to be included into
the equation for it to be well-posed. Thus, consider the final term in (3.17) and
assume the following ansatz

pµpµ −m2 = (ανpν +m)(βµpµ −m). (3.18)

The terms αν and βµ, seems to at this stage, be some type of (0,1) tensor, in order
for their contractions to be scalars. The components of each tensor object must be
found such that the equality holds. By performing the multiplications and studying
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the resulting terms, we find that
ανβµpνpµ −mανpν +mβµpµ −m2 = 0

for µ = ν
(3.18)⇒ αν = βν and since pδ = pσηδσ ⇒ βνβµpνpµ −m2 = 0.

The result in the final line is where Dirac discovered his famous gamma matrices.
To make the remaining steps in the derivation towards the Dirac equation more
explicit, let βµ := γµ. Next, to define them, it is easier the make the summation
over the indices more explicit and study the resulting terms,

βνβµpνpµ −m2 = γ0γ0p0p0 + γ0γ1p0p1 + γ0γ2p0p2 + γ0γ3p0p3

+ γ1γ0p1p0 + γ1γ1p1p1 + γ1γ2p1p2 + γ1γ3p1p3

+ γ2γ0p2p0 + γ2γ1p2p1 + γ2γ2p2p2 + γ2γ3p2p3

+ γ3γ0p3p0 + γ3γ1p3p1 + γ3γ2p3p2 + γ3γ3p3p3 −m2.

More compactly, we can rewrite them into two different contributions,
βνβµpνpµ −m2 =

∑
µ

γµγµpµpµ +
∑
µ̸=ν

(γµγν + γνγµ)pνpµ −m2.

Some of the emergent terms appears to be an anticommutator between two matrices,
that is {A,B} = AB + BA. This was a profound discovery since this implied that
the solutions to the Dirac equation, are not scalar fields, as is the case with the
Schrödinger equation. More on this later. By separately considering each term in
the resulting equation, we find conditions that the γµ objects must satisfy. Starting
with the first term. For the same indices the left hand side of equation (3.18) implies∑

µ

pµpµ =
∑
µ,ν

pµηµνp
ν =

∑
µ=ν

γµγνpµpν ⇒ γµγν = ηµν . (3.19)

Due to this result and the fact that the terms from the second sum must vanish, we
can ascertain another property of these Gamma matrices.∑

µ̸=ν
(γµγν + γνγµ)pνpµ =

∑
µ ̸=ν

{γµ, γν}pνpµ = 0, (3.20)

by the definition of {·, ·}, ηµν and (3.19) ⇒ {γµ, γν} = 2ηµν . (3.21)

This result is important, as this defines the matrix representation of the Clifford
algebra [23]. Hence, we can conclude that a more specific ansatz, which generates a
correct factorization, is defined using γµ

pµpµ −m2 = (γνpν +m)(γµpµ −m) = 0. (3.22)
To end up with the Dirac equation, the final step is too exchange the four momentum
pµ with the differential operator i∂µ. In quantum field theory the so called Feynman
slash notation is used to denote the contraction of the γµ matrices and the operator
∂µ, that is /D := γµ∂µ. Finally, by applying the resulting operator on a wavefunction
Ψ, we can write the Dirac equation for a free particle as follows.

(i /D −m)Ψ = 0. (3.23)
Since the Dirac equation is derived using the outlined factorization, there are solu-
tions with both positive and negative energy, this is the main reason for the Dirac
equation’s predictions of anti-particles, such as the positron.
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3.6.2 Dirac spinors and the gamma matrices
The wavefunction in the Dirac equation Ψ, is a four component spinor field Ψ ∈ C4,
in contrast to the scalar wavefunction in Schrödinger’s equation. The spinor fields,
are elements of a special Hilbert space, namely, H = L2(R3) ⊗ C4 [23]. The four
spinor components, can be decomposed into two sets of spinor pairs ψA and ψB,
meaning that we are able to compactly, write Ψ = [ψA, ψB]⊤. To study the properties
of the two spinors, we use the unquantized free Dirac equation as a starting point,

(γµpµ −m)ϕ = 0.

Above, ϕ = ϕ(p), represents a generic four spinor. Performing a qualitative anal-
ysis, requires an explicit definition of the gamma matrices introduced during the
derivation.

Definition 3.6.1 (Gamma and Pauli matrices [23]) We will define the gamma
matrices γµ, using both the Pauli matrices σi,

σ1 =
[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
,

and shorthand notations for the n-dimensional identity matrix and the n-dimensional
“zero-matrix”

In :=


1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1

 , 0n :=


0 0 . . . 0
0 0 . . . 0
... ... . . . ...
0 0 . . . 0

 .

Next, using the Pauli matrices and the introduced notation, we define the gamma
matrices as follows.

γ0 :=
[
I2 02
02 −I2

]
, γi :=

[
02 σi

−σi 02

]
, where i ∈ {1, 2, 3}. (3.24)

After establishing the new notation and matrices, we turn to the equation yet again.
Following with the convention in the derivation, we use the signature (+,-,-,-) for
the metric and denote the four momentum by pµ = (E,p).

(γµpµ −mI4)ϕ = (γ0E + γiηijp
j −mI4)ϕ (i ∈ {1, 2, 3})

=
[
(E −m)I2 −p · σ

p · σ (−E −m)I2

]
ϕ.

In the final matrix expression p · σ, represents the scalar matrix products p · σ :=∑3
i=1 piσi. By decomposing the four spinor ϕ into ϕ = [ϕA, ϕB]⊤, we can use the

matrix equation to solve for a set of equations involving the spinor components

ϕA = p · σ
E −m

ϕB,

ϕB = p · σ
E +m

ϕA.
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Using this relation between the components, we are able to construct two sets of
component pairings, by utilizing the fact that Einstein’s energy momentum relation
(3.16), mathematically, allows for both positive and negative energies. Indeed, E =
±
√
m2 + ∥p∥2. In the case when considering positive energies E > 0, we can set ϕA

to be the two component Pauli basis spinor ei, where i ∈ {1, 2} and e1 = [1, 0]⊤,
e2 = [0, 1]⊤. Using the second equation we can define a set of positive energy spinors
ϕ

(+)
i , while the first equation for ϕA, can be used to define a set of spinors associated

with negative energies ϕ(−)
i . Explicitly we can write them as follows [16]

ϕ
(+)
i =

[
ei

p·σ
E+mei

]
, ϕ

(−)
i =

[
− p·σ
E+mei
ei

]
. (3.25)

We can also define a new set of spinors ξi(p) = εijϕ
(−)
j (−p), where εij is a rank two

Levi-Civita tensor. Given the positive- and the new negative energy spinor field,
we can show the final claim from the derivation, that is each factor in (3.18), is
associated with either positive or negative energy solutions [16]

for, E > 0 : (γµpµ −m)ϕ(+)
i (p) = 0,

for, E < 0 : (γµpµ +m)ξi(p) = 0.

The complete four spinor Dirac wavefunction for a free particle, is summarized
below,

Ψ(x,p) = C

ϕ
(+)
i (p)e−ip·x when E > 0
ξi(p)eip·x when E < 0.

, C ∈ R. (3.26)

Finally, we will discuss the relative amplitude between the two spinor fields. At first,
note that the fractions in front of the Pauli basis spinors ei, in equation (3.25), im-
plies an asymmetry for the amplitudes [16]. For particles moving at non-relativistic
speeds, the difference in amplitude due to fractions are greater. Due to this fact,
the two spinor components are known as the small and large component, respec-
tively. Furthermore, the nature of this asymmetry, will be more or less pronounced
depending on the employed basis.

3.7 The Einstein-Dirac equations
The purpose of this section is to provide a background to the Einstein-Dirac equa-
tions. The first part of this section discusses the necessary derivation, while the
second section summarizes the resulting set of equations and the imposed boundary
conditions. The third and final subsection, discusses the process of defining initial
conditions and presents the conditions applied for all results presented in this work.

3.7.1 Deriving the Einstein-Dirac equations
The original derivation made by Finster, Smoller and Yau in [10], is quite lengthy
and is thus worth reading in their paper. But to justify the construction of the result-
ing equations, we will discuss the important steps in their derivation. The original
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derivation was made by considering a single shell configuration which was occupied
by two fermions with opposite spin states s1 = 1/2, s2 = −1/2 and total angular
momentum j1, j2. The total angular momentum for a quantum state determines the
angular structure of the resulting wave functions. In the case of the hydrogen atom,
a state with angular momentum l = 0, yields a spherically symmetric wavefuntion
[12],[20]. In literature about quantum mechanics, configurations with zero total an-
gular momentum j = l+ s = 0, are known as singlett states. A first key observation
in order to be able generalize the original derivation for an arbitrary, even number
of fermions κ, is to impose that κ = 2jmax + 1, since the particles are fermions, this
imposes that j = (2n + 1)/2 where n ∈ N. Hence, by assuming that all fermions
are uncharged, with spin equal to 1/2, we can occupy a single shell with the total
number of fermions being equal to κ. This singlett configuration, is then used for
the derivation of the Einstein-Dirac equations.

In order to derive the Einstein-Dirac system we first need to modify the Dirac
operator we derived in Section 3.6.1. In particular, the assumption of a static
Minkowski metric ηµν , is no longer of use and henceforth, a Dirac operator /D con-
structed using a general Lorentzian metric gµν is required. To this end, the more
general expression for a Dirac operator /D = γµ∂µ +B is employed [10]. Remember
that γµ, was previously constructed using ηµν , this implies that new gamma matri-
ces, and an expression for B, is required. Finster, Smoller and Yau, employed the
fact that the new γµ matrices can be formed using a linear combination of the old
gamma matrices, defined in Section 3.6.2. Using a similar argument, we also require
an equivalent anticommutator relation {γµ, γν} = 2gµν . Since we also employ an-
other coordinate system, we also require a transformation of the Pauli matrices into
spherical coordinates (t, r, θ, φ). This transformation yielded three new matrices,
σr(r, θ, φ), σθ(r, θ, φ) and σφ(r, θ, φ). To perform a tensor transformation of σi, and
to compute the curvature tensors, we require an ansatz for the metric tensor.

gµν = diag
(

− 1
T 2(r) ,

1
A(r) , r

2, r2 sin2(θ)
)
, r > 0, θ ∈ [0, π], φ ∈ [0, 2π]. (3.27)

After constructing a new Dirac operator, a plane wave ansatz for each four-spinor
wave function is made,

Ψa = T (t;ω)f(r, θ, φ) = e−iωt
√
T

r

[
Φ1ea
iσrΦ2ea

]
, (3.28)

similar to the argumentation in Section 3.6.2, ea is assumed to be a basis. Due to the
plane wave ansatz, the time dependence is encoded in a separable factor exp(−iωt),
where ω ℏ=1= E is both the oscillation frequency and the eigenvalue/ energy for a
state Ψjk (Ĥψ = Eψ). The lower indices j are k are quantum numbers for a certain
state, j is the total angular momentum and k is the magnetic quantum number [12].

To construct static and spherically symmetric solutions, requires that f can be
factorized, f(r, θ, φ) = R(r)Θ(θ, φ). For this purpose, a basis is constructed using
a linear combination of the spherical harmonics function and the standard basis ea
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of R2 [[5] [8] [14]]. To follow the notation used by the authors, we also set Φ1 = α
and Φ2 = β, using this notation and the described basis, the resulting ansatz for
one wave function becomes

ψjk = e−iωt

√
T (r)
r

[
χkj−1/2α(r)
iχkj+1/2β(r)

]
. (3.29)

The χ-terms, are used to denote a basis, constructed by a linear combination of e1
and e2 and the spherical harmonics function Y a

b = Y a
b (θ, φ) (for a explicit definition

see for example [12] or [20]),

χkj−1/2 =
√
j + k

2j Y
k−1/2
j−1/2 e1 +

√
j − k

2j Y
k+1/2
j−1/2 e2,

χkj+1/2 =
√
j + 1 − k

2j + 2 Y
k−1/2
j+1/2 e1 −

√
j + 1 + k

2j + 2 Y
k+1/2
j+1/2 e2.

It was shown by Finster, Smoller and Yau, that the effective wave function for our
singlett state with κ = 2j+1 particles, using the previous plane wave ansatz with the
spherical harmonics, includes an extra factor of κ [8]. The resulting wavefunction
spinor therefor has an explicit dependence on κ, and this simplifies the construction
of systems with increasing number of particles. Furthermore, the Dirac equation
can be reduced into a set of two equations describing the two spinor components
Φ = [α, β]⊤ and the metric fields A, T [8](

ωT

[
1 0
0 −1

]
+

√
A
∂

∂r

[
0 1
1 0

]
+ κ

2r

[
0 −1
1 0

]
−mI2

)
Φ = 0. (3.30)

The resulting equation is real, and as a result, we can conclude that α and β are
real valued maps. Next, for the α and β fields to define a physical wave function,
they must be normalisable with respect to some inner product ⟨·|·⟩. The required
inner product is identifiable by requiring that /D is self-adjoint with respect to it.
After identifying the inner product, the corresponding normalization condition for
α and β can be written as [10],

⟨Ψ|Ψ⟩ = 4π
∫ ∞

0
(α2(r) + β2(r)) T (r)√

A(r)
dr = 1. (3.31)

So far, we have achieved two equations and one boundary condition, what remains
is to identify two extra equations by using Einstein’s equations (3.34). The left hand
side of the Einstein equations, are long standard computations, while the right hand
side requires formulating the energy momentum tensor Tµν . The components of the
energy momentum tensor can be identified using a matter action (3.7). To define
the matter action for the Dirac equation, we first require the Lagrangian density of
the Dirac equation [16]

LM = Ψ̄(i /D −m)Ψ
√

|g| = Ψ†γ0(i /D −m)Ψ
√

|g|,
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where g is the determinant of the metric g = det(gµν) and Ψ† denotes the conjugate
transpose of Ψ. Using this Lagrangian density, the corresponding matter action
becomes

S(LM) =
∫

M
Ψ†γ0(i /D −m)Ψ

√
|g| d4x.

Finally, by computing the variation of S with respect to gµν , the energy momentum
tensor follows as a result. To summarize all results, the Einstein equations, yields
two more independent equations,

rA′ = 1 − A− 8πκωT 2(α2 + β2), (3.32)

2rAT
′

T
= A− 1 − 8πκωT 2(α2 + β2) + 8πκ

2

r
Tαβ + 8πκmT (α2 − β2). (3.33)

In the equation above, the notation A′ and T ′, denotes the derivative with respect
the radial variable r, T ′(r) = d

drT (r) and A′(r) = d
drA(r).

3.7.2 Summarizing the Einstein-Dirac equations
After minimizing the Dirac matter action (S(LM)) and deriving the Dirac differential
operator /D, we get a system of four, coupled ordinary differential equations (ODEs),
describing the Fermion fields α = α(r), β = β(r) and the metric fields A = A(r),
T = T (r)

α′ = κ

2
α

r
√
A

− (ωT +m) β√
A
, (3.34a)

β′ = (ωT −m) α√
A

− κ

2
β

r
√
A
, (3.34b)

A′ = 1
r

− A

r
− 8πκωT

2

r
(α2 + β2), (3.34c)

T ′ = T

2r − T

2rA − 4πκω T
3

rA
(α2 + β2) + 4πκ2 T

2

r2A
αβ + 4πκmT 2

rA
(α2 − β2). (3.34d)

The solutions to the Einstein-Dirac equations must satisfy a few conditions to be
physically significant. These imposed requirements, for all included fields, turns the
system of differential equations into a boundary value problem. Where we have
regularity requirements at r = 0, and physically motivated asymptotic behavior.

• The fermion fields must be normalisable with respect to the inner product

⟨ψ, ψ⟩ = 4π
∫ ∞

0
(α2 + β2) T√

A
dr = 1. (3.35)

• The metric fields should be asymptotically flat,

lim
r→∞

A(r) = lim
r→∞

T (r) = 1. (3.36)

More details about the equations will follow in the method section, but there is still
one important set of conditions we must specify and those are the initial values for
all fields.

22



3. Theory

3.7.3 Initial conditions for the Einstein-Dirac equations
The solution sets to the Einstein-Dirac equations which are physically interesting
are non-singular at the origin. Which necessitates the introduction of well-defined
initial conditions, and since the equations are of first order, it is only necessary to
specify conditions for the fields without any derivatives. To avoid any emergent
singularities, close to the origin requires that conditions must be imposed for small
radii. To this end, we employ a truncated Maclaurin series expansion, using a general
ansatz for each field in (3.34),

f(x) ≈
N∑
j=1

cjx
j, N ≥ 1. (3.37)

The sum contains only finitely many terms, since the contributions from higher
order terms will diminish, as the expansion is only applied to a small neighborhood
around r = 0. Meaning effectively that the number of coefficients cj and the highest
order N of r must be determined using the resulting system of equations. This also
implies that the resulting initial conditions, are not necessarily unique. The set of
initial conditions applied for this work, was selected to coincide with Leith et. al
[14]:

α(r) = α1r
κ/2 + O(r(κ/2+2)), (3.38a)

β(r) = 1
κ+ 1(ωT0 −m)α1r

(κ/2+1) + O(r(κ/2+3)), (3.38b)

A(r) = 1 − 8πωT 2
0α

2
1

κ

κ+ 1r
κ + O(r(κ+2)), (3.38c)

T (r) = T0 − 4πT 2
0α

2
1

1
κ+ 1(2ωT0 −m)rκ + O(r(κ+2)). (3.38d)

This set of initial conditions introduces two new parameters T0 and α1. Where the
first parameter, denotes the value of the T -metric field at the origin, T0 = T (r)|r=0,
and the final parameter α1, denotes the slope of the fermion field, also in the origin,

α1 = d
drα(r)

∣∣∣∣∣
r=0

. (3.39)

While solving the Einstein-Dirac equations numerically, we must a priori, choose
values for these parameters.

3.8 Energy density and matter pressure functions
for the Einstein-Dirac system

The fermion- and metric fields as described by the Einstein-Dirac equations, gives
rise to some emergent matter properties, and these are the matter distribution ρ
and matter pressure components generated by matter ensembles pr and p⊥. The
functional form for each matter property, can be identified directly from the energy
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momentum tensor as was outlined in section 3.3, or by identifying terms from the
Einstein equations without performing the derivation, which requires knowledge of
Rµµ and R,

R00 + 1
2Rg00 = 8πρ,

1
r
A′(r) − 1

r2 + A(r) = 8π

κω
(
T (r)
r

)2

(α2(r) + β2(r))


In the following definition, we will define all three matter property functions, the
energy density ρ, the radial pressure pr and the tangential pressure p⊥.

Definition 3.8.1 (Matter property functions [10][14]) Let α and β be Dirac
fields, furthermore, let A and T be metric fields from the Einstein-Dirac equations
(3.34). Then we define the energy density function ρ(r), the radial pressure function
pr(r) and the tangential pressure function p⊥(r) by

ρ(r) = κω
T 2(r)
r2 (α2(r) + β2(r)),

pr(r) = κ
T (r)
r2

[
ωT (r)(α2(r) + β2(r)) −m(α2(r) − β2(r)) − κ

α(r)β(r)
r

]
,

p⊥(r) = κ2

2r3T (r)α(r)β(r).

3.9 Gravitationally induced redshift

A measure of how strong the gravitational field which emerges from the curved space
time (M, g), is known as the gravitational redshift z. To be more precise it is an
emergent phenomenon from the time-dilation effects encoded by the metric g. The
effect is typically measured as a decrease in the frequency of light, which can be
expressed using the following equation [27]

z + 1 = fem
fob

, (3.40)

where fem and fob is the emitted and observed frequency, respectively. The redshift
z, can be derived by considering a static in space, spacetime curve γµ(t) = (t, r, θ, φ)
where t ∈ [t0, t1] and the remaining variables are constants. The length of a proper-
time interval ∆τ , is by definition,

∆τ ≜
∫
γ

dτ =
∫
γ

√
−gµνdxµdxν (3.41)

=
∫ t1

t0

√
−gµν

dxµ
dt

dxν
dt dt (3.42)
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Inserting the metric ansatz for the Einstein-Dirac equations (3.27) into the integral
yields,

∆τ =
∫ t1

t0

√√√√−g00

(
d
dt(t)

)2

− g11

(
d
dt(r)

)2

+ . . . dt (3.43)

=
∫ t1

t0

√
−g00 dt =

∫ t1

t0
T (r)−1 dt r is constant= T (r)−1∆t, (∆t := t1 − t0). (3.44)

Which implies that ∆τ/∆t = T (r)−1. In order to apply (3.40) to the previous result,
we must first note that the frequency f , of a beam of light, is inversely related to
time f = 1/t. Given this physical fact, we can associate the emitted frequency with
∆τ , and the observed frequency with ∆t and conclude that,

z + 1 = fem
fob

=
(

∆τ
∆t

)−1

= T (r) ⇔ z = T (r) − 1 □. (3.45)

A final remark. This result holds for a general value of r, but the redshift values
which are of main interest to classify the apparent relativistic nature of the Einstein-
Dirac solutions (α, β,A, T ), is the central redshift. Which we will define as

z := T (r)|r=0 − 1 (3.38)= T0 − 1. (3.46)

3.10 An introduction to the Einstein-Vlasov sys-
tem

The objective of kinetic theory is to describe ensembles of particles using macroscopic
distributions. Where the particles from the ensembles are interacting with each other
with some kind of force, for example, in case of an electron cloud or a collection of
charged particles, the dominating interaction is assumed to be the Lorentz force.
A classic example of a particle distribution is the Maxwell Boltzmann distribution,
which is used to describe the distribution of velocities of particles in an ideal gas.
Turning towards the Einstein-Vlasov system, it is relativistic matter model where
the matter ensemble is described by a position and momentum matter distribution
in phase space. The distribution function is defined using a collision-less Boltzmann
distribution equation, which for the static case f = f(x,v) reads

vµ
∂

∂xµ
f + F µ ∂

∂vµ
f = 0,

where F ∈ R3 is the force interaction between the particles, which for the Einstein-
Vlasov model is a gravitational force provided by Einstein’s equations. For the
spherically symmetric static/ steady state Einstein-Vlasov system the metric tensor
is assumed to be defined by the ansatz [2],

gµν = diag
(
−e2µ(r), e2λ(r), r2, r2 sin2(θ)

)
, r > 0, θ ∈ [0, π], φ ∈ [0, 2π], (3.47)

and similarly to the Einstein-Dirac system, it is described by a system of differential
equations where a subset is generated from the matter content and the rest are
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directly defined from the Einstein-equations (3.8). Before writing the Einstein-
Vlasov equations we will denote the matter distribution in spherical coordinates
by f = f(r, w, L), here w,L represents angular momentum variables where w ∈ R
and L ∈ R+ (R+ = {x ∈ R : x ≥ 0}). The differential equations describing the
Einstein-Vlasov system is defined explicitly in the following equation [3]

w ∂rf −
((

1 + w2 + L

r2

)
µ′ − L

r3

)
∂wf = 0 (3.48a)

e−2λ(2rλ′ − 1) + 1 = 8πr2ρ, (3.48b)
e−2λ(2rµ′ + 1) − 1 = 8πr2pr, (3.48c)

e−2λ(µ′′(µ+ 1
r

)(µ′ − λ′)) = 8πp⊥. (3.48d)

The boundary conditions are presented below.
• Non-singular center,

λ(r)|r=0 = 0 and µ(r)|r=0 = µ0 ∈ R. (3.49)

• Asymptotically flat metric functions

lim
r→∞

λ(r) = lim
r→∞

µ(r) = 0 ⇒ gµν → ηµν as r → ∞. (3.50)

The energy momentum tensor is diagonal due to the spherical coordinate system
(3.4), and similarly to the Einstein-Dirac system in Section 3.8, we can define the
matter quantity functions using the metric- and the distribution functions.

Definition 3.10.1 (Matter property functions [3]) Let w, L be the radial com-
ponent in the angular momentum and the angular momentum squared, respectively.
Also let f = f(r, w, L) be the matter distribution function f : R × R+ × R+ → R.
Then we define the energy density function ρ(r), the radial pressure function pr(r)
and the tangential pressure function p⊥(r) by

ρ(r) = π

r2

∫
R

∫
R+
f

√
1 + w2 + L

r2 dL dw,

pr(r) = π

r2

∫
R

∫
R+

w2√
1 + w2 + L

r2

f dL dw,

p⊥(r) = 1
2
π

r4

∫
R

∫
R+

L√
1 + w2 + L

r2

f dL dw.

It can be shown that a family of static spherically symmetric solutions, can be
produced using an ansatz f = Φ(E,L) [2]. Where E is physical quantity which has
been shown to be conserved in spherical coordinate systems [2], and is defined below

E = eµ(r)

√
1 + w2 + L

r2 .
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To be more specific we will employ what is known as the polytropic ansatz, for
the distribution function f . We will write it explicitly using the max function
(x)+ = max{0, x} [2]

f(r, w, L) =
(

1 − E

E0

)k
+

(L− L0)l+, (3.51)

where E0 > 0 is a strictly positive parameter and L0 is a positive parameter, the final
two parameters are assumed to obey l > −1/2 and k > −1. For numerical purposes
we also introduce a function involving the metric function µ, y(r) = eµ(r)/E0, while
computing the Vlasov system’s density we also require the value of this function at
the origin, y0 = y(0) = eµ(0)/E0. For more details, the interested reader is refereed
to [2].
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4
Methods

4.1 Overview

The set of Einstein-Dirac equations is a system of coupled non-linear differential
equations, meaning that analytic solutions are difficult to find. Due to the nature of
the problem the equations are effectively a boundary value problem, with conditions
on both the fermion fields and the metric fields, see Section 3.7.2. The fermion fields
represented by α(r) and β(r) are elements of L2(R), and must therefore exhibit a
decay behavior such that α(r), β(r) → 0 as r → ∞. In addition, the metric fields A
and T , should instead converge to one. This condition is formally known as asymp-
totic flatness. Due to symmetry and the static nature of the problem all metric fields
should intersect with the Schwarzschild solution (3.10) while converging towards the
Minkowski metric, gµν → ηµν as r → ∞, where ηµν = diag(−1, 1, r2, r2 sin2(θ)). Nu-
merically both conditions are very difficult to satisfy due to the inherent limitations
of floating-point numbers, which necessitates a different approach to the problem.

Solving the system boils down to a few key steps.

• First, we must initialize values for the system’s parameters, they are in no
particular order, m,ω and κ for the ODEs (3.34), and T0, α1 for the initial
conditions (3.38).

• After fixing these parameters the system should be solved using relaxed con-
straints for all fields.

• If the conditions are satisfied, the resulting solutions must be scaled in order
for them to be physically relevant.

The main difficulty of the problem originates from the nature of quantum mechanical
systems. For the boundary conditions to be satisfied, we require a very particular
value for ω, since it is a physical parameter which is proportional to the energy
level for a certain quantum state. The discrete nature of energy levels for quantum
states originates from the postulate of quantized observables [6]. The identification
of the specific ω parameter, using numerical methods, requires repeatedly solving
the ODEs while updating ω, until the relaxed conditions are satisfied. This type of
solution methodology is generally known as a shooting method. More details about
all methods and their implementations can be found in their relevant sections.
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4.2 Relaxing the boundary conditions and scaling
the equations

As was previously discussed, a numerical treatment of the Einstein-Dirac equations
requires that the boundary conditions are relaxed, (3.35) and (3.36). The new
relaxed boundary conditions are instead,

4π
∫ ∞

0
(α2 + β2) T√

A
dr < ∞, (4.1)

lim
r→∞

A(r) < ∞, lim
r→∞

T (r) < ∞. (4.2)

Both conditions was applied in order to define two scaling factors λ and τ , in accor-
dance with the methodology introduced by Finster, Smoller and Yau [10]

λ :=
(

4π
∫ ∞

0
(α2 + β2) T√

A
dr
)1/2

, τ := lim
r→∞

T (r). (4.3)

These parameters are calculated and applied after a set of solutions (α, β,A, T ) to
the relaxed problem are found, in order to generate a second set of scaled solutions
(α̃, β̃, Ã, T̃ ). The set of unscaled - and scaled functions, are defined as follows.

Definition 4.2.1 We will define the set of unscaled solutions, (α, β,A, T ), as a set
consisting of four sequences {{αi}Ni=0, {βi}Ni=0, {Ai}Ni=0, {Ti}Ni=0}, which satisfies (4.1)
and (4.2) where N ∈ N\{0}. Given a set of unscaled solutions, (α, β,A, T ), we also
define its corresponding parameter set {λ, τ} by (4.3). Finally, we define the set of
scaled metric- and fermion fields (α̃, β̃, Ã, T̃ ), using (α, β,A, T ) and {λ, τ}, as

Ã(r) := A(λr), T̃ (r) := 1
τ
T (λr),

α̃(r) :=
√
τ

λ
α(λr), β̃(r) :=

√
τ

λ
β(λr),

(α̃, β̃, Ã, T̃ ) :=
{
{α̃i}Ni=0, {β̃i}Ni=0, {Ãi}Ni=0, {T̃i}Ni=0

}
.

Inserting the scaled fields into (3.34), the resulting set of equations are the same,
but differs only by two re-scaled parameters ω → ω̃ and m → m̃. Both of the new
parameters are defined by the parameter set {λ, ω},

ω̃ := λωτ, m̃ := λm. (4.4)

For an explicit derivation, see Appendix A.1. The new parameters are important,
since they constitute the physically correct frequency of oscillation of the wavefunc-
tions and the effective mass of the fermions, respectively. Furthermore, the initial
value parameters in (3.38), for the unscaled solutions are not the same in the scaled
case due to the introduced constants in front of the scaled function (α̃, β̃, Ã, T̃ ).
However, it is sufficient to identify what the scaled version of T0 should be, since
this defines the apparent red-shift of the solutions, z = T0 −1, see Section 3.9. Since
it is simply the value of the field at the origin, we can approximate it using the
smallest initial value from the integration, T0 ≈ T (rmin).
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4.3 Computing the scaling parameters
In this section we will discuss the methods employed to compute the parameter set
{λ, τ} from a set of unscaled solutions (α, β,A, T ). We will start by discussing the
computation of λ, recall that it was defined using an integral

λ =
(

4π
∫ ∞

0
(α2(r) + β2(r)) T√

A
dr
)1/2

.

This integral was computed using a composite trapezoidal rule, available in the inte-
gration subpackage of the SciPy library [25]. For numerical methods it is impossible
to compute improper integrals, but since the fermion fields must decay, we can note
that the contributions of the integrand to the total integral will diminish, and if the
field is sufficiently close to zero, we can for our purposes ignore the extra contribu-
tion provided by integrating to infinity. The error of the approximation inherent to
the trapezoidal rule, also referred to as the remainder, can be shown to be bounded
by the following inequality [7]

|R(f, Ih)| ≤ 1
12∥f ′′∥∞

n−1∑
i=0

h3
i .

Where f : [a, b] → R is assumed to be twice differentiable on a closed interval [a, b]
where a, b ∈ R. The norm ∥·∥∞ is the regular max norm, ∥f∥∞ = maxx |f(x)| and hi
is the distance between samples. The arguments in the remainder R(f, Ih), are used
to emphasize the dependence on integrand f , and the partitioning of the interval
Ih = {x0 = a < x1 < x2 < . . . < xN = b}. For all results presented in this work the
partition was uniform, which implies that hi = (b − a)/|Ih| ∀i, therefor the bound
of the error is as follows:

|R(f, Ih)| ≤ 1
12∥f ′′∥∞|Ih|h3 = 1

12∥f ′′∥∞
(b− a)3

|Ih|2
. (4.5)

All fields (α, β,A, T ) are sufficiently regular meaning that ∥f ′′∥∞ < ∞, therefor we
can conclude that the error is of the order O(h3). Since all fields were sampled using
104 samples, this implies that the contribution provided by the error is negligible
for the leading decimals and this is sufficient for any analysis of the scaled fields
(α̃, β̃, Ã, T̃ ).

Recall that the final parameter τ , was defined using the limit,

τ = lim
r→∞

T (r).

This limit is harder to approximate using a finite sequence. One remedy is to study
the asymptotic behavior of (α̃, β̃, Ã, T̃ ); the corresponding asymptotic expressions
provide an approximation where the numerical solution intersects and follows the
asymptotic expression. The fields used for this purpose are the metric fields since the
inherent error for these fields are in general smaller when compared to the fermion
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fields due to faster convergence. This exact methodology was employed by [5] Daniel
Bakucz Canário et. al, which resulted in the following expression of the limit,

τ ≈
√
A(r)T (r)

∣∣∣
r=rmax

, (4.6)

where A, T are elements of the unscaled solutions (α, β,A, T ). This approximation
of τ was also applied for all results present in this work. A rigorous bound for this
error has at the time of writing, not yet been explored, but it is assumed to be small.

4.4 Solving the equations and verifying the bound-
ary conditions

The method of choice to numerically solve non-stiff systems of ordinary differential
equations is typically a Runge-Kutta method, due to their computational efficiency
and simplicity. This was also the case for both Finster, Smoller and Yau [10] and
Leith et. al [14]. Both groups successfully applied Wolfram’s Mathematica language
which greatly simplified the implementation of the shooting method.
To implement the shooting method in Python, an extension of its standard capabil-
ities for high-precision computations is necessary. Thankfully, it is a very popular
language, and thus all that is required is an external library. For this project the
Mpmath library [17] was more than sufficient. The Mpmath library, is a free and com-
prehensive numerical library, that provides methods for various calculations using
arbitrary floating-point precision, which was crucial for this project. The required
decimal precision of the ω-parameter increased massively for higher values of κ and
for solutions with larger central redshift z. A longer discussion about the required
precision is available in Section 6.1.

The only integration method that is currently available in the Mpmath package is
a truncated Taylor series method, the degree d of the polynomials is a parameter
provided by the method. In the library this method is currently known as odefun.
Mathematically it computes a Taylor polynomial centered at a point r0 ∈ [rmin, rmax],

f(r) =
d∑

n=0

dn
dsnf(s)

∣∣∣∣∣
s=r0

(r − r0)n. (4.7)

Since Taylor polynomials are local approximations, they must be moved in order
to generate solutions (α, β,A, T ) for the entire interval r ∈ [rmin, rmax]. How many
intermittent r0-points which are necessary is determined by the degree d. Further-
more, the degree also naturally effects the required computation time and accuracy.
The upper bound of the accuracy of a Taylor series can be determined by its corre-
sponding Lagrange remainder term.

Theorem 4.4.1 (Theorem 5.9 & 5.10 [19]) Let X and Y be normed spaces. Fur-
thermore, let W be an open subset of X. Also, if g : W → Y is n times differentiable
at x̄ ∈ W , with n ∈ N \ {0}, we define the remainder as

rn(x) := g(x̄+ x) − g(x̄) −
n∑
k=1

1
k!

dk
dyk f(y)

∣∣∣∣∣
y=x̄

xk.
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Next, let f : W → Y be n + 1 times differentiable on W and let x̄ ∈ W , x ∈ X be
such that the segment [x̄, x̄ + x] is contained in W . If

∥∥∥ d(n+1)

dx(n+1)f(x)|x=w

∥∥∥ is bounded
above by some c ∈ R+ (R+ = {x ∈ R : x > 0}) for all w ∈ W , then the remainder
rn satisfies

∥rn(x)∥ ≤ c

(n+ 1)!∥x∥(n+1).

This theorem states that the local error for the truncated Taylor polynomial of order
d (4.7), is of the order O(∥x∥(d+1)/(d+ 1)!), given that the function being approxi-
mated is sufficiently smooth. Which is indeed true for the solution set (α, β,A, T ),
to the Einstein-Dirac equations. The accumulated error is slightly higher but is best
suppressed using a sufficiently large degree d. A large degree was quite important,
due to the multipeak behavior displayed by the fermion fields as we shall see shortly.
But suppressing the error is not the only aspect to consider. Perform the shooting
method iterations within a reasonable amount of time while ensuring accuracy of
the solutions required a trade-off. Since increasing the order d also increased the
required computations for all intermittent points r0 ∈ [rmin, rmax]. The degree used
to generate all results presented in this work was seven, thus the local error is of the
order O(∥x∥8/8!).

To discuss the verification of the relaxed boundary conditions (4.1),(4.2) we will
first introduce a concept from real analysis which is useful to numerically identify
convergence of sequences. A natural choice to numerically identify if a sequence an
converges, is to employ the definition of a Cauchy sequence.

Definition 4.4.1 (Definition of a Cauchy sequence [6]) Let (E, d) be a met-
ric space. A sequence {an}n∈N ⊆ E, is a Cauchy sequence, if for all ε > 0, ∃N ∈ N
such that

d(an, am) < ε, when m,n > N. (4.8)

An important result from functional analysis, is that all convergent sequences are
Cauchy sequences. Thus, in order to identify convergence, it is sufficient to study if
the numerical solutions to the fermion fields, are Cauchy sequences. To apply this
definition to the Einstein-Dirac equations, which involve the fermion fields α and
β, we exploit the fact that these fields should belong to a Hilbert space. Since a
Hilbert space is a Banach space with a metric, induced by its inner product, we can
by the completeness of Hilbert spaces identify convergent sequences of the fermion
fields [6]. The fermion fields should also converge to zero for large values of r to
be physically relevant, which implies that identifying convergence during the tail
end of the generated sequence is sufficient. Finally, the limit of the metric field T ,
also follows naturally if the fermion fields converge, thus we can conclude that the
shooting method implementation only needs to identify convergence of the fermion
fields.
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4.5 Shooting method

A well-established method to solve the Schrödinger equation Ĥψ = Eψ, and other
similar problems is the family of shooting type methods. A shooting type method
is not different from ”brute forcing” solutions to equations by iteratively changing
the value of some parameter. But to make these methods efficient, it requires great
care when selecting the updating rule for the parameter of interest. This especially
applicable to problems which are sensitive to the values of the parameter, which is
axiomatic property for quantum systems. For the Schrödinger equation the observ-
able is the energy E, which is an eigenvalue of the Hamiltonian operator Ĥ, acting
on the eigenfunction ψ.

Applying the shooting method to the Einstein-Dirac equations involves updating
the ω-parameter as part of an iteration scheme. The updating rule for the Einstein-
Dirac equations had to account for if the current ωi parameter for iterate i, was
too large or small. The sets of solutions (α, β,A, T ), behaved very differently based
on the current parameter. For the case of ω being too small, it is identifiable by
studying if A → 0, which in turn caused the α and β fields to diverge. While if ω
was too large, then α, β would either oscillate heavily or display oscillating behavior.
There is one important remark to make at this point. Since the primary interest of
this thesis was to study ground state solutions to the Einstein-Dirac equations, it
was sufficient to check for zeros in the fermion fields. The presence of zeros in these
fields, implies that they have crossed the r-axis, and this is a behavior which ground
state solutions does not display. This behavior naturally implies that the fields are
negative, which is physically not sensible. One elementary example is a vibrating
string, where each harmonic is described mathematically by,

yn(x) = A sin
(
nπx

L

)
, x ∈ [0, L] and L,A ∈ R, n ∈ N.

For the first harmonic n = 1, the value is positive, y1 ≥ 0, in its given domain.
This solution structure is exactly the same for the infinite square well potential in
quantum mechanics [12]. In contrast to ground states, excited states—solutions ψ
with higher eigenvalues E for the same Hamiltonian operator, are standing waves
of higher harmonics. The number of intersections with the r-axis, depends on the
level of excitation. This also holds true for the example above, where the possible
excited states are described yn for n > 1.

The updating rule for the ω-parameter is based on the popular binary search al-
gorithm [21]. Its main strength is the complexity O(log2(N)) [11]. The required
number of operations to identify the necessary ω parameter for highly relativistic
solutions, for high values of κ would be too high without an efficient search algorithm.
Since in these cases, the required decimal precision was very high. The number of
elements in the discretized search interval Iω := [ωmin, ωmax] increased non-linearly
based on the utilized decimal precision. In order to prove this, let P ∈ N be number
of decimals used for each computation, which is parameter we can freely set in the
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Mpmath package. Then the cardinality of the search interval set is

|Iω| = ωmax − ωmin

10(−P ) = 10P (ωmax − ωmin) ∼ O(10P ).

Disregarding the time to perform the integration, the worst case scenario requires
testing O(10P ) elements.

For the problem at hand, the binary search method generates an action depend-
ing on if the parameter ω is too large or small. This action narrows the next search
interval based on the current parameter value. If ω is too large, then the upper
bound of the search window must be updated and replaced with the current pa-
rameter. For the opposite outcome, the algorithm updates the lower bound in the
search window instead. After updating the search interval, the algorithm updates
ω using the midpoint of the new interval as the next parameter value.

4.6 Finding relativistic solutions
To obtain numerical solutions to the Einstein-Dirac equations corresponding to dif-
ferent levels of relativistic effects, such as higher or lower central redshifts (3.46),
requires tuning the α1 parameter from the initial conditions (3.38). The central red-
shift’s dependence on α1 is different depending on the integrator. During the initial
stages of this project, the same Runge-Kutta method was also applied using the stan-
dard data-types available in the Python language [24]. However, it became evident
quite quickly that the number of decimals, that a standard long double datatype
can provide, fifteen, is insufficient to find interesting solutions to the Einstein-Dirac
equations for κ > 32. To study solutions for higher numbers of particles, therefore
required an extension of Python’s native capabilities.

For this project the library Mpmath was employed, and due to time constraints,
it was faster and easier to use the available integration method for ODEs, instead of
writing a Runge-kutta method using the library. After implementing the shooting
method using the new Mpmath dependence, it became evident that the parameters
ω, α1 which generated the unscaled solutions (α, β,A, T ), are not the same for each
integration method. This implies that the central redshift value’s dependence on
α1 is method dependent. But the basic principle is, higher α1 generates higher cen-
tral redshifts z. To view the relationship graphically, see Figure 4.1a. It was very
time consuming to find values of α1 for particular values of z, since the relationship
between z and α1 is exponential. Thus, for purely pragmatic reasons, I aimed to
generate solutions in a small neighborhood around z ∈ {1, 7, 15, 50, 150}. These
redshift levels was selected somewhat arbitrarily, and was necessary to compare the
properties of solutions to (3.34) with different values of κ and z. However, after
fixing a value for the α1 parameter, it was not as difficult to guess the approximate
value of z for (α̃, β̃, Ã, T̃ ), based on the search interval for ω which appeared to
generate (α, β,A, T ). Indeed, the relationship between the unscaled ω-parameter
and the resulting redshift is illustrated in Figure 4.1b. Contrary to z’s dependence
on α1, ω(z) was observed to be more linear. Notice also that the order of magnitude
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for the α1 parameter might be a symptom of a small initial radius rmin. For κ ≤ 32,
the initial radius employed for all solutions soon the be presented, was rmin = 10−5

which was chosen to coincide with the radius originally used by Finster, Smoller
and Yau [10]. For κ ≥ 64, the initial radius was increased to rmin = 10−2. This
decision was made in order to simplify the calculations, since the radial dependence
of the initial values were of the order rκ/2 for the fermion fields and rκ for the metric
fields (3.38). These values are completely arbitrary, and I presume that these only
further differentiated the required unscaled parameters for my solutions, compared
to the solutions generated by Leith et. al [14]. But the parameter which are used in
any analysis are scaled and are therefore not sensitive to the various decisions made
during the implementation of the shooting procedure.

(a) The relationship between the cen-
tral redshift of the scaled solutions
(α̃, β̃, Ã, T̃ ), and the unscaled initial
value parameter α1 was highly nonlin-
ear.

(b) The relationship between the un-
scaled frequency ω which generated the
solutions (α, β,A, T ), and the central
redshift of (α̃, β̃, Ã, T̃ ), was linear.

Figure 4.1: Two figures illustrating the relationship between model parameters
and solution properties.

4.7 Summarising the shooting method algorithm
Before summarising all steps in the shooting method, we will make some final re-
marks. Since it is a search algorithm an initial requirement, is naturally a search
interval for ω which is denoted below by Iω. To identify a search interval required
studying if the area displayed signs that a solution exists within it. The criteria
which was employed in this work was to identify a ωmin such that the fermion fields
diverged, while ωmax was found by studying if the same fields were in their initial
stages of oscillation, since increasing ω too much caused strong oscillations with a
very low amplitude. Typically, the initial stages of oscillations could be identified if
either α or β was negative, which required them to cross the r-axis. Furthermore,
for all solutions presented in this thesis, the parameters m and T0 were initialized
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as one, but their true physical values were later set by the scaling procedure. In the
algorithm presented below, Algorithm 1, the notation S′(r) = f(S, r) is shorthand
for (3.34). The vector S := [α, β,A, T ]⊤ is a state vector while f , is the collective
right hand sides of the equations written as a vector. The final step after the solu-
tion set (α, β,A, T ), has been identified is to scale the solutions as outlined above
which finally generates the physically relevant solutions (α̃, β̃, Ã, T̃ ).

Performing all the necessary computations while searching for sufficient ω-parameter
was sometimes a lengthy procedure. This was especially the case for high values of
the fermion number κ > 64 and for high levels of central redshift z > 1. Due to the
required precision, finding (α̃, β̃, Ã, T̃ ) for ninety particles took several hours.

Algorithm 1: Shooting method algorithm
Input: I(0)

ω = [ω(0)
min, ω

(0)
max], κ, T0,m, α1, rmin, rmax

Output: (ωf , α, β, A, T )
1 Initialise ω: ω(0) = (ω(0)

min + ω(0)
max)/2

2 while α & β are not normalizeable do
3 compute S(rmin;α1, T0, κ)
4 integrate S′(r) = f(S, r;κ,m, ω(i)) for r ∈ (rmin, rmax].
5 if α, β → 0 then
6 terminate
7 else
8 if α or β diverges then
9 set ω(i+1)

min = ω(i)

10 update ω(i+1) = (ω(i+1)
min + ω(i)

max)/2
11 update I(i+1)

ω = [ω(i+1)
min , ω(i)

max]
12 else if α(ri) or β(ri) = 0 for i > 0 then
13 set ω(i+1)

max = ω(i)

14 update ω(i+1) = (ω(i)
min + ω(i+1)

max )/2
15 update I(i+1)

ω = [ω(i)
min, ω

(i+1)
max ]
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5
Results

The result section will be divided into two main sections, the first section will contain
results concerning the properties of the Einstein-Dirac system. While the second
section will focus on displaying results used to compare the Einstein-Vlasov system
with the Einstein-Dirac system.

5.1 The structure of different solutions to the Einstein-
Dirac system

The structure displayed by the fermion and metric fields from the Einstein-Dirac
equation (α̃, β̃, Ã, T̃ ), was dependent on the fermion number κ and the central red-
shift z. To keep the analysis brief, I will manly discuss the general traits observed
for more than fifty different solutions to the Einstein-Dirac equations with different
values of κ and z. The first kind of solution we will discuss, will henceforth be re-
ferred to as the canonical solution, since this solution structure did not change while
increasing the fermion number. To generate the canonical solution required that the
level of central redshift lied somewhere in or close to the interval [1,2], how close
depends on the current number of fermions. For very few fermions, that is κ ≤ 4,
all redshift levels had a canonical structure. After κ = 8, larger differences were dis-
played, but for higher fermion numbers the canonical interval was very similar. An
illustration of these solutions can be found in Figure 5.1. We will now discuss some
of the canonical solutions (α̃, β̃, Ã, T̃ ) properties. One property is the difference in
amplitude between the α and β fields. To be more precise α(r) ≥ β(r), the differ-
ence in amplitude is a phenomenon inherent to all solutions of the Einstein-Dirac
equations. But as we soon shall discuss, there are regions where this inequality does
not hold, and this will have some consequences. Contrary to the fermion fields, the
metric fields displayed different types of behavior. First, we will discuss the radial
metric field A(r). Initially, it appears to be almost constant and beyond this point
the field would decrease until a global minimum was reached, past this point the
field would start to increase and converge to one, in accordance with the asymptotic
flatness requirement. Next, the metric’s time component field T (r). Similarly, to A,
the field also appears to be almost constant for a small neighborhood to r = 0. Be-
yond this region the field is decreasing monotonically, and asymptotically approach
the asymptotic flatness limit T (r) → 1 as r → ∞.
To find solutions where the structure was substantially different from the canonical
structure required larger central redshifts. The emergent structure is henceforth
dependent on the number of fermions in the system. For a sufficiently small κ ≤ 32,
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Figure 5.1: The canonical structure of all fields (α̃, β̃, Ã, T̃ ) when z ∼ 1, from the
Einstein-Dirac equation.

increasing the redshift, resulted in less cohesive fermion fields. The fields were less
cohesive in the sense that small regions containing extra peaks started to appear
in the canonical structure of the fermion fields. We will refer to this property as a
multipeak behavior, following the naming convention used by Andréasson and Rein
[3]. To view an example, see Figure 5.2. The occurrence of the additional peaks in
the fermion fields was also reflected in the metric fields. Starting with the radial
metric field A, this field has an increased amount of local extremum points compared
to Figure 5.1. Furthermore, these extra peaks arise in this field at a similar radius
to the fermion fields. In contrast to the radial metric field, the time component of
the metric has undergone more subtle changes. Instead of displaying more peaks
in the plot, there are instead a few radial distances where the T field, undergoes
changes in the magnitude of its derivative. However, its monotonically decreasing
behavior remained unchanged.
In order to find solutions where the peaks from the fermion fields are more separated,
required a sufficiently high κ while tuning the redshift z. Leith et. al [14] called
these solutions, gravitationally self-trapped solutions, the structure of the fermion
fields are in this case very different to the canonical solution we discussed previously.
An example of gravitationally self-trapped solution is described by the parameter
pair κ = 90 and z ≈ 7.7, to view a plot of the corresponding solution set (α̃, β̃, Ã, T̃ ),
see Figure 5.3. The fermion fields are noticeably different to the previous case, but
the metric fields still display the same behavior.
We will finish the discussion about the structure of the solutions by considering
solutions with very high central redshift. These solutions, akin to solutions with
z ≈ 1, were very similar, independent of the current κ parameter. By using κ = 90
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Figure 5.2: Extra peaks start to emerge in the canonical solutions (α̃, β̃, Ã, T̃ ) in
Figure 5.1, when the level of central redshift z, increased.

Figure 5.3: When κ is high enough and the redshift is sufficiently tuned, the
resulting fermion fields are more separated than when the peaks starts to emerge,
compare this with the case when the peaks start to appear in Figure 5.2.

as before and increasing z to approximately z ≈ 148.6. The resulting solution is
visually similar to the case when the extra peaks started to emerge, see Figure
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5.4. What differentiates the two cases are mainly that the number of peaks in the
multipeak configuration are very high. Furthermore, the behavior of the metric fields
is similar, but more extreme due to the large amount peaks present in the fermion
fields. In particular, the structure of metric’s time component is very similar to an
inverted Heaviside step function. Which physically implies a strong and very local
time distortion. Finally, the radial component of the metric oscillates very heavily
due to the high number of peaks.

Figure 5.4: For solutions with very high levels of central redshift, the resulting
structure is very similar to the case when the peaks start to emerge, compare the
fermion fields with Figure 5.2.

5.2 Einstein-Dirac system properties
All presented results in this section concern the different matter properties defined
in Section 3.8 for some solutions to the Einstein-Dirac equations. First, we will
discuss the radial pressure, after discussing the radial pressure I will show some
results from studying the following inequality pr + 2p⊥ ≤ Ω · ρ. Finally, after the
inequality has been investigated, we finish by studying the compactness property
for many solutions.

5.2.1 Properties of the radial pressure
While studying the emergent matter properties for the Einstein-Dirac equations, I
identified regions with negative radial pressure pr, to view an example see Figure 5.5.
These regions became narrower as the central redshift z increased. Negative pres-
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Figure 5.5: The radial pressure pr for a particular solution the Einstein-Dirac
equation. Note that there is a small region where the pressure is negative.

sure, is a property presumed to be displayed by exotic matter, such as dark energy
[13]. The disappearance of these regions can thus be used to identify a transition
of the quantum fields inherent quantum mechanical behavior into more classical
behavior. Indeed, by plotting the minimal value of the observed radial pressure
function, for different values of κ and different levels of z, we obtain evidence for a
transition to more classical matter behavior, see Figure 5.6. The figure displays only
a selection of states where κ ∈ {2, 4, 8, 16}, since these regions disappear completely
for solutions with κ > 16. We can also see that regions with negative pressure only
emerge while studying relativistic states, as the canonical solutions (Figure 5.1) does
not have any regions with negative pressure. This implies that regions with nega-
tive pressure are an emergent property from the relativistic effects displayed by the
solutions (α̃, β̃, Ã, T̃ ), when the number of fermions was sufficiently small.

5.2.2 Properties of the matter pressures and the energy
density

As we discussed in Section 3.5, we require that the Einstein-Dirac system must fulfil
some assumptions so that Andreasson’s theorem [1] can guarantee a upper bound for
the compactness of static spherical symmetric solutions to Einstein’s field equations
(3.8),

Γ := sup
r>0

2m(r)
r

.

In the previous section we found requirements to ensure a positive radial pressure,
next we will consider the following inequality,

pr + 2p⊥ ≤ Ω · ρ.
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Figure 5.6: The minimal values of the radial pressure pr for a selection of solutions
the Einstein-Dirac equation. Quite counter-intuitively, these regions disappeared for
solutions where κ ≥ 16.

For purely numerical purposes, it is easier to study the inequality using a fraction,

pr + 2p⊥

ρ
≤ Ω. (5.1)

If this fraction becomes larger than one, then this an indicator that Ω is bigger than
one, which implies that the compactness bound for Vlasov, namely 8/9 [3], might
not hold for the Einstein-Dirac system. To be more precise, I would like to identify
the supremum of the parameter such that the inequality holds,

sup
Ω>0

pr + 2p⊥

ρ
≤ Ω.

But this is no easy task, and the results indicate that the supremum of Ω appears
to be dependent on both κ and the relativistic nature of the solutions. In particu-
lar, multipeak configurations with more separated peaks are particularly interesting
since this structure displayed greater values of the fraction (5.1) than the other
structures discussed in Section 5.1. In order to summarize my findings, I plotted
the maximum value of the fraction

max
r∈[rmin,rmax]

{
pr(r) + 2p⊥(r)

ρ(r)

}
,

for different levels of central redshift and different number of fermions. See Figure
5.7 for the resulting plot. By studying the radius where the compactness attains it
largest value, I found that the quotient was smaller and for these radii the quotient
was quite close to one. Before displaying these results, we will define the radius r∗

r∗ := arg max
r∈[rmin,rmax]

{
2m(r)
r

}
. (5.2)
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Based on the results in Figure 5.7, it is clear that Ω appears to be one, for non-
canonical solutions, and for κ ≥ 8, hence Figure 5.8 displays results for
pr(r∗) + 2p⊥(r∗)/ρ(r∗), excluding the canonical solutions.

Figure 5.7: The maximal value of the inequality fraction (5.1), as a function of
central redshift’s value z, for some κ values.

Figure 5.8: The value of the inequality fraction (5.1), sampled at the radius where
Γ (3.11) attains its largest value (5.2), as a function of central redshift z, for fermion
numbers κ ∈ [8, 16, 32, 64, 90].

5.2.3 Compactness results for the Einstein-Dirac system
Since we have investigated the sign of the radial pressure and the energy density/
pressure inequality, what remains is to investigate the values of the compactness
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itself. The compactness 2m(r)/r, was defined using the Schwarzschild metric and
its largest value is a signature inherent to all solutions to Einstein’s field equations.
The largest compactness value,

max
r∈[rmin,rmax]

{
2m(r)
r

}
(5.2)= 2m(r∗)

r∗
, (5.3)

increased while increasing κ, it was also observed that, higher levels of central red-
shift beyond the canonical solution, did not strongly affect the compactness of the
system. Similarly to the previous figure, I plotted the largest compactness value
against the central redshift, for the same solutions presented in Figure 5.7. The
resulting plot is available in Figure 5.9.

Figure 5.9: Largest compactness values associated with the solutions from the
inequality results in Figure 5.7.

5.3 Comparing energy density functions for the
Einstein-Dirac and Einstein-Vlasov system

The final set of results in this report concern comparing the distribution of matter
in both the Einstein-Dirac system and the Einstein-Vlasov system, where the latter
is introduced in Section 3.10. In [3] Andréasson and Rein, scaled the energy density
function ρ, which we introduced in Definition 3.8.1 and Definition 3.10.1 for the
Einstein-Dirac system and the Einstein-Vlasov system, respectively. The reason
for scaling ρ was to display the succeeding peaks more clearly after the first and
dominant peak, since the amplitude of the first peak was large in comparison to the
others. We will define the scaled energy density below,

ρ̃(r) = log
(
4πr2ρ(r) + 1

)
. (5.4)
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In the case of the Einstein-Dirac system we must first solve its differential equations
and then use the set of scaled fields (α̃, β̃, Ã, T̃ ) to define ρ, while the Einstein-
Vlasov system requires numerical methods to approximate the required integrals.
In this section we will study two very similar energy density functions for both the
Einstein-Dirac and Einstein-Vlasov system. This comparison is not quantitative
and is purely visual. To simplify the visual comparison, each sample point (ri, ρ̃) is
plotted assuming ri := t, where t is similar to a curve parameter γ(t) = [x(t), y(t)]⊤,
and thus t ∈ [0, 1]. Furthermore, the amplitudes are normalized with respect to the
amplitude of the dominant peak. It also necessary to add a comment, that the energy
densities presented below are not the only cases where the two systems produce
similar matter distributions, in fact, similar distributions were very common. The
first energy density distribution is constructed using the κ = 16 and z = 7.3101
state, while the Vlasov distribution was constructed using the parameter set (k =
0, l = 7, L0 = 0, y0 = 0.118); both are illustrated in Figure 5.10. The final result
we will consider is the energy density for the Einstein-Dirac solution when κ = 90
and z = 25.0165, the corresponding parameter set for the Einstein-Vlasov system
was (k = 4.5, l = 19.5, L0 = 2.3, y0 = 0.0398), see Figure 5.11 for the resulting
plots. A final comment, is that it is possible to generate scaled energy densities with
greater similarities, but this would require a parameter identification method for
Vlasov’s polytropic ansatz parameters k, l, L0, y0 (3.51), and due to time constraints,
unfortunately had to be omitted. Each result is nevertheless visually similar. The
discrepancies in the amplitudes and local curvature differences are also reflected in
the computed redshifts for the Vlasov and Dirac systems. Indeed, for the first density
the computed central redshift for the Vlasov system was z = 8.578628, for the second
density the central redshift was z = 25.981807 for the Vlasov system. Finally, the
maximum compactness of both solutions is also quite close, in particular the first
comparison is visually alike, while the difference in central redshift and maximum
compactness are smaller compared to the second example.
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5. Results

Figure 5.10: The figure displays plots of the scaled energy density log(4πr2ρ+ 1),
for the Einstein-Dirac system to the left (blue) and the Einstein-Vlasov system to
the right (red). Note that they are strikingly similar and notice that their respective
maximum compactness is also similar in magnitude.

Figure 5.11: The figure displays plots of the scaled energy density log(4πr2ρ+ 1),
for the Einstein-Dirac system to the left (blue) and the Einstein-Vlasov system to
the right (red). Note that they are strikingly similar and notice that their respective
maximum compactness is also similar in magnitude.
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6.1 A discussion on the required numerical preci-
sion

Before discussing any results and their implications, we will dedicate this section to
comment on one complication for the computations performed during the shooting
method. In order to identify normalisable fermion fields and properly behaved met-
ric fields, we must identify “the correct” eigenvalue parameter ω from the Einstein-
Dirac equations (3.30). The parameter is introduced into the equations by the plane
wave ansatz (3.29), and is by definition an eigenvalue to the Hamiltonian operator
ĤΨ = ωΨ. Due to fact that the parameter is an eigenvalue, we cannot freely set this
parameter and expect a physically sensible solutions to the Einstein-Dirac equations.
The inherent difficulty due to the required parameter identification is also present
for a simpler case where the Dirac equation is not coupled to the gravitational de-
scription, in [22] Goldman and Silbar discuss the same problem in the context of
the Radial Dirac equation for a few different potentials.

Attacking this problem numerically is therefor difficult, as there is theoretically
only one parameter ω which yields a proper solution for a fixed κ and α1 (related to
the central redshift z). The main numerical difficulties this provides is the identifi-
cation of a ω parameter to the unscaled problem “that is good enough”. To be more
precise, if ω is not provided to a sufficient level of accuracy, this causes the numerical
solutions of the fermion fields to diverge, where the field diverges is dependent on
current number of “correctly identified” decimals for ω. If the correct amount of
decimals is too few, for r < rmax, then the fields will diverge up until a sufficient
accuracy is reached, and the required precision will only increase if a larger rmax
is required to capture the behavior of all fields (α, β,A, T ). The required level of
precision for solutions to the Einstein-Dirac system increased substantially, for con-
figurations with many particles, in particular for κ = 90, the level of precision I used
in my calculations were around 80 decimals. After fixing κ, searching for solutions
with higher central redshifts z, revealed that the sensitivity of the solution with
respect to ω, increased. The high required precision, necessitated the application of
a fast and efficient search algorithm, for this task the Binary search algorithm was
a natural choice, due to the fact that the discretized search interval [ωmin, ωmax] is
by construction an ordered list, which is an requirement to apply it as a updating
rule in the parameter identification procedure.
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6.2 Einstein-Dirac solution structure

The identified solution types were based exclusively on my recorded solutions, and a
greater sample size might be necessary to make more conclusions about the structure
of all fields (α̃, β̃, Ã, T̃ ), but the observation: larger central redshift z, yields more
peaks is true and can thus safely be proclaimed. The canonical solutions distin-
guished itself from the other configurations, due to their non-relativistic nature but
requires more analytical work to study the reason why. Also, the moderately rela-
tivistic solutions, meaning z ∈ [5, 10], were particularly interesting, both when con-
sidering the largest ratio (5.1) and the ratio when the compactness (3.11) achieved
its maximum; since the relativistic regime differences implies both a z and κ (par-
ticle number) dependence for Ω in (3.14), based on Figure 5.7 and Figure 5.8. The
results displayed by both figures are different, and the amplitudes of the inequality
fraction is subject to greater scepticism than those displayed in the second figure.
This is because the maximal value of

pr + 2p⊥

ρ
,

tended to occur in the tails between the initial peaks, where the amplitudes of the
fermions fields were very small, and of the order α, β ∼ 10−8. In contrast to this
we can be more certain about the amplitudes in second figure, since the inequality
fraction at r∗,

pr(r∗) + 2p⊥(r∗)
ρ(r∗)

, r∗ = arg max
r∈[rmin,rmax]

{
2m(r)
r

}
,

was defined with fields with much larger amplitude, see for example the fermion
fields in Figure 6.1. This adds an extra level of complexity to investigation the
compactness. But it would be more natural to associate the Ω · ρ bound with the
radius at which the compactness is largest. However, the conclusion that Ω > 1 and
that Ω is dependent on both κ and z is strengthened by both results. Given more
time, it would preferable to perform the computations associated with Figure 5.7
with Taylor polynomials of higher degree (see section 4.4), but I strongly suspect
that it will not impact this conclusion.

6.3 Negative radial pressure

The existence of regions with negative matter pressures is atypical for classical mat-
ter models, and furthermore, the fact that negative radial pressure regions disappear
for κ ≥ 16 was highly unexpected, see Figure 5.6. From a physical point of view this
was highly unexpected, since quantum effects typically vanish only when studying
very large ensembles of particles. Based on this result, we have evidence for a transi-
tion to more classical matter behavior from the quantum fields α, β derived from the
Dirac equation. This result should motivate further studies into the emergence of
classical properties from the quantum fields, inherent to the Einstein-Dirac system.
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6.4 Pressure and density inequality results

Before discussing the numerical results it is insightful to first study the inequality
fraction (5.1) analytically, to do so the definition in Section 3.8 is necessary. Using
the definitions for the pressures and energy density we can write the fraction as

pr(r) + 2p⊥(r)
ρ(r) = ωT (r)(α2(r) + β2(r)) −m(α2(r) − β2(r))

ωT (r)(α2(r) + β2(r)) .

Hence, if the inequality is greater than one, we get a condition for the fermion fields,

ωT (r)(α2(r) + β2(r)) −m(α2(r) − β2(r))
ωT (r)(α2(r) + β2(r)) ≥ 1 ⇒ β(r) ≥ α(r) . (6.1)

Thus, if the inequality parameter Ω > 1, then this implies that β(r) is greater than
α(r). The numerical results displays evidence that the bounding factor Ω is greater
than one for non-canonical solutions when κ ≥ 8, see Figure 5.7 and 5.8. As a matter
of fact, all results where the (5.1) fraction is greater than one, the analytical result
(6.1) holds true. Indeed, to display this we will consider one case, namely κ = 90
and z = 6.8977, to view a figure displaying the fermion fields α,β and the inequality
fraction at the radius (5.2), see Figure 6.1. By studying the fermion fields it is clear
that compactness attains its largest value while α(r) < β(r), which is rarely the case,
see for example Figure 5.1 - Figure 5.4. Alongside the numerical results, the known
theory about the Dirac equation, in particular the results describing the amplitude
of the Spinor’s components as was discussed in Section 3.6.2, tells us that locally
the fermion fields can be dominated by the anti-particle component. In for example
[23] chapter 1, Thaller describes that general solutions for Dirac’s equation for a
free particle, is a linear combination of the positive and negative energy Spinors. In
the case of the Einstein-Dirac system the anti-particle component is described by
β, and we can also conclude from Figure 5.7, that highly relativistic solutions (high
z) are not locally dominated by the β-field to the same degree, and the fraction
should converge to one for z → ∞. It also worth to noting that the difference in
amplitude between α and β became less pronounced while increasing z, in particular,
for low radii, since the α-field tended to dominate the other β-field after a certain
radius was reached. Furthermore, due to the results in Section 5.2.3, in particular
Figure 5.9, illustrates evidence that the compactness of the solutions (α̃, β̃, Ã, T̃ ),
are not 8/9 which would follow from Ω = 1. Hence, based on the numerical results
and the general theory about the Dirac equation, we have strong evidence that for
some configurations, the bounding parameter is greater than one, Ω > 1, which
stands in contrast to the 8/9 compactness bound for the Einstein-Vlasov system
[3]. Furthermore, the compactness as implied by inequality ratio results, for non-
canonical solutions is dependent on κ and ω, which follows from the results in Figure
5.9.
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Figure 6.1: This figures contains four subplots, the first subfigure displays the
inequality fraction when the compactness in the second figure attains its largest
value. Similarly, the final row displays the fermion fields and highlights β(r∗) > α(r∗)
(left), and the metric field T (r∗) (right), along with the scaled mass and frequency
m̃ and ω̃.

6.5 Comparing the Einstein-Vlasov and the Einstein-
Dirac system

This comparison is interesting based on two perspectives, first and foremost, the
main motivation for this project was that the solutions presented in Leith et. al’s
paper [14] appeared to have similar features to the distributions generated by the
Vlasov system. Secondly, based on the encountered quantum to classical transition,
this would imply that the Einstein-Vlasov system and the Einstein-Dirac system
would constitute a compelling pairing to dwell deeper and study under what con-
ditions a quantum system becomes more classical. This final point appears to be
true since it is possible to generate very similar matter distributions as was outlined
in Section 5.3. This can also be motivated heuristically with a physical argument;
at least one parameter available in the polytropic ansatz for the Einstein-Vlasov
system (3.51) is related to the angular momenta in the system, and by construction
κ is also related to the total angular momentum κ = 2j+ 1, see Section 3.7. Thus, I
strongly suspect that it should be possible to show a more rigorous correspondence
between the fermion number and the angular momentum parameter. We can also
connect the available momentum to the Dirac system’s quantum properties, since
we established that the threshold to classical behavior can be found by studying
the number of fermions in the system. This connection should also motivate further
studies into the two systems where the Vlasov system is a possible candidate for a
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classical limit of the Einstein-Dirac system. Beyond the established visual similar-
ities, we are also able to add another comment that both the central redshift and
the maximum compactness were alike in both presented comparisons. I should also
add that the difference in their respective numerical values is most likely caused
by the slight discrepancies in amplitude and local curvature between the densities
produced by the Einstein-Dirac and Vlasov systems, and it would therefore be inter-
esting to use a more sophisticated parameter identification procedure for the Vlasov
parameters, and afterwards, yet again, compare both the compactness and central
redshift.

6.6 Final remarks
The results of this work indicate that the Einstein-Vlasov and the Einstein-Dirac
system might constitute an intriguing pairing for future studies of transitions of
quantum to classical matter properties. There are many ways to expand the scope
of this study, one aspect that would be interesting to study is whether excited states
display similar properties to the ground state discussed in this work. During the
initial stages of this project a restriction to study ground state configurations was
made, the first reason was the universe’s tendency to naturally prefer low energy
configurations, on the other hand, excited states were also more difficult to identify
due to the presence of degeneracy in the excited states [14],[5]. Another goal is to
perform a similar study of the Einstein-Dirac-Maxwell system [9], which in contrast
to the Einstein-Dirac system introduces charge to all particles within the single shell
configuration, which we suspect would increase the compactness displayed by the
system. Finally, due to the nature of this work, a larger sample size of solutions
would be useful, in particular while studying the compactness of the moderately
relativistic solutions z ∈ [5, 10], as these configurations displayed strong evidence
that Ω > 1, from the matter pressure and energy density inequality.

To summarize all results in this thesis, by numerical investigations we have found
that the compactness bound for the Einstein-Dirac system is different for some con-
figurations when compared to the bound for the Vlasov system, 2m(r)/r ≤ 8/9,
which was caused by the anti-particle spinor component from the Dirac equation.
But even though that this was the case, both systems are remarkably similar. The
list of similarities are as follows, a similar multipeak or multimodal behavior in the
energy density functions, and even though the anti-particle could locally dominate
the other field, in these regions the required Ω-parameter introduced in Section 5.2.3,
is still very close to one. Finally, while studying the properties of the Einstein-Dirac
system, we were also able to find evidence for type of quantum to classical matter
behavior transition. Contradictory to the general intuition that classical behavior
requires millions of particles, the Einstein-Dirac system appears to transition at only
a handful of particles; that is κ ≥ 16.
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A
Appendix 1

A.1 Scaling the metric and fermion fields
Inserting the transformed variables into the first differential equation:

α′(r) = κ

2r
√
A(r)

α(r) − (ωT (r) +m)√
A(r)

β(r),

yields the following result

α̃′(r) = λ

√
τ

λ
α′(λr)

= λ

√
τ

λ

 κ

2(λr)
√
Ã(r)

√
λ

τ
α̃(r) −

( ω̃
λτ

(τ T̃ (r)) + m̃
λ

)√
Ã(r)

√
λ

τ
β̃(r)


= κ

2r
√
Ã(r)

α̃(r) − (ω̃T̃ (r) + m̃)√
Ã(r)

β̃(r).

Which in the end yields an identical differential equation with the transformed
variables and parameters ω → ω̃ and m → m̃.
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