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Investigating Irrigation Management Strategies with AQUACROP
Tilde Bengtsson, Tommy Sy
Department of Electrical Engineering
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Abstract
The world’s population is expected to increase from 7.9 to between 9.4 to 10.2 bil-
lion people in the coming thirty years and an increasing water demand is thereby
inevitable. Globally, the largest domain of water demand is agriculture,consuming
70 % of the world’s water usage. More effective usage of water within the agricul-
ture sector is thereby required. AquaCrop is a crop model software program used for
calculating, e.g., crop yield after specifying input parameters such as crop cultivar,
irrigation management system and climate. Using this software, two reinforcement
learning algorithms were applied to find the optimal policy representing two irriga-
tion strategies, i.e. net amount irrigation and soil moisture targets. The goal was
to find a policy minimizing irrigation amount while maintaining a yield above a
certain percentage of the maximizing yield, using Q-learning. In addition, two grid
searches were created for comparison. The reinforcement algorithms were able to
find optimal policies if the percentage of max yield to be maintained is sufficiently
low, around 90 %, for most of the time.

Keywords: Irrigation Management Strategy, Precision Irrigation, Reinforcement
Learning, AquaCrop.
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1
Introduction

The world’s population is expected to increase from 7.9 to between 9.4 to 10.2 bil-
lion in the coming 30 years [1]. This along with economic growth and changing
consumption behaviors result in an inevitable increase in food and water demand[2]
[3]. Yet, the world’s resources of clean water are shrinking due to climate change,
depletion of groundwater, and pollution. As known, climate change has the poten-
tial of disrupting weather patterns which cause unpredictable water availability and
an increased risk of water contamination [4].

In addition, the rapid depletion of groundwater basins without knowing its remain-
ing quantity has placed more than 30 percent of our world’s largest groundwater
systems in distress. Furthermore, pollution of water which is correlated with popula-
tion density and economic growth has increased in the previous decades [3]. Globally,
the largest domains for water demand are agriculture, industry, and domestic usage.
Agriculture stands for 70 percent of the world’s water demand, where the major-
ity of the water is used for irrigation purposes and is expected to increase by 60
percent remaining the largest category of consumption [3]. Since water usage can-
not exceed water availability, higher effective usage of water in agriculture is needed.

1.1 Background
The most crucial parameter for plant growth is sufficient soil moisture. Within
agriculture, farmers must supply crops with enough water while preventing over-
watering. If available water in the plant root zone becomes limited, the plant expe-
riences water stress and when no available water exists for the plant to extract, the
permanent wilting point, WP, is reached. At this point, the soil still contains water,
but the crop is unable to extract it [5]. During wilting, stem and leaves lose their
rigidness and plant growth rate stagnate. Depending on the intensity and duration
of water shortage, a plant can revive to its original state once re-watered[6]. How-
ever, severe damages could be irreversible [6].

To avoid this supplying the crops with more water than necessary reduces the risk of
plant stress and is an economically safer choice . The field capacity, FC, is the max-
imum soil moisture content where water will not drain due to gravity. If irrigation
occurs at FC, the soil becomes over-watered which can cause deep percolation and
surface run-off. Percolation occurs as water moves downward from the surface to the
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1. Introduction

groundwater and washes the soil from its pesticides, fertilizer, and other nutrients
important for the plant, resulting in lower crop yield. Surface-runoff occurs when
the quantity of supplied water is too large resulting in it being unable to infiltrate
the soil [7][8]. The volume of water between the FC and WP, is referenced as the
Total Available Water, TAW, and depends on the soil profile. There exist thresholds
of TAW for stomatal closure, canopy expansion, and early canopy senescene, i.e.,
aging [9]. These thresholds can be utilized in order to create an irrigation manage-
ment strategy.

Irrigation controllers can operate with and without feedback from the field [2]. In
fact, several constructions and management systems exist for creating an irrigation
controller. Open-loop strategies include time- and volume-based irrigation while
closed-loop strategies are based on feedback from the field, usually soil moisture.
Due to open-loop control’s low-cost properties, open-loop controls are more used
worldwide, but the utilization of closed-loop controls is increasing [10]. An example
of a closed-loop controller, could be a closed-loop controller fitted with a soil mois-
ture sensor while trying to keep the soil moisture at a constant level, for example at
FC or WP, or somewhere in between. What is known, is that the higher percentage
of water in the soil, the larger amount of water will be lost to the surroundings due
to evapotranspiration.

Evapotranspiration is the sum of water losses due to soil moisture evaporating into
air and plants exchanging gas with its atmosphere in a process called transpiration.
The equation for evapotranspiration, ET , can be can be written

ET = E + Tr, (1.1)

where E and Tr are the evaporation and transpiration. Since these processes are
hard to distinguish, the terms are normally combined into the single term. The fac-
tors for evaporation include but are not limited to temperature, air humidity, wind
conditions, soil moisture and porosity, whereas transpiration rate is, among other
factors, correlated with vapor pressure, plant species and water potential [8]. Due
to the complex nature of the soil water dynamics, finding the optimal soil moisture
target compose a challenging model problem.

In order to test control strategies, it is beneficial to simulate these in advance. This
enables strategy testing in minutes instead of conducting real experiments, lasting
up to a year. Also, the crops take damage if the controller is erroneous, which can be
extremely costly [8]. AquaCrop is a crop model simulation tool which enables scien-
tist and engineers to develop irrigation controllers before the real experiment. With
this simulation tool, it is possible to develop irrigation strategies without conducting
costly field experiments [9]. Examples of commonly used irrigation strategies are
scheduled irrigation, where irrigation is conducted after a certain number of days,
and irrigation as the moisture content crosses a given boundary.

As empirical relationships and heuristics are relied on for determining water loss
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1. Introduction

through ET , choosing the best irrigation strategy could be a challenge. Much data
is required since the best irrigation strategy is dependent on the field’s geograph-
ical position and climate. The data ranges from temperature and rainfall to soil
type. Data on water accessibility and crop type are also as important in choos-
ing a suitable irrigation strategy. For example, it would not be considered wise
to choose daily irrigation in places with water shortages, but still necessary if one
wants to maximize the crop yield. For finding a suitable irrigation strategy from
data, machine learning could be of interest, since it is capable of learning from data.
Machine learning is defined as an algorithm capable of improving itself using data
and collecting experience. An area within machine learning called reinforcement
learning where an agent must accomplish a specific goal, is of particular interest.
The basic idea within reinforcement learning can be explained as that an agent is
interacting with an environment in order to acquire a reward for the new perceived
state of the environment. The agent will maximize the rewards it can get as it learns
the actions it should take to accomplish its goal. The benefit of this algorithm is
that reinforcement learning is model-free, thereby making it suitable for applications
where empirical relationships and heuristics are relied on [11].

1.2 Related Work
Several studies have validated the accuracy of AquaCrop [12], [13], [14], [15], [16].
Why AquaCrop was utilized in these papers was due to its easy-to-use implemen-
tation and low amount of required input parameters. Other models, such as the
CERES-Maize Model, Muchow-Sinclair-Benett Model, EPICphase, CropSyst and
the Hybrid-Maize model, require an advanced calibration process and more hard-
to-measure input parameters [12]. These studies included several different crop
cultivars, namely maize, rice, cotton and wheat. The field data were gathered from
different types of climate i.e. arid, semiarid and rainy climate. Soil profiles included
loamy and sandy soil. Irrigation strategies included both full and restricted irriga-
tion causing water stress of various degrees.

These strategies included rainfed irrigation, irrigation where applied water was re-
stricted to a certain depth, and withholdment of irrigation during a given amount
of days or total withholdment after flowering stage [12] [13] [14]. The measured
and simulated properties for comparison included canopy cover, final grain yield,
above-ground biomass and soil water content. The predictions were evaluated with
tools such as standard- and normalized root mean square error and a coefficient of
efficiency. In order to evaluate the predictions from the different papers, the follow-
ing thresholds for the normalized root mean square error was created: below 10 %,
10 - 20 %, 20 - 30 % and above 30 %, corresponding to the quality rating, excel-
lent, good, fair and poor. The result from these studies determined that AquaCrop
was able to accurately predict these crop properties when irrigation was abundant.
Sometimes though, the quality of the predictions during water stress were only fair
[12], [13], [14].
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1. Introduction

Multiple attempts have been conducted to optimize irrigation strategies with AquaCrop
[15], [16], [17]. These studies investigated which factors impacted the final yield, ir-
rigation and water use efficiency performance and proposed alterations of irrigation
management using AquaCrop. For instance, one study evaluated the yield predic-
tions for a varying climate, planting date and soil type by calculating a relative root
mean square error [15]. The optimal irrigation was determined as optimal water
productivity, i.e., the highest quotient between yield and water availability. The
authors found that planting date had the largest impact on the yield outcome and
created three irrigation strategies given early, normal and late planting [15].

Another study investigated cotton in North China and found an irrigation strategy
that included irrigation amount, frequency and period. In terms of water produc-
tivity, a good strategy was to irrigate once for a rainy season, twice if the season
contains moderate rain and three times when the given season is dry. However,
this applies only to certain growth stages of cotton namely the seedling for a wet
season, seedling and squaring for a normal season and lastly seedling, squaring and
flowering for a dry season [16]. A third study used AquaCrop in order to find an
optimal irrigation schedule given different irrigation amounts, initial soil moisture
and irrigation events [17].

However, the amount of studies regarding investigations of when irrigation should
be triggered given feedback from the soil moisture or which soil moisture level to
remain constant at is limited. It is therefore of interest to investigate irrigation
management strategies keeping the soil moisture at desired levels while reducing the
water amount required.

1.3 Scope

The aim of this report was to investigate irrigation management strategies and re-
duce water demand within agriculture. The goal was to minimize seasonal irrigation
while only obtaining a small deviation from the maximum possible final yield value.
To obtain this, research regarding irrigation management in practice and the soft-
ware AquaCrop was performed. Later on, for the two most prominent irrigation
strategies, reinforcement learning implementation was conducted within the soft-
ware AquaCrop. The goal with this implementation was to find which irrigation
would provide sufficiently large yield, but with as little water as possible. To com-
plement the results from this, two grid searches were performed which then could
be used for comparison.

The calculations focused on the cultivar maize in an arid climate. No other method
than grid search and reinforcement learning was performed. The data were solely
simulated and not validated against any field experiment.
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1. Introduction

1.4 Outline
Chapter 2 gives a brief insight into the software program and its different inputs
and output properties as well as some insight about how irrigation is performed in
practice. The theory of reinforcement learning is summarized in Chapter 3. Chapter
4 summarizes how this machine learning algorithm was implemented in AquaCrop.
Lastly, Chapter 5 and Chapter 6 presents the results, conclusion and proposals for
future work.
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2
AquaCrop

The Land and Water Division at Food and Agriculture Organization of the United
States, FAO, has developed a crop model simulation software which allows its users
to estimate crop yield given certain environmental conditions. The application of
this program varies between performing a gap yield analysis, meaning comparing
actual to potential yield, understand how environmental changes will affect biomass
production in future, and investigate irrigation strategies in locations with water
scarcity. It was intended to be used as an assisting tool for decision making in ir-
rigation management systems, but it has also been used by engineers and scientist
for analysis purposes. The software takes rainfall, crop system, irrigation system,
climate temperate and field properties as input and return biomass production,
fertility-, salinity and water stress values as output, among other properties. The
software only calculates input and output in form of irrigation, rainfall, capillary
raise, evapotranspiration and percolation. The crop development and transpiration
is assumed to be uniform [18].

An open-source version of AquaCrop called AquaCrop-OS has also been developed
by researchers from University of Manchester, Water for Food Global Institute,
Imperial College London and FAO. This version of AquaCrop was written in Matlab,
unlike the version developed by FAO, which was written in Delphi and distributed
for Windows only. The advantage with AquaCrop-OS is its compatibility with
other operating systems namely Macintosh and Linux-operating systems. Also, it
is possible to integrate a water resource management since the code can be linked
with additional models [19]. Besides AquaCrop-OS, there is a Python version of
AquaCrop-OS called AquaCrop-OSpy and it works exactly like AquaCrop-OS. By
utlizing AquaCrop in Matlab, or Python, it is possible to combine the features in
AquaCrop with different machine learning algorithms.

2.1 Crop Characteristics
AquaCrop distinguishes between different types of crop: Fruit, grains, leafy veg-
etables, roots and tubers. This is due to the fact that grains need to consider a
flowering stage, while root and tuber crop need to consider a specific formation un-
like vegetables [9]. Different from various simulation tools which uses the index Leaf
Area Index, LAI, AquaCrop uses Canopy Cover in order to measure plant growth
[20]. Canopy cover (CC) is defined as the fraction of surface covered by a green
canopy shadow, i.e.,
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2. AquaCrop

CC = As
Atot

, (2.1)

where As is the area covered by green canopy and Atot is the total area. An illus-
tration of three plants with different values of canopy cover can be seen in Figure
2.1. One may notice how the shadow sizes differentiate from each other depending
on the size of the canopy.

Low CC Medium CC High CC

Figure 2.1: One crop with low, medium and high canopy cover.

The life cycle of a crop can be divided into four stages: emergence, canopy expansion,
maximum canopy cover and canopy senescence. Emergence lasts from the moment
a seed is planted until the seedling starts to sprout. It is during this stage the root
system begins to develop. The Initial Canopy Cover, CC0 has been formed as 90 %
of the seedling has begun to sprout. In the canopy expansion stage, the canopy cover
is increasing with the Canopy Growing Coefficient, CGC until a maximum has been
established, CCx. The next stage occurs until the crop has matured and canopy
cover starts decreasing. It is also during this stage flowering occurs. When the crop
has reached maturity, then the final stage, canopy senescence, begins. Canopy Cover
decreases during this stage with canopy decline coefficient, CDC. During non-stress
conditions, these four coefficients is all that is required to describe to crop cycle dur-
ing a non-stress life cycle. An illustration of an life cycle during non-stress can be
seen in Figure 2.2.

Multiple factors can cause plant stress. The most obvious, water stress, can trigger
early senescence and prohibit a crop from reaching the maximum canopy cover. For
this reason, the Early Senescence Stress Coefficient, Kssen, is used to modify the
parameter CDC, i.e.,

CDCadj = (1−Ks8
sen)CDC, (2.2)

where CDCajd is the adjusted CDC. As a consequence of the modified decline co-
efficient, the crops life expectancy is in the risk of getting reduced. Furthermore,
a reduced concentration of vital minerals inhibits plant growth and is modelled in
AquaCrop by a set of Soil Fertility Stress Coefficients, Kssalt, i.e.,

Brel = 100Kssalt, (2.3)
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2. AquaCrop

CC0

CCx

Stage 3Stage 2Stage 1 Stage 4

Time [days]

C
an

op
y

C
ov

er
[−

]

Crop Life Cycle during Non-Stress Conditions

Figure 2.2: A crop life cycle with non-stress conditions expressed with the param-
eters Inital Canopy Cover, CC0, Canopy Growing Coeffiecient, CGD, Maximum
Canopy Cover, CCx and Canopy Decline Coefficient, CDC.

where Brel is the relative biomass. Salt increases water stress by reducing water
available water in the root zone. An illustration of the life cycle of a crop experienc-
ing stress during its life cycle can be seen in Figure 2.3. Air temperature stress affects
the crop since growth stagnates below a certain temperature, the base temperature,
Tb. The knowledge of low temperature stress can then be used in calculations with
so called Growing Degree Day, GDD.

In order for AquaCrop to model a crop the cultivar needs to be calibrated first.
In short, AquaCrop takes multiple input parameters in form of field properties,
geographical location, climate and dates, i.e., planting date and date when new
stages have been reached. The base temperature is the lowest temperature where
the plant can grow. Given the base temperature, the mean of the daily minimum
and maximum temperatures, T̄ , and dates of planting and the stage transitions, it
is possible to calculate how many growing degrees is required for a plant to grow
from one stage to another. A growing degree day is the difference between mean
and base if the mean is above the base temperature, else it is zero, i.e.,

GDD =

T̄i − Tb, if T̄i > Tb

0, otherwise
(2.4)

An illustration of growing degrees days can also be seen in Figure 2.4.
One could then for example obtain that it requires 1000 °C accumulated GDD for a
certain cultivar to grow from one stage to another. This would give that a cultivar
planted in the cold winter where the temperature is below or close to the base tem-
perature requires more days to accumulate the sufficient amount of growing degrees
days, when compared to the same cultivar planted in the spring where the mean
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2. AquaCrop

Time [days]

C
an

op
y

C
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er
[−

]

Crop Life Cycle during Stress Conditions

Non stressed Stressed

Figure 2.3: A crop life cycle with stress conditions expressed with the parameters
Inital Canopy Cover, CC0, Canopy Growing Coeffiecient, CGD, Maximum Canopy
Cover, CCx and Canopy Decline Coefficient, CDC.

Time [days]

A
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T
em
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tu
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]

Growing Degree Days

T̄ GDD Tb

Figure 2.4: An illustration showing how mean temperature, T̄ , base temperature,
Tb and growing degree days, GDD, are related.
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2. AquaCrop

temperature is usually much higher than the base temperature. The moment that a
crops life cycle has been calibrated in growing degrees days, it is possible to simulate
the growth process based on the mean temperature in the new climate. Obviously,
the plant experience stress when the temperature is too high, but this is not con-
sidered in Equation (2.4).

A crop contains parameters which are both consistent and non-consistent. The
consistent parameters do not change with geographical location, field management
properties, time, cultivar and climate, while the non-consistent parameters do. Ex-
amples of consistent parameters are different coefficients for stress and normalized
water productivity. Some non-consistent cultivar does not change with cultivar for
example seed size and some non-consistent parameters change both with cultivar
and with their surroundings, for example maximum canopy cover depends on plant
density and maximum root depth depends on soil type.

2.2 Soil Types
The crop’s growth is also affected by the soil. The thresholds for Field Capacity and
Wilting Point are affected by the soil profile. For example, the presence of gravel
in the soil reduces the soil’s available water and the root growth can be limited if
the penetrability of the soil type is low. Minerals are divided into three types of soil
given the size of the particle: sand, slit, clay. Sand and clay have the largest and
smallest particles, respectively. Soil have different compositions of sand, slit and
clay and there are also twelve different textures, which are described in the so called
textural triangle (see Figure 2.5).

A user of AquaCrop can select a soil profile after the soil types existing in the tex-
tural triangle. There is also a possibility of creating a custom soil profile, but this
is usually not necessary due to AquaCrop sufficient yet wide range of profile options.

The soil can be seen as a reservoir of water which is described by the Water Balance
Equation,

Wack = I +R− P − S − ET0, (2.5)
where Wack is accumulated water, I is irrigation, R is rainfed irrigation, P is per-
colation, S is surface runoff and ET0 is the reference evapotranspiration. It is with
(2.5) AquaCrop monitors the water fluxes within the crop model.

2.3 Climate Properties
AquaCrop needs daily measurements of weather data consisting of the minimum-
and maximum temperature, rainfall and reference evapotranspiration. In addition,
the annual concentration of carbon dioxide is required. The maximum and minimum
is the highest and lowest temperature measured during a 24 hour period starting at
midnight. The temperature is, as mentioned in the Section 2.1, used for calculating
in form of growing degree days, whereas rainfall and evapotranspiration is used in
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%
cla

y %
slit

% sand

slit

clay

sandy
clay sily clay

loam

slit loam

silty
clay

clay
loam

loam
sandy loam

sand

loamy sand

sandy clay
loam

Figure 2.5: The different textural soil classes given different percentage of slit,
loam and sand.

(2.5). Rain is measured in milimeters and the rain is assumed to be homogeneous
over the field. AquaCrop performs calculations with a reference carbondioxide air
concentration measured in year 2000 at Mauna Loa Observatory in Hawaii [9].

Since the evapotranspiration is not as easily measured as the other inputs, it is
usually derived from weather data with the so called Penman-Monteith,

ET0 = ∆(Rn −G) + ρacp(δe)ga
(∆ + γ(1 + ga

gs
))Lv

, (2.6)

where Lv is the energy required per water volume vaporized, ∆ is the rate of change
of saturation specific humidity with air temperature, Rn is the net irradiance, G is
the ground heat flux, cp is the specific heat capacity of air, ρa is the dry air density,
δe is the vapor pressure deficit, or specific humidity, ga is the conductivity of air,
atmospheric conductance, gs is the conductivity of stoma, surface conductance and
γ is the psychrometric constant. These constants are experimentally determined e.g.
the psychrometric constant is determined while using a psychrometer consisting of
two thermometers with the purpose of measuring air humidity.

2.4 Field Management Properties
AquaCrop lets the user specify and manage some properties for the field. Examples
of properties include the presence of mulches, affecting the soil evaporation, and soil
fertility, having a negative impact on biomass production if it is limited. AquaCrop
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allows it user to specify if the field has soil bunds and mulches. Soil bunds decreases
surface run-off since the bunds acts as a barrier preventing the water from leaving
the field. Mulches decreases evaporation. How much water which can be prevented
from being evaporated depends on the type of mulches, i.e. if they are made of
an organic or plastic material, and how large fraction of the fields area is covered
in mulches. Weed infestation is a different aspect to consider, affecting biomass
production, and is measured using relative cover of weeds, RC, defined as

RC = WC

CCtot
, (2.7)

where WC is weed covered area and CCtot is the total area covered by weed and
canopy. A large RC indicates that weed offers a stronger competition to the crop
since solar energy is more absorbed by the weed. The extent of weed infestation
described by RC may also be specified by choosing classes for weed management
ranging from perfect to very poor.

2.5 Irrigation Management
In practice, different irrigation methods have been developed in order to satisfy the
crop’s water demand. These methods can be divided into traditional and modern
methods depending on their proficiency in saving water, as well as their possibil-
ity of being measured, scheduled and controlled more precisely. Modern techniques
can be divided into two categories, surface and subsurface irrigation, depending on
whether water is applied from above or below [2].

Examples of traditional methods are manual irrigation, rain-fed farming and flood-
ing. Manual irrigation relies primarily on the workforce when water is applied to
the field while rain-fed farming relies on a hydraulic cycle. However, reliance on
the hydraulic cycle as with rain-fed farming is unreliable and the quantity of water
applied can vary vastly with respect to time and quantity. Flooding is the type
of irrigation where an extensive quantity of water is dispersed over a field due to
gravity. Water dispersion over a field means that no pump is utilized, which could
reduce the cost of maintenance. Disadvantages of these techniques include uneven
distribution of water in some areas, leaving some areas dryer compared to others.
A difference between crop water demand and applied water over a field could also
result in an increased risk for over-watering or drought [2].

Modern surface irrigation systems include sprinkler and drip techniques. The sprin-
kler technique involves water application in a similar manner to natural rainfall
using spray-heads, pipes and pumps. Here, the spray-head disperses the water into
the air before the water breaks up into small falling drops. The drip technique in-
volves water application with narrow tubes directly or close to the plant root zone
is termed drip irrigation. One reason for using this technique is to reduce water loss
due to evaporation since water application is concentrated in areas where water de-
mand is large. The result of sprinkler and drip techniques is a more uniform, precise
and reliable application[2]. In contrast to surface irrigation systems, subsurface drip
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irrigation implies that water is applied from below to satisfy the crop water demand.
Water could be applied through emitters buried underground. Also, subsurface drip
irrigation has the capability of lowering water consumption, when compared to a
sprinkler- and drip techniques [21].

AquaCrop simulates these application methods by utilizing different values for per-
centage wetted soil surface. These values can be seen in Table 2.1.

Table 2.1: The percentage soil surface wetted for irrigation strategies sprinkler,
surface drip, subsurface drip and furrow.

Application Method Soil surface wetted [%]
Sprinkler 100
Drip 15 - 40

Drip, subsurface 0
Flooding 100

These techniques would not be able to schedule and control irrigation without a
monitoring system. Determination of irrigation need is done by observing the state
of the plant or the state of the surrounding mediums. Three main types of irrigation
monitoring exist: plant-based, soil-based and climate-based [2].

Soil-based monitoring means irrigation is determined by measuring certain values
of the soil - usually the soil moisture, but salinity, pH and other concentration, can
also serve the purpose [22]. Several studies have been conducted using soil-based
monitoring where soil moisture sensors are using capacitance of sensor probes in
soil for sensing the volumetric water content of the soil [23]. This works by sending
an electromagnetic pulse from the sensor rod and the volumetric water content is
determined from the conductance through soil and back reflection to the soil’s sur-
face. The sensor used was a low-cost one, but with sufficient accuracy, connected
to an Arduino Uno micro-controller as an analog input. Gathered data was then
sent to cloud storage using a WiFi-module. The cloud storage was part of Internet
of Things, IoT, technology to ease the monitoring. In addition, studies have shown
that it is possible to utilize pH-sensors for measuring the acidity in soil by sensing
the hydrogen ion concentration, or various sensor to measure salinity in order to
monitor irrigation need [24], [25].

Furthermore, plant-based monitoring is based upon visual observations. Here, opti-
cal sensors are used to judge health of the crop and for identifying causes behind low
crop yield e.g. attacks from pest and lack of nutrition but most importantly water
deficit. In practical sense, optical sensors such as high-definition cameras may be
mounted on drones for determining the Leaf Area Index, LAI, which is a parameter
used for optimal irrigation [26]. To emphasize, LAI is defined as half the total leaf
area per unit ground surface area [20]. As a plant experience water stress, the leaves
loose their rigidness due to wilting which can be used as monitoring option and
observed with optical sensor. This proved plant-based sensing to be functional but
due to practical difficulties, this type of monitoring is limited in commercial usage
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[27].

In climate-based monitoring, measurement of parameters as air humidity and tem-
perature, solar radiation and wind velocity are used for estimating the reference
evapotranspiration. Evapotranspiration is the sum of evaporation from the ground
surface area and transpiration i.e. the water transportation within the plant and
the evaporation from the plant. The estimated reference evapotranspiration is then
used to estimate water losses from the plant and soil for determining water losses
from plant and soil which will be accounted for when applying water [2]. However, a
study showed that this estimation of evapotranspiration requires a lot of data of high
quality to avoid large estimation errors [28]. Since AquaCrop is a simulation tool,
values regarding the soil, plant and climate can be read directly from AquaCrop with
no measurement error. This is an advantage over real scenarios where the presence
of measurement error exists.

Three types of irrigation strategies to be selected in AquaCrop include rainfed,
conditioned and scheduled irrigation. Rainfed irrigation relies on rain as a water
source whereas conditioned triggers irrigation after passing a threshold e.g. humid-
ity. Scheduled irrigation on the other hand, implies that a periodic timestamp spec-
ifies the occurrence of irrigation. Alternatively, scheduled irrigation may be chosen
to not be periodic. The final type of strategy is net irrigation i.e. the soil-water level
shall remain constant and irrigation everyday by applying a constant volume. From
these three types, six irrigation strategies exist within AquaCrop: rainfed irriga-
tion, irrigation with soil moisture target, periodic irrigation, a predefined irrigation
schedule, net irrigation and constant depth applied each day. Rain-fed irrigation
implies that no artificial irrigation occurs which makes this method uncontrollable,
non-consistent and risk of long time periods without water. This increases the risk
for mild and severe water stress and should therefore be avoided.

AquaCrop contains three strategies that do not utilize feedback from neither the soil
or the plant and can therefore be considered open loop. The first one scheduled irri-
gation where the user specifies an integer N , which means that irrigation is triggered
every N:th day until field capacity is reached, unless a maximum irrigation amount
has been specified. It is also possible to create a predefined irrigation schedule giving
an overview on when water should be added and how much. In the second open loop
strategy, the beginning on a predefined irrigation schedule could as for example be
described: Day 1 irrigate 10 mm, day 3 irrigate 40 mm and so on. It is also possible
to specify a constant depth applied each day. This is where a specified, constant
irrigation amount is applied daily. These three strategies are easier to implement
in practise due to their low-cost properties, though irrigation may not occur when
necessary. The downside of not being able to irrigate when necessary is an irrigation
strategy which is unable to handle disturbances as extreme drought or heavy rainfall.

It is therefore usually better to select an irrigation method utilizing feedback within
AquaCrop, which applies water after crop water demand. Irrigation with soil mois-
ture target means that irrigation is triggered once the water content in the soil
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moisture zone drops below four certain threshold - one threshold for each crop
growth stage. The thresholds constitute four percentage values of the TAW in the
soil reservoir. Once irrigation is triggered, water is added to the field until FC has
been reached unless a maximum irrigation amount has been specified. Furthermore,
the second closed loop controller within AquaCrop irrigates with respect to a given
net irrigation amount. This net amount is a value of a certain fraction of TAW.
Once the soil moisture lies below this value, irrigation is triggered, but adds only
a small portion of water to be above the threshold. In addition, it is possible to
specify how effective the irrigation is, i.e. how much of the water reaches the soil.
It is also possible to specify a maximum irrigation amount in total for the season.
Given all this information, an irrigation strategy can be specified for the simulation.

2.6 Calculation Scheme
The calculation can be summarized in four steps:

1. Crop Development
2. Crop Transpiration
3. Aboveground Biomass Production
4. Yield Formation.

Crop development is where the canopy cover and root zone increases before reach-
ing their maximum in between the daily steps. Stress have a negative impact on
potential maximum cover CCpot and may prevent the crop from reaching it. In the
next step, called crop transpiration, a crop coefficient, KcTr, is calculated,

KcTr = KcTr,x · CC, (2.8)

where KcTr,x is a coefficient. By using KcTr,x, the transpiration can be determined,

Tr = Ks ·KsTr(KcTr,xCC∗)ET0, (2.9)

where Ks denote the combined water- and soil salinity stress, while KsTr and ET0
represent the temperature stress and reference evapotranspiration.

Following the transpiration given by (2.9), the biomass, can be calculated as,

B = WP ·
∑

Tr, (2.10)

where WP represents water productivity. Water productivity, in turn, depends
on the carbon dioxide concentration in the air, soil fertility, crop and yield. A
standard value for WP is used for a reference air concentration and if the carbon
dioxide concentration is higher or lower than the reference concentration, then the
WP value is multiplied with a correction factor. The cultivars, if rich in lipids,
has an impact on the water productivity since they require more energy per dry
unit biomass in the synthesis of carbohydrates. This decreases water production
during the yield formation step. A substantial low soil fertility amount impacts the
water productivity as well, by multiplying water productivity with a coefficient for
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soil fertility stress, KsWP . However, if the soil fertility is sufficient to not provoke
stress, then WP is not altered. Finally, the yield, Y , can be calculated,

Y = HI ·B, (2.11)

whereHI is the harvest index. This index depends on which cultivar is used i.e. if its
a grain, fruit, leafy vegetable or roots and tubers. After simulation the performance,
i.e., water use efficiency, or performance, P , is calculated,

P = Y

I
, (2.12)

where I is the total seasonal irrigation [9].
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3
Reinforcement Learning

When one thinks of learning, one may think of learning by acquiring knowledge
through books. Learning means that new skills are acquired, e.g., learning how to
drive a car or conversating with people, while being aware of the response from the
environment. It is through actions that one tries to affect the events within the
environment and one could state that learning by interacting with the environment
is fundamental in all theories of learning. Therefore, a computational way of inter-
acting with the environment for the sake of learning is called reinforcement learning
[11].

3.1 Fundamentals

The basic idea of reinforcement learning is the agent interacting with the environ-
ment in order to acquire a reward for the new perceived state of the environment.
A reward for venturing into a given state is chosen arbitrarily. For instance, when
learning a humanoid robot how to walk, the upright position in conjunction with
forward motion is considered a good state, whereas a lying position after falling over
is considered a bad state. The agent wants to maximize its accumulative reward over
time and will succeed if it learns its task [32]. Both the agent and the environment
may be part of a Markov Decision Process, MDP, i.e. a mathematical description of
the reinforcement learning problem where theoretical statements can be made. In
short, the MDP is a Markov Reward Process, MRP, with decisions, where a MRP is
seen as a tuple containing a finite set of states, a state probability transition matrix,
a reward function and a discount factor for considering future states. It is commonly
used for describing decision-making in sequence. Actions influence the reward and
the states that follow. States that follow then affect the future reward. Also, the
states are Markov, with the meaning that useful information from history is con-
tained within the states [11] [32] [33]. An illustration of the reinforcement learning
algorithm can be seen in Figure 3.1.

3.2 Expected Return

The agent’s objective is to maximize its total reward over time. A term that was
coined for defining the total reward after some time instance t is the expected return
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Agent Environment

R(t)

S(t)

A(t)

Figure 3.1: Illustration of a reinforcement learning algorithm with elements: agent,
environment, action, A(t), state, S(t) and reward, R(t).

Gt. The return at the final time tf may be defined as

Gt = Rt+1 +Rt+2 + ...+Rtf , (3.1)

where the tf is the time instance at which the agent ends in a terminal state and
where Rt denotes the reward at time t. During an episode, transitions occur from one
initial state to a terminal state. However, as the length of an episode increases the
return also increases simultaneously, possibly resulting in an infinite expected return.
To prevent that, a discount factor γ is introduced in (3.1) leading to discounted
return defined as

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1, (3.2)

The discount factor γ denotes the importance of future rewards for the agent to
consider and assumes a value between 0 ≤ γ ≤ 1. Only the immediate reward Rt+1
is considered if γ = 0, whereas future rewards become increasingly important for
the agent as γ approaches 1 [11], [33].

3.3 Value-Functions
Value functions of an MDP give an estimate of whether states are good or bad.
This is dependent on the expected return. The expected return is dependent on
the actions the agent is about to choose. The choice of actions is associated with a
policy, which is a mapping of states to future actions. Given a policy π and a state
s the value-function is the expected return, i.e., [11], [33]

vπ(s) = Eπ[
∞∑
k=0

γkRt+k+1]. (3.3)
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Similarly, an action-value function of an MDP, given policy π, state, s, and action,
a, is defined as

qπ(s, a) = Eπ[
∞∑
k=0

γkRt+k+1] (3.4)

where the difference between vπ and qπ is the additional dependency on action a in
qπ compared to vπ.

3.4 Bellman Equation
An alternative expression of vπ is

vπ(s) = Eπ[Rt+1 + γGt+1], (3.5)

which is also referred to as the Bellman equation. This equation gives the average of
values possible when at a particular state. Thus, an optimal value function defined
as

v∗(s) = max
a

vπ(s) (3.6)

is used for finding an optimal policy, which can be rewritten as

v∗(s) = max
a

E[Rt+1 + γv∗(s′)] (3.7)

, referred to as the Bellman optimality equation, for a next state s′ ∈ S. v∗(s) is
giving the highest value as the best policy has been found. Then, the best action
can be taken for a particular state in order to maximize future rewards. Similarly,
a Bellman optimality equation for q∗ could be expressed as

q∗(s, a) = E[Rt+1 + γmax
a′

q∗(s′, a′)] (3.8)

by including a next action a′ ∈ A. From the Bellman optimality equation, an
optimal policy is found by choosing an action at a given state to maximize v∗(s) or
q∗(s, a). In terms of difficulty in finding the actions, the advantage with action value-
functions over state value-functions is that actions are easily found at a given state.
There is no need to do a one-step-ahead search for finding an action maximizing the
action value function [11], [33].

3.5 Q-learning
Q-learning is a reinforcement learning algorithm where an action-value function Q
estimates the optimal action-value function q∗. This action-value function is learned
and converges to the optimal action-value function after updates according to

Q(st, at)new = Q(st, at) + α(Rt+1 + γ(max
a

Q(st+1, at)−Q(st, at)), (3.9)

where α is the learning rate. α is viewed as a measure of how fast the update should
become. If the learning rate is enough low, each state-action pair will be visited and
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updated in order to achieve convergence . Q-learning is an example of an off-policy
learning algorithm , meaning that two different policies are used, where one is used
for data collection through action selection, while the other is improved as a result
of the data connection. On the other hand, on-policy learning means that the policy
is evaluated and improved upon while being used for action selection [11], [35].

3.6 Greediness Factor
As the agent chooses an action to perform, it may choose an action through either
exploration or exploitation. Exploitation means that an agent chose the greedy
action in order to maximize the reward it can get from its current action-value
estimates. On the other hand, exploration means that a random action is selected
with the purpose of acquiring new knowledge about actions, which may lead to
greater rewards than exploitation. A way of alternating between exploitation and
exploration while choosing actions is by the so-called ε - greedy action selection.
Given a probability ε, the agent will perform a random action with probability ε.
Otherwise, a greedy action will be chosen [11], [32], [35]. The ε-greedy action is
expressed mathematically as

at =

max
a

Q(st), with probability 1-ε
any action, with probability ε

(3.10)

This gives that a balance between exploration and exploitation is achieved for find-
ing an optimal policy.
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Method

The following chapter explains the setup of AquaCrop and how different irrigation
management strategies were evaluated and optimized with reinforcement learning.

4.1 AquaCrop Setup
AquaCropOS-Py was available on pypi.org for download [29]. Version 0.1.5 was
the most recent release on March 2, 2021. In order to perform a simulation in
AquaCrop, a handful of input parameters need to be specified. AquaCrop con-
tains already existing climate data files consisting of the minimum and maximum
temperate, daily precipitation and reference evapotranspiration from a number of
worldwide locations. One of these locations where data was gathered from was
Tunis, characterized by its Mediterranean climate [30]. Since the majority of the
world’s agriculture is positioned in a hot climate where water stress is prevalent,
Tunis was considered to be a suitable location for this study [31]. This climate file
contained data from January 1979 to May 2002. It was decided that the number of
years was sufficient.

In addition, FAO has calibrated and validated a handful of crop cultivars that al-
ready exist within the software program. These crops contain some consistent pa-
rameters not required to be re-tuned, and some non-consistent parameters which
need to be re-tuned if the climate and field properties differ from where calibration
has been performed. One of the most common crops in the world is maize and, since
this crop had been calibrated in a Mediterranean climate, it was decided that this
crop would provide sufficiently accurate results for our thesis without re-tuning [31].

Since maize had been calibrated in loam soil, it was decided that this soil type would
be used for this paper. Also, the default field properties in AquaCrop were used,
i.e., no mulches and neither bunds nor surface-runoff, to the limit the number of
parameters that had to be adjusted.

4.2 Irrigation Strategies
AquaCrop contains six different irrigation strategies. Alternative irrigation strate-
gies may be created in AquaCrop-OS, but the choice of irrigation strategy fell on the
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two options where irrigation is triggered once a threshold has been crossed, i.e., net
amount irrigation or soil moisture targets. Since maize had been calibrated with
a sprinkler, it was decided to use this irrigation application [9]. To simulate the
sprinkler method, the percentage of wetted soil surface in Table 2.1 was used. It
was assumed that the irrigation application efficiency was 100 % and no maximum
irrigation amount was specified. It was also assumed that the maximum yield would
be calculated with soil moisture at the FC, i.e., the soil moisture target is set to the
thresehold 100 %

4.3 Reinforcement Learning Implementation
Next, two reinforcement learning algorithms were created for each irrigation strategy.

At first, the environment was created. The environment contained information re-
garding which crop species, initial soil moisture content, geographical location and
field properties. Once the environment was set, a random year from the Tunis cli-
mate file was selected with simulation start and end, on Janaury 1st and December
31st that year. The planting date was selected to be a random day in May. This was
done in order to create a more dynamic environment and reduce bias throughout
the episodes.

States were defined differently for the two irrigation strategies. For the net amount
irrigation, without several stages to consider, a state was specified to be an integer
multiple of 5% TAW. Meanwhile, for the soil moisture target irrigation, a state was
specified to be an integer multiple of 10% for each of the four stages. Actions for
the irrigation strategies were defined as the target TAW to be assumed. Thus, the
actions for the net amount irrigation and soil moisture target irrigation were speci-
fied to be integer multiples of 5% and 10% TAW respectively.

The reward system was designed to have the following structure: at first, the user
needs to specify what yield constraint should apply, i.e., above which percentage of
the maximum yield must be obtained. The reward was set to be zero for the initial
state at the beginning of each episode. Once a new stage has been reached, the
irrigation amount added during this stage was subtracted from the reward. Once
the final state had been reached, then the final yield could be compared against the
yield constraint. If the final yield was higher than the yield constraint, then a bonus
reward was given of 1000. This gave that the highest reward would be given as the
yield constraint was satisfied, but it should also be obtained with as little water as
possible.

In order to explore finding information about the environment while exploiting
known information for the purpose of maximizing the reward, an epsilon greedy
function was implemented according to (3.10). The epsilon greedy function was
chosen because of it being a simple way to guarantee lasting exploration, where ε
denotes the probability of choosing a random action. However, given a large number
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of states and actions with no prior information about the environment from start,
exploration was determined to be significantly more important than exploitation.
Hence, the ε was chosen to decay in a logarithmic way according to

ε = ε− (1− ε)e−c∗k (4.1)

over the number of episodes k, where c is a constant specifying the speed of ε decay
over the episodes. It was chosen to be 10 since this value provided a sufficient decay
for 100 000 episodes. A limit on how small ε could become was selected to be 0.1,
since continual exploration is important if a seemingly optimal irrigation strategy
has been found. The learning rate was chosen to be 0.1 and gamma to be 0.9. A
high value of gamma would give that the next and final reward would impact the
Q-value in a previous state.

At last, the Q-learning algorithm could be written as described in Chapter 3. The
result from this was one optimal policy for every yield constraint and irrigation
strategy.

4.4 Grid Search
Next, validation data was created with grid searches for the two chosen irrigation
strategies. This validation data would then be utilized for comparisons with the
optimal irrigation strategies found by the reinforcement learning algorithm. For the
net amount irrigation strategy, a discretized range from five to 100 percent of TAW
steps of five was used as input into AquaCrop, i.e.,

Ni = i · 5, where i = 1, 2, ..., 20, (4.2)

andNi denotes the net amount input. For the soil moisture target irrigation strategy,
AquaCrop needed four different percentage values of TAW for each growing stage.
Therefore, a grid search was created with values from ten to 100 with a step size of
10. The grid can be expressed:

SMTijkl = [i, j, k, l], where i, j, k, l = 10, 20, ..., 100, (4.3)

where SMT is the soil moisture targets. From the grid searches the expected sea-
sonal irrigation, yield and performance were calculated. It was noted which irriga-
tion strategy provided a yield higher than 90 %, 95 % and 99 % of the expected
maximum yield.

The data from the grid search would then be compared with the data from the
reinforcement learning implementation. This was done by comparing the magnitude
of the deviations i.e. absolute error.
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Results

The following chapter displays the result from the grid search and the reinforcement
learning implementation. At first, the maximum yield for maize growing in Tunis
was calculated as the expected yield with full irrigation, i.e. the irrigation strategy
was soil moisture target with threshold [100,100,100,100] for the 22 years of data
available. The maximum yield could then be pinpointed to be 11.41 tonne/ha. The
yield representing 90, 95 and 99 % of maximum yield was calculated and used as the
yield constraints. Given this, it was found, with help of the reinforcement learning
implementation and grid search, which thresholds for the irrigation strategies would
provide a yield above the yield constraints, with a minimal amount of irrigation
water. Further, the expected yield, seasonal irrigation, performance for the two ir-
rigation strategies and implementations were found. The results from this can be
seen in Table 5.1.

Table 5.1: The found thresholds for the net amount, N , and soil moisture tar-
get, SMT , and the exptected yield, Y , irrigation amount, I, and performance, P ,
for the different yield constrains, Ymax, calculated with the grid search and with
reinforcement learning implementation, RL.

RL
NET SMT

Ymax N Y I P SMT Y I P
[%] [%] [ tonne

ha
] [mm] [ tonne

ha·mm ] [%] [ tonne
ha

] [mm] [ tonne
ha·mm ]

90 80 11.3 572 0.0198 [40,50,20,20] 11.1 546 0.0203
95 90 11.4 583 0.0196 [60,60,30,50] 11.4 598 0.0191
99 5 0.00 3.65 0.00 [20,10,60,60] 8.45 528 0.0160

GRID
NET SMT

Ymax N Y I P SMT Y I P
[%] [%] [ tonne

ha
] [mm] [ tonne

ha·mm ] [%] [ tonne
ha

] [mm] [ tonne
ha·mm ]

90 55 10.4 515 0.0202 [40,30,10,10] 10.4 515 0.0202
95 65 11.0 552 0.0199 [50,30,20,10] 10.9 530 0.0205
99 80 11.3 572 0.0120 [50,60,30,20] 11.3 562 0.0201
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Figure 5.1 displays the result from the reinforcement learning implementation for
the net amount irrigation strategy. This includes the resulting reward, yield, total
seasonal irrigation and performance throughout the episodes.
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Figure 5.1: The average reward, yield, total seasonal irrigation and performance
during 10000 episodes with the reinforcement learning implementation on the net
amount seasonal irrigation where the constraint at least 90, 95 or 99 % of max yield.
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Figure 5.2 displays the reward, yield, irrigation and performance from the reinforce-
ment learning implementation for the soil moisture target irrigation strategy.
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Figure 5.2: The average reward, yield, seasonal irrigation and performance during
10000 episodes with the reinforcement learning implementation on the net amount
seasonal irrigation where the constraint at least 90, 95 or 99 % of max yield.
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Figure 5.3 displays the result from the grid search for the net amount irrigation
strategy.
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Figure 5.3: The resulting yield, irrigation and performance from the grid search
with net amount irrigation strategy.
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Figure 5.4 displays the result from the grid search for the soil moisture target irri-
gation amount.

(a) Yield (b) Performance

Figure 5.4: The yield, irrigaiton and performance from the grid search with soil
moisture target irrigation strategy.
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6
Discussion

The following chapter discusses the result, choice of method and how this correlates
with the purpose of the thesis, as well as irrigation management in practice. Finally,
the work is concluded and suggestions for future work are presented.

6.1 Results
By observing the plots in Figure 5.1 (a), it can be seen that the agent finds an opti-
mal policy for the net amount irrigation strategy as the reward plot converges. If an
optimal policy was never found the reward plot would not converge, and because the
action space is limited and discretized, it is interpreted as if the agent is choosing
the same action sequences repeatedly, since there are no better sequences of actions
to choose at a particular environmental state. This guarantees to find an optimal
policy if the action space is small as in 5.1 for 100000 episodes. Interesting to note
is that the reward systems was giving a bonus as final yield was above 90 and 95 %
of maximum yield, since the reward converges to a positive value which implies it
was able to capture the bonus reward when exploiting. This means that an optimal
policy has been found simply because the yield constraints was surpassed. As can be
seen in Table 5.1, the result from the grid search implied that a sufficient yield could
be obtained when net amount was 55 and 65 % of TAW for yield constraints 90 and
95 %. In terms of saving water, this gives that the result from the grid search is
better than the result from the agent, because 55 % and 65 % from the grid search is
lower than 80 % and 90 % in order to achieve sufficient yield according to the agent.

When observing Table 5.1, it is of interest to explain why the result was found to
be 80 and 90 % of TAW for the agent since it is not very obvious to why this is the
case. There are many causes of this, such as the different action space between the
grid search and the net amount irrigation but besides that, an explanation could be
due to the yield varying throughout the years because yield data in AquaCrop was
collected from real sites where crop yield may have huge deviations from a mean
yield among all years . The maximum yield in this case is the expected maximum
among all years. This gives that the yield constraint might be higher than expected,
and as result the agent will find an optimal policy with more water with the purpose
of surpassing the yield constraint.

From Figure 5.1 (a), it can be seen that the reward when yield constraint is set at
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99 % converges towards a negative value. An explanation could be that the agent
was rarely above 99 % of the yield maximum for the irrigation strategies it has
found. This implies that the agent rarely finds an irrigation strategy which provides
a sufficient yield and the policy can therefore be regarded as unsuccessful. As a
consequence of the agents inability to find a successful strategy, the agent exploit
water saving strategies as this provide a higher reward with this reward system. This
explains why the policy for yield constraint 99 % is 5 % of TAW i.e. the most water
saving method in Table 5.1. This alone explains why yield and irrigation amount
converges towards zero which is illustrated in Figure 5.1 (b) and (c).

Furthermore, for the soil moisture strategy it can be seen from Figure 5.2 a) that
the reward system with constraint 90 % and 95% was able to find an optimal solu-
tion with a yield above the constraint. The rewards converge at around 50 000 and
150 000 episodes because the reward is given at the final stage if the constraint is
low enough. 90 % and 95% were revealed to be low enough given the looks for the
reward, yield, irrigation and performance in Figure 5.2.

For the constraint 99 %, the agent was unable to find a policy satisfying the yield
constraint, which explains why the reward in Figure 5.2 (a) is negative. The reason
for this is believed to be because of the yield attained in the final stage not being
high enough to acquire the positive reward. Much watering applied while the reward
is never attained, makes the cumulative reward negative. Thus, the cumulative re-
ward with constraint 99 % is smaller than 90 % and 95 %.

A comparison between net amount and soil moisture target irrigation can also be
made from Table 5.1. By comparing the grid searches it is illustrated that the SMT
strategy obtained a slightly higher performance. It can be seen that the yield was
roughly the same whereas the irrigation amount was a bit lower for the SMT strat-
egy, which explains the increased performance. The reason why SMT had a lower
irrigation amount is believed to be because this strategy takes into consideration the
different crop cycles. In the net amount strategy, the irrigation is the same all the
time, which gives that the water uptake in each crop stage is not considered. This
could lead to over-watering in the first stage where roots are not fully developed
and under-watering in later stages where more water is required. SMT is therefore
better than net amount irrigation in the sense that water usage is more optimized
with respect to the different stages. The performance for SMT with Q-learning was
lower than for the grid search was, which is believed to be due to the large number
of states, making it hard for the agent to find an optimal strategy. Also, the perfor-
mance for net amount irrigation was lower for the Q-learning implementation then
for the grid search.

The computation for net amount irrigation and soil moisture target was more ex-
pensive than the grid search due to exploration and the large action space for the
agent. A decrease in computation time is achieved if the action space is decreased.
The downside using this approach is the additional decrease in accuracy for the
agent to find a good irrigation strategy. Thus, the computation for SMT was more
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expensive than net amount irrigation and much more expensive than grid search,
further explaining its low performance as not sufficient time has passed.

6.2 Irrigation Strategy
For this experiment, it had been decided to use a sprinkler system with a 100 %
wetted surface. By changing the irrigation method to a drip or surface drip system,
it is believed that the thresholds values from the result would obtain lower values.
However, a comparison between these methods lied outside the scope, but could be
worth investigating in future work.

6.3 Reinforcement Learning
The designed reward system was functional when the constraint for reward was
low, but ineffective for higher constraints as the agent was unable to receive the
bonus. In order to avoid this, the design of the reward system could be altered.
This reward system could be either performance-based which implies the agent re-
ceives a bonus when it performs an action that increases the performance of the
irrigation method. However, this could potentially result in a yield closer to half
of the maximum possible small amounts of only if water is added. This implies
that the crop is only half-grown and the models are not calibrated for this. Instead,
the reward could be the sum of irrigation and yield multiplied with different weights.

The structure of the states and actions could also be designed differently. One al-
ternative would have been to have states represented by canopy cover, soil moisture
and air temperature where the agent would take an action, i.e. irrigation amount in
millimeters instead of soil water percentage. It would be preferred to not discretize
the states, since true optimal irrigation strategy is not likely to exactly match the
values, i.e. several runs could give different irrigation strategies close to each other.
This implies that an optimal irrigation strategy is somewhere in between the dis-
cretization step. The reward system has been utilized for a hot environment where
the evapotranspiration is high, causing the soil moisture content to decrease fast.
A temperate environment would cause the soil moisture content to decrease slower,
and it would be of interest to see how different the results the current reward system
would be.

It could also be discussed if reinforcement learning and Q-learning was the most
suitable option for finding irrigation strategies. The agent was able to find an
irrigation strategy, but was restrained by the stage and action space. If the optimal
value for the net amount irrigation would lie between, e.g, 60 and 65, it would not
be possible for the agent to find it. This could be achieved be selecting a larger state
space, but it would then be harder for the agent to find the optimal value. Instead
it could be more promising to investigate optimization methods such as the gradient
descendant method or Quasi-Newton for finding optimal irrigation strategies.
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6.4 In Practice
The resulting thresholds from the net irrigation and soil moisture target could be
used by agriculturists as reference points for their closed loop controllers. This is
done by measuring the field capacity and wilting point of the soil and the threshold
can thereby be obtained.

Irrigation methods for water application may not be as accurate in reality as water
losses are non-existent within AquaCrop and one could ask whether AquaCrop is
sufficiently accurate in representing irrigation in practice. Unfortunately, AquaCrop
does not contain a feature which predicts the uncertainty of the result. It can be
assumed that if the crop cultivar is simulated for an environment similar to that
has been calibrated, then AquaCrop should provide results with enough accuracy as
discussed in Chapter 2. In order to validate if these irritations method are beneficial
in reality, field experiments have to be performed. Then, a yield gap analysis can
be done, which measures the gap between the simulated and actual yield analysis.

6.5 Conclusion
The conclusion of this thesis was that it is possible to deploy irrigation management
strategies with reinforcement learning and AquaCrop, given a reward system with
sufficiently low yield constraints. The Q-learning implementation was however not
able to find the same optimal strategies as the grid search. By comparing the ir-
rigation strategy with net amount irrigation and soil moisture target, it could be
seen that in general, the irrigation with soil moisture target could generate a higher
performance by finding strategies using less water. This is due to the net amount
irrigation not considering the different water uptake in each crop stage.

Furthermore, the choice of method, i.e., reinforcement learning could be discussed
since this method was not able to find an optimal policy outside the state and
action space. While trying to find the optimal threshold for irrigation, Q-learning
was discovered to not be the most suitable option due to the vast number of states
and actions even though a quite rough discretization of those states and actions have
been made. An alternative route instead of RL could be an optimization method
based on gradient descent.

6.6 Future Work
For future work, suggestions include investigating and tuning a weight-based reward
system, investigating how different irrigation method such as drip and sprinkler ir-
rigation affect the resulting optimal policy and complementing the result with field
studies. Field studies are also important for validating the result. Measurements
regarding soil moisture could be collected from sensors in varying depth as too de-
termine whether SMT and net amount irrigation is the most suitable. Measurement
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data could be relayed to an irrigation system that also takes weather and climate
data into account. Therefore, a future irrigation system utilizing RL could become
very effective in saving water if the weather or climate changes rapidly in the upcom-
ing future. It is also of interest to make predictions of whether the plant will grow
given the irrigation amount. However, for a farmer to simply make the decision on
irrigation amount without even planting the crop, the farmer could make measure-
ments on soil moisture and weather parameters such as temperature on a specific
location. If there is an obvious irrigation amount corresponding to a pattern of the
data, one could be for sure that the agent in this thesis has been validated to find
an optimal irrigation strategy in the sense that yield is maximized while irrigation
is minimized as represented by performance.
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