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Machine learning to predict enzymes’ optimal catalytic temperature
JOSEFIN ULFENBORG
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Enzymes are proteins which operate as biological catalysts in chemical processes,
for instance in biofuel production. The efficiency and sustainability of these pro-
cesses may be greatly improved by knowing the optimal catalytic temperature (Topt)
of the enzymes. However, determining these temperatures experimentally is time-
consuming and instead a machine learning approach for predicting Topt is suggested.
In a previous approach, sequential features were used to predict Topt. In this the-
sis, new structural features which account for various structural properties in the
enzymes were used alongside the sequential features. Test scores from the models
show that structural features combined with sequential features improve previous
R2 scores from 0.4 to 0.48. Furthermore, in the case where there is a pair of similar
enzymes, but one has a colder and one a hotter temperature, the models correctly
predicts the temperature order of the enzymes 83% of the time. By gathering more
data and fine-tuning the structural features, it is anticipated that scores will improve
even further.

Keywords: Structural bioinformatics, enzymes, machine learning, feature engineer-
ing.
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1
Introduction

This project covers the study of feature engineering and applying machine learning
methods to predict enzymes’ optimal catalytic temperature. Enzymes are present
in organisms, for instance in bacteria or humans, and all of these organisms have a
growth temperature, also called the organism’s growth temperature (OGT). More-
over, enzymes are used as catalysts in biochemical reactions and when they are, a
specific process temperature is used to increase the reaction rate, however, this is
not necessarily the temperature when the enzymes are the most effective. Instead,
it is necessary to develop tools to be able to predict their optimal catalytic tempera-
ture (Topt), to increase the process temperature, and thereby the reaction rate even
further.

1.1 Background
Every day we rely more and more on effective and renewable biomass production.
Biomass is used in both heat and electricity production, but it can also be converted
into liquid fuel which is used to power vehicles. However, it is apparent that we
are not using the biomass energy to its full potential [33]. In biomass production
there are several chemical reactions involved. These reactions need catalysts to
power them, and one biological catalyst which can be used is enzymes. Enzymes
are usually proteins but they also operate as biological catalysts and exist in all
living organisms. As biological catalysts they can be used, for instance, in chemical
reactions such as biofuel production [47, 49].

In order to increase the efficiency, sustainability and environmental friendliness of
these reactions, and in turn be able to consume more biomass, it is necessary to know
at which temperature these enzymes are the most effective [18, 2]. Furthermore,
different enzymes will be particularly useful for different applications [3]. Thus,
one important factor to be considered when selecting or designing an enzyme is
the temperature range at which the enzyme is most effective, but determining this
experimentally is time-consuming and expensive.

Machine learning can be used on relevant features extracted from enzymes to build
models to predict their optimal catalytic temperature. Finding these optimal values
means increasing the effectiveness of the chemical reactions. However, enzymes
are complex molecules where their properties are a result of both their amino acid
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1. Introduction

sequences and their three dimensional structure. The main challenge in this project
will thus be to interpret and extract meaningful features from enzymes, which can
be used to build more accurate machine learning models.

1.2 Previous work
Previous work to estimate enzymes’ Topt, by Engqvist et al., used the OGT and
amino acid residue frequencies of the enzyme as features in machine learning models
[26]. However, the OGT is not always available in a dataset, so without this feature
the prediction scores of the model were lower. Moreover, even in the cases where
OGT is available, it has been found that the Topt of an enzyme is not always true to
the OGT. That is, the optimal catalytic temperature might be lower or higher [13].

The models they found to be the most successful were support vector regression
(SVR) and random forest. Furthermore, they used an R2 score to determine the
performance of the model. The R2 score is the percentage of variation explained by
the model, that is, how well a model fits the data (1 being a perfect fit). With both
the OGT and amino acid residue frequencies as features, they got a score of 0.5 and
this translates to that the relationship between the two features and Topt accounts
for 50% of the variation. In turn, this means that something else must explain the
remaining 50%. Additionally, when only the amino acid residue frequencies were
used as a feature, they received a score of 0.4.

They also used the sequence amino acid residues as a basis to generate hundreds
of secondary features to train the models with. Additionally a convolutional neural
network was used to train on the data. However, neither of these attempts resulted
in a higher score than previously achieved [26].

1.3 Purpose
The aim of this project is to hand-craft and interpret structural features of enzymes
and to use these to develop machine learning models that can predict Topt. Following
this, the features will be further analyzed to examine which ones are the most
relevant and provide additional information about Topt, and which features that do
not contribute.

The previous score, obtained by Engqvist et al., was 0.4 and this will be used as a
baseline to examine if the new, structural features explain Topt [26]. Even though
they received a higher score with OGT, it will not be included as OGT and Topt do
not always correspond and since OGT is not always available. Instead, one of the
objectives with this project is to study how well Topt can be predicted without OGT.

If the structural features do not improve the score above the baseline, this will
not be considered a failure. Even with lower scores, there will be highly valuable
information encoded in the features, and to locate those that are the most relevant
biologically is also considered criterion for success.
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1. Introduction

1.4 Limitations
Identifying and capturing the relevant features from enzyme structures are two of the
main goals in this project. If machine learning models on the new structural features
produce better results than previously obtained, it could be argued that using neural
networks improve the results further. However, neural networks are beyond the scope
of this thesis. Furthermore, the final models should not be considered production-
ready. The results concern biological aspects and locating the features that give the
most information about Topt.

1.5 Ethical considerations
One common energy resource today is fossil fuel. By replacing it and instead using
biofuel, it would have as an effect that CO2-emissions would vastly decrease, as
the source of biofuel, for instance plants, recycle the CO2 from the atmosphere [3].
Nevertheless, it is not yet possible to fully replace fossil fuels with biofuels, due to
the time, energy and costs required [17].

Chemical reactions are dependent on the temperature, and with accurate predictions
of Topt, the time and energy needed for, for instance biofuel production, would
decrease, making it more sustainable and effective. However, another issue that
needs to be addressed is where the source for biofuels should be extracted from.
Thus, the ethical considerations that need to be taking into account when producing
biofuels in the future are how to sustainably produce the source, to not lead to
deforestation or compete for space with other food productions [39].

1.6 Outline of thesis
The outline of this thesis is as follows. Chapter 2 covers the background information
of enzymes and machine learning needed to understand the methods used in this
thesis. Chapter 3 lists which datasets were used and which pre-processing steps were
applied to the data. Chapter 4 covers the feature extraction and feature calculations
and Chapter 5 presents the results from training machine learning models using the
features along with a discussion of the results. Chapter 6 includes a section about
future work and Chapter 7 concludes the report.
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2
Background

This chapter explains some of the theory and background information concerning
enzymes and machine learning. The first section explains what enzymes are, how
they are constructed and how different properties arise from their shape and struc-
ture. The last section explains the main concepts within machine learning used for
this project.

2.1 Enzymes

Enzymes are proteins, which are macromolecules and what makes them special is
that they act as biological catalysts. Catalysts are used in chemical reactions to make
them go faster. For instance, enzymes in a human body help to break down food,
whereas enzymes used in biofuel production help to increase efficiency of production
[47, 49].

The building blocks which make up enzymes are called amino acid residues, residues
for short. There are 20 commonly occurring residues and various combinations
of them exist as a long chain in enzymes, linked together by chemical bonds [5,
Chapter 3]. The biological function of enzymes will vary drastically depending on
the order of these residues in the chain. If an enzyme consists of 300 residues, there
are 20300 different ways of ordering these in a sequence and each combination could
yield a different biological function of the enzyme, but most would not be functional
at all. Nevertheless, not all of these combinations would be found in nature [12,
Chapter 5]. Further details of amino acid residues are explained in Section 2.1.1.

Moreover, in order for enzymes to operate as catalysts they must fold from this
long chain of residues into a three-dimensional structure. This is also called their
native state which is the natural shape they fold into. Commonly, enzyme structure
is referred to as four levels of structures; namely the primary, secondary, tertiary
and quaternary structure [12, Chapter 5]. They are visualized in Figure 2.2. Even
though enzymes must exist in their tertiary structure to function properly, important
information will also be found in the other structures (primary and secondary) and
thus it is important to study these as well. Additional information is found in Section
2.1.2.

5



2. Background

2.1.1 Amino acid residues
Enzymes are constructed from different combinations of 20 amino acid residues in a
long chain, linked together by chemical bonds [5, Chapter 3]. The name amino acid
residue comes from the term amino acid, which consists of a carbon atom surrounded
by a carbon atom, an amino group (NH2), a carboxyl group (COOH) and a side
chain [12, Chapter 5]. The side chain is different for each amino acid, which is
what makes each of the 20 amino acid (residues) unique. When two amino acids
are linked together, there is a chemical reaction, which results in a water molecule
being released and what is left of the two amino acids are now called amino acid
residues. In this process the center carbon, also called alpha carbon or Cα, and
the side chain remain intact. A residue is explicitly written as NH - CαR - CO
(occasionally without the hydrogen atom), where R is the side chain.

The residues, excluding the side chain, are part of the enzyme’s main chain, or
backbone. Figure 2.1 provides a simple example of a main chain with side chains
attached. Each residue contains an Cα and for 19 out of the 20 residues, there is also
a side chain attached to the Cα [38]. As mentioned, the side chain is different for
each of these residues, both in size and which atoms are present, however, each side
chain will contain one or more carbon atoms (along with other atoms). Following
the alpha carbon at the center of the residue, the first carbon in the side chain is
called beta carbon, or Cβ. The second is gamma carbon, or Cγ, and the numbering
of the carbons continues according to the Greek alphabet [20]. In particular, when
residues are linked together there will be a long chain of alpha carbons, possibly
with further carbons attached (if there are side chains present). Therefore, each
enzyme will have as many alpha carbons as residues, but not necessarily the same
amount of beta carbons. From the 20 amino acid residues, only one, Glycine, does
not have a side chain and thus only contains an alpha carbon.

2.1.2 Enzyme structure
There are four levels of an enzyme’s structure: primary, secondary, tertiary and
quaternary structure as can be seen in Figure 2.2 [12, Chapter 5]. In the primary
structure the residues, which make up the enzymes, are depicted as a long chain, or
sequence. This sequence symbolizes the order in which the residues appear and is a
simple, straight-forward way to study from which residues an enzyme is constructed.
The secondary structures are locally folded structures and are formed when a set of
amino acid residues interact in a certain way. Two of the most common secondary
structures are called α-helix and β-sheet [12, Chapter 5]. Proteins and enzymes can
contain both, oftentimes several, of these structures.

The tertiary structure is formed when the long chain of residues, and the previously
folded secondary structures, fold into a compact, three-dimensional form. In this
stage, enzymes become fully operational and it becomes possible to observe where
the residues in each enzyme appear. The tertiary structure of an enzyme is also
called its native state as this is the natural shape and structure it folds into. Many
enzymes are constructed this way: a single, long chain that folds into a tertiary

6



2. Background

Figure 2.1: Three amino acid residues (Serine, Alanine and Threonine) linked
together by chemical bonds. For each residue there is an Cα (in gray) which is a
part of the main chain, and for each Cα there is a side chain attached (in green).
The oxygen atoms are marked in red, the nitrogen atoms in blue and in each
residue there is an additional carbon atom in gray. Molecular graphics and
analyses performed with UCSF Chimera, developed by the Resource for

Biocomputing, Visualization, and Informatics at the University of California, San
Francisco, with support from NIH P41-GM103311 [35].

7



2. Background

Figure 2.2: The four levels of enzyme structures. Starting at the primary
structure, which is a long chain of amino acid residues, it folds into secondary
structure elements and then into their tertiary structure. In some cases, when
enzymes consist of multiple chains, a quaternary structure is formed. Image

provided by Martin Engqvist

structure. However, some enzyme complex, as depicted in the last part of Figure
2.2, consist of more than one chain. When they do, the structure is referred to
as the enzyme’s quaternary structure [12, Chapter 5]. Finally, all levels of enzyme
structure are important to fully capture the different features, or properties, that
exist.

2.1.3 Enzyme commission number
Enzyme commission (EC) numbers are recommendations by the IUBMB (Interna-
tional Union of Biochemistry and Molecular Biology) on how to classify enzymes by
enzyme-catalyzed reactions [11]. The EC number does not specify enzyme structure,
only what reactions enzymes catalyze. Moreover, different enzymes which catalyze
the same reactions are classified by the same EC number. Similarly, if one enzyme
catalyzes different reactions, it is given an EC number for each reaction.

Each EC number is represented by four numbers, separated by a dot, e.g. 1.1.1.1.
The first digit represents the top class, the second the first sub-class, and so on.
There are 7 top classes (numbered 1-7) and each class has a corresponding name.
For instance, enzymes in top class 1 are called oxidoreductases and catalyze oxida-
tion/reduction reactions [11]. In this case, the second digit indicates what atomic
group undergoes oxidation. However, for each of the seven top classes, the sub-
classes represent different things. Furthermore, if there is uncertainty in the enzyme-
catalyzed reaction, each affected sub-class is replaced by a hyphen [45]. Two exam-
ples are 1.1.1.-, or 1.1.-.-, where only the fourth sub-class is unknown in the former
case, but both the third and fourth sub-class are unknown in the latter case.

2.2 Machine learning
Machine learning is a field within computer science where a computer is not explicitly
programmed to perform a certain task, instead it is provided with the ability to

8



2. Background

teach itself and learn from past mistakes [30]. A classic example of an application
is using machine learning for spam filtering [15]. In this example, a system is given
a dataset where each data point is an e-mail, labeled as either spam or not spam.
Given enough time to train and learn from the data, it will try to determine if
an e-mail should be labeled (also called classified) as spam or not spam, based on
what properties the e-mail has. Additionally, when a new data point arrives which
does not yet have a label, it will be labeled either as spam or not spam, based on
what the system has learned. However, it is not certain this classification will be
correct, which is the case when a spam e-mail ends up in the normal inbox, or when
a non-spam e-mail ends up in the spam inbox.

A system that trains on and labels new data is called a machine learning model
and is an algorithm with a set of hyperparameters that can be tuned based on the
application. The data on which it trains on is called the training set and similarly,
the data with unknown labels is called the test set. In order for a model to learn
something from the training set, the data must be given one or more features. For
instance, one feature in the spam example might be if the header contains non-ascii
symbols or not. If it does, it could be an indicator that the e-mail is spam. Lastly,
after the training phase the model is evaluated with the test set, i.e. a metric score
is calculated which tells how many data points were correctly labeled [8, 16].

This section is further divided into shorter subsections in order to capture the es-
sential machine learning concepts necessary for this thesis. Namely, the theory
behind supervised and unsupervised learning is explained directly below, followed
by the bias/variance tradeoff, K-fold cross-validation, linear and nonlinear machine
learning models and finally scoring methods used to evaluate the models.

2.2.1 Supervised and unsupervised learning
The example of spam-filtering is known as a supervised classification learning prob-
lem. In supervised learning, each data point in the training set has a label which can
be either a discrete or continuous value. In the former case the approach is known
as a classification problem and in the latter case it is a regression problem. More-
over, the opposite to supervised learning is unsupervised learning. Data in these
problems does not have labels and as a consequence there is no straight-forward
way to define success. Instead, they are solved by trying to find hidden patterns
in the data, for instance by clustering [8, 16]. In this project, the focus will be on
supervised regression problems, as it is the optimal catalytic temperature (Topt) the
model will label the enzymes with.

2.2.2 Bias-variance tradeoff
An essential aspect of machine learning is getting a model to perform as good as
possible. Obviously, it would be ideal to classify all new, unseen data samples
correctly. However, this is rarely the case as some data samples might be extremely
difficult to classify. For example, if the model misclassifies a spam e-mail as non-
spam, this e-mail probably had some property which was difficult for the model
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2. Background

to capture. In order to classify this sample correctly, the model would need to be
modified so it learns to put this e-mail in the spam inbox. However, by doing so, a
sample which was correctly labeled previously, or would be correctly labeled, might
now be incorrectly labeled if this change to the model affects this sample. In machine
learning terminology, this scenario is often referred to as the bias-variance tradeoff
[16].

If a model has high bias, it means it does not learn anything while training on the
training set. If there are patterns in the data, the model does not capture them.
This is common if there is not enough data to train on, or if the model is not complex
enough. Another term for this is underfitting and this corresponds to the left graph
in Figure 2.3. One way to detect high bias is by studying if the training error is
high. By acquiring more data or building a more complex model, underfitting can
often be avoided.

The opposite to bias is variance, and thus if a model has high variance it means it is
overfitting the data. This corresponds to the middle graph in Figure 2.3. The model
in the figure has learned the data too well and fails to generalize and as consequence
the model will both capture the noise in the data, as well as it will be sensitive to
outliers. High variance can be detected if the training error is low (as the model has
perfectly captured all the train samples), but the test error is high. As the model is
too complex, it will most likely fail to classify new samples. Overfitting is common
if the amount of data is limited, the data has too many features or if the model is
too complex with too many parameters. Therefore, a few countermeasures consist
of decreasing the complexity of the model or removing some features. However, by
removing features there is also a loss of information. To mitigate this, it is possible
to put weights on them, thus the more important features will be prioritized by the
model.

The bias-variance tradeoff is a tradeoff, since a countermeasure to high bias is adding
more data, however, this can easily cause high variance as a consequence. It is
important to find the balance in-between, when it is “just right”, as in the last
graph in Figure 2.3.

2.2.3 K-fold cross-validation
Usually when training and evaluating a machine learning model the dataset is split
into a single training and test set and this ratio is usually 70/30 or 80/20, depending
on the size of the data. However, if the dataset is small, both the train and test
splits will be small so the model will neither have much data to train on, nor to
be validated on. Due to this, the prediction scores of the model will be unreliable
and unstable. One way to mitigate this is to instead use a technique called k-fold
cross-validation. The idea is to split the entire dataset into k parts, or folds. The
first fold is put away and will represent the test set. The model will only train on
the k − 1 remaining folds and evaluated with put-away test fold and this produces
one score. This is repeated k−1 times (a total of k iterations) and which fold acts as
the test fold is swapped between iterations. In the end, each fold will have acted as
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Figure 2.3: The left-most curve illustrates a machine learning model with high
bias and the one in the middle a model with high variance. The curve to the right

is “just right”.

Figure 2.4: 5-fold cross-validation. In the first iteration, the first fold is chosen as
the test fold and the other four act as training folds. The model trains on the
training folds and is evaluated using the test fold. This process is iterated five
times and the final score is the average of the output from the five iterations.

the test fold and there will be k scores and the final score of the model is the average
value. Figure 2.4 visualizes this with k = 5, in other words, a 5-fold cross-validation
[8].

K-fold cross-validation works well when the dataset is small and more variation is
needed between the test and training sets. Rather than having simply one test set,
as in the traditional 70/30 split, there will have been k test sets. This produces
a more reliable score and more information of how the model would perform with
new, unseen data. On the other hand, one downside is that this takes more time to
run, as the machine learning model must be run k times.

2.2.4 Linear and nonlinear models
Different machine learning models exist for different applications. The two main
groups which they are usually divided into, are linear versus nonlinear models. If
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the input data (the features) is linearly correlated to the output data (Topt), a linear
model is often preferred. On the other hand, if they are not linear, a nonlinear
model is required for good performance. A downside to nonlinear models is that
they are usually more difficult to interpret. For both linear and nonlinear models,
there is a cost function, or error function, that must be minimized, which symbolizes
the amount of error a model makes.

2.2.4.1 Linear regression

Linear regression is a linear machine learning model which tries to find a line to best
fit the data. Suppose the dataset now consists of enzymes and this is a regression
problem to predict the enzymes’ Topt. For the sake of easy visualization, assume the
training data only has a single feature, namely enzyme size. This feature is used to
predict the temperature, see Figure 2.5. The x-axis represents the feature and the
y-axis the true value, the Topt of the enzyme. Using the method of least squares,
linear regression attempts to fit a line which minimizes the residual sum of squares
between the true values and the predicted values.

Figure 2.5: Linear regression example with only one feature. This is a
visualization of how enzyme size could help predict enzyme Topt. For every feature

added, there will be an additional dimension to this graph.

2.2.4.2 Trees

Trees, for instance decision trees, are models which are useful when the data is
non-linear. They consist of a root at the top of the tree, followed by other nodes.
Each parent node has at most two children, where each child either has children of
its own, or is a leaf node. For all nodes that are not leaves, the node represents a
question where the answer is either yes or no, and leads to either the left or right
child respectively. If the node is a leaf, the node represents the prediction, i.e. a
numerical value for Topt. An example of a small decision tree can be found in Figure
2.6.

One of the issues when constructing a decision tree is what question to start off with.
This is an iterative approach which becomes more complex the more features that
are included in the dataset. Nevertheless, the solution is to consider one feature at a
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Figure 2.6: Simplified example of a decision tree.

time using different thresholds and for each, study how well it predicts the outcome.
Measuring the sum of squared residuals, the error for each combination, choose the
feature with the smallest error as the root. This approach continues iteratively for
the rest of the tree, and the same question may appear more than once but with
different thresholds. Each time there is a question node, the dataset is split into
smaller groups depending on if they belong to the yes/no branch. In this manner,
if the algorithm for splitting the tree would continue until each leaf only contains a
few data points, it will most likely mean this tree is now overfit (it is too precise).
A solution for this is to only split a node into two new nodes when there is some
minimum number of data points in this category. Lastly, in order to choose the
numerical value for the leaves, take the average value (Topt) for each of the subset
of enzymes that fall on the respective yes/no branch and place this value in the leaf
[16].

2.2.4.3 Ensembles

An example of an ensemble model is random forest, which is created from multiple
decision trees. The first step is creating a so-called bootstrapped dataset. From the
original dataset, of size n, draw n random samples and add to the bootstrapped
dataset. Both the bootstrapped and the original dataset is now of the same size,
however, there will be data samples which do not appear in the bootstrapped dataset
or, similarly, some samples which appear more than once. Moreover, from the
bootstrapped dataset, a decision tree is created but only a random subset of features
is chosen at each step (at each node which is not a leaf). This process continues
iteratively for a chosen number of steps, in each step a new bootstrapped dataset is
created and thus a new decision tree. The size of the trees will vary, and all trees
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together are what make up a random forest [16].

When classifying a new sample, run it through all of the trees and get a prediction
from each. The final prediction from the random forest is the average value of
all individual predictions. Finally, in order to estimate how well a random forest
performs, consider one tree at a time. Run the samples from the original dataset,
which did not appear in the bootstrapped dataset, through the respective decision
tree. Based on how well it performs, it is possible to study if it can perform even
better by choosing a different subset of features, with different sizes of those subsets.
It is possible to choose all features in the dataset, however, this method is prone to
overfitting [16].

2.2.4.4 Support vector regression

Support vector machines for regression (SVR) are defined by the following termi-
nology: a hyperplane, a margin, support vectors and a kernel. The support vectors
are data samples, a subset from the training dataset which are used to create a
hyperplane that satisfies a linear regression function f(x), defined as below:

f(x) = x · w + b , where w ∈ X, b ∈ R
, and X is the input space [43]

(2.1)

The regression function is used to fit the data, however, to allow some misclassifica-
tions and in turn make the model more flexible, there is also a margin around the
function. The margin is also called a symmetric, ε-insensitive tube, and stretches at
most ±ε from f(x), as depicted in Figure 2.7. Predictions inside the tube are not
penalized in the cost function, as long as they are at a distance of maximum ε. Fur-
thermore, ε is a hyperparameter that must be tuned accordingly, as a too large value
will cause the model to overlook large errors which would otherwise be penalized
(the tube is too wide). Similarly, if it is too small, it will instead vastly increase the
errors in the cost function and therefore will attempt to fit the regression function
more precisely, which can lead to overfitting [4].

Lastly, SVR:s use something called a kernel function. If the data is not linearly
separable as it is, it is possible to use a kernel function, which “transforms” the data
into a higher-dimensional space in which the data is linearly separable. Although
SVR:s are linear in nature, using kernels makes it possible for them to operate also
on nonlinear data.

2.2.5 Scoring methods
To estimate a model’s performance, scoring methods are needed. One common
scoring method for regression problems, which is going to be the main approach in
this thesis, is the R2 score. This is a metric which indicates how well the features
explain the variation in the true value (Topt). For instance, in the above example
with linear regression, the R2 score tells how the variation in Topt can be explained,
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Figure 2.7: An SVR with regression function f(x) surrounded by the ε-tube.

or captured, by enzyme size. A score of 80% means, in this scenario, that enzyme
size explains 80% of the variation. Alternatively, the relationship between enzyme
size and Topt accounts for 80% of the data and there must be something else that
accounts for the remaining 20%.

Mathematically, it is calculated by first calculating the mean of the true values (vt).
Taking the residual sum of squares between the true values (vt) and predicted values
(vp), divided by total sum between the true values and mean, and subtracting this
from 1, gives the R2 score (Equation 2.2).

R2 = 1−
∑(vt − vp)∑(vt − vt)

(2.2)

An R2 score of 1.0 is the best possible score, in which case the chosen features
accounts for 100% of the variation. On the other hand, an R2 score of 0.0 means no
variation could be explained (regression is equal to the mean value). It is possible
to for R2 to be negative because the model can be arbitrarily bad.
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3
Datasets

The datasets used in this project were gathered from multiple different sources,
combined and pre-processed prior to feature calculations. Section 3.1 describes how
the data extraction was performed, Section 3.1.1 describes the format of the data
files, Section 3.1.2 describes how the labels (Topt) were retrieved and finally Section
3.1.3 describes the how the data was filtered.

3.1 Extracting data
Four databases were used to extract the data and combine structural information
with Topt. The first, main, database that was used was The Protein Data Bank
(PDB)1, which contains roughly 150,000 proteins along with their experimentally
determined structures [6]. Besides this, SWISS-MODEL and ModBase were used as
these contain predicted structures of enzymes [48, 14, 36]. In those cases when an
experimental structure was not available, but a predicted structure was, these two
were used instead. All three databases use the same data file format, also called the
PDB file format (details about the file format is in Section 3.1.1). From this, it was
possible to calculate the structural features, further details in Chapter 4.

Although PDB, SWISS-MODEL and ModBase contain a large set of enzyme struc-
tures, only a smaller subset of these are in fact labeled with their Topt. This infor-
mation was necessary to perform the machine learning calculations, as the models
need the labels to train. Moreover, the optimal temperature labels were not present
in either one of the three databases, but came from the fourth, and last, database:
namely BRENDA [22]. How all four databases were combined to create a dataset
for this thesis is presented in Section 3.1.2.

3.1.1 Protein Data Bank data files
The PDB file format is a standardized format that comes from the Protein Data
Bank. At the top of each file, there is information of how the protein structure was
either experimentally determined, or predicted. The predicted structures usually
come from homology modeling; predicting enzyme structure from its sequence and
comparing it to other known structures, which have a similar sequence [48].

1www.rcsb.org
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Figure 3.1: An extract of a PDB file. Here, ’CA’ signifies the alpha carbon and
’CB’ the beta carbon of the amino acid residue. For each atom there are (x, y, z)

coordinates.

Figure 3.1 shows an extract of how the structural information is presented in a PDB
file. Every row with the ATOM record was parsed, as this symbolizes all the atoms
in an enzyme. For each atom the (x, y, z) coordinates are present, as well as which
residue the atom belongs to. The chain ID column shows the number of chains in
the enzyme. As discussed in Section 2.1.2 about enzyme structure, if the enzyme
only has a tertiary structure, the PDB file will only contain one chain. If it has a
quaternary structure as well, there will be several chains in the file. This information
was relevant for calculating the features later, as it will show that in some cases,
it was necessary to keep the chains separate. Moreover, the data structures which
were saved from each of these files were: the chains that were present, which residues
belonged to which chain, and furthermore which atoms belonged to which residue.
In the last scenario, the atoms were saved as “only alpha carbons”, “only beta
carbons” as well as “all atoms”.

The two last columns are occupancy and temperature factor. In some cases, side
chains have different conformations (spatial arrangements) due to local flexibility.
In particular, some atoms may have been identified at different (x, y, z) coordinates.
If an atom is only ever identified in one place, occupancy will have a value of 1.0. If
it is found in two places with equal probability (or other distributions), there will
be two rows with the same atom, with different coordinates and also marked with
an “alternative location” tag, and occupancy will in this scenario have a value of
0.5 for each. Further details of how occupancy was used in this project is found in
Section 3.1.3.

Temperature factor is, unfortunately, not correlated with the optimal catalytic tem-
perature. All atoms inside enzymes move around with varying flexibility. The
temperature factor is an indication of how much an atom moves around its average
position. This column was not used in this project.
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Number of enzymes

Unique sequences queried 1902

Structures retrieved from PDB 305

Structures retrieved from SWISS-MODEL 796

Structures retrieved from ModBase 454

Sequences with no found structure 348

Same sequence with different structures 349

Total unique structures 1554

Total structures 1903

Table 3.1: Summary of the distribution of the data files.

3.1.2 Retrieving labeled data

As mentioned, the labels were not present in either PDB, SWISS-MODEL or Mod-
Base, and instead were retrieved from the database BRENDA [22]. BRENDA is
a dataset which contains functional information about enzymes, for instance their
Topt. The data from BRENDA had previously been extracted by Engqvist et al., who
provided the necessary data for this project [27]. From BRENDA, they extracted
5343 enzymes. In addition, they filtered the data in order to reduce the noise in
Topt, which reduced the size of the provided dataset to 1902 enzymes.

Each of these enzymes came with a unique identifier, which came from the UniPro-
tID, or Universal Protein Identifier [10]. In order to retrieve the structures of the
enzymes, the identifier was used to query PDB, SWISS-MODEL and ModBase. As
experimentally determined structures are more reliable, PDB was queried first. Out
of the 1902 enzymes, 305 were found in PDB. In the next step, when SWISS-MODEL
was to be queried, the 305 files which had already been found in PDB were excluded
from the search. From SWISS-MODEL, 796 files were found and finally from Mod-
Base 454 files. In the end, there were 348 files which were not found to have a
structure in any of the three databases and were thus excluded from the dataset.
In total, 1554 unique structures were found. Additionally, there were 349 structures
which came from one or more of the same sequence from SWISS-MODEL. Specif-
ically, from the same sequence slightly different structures were predicted. Thus,
the size of the dataset was 1554 + 349 = 1903 enzymes. Table 3.1 summarizes this
information.

3.1.3 Pre-processing data

Before feature calculations could start, pre-processing steps were applied to the 1903
established data files.
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Hydrogen atoms

First, most of the structures in PDB are determined through X-ray crystallography,
which has a hard time resolving hydrogen atoms [24]. Furthermore, there was still
a small fraction of PDB files that contained hydrogen atoms but in order to treat
all data files the same, all hydrogen atoms were excluded.

Alternative locations of residues

As mentioned previously, if an atom is identified in more than one place in a residue,
there will be duplicate rows of this atom, with an alternative location tag, as well
as an occupancy value which is not 1.0. In order to not overrepresent these atoms,
the first alternative location was parsed to the data structure, and the other one
ignored. Furthermore, in a few cases there were entire residues with the alternative
location tag, which happens if the residue has been identified at another location.
Similarly for this scenario, only the first alternative location was parsed.

Multiple models

Sometimes a PDB file contains several models of the same enzyme. As described
on the PDB website2, each enzyme model should have the same atoms, however,
their locations will vary. Generally, if an enzyme has several models, it is due to
that model being identified through the method known as NMR (nuclear magnetic
resonance spectroscopy). If an enzyme has several models, the PDB file will have
the “MODEL” tag, and a sequence number for each such model. When parsing the
enzyme, only “MODEL 1” was used.

Disconnected residues

While parsing the data files there were instances of disconnected residues. In the
PDB files, the residue sequence number usually starts at 0 or 1, however, the iden-
tified outlier residues started at a negative number. Particularly, in one example,
with PDB code 2vbf (Figure 3.2), these residues start at -14 and end at -10, fol-
lowed by a “jump” in the PDB file, with the next residue starting at 1. By studying
both the coordinates, and the structural image, it became clear these residues were
disconnected from the structure. As some metrics, for instance radius of gyration,
is sensitive to “outliers” , residues with a negative sequence number were skipped.

Unparseable by external program

Two external programs were used as an aid when calculating two of the features (see
Section 4.1.4 on Surface Atoms and Section 4.1.5 on Torsion Angles). There were
nine PDB files that were unparseable by the program that calculated the surface
atoms. These were excluded as to not spend a disproportional amount of time
attempting to fix the error.

2http://www.wwpdb.org/documentation/file-format-content/format33/sect9.html#
MODEL
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Figure 3.2: Enzyme with PDB code 2vbf, with two outliers on either side. Image
from the RCSB PDB (www.rcsb.org) of PDB ID 2vbf, in [7]. Created with NGL

viewer [41].

Duplicates

Enzymes with the same EC number, sequence, structure and the same features were
considered to be duplicates. Nevertheless, it is possible these enzymes have different
Topt values, based on what has been previously reported. If the difference in Topt was
small (5-10 degrees) one enzyme was kept with the averaged Topt. However, if the
difference was too large, all duplicates were removed as it became uncertain which
Topt was correct. In total, 12 duplicate enzymes were removed.

Miscellaneous

Besides the 21 above excluded PDB files, four additional PDB files were excluded,
each with its own reason. Out of these four, one PDB file was empty, one was a
DNA, one was an RNA and the last file had two unparseable residues. Specifically,
there was a glycine residue with sequence number 355 and and an arginine residue
with sequence number 355A. In Section 3.1.3 it was mentioned that residues may
have an alternative location, however, that pre-processing step referred to when the
same residue had different locations. In this case, it was two different residues with
similar locations. Rather than choosing which residue to use, the entire PDB file was
excluded. In total, 25 PDB files were omitted from the remaining of the project.
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4
Feature Extraction

This chapter describes how the feature extraction of the enzymes was performed.
A considerable part of this thesis was to analyze what features were thought to be
relevant for Topt prediction and to hand-craft them. There was no trivial answer
as to what features would be the best to use, instead the effort needed to calculate
each feature was weighed against an estimation of relevance.

4.1 Feature calculations
There exist several unique features which explain an enzyme’s characteristics, both
in terms of shape and structure, but also functionality. To understand these features
are important steps to understand the enzyme itself. Moreover, it makes it possible
to draw comparisons between enzymes and other proteins [19].

The enzyme features exist in multiple spatial dimensions. On the one hand, when we
only consider the primary structure of an enzyme, an example of a one-dimensional
feature is the amino acid residue frequency, used in [26]. This is also called a sequen-
tial feature. On the other hand, the secondary, tertiary and quaternary structure of
an enzyme give rise to more complicated, three-dimensional features. Five examples
of such features are explained below, namely pairwise interaction between residues,
contact order, radius of gyration, atomic groups on the surface and residue torsion
angles.

Choosing which features that should be calculated based on relevance was not a triv-
ial task and thus an estimation of the correlation between effort needed to calculate
the feature, and a guess of relevance, was made. The first feature, pairwise interac-
tions between residues, was included as calculations were straight-forward and fast.
The second, contact order, was included as there is a correlation to an enzyme’s fold-
ing rate (how fast the enzyme folds from its primary to its tertiary structure), and
thus it was interesting to study if there was also a correlation to catalytic temper-
ature [37]. Thirdly, radius of gyration is directly related to enzymes’ compactness,
and similarly to contact order, it might be correlated to catalytic temperature [28].
The fourth feature, atomic groups on the surface, describes properties of the surface
of an enzyme, unlike the other features which describe the internal properties and
it was for this reason surface atoms was included. The fifth and last feature, residue
torsion angles, tells how rotated an enzyme is, and likewise, the hope was this would
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be correlated to Topt as well.

4.1.1 Pairwise residue-residue interactions
Pairwise interactions between amino acid residues in an enzyme is a metric to de-
termine how often any pair of residues interact with each other. Particularly, how
often any two residues are within a set distance threshold of one another. It is
common to think about the residues in a simplified manner and only consider the
alpha carbons of the main chain, as well as only the beta carbons of the side chain
(if present), thus ignoring other atoms. When calculating the pairwise interaction
between two residues, the distance is measured from their respective beta carbons
[25]. Concerning Glycine, which does not have a beta carbon, it is common to use
its alpha carbon instead. Moreover, two residues are considered to be interacting if
the distance is within a distance threshold (usually less than 8Å = 8 · 10−10m) [1].

The first step was to construct a 20x20 pairwise distance matrix for all residue pairs
and every time two residues interacted, a ”+1” was added to the cell. Thus, in total
there would be up to 210 interactions, since, from Figure 4.2, residue 13 interacting
with residue 30 is equal to residue 30 interacting with residue 13. From this count
it was apparent how often, if ever, a pair of residues interacted within an enzyme.
Such a pairwise distance matrix can be seen in Figure 4.1. Finally, this feature was
saved as frequencies, by dividing each count by the total number of interactions.

When considering all residues in a sequence, it might seem unfavorable to include
two adjacent residues in the calculations. Specifically, any two adjacent residues in
the primary structure, will most likely be interacting in the tertiary structure as
well. Therefore, a separation distance of 1 was included, so for each residue in the
sequence, the residue that directly follows was skipped.

If the enzyme had multiple chains, an extra step had to be made. First of all, for
each separate chain, the pairwise residue interactions were calculated. Secondly,
it was calculated between chains and the results aggregated. For instance, if an
enzyme had two chains A and B, the interactions were measured internally for A
and internally for B, followed by all residues in A which were in close contact to
residues in B.

4.1.2 Contact order
Contact order is a metric which measures the average sequence distance between two
interacting residues, normalized by the total sequence length [37, 21]. Study Figure
4.2 of protein with PDB code 1CRN. If only the primary structure is considered, the
residues with sequence number 13 and 30 would seem far apart, as they are separated
by another 17 residues. Nevertheless, the primary sequence does not speak the full
truth and in fact, in the tertiary structure, it can be seen how they are in close
contact. Accordingly, the contact order finds two interacting residues in the tertiary
structure, and measures, on average, how far apart they are in the primary structure.
It will be low for enzymes that tend to have their contacts mainly between residues
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Figure 4.1: An extract for a number of residue-residue interactions for an
enzyme. Only the lower half of the triangle was considered.

which remain close together in the sequence (majority of local contacts). Conversely,
the contact order will be high for proteins which has the majority of their contacts
between residues far apart in the sequence (non-local contacts).

In comparison to the pairwise interactions metric, where only beta carbons were used
(except for Glycine), when calculating the contact order of an enzyme, all atoms
were used. Thus, two residues could be interacting although their beta carbons
did not fall within the set distance threshold, as another pair of atoms might be
close. As in the metric definition, “total sequence length” implies the total number
of atoms which construct the enzyme.

There is both the relative contact order and the absolute contact order. Both equa-
tions come from the papers by Baker et al., [21, 37]. The absolute contact order
(Abs_CO) was calculated as in Equation 4.1, and the relative contact order (CO)
as in Equation 4.2.

Abs_CO = 1
N

N−1∑
i=1

N∑
j=i+1

∆Sij (4.1)

CO = 1
L ·N

N−1∑
i=1

N∑
j=i+1

∆Sij = Abs_CO
L

(4.2)

In both equations, N is the total number of interactions in the enzyme, L is the
total number residues in the enzyme and ∆Sij is the sequence separation between
two residues i and j.

To calculate contact order, the program iterated through all residues ri, and all
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Figure 4.2: Visualization of the protein with PDB code 1CRN. It shows how
residue 13 and residue 30 are close together in the tertiary structure, although in
the primary structure, they are 17 sequences apart. Image from the RCSB PDB

(www.rcsb.org) of PDB ID 1CRN, in [44]. Created with NGL viewer [41].

residues rj : j > i. Further, it iterated through all atoms ak in ri, and all atoms al in
rj. If the distance between ak and al in the tertiary structure fell below a threshold
then L was incremented by 1 and ∆Sij was calculated for the two residues. In
order to avoid unnecessary calculations early stopping was applied. Meaning, if two
atoms were found to be in close contact in two residues, the calculations stopped
and continued with the next residue in the sequence. Finally, if the enzyme had
multiple chains, the contact orders were calculated for each chain separately and
the final result was the average value.

4.1.3 Radius of gyration
The radius of gyration of an enzyme measures its compactness and distribution of
atoms around its center of mass. It will be low for compact enzymes and high if the
enzyme is loose and less compact [28]. Mathematically, it is the root mean square
distance of the atoms in the enzyme from its center. To calculate the center of
mass, either the atoms’ individual masses are included, or they are assumed to have
a uniform mass. For this thesis, the latter was applied, see Equation 4.3 [28].

Rc =
N∑

i=1
ai/N (4.3)

From this equation, ai are the (x, y, z) coordinates of the i:th atom and N is the
total number of atoms in the enzyme. The center of mass, Rc is also represented
as (x, y, z) coordinates. Next, the radius of gyration was calculated as in Equation
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4.4 [28]. Furthermore, this metric disregards if the enzymes are constructed from
multiple chains, and instead treats them as one large chain.

Rg =

√√√√ N∑
i=1

(ai −Rc)2/N (4.4)

4.1.4 Atomic groups on the surface
The shape of the surface of a protein is an important aspect to understand and
predict protein-protein or protein-ligand interactions (a ligand can be an ion or
molecule), where the latter is used in, for instance, drug design [29]. Tsai et al.
defined 13 atomic groups which can be found in proteins [46]. Each atomic group
is labeled as XnHm, where X is the chemical symbol of a non-hydrogen atom (e.g.
C, N, O, S representing carbon, oxygen, nitrogen and sulfur respectively), n is its
valence (connectivity) and Hm is the number (m) of attached hydrogen atoms to
the non-hydrogen atom.

An external program was used which identifies which atomic groups are solvent
accessible and therefore considered to be on the surface of a protein. The program
implements a technique for studying the protein surface which involved searching
for triplets of atomic groups that could be touched simultaneously by rolling a
small probe over the surface. The probe, shaped as a sphere, represented a small
molecule. Whenever the probe touched three atomic groups simultaneously, the
triplet was recorded and depending on the properties of the triplet, the authors of
the program were able to deduce preferences the triplets had for different ligands
[29]. The feature used in this thesis was a frequency for how many atomic groups
that were identified on the surface of each protein. This produced an additional 13
features, one feature for each atomic group.

4.1.5 Residue torsion angles
Each residue, can be written as NH - Cα - CO (omitting the side chain from the
alpha carbon). There is a rotational restriction between CO-NH due to the chemical
bond that connects them, and as a consequence there is a restriction to how the other
atoms are positioned in the protein backbone. In particular, each Cα - CO - NH
- Cα constructs a segment which lies in a plane, connected at the Cα. Therefore,
each residue reaches across two planes, and, additionally, each plane contains parts
of two residues [12].

There is, however, rotational freedom between N - Cα and between Cα - C. The
angle between these two pairs are called torsion angles and are angles between the
two planes the residue is part of. The angle between N - Cα is called the phi angle
(φ) and the angle between Cα - C is called the psi angle (ψ), see Figure 4.3. Note
that, in the Figure, the hydrogen atoms are not present as these are hard to resolve
in X-ray crystallography [24].
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Figure 4.3: Similar figure as Figure 2.1. Each Cα - CO - N - Cα forms a plane,
connected at the Cαs. The phi angle is the torsion angle between N - Cα, and psi
is the torsion angle between Cα - C of a residue. Molecular graphics and analyses
performed with UCSF Chimera, developed by the Resource for Biocomputing,

Visualization, and Informatics at the University of California, San Francisco, with
support from NIH P41-GM103311 [35].
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Basin A B D G L P R T U V Y

Phi -62 -120 -134 -93 51 -64 -68 55 82 -93 77

Psi -42 135 70 95 42 139 -18 -129 -3 2 -171

Table 4.1: 11 pre-defined basins with labels. For each basin there is a phi and psi
angle pair that acts as the centroid of that basin, and where each basin region

stretches ±10◦ in each direction from the centroid.

To calculate the phi and psi angle for residue i meant calculating the angles between
the planes. In particular, to calculate phi for residue i, N - Cα - C from i, as well as
C from i− 1 were necessary variables. Similarly, the variables for psi were N - Cα -
C from i and N from i+ 1.

As both residues i−1 and i+1 were needed to calculate the torsion angles for residue
i, it was not possible to calculate the phi angle for the last residue or the psi angle
for the first residue in the chain. As a consequence, these two residues were not
considered in feature calculations. Furthermore, in some cases, there were residues
missing in the PDB files and to account for this, the distance between the alpha
carbons between two residues were calculated. Due to stereochemical constraints on
bond length and bond angles, the distance between two consecutive alpha carbons
is close to 3.8Å [31]. To allow for a margin of error a maximum distance of 4Å
between alpha carbons was allowed. If they were further apart than this, they were
not considered.

Most of the residues now had a corresponding phi/psi pair. In [9], 11 basins were
defined by a phi and psi angle, see Table 4.1. The idea in the paper was to transform
a protein structure into a basin sequence by mapping each residue of the protein
to its nearest basin. This basin sequence was then compared to another protein’s
basin sequence, for a faster comparison of protein structures. In this thesis, these
11 basins were used as 11 additional features. For each residue’s phi/psi pair, the
Euclidean distance was measured to each basin and the residue was placed in the
nearest one. Each feature was saved as a frequency describing how often residues
were mapped to each basin.
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5
Experiments

Two different experiments were performed in order to test performance of the models
and the new, structural features. Experiment 1 used the entire dataset and cross-
validation to estimate the performance of multiple models by searching for the best
hyperparameters. Different feature combinations were used in the models to study
which ones were the most relevant to predict Topt. Following this, the best model,
together with the best hyperparameters and best feature combination, is used for
Experiment 2. A training and test set were manually constructed in Experiment 2,
where the test set only contained homologous enzymes, and the training set non-
homologous enzymes (two enzymes are homologous if their sequences are at least
25% similar, more details in Section 5.2). The motivation behind Experiment 2 was
to study if a model trained on only non-homologous enzymes can correctly predict
Topt for homologous enzymes.

The rest of this chapter presents both experiments; it describes the background
of each experiment, each of the setups, individual results and a discussion on the
outcome.

5.1 Experiment 1

This section describes the process and results from running machine learning models
on different feature combinations. A selection of the results is displayed in this
section, the remaining are found in Appendix A.

5.1.1 Background

Previous score obtained by Engqvist et al. was an R2 score of 0.4, with only a
sequential feature set present [26]. Experiment 1 was constructed to study if there
are structural features which can improve the scores further. This was the original
hypothesis, that the structural features would carry additional information about
the thermostability of enzymes, which the sequential feature do not. Thus, a set
of structural features were hand-crafted and different feature combinations were
run through the machine learning models to study which feature set was the most
significant for predicting Topt of enzymes.
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5.1.2 Setup
Five structural features were hand-crafted for the purpose of Experiment 1. Namely,
a pairwise distance matrix for residue-residue interactions (Section 4.1.1), contact
order (which includes both the relative and absolute contact order, Section 4.1.2),
radius of gyration (Section 4.1.3), atomic groups on the surface (Section 4.1.4) and
residue torsion angles (Section 4.1.5). These features will for the remaining of the
chapter be abbreviated with PDM, CO, RoG, surface atoms and Phi/Psi, respec-
tively. All combinations of these structural features were used in the models, a total
of 31 different combinations. Further combination that were run were sequential fea-
tures alone and sequential features combined with all structural features. Moreover,
after running the first 31 combinations, it was concluded that PDM and surface
atoms out-performed the other structural features. Therefore, the sequential fea-
tures were also combined with them individually, and once with both. In total, 36
different combinations of features were used in the models.

The machine learning models that were used for Experiment 1 were linear regression,
bayesian ridge, elastic net, decision tree, random forest and SVR. Both bayesian
ridge and elastic net are two linear models, similar to linear regression. All models
were implemented with Python, using the Scikit machine learning library [34]. For
the first four models, a standard 5-fold cross-validation (CV) approach was used
and no particular hyperparameter tuning was done. The reason was that the linear
models and decision tree were not expected to perform as well as random forest
and SVR. For random forest and SVR a nested CV approach was implemented.
The outer CV was a standard 5-fold CV, and the inner CV implemented a 3-fold
GridSearchCV, a tool to exhaustively search for hyperparameters. Thus, the outer
CV split up the dataset into five folds, were four folds represented the training set.
For these four folds, another 3-fold CV was run where the model optimized the
hyperparameters, and used the best set of parameters on the fifth test fold. This
process was iterated five times in total.

5.1.3 Results
Out of all possible feature combinations, it became apparent that combinations
of PDM, surface atoms and sequential features worked best. CO, RoG and the
Phi/Psi features did not perform as well on their own, as can be seen in Figure
A.1 in Appendix A. All different combinations of structural features are found in
Figures A.1-A.7. Note, for the test score plots, linear regression was not included
as it performed significantly worse than the other models and produced negative R2

scores which decreased the readability in the plots.

Throughout Experiment 1, random forest and SVR were the models that performed
the best with the feature sets. Below are five plots that display the R2 test scores
from all models except for linear regression, for five different feature combinations.
Figure 5.1 displays the results from using sequential features, with similar results as
in [26]. Figure 5.2a includes the feature PDM, Figure 5.2b includes surface atoms,
and Figures 5.3a-5.3b displays the results from combining the sequential features
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Figure 5.1: R2 test scores from running machine learning models with sequential
features (amino acid residue frequencies).

(a) Test scores from running the PDM
feature.

(b) Test scores from running the surface
atoms feature.

Figure 5.2: Test scores scores from structural features PDM (a) and surface
atoms (b)

with PDM and with surface atoms, respectively. On its own, PDM produced better
results than surface atoms. However, when combined with sequential features, it
was the combination of sequential features and surface atoms which perfomed better
than sequential features and PDM. Furthermore, the combination of all three did
not produce better scores than when two features were used at a time, as seen
in Figure A.8 in Appendix A. The sequential features were also combined with all
structural features, but similarly it did not produce better results than other feature
combinations, see Figure A.9.

Table 5.1 presents for each of the five different feature combinations, the R2 training
and test scores for random forest and SVR. Although most of them produced a high
training score, the test score is lower which signifies the models were overfitting
the training data. However, although overfit, both combinations of sequential and
structural features resulted in improved test scores than previously obtained. The
sequential and PDM features yielded scores of 0.401 and 0.474 for random forest
and SVR respectively and the sequential and surface atoms features yielded scores
of 0.474 and 0.480. This means that the relationship between these features and Topt
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(a) Test scores from sequential + PDM
features.

(b) Test scores from sequential + surface
atoms features.

Figure 5.3: Test scores scores from running sequential features together with
PDM (a) and surface atoms (b).

account for 48% of the data. This in comparison with the previous scores, where
the relationship between sequential features and Topt accounted for 40% of the data.

5.1.4 Discussion
The original hypothesis in this thesis was that new, structural features should pro-
vide additional information in predicting Topt for enzymes. The sequential features
previously produced R2 test scores of 0.4, and together with the structural features
predictions improved to 0.48, thus confirming the hypothesis. The remaining part
of this section will be a discussion on the outcome of Experiment 1, as well as
limitations in both the approach and in the data.

Different feature combinations

Different structural features turned out to produce substantially different results.
On the one hand, both PDM and surface atoms produced promising results, and
on the other hand, a feature as Phi/Psi did not. However, enzymes which fold to
similar native states will have similar torsion angles, even if their residues differ.
Furthermore, with only 11 basins, even angles which differ may end up in the same
basin if it is the closest one, and in which case it should not be surprising that this
feature did not perform as well.

All structural features which were hand-crafted were done so with certain limitations
and restrictions. When calculating the PDM feature, a different distance threshold
than 8Å could have been set. Regarding surface atoms, there are other, possi-
bly more accurate ways of defining the surface of an enzyme. Nevertheless, even
with these restrictions on the features, they produce better results than previously
obtained. It remains to be seen how the scores could be improved further with
additional refining to the features.
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Feature set Model Training score Test score

Sequential
Random forest 0.824 0.356

SVR 0.640 0.407

PDM
Random forest 0.835 0.283

SVR 0.866 0.387

Surface
atoms

Random forest 0.749 0.270

SVR 0.244 0.159

Sequential +
PDM

Random forest 0.873 0.401

SVR 0.883 0.441

Sequential +
surface atoms

Random forest 0.875 0.474

SVR 0.671 0.480

Table 5.1: The training and test scores from running random forest and SVR on
the four best-performing feature sets. As can be seen, some overfitting occurs in

most of the combinations.

Limitations in the approach

Due to a constrained time limit, certain limitations had to be done to the approach
when calculating the features and running the models. As mentioned above, for
PDM a distance threshold was set and if two residues were further apart than this
distance, they were not considered to be interacting. It is possible there are better
thresholds than the one that was set. Similarly for the rest of the features, there
might be better approaches to how the features should be represented in a feature
set. However, as scores improved, it is still an indication of what features seem more
promising than others.

Limitations in the data

The majority of the enzymes in the dataset were predicted structures and only a
minority were experimentally determined structures. This introduces noise in the
calculated features. First of all, it would be a significant improvement to have
more experimental structures as these would vastly improve the quality of the data,
nevertheless, the number of known structures is limited and especially so if Topt is
involved. Second, each individual enzyme has not been scrutinized in detail which
is relevant for future work in this area (Chapter 6). Both the structure should be
carefully studied, as well as the corresponding Topt. When the Topt of an enzyme was
determined, it is possible that only a limited number of temperatures were tested,
and the one where the enzyme was the most effective was chosen as Topt. Nonetheless,
there might be a different Topt which works better than the one reported, in which
case each Topt would need to be investigated. In short, there is uncertainty about
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the Topt values used for training and testing.

5.2 Experiment 2
Experiment 2 was created with a new training and test set, where enzymes were
placed in the test set if they met a criteria of similarity in regard to their sequence
and structure, yet had different Topt values. The motivation behind Experiment 2
was to analyze whether the structural features were useful in discriminating between
similar enzymes. It became meaningful to analyze what separates the enzymes to
cause them to operate at different Topt values, yet be similar. How sequence similarity
was calculated is given in more detail in Section 5.2.2.

Random forest and SVR were used for this experiment as they produced the best
results in Experiment 1. The feature sets that were used were sequential features
alone, and sequential features combined with PDM. PDM was used rather than
surface atoms, since PDM is a feature which is well-established in bioinformatics,
as can be seen by its use in fold recognition [23]. Below in Section 5.2.1 is a more
detailed description of the background and motivation to Experiment 2.

5.2.1 Background
When Experiment 1 was finished, focus was shifted to study how the data was
distributed over EC numbers and Topt. Figures B.1-B.4 in Appendix B visualize
how the data is distributed over different Topt, over the seven top classes of EC
numbers and over the top class and first subclass of EC numbers. The final plot is
a heatmap which describes how the enzymes are distributed both over the top EC
class and Topt. By studying these plots, it became evident that there was a high bias
towards temperatures in the range of 30-60 degrees and towards the third enzyme
top class.

Additional plots were created which visualized how different enzymes with equal EC
numbers have different Topt. As mentioned in Section 2.1.3, different enzymes have
equal EC number if they catalyze the same chemical reaction. Figures B.5-B.10 in
Appendix B show for each EC number, how the enzymes have significantly different
Topt. From this pattern, it became meaningful to analyze how similar those enzymes
are and what makes them different, since they catalyze the same reaction, yet at
different temperatures.

Similarity between enzymes is often calculated by measuring the percentage iden-
tity between two enzymes’ sequences [5, Chapter 7], called sequence alignment. The
program for performing sequence alignment implemented a dynamic programming
approach called the Needleman-Wunch algorithm [32]. If two sequences have a per-
centage identity of 0.25 or above, the enzymes are said to be homologous [5]. Homol-
ogous enzymes most likely have a common ancestor and are similar in both sequence,
structure and function. However, they are not necessarily the same protein, as it is
probable they have evolved differently. If two enzymes have a percentage identity of
lower than 0.25, it becomes difficult to say if they have a common ancestor, or are
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similar by chance [5].

By training on non-homologous enzyme and predicting Topt for homologous enzymes
the ambition was that the models would be able to capture and identify the features
that separated the homologous enzymes and could account for the difference in Topt.
This, in turn, may lead to biological insights.

5.2.2 Setup
All EC numbers for which there were more than one enzyme were recorded. For
each EC number, only the enzymes which had a greater difference in Topt (at least
20 degrees) were relevant. The difference in Topt was important to make it easier
to discriminate them in the models and to produce more meaningful results. With
this subset of enzymes, the ones with the highest and lowest temperature had their
percentage identity calculated, in order to represent them as a “hot” and a “cold”
pair. If they were homologous they were saved to a new test set. Moreover, if, for
instance, two enzymes shared the lowest temperature, only the pair of hot and cold
enzymes with the highest percentage identity was saved. Thus, each pair of such
enzymes was saved to a new test set, and the other non-homologous enzymes were
saved to the training set. In total, this gave a test set of 88 pairs of enzymes.

Both random forest and SVR were trained on the non-homologous enzymes and
predicted the Topt for each pair of homologous enzymes. The feature sets that were
used were sequential + PDM features, as well as sequential feature alone. The
quality of the predictions were measured in two steps. First, the R2 score was
calculated as before. Second, a new accuracy metric was constructed which checked
if the models preserved the temperature order for each of the homologous pairs in
the test set. Specifically, if the “colder” enzyme was in fact predicted to be the
colder enzyme in the pair, and similarly for the “hotter” enzyme. The new metric,
order accuracy measured the percentage for how often the temperature order was
correct for each pair of enzymes.

5.2.3 Results
Table 5.2 summarizes the training score, test score and order accuracy for both
feature sets and models. The R2 test scores are lower than previously obtained,
however, 83% of all pairs were predicted in the correct temperature order. Figures
5.4a-5.4b and 5.5a-5.5b display scatter plots for the predicted versus observed val-
ues, for sequential + PDM features and sequential features respectively. The pairs
predicted on the main diagonal line, y = x, symbolizes those that were predicted
having equal Topt, in which case the models were not able to discriminate the “cold”
and “hot” enzyme. The pairs predicted under the main diagonal, are pairs for which
the models swapped the temperature order of the enzymes. Lastly, the pairs pre-
dicted above the upper line, y = x + 20 are pairs for which the model correctly
predicted the order of the enzyme, as well as keeping a temperature threshold of at
least 20 degrees, which was the criteria for calculating the percentage identity. From
all plots, it is clear that the vast majority of the pairs were predicted in the correct
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Feature set Model Training score Test score Order accuracy

Sequential +
PDM

Random forest 0.849 0.149 0.705

SVR 0.877 0.240 0.727

Sequential
Random forest 0.770 0.128 0.693

SVR 0.713 0.232 0.830

Table 5.2: Training, test and order accuracy scores from running Experiment 2.
Sequential features and sequential + PDM features were both used in the random

forest and SVR models. The order accuracy describes how often each pair of
enzymes’ temperatures were predicted in the correct order.

direction. Moreover, more pairs were predicted with the correct threshold and the
correct order, than pairs with the correct threshold but with the order reversed.

All models produced one outlier (a predicted pair below the lower line), except for
SVR with sequential + PDM features which produced two. Overall, the sequential
features performed better when used on its own in the models. Nevertheless, the
feature importance score from sequential + PDM shows that the sequential features
make up for 46% and the structural features 54% of the importance. This means
there is still information the structural features contribute to the models, which the
sequential features do not.

5.2.4 Discussion
One expectation from Experiment 2 might be that, as the homologous enzymes have
similar structures, the predictions will be random or equal as the models would not
be able to discriminate between the enzymes and their Topt. If the pairs would have
been predicted having equal Topt, there would have been a larger cluster along the
main diagonal in Figures 5.4a-5.4b and 5.5a-5.5b. Nevertheless, as this is not the
case, the feature sets and the model are in fact able to correctly separate the “hot”
and “cold” enzyme, as predictions move to the upper left corner.

The R2 test scores were lower compared to Experiment 1, but most likely this
is because the homologous enzymes were not as well represented in the training
set as before. The homologous enzymes are similar in sequence and will thus be
similar in structure [42, 40]. As a consequence of similar structures, the structural
features will be similar as well, and at times indistinguishable. However, as they
have different Topt, there is some property in the enzymes which accounts for this
difference. Although lower R2 test scores, the feature set is still able to distinguish
a majority of the pairs in which one has a hotter temperature than the other.

As described at the beginning of Section 5.2, there is a large bias towards tempera-
ture in the range 30-60 degrees, see Figure B.4, which is most likely the reason many
predictions cluster around this part of the plot. Oversampling techniques were con-
sidered but disregarded as there was not enough time to fully explore these ideas.
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(a) Observed vs predicted values in a
random forest model.

(b) Observed vs predicted values in an
SVR model.

Figure 5.4: Observed vs predicted values for Experiment 2, using sequential +
PDM features. The line y = x marks where hot temperature equals cold

temperature, and the lines above and below marks the threshold where the
difference between the temperatures is at least 20 degrees.

(a) Observed vs predicted values in a
random forest model.

(b) Observed vs predicted values in an
SVR model.

Figure 5.5: Observed vs predicted values for Experiment 2, using only sequential
features. The line y = x marks where hot temperature equals cold temperature,
and the lines above and below marks the threshold where the difference between

the temperatures is at least 20 degrees.
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Furthermore, as mentioned in Section 5.1.4, an improved quality and less bias in
the data and Topt is of high priority to continue this work and produce more reliable
predictions.
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6
Future work

The next priority for continuing this work is to study the data in more detail. To
better understand each enzyme, each structure should be investigated along with
corresponding literature. Additionally, each Topt and the experiment which produced
it should be analyzed. As mentioned in Section 5.1.4, it is possible a limited number
of temperatures were tested to determine an enzyme’s Topt. The quality of such
experiments are important to understand, in order to decide whether those enzymes
ought to be included in a future dataset.

Further refining should be done to the features to increase their level of detail.
For instance, for PDM it should be investigated if there are better thresholds than
the one chosen for this project. A smaller threshold will allow for more interactions,
while a larger threshold will allow for fewer. Regarding Phi/Psi there may be a better
way to represent the torsion angles than by 11 predefined basins. Furthermore, for
surface atoms there is most likely a more reliable way to represent this feature rather
than a frequency count. Instead of counting the atomic groups, it might be more
profitable to study the triplet itself the probe touched on the surface. However, all
features rely on an increased knowledge of the structures themselves, in order to
better understand how the structure is best represented.

One idea in this thesis was to work with predicted structures alone and experimental
structures alone to see how much the features and model depended on the two
types of structures. However, with a limited number of experimental structures this
experiment was not carried through. It is possibly not feasible to be done in the near
future, rather it is dependent on more structures being experimentally determined.
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7
Conclusion

Through this thesis, the purpose has been to hand-craft structural features for en-
zymes and use these in machine learning models in order to study if Topt predictions
can improve from previous results. With the previous R2 test score of 0.4, the mod-
els in this thesis together with a new feature set are able to raise the scores to 0.48.
Furthermore, in the scenario when there are pairs of similar enzymes but different
Topt values, one colder and one hotter, the models correctly predicts the tempera-
ture order of them 83% of the time. There are still properties in the enzymes which
have not been represented as features, which most likely will improve the scores
even further. Nevertheless, the original research question was to study if structural
information hold information about Topt, and if predictions can be improved. Both
questions have been answered positively with this thesis.
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A
Results from different feature

combinations

A.1 Structural feature combinations

Figure A.1: Test scores from running all combinations of 1 feature. CO =
contact order, RoG = radius of gyration, PDM = pairwise distance matrix

(residue-residue interactions), Phi/psi = residue torsion angles, surface atoms =
atomic groups on the surface.
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A. Results from different feature combinations

Figure A.2: Test scores from running all combinations of 2 features (1/2). CO =
contact order, RoG = radius of gyration, PDM = pairwise distance matrix

(residue-residue interactions), Phi/psi = residue torsion angles, surface atoms =
atomic groups on the surface.
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A. Results from different feature combinations

Figure A.3: Test scores from running all combinations of 2 features (2/2). CO =
contact order, RoG = radius of gyration, PDM = pairwise distance matrix

(residue-residue interactions), Phi/psi = residue torsion angles, surface atoms =
atomic groups on the surface.
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A. Results from different feature combinations

Figure A.4: Test scores from running all combinations of 3 features (1/2). CO =
contact order, RoG = radius of gyration, PDM = pairwise distance matrix

(residue-residue interactions), Phi/psi = residue torsion angles, surface atoms =
atomic groups on the surface.
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A. Results from different feature combinations

Figure A.5: Test scores from running all combinations of 3 features (2/2). CO =
contact order, RoG = radius of gyration, PDM = pairwise distance matrix

(residue-residue interactions), Phi/psi = residue torsion angles, surface atoms =
atomic groups on the surface.
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A. Results from different feature combinations

Figure A.6: Test scores from running all combinations of 4 features. CO =
contact order, RoG = radius of gyration, PDM = pairwise distance matrix

(residue-residue interactions), Phi/psi = residue torsion angles, surface atoms =
atomic groups on the surface.
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A. Results from different feature combinations

Figure A.7: Test scores from running all combinations of 5 features. CO =
contact order, RoG = radius of gyration, PDM = pairwise distance matrix

(residue-residue interactions), Phi/psi = residue torsion angles, surface atoms =
atomic groups on the surface.

A.2 Structural and sequential feature combina-
tions

Figure A.8: Test scores from running the sequential features together with the
PDM structural feature.
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A. Results from different feature combinations

Figure A.9: Test scores from running the sequential features together with the
all structural features.
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B
Data visualization

Figure B.1: Data distribution over different Topts. X axis specifies the
temperature and the y axis how many enzymes are correlated with this

temperature.
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B. Data visualization

Figure B.2: Data distribution over the EC number top classes. X axis specifies
the top class (1-7) and the y axis how many enzymes are correlated with this EC

number.

Figure B.3: Data distribution over the EC number top and second classes. X
axis specifies the EC class and the y axis how many enzymes are correlated with

this EC number.
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B. Data visualization

Figure B.4: Data distribution over Topt and EC EC number top classes. In each
cell there is a count of how many enzymes of a certain EC top class has a certain

temperature. The darker the cell, the more enzymes.

Figure B.5: Data distribution over enzymes that have the same EC number but
different Topts. This visualization only shows relevant enzymes with EC number

top class 1.
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B. Data visualization

Figure B.6: Data distribution over enzymes that have the same EC number but
different Topts. This visualization only shows relevant enzymes with EC number

top class 2.

Figure B.7: Data distribution over enzymes that have the same EC number but
different Topts. This visualization only shows relevant enzymes with EC number

top class 3.
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B. Data visualization

Figure B.8: Data distribution over enzymes that have the same EC number but
different Topts. This visualization only shows relevant enzymes with EC number

top class 4.

Figure B.9: Data distribution over enzymes that have the same EC number but
different Topts. This visualization only shows relevant enzymes with EC number

top class 5.
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B. Data visualization

Figure B.10: Data distribution over enzymes that have the same EC number but
different Topts. This visualization only shows relevant enzymes with EC number

top class 6.
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