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A Computational Tool for the Design of Prestressed Cable Supported Structures
AHMAD ABDUL SATER & OSKAR THOR
Department of Architecture and Civil Engineering
Chalmers University of Technology

Abstract
Cable supported structures are light-weight structures gaining their load-bearing
capacity through the use of one or several cables in combination with other structural
members such as struts, beams, and plates. Cables transfer loads in tension only
and adapt their shape depending on the loading condition. The relationship between
applied loads and deformations is therefore highly non-linear and consequently the
geometrical shape of cables requires bespoke design approaches.

Traditionally, architects and engineers have designed cable structures using physical
models or with graphical methods. This has changed as advances in numerical
analysis and computational engineering have been made over the recent century.
Many software programs available today can be used for analysis. However, a key
part of structural design requires the ability to "sketch" and "iterate", which is absent
in many available packages.

A computational design tool is developed with the aim to support the design in
early design stages. After evaluating three existing numerical methods for large
displacement structures, a solver with Green strain bar elements is implemented.
The tool extends the open-source BHoM code library. Output data from the tool is
benchmarked by comparing results with analytical and numerical models.

By exposing the functionality of the tool to user-interfaces such as Grasshopper and
Excel, users can explore alternative design proposals by changing a set of parameters.
These parameters include the input geometry, initial prestress, section sizes and
topology.

Case-studies are used to highlight how this tool is used in Grasshopper. A set
of design-objectives are defined and met by controlling a set of parameters, subse-
quently creating several designs proposals. For the studied cases, which display small
strains and large displacements, the tool provides accurate results. Should a differ-
ent analysis model be required, the tool is suited for modifications and extensions
of its capabilities.

Keywords: cable-supported structures, form-finding, prestress, geometrical stiffness,
structural design, parametric design.
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1
Introduction

Cable supported structures are light-weight structures gaining their load-bearing
capacity through the use of one or several cables in combination with other structural
members such as struts, beams, and plates. Cables transfer loads in tension only and
adapt their shape depending on the loading condition. Therefore, the relationship
between applied loads and deformations is highly non-linear and consequently the
geometrical shape of cables requires bespoke design approaches.

This chapter will discuss the advantages of cable supported structures and the im-
portance of conceptual design. Moreover, the benefits of computational approaches,
which allow for streamlined workflows, are outlined. This will support the formula-
tion of the purpose and render in guiding questions for thesis.

1.1 Background
One way to understand the structural behaviour of cables is to observe how a simple
cable reacts to external loads. Imagine a chain suspended between two equally high
points and a heavy weight is hung at the middle of the chain. With some intuition,
one can conclude that if the weight would be removed the shape of the chain changes.
In other words, one can state that there is a relationship between force and form.

Structures that adapts geometries depending on the applied forces are sometimes
referred to as ‘form-active´ systems (Engel, 1997). Traditionally, architects and en-
gineers designed cable structures using physical models or with graphical methods.
Over the last century, advances has been made in numerical analysis methods, a
development accelerated by the introduction of computers. Today, it is common
practice to use numerical methods such as the force density method, dynamic relax-
ation and geometrical non-linear finite element analysis for the design and analysis
of cable supported structure to form-find and analyze structures with large displace-
ments.

Cable supported structures exist in many shapes and could refer to different struc-
tural systems. In the built environment they can be found in suspension bridges
and suspended roof structures. They are distinguished from other structures by the
use of one or several cables acting as primary bearing. Cables can be also be com-
bined with other members and thus forming hybrid systems (Engel, 1997). They
are suitable where large spans are required because of their light-weight character
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1. Introduction

and their efficient way of carrying external loads.

Lightness in cable structures is partially achievable due to the high strengths of mod-
ern cables but also due to the use of prestress. Cables can be prestressed to increase
the geometrical stiffness of a system as well as to control displacements, something
the engineer can use to meet predefined design and/or displacement criteria.

The light-weight nature of cable supported structures makes them sustainable based
on three perspectives: an ecological perspective; a social perspective; and, a cultural
perspective (J. Schlaich, 2004). The low use of material reduces the ecological impact.
Scarcity of construction material is an increasing concern and it is desirable to strive
for more material efficiency in structures. It is, however, important to remember that
large prestress in cable structures could contribute to heavy foundations and may
counter the material savings in a slender construction. From the social perspective,
the challenging nature of a design and construction of cable supported structures,
encourages the development of skilled labor. This leads to more advanced jobs
and an increased need of educated engineers. Lastly, spectacular designs and the
sensation of lightness which are possible to achieve with cable structures contribute
to the cultural perspective.

Conceptual Design
Conceptual design is primarily used in early design stages and is often character-
ized by the development of several conceptual proposals. During this design stage,
objective design criteria are not always well defined and a creative sketching pro-
cess is deployed to narrow down several alternatives until a final design proposal
emerges. Unfortunately, it is common in practice and education that the conceptual
phase is left to architects alone, missing on the opportunity for structural engineers
to provide valuable input (Llunji, 2020). This risks excluding engineers from the
many important decisions that are made in the conceptual phase which could lead
to irreversible bad choices and inevitable expensive solutions (Hsu, 2000).

In design of cable structures, the collaboration between the architect and the engi-
neer needs to be well functioning, as form and forces are highly intertwined. The
role of the engineer must not be excluded to sizing and detailing only, but should
also include the conception of a design proposal. In addition to their theoretical
knowledge, the engineer must utilize creative talent to help achieve a vision (M.
Schlaich, 2006).

Computational Design
Today there is a great variety of computational engineering tools suitable for solving
complex problems with high resolution. A major disadvantage of many engineering
software, is the requirement of precise input data as well as geometry which makes
them less suitable for conceptual design (Wang, 2001). They have a tendency to
provide much more results than needed in conceptual design and might disturb the
creative process.

2



1. Introduction

Many contemporary software are usually tailored either for architects or engineers
and complicates sharing of necessary data. This hinders the collaboration between
architects and engineers and may result in diverging conceptual ideas.

By working and sharing similar design platforms the issues above could be avoided.
It allows for a streamlined design process from early design to a finished proposal,
and earlier proposals can be resummoned. It is also possible to create complex
parametric models allowing for fast updates and modifications on a certain proposal.
Moreover, with visual programming it is easy to receive instant visual feedback from
structural analysis. Common parametric platforms are Grasshopper and Dynamo
which are extension to the CAD-environments Rhino and Revit respectively.Visual
scripts and computational programs, written for specific projects, can be reused
and the acquired knowledge can be shared for the benefit of future work. Data
and functions can be stored, shared and further developed by others. It worth
mentioning that successful and sustainable knowledge sharing requires a high-level
of modular code architecture.

1.2 Purpose
The main purpose of this research is to develop a computational design tool for
cable supported structures that can be used in conceptual design phases. The tool
should be based on a convenient numerical analysis method which includes geo-
metrical non-linear effects. To facilitate for cross-disciplinary collaboration between
architects and engineers, the tool must be exposed to a CAD-environment such as
Rhino/Grasshopper.

An important part of the thesis is to illustrate how the tool can be used for explo-
ration of concepts. This means that "project" case specific workflows are developed
to achieve a set of design-goals. All parameters that affect the design and per-
formance of a structure will be implemented in the tool. By exposing as many
parameters as possible to the user, the aim is to facilitate for the creation of many
proposals.

Based on the outlined purpose, the objectives are to:
• create a design tool exposed to CAD-environments which can be used in con-

ceptual design;
• study and evaluate numerical methods to select the most promising one;
• program the tool in a modular fashion to allow for future extensions and

modifications;
• show how different parametric workflows can be used to achieve different design

goals with the developed tool.
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1. Introduction

1.3 Method
The working method is illustrated in figure 1.1 and takes off with an overview of
the history of cables, historic cable structures and traditional form-finding methods.
A simple cable is studied to understand the characteristic behaviour of a cable and
the necessary theory needed for large displacements.

Three known numerical methods used to design cable structures are studied and
tested on three examples in MATLAB. This investigation will contribute to the un-
derstanding of the methods and test the suitability of each method for each example.
The most promising method will be selected and implemented in a computational
tool. To ensure that the tool returns reliable results, the chosen method will be
compared with benchmark problems in the literature.

The design tool will be programmed in Microsoft Visual Studio. Available open
source libraries will be utilized to perform numerical calculations and to expose
the tool to user-interfaces used by many engineers such as Grasshopper and Excel.
Object oriented programming in Visual Studio forms a good framework for future
development and enables for sharing and modification by many users.

Case-studies will be performed to show how the tool can be used. A suitable work-
flow for each case-study will be presented and implemented, allowing a set of design-
goals to be met. These workflows could include form-finding or to use a number of
parameters for form-setting.

Review of the historical 

background of cable supported 

structures and design 

approaches 

Three commonly used 

numerical methods are chosen

Implementation in MATLAB 

and evaluation of the three 

methods

Test the tool on cases-studies to 

display how the tool can be 

used in different ways

Implementing the 

numerical method in a 

computational tool. 

Benchmark the choosen 

numerical method to validate 

the implementation and expose 

limitations

EVALUATION
THREE NUMERICAL 

METHODS
LITTERATURE REVIEW

BENCHMARKIMPLEMENTATIONCASE-STUDIES

SELECTION OF 

FAVOURABLE METHOD

Figure 1.1: Summary of method.
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1. Introduction

1.4 Limitations
The main focus lies within the conceptual design of cable supported structures. The
requirement to find possible equilibrium states could therefore be achieved quicker
without considering other non-linearties such as material and boundary condition.
The consideration of material and boundary-condition non-linearities can be ac-
counted for in future studies.

Time-dependant effects such as creep, corrosion, fatigue and prestress-relaxation are
important factors but are outside the scope of this thesis. This means that detailed
analysis is performed in later stages. Likewise for extensive member checks which
are of importance for the final design, but nevertheless a time consuming procedure
and would not directly contribute to the conceptual design phase.

There are many numerical methods that have been developed for analysing geometric
non-linear structures. In this thesis only three methods will be considered for the
following reasons: They are all well established numerical methods; and they have
been used in practice; many later methods are extensions of these methods.

Only 1D-continuum elements will be studied and implemented. This includes dis-
cretized line members such as tension only, compression only, and axial bars. Imple-
mentation of beam elements will not be made at this stage. It is however possible to
extend the implemented tool to support analysis and form-finding of more complex
structures.

Cable structures in roofs and bridges are exposed to dynamic loads and it is often
important to check the dynamic behaviour. However this will not be considered as
this lies outside the scope of the main focus of the thesis which is to implement a
computational tool for conceptual design.

1.5 Structure of the Thesis
The report is divided into 8 chapters and structured to mirror the evolution of the
project.

Chapter 2 provides a historical background to cable supported structures and ex-
plains the non-linear behaviour of cables.

Chapter 3 presents the theory of three numerical methods that can used to design
cable supported structures.

In chapter 4, the three numerical methods are evaluated in a comparative study
consisting of three simple structures. Consequently, the most promising numerical
method is selected and further studied.

5



1. Introduction

In chapter 5, the selected numerical method is benchmarked against problems in
literature in order to check the reliability of its results. Moreover, the limitations of
the chosen numerical method are presented and discussed.

In chapter 6, the implementation of a computational tool as a plug-in to common
engineering user-interfaces is described.

Chapter 7 presents case-studies which highlight how the tool can be used to design
and optimize cable supported structures.

Chapter 8 marks the end of the report and discusses important outcomes and po-
tential further developments.

6



2
Cable Supported Structures

This chapter address some key aspects of cable structure design such as form-finding
and prestressing. It will start with a historical background before presenting many
of the challenges of designing cables supported structures caused by the inherited
non-linear behaviour of cables.

2.1 A Historic Review: From Hemp Ropes to
Wire Cables

Before wire cables were invented and used in cable structures, humans used tra-
ditional materials such as cane, bamboo, hemp rope or iron chains (Peters, 2012).
According to Peters, the earliest known suspension bridges originated from the east-
ern Himalayas with records dating back to 285 BCE of a catenary shaped bridge in
Sichuan.

Early bridges in Himalaya were either of a Tibetian- or a Chinese type. The Chinese
bridges, e.g. Anlan bridge in figure 2.1a, is characterized by the simple prestress
system created by anchoring the end winches to a gatehouse. This allowed the
cables to be prestressed and thereby limit the sag. Tibetian bridges did not have
the same refined anchoring system. Figure 2.1b, indicates that cables in Tibetian
bridges were constructed without any prestress which lead to larger sag.

The deterioration of natural material such as hemp, cane and bamboo created a de-
sire of more durable alternatives which eventually led to the development of wrought
iron chains. An early example of an iron chain can found in the French town of
Moustier Sainte-Marie, seen in figure 2.2b. The chain is suspended 200 m between
two rocks and supports a hanging gold-painted star. The chain dates back to 13th
century and shows that practical metallurgical knowledge existed in Europe at that
time. (Peters, 2012). It is however not until 1741, the Wynch Bridge in England
was built as the first documented chain bridge in Europe. One of oldest remaining
chain is Luding Bridge in Tibet, which was built in 1703 and can be seen in figure
2.2a.

7



2. Cable Supported Structures

(a) Anlan Bridge. (b) Unknown Tibetian bridge (Ward,
1921).

Figure 2.1: A Chinese and a Tibetian type bridge.

Source: Prince Roy (2007); image distributed under CC BY 2.0 license;
https://commons.wikimedia.org/wiki/File:Anlan_Suspension_Bridge-1.jpg.

(a) Luding Bridge. (b) Suspended iron chain in Moustier
Saint-Marie.

Figure 2.2: Early iron chain constructions.

Source: gill_penney (2007); image distributed under CC BY 2.0 license; cropped
and saturated; https://www.flickr.com/photos/gillpenney/2215347512/ .
Ced76000 (2015); image distributed under CC BY-SA 4.0 license; cropped and
saturated; https://commons.wikimedia.org/wiki/File:
Moustiers_Sainte_Marie_-_Etoile.JPG.

Tomas Telford is one of the great contributors to the development of modern suspen-
sion bridges. Telford developed a chain of flat eyebar system with punched holes in
the beginning of the 19th century (Peters, 2012). Tests of the eyebar system showed
large stretches at high tensile stresses and Telford decided that stresses in his chains
should never exceed a third of its ultimate strength (Timoshenko, 1983). This is
similar to the limitations of modern cable design codes. The flat eyebar system was
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2. Cable Supported Structures

used in 1826 for the construction of Menai Suspension Bridge, illustrated in figure
2.3.

Figure 2.3: Menai Suspension Bridge.

Source: Mick Knapton (2004); image distributed under CC BY-SA 3.0 license;
https://commons.wikimedia.org/wiki/File:Menai_Suspension_Bridge.jpg.

Telfords flat eyebar system was the standard for suspension systems until the first
half of the 19th century when a major breakthrough came by the invention of wire
ropes. Wire ropes were cold formed or in other words pulled which gave a higher
tensile strength due to the stress-hardening effects. One of the early manufacturers
of wire ropes was John Augustus Roebling. Roebling established his wire company in
1841 and successfully used wire cables in his own bridge projects, including Brooklyn
Bridge finished in 1883 (Addis, 1990).

In 1895, Vladimir Shukhov designed the first cable-net and membrane structure
for Nizhny Novgorod exhibition. The structure, which is shown in figure 2.4, was
the first time cable-nets were used in buildings. Shukovs work came to inspire
generations of architects and engineers alike.

Frei Otto is one of early architects who contributed to the development of lightweight
structures set out by Shukhov. Otto designed one of the most influential cable
structures in more modern times, the Olympiastadion in Munich visible in figure 2.5.
The tent-like stadium was built in 1972 as part of the preparation for the Olympic
games the same year. The stadium was designed together with the engineer Jürg
Schlaich whose engineering practice is still a leading firm in the design of lightweight-
and cable structures.

9

https://commons.wikimedia.org/wiki/File:Menai_Suspension_Bridge.jpg


2. Cable Supported Structures

Today, cable supported structures are often used whenever large spans are desired
which involves everything from suspension bridges to roofs structures. A growing
sector is arena stadiums and many contemporary stadium roofs are constructed with
cable systems with high prestress.

Figure 2.4: Membrane roof and lattice membrane by Vladimir Shukhov.

Source: Andrei Osipovich Karelin (1895); image is in public domain;
https://commons.wikimedia.org/wiki/File:
Membrane_Roof_and_Lattice_Shell_of_Shukhov_Rotunda_1895.jpg.

Figure 2.5: Olympiastadion in Munich.
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2.2 Modern Cable Types
Modern cables are still a combination of cold-worked steel wires. The wires are
either helically twisted around a straight wire into strands or used as parallel wires.
The wrapping of wires and/or strands increase the flexibility of the cable but leads
to a loss of tensile strength. Hence, parallel wires are used when maximum strength
is desired. Strands are twisted with every layer twisted in the opposite direction
than the previous to equal the torsional stiffness. In figure 2.6 some typical cross-
section of modern cables are presented. Modern cables are often protected through
envelopes or through a tight outer layer constructed of z-shaped wire profiles as in
locked coil strands.

Figure 2.6: Four modern cable types. parallel wires (left), parallel strands, locked
coil strand, wire rope.

The major improvement of cables is due to the accelerated development of steel
qualities which allows modern cables to carry very high tensile stresses. In table 2.1
some material properties of different steel qualities are compared.

Table 2.1: Comparison of steel qualities (Pipinato, 2015).

Unit Cable Mild High Str.

Yield stress MPa 1180 240 690
Tensile strength MPa 1570 370 790
Breaking strain % 4 24
Modulus of elasticity GPa 205 210 210

Relaxation is a major concern of modern cables, why allowed stresses still are limited
to stresses well below the maximum capacity (CEN, 2006).

2.3 Characteristics of a Cable
Cables are essentially limited to axial tensile stresses and the shear-, bending-
compression- and torsional stiffness are usually negligible. Since the only mode
of load transfer is in tension this leads to large displacements and thus geometric
non-linearity has to be considered in analysis.
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A simple example is studied to illustrate the necessity of large displacement theory
in the analysis. Figure 2.7 illustrates a cable loaded with a mass m. The cable
is pinned on the left side and supported with a roll-bearing on the right side. A
counter-weight of mass M is connected to the right end of the cable. The setup for
the experiment is shown in figure 2.8

400 mm 800 mm

m

M

EA EA

Figure 2.7: Initial configuration of cable study.

Figure 2.8: Experimental setup.

By intuition it is understood that an increase of the counterweight M reduces the
deflection of m. Correspondingly, a decrease of M would lead to the opposite.
This may be interpreted as if the axial force affects the stiffness of the system and
demonstrates why the geometric stiffness should be included in the equations of a
geometric non-linear calculation models.

Figure 2.9 shows a comparison of two analyses assuming small and large displac-
ments. Small displacement theory assumes small rotation angles of the initial ge-
ometry. Due to the initial straight element and the assumption of small rotation
angles the equilibrium equations will neglect asymmetric displacements and conse-
quently following a solution path vertically. In the same figure, it is shown that this
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assumption becomes poor as the displacement increase. This showcases the need
of an analysis which supports large displacements/rotations. This can be achieved
by an iterative calculation were the stiffness of the system is based on an updated
geometry.

0 0.2 0.4 0.6 0.8 1 1.2

x [m]

-0.4

-0.35
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-0.15
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-0.05

0

0.05

y
 [
m

]

Comparison Between Small and Large Displacement Theory

m = 1

m = 2

m = 3

m = 4

m = 5

Large Displacement Theory

Small Displacement Theory

Experimental

Figure 2.9: Comparison between results from small and large displacement
theory.

In the analysis presented, the left hand side of the cable was assumed inextensible
and as a consequence the displacement follows the path of an arc with constant
radius. The experimental results are recurrently shifted to the right of the analysis
result. This indicates that some strains were present in the experiment in figure 2.8.

2.4 Form-Finding
The aim of form-finding cable supported structures is to derive a shape in equilibrium
based on a set of constraints and applied loads. The form-found geometry is often
used as an initial shape in further analysis to ensure convergence.

The earliest types of form-finding methods involved the use of physical models.
A pioneer in this field was Antoni Gaudi, who used extensive chain-models in his
design work. Gaudi used wires to find funicular forms which were inverted into
compression arches as shown in figure 2.10a. The method of a using physical model
was also adopted by Frei Otto and Heinz Isler.

Another approach to form-finding is Graphic statics. Graphic statics is a graphical
method to determine member forces or to find the equilibrium form from a set of
applied forces. The geometrical reciprocal relationship between the geometry of
the structure and the internal and external forces are used in graphic statics. This
relationship can be visually represented by a force and form diagram. If the geometry
of a structure is changed it is reflected in the force diagram and vice versa. Because
of this duality, graphic statics can used for form-finding as well as for analysis of a
system.
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(a) Hanging model of Colònia Güell. (b) Force polygons (Varignon, 1725).

Figure 2.10: Traditional form-finding methods.

Source: Canaan (2009); image distributed under CC BY-SA 4.0 license;
https://commons.wikimedia.org/wiki/File:Maqueta_funicular.jpg.

The first book about graphic statics, Die graphische statik, was written by Culmann
in 1866 . Although his book was a major contribution to the subject, the theory of
force polygons can be traced further back to Simon Stevin in 16th century (Stevin,
1586) and Varignon’s introduction of the funicular polygons (Varignon, 1725), shown
in figure 2.10b. Engineering heroes who used graphic statics as a design tool include
Robert Maillart and Gustaffe Eiffel (Block, Van Mele, Rippmann, & Paulson, 2017).

Numerical form-finding methods were introduced in the 20th century. Among them
are Dynamic relaxation (Day, 1965) and the Force density method (Schek, 1974).
Both were material independent methods, similarly to graphic statics.

The reverse of form-finding is form-setting which involves modification of loads,
prestress and support conditions to achieve a desired form.

2.5 Prestress
Most cable structures are more or less impractical without the introduction of pre-
stressing due to unacceptable performance during service. Cable systems can be
stabilized by increased self weight, by anchoring or by prestressing inverse cables
which makes them less sensitive to varying loading conditions, shown in figure 2.11
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2. Cable Supported Structures

below.

(a) By inverse catenary. (b) By mass. (c) By anchorage.

Figure 2.11: Three approaches to prestressing.

Prestress is used to improve the stability where additional stresses contribute to an
increased geometrical stiffness. Moreover, prestress is used to limit deformation by
providing form stability as well as ensuring a favorable stress pattern in a structure.
Some members may also be prestressed to avoid unfavourable tension in joints. In
the case of tensegrity structures, prestress is used to eliminate internal mechanisms
(Sehlström, 2019).

By controlling the stress pattern, it is possible to to reduce compression in some
members and hence reduce the risk of buckling. This possibility allows for light and
slender structures, which are more material efficient.

As a conclusion, prestress may be used to:

1. Ensure stability: To provide useful geometrical stiffness and eliminate mecha-
nisms.

2. Achieve desired form: To fulfil design goals.
3. Efficient joinery: To reduce tension in connections.
4. Material efficiency: To reduce unfavourable compression and avoid buckling.

Prestressed systems are often categorized into two different types depending on
how prestressing is affecting the reaction forces. Externally-equilibrated systems in-
creases the reaction forces with increased prestressing and auto-equilibrated system
maintain the prestress in the structure. Figure 2.12 shows two simple examples to
illustrate this.
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(a) Externally-equilibrated system.

(b) Auto-equilibrated system.

Figure 2.12: The effect of prestress on joint equilibrium.
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3
Numerical Methods

Numerical methods are used in design and analysis in order to provide accurate
approximations to complex analytical problems. The methods have typically a con-
vergence criteria and employs discretization of objects to a finite number of elements.

In the following chapter, three commonly used numerical methods for the design of
cable supported structures are discussed: the dynamic relaxation method; the force
density method; and, the non-linear finite element method. They are among the
earliest methods available. However, all three are based on different approaches and
more recent methods are often based on any of them.

3.1 Dynamic Relaxation
The dynamic relaxation method (DRM) solves the static deformations of a structure
or mechanism subjected to loads by treating the problem as a dynamic one. In
essence the DRM is used to find equilibrium states in structural systems which are
discretized into a number of element and where fictitious masses are lumped into
nodes. A system can be damped and would oscillate over time until equilibrium is
found. The method is used in form-finding where the stiffness can be disregarded or
may be configured with actual stiffness of elements to work as a base for analysis.

The method was first presented by Alister Day in 1965 who applied the method for
the design of a number of projects including Allianz stadium (Carfrae & Michael,
2019a, 2019b). Over the years the method has been extended by several contributors
and can be used for the form-finding of tension space structures (Barnes, 1977)
and prestressed networks supported by compression arches (Wakefield, 1980). The
development of a spline element (Adriaenssens & Barnes, 2001) and a bending and
torsion resistance element (Barnes, Adriaenssens, & Krupka, 2013) have enabled
analysis of complex structural systems.

To use dynamic relaxation an overview of the calculation scheme is shown in fig-
ure 3.1. The procedure starts by defining an initial geometry and initial velocities
set to zero. After applying nodal loads, the axial forces can be calculated. The
residual force is then computed and used to calculate nodal velocities and updated
nodal coordinates. If the norm of the residual force is smaller than a predefined
tolerance value, the solution have converged. If not, new axial forces, velocities and
coordinates are recalculated until convergence is reached.
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The procedure is elaborated with the calculations below. The initial geometry can
be established by defining the topology and coordinate matrices (Veenendaal &
Block, 2012). The topology can be described by the use of a connectivity matrix
(C-matrix) defining the start and end node of each element. The matrix has m-rows
and n-columns, were m is equal to the number of elements and n number of nodes
in the system. The C-matrix is constructed following the rules:

C(i,j) =


+1 if first node
−1 if last node
0 else.

The C-matrix as well as the coordinate arrays x, y and z are divided into two
parts separating free nodes and fixed nodes as C = [CN CF ], and x = [xN xF ],
y = [yN yF ], z = [zN zF ]. The notations N and F refers to free and fixed nodes
respectively.

The length of each branch is derived from the coordinates differences, u, v, w.
Uppercase letters refers to the diagonal matrix of corresponding lower case vector
and is furthermore calculated as:

u = Cx, U = diag(u) (3.1)
v = Cy, V = diag(v) (3.2)

w = Cz, W = diag(w) (3.3)

The initial nodal velocities, vi with components vx, vy and vz, may all be set to
zero and nodal loads are applied on free nodes through pi, where i = x, y, z. Initial
stresses can be introduced by prescribing a load vector fo or by reducing the initial
length of a chosen branch by an equivalent length.

Axial forces are calculated and updated for each loop with the new lengths l and
engineering strain, ε = (l − li)/li. From the equilibrium conditions follows:

Px = CT Q(Cx + CF xF ), (3.4)
Py = CT Q(Cy + CF yF ), (3.5)
Pz = CT Q(Cz + CF zF ), (3.6)

with DN = CT
NQCN and DF = CT

NQCF , the residual forces calculated as:

rx = px −DNxN −DF xF , (3.7)
ry = py −DNyN −DF yF , (3.8)
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Initial nodal velocities v
t
=0

Apply nodal loads P

Calculate axial forces F

Update residual force R

Calculate nodal velocities v
t+∆t

Update coordinates x
t

Norm R < tol ?

START

Initial Geometry

Yes

END

No

Figure 3.1: Dynamic relaxation scheme.
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rz = pz −DNzN −DF zF , (3.9)

where the total residual is the euclidean norm of rx, ry, rz.

By defining the nodal masses as a function of the greatest direct stiffness in a node
shown in equation (3.10), the velocities can be calculated following Newton’s second
law. The integration is similar to a Leapfrog integration which requires the time step
to be constant and is usually chosen to ∆t = 1 (Adriaenssens, Block, Veenendaal,
& Williams, 2014). In matrix formulation this can be expressed as:

m = 0.5∆t|CN | (fo/l + EA/li) , M = diag(m), (3.10)

where EA is a vector of length m and includes the axial stiffness for each element.

The calculated velocities are used for updating the coordinate vectors:

vt+∆t/2
x = Avt−∆t/2

x +B∆tM−1rx, (3.11)

vt+∆t/2
y = Avt−∆t/2

y +B∆tM−1ry, (3.12)

vt+∆t/2
z = Avt−∆t/2

z +B∆tM−1rz, (3.13)

xt+∆t/2 = xt−∆t/2 + ∆tvt+∆t/2
x , (3.14)

yt+∆t/2 = yt−∆t/2 + ∆tvt+∆t/2
y , (3.15)

zt+∆t/2 = zt−∆t/2 + ∆tvt+∆t/2
z . (3.16)

Factor A and B in the velocity equations 3.11 - 3.12 refers to the damping coeffi-
cients. The speed at which the procedure reaches equilibrium is highly dependent
on the chosen timestep and damping factors. The damping factors can be applied
as constant or adaptive values. It is also possible to combine the two methods.
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3.2 Force Density Method
The force density method (FDM) was introduced in 1974 by Schek. The method was
developed to allow for a linear and analytical form-finding procedure that is very
computationally efficient. Schek formulated the FDM around the ratio between the
force and the deformed length of each element. The ratio, q = F/L, is often referred
to as the force density or the force-length ratio. By defining the force densities in a
system, the FDM finds the equilibrium state where all forces in the nodes sums up
to zero.

The initial selection of force densities seldom results in the final design. To over-
come this issue, several extensions of the method have been presented to allow for
additional conditions to be considered. Additional constrains have often non-linear
implications, which requires the extensions to FDM to be non-linear as well.

The extended versions of the method resolves different non-linear phenomena. Schek
derived an extension of FDM for a cable-net of constrained element lengths (Schek,
1974). Haber and Abel (1982) presented the "General Stiffness Method", a method to
derive the unknown presstress distribution from a chosen reference shape. Linkwitz
1999 devised a method for double curved cable-nets. Other contributions includes
the "Updated Reference strategy" (Bletzinger & Ramm, 2001), "Natural Force Den-
sity Method" (Pauletti & Pimenta, 2008) and "Multi-step Force Density method"
(Javier Sanchez, 2006), which are extension of the method for surface elements.

In Shell structures for architecture: form finding and optimization (Adriaenssens
et al., 2014), the use of FDM in practice is demonstrated through a presentation of
the design process of the Mannheim Multihalle (1974) as well as Solemar Therme
(1987).

To use the force density method, an overview of the workflow is illustrated in figure
3.2. The scheme starts by defining an initial geometry and boundary conditions.
From that, a connectivity matrix (C-matrix) can be constructed. Force densities are
then applied to each element and loads are placed on nodes. The equilibrium position
of the free nodes in a system are subsequently calculated. If the emerged shape is
not satisfactory, the user can change the input geometry, boundary conditions, force
densities or input loads. When a satisfactory shape is reached, the user can either
define element stiffness or the initial lengths and from that calculate the unknown.
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Define topology C

Solve for xf

Design satisfactory?

Choose stiffness EA or initial lengths Lo

Materialize by computing 

unknown EA or Lo

START

Define boundary conditions Xn

Yes

END

No

Input force densities Q

Input or calculate load p

Figure 3.2: Force density method scheme.
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To illustrate the theory of the force density method, a node P0 in the cable-net
shown in figure 3.3 is studied. Four cables connect to node P0 and the node is
loaded with an external force pz. The axial forces Fi, with i = a, b, c, d are given
from Hooke’s law as:

p
z

F
a

F
b

F
c

F
d

P
0

P
1

P
2

P
3

P
4

Figure 3.3: Node equilibrium principle

Fi = EA

l0
ei, (3.17)

where EA is the axial stiffness, l0 is the initial length of the element and the elon-
gation of an element is ei = li − l0,i. The element length li, where k = 1, 2, 3, 4 can
be calculated as:

li =
√

(xk − x0)2 + (yk − y0)2 + (zk − z0)2. (3.18)

In a Cartesian coordinate-system the element force Fi can be deconstructed to re-
trieve the x-component:

Fi,x = Fi cosαi. (3.19)

By adding all element forces in the x-direction together with the applied force px,
the equilibrium of the is obtained from:

Fa cosαa + ...+ Fd cosαd + px = 0. (3.20)

The direction cosines in equation (3.19) can be rewritten:

x1 − x0

la
Fa + ...+ x4 − x0

ld
Fd + px = 0. (3.21)
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With the of equation (3.17), equation (3.21) can be expressed:

x1 − x0

l0,a

EA

l0
(li − l0,a) + ...+ x4 − x0

l0,d

EA

l0
(li − l0,d) + px = 0. (3.22)

To handle the non-linearity in equation (3.22), the force density quantity qi will be
defined and inserted in the following way:

qi = Fi

li
=⇒ (x1 − x0)qa + ...(x4 − x0)qd + px = 0. (3.23)

The goal is to extract the position of the free node which in this case is x0 and this
can be done since the equation now is linear. The same principle applies to y0 and
z0, which can computed:

x0 = px + x1qa + x2qb + x3qc + x4qd

qa + qb + qc + qd

,

y0 = py + y1qa + y2qb + y3qc + y4qd

qa + qb + qc + qd

,

z0 = pz + z1qa + z2qb + z3qc + z4qd

qa + qb + qc + qd

.

(3.24)

So far, the equilibrium of one node has been derived. However, when dealing with
a complex structure with several nodes and elements the number of equations can
get overwhelming and tedious. Therefore, matrix formulations will be introduced
similarly to the approach in dynamic relaxation outlined in section 3.1.

The topology of an extensive structure can be represented in a connectivity matrix
C =

[
CN CF

]
as described in section 3.1. In a similar fashion, the node-vector x

can be divided into free nodes and fixed nodes, x =
[
xN xF

]
.

With DN = CT
NQCN and DF = CT

F QCF , the equilibrium position of nodes can be
calculated as

xN = D−1
N (px −DF xF )

yN = D−1
N (py −DF yF )

zN = D−1
N (pz −DF zF )

(3.25)
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3.3 Finite Element Method
The finite element method have had a profound effect on the engineering practice.
By discretizing a system into a number of finite elements, approximations over a
domain for partial differential equations can be solved numerically. In the 1960 and
early 1970, finite element analysis developed rapidly and was expanded to solve non-
linear problems using different iterative procedures such as the Newton-Raphson’s
method (Oden, 1990).

The general procedure for the finite element method involves derivation of element
equations, discretizing into a finite number of elements, calculation of element stiff-
ness, defining external forces and finally assembly into a global system. Boundary
conditions are thereafter introduced and nodal unknowns can be computed. Lastly,
element quantities such as forces and displacements can be computed (Bhatti, 2006).
The procedure for solving a finite element system consisting of Green-Lagrange bar
elements in 3D is summarized in figure 3.4.

Non-linear behaviour due to large rotations which can be present in cable structures
must be accounted for. The finite element can be defined so that it includes con-
tributions from large rotations. A way to achieve this is to use the Green strain
applicable for large displacements. Commonly the resulting tangent stiffness matrix
is composed by the linear stiffness matrix and a geometric non-linear stiffness matrix
contribution (Crisfield, 1993).

Ke
T = Ke

L + Ke
NL, (3.26)

where the linear stiffness matrix is:

Ke
L = EA

l2

l30



c2
x cxcy cxcz −c2

x −cxcy −cxcz

cxcy c2
y cycz −cxcy −c2

y −cycz

cxcz cycz c2
z −cxcz −cycz −c2

z

−c2
x −cxcy −cxcz c2

x cxcy cxcz

−cxcy −c2
y −cycz cxcy c2

y cycz

−cxcz −cycz −c2
z cxcz cycz c2

z


. (3.27)

The direction cosines cx, cy, cz are defined as:

cx = x2 − x1

l
, cy = y2 − y1

l
, cz = z2 − z1

l
. (3.28)

The non-linear part of the matrix is:

Ke
NL = EA

l2 − l20
2l30



1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1


. (3.29)

25



3. Numerical Methods

The internal force vector is defined as:

f e
int = EA

l2 − l20
2l20



−cx

−cy

−cz

cx

cy

cz


. (3.30)

Green-Lagrange strain is not linear which means that an iterative procedure must be
used to solve the equation system. Since the Green-Lagrange element is a function
of displacements a, the equations system can be expressed as follows:

K(a)a = fext. (3.31)

By using the concept of Taylor series, the next iteration can be approximated as:

K(ai+1) ≈ K(ai)ai + Ki
T∆ai = fext =⇒ Ki

T∆ai = fext −K(ai)ai, (3.32)

where the residual force vector Ri is:

Ri = fext −K(ai)ai. (3.33)

The equation system is now linearized and the Newton-Raphson iterative procedure
can be used to solve the non-linear problem. The displacement ∆ai increment is
therefore:

KT(ai) = Ri(ai),
KT(ai)∆ai = −Ri(ai),

∆ai = −K−1
T Ri.

(3.34)

The displacement vector can now be updated:

ai+1 = ai + ∆ai, (3.35)
and consequently the residual force Ri can be calculated as:

Ri+1 = fext −K(ai+1)ai+1. (3.36)

If the residual Ri is small enough the solution has converged. However, should the
residual not satisfy the convergence criteria a new iteration must be executed. The
convergence criteria which ends the iterative process is defined as:

conv = ‖Ri‖2

1 + ‖fext‖2 < tol. (3.37)
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Apply loads to global external vector f
ext

Compute element stiffness matrix Ki

e

Compute internal element force vetor f i
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 - f i
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Compute ∆ai = K -1 Ri
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Norm R < tol ?

START

Initial Geometry
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END
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Figure 3.4: Non-linear finite element method scheme.
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4
Evaluation of Numerical Methods

To decide which of the three numerical methods discussed in chapter 3 to implement,
each method was evaluated and assessed. The purpose of evaluating the methods
is to assess the strength and weaknesses of each method. An important aspect is
to avoid a solver which is hard to modify or extend but at the same time provide
necessary control of the tool (Wakefield, 1999). Consequently a "black box" solver
should be avoided.

Moreover, several programming aspects are reflected upon including: (1) execution
speed; (2) ease of implementing different member types; (3) constraints; and (4)
how prestress can be assigned.

Three examples were studied and solved using MATLAB, and they are summarized
in table 4.1 together with a short description of each example. The three examples
have all different purposes and the results from each method will be compared.
In addition, the results from each method will be referenced to the commercial
software RFEM by Dlubal which is stiffness matrix FEM solver and is a common
tool in structural engineering practices.

Table 4.1: Evaluation examples.

Nr Geometry Description

1 Cable Form-finding and analysis of a cable with ini-
tial prestress

2 Truss Analysis of a statically undetermined truss
system with small strains

3 Braced Frame Analysis of a frame with cable elements with
large strains.
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4.1 Example 1: Form-Finding of Cable
In example 1, a horizontal taut cable is subjected to a vertical point load P and
prestress W, illustrated in figure 4.1. The purpose of this example is to test the
capability of form-finding and analysis for a simple cable structure.

y

x

Δy

W

P

E, A1

L

1

P 311.38 N
W 4482 N
EA 564.92 N
L 10.6 m

Figure 4.1: Simple cable inspired by (Luo & Lu, 2006).

From the results in table 4.2, one can conclude that results obtained both from
NL-FEM and DRM, converge into the same equilibrium state with a small increase
in the cable force N compared to the initial prestress force W.

The force density is defined as q = W/L for the FDM (q is an input value). This
force density only includes the initial prestress force. This explains why the normal
force is smaller in the FDM. For NL-FEM and DRM, the contribution from the
strain force is included and found through outlined iterative procedures in chapter
3.

The initial state of the cable may cause convergence problem with the NL-FEM
method. The existence of a prescribed displacement or prestress is crucial to "acti-
vate" the geometrical stiffness and avoiding a singular stiffness matrix.

Table 4.2: Comparison of displacement and normal force for example 1.

Method ∆y N

DRM 1.000 1.000
NL-FEM 1.000 1.000
FDM 0.999 0.999
RFEM 1.000 1.000
ref 177.9 mm 4448.5 N
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4. Evaluation of Numerical Methods

4.2 Example 2: Analysis of Truss
Example 2 is a simple truss consisting of three bar elements as illustrated in figure
4.2. Its stiffness values and geometry is based on Example 9.1 in Structural mechan-
ics: Modelling and analysis of frames and trusses but extended with an additional
vertical bar to establish a statically indetermined structure (Olsson & Dahlblom,
2016). The structure is analyzed for a vertical load P and a horizontal load F, and
the aim is to calculate the member forces and free-node displacement. The force
density method is excluded from this example since it is best suited for form-finding.
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ΔyΔx
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E, A3
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3/4L E, A2

F
1

2
3

P 1 MN
F 2 kN
E 10 GPa
A1 0.01 m2

A2 0.02 m2

A3 0.04 m2

L 1.6 m

Figure 4.2: Truss inspired by (Olsson & Dahlblom, 2016).

The results are presented in table 4.3 with the result weighted against RFEM. The
maximum deviation between results obtained from the DRM and RFEM is 0.8%
which is considered negligible. It is hard to point out where the relatively small
deviations stem from, but a justifiable argument could be the difference in the strain
models assumed by each analysis method. However, since the difference is only at
0.8 %, it is safe to assume that both NL-FEM and DRM show that they can be
used for analysis of bar elements in a simple truss structure for small strains.

Table 4.3: Comparison of displacements and normal forces for example 2.

Method ∆x ∆y N1 N2 N3

DRM 1.008 1.000 0.999 1.001 1.001
NL-FEM 1.002 1.000 1.003 1.006 1.002
RFEM 1.000 1.000 1.000 1.000 1.000
ref -8.304 mm -1.113 mm -520.3 kN -597.6 kN 380.3 kN
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4. Evaluation of Numerical Methods

4.3 Example 3: Truss with Diagonal Ties
A frame structure illutrated in figure 4.3, with prestressed cross-bracing is studied
in Example 3. The purpose is to investigate if any method has any limitations with
regard to large strains. The load P will be incrementally increased from 0 to an
exaggerated load of 10 MN.
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A2 0.02 m2

L 1.6 m

Figure 4.3: Truss with diagonal ties inspired by (Guest, 2006).

The displacement of top left node is presented in figure 4.4. From the plots it can
be seen that all methods yields similar displacements for low values of P. However,
as P increases the results of NL-FEM diverges from the results of DRM and RFEM.
This is explained by the different strain measures used in the methods. In NL-
FEM the Green strain is used, while in DRM and RFEM engineering strain is
implemented.The maximum deviation of the displacements of NL-FEM compared
to RFEM is only at 0.5% for P = 0.9 MN. However, for P = 9 MN the maximum
deviation is at 5.8%.

To provide a better understanding of why the deviation occurs, two different load
levels are studied. The first load level corresponds to a maximum strain of 2%
presented in table 4.4, and the second a maximum strain of 10% illustrated table
4.5.
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Figure 4.4: Effect of large loads on displacements.

Table 4.4: Comparison of displacements and normal forces for example 3,
P = 0.9 MN, εmax = 2%.

Method ∆x ∆y N5 N6

DRM 1.000 1.001 1.000 1.000
NL-FEM 0.995 1.003 1.000 1.000
RFEM 1.000 1.000 1.000 1.000
ref -26.29 mm -3.820 mm 0 kN 1283 kN
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4. Evaluation of Numerical Methods

Table 4.5: Comparison of displacements and normal forces for example 3,
P = 9 MN, εmax = 10%.

Method ∆x ∆y N5 N6

DRM 1.004 1.010 1.000 1.000
NL-FEM 0.942 0.974 1.000 0.996
RFEM 1.000 1.000 1.000 1.000
ref -317.0 mm -69.13 mm 0 kN 13990 kN

4.4 Conclusion
To begin with, there seems to be no consensus on which method is preferable and
the three methods have all been used to design cable supported structures. The
methods have been extended rigorously over the years and it is hard to differentiate
the possible capabilities. The choice of a preferable method is partially subjective
and based on the previous knowledge of the designer.

The simplicity of the force density method is based on the basic definition of force
densities for a structure. By changing the force density values, alternative designs
can be can form-found quickly. However, the method could not be used in example
2 and 3 as it would require non-linear extensions to use in analysis. A non-linear
extension would contradict the argument of the method’s simplicity. Moreover, the
concept of force densities could be somewhat abstract for some users, and requires
experience to get adequate results. Therefore, it has been concluded that the force
density method is not suitable to implement in our tool.

DR proved capable of solving all the three investigated examples. The method has
several good inherent qualities when dealing with geometrical non-linear problems.
One of the great strengths of the DRM is the method’s clear relation to real physical
motion which is represented in the solution procedure. The exception is the damping
and nodal masses which are lacking a direct physical representation.

Non-linear finite element method proved capable of solving Example 1 and Example
2. In example 3, where the effects of an exaggerated load were studied, NL-FEM
showed different results compared to DRM. This difference may be explained by the
non-linear geometric stiffness and is a consequence of the Green strain definition.
However, the scenario with high strains, as discussed in example 3, is highly unlikely
and would result in yielding or even failure.

The are many advantages with finite element analysis. The method is known to
many engineers and frequently used in engineering practices and the knowledge
of the method is wide spread. The generality of the method allows for a variety
of possible theories to be implemented which means that a FEM package can be
extended and modified to suit specific purposes. This is why the NL-FEM is selected
as most promising method to proceed with.
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5
Benchmark

In order to check the limitations of the selected FEM method using Newtwon Raph-
son iterations and Green strain definition, it will be benchmarked against three
examples extracted from Non-linear finite element analysis of solids and structures
(Crisfield, 1993).

5.1 Snap-Through
A simple bar with geometry and properties according to figure 5.1, is studied. Two
different analyses tracing the load-displacement relation are performed and com-
pared. The first analysis is with constant load-increments ∆P = 0.5 MN, and the
displacement ∆w is calculates using equation (3.35). The second analysis is done
by displacement-increments where the applied force P is calculated for a constant
displacement increment ∆w = 5.72 mm.

L

Z

Δw

ΔP

EA 50 MN
L 2.5 m
Z 2.5 m

Figure 5.1: Input for snap-through benchmark (Crisfield, 1993).
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Figure 5.2: Load-displacement curves for benchmark 1.

Figure 5.2 shows the load displacement relationship of the studied bar. The results
are identical until at approximately ∆w = 1000 mm. At the limit point, the load-
increments analysis fail to capture the ‘snap-through behaviour of the bar’. Snap
through is an instability which causes the displacements to leap from one steady
configuration to the next. In this study, the load increments fail due to the tangent at
the local maxima is almost flat and the next Newton-Raphson equilibrium point can
only be found at the far end of the graph. In contrast, the displacement increments
successfully catches this snap-through behaviour.

The results of displacement-controlled analysis are identical to the results in (Cr-
isfield, 1993).

5.2 Hardening
In the second benchmark the structure in figure 5.1 is extended with an additional
degree of freedom and with two springs as illustrated in figure 5.3 to study a con-
tinuous hardening problem. The analysis is carried out with load-increments and
converges with sufficiently small load steps, ∆P=1100N.
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Figure 5.3: Input for hardening benchmark (Crisfield, 1993).

The load-displacement curves for the horizontal displacement u and vertical dis-
placement v are plotted in in figure 5.4 respectively figure 5.5. Upon comparing the
obtained results with the literature data from “Benchtests for geometric nonlinear-
ity” (Duxbury, Crisfield, & Hunt, 1989) it is observed that the results are identical.
This confirms that the implemented method is capable of solving continuous hard-
ening problems.
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Figure 5.4: Load-displacement curve for benchmark 2, P-∆u.
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Figure 5.5: Load P-displacement curve for benchmark 2, P-∆v.

Figure 5.6: Load-displacement plot for benchmark 2, P-∆u-∆v.
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5.3 Snap-back
In the third benchmark, the structure in benchmark 2 is extended with an additional
spring K3, and the spring stiffnesses of K1 and K2 are modified, see figure 5.7. This
modification generates a ‘snap-back’ behaviour.
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K1 1.5 N/mm
K2 0.25 N/mm
K3 1.0 N/mm

Figure 5.7: Input for snap-back benchmark (Crisfield, 1993).

Snap-back behaviour is a instability with an decrease in both load and displace-
ment simultaneously, and is particular hard to capture. Analysis with neither
load-increments nor displacement-increments manages to capture the snap-back be-
haviour. According to Crisfield, the snap-back occurs at approximately P = 3750N
which can be found with more iterative processes such as the arc-length method.
(Crisfield, 1993).
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Figure 5.8: Load-displacement curve for benchmark 3, P∆u2.
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5.4 Conclusion
In the first benchmark in section 5.1, load-increments with Newton-Raphson failed to
capture the snap-through behaviour. For this benchmark, which has only one degree
of freedom, the equilibrium could be found by changing to displacement-increments.
Benchmark 2 in section 5.2, proves the capability to solve stress hardening problems.
Snap-through did not exist in this problem and could be solved with NR iterations
and load-increments.

The third benchmark in section 5.3 displays the weakness of NR iterations. Neither
load-increments nor displacement-increments could catch the snap back. To over-
come this limitation its possible to implement a more advance iteration procedure
such as the arc-length method. A snap back is caused by a decrease in both load an
displacement simultaneously which is and unexpected scenario for a real structure.
Loads or displacement are often applied incrementally and the solution path during
snap-back is an unrealistic event in most practical application.

As a consequence of the conclusion, The FEM design tool is implemented with
Green strain definition and Newton-Raphson iteration technique. It will follow the
equilibrium path up to limit points where snap-back or snap-through can appear. It
will support load-increments as this is of most practical use for analysing structures
where the displacement pattern are not easy to predict.

40



6
Implementation of FEM_Toolkit

An implementation of a non-linear FEM solver has been made. The implementation
is written in the object-oriented programming language C#. The tool extends the
’Buildings and Habitats object Model’ (BHoM) and uses the linear algebra library
MathNet.Numerics. In this chapter, the outlines of the implementation is given
followed by a description of how it is exposed to the user.

6.1 Object Oriented Programming in C#
Object-oriented programming is a programming paradigm that allows for the cre-
ation of objects which can interact with one another. The objects can contain
data and methods which may be exposed to allow for modification and usage of
the object. There are many object-oriented languages, but the most popular ones
are class-based. Such languages defines classes which the objects are instances of,
e.g. a ‘Car’ class can be defined demanding each instances of the class to contain
information about the properties of each specific instance of Car.

The implementation of FEM_Toolkit is made using the C# object-oriented pro-
gramming language for the following reasons:

• C# is part of the .NET framework which runs on Windows operating systems.
• C# is a relatively simple, safe and high performance language.
• The availability of open source repositories (e.g. the BHoM is written in C#).

C#-code can not be run natively and has to be compiled first. The compilation of
the code results in an assembly containing DLL and EXE-files that are used to run
the program. Assemblies can then be exposed in different settings within the .NET
framework where its objects and methods can be used (Liberty, 2005). For further
details on programming in C# it is recommended to read Programming C#: build-
ing. NET applications with C (Liberty, 2005) and The C# programming language
(Hejlsberg, Torgersen, Wiltamuth, & Golde, 2008). The code for the FEM_Toolkit
is written and compiled in Microsoft Visual Studio.

6.2 Building and Habitats object Model
The Buildings and Habitats object Model (BHoM), is an open-source collective com-
putational project effort, with the main aim to facilitate for seamless co-creation of
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code and collaboration across the architecture, engineering and construction indus-
try. By standardizing data and creating a common core, it limits the number of links
required to exchange data between software. Figure 6.1 illustrates the traditional
way of data exchange between software versus the BHoM way of exchanging data.

Figure 6.1: Software data exchange strategies.

Source: Copyright BHoM. Image reproduced with permission.
https://github.com/BHoM/documentation/wiki/What-Is-the-BHoM-For .

The core of the BHoM is structured around the 4 main categories of code illustrated
in figure 6.2. They categories can be described as:

• The oM, consisting of data entities with a set properties that can manipulated,
such as lines, beams and loads.

• The Engine, which is used to manipulate data in the oM.
• The Adapter, which allows for communication with external engineering soft-

wares such as Revit, Robot or RFEM.
• The UI, exposes the oM and the Engine to user-interfaces such as Excel,

Dynamo and Grasshopper.
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Figure 6.2: The 4 categories of the BHoM-core.

Source: Copyright BHoM. Image reproduced with permission.
https://github.com/BHoM/documentation/wiki/Structure-of-the-BHoM .

The BHoM is designed to be extendable, which means that a toolkit can be created
in an independent repository allowing for specific tasks to be carried out. This
includes linking with external software or discipline specific functionality. For this
thesis, a toolkit is created for non-linear finite element calculations.

The code can be used either by compiling repositories, which are found on GitHub,
or by downloading an installer available on The Buildings and Habitats object Model
website (BHoM, 2020). It is worth noting that most of the code is written in C#
but there are some code in other languages also. Additionally there is an extensive
wiki on GitHub for further reading (“Structure of the BHoM”, 2020).

6.3 FEM_Toolkit
Our contribution is the FEM_Toolkit which is developed to solve geometric non-
linear problems used for structural systems. It extends the BHoM-core, with depen-
dencies on the oM, Engine and UI. Subsequently, it is written in the same coding
style as any of the available toolkits part of the BHoM code library.

As noted in section 3.3, FEM is formulated using matrix and vector operations and
requires linear algebra operations to solve linear equation systems. Math.NET Nu-
merics is an open-source library which provides numerical methods and algorithms
which is used in the FEM_Toolkit. It is distributed under the MIT/X11-License
(“Math.NET Numerics”, 2020).

The FEM_Toolkit consists of two categories of objects: FEM_oM objects, where
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properties and results are stored; FEM_Engine objects, which takes care of compu-
tations and queries. The classes in the toolkit are displayed in table 6.1.

Table 6.1: FEM_Toolkit classes

FEM_oM

FEMResults Stores results from the analysis.

Settings Defines analysis settings.

FEM_Engine

Assem Assembles vectors and matrices from local degrees
of freedof into global.

Edof_BC_fext Creates topology-matrix (edof), boundary condi-
tion (bc) and external load-vector (fext).

GreenBarElementStress Calculates element forces for a bar.

GreenBarForceVector Creates internal element force vector.

GreenBarStiffness Creates element bar stiffness matrix.

Partioning Partitions global system into free dofs from con-
strained dofs in equation system.

Results Creates BHoM results, such as BarDisplacement,
BarForce, BarStrain, etc.

Run Triggers the non-linear FEM procedure.

SolveEq Solves the equation ∆a = K−1R and checks if
solution has converged.

Run triggers the solver and requires the following BHoM-object input:
•Bar •Constraint6dof
•BarPreStressLoad •PointLoad

FEMResults is the output from Run and its values can be displayed with
BHoM.oM.Structure.Query methods:

• DeformedShape
• Visualize
• PlotBarForce
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6.4 Exposing FEM_Toolkit to User-Interfaces
Since the FEM_Toolkit is an extension to the BHoM core, its classes are automati-
cally exposed to various user-interfaces supported by BHoM, such as Grasshopper,
Excel and Dynamo. Figure 6.3 illustrates how this looks in Excel and Grasshopper.
A benefit of exposing the code to existing software is not having to create a bespoke
user-interface and at the same time allowing the user to use built in capabilities of
existing interfaces.

Figure 6.3: Exposure of FEM_Toolkit in Grasshopper and Excel.
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7
Case-Study: Analysis of Audi A

50 Roof Structure

The FEM_Toolkit is used on a two part case-study to show how the tool can be
used in practical application. The studies are approached with different workflows
to highlight the flexibility of the tool. This means that each case-study will have
different design goals which require different workflows.

7.1 Background
In 1998, German architects A-N-S together with structural engineers Schlaich Berg-
ermann Partner designed a lightweight glass roof between two existing buildings
for Audi in Ingolstadt, Germany. The roof consists of a radial structure suspended
by three-dimensional cable systems which are prestressed. The light structural sys-
tem spans 24-meter, and consists of slender cross-section profiles, and enhances the
sensation of lightness inside the room.

(a) Exterior view. (b) Section drawing.

Figure 7.1: Audi A50 restaurant extension.

Source: By permission of A-N-S Architects; http://www.ans-architekten.de/ .
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7. Case-Study: Analysis of Audi A 50 Roof Structure

7.2 Aim and Workflow
The aim of studying the roof is to show how the FEM_Toolkit can be used for a
real structure. The study does not strive to find an improved design or to verify the
existing structure. Instead the study investigates how some questions, that might
have risen during design process could be approached.

The FEM_Toolkit is exposed to Rhino/Grasshopper which allows for parametric
modelling to be used. This means that the structural model, including the initial
geometry, section properties, loads and prestress, can be defined with a set of param-
eters and modified in the same pipeline. Moreover, post-processing and visualization
of results are available to use and extract.

The general workflow, as illustrated in figure 7.3, consists of several steps. The
process begins with an initial geometry which is form-found if not in equilibrium.
The form-finding is followed by a non-linear analysis, where section- and material-
properties, prestress, and external loads are defined. The next step is control if the
design is feasible and if eventual modifications or optimisations are required. The
extent of what is feasible is defined by the designer and can differ from case to case.
The same model could also be exported to an external FEM-software for further
studies.

Two studies are made, a 2D-case and 3D-case. Both cases follow the outlined work-
flow but differs in how modifications to the structure are made. The 2D-case is
modified by letting the user change the input parameters, while the 3D-case in-
put parameters are changed through an optimisation algorithm. Figure 7.2 shows
how the workflow discussed above is implemented in Grasshopper using the same
colour-code as in figure 7.3.

BOHM OBJECTS

FEM_TOOLKIT

VISUALIZE

ADAPTERFORMFINDING

INITIAL

GEOMETRY

Figure 7.2: Workflow inside Grasshopper.
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Figure 7.3: Workflow scheme.
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7. Case-Study: Analysis of Audi A 50 Roof Structure

7.3 Part 1: 2D-case
The first case-study is simplified into a 2D-structure where the arc-shaped roof is
simplified into a horizontal bar. The initial task is to form-find a shape of a catenary
in equilibrium, illustrated in figure 7.4. The assumed self-weight 11 kN of the roof
is used and applied to the nodes. The form-finding results are illustrated in figure
7.5

Figure 7.4: Form-finding of cable.

Figure 7.5: Geometry after form-finding.

The main cable is now in equilibrium and can be modelled with the rest of structure.
The goal is to study how the entire structure reacts to the same applied loads. To
do that, section and material properties must be defined. Figure 7.6 illustrates
the definition of cables as tension only members with steel circular sections. The
columns and the horizontal bar are defined as CHS 168.3x7.1 respectively CHS
244.5x16. The system is then solved without any defined prestress and the results
are presented in figure 7.7.
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7. Case-Study: Analysis of Audi A 50 Roof Structure

Figure 7.6: Creation of steel material and circular cross-section.

(a) Deformed shape: Scale factor 30. (b) Displacements.

Figure 7.7: Displacement without prestress as displayed by FEM_Toolkit.

The nodal displacements in the main cable are large and the column is not standing
vertically any longer. To minimize the large displacements prestress can be applied
to the main cable and the backstay as illustrated in figure 7.8. The process of chang-
ing the prestress values using sliders is smooth and allows direct visual response.
There are different possible combinations of prestress that limit the displacements.
The visible prestress values in figure 7.9 results in a reduction of the maximum
displacement to 8.2mm and is shown in figure 7.10.
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Figure 7.8: Application of presstress.

Figure 7.9: Definition of prestress.
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7. Case-Study: Analysis of Audi A 50 Roof Structure

(a) Deformed shape: Scale factor 30. (b) Displacement.

Figure 7.10: Displacements with prestress displayed by FEM_Toolkit.

The sectional forces are displayed in figure 7.11 and 7.12. The model was exported
to RFEM and it was found that the maximum deviation in sectional force between
RFEM and NL-FEM is less than 1%.

Figure 7.11: Normal forces with prestress displayed by FEM_Toolkit.

Figure 7.12: Normal forces with prestress displayed in Grasshopper.
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7. Case-Study: Analysis of Audi A 50 Roof Structure

7.4 Part 2: 3D-case
The roof is extended to a more complex 3D-model as illustrated in figure 7.13. The
horizontal bar is replaced with arcs connected to main cables by vertical hangers.
Furthermore, the arc is restrained from moving in the y-direction. The structure is
analysed with nodal loads, P = 22 kN. The goal is to minimize the rotation angle
of the columns, and nodal displacements, and the normal forces by prestressing the
main cable, the backstays, and the hangers.

y

Locked in y-direction

Hinged

x

z

(a) Boundary conditions.

(b) Point loads P.

Figure 7.13: 3D-structural model.

Optimisation
Part of a designer’s role is to narrow several alternatives proposals into one feasible
choice. While there exist many feasible options with respect to declared design goals,
it is sometimes desirable to find an optimised solution.
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7. Case-Study: Analysis of Audi A 50 Roof Structure

In this case-study, the prestress in cable members are optimised with respect to
three design goals. The multi-objective model-based optimisation tool Opossum
is used (Wortmann, 2018). Since both Opossum and FEM_Toolkit are available
in Grasshopper, the tools are easily connected. The model-based algorithm imple-
mented in Opossum has proven to be fast and stable and figure 7.14 shows how
variables and objectives are defined in Opossum.

Figure 7.14: Definition of objective and variables in Opossum.

Opossum ran over 300 iterations and the results from each iteration was saved.
The prestress of each cable was defined individually and are used as optimisation
variables. The objectives of this optimisation are to minimize the following:

• Objective 1 - Sum of displacement in the arc.
• Objective 2 - Rotation angle of column.
• Objective 3 - Sum of normal force in the main cables.

The results of iteration step 1, 10, 100 and 300 are displayed in table 7.1 and figure
7.15. It is noteworthy to mention that the optimisation converged quickly, and
minor improvements were made in the later iterations.

Table 7.1: Results at different iteration step from Opossum

textbfIteration Objective 1 Objective 2 Objective 3

1 160.679 -79.356 54.125
10 1.301 1.349 0.614
100 1.352 1.394 0.424
300 0.005 1.383 0.068
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7. Case-Study: Analysis of Audi A 50 Roof Structure

(a) Iteration 1, scale factor 0.1.

(b) Iteration 10, scale factor 10.

(c) Iteration 100, scale factor 10.

(d) Iteration 300, scale factor 10.

Figure 7.15: Displacements (left) and normal forces (right) at different iteration
steps
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7. Case-Study: Analysis of Audi A 50 Roof Structure

The initial prestress in the tension elements can be translated to member shortenings
and is illustrated in figure 7.16 below.

(a) Initial prestress [N]. (b) Equivalent shortening [mm].

Figure 7.16: Best set of variables found by Opossum after 300 iterations.

The final model was exported to RFEM for verification. It was found that normal
forces differ less than 0.6%. The normal force in the column is 419.48 kN in RFEM
compared to 422.0 kN in the FEM_Toolkit. Deviations in the displacement values
were smaller than 0.1%.

Uplift
The last study on the Audio A50 roof structure is to optimise the prestress values
based on two load-cases showed in figure 7.17. The first load-case (LC1) is identical
to the previous load-case, with force P = 22 kN. The second load-case (LC2) is an
uplift scenario with point loads of 8 kN.

(a) General case, LC1. (b) Uplift, LC2.

Figure 7.17: The two studied load-cases.

The force patterns are different for the two load-cases, seen in figure 7.18. The arc
is compressed in LC2 and tensioned in LC2 and the optimisation will be based on
these diverging cases.
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7. Case-Study: Analysis of Audi A 50 Roof Structure

(a) Stress distribution for LC1. (b) Stress distribution for LC2.

Figure 7.18: Stress distribution for the two load-cases.

Opossum is used again to find a set of prestress configurations for both load-cases.
The objective is to minimize the arc’s vertical displacements. In addition, an opti-
misation is done with the objective to minimize the vertical displacements for both
cases simultaneously. In total, three different optimisations are made and conse-
quently three different prestress configurations are found:

• Set 1 - Optimised with objectives from LC1
• Set 2 - Optimised with objectives from LC2
• Set 3 - Optimised with objectives from both LC1 and LC2

The three prestress configurations are displayed in figure 7.19 below.

(a) Set 1. (b) Set 2. (c) Set 3.

Figure 7.19: Three sets of prestress variables found with Opossum [N].

58



7. Case-Study: Analysis of Audi A 50 Roof Structure

Figure 7.20: Deformations for LC1 (orange) and LC2 (cyan) with variables from
set 1.

Figure 7.21: Deformations for LC1 (orange) and LC2 (cyan) with variables from
set 2.

Figure 7.22: Deformations for LC1 (orange) and LC2 (cyan) with variables from
set 3.
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7. Case-Study: Analysis of Audi A 50 Roof Structure

Table 7.2 shows the sum of the vertical displacements for the three different prestress
sets for the two load-cases. Prestress values from set 1 and set 2 give minimum∑ Uz for their respective load-cases but maximum ∑ Uz for the opposite load-case.
Prestress variables in set 3 shows a trade-off between LC1 and LC2, resulting in
prestress values that might fulfil the design goals for both load-cases.

Table 7.2: Comparison of set 1-3, based on sum of the arc’s nodal displacements.

Load-case Setup ∑ Uz

LC1 Set 1 0.00103
Set 2 0.63913
Set 3 0.07612

LC2 Set 1 0.24976
Set 2 0.0597
Set 3 0.19056

7.5 Conclusion
A two-part case-study was preformed to demonstrate how the implemented
FEM_Toolkit could be used to analyse complex structures. The implementation to
Grasshopper allowed the toolkit to be combined with other tools and made it pos-
sible to implement workflows with either an heuristic approach or a more advanced
optimisation. Moreover, the extension to BHoM gave the ability to easily share data
with other software which could be used to verify the results.
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8
Conclusions

In this project, we set out to develop a computational tool called FEM_Toolkit
to be used in conceptual design phase for cable supported structures. To allow
for several design proposals to be investigated, the tool has been exposed to CAD-
environments such as Rhinoceros. Moreover, the tool had to be flexible enough to
support varying workflows and programmed in a way so that it can be extended
with desirable functionalities. The FEM_Toolkit implements a Newton-Raphson
finite element solver for Green strain bar elements and is thus capable of solving
large-displacement problems with or without prestress.

In cable supported structures, form and forces are inseparable and requires a close
collaboration between architects and engineers. By exposing the tool to user-
interfaces known to both architects and engineers, it is our belief that collaboration
can be become easier. By facilitating the cooperation, our aim to is to allow for the
engineer to take an active role in the conceptual phase.

The implemented solver was chosen after evaluating three numerical methods for
large-displacement problems: the dynamic relaxation method (DRM); the force
density method (FDM); and, the non-linear finite element method (NL-FEM) with
Newton-Raphson and Green strain bar elements. While all three proved capable of
solving form-finding problems, only DRM and NL-FEM could be used in analysis.
However, DR was ruled out in favor for NL-FEM, which is better known among
practicing engineers.

The FEM_Toolkit is software agnostic using open-source libraries such as BHoM
and MathNet.Numerics. The FEM_Toolkit could be exposed to numerous user-
interfaces used both by architects and engineers including Grasshopper and Dynamo.
Our tool is open-sourced in the same spirit as the used libraries, and is available to
download from GitHub (see Appendix A) and can be modified by others.

With the tool, it is possible to meet design objectives by using different workflows,
including the use of prestress to reduce displacements and the use of multi-objective
optimisation algorithm.

Due to the diverse nature of projects, a promising way forward is to allow for ex-
tension to be made based on project needs. The tool can be clarified and extended
for wider applications. Some of the suggestions below can be of interest for future
research and some are practical additions to the toolkit:
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8. Conclusions

• Incorporate more element types. The tool can be extended to support
beam and shell elements to make it more useful for more complex structures.

• Load-cases and Load-combinations. The tool can be extended to support
line loads, temperature loads, and nodal displacements. It is also important to
consider multiple load-combinations in structural design (e.g. ULS and SLS).
The case-studies revealed that dealing with multiple load-combinations in the
tool can be improved.

• Component descriptions. Functionality description of each method could
be added to the code. Moreover, a clear documentation explaining how to run
the code can also be provided.

• Solver feedback. To increase the transparency, the toolkit can be extended
with a feedback-output. This could ease the process of detecting error without
the need of using software such as Visual studio.

• Arc-length iterations. Implementation of a different numerical iteration
algorithm to avoid (snap-back/snap-through) convergence errors.

• Dynamic behaviour. Light-weight structures are prone to vibrations and
dynamic studies are usually required. The toolkit could be extended to sup-
port static eigenfrequency analysis.

• Prestress sequence. The sequence of prestressing more complex cable sup-
ported structures can be complicated and requires phased analysis.
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A
Code Access

Below are some links to access the code for the FEM_Toolkit, BHoM and Math-
Net.Numerics:

• Link to FEM_Toolkit: github.com/SaterAhmad/FEM_Toolkit
• Link to BHoM: github.com/BHoM
• Link to MathNet.Numerics: github.com/mathnet/mathnet-numerics
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