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Out-of-Plane Loading Effects on Slip-Critical Screw Joints
Master’s thesis in Applied Mechanics
MARCUS KARLSSON
Department of Applied Mechanics
Division of Solid Mechanics
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Abstract

This thesis aims to provide a theory for the influence of out-of-plane loads on the slip condition of screw joints.
This theory is developed using rigid body theory and after the forces on the plates have been found, the concept of
elastic clamping areas is introduced and a formula for material stiffness developed. These expressions for the slip
resistances will be used to find the critical load for a total joint slip. The theory will then be compared to a Finite
Element (FE) model that is parametrised to vary the moment arm with respect to the length out of the plane.

The theory shows a very low influence of the out-of-plane load on the total slip resistance of the joint while the
FE simulations show a significant increase. Using very stiff plates in the FE simulations however, yields the same
results as the theory, leading the author to believe that the increased slip resistance is a geometrical effect.

The bolt forces are increased significantly in the bolts located in the area experiencing separative forces. This
effect must be taken into consideration when designing joints with load applied out of the plane to avoid in-field
failure due to bolts going past yield load.

Keywords: Bolted Joints, Screw Joints, Slip-Critical Applications, Bolt/Screw Joint Eccentric Loading
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Nomenclature

α Angle of FIP to x-axis [rad]

∆db Elongation of bolt [m]

∆dc Compression of clamped parts [m]

∆Fb Change in bolt force [N ]

∆Fc Change in clamping force [N ]

δ Deflection [m]

ε Kinematic strain

γ Kinematic strain

κ Kinematic angle

µ Friction coefficient [−]

σbolt,i Stress in bolt cross section [N/m2]

σfr Frictional stress [N/m2]

σmean,i Mean stress in bolt cross section from parallel axis theorem [N/m2]

σn Normal stress [N/m2]

θ Angle of material deformation frustum

di Distance from centre of gravity for joint [m]

E Young’s modulus [N/m2]

e Eccentricity of in-plane load [m]

Fa External axial load [N ]

Fb Tensile force in the bolt [N ]

Fc Clamping force between the plates [N ]

Fs Maximum friction force [N ]

FT Transverse load [N ]

Fbolt,i Axial force in bolt [N ]

Fbs Friction force in bolt head plane [N ]

Fchange Change in bolt and clamping force [N ]

Fcs Friction force in clamped plane [N ]

FIP In-plane force [N ]

Fmean,i Force on bolt from parallel axis theorem [N ]

FOP Axial force from external moment [N ]

Fpre Bolt pre-load force [N ]

FP Transverse forces on clamped areas [N ]

Fr Resulting forces from in-plane forces [N ]

i Bolt index

Ipar,x Area moment of inertia [m4]

Kb Bolt stiffness [N/m]

Kc Stiffness of clamped material [N/m]

Kf Flexural stiffness [N/m]
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ks Friction coefficient of faying surface

m Number of faying surfaces (slip planes)

MIP In-plane moment [Nm]

MOP Out-of-plane moment [Nm]

n Number of bolts

P Critical load [N ]

Pavg Pressure [N/m2]

r0 Distance to centre of rotation [m]

ri Radial distance from assumed centre of rotation [m]

Rs Kulaks slip resistance [N ]

Rslip Slip resistance [N ]

sfac Safety factor for shear force in clamp area

Ti Clamping force [N ]

xi Bolt x-coordinate [m]

y Distance from moment application [m]

yi Bolt y-coordinate [m]

z Coordinate from single bolt centre of gravity [m]

FE Finite Element

I.C. Instant centre of rotation coordinate

RBE Rigid Body Element
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1 Introduction

Joining parts together using screws or bolts is an easy and common way to assemble a structure. When designing
these joints it is important to know about their limit load before failure, so that unexpected failure in the field
does not occur. The many failure modes of such joints make it an inherently difficult joint to analyse.

One of the challenges is to design these joints against slip, a seemingly menial task, but as the load cases
become more complex, the complexity of the joint behaviour increases rapidly. One such load case is when the
load is eccentrically placed out of the plane of the joint, further complexity is introduced if the load is eccentrically
placed in the plane.

This thesis aims to investigate the effects on the slip condition when placing these loads eccentrically out of the
plane. In Figure 1.1 a model of a tractor front loader subframe is displayed, showing how the load is applied out
of the plane of the screw joints.

Load

(a) Isometric view of the model

Load

(b) Out-of-plane eccentricity visible

Load

(c) In-plane view of the joint

Figure 1.1: Model of tractor subframe split in symmetry plane

FE simulation is an excellent tool in this type of analysis since regular hand calculations are not easily applicable
on such a complex problem as sliding on large elastic areas.

The goal of this project is to develop a model that can incorporate an out-of-plane moment into a model to
predict slipping loads. This model should be implementable in such a way that a designer can input joint data
and get approximate critical load and slip conditions in the bolts.

Initially a theory using rigid bodies will be developed. This model will then be used to find the slip conditions
of the joint and clamped areas.

A simplified FE model of a joint will be made to compare the results and correlate with the developed
theory. The discretised model will be solved using MSC’s NASTRAN solver SOL400 [1]. It is assumed that finite
deformations exist due to the sliding contacts and the high loads to overcome the clamping friction of the bolts.

A model of a real joint will be compared to the theory to see if it can be applied to real world applications.

1.1 Limitations

The project will have some limitations and assumptions regarding mechanical behaviour will be made.

• Linear elastic material will be used in the FE analysis and theory

• Static conditions

• Fracture and yielding will not be considered

1



1.2 Review of Contact Mechanics in FEM

The theoretical model will be compared to FE simulations, where large variations can occur depending on the
settings used. It is therefore important to define what settings that are used throughout the simulations.

1.2.1 Gap Function

When introducing contact mechanics, a contact function to determine when nodes are in contact is needed. The
node-to-segment contact mode is chosen, meaning that the nodes will be checked against the surface of the
opposing elements. The option to use segment-to-segment contact checking is possible but this function is still
under development in SOL400 [2] and therefore the node-to-segment contact is used.

1.2.2 Coulomb Friction Model

The Coulomb friction model has been chosen in the FE simulations. The MSC.Nastran documentation has some
notes on the constitutive equations for Coulomb friction [3]:

σfr ≤ −µσn (1.1)

where σfr is the frictional stress, σn is the normal stress (σn ≥ 0), µ is the friction coefficient between the surfaces.
In the Coulomb model, a point in contact will be either sliding or sticking.

1.2.3 Separation

Due to how nodal forces behave in 2nd order elements, the integrated nodal stress will be used as the separation
condition [2] together with a tolerance. For the small testing models used in this thesis, the separation tolerance is
set to 1% of the maximum contact stress in the model to achieve high accuracy. Since the separation of one node
can cause another to come into contact again, it is required to set a maximum number of separations for each load
step, often referred to as ”chatter”. After this maximum has been reached, the individual node will no longer be
considered for separation. There is also a possibility to change the total number of allowed separations for all
nodes in the model for a single step to further reduce chatter from node separations, limiting iterations based on
the global number of node separations.

1.2.4 FE Modelling

To set up an FE simulation from a given geometry some preparations have to be made. First the geometry has
to be cleaned, all surfaces defined and all volumes closed, and simplified to avoid overly complex behaviour that
might not be the target of the analysis. Figure 1.2 displays a simplified flowchart of the steps needed to complete
an analysis, starting from a supplied geometry and ending with the analysis of the simulated load case.

2



Import
geometry

Clean geometry Mesh geometry
Check mesh

quality
Define contact

bodies

Apply
boundary
conditions

Pre-processing

Check input
model

Run solver
Monitor

convergence
Retrieve

output file

Processing

Load input file
Load

output file
Load results
to geometry

Check model
deformations
and stresses

Extract
relevant data

Plot and
interpret data

Post-processing

Figure 1.2: Workflow for the FE simulations
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2 Theory

The aim of this thesis is to find a mathematical model of how the out-of-plane loading affects the slipping condition
of a bolted joint based on the rigid body theory. In this chapter the concepts of slip and joint failure will be
presented as well as some of the modelling techniques for bolted joints in FE analysis.

2.1 Failure Criteria

The joint will be considered failed when there is slip in the whole joint, meaning that the whole bolt area is
slipping. This will ultimately initiate contact between the bolts and the bolt hole, creating a shear force on the
bolt that the bolt is normally not designed to withstand.

2.2 Bolt Modelling

Modelling bolts in FE analyses has to be very carefully performed as the introduced boundary conditions can lead
to behaviour that is far from accurate. Some ways to model bolts are presented in Table 2.1

Type Pros Cons

Beam Element Bolt Computationally cheap Does not capture separation

Captures head and nut behaviour
Solid Bolt Captures separation in contact Computationally expensive

Captures thread stresses
Threaded Bolt If threads are completely modelled with rise it is Extremely computationally expensive

possible to test torque to pre-tension

Table 2.1: Different types of bolt modelling techniques

Some illustrations of the different modelling techniques available are displayed in Figure 2.1. The computationally
cheapest way to model bolts are only good for very simple analyses where the actual slip condition is not of great
importance. Since the bolt head is not there to apply another slip plane the, slip condition is greatly changed.
Instead the bolt resists slipping motion with its full flexural stiffness. Meanwhile the threaded bolt technique is
mainly good when thread specific behaviour needs to be analysed. The solid bolt modelling captures the stresses
in the bolt body and the friction between the bolt head and the clamped part.

4



(a) Rigid body elements on the inside of the holes
connected with beam elements

(b) Multi-point constraint introduced after bolt is split

(c) Threaded bolt

(d) Bolt split and nodes tied with
multi-point constraint

(e) Bolt pre-stressed

(f) Bolt in loading just before slip (g) Bolt post slip

Figure 2.1: Stresses and displacements for different bolt models in various situations, deformation scale factor of
100

During this thesis the solid bolt modelling technique will be used as this is a good approach for bolted joint
analysis where the general bolt and joint behaviour is the target of the simulation.
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2.3 Slip Condition

The slip condition for any point in a contact surface can be simplified to the clamping pressure multiplied by the
friction coefficient. According to the Coulomb friction model, this is the maximum shear stress the point on the
surface can resist before slip occurs. In Figure 2.2 the slip condition of a transversely loaded strip is shown. Fcs is
the maximum friction force in the clamped plane and Fbs is the maximum friction force in the bolt head plane.

Fb

Fb

Fcs

Fcs ≤ �	Fc

F Fbs ≤ �	Fb

Fc

Fbs

Figure 2.2: Bolt area simplified as a strip with two slip planes

From this figure the maximum friction force Fs and maximum allowed transverse load F to fulfil static conditions
for the strip is:

F ≤ Fs ≤ µFc + µFb (2.1)

If the strip is loaded in the axial direction of the bolt, a difference in Fb and Fc can be shown using force equilibrium,
this will be treated further ahead in Section 2.4. It is also assumed that the bolt can carry the full slipping load
before deflection.

6



2.4 Rigid Body Motion

Assuming rigid body theory, the effect of the out-of-plane load on the clamped areas can be derived by splitting
it into two moments and one transverse force. First the out-of-plane force is derived by assuming rigid body
motion around an axis through the centre of the plate. The superposition principle is then implemented on the
two different load cases in the plane, one with the moment in the plane of the plate and one with the transverse
forces, to obtain the final shearing force on the clamped area coming from the plate. The plate is considered rigid
and the bolts are considered as elastic springs.

2.4.1 Joint Forces

Due to the applied external load, reaction forces in the clamping areas must be accounted for. Using rigid body
theory, an expression for these forces depending on the applied load can be derived.

2.4.2 Out-of-Plane Moment

The out-of-plane moment will influence the clamping force of the separate bolt areas. To find this influence, an
assumption that the moment will be distributed as a force on all bolts depending on the area of inertia is made.
In Figure 2.3 the expected reaction forces can be seen.

MOP

FOP,i

z

y

Figure 2.3: Out-of-plane moment effect on the bolts

Say that i is the bolt index and n is the number of bolts. The area moment of inertia around the centre of mass,
Ipar,x, using the parallel axis theorem [4] (see Appendix B.1), is then computed as:

Ipar,x =

n∑
i=1

Ai · y2i (2.2)

where Ai is the bolt cross section area and y is the y-coordinate of the bolt centre. The average pressure Pavg,i in
the bolts can then be calculated as (c.f. Appendix B.1):

Pavg,i =
−MOP · yi
Ipar,x

(2.3)

where MOP is the moment out of the plane induced by the applied load. Multiplying with the bolt cross sectional
area yields the bolt axial force FOP,i created from the moment:

FOP,i = Pavg,i ·Ai =
−Ai ·MOP · yi

Ipar,x
=
−Ai ·MOP · yi

n∑
j=1

Aj · y2j
(2.4)

An expression for the axial force induced by the out-of-plane moment, assuming that all bolt cross sections are

7



uniform, can then be calculated as:

FOP,i =
−MOP · yi

n∑
j=1

y2j

(2.5)

2.4.3 In-Plane Moment

The same procedure used in Section 2.4.2 can be used for the in-plane moment and an expression for the shearing
force from the in-plane moment achieved. Figure 2.4 describes the reaction forces in the bolts from the in-plane
moment and transverse force. Here ri is the radial distance from the assumed centre of rotation and αi the angle
of FIP to the x-axis.

FP,i

Fr,i

FIP,i

FT

FP,i
MIP ri

FIP,i

(a) Transverse forces

FP,i

Fr,i

FIP,i

FT

FP,i
MIP ri

FIP,i

(b) In-plane moment

FP,i

Fr,i

FIP,i

FT

FP,i
MIP ri

FIP,i

αi

y

x

(c) Resultant forces

Figure 2.4: Equilibrium for applied force and moment in centre of gravity for bolts

The expression for the shearing forces FIP,i from the in-plane moment, MIP , is computed using area moment of
inertia, assuming uniform bolt cross section areas (see Appendix B.2 for further information):

FIP,i =
−MIP · ri

n∑
j=1

r2j

(2.6)

where ri is dependent on the bolt coordinates xi and yi as:

ri =
√
x2i + y2i

2.4.4 In-Plane Force

The transverse force is then moved into the plane due to the moments introduced and is assumed to be divided
equally as FP,i between the bolts:

FP,i = FT /n (2.7)

where FT is the applied load moved into the plane.

8



2.4.5 Resulting Forces

A vector sum is used to determine the resulting force Fr,i acting on the clamped area in the plane. The angle αi is
given by:

αi =



π

2
− arctan

yi
xi

for x ≥ 0, y > 0

π

2
+ arctan

|yi|
xi

for x > 0, y ≤ 0

3π

2
− arctan

yi
xi

for x < 0, y < 0

3π

2
− arctan

|yi|
xi

else

The magnitude of the in-plane force is:

Fr,i =

√√√√√√√
MIP · ri

n∑
j=1

r2j

cos(αi)


2

+

FP,i

n
+
MIP · ri

n∑
j=1

r2j

sin(αi)


2

(2.8)

The clamping force Fc,i can then be expressed as the preload force summed with the axial force from the out-of-plane
moment:

Fc,i = Fpre,i −
MOP · yi

n∑
j=1

y2j

(2.9)

The slip resistance Rslip,i for any bolted area can then be expressed as:

Rslip,i = Fc,i · µ+ Fb,i · µ (2.10)

While the bolt retains its pre-load force Fpre since the plates are considered rigid, no deformation occurs in the
bolt until separation, leading to:

Fc,i = Fpre,i + FOP,i (2.11)

Fb,i = Fpre,i (2.12)

2.5 Worst Bolt Model

An expression for expected shearing forces and slip resistance in any bolt is now formulated. It can then be stated
that the safety factor, sfac, for any bolt is:

sfac,i =
Rslip,i

Fr,i
(2.13)

Eq. (2.13) is expanded, arriving at a formula for the safety factor against slip regarding local shear forces, meaning
that this is not a safety factor for applied force but for the shear forces in the clamping areas.

sfac,i =

2Fpre,i − MOP ·yi
n∑

j=1
r2j

 · µ
√√√√√
MIP ·ri

n∑
j=1

r2j

cos(αi)

2

+

FP

n + MIP ·ri
n∑

j=1
r2j

sin(αi)

2
(2.14)
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2.6 Total Joint Slip

Here Kulak’s instant centre of rotation theory [5] is introduced, a model of when a joint experiences complete
slip. Kulak’s method assumes that the joint will slip in all bolts simultaneously and that it is possible to find a
point around which the whole joint will rotate at the moment of slip. The critical load is then resolved by finding
this point using moment equilibrium. In Figure 2.5 the loading direction and eccentricity e of the applied load P
can be seen. This will be used to find the instant centre of rotation (I.C.), coordinate using moment equilibrium.
This point must be on a line perpendicular to the load direction according to Eq. (2.16), passing through the
intersection of the balance lines of the slip resistance of the clamped areas. So a balance line, shown with dashed
line in Figure 2.5, is found by weighting the coordinates of the bolts with their slip resistance and finding their
balance lines in both y-direction and x-direction.

I.C.

P

er0

Rslip,iri

φi
y

x

Figure 2.5: Diagram of forces for moment equilibrium

where r0 is the distance from the intersection of the balance lines. The equilibrium equations can thus, according
to Kulak [5], be stated as:

↑ :

n∑
i=1

Rs cos(φi)− P = 0 (2.15)

→ :

n∑
i=1

Rs sin(φi) = 0 (2.16)

y : P (r0 + e)−
n∑

i=1

Rs ri = 0 (2.17)
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Here, Kulak’s slip resistance term Rs is:

Rs = mksTi (2.18)

where m is the number of faying surfaces (slip planes), ks is the friction coefficient of the surfaces and Ti is the
clamping force. Kulak’s theory can be extended to the case of varying slip resistance in the bolts. Assuming two
slip planes between the plates and bolt heads, Kulak’s slip resistance will be replaced by the slip resistance in the
rigid body model, where the slip resistance is:

Rslip,i = (Fb,i + Fc,i) · µ (2.19)

where Fb is the bolt force and Fc the clamping force. This slip resistance is valid assuming that both planes have
the same friction coefficient and the bolts carry the full slip load before deflection. Introducing this new slip
resistance gives a slip resistance that is individual to each clamped area. A new balance line must therefore be
defined using the new slip resistances as weights placed on the bolt locations. These new balance lines, are defined
in the x- and y-direction.

Using equilibrium for the system where the forces on the bolts are chosen to be the slip resistance Rslip,i,
acting perpendicular to the I.C., describes the state right before slip. Here, it is possible to solve for the critical
load P by iterating the point r0.

P1 =

n∑
i=1

Rslip,i · cos(φi)

P2 =

n∑
i=1

Rslip,i · ri

(r0 + e)

(2.20)

When |P1 − P2| ≤ tol the iterating is terminated and the critical load is determined by the equilibrium equations.

It is important to note that as the eccentricity of the load is approaching zero, i.e. the intersection of the balance
lines, the equations (2.20) will be approaching the transverse slip resistance as can be seen in Figure 2.6a, meaning
that no rotation will occur and the instant centre of rotation will be infinitely far away. Figure 2.6b illustrates this
singularity as the eccentricity approaches zero.
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Figure 2.6: Singular and asymptotic behaviour of the instant centre of rotation method

2.7 Elastic Members

The forces from the rigid body theories can be applied to the assumptions that the plates and bolts are elastic
only in the clamping areas and rigid elsewhere. Using an expression for the material stiffness developed herein, a
relationship between the external axial forces, the bolt forces and clamping forces are developed.

2.7.1 Clamping Force

A clamped area can be described as a system of springs in parallel where the material(s) being clamped is in series.
To solve the equilibrium in this system the stiffness of the material is idealised as springs. It is assumed that all
material experiencing deformation contributes to the stiffness only in the clamping direction. The material in the
clamped areas can be assumed to deform in the shape of a frustum, as shown in Figure 2.7a, with a 30° angle, θ,
according to Shigley [6]. Figure 2.7b shows a schematic representation of the spring system, where KB is the bolt
stiffness, Kc1 and Kc2 is the material stiffness, r0 is the hole radius, r1 is the bolt head radius and r2 is the radius
at depth x.
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Figure 2.7: Deformation cone and schematic of spring system for clamping area

The axial deformation δ of a cross section A is used to find the stiffness of the frustum:

dδ =
Pdx

EA
(2.21)

where E is the Young’s modulus of the material and P is the applied load. In the frustum a varying cross-sectional
area along the axial direction is expressed as:

A = π
(
r22 − r20

)
= [r2 = r1 + x · tan(θ)] =

= π (x tan θ + r1 + r0) (x tan θ + r1 − r0)
(2.22)

The equation Eq. (2.21) can now be formed as the integral:

δ =
P

πE

∫ L

0

1

(x tan θ + r1 + r0) (x tan θ + r1 − r0)
dx (2.23)

Integrating Eq. (2.23) according to Mathematics Handbook [7] pg.156 Eq.49 yields the equation for elongation:

δ =
P

πE2r0 tan θ
ln

(L tan θ + r1 − r0) (r1 + r0)

(L tan θ + r1 + r0) (r1 − r0)
(2.24)

The equation for stiffness is:

k =
P

δ
(2.25)

The final stiffness Kc for the clamped material thus becomes:

Kc =
πE2r0 tan θ

ln
(L tan θ + r1 − r0) (r1 + r0)

(L tan θ + r1 + r0) (r1 − r0)

(2.26)

This expression is only valid as long as the assumption of the strain cone angle not varying through the thickness
is true. Very thick plates will have a more barrel shaped strain frustum [8].
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With the stiffness Kc and the bolt stiffness Kb, the clamping area can be idealised as a spring system as
illustrated in Figure 2.7b. The applied external force gives a new elongation of the system:

∆L =
Fa

Kb +
(

1
Kc1

+ 1
Kc2

)−1 =

{
KC =

(
1

Kc1
+

1

Kc2

)−1}
=

Fa

Kb +KC
(2.27)

Before the external load is applied Fc = Fpre, where Fpre is the pre-tension. Using the rigid body theory to get
the applied force in all bolts, the updated clamping forces and forces in the bolts can be found:

Fc = Fpre −∆L

(
1

Kc1
+

1

Kc2

)−1
= Fpre −∆LKC (2.28)

Fc = Fpre −
Fa

Kb +KC
KC = Fpre −

Fa

Kb

KC
+ 1

(2.29)

Fb = Fpre + ∆LKb = Fpre +
Fa

KC

Kb
+ 1

(2.30)

Clamping Diagram

The clamping forces can be described in a diagram as shown in Figure 2.8. Where Fa is the axial external force on
the joint that leads to new deformations, ∆db and ∆dc, in the joint as well as new clamping forces and bolt forces.
∆Fb and ∆Fc is the change of bolt and clamping force. If an axial load is applied on the joint, a reduction of the
clamping force ∆Fc and increase of the bolt force ∆Fb is expected. Please refer to ”Lärobok i Maskinelement” [9],
for more in-depth explanations of clamping diagrams.

Elongation

Force

Kb

Kc

Fpre

Fa

Fc

Fb

db dc

New db

New dc

Fb

Fc

Figure 2.8: Clamping Diagram
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2.7.2 Effect of Axial Forces on Slip Resistance

By introducing these new stiffnesses it is possible to formulate a net change in clamping forces due to the applied
axial load. The bolt and clamped material both experience the preload force. The slip resistance without any
axial load on the clamped area is then assumed to be:

Rslip,i = 2Fpreµ (2.31)

The new forces after introducing the elongation from the external force on the bolt and clamped material is
calculated as:

Fb = Fpre + ∆LKb

Fc = Fpre −∆LKC

(2.32)

The new slip resistance is then:

R′slip,i = (Fb + Fc)µ (2.33)

The change in slip resistance ∆Rslip is:

∆Rslip = R′slip −Rslip = (Fb + Fc − 2Fpre)µ = ∆L (Kb −KC)µ = Fchangeµ (2.34)

Therefore, the net change in clamping and bolt force Fchange, defined in Eq. (2.34) is calculated as:

Fchange = ∆L (Kb −KC) =

{
∆L =

Fa

Kb +KC

}
=

(
2Kb

Kb +KC
− 1

)
Fa (2.35)

This means that the combined clamping forces decrease depending on the stiffness of the plate compared to
the bolt. In the areas where the axial force is negative, meaning compressive for the clamping parts, there is a
proportional increase in slip resistance according to the theory.
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3 Finite Element Analysis

To validate the previously developed theory, an FE model was created and meshed in the program ANSA. The
model was then solved using MSC’s NASTRAN SOL400 with various choices of parameters. These results were
used to compare the theoretically developed model against the behaviour simulated by the FE method.

3.1 Contact Pressure

In Figure 3.1 four plots of the contact normal pressure show some interesting patterns of the contact pressure
and how it develops as the joint is loaded. The contact is separated around the hole of the bolts even before slip,
which in a cyclic loading scenario could lead to fretting wear.

(a) Contact normal pressure after preload step (b) Contact normal pressure at 25% load application

(c) Contact normal pressure just before slip (d) Contact normal pressure just after slip

Figure 3.1: Contact normal pressure of plate experiencing out-of-plane load

The effects of the out-of-plane load can be seen in Figure 3.2 where the deformation is scaled by a factor of one
hundred. The geometrical effects of the out-of-plane load, which could be one of the explanations of the increased
slip resistance, is clearly shown.
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Figure 3.2: Deformation with scale factor of 100

3.2 Slip Detection

Using a nonlinear quasi-static solver means that iterations during contact sliding will be made until equilibrium is
reached. Slip is thus detected by the solver and can be output as contact status, where the gap function can be
open or closed, and the contact in sliding or sticking. Sliding here means that the contact has been in sliding
condition during the iteration, since the solver reaches equilibrium during static conditions the contact cannot
be in actual sliding during any finished load step. This can lead to convergence issues if the sliding motion is
not constrained. For example, a block sliding on a slope is not constrained and the equilibrium condition for the
sliding block is not reachable by the solver unless the block is constrained by a spring or similar, thus decreasing
contact shear force the further it slides.

Slip can be described as a plastic event. The movement is non-conservative and cannot be reversed by deloading,
detecting global slip can therefore be done by observing the displacement of say the loading point. When this
points displacement starts behaving plastically it can be assumed that the joint is slipping.

3.3 Critical Loads

Critical loads are picked by hand from the curves using the assumption that total slip in the joint is reached when
the stiffness is heavily reduced. The critical load is then said to be the one that is at the onset of slip or just
before slip. The models are loaded using Rigid Body Elements (RBEs) connected to a node, placed off-centre in
the plane and varied out-of-plane distance, taking a prescribed load.
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3.3.1 Model 1

Figure 3.3a illustrates how the RBEs are connected to the model from the loadpoint. The loadpoint can then be
varied in its position to investigate the difference of increased moment arm out of the plane. Figure 3.3b shows
the critical slipping loads depending on the length out of the plane of the loadpoint.

(a) FE Model 1
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Figure 3.3: Discretised model and critical loads for model 1

Figure 3.4 shows the displacements of the individual models for the loadpoint in the loading direction. It is
possible to observe a sticking point halfway through the slip when modelling with the second order elements.
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Figure 3.4: Displacements of the loadpoint for each load step of model 1

18



3.3.2 Model 2

As can be seen from Figure 3.5a, Model 2 has a slightly smaller area of load application, decreasing the flexural
stiffness of the plate and allowing for more geometrical distortion of the plate. From Figure 3.5b the critical loads
can clearly be seen to increase compared to Model 1.

(a) FE Model 2
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Figure 3.5: Discretised model and critical loads for model 2

In Figure 3.6a the sticking halfway through sliding before the next slip to the bolts catching the plate can be seen
in the first order element simulation.
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Figure 3.6: Displacements of the loadpoint for each load step of model 2
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3.3.3 Model 3

Model 3 has the smallest area of load application. This further decreases the stiffness of the plate, leading to even
larger geometrical distortions. The severe increase in slip resistance is reflected in the plot of the critical load
Figure 3.7b. The increase in slip resistance is then assumed to be due to geometrical effects mostly.

(a) FE Model 3

0 100 200 300 400

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

6
0
0
0
0

7
0
0
0
0

Arm Length [mm]

S
lip

p
in

g
 L

o
a
d
 [
N

]

o
o o

o o

o

o

o

o

o

Slipping Load vs Moment Arm Length

1st order element

2nd order element

Theory

(b) Slip determined by hand from load displacement
curves

Figure 3.7: Discretised model and critical loads for model 3

In Figure 3.8 the individual displacements are observed to have lowered stiffnesses due to the decreased flexural
stiffness of the plate.
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Figure 3.8: Displacements of the loadpoint for each load step of model 3
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3.3.4 Small Displacements

With the large displacements formulation turned off, the results are still similar to large displacements. Figure 3.9b
illustrates the similarities.
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Figure 3.9: Displacements of the loadpoint for each load step and critical loads for model 3 with large displacement
formulation and small displacement formulation

3.3.5 Stiff Plates

The Young’s modulus of the plate material was increased severely, making the plates rigid compared to the bolts,
and the simulations were re-run. Figure 3.10b reveals that the assumption of rigid plates fits well with the rigid
body theory developed.
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Figure 3.10: Displacements of the loadpoint for each load step and critical loads for model 2 with stiff and elastic
plates

3.3.6 Observations

From the FE results, a clear increase in the slip resistance of the joint with increasing moment arm can be seen.
However it is also observed that the decrease in flexural stiffness also increases the slip resistance of the joint. This
leads to the belief that the increasing slip resistance is a geometrical effect of the plate distortion. The model with
stiff plates confirms that the plate shape has a big effect on the slip resistance.

3.4 Bolt Forces

The bolt forces during loading are extracted from the FE model. These can then be compared to the forces from
the theoretical model and give a clue about how accurate the theory is in estimating the clamping forces in the
bolted areas. Figure 3.11 shows the theoretical bolt forces for a certain load case compared to the FE bolt forces
for that same load case.
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Figure 3.11: Plot of bolt forces from FE simulations compared to the theoretical bolt forces during loading

As can be seen in Figure 3.11a the theory predicts bolt forces in the compressive area that are much lower than the
FE results. If the assumption of the plate rotating about the centre is changed to rotation closer to the bottom
pair the compressive bolt pair forces can be matched more accurately by the theory, as seen in Figure 3.11b. The
bolt forces in the FE simulations remain approximately unchanged in the compressive zone.

In Figure 3.12 the quadratic behaviour of the bolt forces with the increasing load arm coming from the FE
analysis can be observed. The theory meanwhile shows completely linear development of the bolt forces with
increasing moment arm.
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(b) Bolt force in top right bolt at 20 kN applied load with
varying moment arm on a stiff plate

Figure 3.12: Plot of bolt forces during loading

A large increase in the bolt forces can be seen for the bolts in the tensile area going well beyond the predicted
values of the theory. Due to the elasticity of the plate it can be observed that forces are not only taken in the
bolted areas, this leads to the conclusion that the bolts in the compressive area will not experience the same
compressive displacement as the opposite pair. The bolt forces can then be observed to be fairly constant in the
compressive area of the joint. Meanwhile the clamped material still has to take up the increased compressive force,
thus increasing the slip resistance in that area.
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3.5 Real Model Simulation

Using a geometry provided by Ålö seen in Figure 1.1 and modified as in Figure 3.13, a simulation of the global
slip resistance was made, this ended up providing further proof that the slip resistance of the joint is improved
with increasing moment arm.

(a) Model with greater out-of-plane moment arm (b) Model with shorter out-of-plane moment arm

Figure 3.13: Modified models

In Figure 3.14 the slipping load is detected and can be observed to differ between the two models, where the
model with increased out-of-plane moment arm has a small but visible increase in slip resistance. This is then
compared to the theory developed, where the increase in slip resistance is observed to be insignificant compared to
the simulations. These observations follow the patterns observed in the previous models.
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Figure 3.14: Displacements of the loadpoint for each load step of subframe model

In Figure 3.15 the forces in the bolts obtained from the FE simulation is compared to the forces expected by
the theory. The rigid body mode is correlated to match the bolts in the compressive zone, but again the theory
fails to capture the extreme bolt forces on the tensile zones.
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Figure 3.15: Bolt forces from FE simulation compared to theory with correlated rigid body mode to match compressive
bolts
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4 Discussion

Plastic Axial Loads

Initial experimentation in an FE environment suggests that the slip capacity of a joint increases as the moment
arm out of the plane increases. However, it is not the author’s recommendation to design against slip by moving
the load further from the joint, as care must be taken so that the bolts do not enter the plastic zone as this could
mean abrupt failure of the joint. The theory developed in this thesis can be used to predict bolt forces to foresee
such plasticity, but unfortunately the bolt forces predicted in the theory does not correlate with the FE results.

Bolt Head Slip Resistance

The bolts in the theory developed in this thesis are assumed to carry the slipping load without deflecting. However,
in a more accurate setting, this is not true. At the onset of transverse loading, the bolt can be modelled as a
beam with a transverse load. This means that the bolt head force carrying condition is a mix of the slip condition
and the flexural stiffness of the bolt as:

Fs ≤ min

{
µFb

δKf

(4.1)

where δ is the deflection of the bolt head and Kf is the flexural stiffness of the bolt. This equation shows clearly
that at the immediate onset of loading there is no contribution from the bolt head. The bolt does not contribute
to any resistance of the slipping load until it has started to deflect.

Fatigue In Bolts

The introduced axial loads from the out-of-plane load could in a cyclic loading scenario lead to fatigue of the bolts,
thus leading to joint failure. Using fatigue theory combined with the bolt forces or the maximum stress in the bolt
calculated with Appendix B.1 Eq. (B.3) the number of cycles before failure could be calculated and that bolt can
then be removed from the slip resistance calculation.

4.1 Future Work

• Further investigation of the geometrical shape effect on slip condition must be conducted.

• A more accurate method for finding the bolt loads theoretically must be developed as this can provide insight
on how large effect the out-of-plane load has on the axial loads of the bolts.

• A fatigue analysis of the bolts should also be conducted as the cyclic axial loading is likely to result in
fatigue.

• An investigation regarding the pre-tension loss from the cyclic axial loads should also be considered.

• An experimental study in a test rig should be conducted to validate the FE modelling.
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A Joint Designer Program

In this chapter the program developed to both compare the theory and FE results will be presented. The program
developed can be used by, for example, a screw joint designer to find out how different bolt configurations and
placement of load affect the critical load of the joint.

A.1 Interactive Script

The theory has been developed and is implemented as an interactive script/program, where the user can define:

• Bolt positions

• Bolt pre-tension

• Bolt and material Young’s modulus

• Plate thickness and bolt dimensions

• Friction coefficient

• In-plane eccentricity and out-of-plane eccentricity of the load

In Figure A.1 the output from the script is shown, where the user will get data such as critical load, centre of
rotation, and clamped area slip resistances.
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Figure A.1: Output from boltplot script

A.2 Parameter Studies

The developed script can be used to perform parameter studies and see what kind of effects varying parameters
have according to the developed theory.
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A.2.1 Worst Bolt Model Predictions

In Section 2.5 the method of determining the first bolt to slip yields critical loads that are lowered as the length of
the out-of-plane moment arm is increased. As is shown this method is not good for determining joint failure and
is not used further. Figure A.2 displays how the critical loads when looking at single bolts develop with increased
moment arms
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Figure A.2: Worst Bolt Model

A.2.2 Varying Clamped Material Stiffness

By varying the clamped material’s stiffness a plot of the varying slipping loads when increasing the out-of-plane
moment arm can be shown as illustrated in Figure A.3.
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Figure A.3: Varying material stiffness of clamped parts

As can be seen, increasing the stiffness of the plates leads to lowered effect from the out-of-plane moment arm.

B Motivation of Rigid Body Equations

The equations used to develop the theory in this thesis has been motivated with assumptions of small deformations.

B.1 Area Moment of Inertia

The area moment of inertia chosen to calculate the bolt forces is presented in Figure B.1. This is under the
assumption of small deformations. Introducing local coordinate z for the bolt and global coordinate d for the plate,

σmean,i =
−M · di
n∑
j

Aj · d2j

z = 0, d = di

d = 0

σz,i =
−M · z
Iz

σbolt,i = σz,i + σmean,i =
−M · z
Iz

+
−MOP · di
n∑
j

Aj · d2j σ

Figure B.1: Out-of-plane moment effect on the clamped areas
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the stresses introduced by the moment can be formulated as:

σmean,i =
−M · di
Ai · d2i

(B.1)

σz,i =
−M · z
Iz

(B.2)

σbolt,i = σz,i + σmean,i =
−M · z
Iz

+
−MOP · di
n∑
j

Aj · d2j
(B.3)

The force pertaining to the fluctuation part in Eq. (B.3) (σz,i) is then expressed as:

Fz,i =

∫
A

σz,i dA =

z∫
−z

−MOP · z
Iz

= [Antisymmetric] = 0 (B.4)

The contribution Fmean,i from the parallel axis theorem is computed as:

Fmean,i =

∫
A

σmean,i dA =
−MOP · di ·Ai

n∑
j

Aj · d2j
=
−MOP · di ·Ai

Ipar
(B.5)

Where the total force Fbolt,i in the bolt is:

Fbolt,i = Fz,i + Fmean,i =
−MOP · di ·Ai

Ipar
(B.6)

This leads to the assumption that the only contribution to the bolt axial force is from the parallel axis theorem,
this is then chosen as the area moment of inertia for the bolted plate.

B.2 Out-of-plane Moment Forces

The out-of-plane forces induced by the moment are illustrated in Figure B.2.

P1

P2

P3

P4

MOP κ

y

Figure B.2: Out-of-plane moment effect on the bolts

Where an equation for moment equilibrium can be formed as:

n∑
i

Pi ·Ai · yi = −MOP (B.7)
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A kinematic relationship between angle κ and strain εi in the bolt is given as:

εi = κ · yi (B.8)

Using Hooke’s law:
Pi = E · εi = E · κ · yi (B.9)

Insert (B.9) into (B.7):
n∑
i

E · κ ·Ai · y2i = −MOP (B.10)

Eliminate κ:

κ =
−MOP

I · E
, where I =

n∑
j

Aj · d2j (B.11)

The mean pressure in the bolt is then expressed as:

Pi =
−MOP · yi

Ipar
(B.12)

Where the axial force FOP from the out-of-plane moment is:

FOP = Pi ·Ai =
−MOP · ri ·Ai

Ipar
(B.13)

B.3 In-plane Moment Forces

The kinematics for in-plane moment equilibrium is illustrated in Figure B.3.
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Figure B.3: In-plane moment effect on the clamped areas

Where an equation for moment equilibrium can be formed as:

n∑
i

Ti ·Ai · ri = −MIP (B.14)
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A kinematic relationship between angle κ and strain γ:

γi = κ · ri (B.15)

Using Hooke’s law:
Ti = G · γ = G · κ · ri (B.16)

Insert (B.16) into (B.14):
n∑
i

G · κ ·Ai · r2i = −MIP (B.17)

G, κ are constants:

G · κ
n∑
i

·Ai · r2i = −MIP (B.18)

Eliminate κ:

κ =
−MIP

Ir ·G
, where Ir =

n∑
j

Aj · r2j (B.19)

The mean pressure is then expressed as:

Ti =
−MIP · ri

Ir
(B.20)

Where the shearing force FIP from the in-plane moment is:

FIP,i = Ti ·Ai =
−MIP · ri ·Ai

Ir
(B.21)

C Automation of Post-Processing

During this project, a large number of models were run and the extraction of data from these were time consuming.
Using the scripting function available in µeta, a Python script was created to automate some of the data extraction.
The data collected were then compared and plotted against the theory using R. Some of the programs made is
presented as source code below.

D R Code

Plot of theoretical bolt forces

rm( l i s t=l s ( a l l=TRUE) )
setwd ( ’D: / Thes i s Report/ C a l c u l a t i o n s ’ )
source ( ” s f a c t o r .R” )
setwd ( ’D: / AloModell ’ )
g raph i c s . o f f ( )

# Jo int Geometry
x = c (80 , 80 , −80, −80)∗1e−3
# Changed a x i s o f r i g i d body motion with 72 [mm]
y = c (80 , −80, −80, 80) ∗1e−3+72e−3

#Read FE model r e s u l t s
out=readloaddata ( ’ FrameLinearBolts . csv ’ )
arm=out$arm
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Load=out$Load
Disp=out$Disp

# Pretens ion and F r i c t i o n
F pre=30e3
mu=0.12
E mat=210e9
E bo l t =210e9

# Fixed moment arm
L m=300e−3
L p=50e−3

# Load sequence f o r theory
Fseq=seq (0 ,50 e3 ,10 e3 )
F b=matrix (0 , l ength ( x ) , l ength ( Fseq ) )
i=1
f o r (F in Fseq ) {

# Calcu la te bo l t f o r c e s
F b [ , i ]= b o l t f o r (L m, F,F pre , x , y ,mu,E mat ,E bo l t )
i=i+1

}
# Calcu la te c r i t i c a l l oads
c r i t=I C c r i t i c a l (x , y , L m, L p , F ,F pre ,mu,E mat ,E bo l t )
c r i t=c r i t $ c r i t
F c r i t=b o l t f o r (L m, c r i t ,F pre , x , y ,mu,E mat ,E bo l t )
p r i n t ( paste (F c r i t , ’ Newton in bo l t f o r c e at c r i t i c a l load : ’ , c r i t ) )
b o l t c o l=rainbow ( length (F b [ , 1 ] ) )
# Plot bo l t f o r c e s
f o r ( i in 1 : l ength (F b [ , 1 ] ) ) {

i f ( i ==1)
p l o t ( Fseq ,F b [ i , ] , type = ” l ” , pch=’ o ’ , c o l=b o l t c o l [ i ] , yl im=c ( min (F b) ,max(F b) ) , x lab=’ Applied Force [N] ’ , y lab=’ Bolt Force [N] ’ )

e l s e
matplot ( Fseq ,F b [ i , ] , type = ” l ” , pch=’ o ’ , add=1, c o l=b o l t c o l [ i ] )

}
f o r ( i in 1 : 4 ) {
matplot ( Load [ i , ] , Disp [ i , ] , type=’ l ’ , l t y=’ dashed ’ , add=1)
}
# Plot c r i t i c a l load as v e r t i c a l l i n e
a b l i n e ( v=( c r i t ) , c o l=” red ” , l t y=” s o l i d ” )
a b l i n e (h=seq (10 e3 ,50 e3 , 1 e3 ) , c o l=” grey ” , l t y=” dotted ” )
legend ( ” t o p l e f t ” , i n s e t = . 0 5 , l egend=c ( ’ Theo r e t i c a l ’ , ’FEA ’ ) , l t y=c ( ’ s o l i d ’ , ’ dashed ’ ) )
# Plot c r i t i c a l load from FEM
FEMCRIT=27e3
a b l i n e ( v=FEMCRIT, c o l=’ green ’ , l t y=” s o l i d ” )
t ex t (FEMCRIT∗ 1 .25 ,35 e3 , ’FEM C r i t i c a l Load \n ’+FEMCRIT+’ [N] ’ , c o l=’ green ’ )
t ex t ( c r i t ∗ 0 .7 , 37 e3 , paste ( ’ Theory C r i t i c a l Load \n ’ , format ( c r i t , d i g i t s =5) , ’ [N] ’ ) , c o l=’ red ’ )
t i t l e ( ’ Bolt Forces f o r 300mm Moment Arm ’ )

Graphical illustration of bolt positions and slip resistances together with instant centre of rotation
and critical load
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rm( l i s t=l s ( a l l=TRUE) )
setwd ( ’D: / Thes i s Report/ C a l c u l a t i o n s ’ )
source ( ” s f a c t o r .R” )
g raph i c s . o f f ( )
# Jo int Geometry
x = c (80 , 80 , −80, −80)∗1e−3
y = c (80 , −80, −80, 80) ∗1e−3−0e−3

# Pretens ion and F r i c t i o n
F pre=30e3
mu=0.12
F=50e3
E mat=210e12
E bo l t =210e9

# Fixed moment arm
L m=450e−3
L p=200e−3

M OP=F∗L m
F decom=0
f o r ( i in 1 : l ength ( x ) ) {
F decom [ i ]= M OP∗y [ i ] /sum( y ˆ2)
}

c r i t=I C c r i t i c a l (x , y , L m, L p , F ,F pre ,mu,E mat ,E bo l t )
s f a c=s f a c t o r (L m, L p , c r i t $ c r i t [ 1 ] , F pre , x , y ,mu,E mat ,E bo l t )
Rs l i p s=Rs l ip (L m, c r i t $ c r i t [ 1 ] , F pre , x , y ,mu,E mat ,E bo l t )

p l o t (x , y , type = ”p” , c o l = ’ green ’ , x lab = ”x” , ylab = ”y” ,
main = ” Bolt Plot ” ,
xlim=c ( min ( c ( min ( x ) , c r i t $IC [ 1 ] ) ∗ 1 . 4 ) ,max( c (max( x ) , c r i t $IC [ 1 ] ) ∗ 1 . 5 ,L p∗ 1 . 1 ) )
, yl im=c ( min ( c ( min ( y ) , c r i t $IC [ 2 ] ) ∗ 1 . 3 ) ,max( c (max( y ) , c r i t $IC [ 2 ] ) ∗ 1 . 5 ) )
)

#Text f o r bo l t s l i p r e s i s t a n c e , s a f e t y f a c t o r and a x i a l f o r c e from OOPL
text ( x+max( x ) ∗ 0 . 1 , y−max( y ) ∗ 0 . 1 , paste ( ’R s=’ , format ( Rs l ips , d i g i t s =3) ) , c o l=’ blue ’ )
#Center o f Gravity f o r cur rent loadarm and s l i p r e s i s t a n c e s
cogx=sum( x∗ Rs l i p s ) /sum( Rs l i p s )
cogy=sum( y∗ Rs l i p s ) /sum( Rs l i p s )
t ex t ( c r i t $IC [ 1 ] , c r i t $IC [ 2 ]+0 . 01 , paste ( ’ C r i t i c a l load=’ , format ( c r i t [ 1 ] , d i g i t s =3) ) , c o l=’ red ’ )
#COG marking
text ( cogx , cogy , ’ x ’ , c o l=’ blue ’ )
t ex t ( cogx , cogy −0.01 , paste ( ’ Tot Rs l ip : ’ , format (sum( Rs l i p s ) , d i g i t s =3) ) , c o l=’ blue ’ )
#IC marking
matplot ( c r i t $IC [ 1 ] , c r i t $IC [ 2 ] , type=’ o ’ , pch=’ x ’ , c o l=’ red ’ , add=1)
a b l i n e (h=cogy , c o l=” gray ” , l t y=” dotted ” )
a b l i n e ( v=cogx , c o l=” gray ” , l t y=” dotted ” )
#Load marking
text (L p+20e−3 ,35e−3, ’ Load ’ , c o l=’ blue ’ )
arrows (L p ,50 e−3, x1 = L p , y1 = cogy , l ength = 0 .25 , ang le = 30 , code = 2 , c o l = par ( ” fg ” ) , l t y = par ( ” l t y ” ) , lwd = par ( ”lwd” ) )
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Collection of functions

s f a c t o r <− f unc t i on (L m, L p , F ,F pre , x , y ,mu,E mat ,E bo l t ) {
#Cal cu l a t e s a s a f e t y f a c t o r f o r s i n g l e b o l t s assuming no other b o l t s
s f a c=0
n=length ( y ) ;

M OP=F∗L m
M IP=F∗L p
F IP=F/n

acs=alpha (x , y )
cosa=acs [ 1 , ]
s i na=acs [ 2 , ]
Rs l i p s=Rs l ip (L m, F,F pre , x , y ,mu,E mat ,E bo l t )

f o r ( i in 1 : l ength ( x ) ) {
F shear = s q r t ( (F IP+M IP∗ r [ i ] /sum( r ˆ2) ∗ s i na [ i ] ) ˆ2+(M IP∗ r [ i ] /sum( r ˆ2) ∗ cosa [ i ] ) ˆ2)

s f a c [ i ] = Rs l i p s [ i ] / F shear
}
re turn ( s f a c )

}

I C c r i t i c a l <− f unc t i on (xd , yd , L m, L p , F ,F pre ,mu,E mat ,E bo l t ) {
#Searches f o r the c r i t i c a l load and cente r o f r o t a t i o n
x0=0
e r r o r=2
t o l=1
P1=0
P2=0
x=xd
y=yd
k=0
d e l t a=0
whi le ( e r ror>t o l ) {

Rs l i p s=Rs l ip (L m, P1 ,F pre , xd , yd ,mu,E mat ,E bo l t )
#Create new coord inate cente r
cogx=sum( xd∗ Rs l i p s ) /sum( Rs l i p s )
cogy=sum( yd∗ Rs l i p s ) /sum( Rs l i p s )
i f (L p==0|L p<( s q r t (max(x , y )ˆ2+min (x , y ) ˆ2) ) ∗ 0 . 0 5 ) {

P1=sum( Rs l i p s )
x0=−cogx
pr in t ( ’ Warning Kulak model out o f reach , assume s l i p in load d i r e c t i o n without r o t a t i o n ! ’ )
break

}
k=k+1
x0=x0−d e l t a
x=xd+cogx+x0
y=yd+cogy
r=s q r t ( yˆ2 + x ˆ2)
P1=sum( Rs l i p s ∗x/ r )
P2=sum( Rs l i p s ∗ r ) / ( x0+L p)
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e r r o r=abs (P1−P2)
d e l t a =(P1−P2) /sum( Rs l i p s / r )

}
pr in t ( paste ( ’ l oops : ’ , k , ’ r0 ’ ,−x0 , ’P1 ’ ,P1 , ’P2 ’ ,P2) )
IC=c(−(x0 ) , cogy )
bom=l i s t ( c r i t=P1 , IC=IC )
return (bom)

}

b o l t f o r <− f unc t i on (L m, F,F pre , x , y ,mu,E mat ,E bo l t ) {
#Cal cu l a t e s the bo l t f o r c e s from the e x t e r n a l load
M OP=F∗L m
F b=0
f o r ( i in 1 : l ength ( x ) ) {

F decom = M OP∗y [ i ] /sum( y ˆ2)
K b=b o l t s t i f f (E bolt , 16 e−3 ,40e−3)
K c=m a t s t i f f (E mat ,20 e−3 ,30e−3 ,40e−3)
K c2=m a t s t i f f (E mat ,20 e−3 ,30e−3 ,20e−3)
K c=(1/K c+1/K c2 )ˆ−1

dL=F decom/ (K b+K c )

F b [ i ] = F pre + dL∗K b
}

re turn (F b)
}

Rs l ip <− f unc t i on (L m, F,F pre , x , y ,mu,E mat ,E bo l t ) {
#Cal cu l a t e s the s l i p r e s i s t a n c e o f a s i n g l e bo l t area
Rs l ip=0

M OP=F∗L m
f o r ( i in 1 : l ength ( x ) ) {

F decom = −M OP∗y [ i ] /sum( y ˆ2)

K b=b o l t s t i f f (E bolt , 16 e−3 ,40e−3)
K c=m a t s t i f f (E mat ,20 e−3 ,30e−3 ,40e−3)
K c2=m a t s t i f f (E mat ,20 e−3 ,30e−3 ,20e−3)
K c=(1/K c+1/K c2 )ˆ−1
#Spring system e longa t i on
dL=F decom/ (K b+K c )
F b = F pre + dL∗K b
Rs l ip [ i ] = (F pre + (F decom∗K c/ (K b+K c ) ) ) ∗ mu + (F pre − (F decom∗K b/ (K b+K c ) ) ) ∗ mu

}
re turn ( Rs l ip )

}
alpha <− f unc t i on (x , y ) {

#Cal cu l a t e s the alpha va lue s f o r d i f f e r e n t bo l t c oo rd ina t e s
s ina=0
cosa=0
alpha=0
extra=0
f o r ( i in 1 : l ength ( x ) ) {
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i f ( x [ i ]>=0&&y [ i ]>0){ # x>=0,y>0
alpha [ i ]= pi /2−atan ( y [ i ] /x [ i ] )
s i na [ i ]= s i n ( alpha [ i ] )
cosa [ i ]= cos ( alpha [ i ] )

}
e l s e i f ( x [ i ]>0&&y [ i ]<=0){ # x>0,y<=0

alpha [ i ]= pi /2+atan ( abs ( y [ i ] ) /x [ i ] )
s i na [ i ]= s i n ( alpha [ i ] )
cosa [ i ]= cos ( alpha [ i ] )

}
e l s e i f ( x [ i ]<0&&y [ i ]<0){ # x<0,y<0

alpha [ i ]=3∗ pi /2−atan ( y [ i ] /x [ i ] )
s i na [ i ]= s i n ( alpha [ i ] )
cosa [ i ]= cos ( alpha [ i ] )

}
e l s e { # x<0,y>0

alpha [ i ]=3∗ pi /2−atan ( abs ( y [ i ] ) /x [ i ] )
s i na [ i ]= s i n ( alpha [ i ] )
cosa [ i ]= cos ( alpha [ i ] )

}
i f ( x [ i ]==0&&y [ i ]==0){

s i na [ i ]=0
cosa [ i ]=0

}
}
acs=rbind ( alpha , cosa , s i na )
p r i n t ( alpha ∗180/ p i )
re turn ( acs )

}

m a t s t i f f <− f unc t i on (E, r0 , r1 , L) {
#S t i f f n e s s cone c a l c u l a t i o n assuming 30 degree cone ang le
alpha=30∗ pi /180
s t i f f =(p i ∗E∗2∗ r0 ∗ tan ( alpha ) ) / log ( ( ( L∗ tan ( alpha )+r1−r0 ) ∗ ( r1+r0 ) ) / ( (L∗ tan ( alpha )+r1+r0 ) ∗ ( r1−r0 ) ) )
re turn ( s t i f f )

}

b o l t s t i f f <− f unc t i on (E, r1 , L) {
#Function to c a l c u l a t e the s t i f f n e s s o f a bo l t
A=r1 ˆ2∗ pi
s t i f f=A∗E/L
return ( s t i f f )

}

read loaddata <− f unc t i on ( f i l ename ) {
#This func t i on loads a . csv f i l e and e x c t r a c t s the data in a s p e c i a l order
Loaddata=read . csv ( f i l e=f i l ename , head=0, sep=” ; ” , f i l l = 0 , s t r i ng sAsFac to r s=FALSE) # 1 column
length ( Loaddata [ 1 , ] )
T i t l e s=’ a T i t l e s ’
Load=matrix ( data = 0 , nrow=( length ( Loaddata [ 1 , ] ) / 4) , nco l=( l ength ( Loaddata [ , 1 ] ) −2) , byrow=T)
Disp=matrix ( data = 0 , nrow=( length ( Loaddata [ 1 , ] ) / 4) , nco l=( l ength ( Loaddata [ , 1 ] ) −2) , byrow=T)
t=seq (1 , l ength ( Loaddata [ 1 , ] ) , 4 )
l=seq (2 , l ength ( Loaddata [ 1 , ] ) , 4 )
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d=seq (4 , l ength ( Loaddata [ 1 , ] ) , 4 )
f o r ( row in 1 : ( l ength ( Loaddata [ 1 , ] ) / 4) ) {

T i t l e s [ row]=Loaddata [ 1 , t [ row ] ]
f o r ( c o l in 3 : l ength ( Loaddata [ , 1 ] ) ) {

Load [ row , co l −2]=Loaddata [ co l , l [ row ] ]
Disp [ row , co l −2]=Loaddata [ co l , d [ row ] ]

}
}
Load=matrix ( as . numeric ( u n l i s t ( Load ) ) , nrow=nrow ( Load ) )
Disp=matrix ( as . numeric ( u n l i s t ( Disp ) ) , nrow=nrow ( Disp ) )
arm=as . numeric ( gsub ( ”LOP” , ”” , T i t l e s ) )
armadon=l i s t ( Load=Load , Disp=Disp , arm=arm)
return ( armadon )
}
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