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Abstract

New types of light weight sandwich plate system bridge decks may be an adequate alternative for short span
bridges with regard to construction time and load capacity. These types of structural elements has been widely
used in the aeronautics industry since the 1940s, mainly because of their high strength/stiffness to weight ratio.
Due to recent developments in manufacturing techniques, it may be economically feasible to use sandwich plate
systems within bridge-building in civil engineering. The main motivation is to use them in areas where the
dead weight of the structure is critical and where strengthening or replacement of existing constructions is
needed. In this thesis the focus is to use sandwich structures to serve as a deck plate for a two-girder short
span bridge. However, the knowledge of using sandwich structures in the civil engineering area is limited.

Therefore, the main goal of this thesis is to achieve a better understanding of how to optimize the stiff-
ness relations for an orthotropic sandwich plate with regard to global deflection. The examination is done with
a parametric study where the different stiffnesses are altered and the global behavior of the beam-plate system
is analyzed. To be able to perform such a sensible parametric study the number of parameters have to be
reduced. This is done by transforming the structure to a one layered equivalent orthotropic plate.

The transformation process is performed in two main steps; first the structure is translated into a three
layered homogeneous sandwich plate with orthotropic material properties; then these three layers are trans-
formed into a single layer equivalent orthotropic plate. The two steps of transformation are performed by both
finite element analysis (FEA) and analytical evaluation.

The second step of the transformational process is performed in two different methods to get the equiv-
alent properties, Transformation based on Axial Load Deformation (TALD) and Transformation based on
Constant Flexural Rigidity (TCFR). These two methods are generally very similar, but for two of the elastic
constants the basis for the assumptions are different. TALD is based on a simple force equilibrium and TCFR
calculates the elastic constants based on equilibrium of bending. The two methods are verified for different
material parameters and support conditions. The result shows that the TCFR method is superior to the TALD
method, with better correlation compared to the untranslated reference plate.

Different conceptual designs of sandwich structures are transformed and compared with the optimized relations
obtained from the parametric study. The concepts are modified in order to utilize the material better. The
commercial product Asset deck, made of FRP, is also evaluated and modified in order to get a more optimally
used structure.

A general method for optimizing deck structures is also presented. One should be aware that the opti-
mization method requires basic knowledge of the engineer on how to improve the stiffness of the structure in
different directions. The method presented is only an evaluation tool and does not offer any suggestions of how
to improve the structure.

Keywords: Asset deck, evaluation tool, finite element analysis, global deflection, orthotropic bridge deck,
sandwich plate, stiffness optimization, transformation
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Sammanfattning

Nya typer av sandwich-platt-element kan vara ett tillfredställande alternativ för mindre broar med avseende på
byggtid och lastkapacitet. Dessa typer av element har använts inom flygindustrin sen 1940-talet, på grund av
deras höga förhållande mellan hållfasthet/styvhet och vikt. Nya tillverkningsmetoder, gällande svetsning och
sammanfogning, har gjort det mer ekonomiskt att använda dessa för väg- och vattenbyggnadsändamål. Det
huvudsakliga användningsområdet är främst där egenvikten spelar en avgörande roll och i fall där förstärk-
ningsåtgärder är nödvändiga. I detta examensarbete undersöks främst hur en sandwich-platta kan användas
som brodäck för en mindre bro bestående av tvåprimärbalkar. Dock är kunskaperna att använda sådan inom
samhällsbyggnadsområdet väldigt begränsade.

Därav är det huvudsakliga målet med denna rapport att försöka fåen bättre förståelse av hur styvhets-
förhållandena för en ortotropisk sandwich-platta kan optimeras med avseende påglobal nedböjning. Denna
undersökning görs genom en parametrisk studie där de olika materialparametrarna ändras samtidigt som det
globala beteendet studeras.

För att göra en betydelsefull parameterstudie krävs det att antalet parametrar minskas. Detta är gjort
genom att transformera en plattstruktur till en motsvarande homogen ortotropisk platta. En effektiv struktur
erhålls genom att töjningsfördelningen över höjden av plattan är linjär under böjdeformation. Detta är det
huvudsakliga området som undersöks i den parametriska studien.

Transformationsprocessen är uppdelad i två huvudsakliga steg; i första steget transformeras strukturen till
tre homogena lager med ortotropiska materialegenskaper; i andra steget transformeras dessa tre lager till en
ekvivalent ortotrop platta. Dessa två steg genomförs med finit element-analys och handberäkning med hjälp
utav analytiska plattmodeller.

Det andra steget i transformationsprocessen resulterade i två olika metoder, TALD och TCFR, för att erhålla
de ekvivalenta egenskaperna. De två metoderna skiljer sig inte särskilt mycket ifrån varandra men för några av
de elastiska konstanterna har de olika grundantaganden. TALD är baserad enbart på kraftjämvikt och TCFR
på jämvikt för böjning. Dessa två metoders noggranhet är verifierad med olika typer av materialparametrar
och stödförhållanden. Resultatet från detta visar att TCFR-metoden är överlägsen gentemot TALD-metoden,
när deras nedböjning jämförs med referensplattans.

Olika koncept av sandwich-strukturer är transformerade och jämförs sedan med de optimala förhållande-
na av styvhetsmodulerna från parameterstudien. Koncepten ändras sedan för att utnyttja materialet bättre.
Den redan tillgängliga produkten Asset deck, tillverkad av glasfiber, är också utvärderad och optimerad.

En generell metod för att optimera brodäckstrukturer är också framtagen och presenterad i arbetet. Me-
toden bygger dock på att ingenjören har tillräckliga kunskaper för att ändra och justera de olika styvheterna.
Metoden skall enbart ses som ett utvärderingshjälpmedel och ger inga anvisningar om hur strukturen skall
ändras.

Nyckelord: Asset deck, utvärderingsverktyg, finit element analys, global nedböjning, ortotrop brobaneplatta,
sandwich-platta, styvhetsoptimering, transformation
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Nomenclature

Abbreviations and technical terms

Anisotropic material Material that can be described by 21/36 elastic constants
B Bottom layer of sandwich plate
FE Finite Element
FEA Finite Element Analysis
FEM Finite Element Method
FRP Fiber Reinforced Polymer
I Interface layer of sandwich plate
Isotropic material Material that can be described by two elastic constants
LM1 Load Model 1 from Eurocode
Orthotropic material Material that can be described by nine elastic constants
REF Reference
T Top layer of sandwich plate
TALD Transformation based on Axial Load Deformation
TCFR Transformation based on Constant Flexural Rigidity

Roman upper case letters

Ajjii Area in direction ii, where i = x, y, z or i = 1, 2, 3 and j = T, I,B.
Dii Bending stiffness of a plate in direction ii, where i = x, y, z or i = 1, 2, 3.
Eii Elastic modulus in direction ii, where i = x, y, z or i = 1, 2, 3.
Fj Force on sandwich panel part, j = T, I,B and where none is the resulting force.
Gii Shear modulus in direction ii, where i = x, y, z or i = 1, 2, 3.
Hj Height of sandwich panel part, j = T, I,B and where none is the total height.
P jjii Force vector in direction i, where i = x, y, z or i = 1, 2, 3 and j = T, I,B.
Ui Displacement, where i = x, y, z or i = 1, 2, 3.
W Width of sandwich panel

Roman lower case letters

b Width
h Height
mi Moment per unit length in direction i, where i = x, y, z or i = 1, 2, 3.
qi Distributed load in direction i, where i = x, y, z or i = 1, 2, 3.
ui Displacement, where i = x, y, z or i = 1, 2, 3.
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Greek letters

αj Ratio of Hj and H.
δji Displacement in direction i, where i = x, y, z and part j = T, I,B.
εi Strain in direction i, where i = x, y, z or i = 1, 2, 3.
γij Shear strain in direction ij, where i, j = x, y, z or i, j = 1, 2, 3.
γ
′
, γ
′′

Angular distortion [Rad]
νi Poisons ratio in direction i, where i = x, y, z or i = 1, 2, 3.
ω Deflection
ω Angular frequency [Rad/s]
∂ Differential operator
σi Stress in direction i, where i = x, y, z or i = 1, 2, 3.
τij Shear stress in direction ij, where i, j = x, y, z or i, j = 1, 2, 3.
υ Angel of rotation [Rad]
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1 Introduction

1.1 Background

In Sweden, the infrastructural freeway network was heavily expanded during the 1950s and 60s, (väg 2012).
Many roads were constructed and with these followed a lot of bridges and viaducts. The bridges’ structures
were designed to last for a specific period of time, but due to poor bridge deck construction (mainly made of
reinforced concrete) and frequent use of de-icing agents, the bridge deck deteriorated faster than the main
bearing structure. This has become a major problem today when a lot of bridge decks have to be rehabilitated
or replaced by new ones. In addition the traffic pattern has changed during the years, with more and heavier
traffic on the roads today than some time ago. This growing problem can be solved by either strengthening of
the main girders, or lowering of the dead weight of the structure.

Until recently there have not been any good options of creating a light weight - high strength bridge deck.
However, with the introduction of composite sandwich plate systems, new possibilities are presented. This
new deck consists of thin, high strength outer sheet faces, and a much weaker low-density core, which gives a
high strength to weight ratio. This type of structural element has been used for a long time in the aeronautic
industry, but is still uncharted within the bridge civil engineering field.

Sandwich plate systems are mainly prefabricated which is beneficial when replacing old bridge decks. It
will greatly speed up the construction time compared to casting a new reinforced concrete deck. Factory
production is often optimized because of the controlled environment and mass production of the specific element.
However, there is very limited information on the behavior and optimization of this new sandwich plate system
for usage in bridges.

The core of a sandwich plate can be constructed by materials of different shapes, such as honeycomb, trapezoidals
or tubulars. These structures are hard to model and analyze in FE programs due to the complex geometry.
Furthermore, performing changes and adjustments to a complex core structure is a very time consuming process,
where the whole structure has to be remodeled. Instead of modeling the whole structure, a transformation could
be made which turns this complex structure into one equivalent homogeneous layer. This will be particularly
useful when performing a parametric study where the number of variables are greatly reduced.

1.2 Aim and Objectives

The motivations of this thesis are: to achieve a better understanding how a simple bridge deck made of a
sandwich structure behaves when altering the material parameters, i.e. adjusting the stiffnesses in the different
directions; to identify which relations between different stiffnesses are needed in order to get a desired global
behavior; and to discover how to perform an accurate transformation from a multi layered plate into an
equivalent one, if this is possible.

The main objectives for this thesis are:

1. Establish a model that transforms a multi layered sandwich structure into a single layered equivalent
plate.

2. Perform a parametric study for a single layered orthotropic plate and establish usable ratios and relations
for important stiffness parameters.

3. Find a way to optimize a specific bridge structure with regard to global deflection by altering the sandwich
plate.

4. Analyze the commercial product Asset and present possible improvements.

5. Propose an optimization method for a sandwich deck plate in a bridge structure.
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1.3 Method

The work flow for this thesis can be seen in figure 1.3.1. It is started with a study of analytical solutions for
isotropic and orthotropic plates to give a basic understanding of methods to solve plate equations, and to get a
sense of how the plates behave when altering different stiffness parameters. This is followed by establishing
different ways of transforming a multi layered structure into a single equivalent one. This produces two different
transformation methods for establishing the equivalent Young’s modulus, TALD (Transformation based on
Axial Loaded Deformation) and TCFR (Transformation based on Constant Flexural Rigidity). These two need
to be verified to ensure a good transformation and to compare and evaluate the two transformation methods.
This is done by Finite Element analysis in Abaqus CAE and features both modeling with shell and solid
elements. A parametric study, which regards all concerned stiffnesses, is then carried out in order to get the
optimal relations between different moduli, and to form a basis which can be used to improve existing concepts.

Mathematical algorithms and calculations are developed in MATLAB. Preliminary sizing and load cases
for the full scale bridge model is constructed in MathCAD and the FE-modeling is performed in Abaqus CAE.
This thesis is written in LATEX.

Basic analytic theories of plates Isotropic plates

Orthotropic plates
MATLAB

Transformation process

TCFR method TALD method

Abaqus
CAE

Verification

Parametric study of full bridge model

Optimal relations of stiffnesses

Improvement of existing concepts

MATLAB

Figure 1.3.1: Main work flow of the project

1.4 Limitation

There is a clear time limitation of the study since the master’s thesis is to be completed in 20 weeks. All
FE-modeling is done with linear analysis, i.e. no local behaviors such as buckling and/or plasticity are considered.
Different stiffnesses as well as parameters coupled to these are studied. Strengths and failures are not considered.
The parametric study is limited to only include a very specific case where the sandwich plate is resting on
two longitudinal main girders. The choice of materials is not important since the only considerations are the
numerical values of the stiffnesses.
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1.5 Outline of the master’s thesis

The introduction of this thesis is followed by chapter 2, which treats analytical solutions of plate equations
for isotropic and orthotropic plates. The governing differential equations for both type of plates are derived.
Limitations and applicability of these equations are presented and discussed. This chapter also features methods
to solve them with help of Fourier approximation and Navier’s solution.

The following chapter 3 is about how to transform a multi layered sandwich into a single equivalent plate. A
thorough explanation and mathematical derivation is presented. The thoughts behind the different methods
of transforming are explained and discussed. These transformations are then verified in chapter 4 for two
different cases with randomized material properties. The results from the transformed plates are presented and
compared with the reference models and the best method is chosen.

The parametric study of the bridge is then presented in chapter 5 where important relations and ratios
are explained. Different concepts are tested and geometrically changed and optimized (chapter 6) to fit the
derived relations from the parametric study. This will improve the material efficiency and give a better global
behavior with regard to the deflection.

The final chapters of this thesis features a discussion and conclusions. Recommendations for future studies are
presented together with advice for improvements of the results.
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2 Fundamental Theories of Plate Analysis
The fundamental plate theories are divided into two different parts, the first is isotropic plates where the
material has the same properties in all directions for, example steel. The second part threats orthotropic plates
where the stiffness varies depending on the direction, for example timber or Fiber Reinforced Polymer (FRP).
Basic assumptions are established and the governing differential equations are derived and solved with Fourier
analysis for the two cases.

2.1 Isotropic plates

This section treats the simple case of isotropic plates, Kirchoff-Love plates and his small deflection theory of
thin plates. It is a simplification that translates the three-dimensional plate into a two-dimensional and is based
on the assumptions below.

2.1.1 Assumptions
The Kirchoff-Love theory is based on the following assumptions Szilard (2004):

1. Only in-plane stresses and strains are considered.

2. The material has to obey Hooke’s law, i.e. it has to be linear elastic, isotropic and homogeneous.

3. The plate has to be initially flat.

4. The middle surface (same as neutral axis for beam theory) of the plate has to stay unstrained during
bending.

5. The thickness of the plate has to be constant and less than a tenth of the length (or width depending on
which is the smaller) of the plate.

6. The transverse deflection (z-direction) has to be less than a tenth of the thickness, in order to fulfill the
requirements of small-deflection-theory.

7. The deflected middle surface’s slopes has to be small compare to unity (υ � 1)

8. The normal stress component σz in the transverse direction to the plates surface should be neglected.

9. Shear deformations in the transverse direction to the plates surface should be neglected.
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2.1.2 Governing differential equation for bending in Cartesian coordinate system
The derivation of the governing differential equation for isotropic plates is performed by establishing equilibrium
equations for a small element of the plate, seen in figure 2.1.1, Szilard (2004).

(mxy+ dmxy / dx ) dy

(mxy) dy

(myx) dx

(myx+ dmyx / dy ) dx

(qx+ dqx/ dx) dy

(qx) dy
dy

y

(qy+ dqy/ dy) dx

(qy) dx

dx

x

(mx+ dmx / dx ) dy

(mx) dy

(my) dx
(my+ dmy/ dy ) dx

+

+

Y

X

Z, w

Pz dx dy

O

Figure 2.1.1: Principles for establishing plate equilibrium equations.

Moment equilibrium around y and midpoint gives, see figure ??.

(mx +
∂mx

∂x
dx)dy −mx · dy + (myx +

∂myx

∂y
dy)dx−myx · dx− qx · dy

dx

2
− (qx +

∂qx
∂x

dx)dy
dx

2
= 0 (2.1.1)

dx2 −→ 0 in relation to dx

∂mx

∂x
dx · dy +

∂myx

∂y
dy · dx− qx · dy · dx = 0 (2.1.2)

∂mx

∂x
+
∂myx

∂y
= qx (2.1.3)

The same principle but instead moment equilibrium around x gives:

∂my

∂y
+
∂mxy

∂x
= qy (2.1.4)

Summation of forces in z-direction:

qx · dy − (qx +
∂qx
∂x

dx)dy + qy · dx− (qy +
∂qy
∂y

dy)dx− Pz · dx · dy = 0 (2.1.5)

∂qx
∂x

+
∂qy
∂y

= −Pz (2.1.6)

Inserting equation (2.1.3) and (2.1.4) into (2.1.6) gives:

∂(∂mx

∂x +
∂myx

∂y )

∂x
+
∂(

∂my

∂y +
∂mxy

∂x )

∂y
= −Pz (2.1.7)

∂2mx

∂x2
+
∂2myx

∂y∂x
+
∂2my

∂y2
+
∂2mxy

∂x∂y
= −Pz (2.1.8)
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Note that: mxy = myx has to be true to keep equilibrium.

∂2mx

∂x2
+ 2

∂2mxy

∂x∂y
+
∂2my

∂y2
= −Pz (2.1.9)

Stress-strain relations for an isotropic plate governed by Hooke’s law are given in equations (2.1.10a-b)

σx = E · εx + ν · σy (2.1.10a)
σy = E · εy + ν · σx (2.1.10b)

Combining equations (2.1.10a-b) results in:

σx = E · εx + ν(E · εy + ν · σx) (2.1.11)

σx − ν2 · σx = E · εx + ν · E · εy (2.1.12)

This leads to the final Hookean stress-strain relationship in (2.1.13a-c):

σx =
E(εx + ν · εy)

1− ν2
(2.1.13a)

σy =
E(εy + ν · εx)

1− ν2
(2.1.13b)

τxy =
E

2(1 + ν)
γxy (2.1.13c)

If a small section of the plate is studied during bending, the angle ϑ is the sections rotation in relation to the
normal going through the undeflected cross section. The angle of rotation for the section dx away from ϑ can
be characterized as:

X

w

X, u

Z, w

1

1

2

2

O

dx

Z

h

A B

B’
A’

Z

u u+(du/dx)dx

Figure 2.1.2: Deflection of the section, before/after.

ϑ = ϑ+
∂ϑ

∂x
dx (2.1.14)

ϑ = −∂ω
∂x

(2.1.15)

Where ω is the deflection of the plate.
The strain in a fiber with distance z from the neutral layer is obtained by:

εx = z
∂ϑ

∂x
(2.1.16)
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Combining equation (2.1.15) with (2.1.16), the strain-deflection relationship is obtained:

εx = −z ∂
2ω

∂x2
(2.1.17a)

εy = −z ∂
2ω

∂y2
(2.1.17b)

X, u

Y, u

O

A

A’

C

C’

B

B’

D

D’

u

u+(du/dy) dy

u+(du/dx) dx

Z=constant

u

g'

g''

dx

dy

Figure 2.1.3: Angels of distortion.

The angular distortion can be obtained by studying figure 2.1.3.

γ′ =
∂v

∂x
(2.1.18a)

γ′′ =
∂u

∂y
(2.1.18b)

u = −∂ω
∂x

(2.1.18c)

v = −∂ω
∂y

(2.1.18d)

γxy = γ′ + γ′′ (2.1.19)

Combine equations (2.1.18a-d) with (2.1.19) to obtain the strain-deflection relationship γxy (shear strain):

γxy = −2z
∂2ω

∂x∂y
(2.1.20)

κx = −∂
2ω

∂x2
(2.1.21a)

κy = −∂
2ω

∂y2
(2.1.21b)

χ = − ∂2ω

∂x∂y
(2.1.21c)

The moment per unit length is obtained by multiplying the stress over the cross-section with its level on z and
integrating over the height of the cross-section:

mx =

∫ h/2

−h/2
σxz · dz (2.1.22)
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Using the Hookean relationship from equations (2.1.13a-c) and expressing εx, εy and γxy according to (2.1.17a-b)
and (2.1.20), the integral becomes:

mx = −
∫ h/2

−h/2

E · z2

1− ν2
(
∂2ω

∂x2
+ ν

∂2ω

∂y2
)dz (2.1.23)

Performing the integration gives:

mx = − E · h3

12(1− ν2)
(
∂2ω

∂x2
+ ν

∂2ω

∂y2
) (2.1.24)

Set:

D =
E · h3

12(1− ν2)
(2.1.25)

Which leads to the final expression of the moment per length mx and my, on compressed form, where D is the
bending stiffness of the system:

mx = D(κx + ν · κy) (2.1.26a)
my = D(κy + ν · κx) (2.1.26b)

The shear moment is calculated in a similar way:

mxy =

∫ h/2

−h/2
τxyz · dz (2.1.27)

mxy = −
∫ h/2

−h/2

E · z2

2(1 + ν)
· 2 ∂2ω

∂x∂y
· dz (2.1.28)

Performing the integral produces:

mxy = − E · h3

12(1 + ν)

∂2ω

∂x∂y
(2.1.29)

By expansion with (1− ν) the difference of two squares can be used to express the moment in terms of the
general bending stiffness D:

mxy = − E · h3 · (1− ν)

12(1 + ν) · (1− ν)
· ∂

2ω

∂x∂y
(2.1.30)

mxy = D(1− ν) · χ (2.1.31)

By inserting the obtained expression for the moments into the original equilibrium equation (2.1.8), the
governing bending equation for isotropic plates is established:

∂2(D(−∂
2ω
∂x2 − ν ∂

2ω
∂y2 ))

∂x2
+ 2 ·

∂2(D(1− ν)(− ∂2ω
∂x∂y ))

∂x∂y
+
∂2(D(−∂

2ω
∂y2 − ν ∂

2ω
∂x2 ))

∂y2
= Pz(x, y) (2.1.32)

D(
∂4ω

∂x4
− ν ∂4ω

∂x2∂y2
) + 2 ·D(1− ν)(− ∂4ω

∂x2∂y2
) +D(−∂

4ω

∂y4
− ν ∂4ω

∂x2∂y2
) = Pz(x, y) (2.1.33)

The final expression for the governing differential equation for isotropic plates reads:

∂4ω

∂x4
+ 2

∂4ω

∂x2∂y2
+
∂4ω

∂y4
=
Pz(x, y)

D
(2.1.34)

2.2 Orthotropic plates

Ortotropic plates can have different stiffnesses and/or strengths in all directions. This behavior could be due
to orthotrophy of the material itself or that the plate has irregular geometry such as stiffeners, ribs or other
stiffness altering features. The derivation of the governing equation for bending follows the same procedure as
for isotropic plates found in the previous chapter, but with some small additions added to the stress-strain
relation and the in plane shear modulus.
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2.2.1 Assumptions
The assumptions for orthotropic Kirchoff-Love plates are the same as for the isotropic version, see chapter 2.1.1.

2.2.2 Governing differential equation for bending in Cartesian coordinate system
The stress-strain relationship for orthotropic plates reads (Szilard 2004):

εx =
σx
Ex
− νy

σy
Ey

(2.2.1a)

εy =
σy
Ey
− νx

σx
Ex

(2.2.1b)

γxy =
τxy
G

(2.2.1c)

G =

√
ExEy

2(1 +
√
νxνy)

(2.2.1d)

Combine equation (2.2.1a) with (2.2.1b) and solve for σx and σy:

σx =
Ex(εx + νyεy)

(1− νxνy)
(2.2.2a)

σy =
Ey(εy + νxεx)

(1− νxνy)
(2.2.2b)

τxy = G · γxy (2.2.2c)

Introduce equations (2.1.17a-b) and (2.1.20) into the orthotropic strain-stress relashionships (2.2.2a-c) gives:

σx = − Ex
(1− νxνy)

· (∂
2ω

∂x2
+ νy

∂2ω

∂y2
) · z (2.2.3a)

σy = − Ey
(1− νxνy)

· (∂
2ω

∂y2
+ νx

∂2ω

∂x2
) · z (2.2.3b)

The moments per unit length are calculated in the same manner as for the isotropic plate (2.1.22):

mx =

∫ h/2

−h/2
σxz · dz = −

∫ h/2

−h/2

Ex
(1− νxνy)

· (∂
2ω

∂x2
+ νy

∂2ω

∂y2
)z2 · dz (2.2.4a)

my =

∫ h/2

−h/2
σyz · dz = −

∫ h/2

−h/2

Ey
(1− νxνy)

· (∂
2ω

∂y2
+ νx

∂2ω

∂x2
)z2 · dz (2.2.4b)

mxy =

∫ h/2

−h/2
τxyz · dz = −

∫ h/2

−h/2

√
ExEy

2(1 +
√
νxνy)

· 2(
∂2ω

∂x∂y
)z2 · dz (2.2.4c)

Performing the integration gives:

mx = − Exh
3

12(1− νxνy)
· (∂

2ω

∂x2
+ νy

∂2ω

∂y2
) (2.2.5a)

my = − Eyh
3

12(1− νxνy)
· (∂

2ω

∂y2
+ νx

∂2ω

∂x2
) (2.2.5b)

mxy = −2G
h3

12
· ∂

2ω

∂x∂y
(2.2.5c)

The equations can be written on a more condensed form by introducing the constants Dx, Dxy, Dy, Dyx and
Ds:

Dx =
Exh

3

12(1− νxνy)
Dy =

Eyh
3

12(1− νxνy)
(2.2.6a)

Dxy =
Exh

3νy
12(1− νxνy)

Dyx =
Eyh

3νx
12(1− νxνy)

(2.2.6b)

Ds =
Gh3

12
(2.2.6c)
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mx = −(Dx
∂2ω

∂x2
+Dxy

∂2ω

∂y2
) (2.2.7a)

my = −(Dy
∂2ω

∂y2
+Dyx

∂2ω

∂x2
) (2.2.7b)

mxy = −2Ds
∂2ω

∂x∂y
(2.2.7c)

Note: νx
Ex

=
νy
Ey

which explains why Dxy = Dyx

Inserting equations (2.2.7a-c) into the general expression (2.1.3) and (2.1.4) gives:

−
∂(Dx · ∂

2ω
∂x2 +Dxy · ∂

2ω
∂y2 )

∂x
−
∂(2Ds

∂2ω
∂x∂y )

∂y
= qx (2.2.8)

−
∂(Dx · ∂

2ω
∂x2 +Dxy · ∂

2ω
∂y2 + 2Ds · ∂

2ω
∂y2 )

∂x
= qy (2.2.9)

Let:
H = Dxy + 2Ds (2.2.10)

Which gives:

−
∂(Dx · ∂

2ω
∂x2 +H · ∂

2ω
∂y2 )

∂x
= qx (2.2.11a)

−
∂(Dy · ∂

2ω
∂y2 +H · ∂

2ω
∂x2 )

∂y
= qy (2.2.11b)

Use the derived expression (2.2.11a-b) in (2.1.6) to obtain the differential equation for bending of orthotropic
plates:

Dx
∂4ω

∂x4
+ 2H

∂4ω

∂x2∂y2
+Dy

∂4ω

∂y4
= Pz(x, y) (2.2.12)

2.3 Fourier expansion

The derived 4th order differential equations (2.1.34) and (2.2.12) can only be solved rigorously for a few
specific cases, Szilard (2004). For higher number of supports (three or four) there is a need to implement an
approximation of the function to be able to perform the integration. This can be done by Fourier expansion of
the function w(x, y) and Pz(x, y) which is the deflection- and load-function respectively.

The Fourier expansion is built around the trigonometric functions cosine and sine. For a one dimensional
equation the approximation reads:

f(x) =
1

2
A0 +

∞∑
n=1

An cos (nωx) +

∞∑
n=1

Bn sin (nωx) (2.3.1)

for n = 1, 2, 3 . . .

As expressed in (2.3.1), the function is equal to the expansion when the number of summations approaches
infinity. Where A0, An and Bn are Fourier expansions coefficients obtained by (2.3.2a-c):

A0 =
2

T

∫ T

0

f(x)dx (2.3.2a)

An =
2

T

∫ T

0

f(x) cos (nωx)dx (2.3.2b)

Bn =
2

T

∫ T

0

f(x) sin (nωx)dx (2.3.2c)
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Where T is the period of the function. ω can be obtained by equation (2.3.3):

ω =
2π

T
(2.3.3)

2.3.1 Navier’s approach
Navier’s approach is a general solution of the 4th order governing differential equation for rectangular plates,
valid for both the isotropic (2.1.34) and orthotropic (2.2.12). It is performed by approximating the deflection-
and load-function by double Fourier sine series. The approach originally treated simply supported plates, but
with the implement of superposition theorem it is possible to solve for other, more complex boundary and load-
ing conditions. The following derivation is performed for a simply supported plate subjected to a distributed load.

The deflection ω(x, y) is approximated by:

ω(x, y) =

∞∑
m

∞∑
n

Wmn sin (
mπx

a
) sin (

nπy

b
) (2.3.4)

The load function Pz(x, y) is approximated in the same manner:

Pz(x, y) =

∞∑
m

∞∑
n

Pmn sin (
mπx

a
) sin (

nπy

b
) (2.3.5)

Inserting the Fourier expansions (2.3.4) and (2.3.5) into the governing differential equation for isotropic plates
(2.1.34) gives:

π4Wmnm
4 sin (mπxa ) sin (nπyb )

a4
+
π4Wmnn

4 sin (mπxa ) sin (nπyb )

b4
+

+
2π4Wmnm

2n2 sin (mπxa ) sin (nπyb )

a2b2
=
Pmn sin (mπxa ) sin (nπyb )

D
(2.3.6)

Simplify and solve for Wmn:

π4Wmn(
m4

a4
+
n4

b4
+ 2

m2n2

a2b2
) =

Pmn
D

(2.3.7)

Wmn =
Pmn

Dπ4(m
2

a2 + n2

b2 )2
(2.3.8)

Pz is previously described in equation (2.3.5). Solve for Pmn by multiplying the expression with sin (kπyb )dy
and integrating between 0 and b, do note that the following steps is only valid for an evenly distributed load:∫ b

0

Pz(x, y) sin (
kπy

b
)dy =

∞∑
m

∞∑
n

Pmn sin (
mπx

a
)

∫ b

0

sin (
nπy

b
) sin (

kπy

b
)dy (2.3.9)

Performing the right integral from the previous expression (2.3.9) gives:∫ b

0

sin (
mπy

b
) sin (

kπy

b
)dy =

=
bk sin (πn)(2 sin (πk2 )2 − 1)− bn sin (πk)(2 sin (πn2 )2 − 1)

πk2 − πn2
(2.3.10)

There are two cases for the variables n and k, if n 6= k and if n = k. Note that n and k are integers
n, k = 1, 2, 3 . . .
for n 6= k:

bk sin (πn)(2 sin (πk2 )2 − 1)− bn sin (πk)(2 sin (πn2 )2 − 1)

πk2 − πn2
= 0 (2.3.11)

This behavior can be explained by cancellation of the trigonometric function. By inserting n 6= k a phase shift
is introduced in between the different sine-functions.
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Because of the denominator of expression (2.3.10), the case for n = k must be characterized as a limit:

lim
n=k

(
bk sin (πn)(2 sin (πk2 )2 − 1)− bn sin (πk)(2 sin (πn2 )2 − 1)

πk2 − πn2
) (2.3.12)

Carrying out the limit gives:
b

2
− b sin (2πk)

4πk
=
b

2
(2.3.13)

Where sin (2πk) for k = 1, 2, 3 . . . are even rotations and always equal to zero. The expression (2.3.9) now
reads: ∫ b

0

Pz(x, y) sin (
kπy

b
)dy =

b

2

∞∑
m

∞∑
n

Pmn sin (
mπx

a
) (2.3.14)

By performing the same procedure but instead multiplying with sin (mπxa )dx and integrating between 0 and
a gives an expression that can be solved for Pmn, this procedure is only valid for a plate which is simply
supported on all four edges:

Pmn
a

2

b

2
=

∫ a

0

∫ b

0

Pz(x, y) sin (
mπx

a
) sin (

nπy

b
)dxdy (2.3.15)

Pmn =
4

ab

∫ a

0

∫ b

0

Pz(x, y) sin (
mπx

a
) sin (

nπy

b
)dxdy (2.3.16)

Performing the integral with constant load Pz(x, y) = P0 gives:

Pmn =
4P0

ab

a

mπ
(− cos (mπ)− (−1)) · b

nπ
(− cos (nπ)− (−1)) (2.3.17)

− cos (mπ)− (−1) =

{
2 if m is odd,
0 if m is even.

(2.3.18a)

− cos (nπ)− (−1) =

{
2 if n is odd,
0 if n is even.

(2.3.18b)

It is also known that m = n based on the previous condition (2.3.11), which leads to the final expression for
Pmn:

Pmn =

{
16P0

π2mn for odd m and n,
0 for even m and n.

(2.3.19)

Combine equations (2.3.4), (2.3.8) and (2.3.19) to obtain the final expression for the deflection ω(x, y) of an
isotropic plate subjected to a uniformly distributed load:

ω(x, y) =
16P0

π6D

∞∑
m

∞∑
n

sin (mπxa ) sin (nπyb )

(m
2

a2 + n2

b2 )2mn
, for m,n = 1, 3, 5, 7 . . . (2.3.20)

By inserting the expression for the deflection ω(x, y) into (2.1.26a-b) and (2.1.31) it is possible to characterize
the moment per unit length on a solvable first order form:

mx =
16P0

π4

∞∑
m

∞∑
n

[(
m

a
)2 + ν(

n

b
)2]

sin (mπxa ) sin (nπyb )

((m
2

a2 ) + (n
2

b2 ))2mn
(2.3.21a)

my =
16P0

π4

∞∑
m

∞∑
n

[(
n

b
)2 + ν(

m

a
)2]

sin (mπxa ) sin (nπyb )

((m
2

a2 ) + (n
2

b2 ))2mn
(2.3.21b)

mxy = −16P0

π4
(1− ν)

∞∑
m

∞∑
n

cos (mπxa ) cos (nπyb )

ab((m
2

a2 ) + (n
2

b2 ))2
(2.3.21c)
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The stress is obtained in a similar manner by introducing the expression of the deflection ω(x, y) into equations
(2.1.13a-c) combined with (2.1.17) and (2.1.20):

σx = −192P0

h3π4
z

∞∑
m

∞∑
n

[(
m

a
)2 + ν(

n

b
)2]

sin (mπxa ) sin (nπyb )

((m
2

a2 ) + (n
2

b2 ))2mn
(2.3.22a)

σy = −192P0

h3π4
z

∞∑
m

∞∑
n

[(
n

b
)2 + ν(

m

a
)2]

sin (mπxa ) sin (nπyb )

((m
2

a2 ) + (n
2

b2 ))2mn
(2.3.22b)

τxy = −192P0

h3π4
z(1− ν)

∞∑
m

∞∑
n

cos (mπxa ) cos (nπyb )

ab((m
2

a2 ) + (n
2

b2 ))2
(2.3.22c)

The derivation for orthotropic plates is performed in a similar manner. The Fourier approximation of ω(x, y)
(2.3.4) and Pz (2.3.5) still holds true, but the coefficients Wmn and Pmn needs to be reevaluated:

Dx

m4π4Wmn sin (mπxa ) sin (nπyb )

a4
+ 2H

Wmnm
2n2π4 sin (mπxa ) sin (nπxb )

a2b2
+

+Dy

n4π4Wmn sin (mπxa ) sin (nπyb )

b4
= Pmn sin (

mπx

a
) sin (

nπy

b
) (2.3.23)

Solve for Wmn:

Wmn =
Pmn

π4(Dx
m4

a4 + 2Hm2n2

a2b2 +Dy
n4

b4 )
(2.3.24)

Pmn for an orthotropic plate subjected to a uniformly distributed load is solved by multiplying with sin (kπyb )dy

and sin (kπxa )dx and integrating between 0 to a and 0 to b, same method as for the isotropic plate:∫ b

0

Pz(x, y) sin (
kπy

b
)dy =

∞∑
m

∞∑
n

Pmn

∫ b

0

sin (
mπx

a
) sin (

nπy

b
)dy (2.3.25)

Pmn =

{
16P0

π2mn for odd m and n,
0 for even m and n.

(2.3.26)

Insert equation (2.3.24) and (2.3.26) in the original expression for the deflection ω(x, y) (2.3.4) and get the full
expression of the deflection for an orthotropic plate:

ω(x, y) =
16P0

π6

∞∑
m

∞∑
n

sin (mπxa ) sin (nπyb )

mn(Dx
m4

a4 + 2Hm2n2

a2b2 +Dy
n4

b4 )
, for m,n = 1, 3, 5, 7 . . . (2.3.27)

Inserting (2.3.27) into equations (2.2.7a-c) to obtain the moment per length for a orthotropic plate subjected
to a uniformly distributed load:

mx =
16P0

π4

∞∑
m

∞∑
n

(Dx

m sin (mπxa ) sin (nπyb )

a2n(Dx
m4

a4 + 2Hm2n2

a2b2 +Dy
n4

b4 )
+

+Dxy

n sin (mπxa ) sin (nπyb )

mb2(Dx
m4

a4 + 2Hm2n2

a2b2 +Dy
n4

b4 )
) (2.3.28)

my =
16P0

π4

∞∑
m

∞∑
n

(Dy

n sin (mπxa ) sin (nπyb )

b2m(Dx
m4

a4 + 2Hm2n2

a2b2 +Dy
n4

b4 )

+Dxy

m sin (mπxa ) sin (nπyb )

na2(Dx
m4

a4 + 2Hm2n2

a2b2 +Dy
n4

b4 )
) (2.3.29)

mxy = −Gh
3

12

16P0

π4

∞∑
m

∞∑
n

cos (mπxa ) cos (nπyb )

ab(Dx
m4

a4 + 2Hm2n2

a2b2 +Dy
n4

b4 )
(2.3.30)
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The stress for an orthotropic plate subjected to an uniformly distributed load is obtained by inserting equation
(2.3.27) into the combined equations (2.1.17a-b) and (2.2.2a-c):

σx = − 16P0Ex
(1− νxνy)π4

z

∞∑
m

∞∑
n

(
m sin (mπxa ) sin (nπyb )

a2n(Dx
m4

a4 + 2Hm2n2

a2b2 +Dy
n4

b4 )
+

+νy
n sin (mπxa ) sin (nπyb )

mb2(Dx
m4

a4 + 2Hm2n2

a2b2 +Dy
n4

b4 )
) (2.3.31)

σy = − 16P0Ey
(1− νxνy)π4

z

∞∑
m

∞∑
n

(
n sin (mπxa ) sin (nπyb )

b2m(Dx
m4

a4 + 2Hm2n2

a2b2 +Dy
n4

b4 )

+νx
m sin (mπxa ) sin (nπyb )

na2(Dx
m4

a4 + 2Hm2n2

a2b2 +Dy
n4

b4 )
) (2.3.32)

τxy = −
√
ExEy

(1 +
√
νxνy)

16P0

π4
z

∞∑
m

∞∑
n

cos (mπxa ) cos (nπyb )

ab(Dx
m4

a4 + 2Hm2n2

a2b2 +Dy
n4

b4 )
(2.3.33)
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3 Equivalent Plate Transformation

The reason for transforming a sandwich structure to an equivalent homogeneous orthotropic layer is to be able
to perform a parametric study with a limited amount of indata parameters. This will give a more reliable result
with useful ratios and relations because of the manageable number of parameters that affect the result. However,
when deriving the transformation some assumptions have to be introduced which may be a source of inaccuracy
if the margin of error for the transformed plate compared to the original plate is too big. This has to be examined
by verifying the transformed plate in several steps for different indata to ensure a good and meaningful conversion.

The transformation is executed in two steps, see figure 3.0.1. The first step transforms the sandwich structure
to a three layered plate and the second part translates the three layers into one layer. The first transformation
is mainly done by loading the structure in different ways and measuring displacements in Abaqus CAE. The
equivalent stiffnesses of the core are then obtained from simple formulas that treat shear and bending deflection.
The second transformation, however, is derived analytically from assumptions regarding the behavior and
equilibrium of a three layered sandwich plate.

T

I

B

HT

HI

HB

HT

HI

HT + HI + HB 

HB

Figure 3.0.1: Illustration of the two steps in the transformation between a structured sandwich plate to an
equivalent one layered plate.

3.1 Derivations of equivalent properties of a three layered sandwich
structure

The transformation is performed for nine different elastic parameters, three Young’s modulus, three shear
modulus and three Poisson’s ratio. No interaction between the different parameters is assumed. There are
two different investigated approaches when transforming the elastic moduli E11 and E22, see figure 3.1.1,
either assume a constant modulus based on axial loaded deformation TALD, Zhou (2002), or constant flexural
rigidity TCFR. It is not apparent which of these base assumptions simulate the reality best, consequently both
variations have to be investigated further in an extensive verification.

The assumptions regarding the transformation of the elastic modulus in z-direction is only compression
because of the low height to length ratio. This means that there is no bending in this direction, thus the
transformation is only based on the assumption of axial loaded deformation for both methods.
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W

T

I

B

L

HT

HI

HB

Z, 3

Y, 2

X, 1

H

Figure 3.1.1: The concerned sandwich plate with labeling of geometric dimensions.

3.1.1 Equivalent Young’s modulus - TALD
For determining the in-plane Young’s moduli of E11 and E22, the following setup of the plate and loading is to
be used, see figure 3.1.2. The equivalent moduli computation is based on Aixi Zhou’s work, Zhou (2002).

T

I

B

HT

HI

HB

P11 P11

Z, 3

X, 1

H

W

Figure 3.1.2: Assumed load in x- and y-direction for transformation based on axial loaded deformation, TALD.
Note that the force shown in the figure is the resultant force and should be distributed over all layers.

Assume loading of the plate in x-direction (direction 1) and that the load is divided to all layers, see figure
3.1.2, where T - top layer, I - interface layer, B - bottom layer:

P11 = PT11 + P I11 + PB11 (3.1.1)

Which is the same as:
σ11 ·A11 = σT11 ·AT11 + σI11 ·AI11 + σB11 ·AB11 (3.1.2)
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Rewrite to:

σ11 = σT11 ·
AT11
A11

+ σI11 ·
AI11
A11

+ σB11 ·
AB11
A11

(3.1.3)

With:

A11 = H ·W (3.1.4a)

AT11 = HT ·W (3.1.4b)

AI11 = HI ·W (3.1.4c)

AB11 = HB ·W (3.1.4d)

Let:

αT =
HT

H
(3.1.5a)

αI =
HI

H
(3.1.5b)

αB =
HB

H
(3.1.5c)

Substitute (3.1.5a-c) and (3.1.4a-d) into (3.1.3), simplify and recieve:

σ11 = σT11 · αT + σI11 · αB + σB11 · αB (3.1.6)

Divide (3.1.6) by ε11:
σ11
ε11

=
σT11
ε11
· αT +

σI11
ε11
· αI +

σB11
ε11
· αB (3.1.7)

Which gives the transformation of E11 based on axial loaded deformation (TALD):

E11 = ET11 · αT + EI11 · αI + EI11 · αB (3.1.8)

The same procedure can be used to determine E22

E22 = ET22 · αT + EI22 · αI + EI22 · αB (3.1.9)

3.1.2 Equivalent Young’s modulus - TCFR
The computation of the equivalent moduli of E11 and E22 for the TCFR method is based on bending stiffness.
The following procedure is based on the setup, which can be seen in figure (3.1.3). The bending stiffness of the
plate is treated as a beam, which simplifies the computation a little. This method is fully developed by the
authors of the thesis.
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Figure 3.1.3: Assumed load and deflection for the transformation based on constant flexural rigidity, TCFR.

Consider a three layered sandwich structure, see figure 3.1.3. In order to calculate at what level the neutral
axis will be situated, the following procedure has to be performed.

e
I

e
T

e
B

Neutral Axis

X

FT

FI

FB

Figure 3.1.4: Strain and force equilibrium

Establish the relation between the different strains of the three layers, where H is the total height of the
sandwich plate and W is the width:

εT

x− hT

2

=
εB

x−H + HB

2

(3.1.10)

εB =
εT (x−H + HB

2 )

x− HT

2

(3.1.11)

In the same manner for εI

εI =
εT (x− H

2 )

x− HT

2

(3.1.12)

Establish the global equilibrium and rewriting:

FT + FI + FB = 0 (3.1.13)

(ε · E ·A)T + (ε · E ·A)I + (ε · E ·A)B = 0 (3.1.14)

Insert equations (3.1.11) and (3.1.12) into (3.1.14) gives:

εT · ET ·AT +
εT (x− H

2 )

x− HT

2

· EI ·AI +
εT (x−H + HB

2 )

x− HT

2

· EB ·AB = 0 (3.1.15)
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Solve this expression for x and receive:

x =
−EB HB

2 + 2EB HHB + ET HT
2 + EI HHI

2 (EB HB + EI HI + ET HT )
(3.1.16)

Assuming that the flexural rigidity of the plate will stay constant yields following expression:

D = DT +DI +DB (3.1.17)

With DT , DI and DB as:

DT = ET11 ·
IT11
W

(3.1.18)

IT11 = W · H
3
T

12
+W ·HT · x2 (3.1.19)

DT = ET11(
H3
T

12
+HT · x2) (3.1.20a)

DI = EI11(
H3
I

12
+HI(x−

HT

2
− HI

2
)2) (3.1.20b)

DB = EB11(
H3
B

12
+HB(H − x)2) (3.1.20c)

The single layer stiffness D is:

D = EEQ ·
H3

12
(3.1.21)

Using equations (3.1.16), (3.1.20a-c) and (3.1.21) in (3.1.17) the equivalent elastic modulus (Eeq) based on
constant flexural rigidity can be expressed:

Eeq =

12ET

(
HT

3

12 +
HT (−EB HB

2+2EB HHB+ET HT
2+EI HHI)

2

4 (EB HB+EI HI+ET HT )2

)
H3

+

+

12EB

(
HB

3

12 +HB

(
H − −EB HB

2+2EB HHB+ET HT
2+EI HHI

2EB HB+2EI HI+2ET HT

)2)
H3

+

+

12EI

(
HI

3

12 +HI

(
HI

2 + HT

2 −
−EB HB

2+2EB HHB+ET HT
2+EI HHI

2EB HB+2EI HI+2ET HT

)2)
H3

(3.1.22)

Equation (3.1.22) can be used to express both E11 and E22.

3.1.3 Equivalent Young’s modulus in z-direction

The equivalent Young’s modulus in z-direction can be described as compression of the plate over its thickness.
This process is also used in both transformational methods, TALD and TCFR. The method is derived from
Aixi Zhou’s work, Zhou (2002).
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Figure 3.1.5: Assumed load in z-direction evenly distributed over the face sheet.

Assume load in z-direction (direction 3), see figure 3.1.5. The force P33 is distributed over the whole bottom
and top face sheets:

σ33 =
P33

A33
(3.1.23)

All stresses must be transformed to all layers of the plate, which leads to:

σ33 = σT33 = σI33 = σB33 (3.1.24)

The strains of each layer can be expressed as:

εT33 =
σT33
ET33

(3.1.25a)

εI33 =
σI33
EI33

(3.1.25b)

εB33 =
σB33
EB33

(3.1.25c)

The total displacement can be expressed by the sum of the contribution from all layers:

δ33 = δT33 + δI33 + δB33 = εT33 ·HT + εI33 ·HI + εB33 ·HB (3.1.26)

The total strain for the deck is:

ε33 =
δ33
H

=
εT33 ·HT

H
+
εI33 ·HI

H
+
εB33 ·HB

H
(3.1.27)

Divide (3.1.27) by σ33 and aquire and applicate (3.1.5a-c):

ε33
σ33

=
εT33
σ33
· αT +

εI33
σ33
· αI +

εB33
σ33
· αB (3.1.28)

Solve for E33 to get the equation for the transformation of the elastic modulus in z-direction:

1

E33
=

αT

ET33
+

αI

EI33
+
αB

EB33
(3.1.29)

E33 =
1

αT

ET
33

+ αI

EI
33

+ αB

EB
33

(3.1.30)
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3.1.4 Equivalent shear moduli
This section treats the calculation of the equivalent shear moduli, Zhou (2002). The obtained expressions are
used both for the TALD and TCFR method.

W

T

I

B

L

HT

HI

HB

Z, 3

Y, 2

X, 1

Figure 3.1.6: Assumed shear load for G12. Note that the shear force is distributed over all layers.

The shear stiffness G12 is obtained by summation of the stiffness of the individual, see figure 3.1.6, layers in the
same manner as for E11 calculated from axial loaded deflection (TALD) found in section 3.1.1. The equation
for the transformation will therefore become:

G12 = αT ·GT12 + αI ·GI12 + αB ·GB12 (3.1.31)

T
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HI
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Y, 2

d
13
T

d
13
B

d
13
I

W

H

Figure 3.1.7: Assumed shear load for the modulus of G13 and G23. The load is evenly distributed over the top
sheet and fixed at the bottom.

Expressing the shear strain and displacement for all layers according to figure 3.1.7:

δT13 = γT13 ·HT , δI13 = γI13 ·HI , δB13 = γB13 ·HB (3.1.32)

δ13 = δT13 + δI13 + δB13 = γT13 ·HT + γI13 ·HI + γB13 ·HB (3.1.33)
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Combining (3.1.32) and (3.1.33) gives:

γ13 =
δ13
H

= γT13 ·
HT

H
+ γI13 ·

HI

H
+ γB13 ·

HB

H
(3.1.34)

γ13 = αT · γT13 + αI · γB13 + αT · γB13 (3.1.35)

Dividing all terms by τ13 gives:

γ13
τ13

= αT ·
γT13
τ13

+ αI ·
γI13
τ13

+ αB ·
γB13
τ13

(3.1.36)

1

G13
=

αT
GT13

+
αI
GB13

+
αT
GB13

(3.1.37)

Which gives the transformation equation for G13 and G23:

G13 =
1

αT

GT
13

+ αI

GI
13

+ αB

GB
13

(3.1.38)

G23 =
1

αT

GT
23

+ αI

GI
23

+ αB

GB
23

(3.1.39)

3.1.5 Poisson’s ratios
Poisson’s ratio is a measure of how much an object expands/contracts transversely during axial loading. A
positive value Poisson’s ratio gives contraction, which is the normal case, and a negative one gives expansion.
The following procedure is used to obtain values for both transformation methods, TALD and TCFR, Zhou
(2002).
Assume loading of σ11 in direction 1, each component will then have a displacement in direction 2 that can be
expressed as:

δT2 = −νT12 · εT11 ·W , δI2 = −νI12 · εI11 ·W , δB2 = −νB12 · εB11 ·W (3.1.40)

The total displacement in direction 2 can be obtained by following relationship:

δ2 = αT · δT2 + αI · δI2 + αB · δB2 (3.1.41)

Combine (3.1.41) with (3.1.40) and obtain the following expression:

δ2 = −αT · νT12 · ε11 ·W − αI · νI12 · ε11 ·W − αB · νB12 · ε11 ·W (3.1.42)

Total displacement for the 2-direction can also be expressed as δ2 = −ν12 · ε11 ·W , which in turn gives:

−ν12 · ε11 ·W = −αT · νT12 · εT11 ·W − αI · νI12 · εI11 ·W − αB · νB12 · εB11 ·W (3.1.43)

Divide both sides of expression (3.1.43) with −ε11 ·W gives:

ν12 = αT · νT12 ·
εT11
ε11

+ αI · νI12 ·
εI11
ε11

+ αB · νB12 ·
εB11
ε11

(3.1.44)

Using the relation that all members suffer the same strain of ε11, i.e.:
εT11 = ε11 , ε

I
11 = ε11 , ε

B
11 = ε11, into (3.1.44) gives following expression:

ν12 = αT · νT12 + αI · νI12 + αB · νB12 (3.1.45)

Considering ν13 instead under the stress σ11 which is defined as: ν13 = − ε33

ε11

Displacements for the 3-direction can be established as:

δT3 = −νT13 · εT11 ·HT , δ
I
3 = −νI13 · εI11 ·HI , δ

B
3 = −νB13 · εB11 ·HB (3.1.46)
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The total deformation for the 3-direction can then be obtained by summation of the individual deformation of
the layers.

δ3 = δT3 + δI3 + δB3 = −νT13 · εT11 ·HT − νI13 · εI11 ·HI − νB13 · εB11 ·HB (3.1.47)

Rewriting (3.1.47) by δ3 = −ν13 · ε11 ·H

−ν13 · ε11 ·H = −νT13 · εT11 ·HT − νI13 · εI11 ·HI − νB13 · εB11 ·HB (3.1.48)

Which is the same as:

ν13 = νT13 ·
εT11 ·HT

ε11 ·H
+ νI13 ·

εI11 ·HI

ε11 ·H
+ νB13 ·

εB11 ·HB

ε11 ·H
(3.1.49)

Recall (3.1.5a-c) and the last step for deriving ν12,

ν13 = αT · νT13 + αI · νI13 + αB · νB13 (3.1.50)

In the same manner as for ν13, ν23 can be derived, which gives:

ν23 = αT · νT23 + αI · νI23 + αB · νB23 (3.1.51)

3.2 Transformation between three-layered sandwich plate to one equiv-
alent layer - Summary

Table 3.2.1: Transformation algorithm for the two different transformation assumptions; transformation from
axial loaded deflection (TALD) and transformation based on constant flexural rigidity (TCFR). The equation
number is found in the table.

Transformation E11 E22 E33 G12 G13 G23 ν12 ν13 ν23

TALD (3.1.8) (3.1.9) (3.1.30) (3.1.31) (3.1.38) (3.1.39) (3.1.45) (3.1.50) (3.1.51)
TCFR (3.1.22) (3.1.22) (3.1.30) (3.1.31) (3.1.38) (3.1.39) (3.1.45) (3.1.50) (3.1.51)
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4 FE-Simulation
The two transformation methods derived in chapter 3 are to be evaluated for comparison and possible improve-
ments. This verification is done for two different cases; the plate resting on four supports and the plate working
in a full scale bridge, where it is resting on two primary girders. This bridge model is later to be the subject of
the parametric study.

Both the verification and the parametric study are performed by a finite element simulation (FE). The
full bridge is modeled in Abaqus CAE which is a commercial FEA-software. The strength of Abaqus CAE is
that it is a general program which can handle a wide variety of different analysis and simulations. However, in
the case of the verification and the parametric study, a simple linear analysis will suffice.

Do note, results are presented in both local and global coordinates. Local coordinates refers to the sandwich
structure alone, where the direction of the core studs generally is in x-direction and cross studs are y-direction.
The x-direction (local coordinate) translates to the global y-direction and the y-direction (local coordinate)
translates to the global x-direction. This can be explained by the direction of the sandwich plate in the total
bridge structure, illustrated in figure 4.1.1. If nothing else is stated, assume global coordinates.

4.1 Geometric properties of the full bridge model

The bridge consists of two primary girders in the main direction of the bridge, where the sandwich plates are
placed on top of the girders perpendicular to the main direction. The bridge’s length is set to 15 meters, which
should be sufficient to span a normal highway’s width. The width of the bridge deck is set to 8 meters, in order
to have wide lanes which grants high speed and still space left for side walks and guard rails. The primary
girders are placed at a c/c-distance 5 meters apart and 1.5 meters in from the edge of the deck, see figure 4.1.1.
Vertical bracing elements for the steel beams are placed in the middle of the span and at the supports. A
transverse beam based on the standard beam UPE300 is also fastened between the middle stiffeners in order
to decrease twisting for the main girders, see figure 4.1.2. The composite sandwich bridge deck has the total
height of 275 millimeters, and consists of a lower face sheet of 10 millimeters, a core of 250 millimeters and an
upper face sheet of 15 millimeter.

Global coordinates Local coordinates

Figure 4.1.1: Geometric dimensions of the bridge model. The arrows show the direction of the sandwich
structure which is placed between the two main girders.
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Sti�ening beam UPE300
Bracing elements

Figure 4.1.2: The bridge model with the bracing and stiffening elements highlighted.

It is important to have a reasonable relationship in stiffness between the sandwich element and the underlying
longitudinal beams in order to obtain a realistic global behavior and also so that the deflection ratios between
the two parts fit. The steel beams are therefore designed by a rough calculation made by hand, see appendix
10.1. The calculations are performed in accordance with EUROPEAN STANDARD EN 1991-2:2003 (2003).
The chosen load case for the bridge is taken as Load Model 1 (LM1) which is used to calculate the general
behavior of bridges subjected to normal traffic pattern. When the design moment affecting the main girders
is known, a beam is chosen from a table with I-beams of standard sizes. The beams are chosen to be a bit
undersized in order to account for the increase of stiffness the sandwich structure contributes to the global
frame system. In this case HEB1000 girders were chosen and they were simplified as having non rounded
shapes. For dimensions of the different standardized beams used see table 4.1.1 and figure 4.1.3. The total
height of the complete bridge system becomes 1275 millimeters.

Table 4.1.1: Geometric properties of the standardized girders used [mm]

Profile h b t d R

HEB 1000 1000 300 36.0 19.0* 30*
UPE 300** 300 10 10 15* 4.5*

* Rounded corners are not modeled.
** This is a customized version of UPE300 with different values of b and t.

Figure 4.1.3: UPE-profile (left) and HEB-profile (right).
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4.2 Mesh and model remarks for the full bridge model

The bridge structure is modeled with solid elements with a mesh constructed by 20-node brick elements
(C3D20R). Solid elements are chosen to be able to obtain values of out of plane shear stresses and strains.
However, this presents problems when constructing the mesh. Because of the geometric properties of the bridge,
the automated mesh constructor is unable to create a mesh consisting of brick elements without distorting and
warping some of them. It is possible to find a good mesh with tetrahedrons instead of brick elements, though
these types of elements are not good when dealing with shear stresses. This can be explained by the geometry
of the element where shear loads are received by truss action in the individual elements which will lead to an
overestimation of the stiffness. Instead approximately 40 partitions are created in order to regulate and control
the mesh to be able to use brick elements. These partitions will help the automated mesh constructor to find a
suitable and structured mesh without any warped elements.

All components of the bridge are assembled with full interaction between them. This also applies to the
layers of the composite sandwich structure. This means that the sandwich structure will work both as a plate
resting on two supports and as an upper flange for the global beam frame system.

The boundaries are situated at the lower flange of both the steel girders on each end of the bridge. The
boundary conditions are assigned to a small area of 0.1 · 0.3m2 to get a good transfer of the reaction force
to the structure and to avoid local discontinuities which a line boundary condition may bring. The bridge is
simply supported with all displacements locked on once side and x-direction free to move on the other side, see
figure 4.2.1. No rotations are prescribed.

Fixed, x,y,z=0

Fixed, y,z=0

Figure 4.2.1: The bridge model upside down with the set boundaries marked.

4.3 Convergence study

When performing a FE-analysis, a good mesh is critical to obtain accurate results and behavior. The verification
of the results from chapter 3.1 is done in two steps, first a comparison when the plates are resting on four
supports and secondly, when the plate systems are resting on the two longitudinal steel beams in the main
bridge model presented in section 4.1. There is no need for an extensive convergence study in verification
one. This is due to the simple geometrics of the plate system and the ease which the mesh can reach an
adequate resolution. The second verification, however, is a more complex structure with geometric proper-
ties which will cause problems to the automated mesh constructor to create a mesh with good resolution.
There is a need to introduce partitions and manually adjust and increase the local seeding with regard to
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the mesh density. This is done to ensure a good and structured mesh without the risk of inaccurate inte-
gration interpolation, which can be obtained when the elements in the mesh are warped or distorted in some way.

When constructing the mesh seeding manually, there are a few rules of thumb that are followed; at least five
elements in z-direction for elements subjected to bending, localized finer mesh seeding in the areas where point
loads are applied and adequate number of elements in warped parts, for example the steel beam flanges. Hence,
a local seeding of the height is inserted for both the two I-beams and for the plate system, and the automated
mesh is examined in problem areas to ensure a good and structured mesh.

To validate the mesh for verification two, a convergence study is performed by changing the global seed-
ing in steps from 0.8 to 0.2 which will result in meshes with approximately 7.000 to 40.000 elements. This is
compared with a change of local seeds around the area where the point loads are applied. The local seeds are
changed in three steps; 0.15, 0.1 and 0.08 and are represented by red dots in the graphs below. If the local
seeds are effective, the points should move closer towards the calculated value for 40.000 elements compared to
the same increase of elements on a global scale. The local seeding of the height of the beams and sandwich
layers are not investigated further in the convergence study and are assumed to be satisfactory.

The deflection is measured and compared at five points; in between the point loads in the heavy lane
(point one), at the edge by the heavy lane (point two), at the inner side of the lower flange for the beam under
the heavy lane (point three), at the middle part of the lower flange for the beam under the heavy lane (point
four) and finally at the outer part of the lower flange for the beam under the heavy lane (point five). These
measure points are shown in figure 4.3.1 and 4.3.2 along with the loading conditions according to Eurocode
LM1. For specific values of the different applied loads, see appendix 10.1.These points are chosen to measure
both the local maximum deflection, obtained either in the edge or in between the point loads (point one and
two), and the global behavior of the beam obtained from the lower flange (point three to five).

The obtained values and comparison can be found in graphs 4.3.3 to 4.3.7.

Figure 4.3.1: Loading conditions for the convergence study. Measure points one and two are marked with red
circles.
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Figure 4.3.2: Measure points three, four and five are marked with red circles. The readings are taken at the
beam below the heavy lane.
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Figure 4.3.3: Deflection between the point loads in the heavy lane.
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Figure 4.3.4: Deflection at the edge by the heavy lane.
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Figure 4.3.5: Deflection at the inner side of the lower flange for the beam under the heavy lane.
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Figure 4.3.6: Deflection of the middle part of the lower flange for the beam under the heavy lane.
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Figure 4.3.7: Deflection of the outer part of the lower flange for the beam under the heavy lane.

The difference between the results are one hundredth of a millimeter which means that the obtained result for
the coarser mesh has already converged enough. Due to the geometry of the structure, a lot of partitions needed
to be created to obtain a structured and good mesh with as few as possible mesh inconsistencies. Because of
these partitions, it is impossible to get a very coarse mesh which means that a full scale convergence study
cannot be performed. Though, there are some things that can be noted;

The global behavior is not changed by introducing a finer local seed around the area where the point loads are
applied, see figure 4.3.4, 4.3.5, 4.3.6 and 4.3.7 Hence, this is not an effective way of increasing the number of
elements in regard to the global behavior. Though, this has a positive effect on the result of the maximum
local value obtained in between the two point loads in the heavy lane, see figure 4.3.3.
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The conclusion of this convergence study is to use a coarse global seed with a small increase in mesh density
around areas where the point loads are applied for verification two. The created partitions gives a structured
mesh with reliable results.

4.4 Verification 1 of TALD and TCFR

The verification of the transformation models for an equivalent plate is performed to distinguish the difference
between the two transformation methods and to try to approximate the error for different sets of parameter
inputs. This is done by comparing the result from different FE-analysis performed in Abaqus CAE. First a
reference plate is created containing three layers where all layers have orthotropic behavior. This is compared
with the two corresponding equivalent plates created containing one layer with the orthotropic material proper-
ties obtained from the transformation algorithm (TALD and TCFR). The plates are modeled with both solid
and shell elements separately.

The material properties are inserted as engineering constants with three Young’s moduli, three Poisson’s
ratios and three shear moduli. These parameters are chosen as random as possible but still in the same
magnitude as a real material. A total of seven material property sets with different parameters are created. To
ensure that the chosen materials have a realistic behavior, a check of the ratio between Poisson’s ratio and
Young’s modulus is performed in the algorithm. In general, the top and bottom face sheets are assigned stiffer
properties compared to the core. Although, the last two material sets have a stiffer core compared to the face
sheets. This is not a realistic case and is chosen only on the basis to study and understand the behavior of the
different transformations better.

The length of the plates are set to 5 m, the width to 3 m and the height to 0.27 m. They are subjected
to a uniformly distributed load (3 kN/m2) and are simply supported on four edges. The plates are free
to expand/retract in x- and y-direction along two sides. The boundary condition is assigned a width of 5
centimeters when using solid elements to ensure a good transfer of the support force to the three layers without
the risk of local distortion corrupting the result. A linear boundary condition is used for the shell elements. A
full list of boundary conditions can be found in table 4.4.1.

Table 4.4.1: Boundary conditions used in the verification 1

Edge U1 U2 U3 UR1 UR2 UR3

Short side 1 free 0 0 free free free
Long side 1 0 free 0 free free free
Short side 2 free free 0 free free free
Long side 2 free free 0 free free free

The reference plate is modeled with solid elements constructed by three separate layers, each layer with unique
input data. These layers are merged together to create the full plate, see figure 4.4.1. Full interaction between
the layers is assumed, no additional slip or friction is modeled. When modeling the plate with transformed
equivalent stiffness, a solid part with the same height as the reference plate is created and assigned its
transformed material properties. The mesh for both the reference plate and the equivalent plates is constructed
by 3D stress linear 8-node brick elements (C3D8R), approximately 20.000 elements. The obtained deflection is
measured along x-direction on both top and bottom side to be able to track the compression of the different
parts of the plates.
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The thickness of the plate constructed with shell elements is assigned in the section property module. This
is done in two different ways for the reference plate and the equivalent plate. The 3-layered reference plate
is assigned a composite section property, which contains both thickness and the three orthotropic material
properties. The equivalent plate is assigned a section with the same total thickness as the reference plate and
consisting of a homogeneous material. These sections are assigned to the shells from the bottom up to ensure
that the boundary conditions end up at the bottom edges and not in the middle of the plate. Standard linear
elements (S4R) are used. Three integration points are used in the flanges and five points in the core material
for the reference plate. Six points are used for the equivalent plates. The mesh consists of 1500 elements, see
figure 4.4.2.

Figure 4.4.1: Abaqus model for verification one, solid elements. Three layered reference plate (left) equivalent
one layered plate (right)

Figure 4.4.2: Abaqus model for verification one, shell elements.
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4.4.1 Material parameters set 1

Table 4.4.2: Material parameters set 1. Initial values, stiffness parameters in [Pa].

Layer Exx Eyy Ezz νxx νyy νzz G12 G13 G23 h [m]

TOP 16.6e9 9.58e9 9.58e9 0.31 0.31 0.29 5.12e9 4.87e9 3.72e9 0.03
CORE 6.55e9 0.17e9 5.52e9 0.33 0.33 0.1 0.483e9 5.45e9 0.345e9 0.19
BOT 12.4e9 6.21e9 6.21e9 0.31 0.31 0.29 3.6e9 3.38e9 2.41e9 0.05

Table 4.4.3: Equivalent material parameters set 1 (Transformation based on constant flexural rigidity (TCFR),
Transformation based on axial loaded deformation (TALD)), stiffness parameters in [Pa].

Model Exx Eyy Ezz νxx νyy νzz G12 G13 G23 h [m]

TCFR 15.4e9 6.77e9 5.93e9 0.324 0.324 0.156 1.58e9 4.84e9 0.466e9 0.27
TALD 8.75e9 2.33e9 5.93e9 0.324 0.324 0.156 1.58e9 4.84e9 0.466e9 0.27
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Figure 4.4.3: Deflection U3 along x-direction for parameter set 1, solid elements.

As seen in figure 4.4.3, the TCFR shows much better correlation with the reference plate than the TALD.
TCFR shows a small overestimation of stiffness and TALD a large underestimation.
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Figure 4.4.4: Deflection U3 along x-direction for parameter set 1, shell elements.

For the case with shell elements, the TCFR overestimates the stiffness and the TALD underestimates it
compared to the reference.

Table 4.4.4: Comparison of deflection for the transformed plates in relation to the reference plate, parameter
set 1.

Model U3 solid, TOP % diff U3 solid, BOT % diff U3 shell % diff
REF -196.287E-06 0% -196.093E-06 0% -220.958E-06 0%
TCFR -174E-06 -11.4% -173.673E-06 -11.4% -192.437E-06 -12.9%
TALD -510.728E-06 160% -510.238E-06 161% -374.214E-06 69.4%
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4.4.2 Material parameters set 2

Table 4.4.5: Material parameters, set 2. Initial values, stiffness parameters in [Pa].

Layer Exx Eyy Ezz νxx νyy νzz G12 G13 G23 h [m]

TOP 210e9 210e9 210e9 0.3 0.3 0.3 80.7e9 80.7e9 80.7e9 0.03
CORE 0.36e9 0.36e9 0.36e9 0.08 0.08 0.08 0.097e9 0.097e9 0.097e9 0.19
BOT 210e9 210e9 210e9 0.3 0.3 0.3 80.7e9 80.7e9 80.7e9 0.05

Table 4.4.6: Equivalent material parameters set 2 (Transformation based on constant flexural rigidity (TCFR),
Transformation based on axial loaded deformation (TALD), stiffness parameters in [Pa].

Model Exx Eyy Ezz νxx νyy νzz G12 G13 G23 h [m]

TCFR 178e9 178e9 0.511e9 0.145 0.145 0.145 24.0e9 0.138e9 0.138e9 0.27
TALD 62.5e9 62.5e9 0.511e9 0.145 0.145 0.145 24.0e9 0.138e9 0.138e9 0.27
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Figure 4.4.5: Deflection U3 along x-direction for parameter set 2, solid elements.

For solid elements, both methods underestimates the bending stiffness compared to the reference.
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Figure 4.4.6: Deflection U3 along x-direction for parameter set 2, shell elements.

Shell elements in this case shows overestimation of stiffness for TCFR and underestimation for TALD, compared
to the reference.

Table 4.4.7: Comparison of deflection for the transformed plates in relation to the reference plate, parameter
set 2.

Model U3 solid, TOP % diff U3 solid, BOT % diff U3 shell % diff
REF -74.471E-06 0% -73.625E-06 0% -115.823E-06 0%
TCFR -99.648E-06 33.8% -98.845E-06 34.3% -103.455E-06 -10.7%
TALD -117.446E-06 57.7% -116.623E-06 58.4% -120.917E-06 4.4%
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4.4.3 Material parameters set 3

Table 4.4.8: Material parameters set 3. Initial values, stiffness parameters in [Pa].

Layer Exx Eyy Ezz νxx νyy νzz G12 G13 G23 h [m]

TOP 100e9 20e9 20e9 0.2 0.3 0.1 5e9 10e9 7e9 0.03
CORE 2e9 0.2e9 5e9 0.1 0.2 0.1 0.1e9 0.5e9 0.3e9 0.19
BOT 20e9 100e9 30e9 0.3 0.31 0.29 10e9 5e9 7e9 0.05

Table 4.4.9: Equivalent material parameters set 3 (Transformation based on constant flexural rigidity (TCFR),
Transformation based on axial loaded deformation (TALD), stiffness parameters in [Pa].

Model Exx Eyy Ezz νxx νyy νzz G12 G13 G23 h [m]

TCFR 34.8e9 26.4e9 6.56e9 0.148 0.232 0.135 2.48e9 0.687e9 0.419e9 0.27
TALD 16.2e9 20.9e9 6.56e9 0.148 0.232 0.135 2.48e9 0.687e9 0.419e9 0.27
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Figure 4.4.7: Deflection U3 along x-direction for parameter set 3, solid elements.

In this case the TCFR overestimates the bending stiffness and TALD underestimates it, compared to the
reference. However, the deviation for them is not that large compared to the actual reference value.
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Figure 4.4.8: Deflection U3 along x-direction for parameter set 3, shell elements.

With shell elements, the result is quite similar as for the solid elements. In this case though, the TALD is
almost totally accurate compared to the reference.

Table 4.4.10: Comparison of deflection for the transformed plates in relation to the reference plate, parameter
set 3.

Model U3 solid, TOP % diff U3 solid, BOT % diff U3 shell % diff
REF -91.803E-06 0% -91.806E-06 0% -108.155E-06 0%
TCFR -85.387E-06 -7.0% -85.216E-06 -7.2% -91.046E-06 -15.8%
TALD -102.382E-06 11.5% -102.201E-06 11.3% -109.92E-06 1.6%
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4.4.4 Material parameters set 4

Table 4.4.11: Material parameters set 4. Initial values, stiffness parameters in [Pa].

Layer Exx Eyy Ezz νxx νyy νzz G12 G13 G23 h [m]

TOP 2000e9 1000e9 500e9 0.05 0.06 0.05 200e9 100e9 400e9 0.03
CORE 0.02e9 0.04e9 0.5e9 0.1 0.1 0.05 0.5e9 0.9e9 1e9 0.19
BOT 400e9 200e9 40e9 0.1 0.1 0.1 50e9 53e9 71e9 0.05

Table 4.4.12: Equivalent material parameters set 4 (Transformation based on constant flexural rigidity (TCFR),
Transformation based on axial loaded deformation (TALD), stiffness parameters in [Pa].

Model Exx Eyy Ezz νxx νyy νzz G12 G13 G23 h [m]

TCFR 673e9 337e9 0.708e9 0.094 0.096 0.078 31.8e9 1.27e9 1.42e9 0.27
TALD 296e9 148e9 0.708e9 0.094 0.096 0.078 31.8e9 1.27e9 1.42e9 0.27
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Figure 4.4.9: Deflection U3 along x-direction for parameter set 4, solid elements.

In this case both methods underestimates the bending stiffness. TCFR is though much closer to the actual
reference value.
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Figure 4.4.10: Deflection U3 along x-direction for parameter set 4, shell elements.

For shell elements, TCFR overestimates stiffness and TALD underestimates. They are approximately at the
same distance, on opposite sides, of the reference.

Table 4.4.13: Comparison of deflection for the transformed plates in relation to the reference plate, parameter
set 4.

Model U3 solid, TOP % diff U3 solid, BOT % diff U3 shell % diff
REF -16.689E-06 0% -16.262E-06 0% -16.721E-06 0%
TCFR -17.920E-06 7.4% -17.365E-06 6.8% -14.07E-06 -15.9%
TALD -23.414E-06 40.3% -22.844E-06 40.5% -19.588E-06 17.1%
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4.4.5 Material parameters set 5

Table 4.4.14: Material parameters set 5. Initial values, stiffness parameters in [Pa].

Layer Exx Eyy Ezz νxx νyy νzz G12 G13 G23 h [m]

TOP 20e9 2e9 50e9 0.15 0.26 0.12 5e9 3e9 1e9 0.03
CORE 0.02e9 0.046e9 0.2e9 0.13 0.22 0.09 0.4e9 0.09e9 0.1e9 0.19
BOT 15e9 40e9 1e9 0.15 0.11 0.15 2e9 3e9 24e9 0.05

Table 4.4.15: Equivalent material parameters set 5 (Transformation based on constant flexural rigidity (TCFR),
Transformation based on axial loaded deformation (TALD)), stiffness parameters in [Pa].

Model Exx Eyy Ezz νxx νyy νzz G12 G13 G23 h [m]

TCFR 15.0e9 3.69e9 0.270e9 0.136 0.204 0.104 1.21e9 0.126e9 0.140e9 0.27
TALD 5.01e9 7.66e9 0.270e9 0.136 0.204 0.104 1.21e9 0.126e9 0.140e9 0.27
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Figure 4.4.11: Deflection U3 along x-direction for parameter set 5, solid elements.

In this case the TCFR hits the reference very accurate and the TALD greatly overestimates the stiffness.
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Figure 4.4.12: Deflection U3 along x-direction for parameter set 5, shell elements.

However for shell elements, both methods overestimates the bending stiffness compared to the reference.

Table 4.4.16: Comparison of deflection for the transformed plates in relation to the reference plate, parameter
set 5.

Model U3 solid, TOP % diff U3 solid, BOT % diff U3 shell % diff
REF -408.718E-06 0% -409.47E-06 0% -519.153E-06 0%
TCFR -408.978E-06 0.06% -406.832E-06 -0.6% -418.128E-06 -19.5%
TALD -310.929E-06 -23.9% -309.096E-06 -24.5% -313.077E-06 -39.7%
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4.4.6 Material parameters set 6

Table 4.4.17: Material parameters set 6. Initial values, stiffness parameters in [Pa].

Layer Exx Eyy Ezz νxx νyy νzz G12 G13 G23 h [m]

TOP 2e9 5e9 10e9 0.2 0.1 0.3 0.5e9 0.3e9 0.1e9 0.03
CORE 200e9 100e9 300e9 0.23 0.12 0.3 10e9 0.5e9 2e9 0.19
BOT 10e9 20e9 2e9 0.12 0.15 0.2 5e9 1e9 5e9 0.05

Table 4.4.18: Equivalent material parameters set 6 (Transformation based on constant flexural rigidity (TCFR),
Transformation based on axial loaded deformation (TALD)), stiffness parameters in [Pa].

Model Exx Eyy Ezz νxx νyy νzz G12 G13 G23 h [m]

TCFR 91.8e9 57.3e9 7.58e9 0.206 0.123 0.282 8.02e9 0.509e9 0.667e9 0.27
TALD 142e9 74.6e9 7.58e9 0.206 0.123 0.282 8.02e9 0.509e9 0.667e9 0.27
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Figure 4.4.13: Deflection U3 along x-direction for parameter set 6, solid elements.

In this parameter set, both methods shows good correlation. TCFR underestimates the bending stiffness and
TALD overestimates it compared to the reference.
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Figure 4.4.14: Deflection U3 along x-direction for parameter set 6, shell elements.

Also for shell elements, the two methods shows good correlation of the same order as for solid elements.

Table 4.4.19: Comparison of deflection for the transformed plates in relation to the reference plate, parameter
set 6.

Model U3 solid, TOP % diff U3 solid, BOT % diff U3 shell % diff
REF -41.690E-06 0% -41.657E-06 0% -43.614E-06 0%
TCFR -43.952E-06 5.4% -43.859E-06 5.3% -46.549E-06 6.7%
TALD -38.275E-06 -8.2% -38.190E-06 -8.3% -40.388E-06 -7.4%

44 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:127



4.4.7 Material parameters set 7

Table 4.4.20: Material parameters set 7. Initial values, stiffness parameters in [Pa].

Layer Exx Eyy Ezz νxx νyy νzz G12 G13 G23 h [m]

TOP 0.2e9 5e9 0.3e9 0.12 0.11 0.23 0.05e9 0.03e9 0.01e9 0.03
CORE 200e9 1000e9 600e9 0.15 0.22 0.23 100e9 6e9 10e9 0.19
BOT 1e9 2e9 22e9 0.17 0.14 0.15 0.5e9 10e9 1e9 0.05

Table 4.4.21: Equivalent material parameters set 7 (Transformation based on constant flexural rigidity (TCFR),
Transformation based on axial loaded deformation (TALD), stiffness parameters in [Pa].

Model Exx Eyy Ezz νxx νyy νzz G12 G13 G23 h [m]

TCFR 84.9e9 423e9 2.63e9 0.150 0.193 0.215 70.5e9 0.260e9 0.088e9 0.27
TALD 141e9 705e9 2.63e9 0.150 0.193 0.215 70.5e9 0.260e9 0.088e9 0.27
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Figure 4.4.15: Deflection U3 along x-direction for parameter set 7, solid elements.

In this case, TALD and TCFR show very bad correlation with the reference. Both methods are heavily
underestimating the bending stiffness compared to the reference.
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Figure 4.4.16: Deflection U3 along x-direction for parameter set 7, shell elements.

The same, as for solid elements, applies also to shell elements where non of the methods even are close to the
reference’s deflection.

Table 4.4.22: Comparison of deflection for the transformed plates in relation to the reference plate, parameter
set 7.

Model U3 solid, TOP % diff U3 solid, BOT % diff U3 shell % diff
REF -6.8343E-06 0% -6.5438E-06 0% -6.506E-06 0%
TCFR -106.431E-06 1457% -106.27E-06 1524% -125.764E-06 1833%
TALD -99.637E-06 1358% -99.478E-06 1420% -117.54E-06 1707%

4.4.8 Comment on the results from verification one

(I) Overall the transformation based on constant flexural rigidity (TCFR) seems to have better correlation
compared to the transformation based on axial deformation (TALD).

(II) The transformation based on constant flexural rigidity seems to be a more stable method and is not
varying as much between the different parameter sets as the other transformation (TALD).

(III) The last material set gives a bad correlation. This may be a result from the large difference between
the layers for material parameters G13 and G23. The equation used for the transformation have very
similar properties as an equation used to calculate the electric resistance of a parallel connection. This
means that a very small value of the material parameter affects the transformed shear modulus to a large
extent, similar as for an electric current slipping through the circuit where the resistance is the lowest.
In other words, a low value, even though the thickness of the layer is small, has a very large negative
impact on the stiffness of the calculated equivalent parameter. This might mean that the transformation
is not valid when the variation between the input shear parameters is too large compared to each other.
Further verification is needed to investigate this more comprehensively.

(IV) One of the base assumption for the TCFR-method did not hold true for parameter set 5. The neutral
axis was found to not be inside the core material for this case, which could lead to inaccurate results.
The problem was noted in the MATLAB-algorithm that computes the equivalent stiffness, which warns
the user if any assumptions are not fulfilled. The reason why this problem arose, was due to a large
difference of the stiffness between the flanges, see table 4.4.14. However this did not affect the result
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much since the flanges are fairly thin, which only gives a very small error when computing the equivalent
properties.

(V) The TCFR method base assumption is founded in a case of bending and should consequently give a
more accurate result for verification one when the plate is resting on four supports subjected to a evenly
distributed load, in other words mainly bending. The TALD method gives unacceptable bad correlation
for some parameter sets. However, the real case is not pure bending or axial loading but a combination
of them depending on the direction.

(VI) Shell elements does only take into account in-plane shear stresses. Thus, the out of plane strain is not
handled in a correct way which can lead to errors in the result. This is the reason why the results differ
between shell and solid elements for some parameter sets. Because of this problem, only solid elements
are used in further verifications.

(VII) There is a need to verify and compare the two methods further in a verification that simulates the real
case better, with combined bending and axial load.
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4.5 Verification 2 of TALD and TCFR

Since the composite sandwich structure is to be used as a bridge deck on the steel beam frame system, the
verification also has to be done for this case. This will compliment verification one and establish a more reliable
evaluation of the two different transformation methods. The sandwich plate is working both like a plate resting
on two supports and as an upper flange for the global beam frame system in verification two. The deflection
between the two girders is close to pure bending which should favor the transformation based on constant
flexural rigidity. In the other direction the loading is a combination of bending and axial loading, hence it
is not apparent which of the two transformation methods that should be favored. The geometry and model
information used in the second verification can be found in section 4.1.

If one of the transformations result in an overestimation and the other method an underestimation, it
could be of value to combine these to get a better correlation to the reference plate. This would constitute a
third method of transformation. The solution could theoretically be relevant due to the combined bending and
axial load which is found in the main direction of the bridge. In order to decide the proportions to be used of
the different transformations, the strains of the section has to be investigated.

Verification two is performed for the full bridge model and the deflection is measured in both x and y
direction (global coordinates), where x is the main longitudinal direction of the bridge and y is along the width
of the deck. The structure is subjected to a load in accordance with Eurocode load case LM1, see appendix
10.1. The graphs show the deflection plotted against the distance along (x-direction), or across (y-direction)
the bridge. Because of the inaccuracy of shell elements, only solid elements are used in verification two.
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Figure 4.5.1: Deflection U3 along x-direction for parameter set 1.
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Figure 4.5.2: Deflection U3 along y-direction for parameter set 1.
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Figure 4.5.3: Deflection U3 along x-direction for parameter set 2.
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Figure 4.5.4: Deflection U3 along y-direction for parameter set 2.
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Figure 4.5.5: Deflection U3 along x-direction for parameter set 3.
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Figure 4.5.6: Deflection U3 along y-direction for parameter set 3.
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Figure 4.5.7: Deflection U3 along x-direction for parameter set 4.
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Figure 4.5.8: Deflection U3 along y-direction for parameter set 4.
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Figure 4.5.9: Deflection U3 along x-direction for parameter set 5.

0 2 4 6 8
−0.15

−0.1

− 5 · 10−2

0

Length m

D
efl
ec
ti
on

m

Reference plate
TCFR
TALD

Figure 4.5.10: Deflection U3 along y-direction for parameter set 5.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:127 53



0 2 4 6 8 10 12 14 16

−2

−1.5

−1

−0.5

0

·10−2

Length m

D
efl
ec
ti
on

m

Reference plate
TCFR
TALD

Figure 4.5.11: Deflection U3 along x-direction for parameter set 6.
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Figure 4.5.12: Deflection U3 along y-direction for parameter set 6.
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Figure 4.5.13: Deflection U3 along x-direction for parameter set 7.
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Figure 4.5.14: Deflection U3 along y-direction for parameter set 7.
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4.6 Comment on the results

Better overall correlation is achieved according the previous results for the transformation based on constant
flexural rigidity compared to the transformation based on axial loaded deformation. Close correlation is observed
for TCFR in all sets except for set 7 where the core is much stiffer compared to the flanges, see table 4.4.20.
This can be explained by a couple of different things; shear locking, round-off error in the stiffness matrix or
maybe that the assumptions used when deriving the shear modulus do not hold true.

By adjusting the different material parameters for the equivalent plate calculated with TCFR, the prob-
lem area is identified. When increasing the transformed values of G13 and G23 the result is approaching the
reference plate, see figure 4.6.1 and 4.6.2. By increasing G13 the global deflection of the total plate system
is decreased. The deflection of the sandwich plate between the two main girders (local deflection) is instead
affected by the parameter G23. To obtain a result similar to the reference plate, both parameters have to be
adjusted. This indicates that the equation for computing the equivalent shear modulus may not be valid when
the difference in stiffness between the layers are too big.

The combined increase of both G13 and G23 plotted in figure 4.6.1 and 4.6.2 is calculated by taking the
mean value of the three layers. The obtained result is almost identical to the reference plate.
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Figure 4.6.1: Deflection U3 along x-direction for parameter set 7 when adjusting the values of the shear stiffness
G13 and G23.
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Figure 4.6.2: Deflection in y-direction for parameter set 7 when adjusting the values of the shear stiffness G13

and G23.

4.6.1 Shear locking

Shear locking appears due to a geometric inconsistency in brick elements, which can propagate when the
element is too large and is subjected to bending, Prathap (2001). The 8-node element cannot follow the curved
shape forced by the bending and instead becomes more like a parallelogram which introduces shear stresses.
This will increase the elements stiffness and corrupt the calculated result. A solution for this problem can be to
increase the number of elements by using a finer mesh. When using 20-node second order quadratic elements
instead of linear 8-node elements, shear locking is not a big problem. This 20-node element can more easily
take the shape of a bent element due to its integration point in the middle between the corners of the rectangle.
Though, this element has its own problem areas called hourglassing. This is when the element is too flexible
and get distorted. However, this can be controlled by built in checks in the program. Due to the fairly fine
mesh and the usage of 20-node elements, shear locking or hourglassing is probably not the problem behind the
bad correlation for material set 7 in verification two. Another important factor to take into consideration is
that an error like this one is tied to the mesh and the element type, which therefore should affect all results for
the different parameter sets, at least to some extent. This is not the case which is another indication that shear
locking or hourglassing is not the problem.

4.6.2 Round-off error

When there is a large difference in the material parameters, there is going to be a very large difference in
magnitude for the different local stiffness matrices in the FE-calculation. When these matrices are assembled
together, there is a risk of getting round-off errors in the global matrix. This may lead to singularity problems
when trying to calculate the inverse of the global stiffness matrix. Abaqus has a build in system with warning
messages for this kind of problem, and because no such message was received it is safe to assumed that this is
not the problem which explains the bad correlation for parameter set 7.

4.6.3 Assumption error

Another explanation is that the assumptions used when deriving the equivalent shear modulus does not hold
true for set 7. Since it was noted before that the reason for the bad correlation for set 7 could be explained by
an underestimation of the shear moduli G13 and G23, the assumption regarding the transformation of these
parameters must be checked. When deriving the expression for G13 and G23, it is assumed that the shear stress
is equal in all layers. This may not be the case, and will be investigated and verified in section 4.6.4. If the
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assumption does not hold true, it is possible to adjust the hypothesis and instead assume that, for example
80% of the shear is transfered down to the bottom plate.

4.6.4 Follow up checks of the assumption for shear stiffness G13 and G23

The verification of the assumption regarding parameters G13 and G23 is done by dismounting the sandwich
deck structure from the main girders and fixing the bottom side in all directions while keeping the top side
free. A shear load is then applied at the top surface of the plate in order to investigate if the shear stress is
transfered equally through all layers, i.e. if the shear stress is constant through the whole cross section. This
procedure was done for the reference plate and the TCFR-plate. The stress S13 and the displacement u1 were
measured over the height of the cross section and plotted.
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Figure 4.6.3: Shear stress S13 along z-direction in the mid span for parameter set 7, where z is defined from
the bottom up.

As seen in figure 4.6.3, the stress varies much less than 1 percent over the cross section, both for the reference
plate and the equivalent TCFR-plate. Due to this result it’s obvious that the assumption of the derivation of
both G13 and G23 holds true.
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Figure 4.6.4: Displacement U1 along z-direction in the mid span for parameter set 7.

The displacement turns out to be almost the same at the upper side of the plate for both reference and
TCFR-plate, which also confirms that the transformation of G13 and G23 holds. It is easily seen that the major
part of the displacement takes place in the most upper layer of the reference plate and that the displacement is
linear for the transformed TCFR-plate.

4.6.5 Estimation error of the plate’s bending stiffness
The assumption, that the plate’s individual bending stiffnesses are equal to the equivalent’s one, is true as long
as the strain distribution, before and after transformation, is linear. If the resulting shear stiffness, G13 or G23,
from the transformation is too low, the elastic bending resistance cannot be fully utilized. The resulting strain
over the cross section will no longer be linear, see figure 4.6.5. Since the strain and stress are directly related to
each other, the bending capacity is therefore reduced. This in turn leads to a larger deflection of the plate than
what it actually should be.

There could also exist cases where the reference plate has some layer that has too low shear stiffness in
comparison with the corresponding elastic modulus. This would give an overestimation of the summation of the
individual bending stiffnesses, i.e. the transformed plate would show a lesser deflection than the reference plate.
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Figure 4.6.5: Possible cases of strain distribution before/after transformation with TCFR. εfull,Trans represents
fully utilized strain distribution and εlim,Trans represents limited strain distribution.

4.7 Final remarks and conclusions after verification 1 and 2

There is a difference in accuracy between the two methods, where TCFR generally correlates significantly
better in both verification 1 and 2. The obtained difference between the equivalent plates and the reference
plate is usually on the same side for both transformation methods, either an underestimation or overestimation.
This means that the possible third method, where the two methods would be combined, cannot be used to
improve the margin of error for the transformation.

Linear strain depends on the relation between the elastic and shear modulus in the concerned direction.
This relation is not conserved during transformation from three layers to one. This can be explained by the
different methods of transforming the elastic modulus (E11 and E22) and the shear modulus (G13 and G23).
After further investigation, it is found that the strain for the transformed plate of material parameter set 7 is
non-linear. This is therefore believed to be the major reason why the correlation of deflection, between the
equivalent and the reference plate, is so low.

The transformation based on constant flexural rigidity is chosen as the transformation algorithm on the
basis that this method shows better accuracy and a more stable result range.

60 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:127



5 Parametric Study
A parametric study of the equivalent plate resting on two steel girders is performed to establish important
relations between different stiffnesses and also to investigate how these affects the general behavior of the plate
system. This is done for a specific case where the bridge girders are working compositely with the sandwich
deck plate. The three important aspects considered in the parametric study are:

• A linear strain (ε11) distribution over the height of the cross section including the steel beams in the
xz-plane. This will lead to a good composite action between the steel beams and the sandwich plate,
where the plate section is contributing as much as possible to the global stiffness.

• A linear strain (ε22) distribution over the height of the cross section in the yz-plane.

• Minimize the strain deviation of (ε11) over the width of the cross section.

Optimizing these parameters will result in better usage of the material due to the linear strain over the cross
sections.

5.1 Linear strain ε11 over the height of the main girder and sandwich
plate

To be able to obtain a linear strain ε11 over the total cross section, the force has to be transported by shear
from the steel beams to the plate and up to the top side. This shear is named G13 and is transformed by a
parallel coupling between the layers into the equivalent plate. This means that all layers has to have a high
enough shear stiffness to be able to get a good linear global relationship. If one layer is very weak, the strain
will not be able to be transfered.

The magnitude of the load does not affect the shape of the strain, only the scale of the values in the
graph. When a linear relationship is reached, there is no point in increasing the shear stiffness even more. If a
higher stiffness is needed, E11 has to be increased. This will change the shape of the strain relationship to be
non-linear. If the affected shear stiffness is increased to fit the new E11, the strain will once more be linear which
will lead to an increase of the section’s bending stiffness. The other parameters besides E11 andG13 have no effect.

The strain is measured in the middle of the span according to figure 5.1.1. By assuming that the rela-
tionship seen in graph 5.1.2 is linear and using this as a reference it’s possible to obtain the relation between
E11 and G13. This is done by assuming a stiffness E11 and adjusting the shear stiffness G13 until a similar
linear strain distribution as for the reference strain is obtained. This is done for eight different assumed elastic
moduli.

Figure 5.1.1: The path created for measuring ε11.
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By applying a curve fitting function to the measured values, as seen in figure 5.1.3, the following expression is
obtained:

G13(E11) = 104.4626 · E
1

2.5472
11 [Pa] (5.1.1)

Using this relation between G13 and E11 result in a linear strain relation through the cross section which leads
to a more optimized material usage.
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Figure 5.1.2: Strain ε11 over the total crosssection, where z spans from the lower to the upper side.
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Figure 5.1.3: Relation between E11 and G13.
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5.2 Linear strain ε22 over the height of the sandwich plate

The same basic principle also applies in y-direction. This case present almost pure bending of the element
without too much involvement of other parts of the bridge. There is a certain moment resistance from the
longitudinal main steel girders that acts as supports in this direction. This is due to the flanges and their width
in y-direction. However, this contribution will be small and consequently ignored.

The parameters that affect the strain in this direction are E22 and G23 and the measurements are made
according to figure 5.2.1 in the middle span. This measurement position is chosen because it is the section with
the maximum moment.

Figure 5.2.1: Location of the path used for the investigation of ε22.

By adjusting the shear stiffness, a linear strain over the cross section is obtained, as seen in figure 5.2.2. Here
the shear stiffness is changed from 0.05 GPa to 0.5 GPa and the strain is plotted. As seen in the figure, the
strain is approaching a linear relationship. An elastic modulus E22 is assumed and the shear stiffness G23 is
adjusted until a linear relationship is obtained. This is done for nine different elastic moduli. The obtained
relation is plotted in figure 5.2.3. A curve fitting is once again applied which results in the relation expressed in
equation (5.2.1). It is noteworthy to mention that the units in this equation should be always expressed in Pa,
otherwise the results might be misleading.

G23(E22) = 1.3164 · 108e5.7292·10
−11E22 [Pa] (5.2.1)
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Figure 5.2.2: Strain ε22 along z-direction in the mid span, where z spans from the lower to the upper side of the
plate.
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Figure 5.2.3: Relation between E22 and G23.

5.3 Optimization of the effective width of the cross section

In order to utilize the material as much as possible, it is of big importance to have a wide contributing "flange"
of the bridge frame system, in other words, have a large part of the sandwich plate contributing to the bending
stiffness on a global scale. However, concrete decks resting on girders for example, often experiences shear lag.
This is taken into account in calculations by reducing the width to an effective width. It would be of value to
be able to increase the effective width to increase the material efficiency.

By examining the strain of ε11, along the width for the sandwich plate, one could examine and obtain
the contribution from it to the global system. The goal is to have a strain distribution that varies as little
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as possible, i.e. that the forces are distributed effectively over the whole width of the sandwich plate. The
location of the measurements are illustrated in figure 5.3.1. Do note that the values of E11 and G13 are set so
they give linear strain over the height of the cross section, according to equation 5.1.1. This means that it does
not matter at what height the strain is measured for the effective width.

Figure 5.3.1: Location of the path used for the investigation of ε11.

By changing one material parameter at a time, it is possible to determine which of them that affects the desired
strain, ε11. Doing so made it obvious that G12 and E11 is the only parameters that affects ε11. To further
investigate the influence of these parameters, they were adjusted and the strain was plotted, see figure 5.3.2
and 5.3.3.
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Figure 5.3.2: Strain ε11 along y-direction in the mid span.
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Figure 5.3.3: Strain ε11 along y-direction in the mid span.

From figure 5.3.2 it is seen that the strain distribution tends to be more uniform with increasing stiffness of
G12, i.e. activates more of the flange width.

As seen in figure 5.3.3 the strain decreases with increasing E11, which is expected. The curve is not changing
its behavior and is just scaled, i.e. the relative deviation from the mean value is the same for all different E11

tested. Judging from this, the only parameter that affect the effective width is the shear modulus G12. By
adjusting the parameter and measuring the difference between top and bottom value for the strain, an equation
expressing the percentage of difference is obtained where the shear is inserted in [Pa], see equation (5.3.1):

Relative strain(G12) = 107.4638 ·G−
1

1.5175
12 [%] (5.3.1)
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Figure 5.3.4: Shows how the shear difference varies with varying shear stiffness G12.
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6 Optimization of sandwich deck structures
The optimization is performed in accordance with the conclusions made in chapter 5. Different orthotropic
plate systems are modeled with Abaqus CAE and loaded in different ways to obtain the equivalent properties.
The deflection of a plate is a combination of shear and bending deflection. The analytical model for a plate
supported on four supports is derived in previous section 2.3. To be able to solve the equation for the elastic
modulus in the different directions, the plate has to be supported on only two supports. This will reduce the
number of unknown values in the analytical expression for the deflection.

Is the solution adequate? If so stop, otherwise repeat process

Define geometry

Loading, different directions

Obtain displacements Analytical model

TCFR-transformation

Plot in parametric ratios

Figure 6.0.1: Optimization iteration for a geometry with the parametric ratios.

The analytical model for a plate supported on two supports is obtained from DIAB Sandwich handbook (2003)
where the deflection is a function of the shear modulus and the elastic modulus in the direction where bending
takes place. The plate is modeled in a similar fashion as a beam subjected to a line load. The width of the
plate is taken into account by replacing the elastic modulus Eii with Eii

1−ν2
i
, where i is either x or y depending

on the direction of the bending. The expression for the deflection reads:

w =
5ql4

384D
+
ql2

8V
(6.0.1)

With D and V :

D =
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1− v21
(
bt31
12

+ bt1d
2
1) +

E2

1− v22
(
bt32
12
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2
2) +

E3

1− v23
(
bt33
12

+ bt3d
2
3) (6.0.2a)

V =A ·G (6.0.2b)

Where 1-3 denotes the different layers of the sandwich structure (1 - upper flange, 2 - core, 3 - bottom flange).
The expression of the elastic modulus for the core is found by inserting equations (6.0.2a-b) into equation
(6.0.1):

E2 = −
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8AG

) (
b d2

2 t2 + b t23

12

) (6.0.3)

The full orthotropic material properties for the plate system is obtained by first loading the plate in shear and
calculating the shear moduli in the different directions with equation (6.0.4).

G =
Fl

A∆x
(6.0.4)
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The plate system is then subjected to a uniformly distributed load supported first in x-direction, then in
y-direction on two supports to obtain the deflection. The obtained values are then inserted into equation (6.0.3)
to solve the bending elastic moduli for the core in the different directions. This constitutes the first part of the
transformation, where a sandwich structure is transformed into a three layered homogeneous plate. Equivalent
properties for the one layered plate is calculated with the algorithm by means of MATLAB where the source
code can be found in appendix 10.2. The program is constructed on the basis presented in chapter 3.1. The
obtained equivalent stiffnesses are then plotted into the graphs derived in chapter 5. This will give an indication
of which stiffnesses are too high or too low and will guide the optimization and be a basis for the recalibration
of stiffnesses and geometric changes.

Figure 6.0.2: Layout of the grids for the Rektoplate.

This procedure is performed for three different specimens for evaluation and identification of general geometric
properties that affect the stiffness ratios. It is also done in order to illustrate the work flow of an optimization
by means of the ratios obtained from the parametric study. The modeled structures are all made of steel, which
is an isotropic material. However, it is possible to perform the optimization on plates with orthotropic material
properties as well.

Figure 6.0.3: Layout of the Truss 60◦ .

The thickness of the flanges for Truss 60◦ is 7 mm and the core 4.9 mm and all is made of steel.
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Figure 6.0.4: Layout of the Truss 75◦ .

The thickness of the flanges for Truss 75◦ is 7 mm and the core 2.5 mm and all is made of steel.

Two of the structures are truss plate systems, see figure 6.0.3 and 6.0.4, with varying angle of the core
studs and the third is a cell-based plate system, similar to honeycomb but instead with rectangular cells
(Rektoplate), see figure 6.0.2. The steel’s Young’s modulus is set to E = 210 GPa and ν = 0.3. The result is
found in table 6.0.1 and 6.0.2. Note that all directions and properties are expressed in global coordinates if
nothing else is stated.

Table 6.0.1: Stiffness of the different cores [GPa].

System E11 E22 E33 G12 G13 G23

Truss 60◦ 0.233 5.54 6 2.425 1.45 2.05
Truss 75◦ 0.472 5.50 7 2.48 0.524 2.62
Rektoplate 0.166 4.35 6.875 2.59 0.95 1.96

The values of table 6.0.1 is computed by utilizing expression 6.0.3 and 6.0.4.

Table 6.0.2: Stiffness of the total equivalent plate transformed using TCFR-method [GPa].

System E11 E22 E33 G12 G13 G23

Truss 60◦ 30.73 35.31 6.217 6.217 1.522 2.152
Truss 75◦ 30.93 35.27 7.34 6.269 0.550 2.749
Rektoplate 30.7 34.3 7.21 6.37 1.00 2.06

Since the flanges stiffnesses are known and the core’s stiffness is found in table 6.0.1, it is now possible to use
the TCFR method to transform these into a single layered equivalent one. To verify the results a comparison
of the deflection between the equivalent plate and the original plate is performed. The results are found in
tables 6.0.3 - 6.0.5. The deflections are compared in Abaqus CAE. As seen in the graph, the correlation is very
good with less than 1% difference for most cases.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:127 69



Table 6.0.3: Difference in deflection between equivalent plate (EQ-P) and original plate truss 60◦ (OR-PT60).

Supports Load [ Nm2 ] Deflection OR-PT60 [m] EQ-P [m] Diff [%]

2(x-direction) 5000 0.00363285 0.00364927 0.45
2(x-direction) 7000 0.00509213 0.00511084 0.37
2(x-direction) 15000 0.0108967 0.0109518 0.50

4 15000 0.00121966 0.00122544 0.47

Table 6.0.4: Difference in deflection between equivalent plate (EQ-P) and original plate truss 75◦ (OR-PT75).

Supports Load [ Nm2 ] Deflection OR-PT75 [m] EQ-P [m] Diff [%]

2(x-direction) 5000 0.00362169 0.00364001 0.50
2(x-direction) 7000 0.00507158 0.00509602 0.48
2(x-direction) 15000 0.010901 0.010920 0.17

4 15000 0.00134855 0.00137322 1.8

Table 6.0.5: Difference in deflection between equivalent plate (EQ-P) and original plate Rektangular plate
(Rektoplate).

Supports Load [ Nm2 ] Deflection Rektoplate [m] EQ-P [m] Diff [%]

2(x-direction) 5000 0.00374753 0.0037602 0.3
4 15000 0.0012756 0.00127315 0.2

Furthermore, the stiffness of these decks are compared with the optimization graphs obtained in section 5. As
seen in figure 6.0.5, there is no need to increase the shear stiffness G12. There is even a possibility of decreasing
the amount of material to decrease the shear strength in this direction in favor of a higher bending stiffness in
E11 or E22. Since G12 is added up as a serial coupling of the individual shear stiffness of the members, the
total G12 tends to be of adequate size.
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Figure 6.0.5: Plotted values of the different plate systems in relation to the optimized relation of G12.
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Figure 6.0.7: Relation between E11 and G13.
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As seen in the graphs 6.0.6 and 6.0.7, the change in geometry of the core gives different shear moduli, which
makes the plotted values to move almost on a vertical line. Since no material is exchanged between the flanges
and the core, the bending stiffness of the plates will be constant as long as the shear moduli fulfills linear strain
distribution over the cross section. The change of geometry from 60◦ to 75◦ inclination of the core studs for the
two truss examples, lowered G13 on a straight vertical line and did the opposite for G23. For these examples
with excessive amount of G13 and G23, it is possible to transfer more material to the flanges in order to increase
bending stiffness. This would lead to lower shear modulus and a higher elastic modulus, see figure 6.0.8.

Figure 6.0.8: Assumed direction when material is transfered from the core to the flanges.

The inclination of the arrows in 6.0.8 shows the general direction of the stiffness change if material would be
transfered from the core to the flanges. If no interchange of material is taken place, it is probable to end up
with one of the shear modulus optimized and the other one too large/insufficient. Note that this only applies
to cores that are linear symmetric around the neutral axis, i.e. same material distribution of a distance from
the neutral axis, such as OR-PT60-75 and Rektoplate.
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6.1 Optimized relation between E11 and E22

When dealing with an orthotropic material or structure it is possible to change the stiffness in different directions
by for example, changing the fiber direction in different sections of the sandwich plate if made of FRP or similar.
It is also possible to add ribs or other stiffness altering features to change the global stiffness of the plate. When
the sandwich plate system is placed on two main girders, the two main direction of stiffness E11 and E22 affect
the deflection in different ways. The stiffness in the main direction (E11), parallel to the steel beams, affects
the longitudinal deflection because of the interaction between the main girders and the sandwich plate where
the plate works as an upper flange to the global beam system. The transverse deflection between the two main
girders is affected by the stiffness in the other direction (E22) where the beam is subjected to almost pure bending.

A parametric study is performed to find a relation between E11 and E22 that minimize the deflection. This is
done for a evenly distributed load where the magnitude only scales the deflection and thus have no influence
on the ratios between the two stiffnesses. E11 was fixed and E22 were varied in 9 interval between 4 and 50
GPa. The affected shear moduli in the different directions were calculated and set to obtain full linear strain
according to the equations derived from the parametric study in chapter 5. Then E11 was raised one step and
all E22 run through again. For every material set the largest deflection was measured and plotted together
with E11 and E22 which formed a surface plot as seen in figure 6.0.8. In total 81 combinations were measured
and plotted. This few measured values results in a rough plot appearance. Therefore, the function Gridfit in
MATLAB was used in order to smoothen up the surface area. Gridfit is an approximant which builds a surface
on top of the input data. This means that noise and other distortions does not get removed due to numerical
interpolation, Understandning Gridfit (2006).

Figure 6.1.1: Surface plot of E11, E22 and displacement w.

To be able to optimize a structure it is necessary to establish the current stiffness ratio in order to know how to
alter the parameters, as seen in 6.1.1. For example if E11=3e10 and E22=0.5e10, it is much more viable to
increase E22 instead of E11 to decrease the deflection, and vice versa for a case with opposite stiffness division.
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To illustrate this further, a vector field is created from the surface plot, see figure 6.1.2. The behavior of the
plate is improved by recalibration of the stiffnesses in the direction of the vectors. This will improve the overall
deflection in an optimized way. It is also possible to establish a start ratio between the elastic modulus by
considering the maximum deflection allowed and plotting the two dimensional relation of E11 and E22 for this
specific case. The ratio can be chosen by comparing the absolute value of the total stiffness in both directions
or in a similar fashion.

Figure 6.1.2: Gradient vector field for the surface from figure 6.1.1.
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6.2 Optimization of Asset deck

To further illustrate the optimization method presented in the beginning of chapter 6, an existing commercial
product Asset is to be modeled and evaluated. The method used is very similar to the one presented in figure
6.0.1, but with the starting geometry of the Asset bridge deck instead of a geometry defined from scratch. The
objective is to optimize the structure with regard to global deflection and material efficiency. This is done with
regard to the relations obtained from the parametric study found in chapter 5.

The Asset deck is a commercially available FRP bridge deck, produced by Fiberline in Middelfart, Den-
mark, Fiberline webpage (2012). The deck is based on truss action and consists of diagonal plates between two
face sheets. The sandwich plate is most suited to carry the load in one main direction. Therefore the deck is to
be placed with the pultruded direction transverse to the main girders of the bridge. Full interaction between
the sandwich plates and main girders are assumed in all directions. The specific stiffness properties can be
found in table 6.2.1, which is a result of how the fibers are situated, i.e. the distribution of fibers in different
directions.

9.8

51

7.8
7.8

299

225

15.6

Z

Y

Figure 6.2.1: Dimensions for the Asset deck, single element [mm], (local coordinates).

As seen in figure 6.2.1, the inner web is slightly thicker than the outer web. When the structure is assembled,
see figure 6.2.2, the outer webs doubles which makes them much thicker than the inner web.

Z

Y

Core inner web

Core outer web

Top �ange

Bottom �ange

Core inner web

Core outer web
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Bottom �ange

Figure 6.2.2: Assembly of multiple Asset elements (local coordinates).

The deck modules can be assembled together as far as desired. The joining between the modules is done by
gluing them together at the slots. In reality the Asset profile is rounded at some edge spots, this is not modeled
since it results in a too complicated mesh construction. Sharp edges are used instead.

The results are presented in local and global coordinates similar to the previous chapter. The plates are situated
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cross the steel beams in the global structure, see figure 4.1.1, which means that the local x-direction translates
to the global y-direction and the local y-direction translates to the global x-direction.

There are three versions of the Asset FRP deck used in this study, the first one is the original design
and is the starting point of the optimization. The second version have an adjusted angle of the truss system
in the core. This adjustment is done after careful evaluation of the plotted result from version one, where it
could be found that an increase of the shear stiffness G13 (global coordinates) was needed. This is obtained by
decreasing the inclination of the truss studs in the core from 61◦ to 55◦. In version two, the thickness of the
truss studs in the core is the same as for version one. This will lead to a lower total volume because of the
geometric properties. Version three has the same structure as version two with the decrease in the inclination
of the truss studs in the core, but with an adjusted thickness of the studs. The thickness is increased by 10%
to match the total volume of version one. The Poisson’s ratio of the total core structure is assumed to be ν = 0.3.

In table 6.2.2 the stiffness in y-direction is set to zero, this is due to the results obtained from the cal-
culations according to equation (6.0.3). When the bending stiffness of the core is very low, it is possible to
obtain a negative value of the core stiffness. This can be explained by internal shear lag or other assumption
errors for the derived analytical expression used in the transformation. In this case the stiffness of the core is
set to zero as seen in table 6.2.2.

Table 6.2.1: Original stiffness for the material of the Asset deck parts (local coordinates) [GPa].

System E11 E22 E33 G12 G13 G23

Top flange 23 18 4.14 2.6 0.6 0.6
Core outer webs 17.3 22.7 4.14 3.15 0.6 0.6
Core inner webs 16.5 25.6 4.14 2 0.6 0.6
Bottom flange 23 18 4.14 2.6 0.6 0.6

Table 6.2.2: Stiffness of the core transformed into one orthotropic layer (local coordinates) [GPa].

System E11 E22 E33 G12 G13 G23

Asset version 1 0.874 0.103 7 0.307 0.193 0.051
Asset version 2 0.646 0* 6 0.332 0.143 0.125
Asset version 3 0.822 0* 6 0.336 0.155 0.130

* The stiffness in y-direction for the core is negligible and is set to zero.

Table 6.2.3: Stiffness of the equivalent plate (local coordinates) [GPa].

System E11 E22 E33 G12 G13 G23

Asset version 1 10.15 7.567 6.388 0.625 0.214 0.0585
Asset version 2 10.00 7.500 5.648 0.647 0.160 0.140
Asset version 3 10.12 7.500 6.65 0.650 0.173 0.146

To ensure a good transformation and a valid result, the transformed sections are compared once again with
the original reference plate in table 6.2.4, 6.2.5 and 6.2.6. The deflection of the structures are compared for
three different boundary conditions, two supports in x-direction (local coordinates), two supports in y-direction
and the plate resting on four supports. Comparison is also carried out in two steps, first the original structure
compared to the three layered sandwich plate and then the original structure compared to the one layered
equivalent plate. This is done to be able to distinguish where possible errors occur and to better understand
the total transformation process.
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Table 6.2.4: Deflection for the Asset version 1 (AV-1), 3-layered equivalent plate (3-P) and the 1-layered
equivalent plate (1-P) (local coordinates).

Supports Load [ Nm2 ] OR-P [m] 3-P [m] 1-P [m] Diff AV-1 - 3-P [%] Diff AV-1 - 1-P [%]

2(x-direction) 5000 0.0297675 0.0317499 0.0274049 6.24 7.94
2(y-direction) 5000 0.0073026 0.00747626 0.00644502 2.38 11.7

4 10000 0.0106598 0.0107973 0.00957696 1.3 10

Table 6.2.5: Deflection for the Asset version 2 (AV-2), 3-layered equivalent plate (3-P) and the 1-layered
equivalent plate (1-P) (local coordinates).

Supports Load [ Nm2 ] OR-P [m] 3-P [m] 1-P [m] Diff AV-2 - 3-P [%] Diff AV-2 - 1-P [%]

2(x-direction) 5000 0.0305727 0.0325629 0.0280207 6.5 8.3
2(y-direction) 5000 0.00686316 0.00673103 0.00570962 1.9 16.8

4 10000 0.0102092 0.00976707 0.00853028 4.3 16.4

Table 6.2.6: Deflection for the Asset version 3 (AV-3), 3-layered equivalent plate (3-P) and the 1-layered
equivalent plate (1-P) (local coordinates).

Supports Load [ Nm2 ] OR-P [m] 3-P [m] 1-P [m] Diff AV-3 - 3-P [%] Diff AV-3 - 1-P [%]

2(x-direction) 5000 0.0301046 0.0320748 0.02777152 6.5 7.7
2(y-direction) 5000 0.00685663 0.00671071 0.00569058 2.1 17

4 10000 0.010118 0.00969525 0.00847383 4.2 16.2

As previously mentioned, the stiffness in y-direction for the core is set to zero, though to obtain a reasonable
material behavior it is set to 0.065 GPa in Abaqus. This stiffness will most likely not influence the deflection
due to the low value and the zero level on for the moment of inertia.

As seen in tables 6.2.4 to 6.2.6, the difference between the original plates and the equivalent can be large. After
studying column six and seven, its apparent that the difference in deflection is obtained due to the model
translating the three layered sandwich plate into one layer. The difference reaches close to 20% in some cases
which can be a source of error and misinterpretation if treated in the wrong way. It is important to keep this in
mind in further conclusions.

The core transformation seem to hold true with only a small margin of error. This can be observed by
studying column six in tables 6.2.4 to 6.2.6 with an error of maximum 5%. However, the difference between
the original plates and the equivalent can be large and reaches up to 17%. After further study of column six
and seven, it is apparent that the difference in deflection is obtained due to the model transforming the three
layered sandwich plate into one equivalent layer. This may be a source of error and misinterpretation if treated
the wrong way. It is important to keep this in mind in further conclusions.

The shear modulus of G12 for the asset deck gives a relative strain of approximately 50 %, as seen in
figure 6.2.3. This value is much larger than the previous analyzed decks, such as the Rektoplate. This is obvious
since the material of the Asset deck is fiber reinforced glass, which has a much lower elastic module than steel,
which in turn was the material used for the other plates. The amount of material also differs between these
plates, hence the results cannot be compared fairly. Since the Asset deck has this large value of relative strain,
the effective width of the deck is rather low, which gives just a small contribution to the longitudinal stiffness
of the whole bridge structure. Due to the small effective width, it could be of interest to increase the stiffness
parameter G12 depending on the cost. This can be achieved by adding material and/or increasing the shear
stiffness G12 of the flanges.
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Figure 6.2.3: Plotted values of the different plate systems in relation to the optimized relation of G12.
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Figure 6.2.4: Plotted values of the different plate systems in relation to the optimized relation of E11 and G13.
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Figure 6.2.5: Plotted values of the different plate systems in relation to the optimized relation of E22 and G23.

The relation between G23 and E22 is found to be almost optimal, just slightly below the curve as seen in figure
6.2.5. Since the Asset deck is supposed to work in single action transverse the bridge, hence it is not surprising
that it behaves well in this area.

As seen in figure 6.2.4 G13 is too small for Asset version one, and has to be increased by almost 400 %
in order to give a linear strain distribution over the height of the deck, i.e. effective height. This is done by
increasing the inclination of the core studs for version two and three, where an improvement can be noted.
When increasing the shear stiffness G13 the shear stiffness G23 will decrease slightly and loose its optimized
relation. This can be explained by internal shear lag in the sandwich structure which may be introduced when
the distance between the studs and the angle are increased. Hence, to obtain an even better relation between
E11 and G13 more material or higher stiffness for the core material is needed.
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7 Discussion

7.1 The generality of the result

The main result for this thesis is based on a very specific load case and geometry of the bridge. Therefore, the
resulting parametric ratios are only valid and can only be applied for this specific case.

The load case has a big influence on the parametric study. However it is not the magnitude of the load
but instead the load variation, for example different load lanes and point loads which are included in Eurocode
load models. These will affect the ratio between E11 and E22 by having localized maximum deflections in
different points depending on the load case, which will lead to a more complicated relation. Furthermore,
when constructing the ratio between E11 and E22, linear strain is assumed and obtained by the ratios between
the elastic moduli and the shear moduli. These ratios are also affected by the load case which present some
problem areas when measuring the strain. For example, the strain ε11 will not be symmetrical over the width
of the plate and will change depending on the load calibration which makes the expression regarding G12 hard
to approximate. This is also partly true for the strain ε22 which makes the ratio between E22 and G23 very
dependent on the loading conditions.

All relationships are established for a certain height of the sandwich plate and stiffness of the underly-
ing longitudinal steel beams. A change in the stiffness ratio between the steel beams and the sandwich plate
could greatly affect the strain ε11 over the height of the total sandwich-beam structure. An increase of the
height of the sandwich will also affect the other parameters due to the increase in stiffness of the member.
Furthermore, the interaction between the sandwich plate and the main girders is assumed to be full. This is
another parameter affects the ratios between the different stiffnesses.

For a realistic load case, all different load calibrations should be investigated and checked. A situation
may occur where the calculated ratio between E11 and E22 for a certain allowed deflection is not stiff enough,
and result in a larger deflection for another load calibration.

7.2 Validity of the results and possible error sources

When performing the parametric study, limited readings were done due to time constraints. This might have
lead to a rather low resolution and few points for the curve fitting to approximate. It is also hard to judge
what is linear enough since the new set of E11 and G13 is just compared with the reference by visual inspection.
So both the curve fitting itself has too few readings and the visual inspection lacks accuracy. Even though
that all this could have been done more accurate, this still proves that there is a relation between the affected
stiffness ratios derived.

The TCFR transformation gives more accurate result than the TALD. Even though the result from it differs sub-
stantially from the reference one in some cases. Since TCFR is used for the optimization it must be remembered
that the obtained result, when transforming before plotting in the parametric, ratios might differ to some extent.

The transformation methods are only verified by comparison of the deflection. The measured deflection
is, as earlier said, a combination of bending and shear deflection. However, deflection caused by bending
usually contributes much more to the total deflection, compared to shear deflection. If the shear moduli are
transformed with very bad accuracy, but still end up being high enough to support fully developed linear
strain, the comparison of the deflection is an invalid parameter to verify it by. This is due to the bending
mainly being a function of the elastic moduli in the different directions. In other words, if the verification
is done blindly without reflection and close inspection of the indata, the verification method can be an
invalid comparison tool to evaluate the accuracy of the shear transformations. The shear transformation
were though evaluated and tested, which showed a very good accordance between it and the reference plate,
see section 4.7. Therefore, this is believed not to be a major problem for the somewhat inaccurate transformation.

When the truss plates were optimized, see section 6, they all had a large overcapacity of shear G13 and
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G23. Therefore they all probably had a fully developed linear strain distribution both before and after the
TCFR transformation was performed. The transformed plates were compared with equivalent plates and
the result showed very low difference in deflection, less than 1 %. However for the Asset deck optimization,
see section 6.2, the regarded shear stiffnesses was too low to approve for linear strain. The transformation
also showed much higher deviance of the result before and after transformation. In this case the plotted
equivalent value may differ substantially from the actual correct one, making it very hard to be able to
tell how far away it is from full linear strain. The relation between G23 and E22 is almost enough to
provide for linear strain. This can also be observed by looking at the difference of deflection before/after
transformation where it showed around 8 % wrong, compared with G13 and E11 where this value is around 16 %.

The transformation of the Asset deck to a three layered asset also had some problems. For the two modified
Asset deck concepts it was impossible to get positive result of the core stiffness of E22 (local). Therefore this
value was set to zero instead. This problem can be partly explained by that the strain ε22 (local) for the Asset
deck is not linear over the cross section during bending. In equation 6.0.1 the D value is computed to allow for
full linear strain. If this is not the case for the analyzed structure, an overestimation of the bending stiffness is
obtained. When modeling bending of the Asset deck in Abaqus, the program takes care of shear lag of the face
sheets between the studs. This is not the case when establishing D in the analytical model, where the face
sheets are set to handle full strain all over. This, in combination with non-linear strain, is the reason why it
is impossible to fit the measured deflection from Abaqus to solve the analytical expression to get the core’s
individual stiffness, i.e. the core gets a negative elastic modulus instead.

When optimizing a concept it is wise to design a concept that has overcapacity of shear stiffness G13 and G23,
and then decrease it to utilize the material better until linear strain in both cases. Doing it this way results in
a proper transformation in both steps. If this is done the other way around, i.e. increasing the shear stiffnesses
until linear strain, there might be errors. It was noted before that the Asset deck had insufficient shear stiffness,
which resulted in bad transformations and inaccuracy when comparing the elastic and shear stiffness relations
with the optimized relation. This error will decrease as long as strains tends to be more linear. However if
the increments are too large, the last step may give a result that is believed to be linear, but it might not be
since the method gives too large inaccuracy of the transformations. Therefore it is more safely to start with
overcapacity of shear and decrease it rather than the vice versa.

The surface plot, see figure 6.1.1, is made with a fixed value of G12, which affects the effective width.
If this shear stiffness is changed, the surface plot will change. By increasing the effective width, the elastic
modulus E11 will become more important.

7.3 Different types of optimization

The optimization of the sandwich plate structure can be divided into four different steps. They are organized
with regard to the parameters affecting the different cases. The four identified steps are:

• Initial geometry

• Fully developed material strain, i.e maximized usage of material

• Stiffness in different directions

• Local behavior

The initial geometry affect the behavior of the sandwich plate in different ways. By changing the thickness of
different layers and/or the total thickness, it is possible to find a more or less optimized geometry in relation
to the steel beams. Another important factor is to design a structure that does not have internal shear lag
between the core and the flanges, which may be the case for different truss structures with too large distance
between the studs.

The two middle steps are addressed in this thesis by obtaining ratios from the parametric study. In other
words, the obtained ratios between the shear and elastic moduli, and the relation between E11 and E22. An
improvement with regard to these ratios can be carried out by changing the structure, as exemplified in chapter
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6, or by changing the stiffness in different directions for the elements in the sandwich structure with ribs or
rearrangement of fiber layers in FRP-type materials.

Local behavior can be optimized with regard to buckling, delamination or other localized problems. This can be
done by, for example, choosing a minimum thickness of a member to withstand buckling without overcapacity.
There is no reason to believe that these four different optimizations have a similar result and can be combined,
except for the two middle ones. This means that a complete optimized solution is hard to obtain and will most
likely be a compromise. However, by aiming for an optimized relation between the stiffnesses, a better solution
which is closer to an optimum structure will be obtained.

7.4 Assumptions and modeling

The FE modeling in this thesis has only been made with linear analysis. Buckling and local plasticity of the
material has therefore been neglected which could have lead to unrealistic final result. The measured deflections
might not have been possible to reach if this was considered, which gives an overestimation of the stiffness of
the plates. Interaction of the sandwich and the girders has not been modeled in any way and the parts are just
set to have full interaction.

Modeling in Abaqus CAE with shell elements can be dangerous and tricky. Defining shell offset direc-
tions has often turned up to be of opposite direction to what was believed because of localized coordinate
systems for each individual part. This could have led to problems, especially for the optimization of different
concepts where this had to be reconsidered several times until the desired and correct result was found.
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8 Conclusions
• The TCFR method is a more stable and accurate transformation compared to the TALD method.

• There are four different levels of optimization for a sandwich plate resting on two longitudinal girders,
where this thesis address two of them. Consequently the relations and concepts presented is insufficient
data to perform a full scale optimization of a sandwich plate system.

• It is possible to establish usable relations between the different analyzed parameters, even though that
they are only valid for this specific case. Otherwise the ratios could easily be adjusted to fit another type
of geometric shape of the bridge, in the same manner as was done in this thesis.

• The derived parametric ratios can only be used as an evaluation tool and does not offer any design
suggestions. It is up to the engineer to know how to alter the structure to fit the ratios better for an
improved structural behavior.

• Several sandwich deck concepts suffered from overcapacity of shear stiffness, which was corrected and
compensated by the help from the parametric ratios that were developed.

• An effective and accurate optimization should start with overcapacity of shear stiffness for the concept.
This is done in order to ensure a good transformation with linear strain over the cross section in all
directions.

• The procedure for optimization by hand is too tedious to perform for a single bridge. However, it could
be useful if some parts of the optimization was to be automated.

8.1 General method for deck optimization

The results from this thesis could be used to establish a method of how to construct an optimized sandwich
deck concept. Observe that the parametric ratios and relations from this thesis cannot be used in reality, since
they are derived with a non-existing load case. These ratios would have to be done properly for LM1 from
Eurocodes or equivalent. However the work methodology would be the same.
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Figure 8.1.1: Proposed optimization method, blue boxes indicates possibility of automation by computer software.

• Start by assuming a thickness or use the one from the old bridge deck.
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• Construct the parametric ratios for the specific case in question. This could be done by an automated
process in e.g. Abaqus CAE by scripting, to give accurate relations.

• Next step would be to construct the E11, E22 and w surface plot. From this a set of elastic moduli that
fulfills the deflection requirement should be chosen.

• A conceptual design that is believed to serve the chosen elastic moduli and has overcapacity of shear
stiffness should be constructed. By loading this concept in different directions, all elastic and shear moduli
needed are obtained. Use the analytical model to simplify the structure to three different orthotropic
homogeneous layers. Transform the three layered sandwich into one equivalent plate with the TCFR
method. Compare resulting stiffness with the parametric ratios. Evaluate result and modify structure if
not sufficiently optimized. Repeat this process until adequate relations are obtained.

• Evaluate the final conceptual design with regard to strength and local phenomena.
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9 Future Research
• A deeper analysis where the optimization of the overall geometry is studied, both locally and globally.

• Model the interaction between the steel girders and the sandwich plate deck.

• Further verification and development of the transformation from a structured sandwich plate to a one
layered plate. The TCFR method needs further calibration and verification. It might also need a limitation
for which interval of parameters that could be used for it in order to get reliable results.

• Try to establish a more general solution for the parametric ratios, where sizes of beam members and
height of sandwich plate can be changed.

• In the far future it could be of interest to study single walled carbon nano tube structure, instead of FRP,
which holds a Young’s modulus of approximately 5 times the one of steel and a strength of around 3
times, even though that the density is a fifth, Meo and Rossi (2006). These could be used for ultra light
weight structures.
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10 Appendix
10.1 Load calculation

The load calculation is performed in Mathcad in accordance with the bridge section of Eurocode EC2 (EURO-
PEAN STANDARD EN 1991-2:2003 2003). The applied loads are divided into point loads and distributed
loads. This is done to simulate axle loads from heavy vehicles (point loads) and a general traffic load in
the different driving lanes (distributed loads). There are four different load models, Load model 1,2,3 and 4
(LM1-4) that are created to simulate different types of load the bridge can be subjected to. Load model 1 is
made to simulate an universal traffic load and is to be used for general and local calculations. This is the
load model used in the following calculations to make a preliminary sizing of the steel beams in the bridge model.

There are three different load cases where the loads are applied in different combinations to obtain the
highest moment and reaction forces to be able to determine the design load (worst case). Ordinary a national
annex with safety factors and specific values of constants is to be used in design, but because this is a preliminary
sizing no such values are used. The self weight of the structure is also neglected.
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Geometric input:

lbridge 15m:= laxle 1.2m:=

lele 8m:=

lside 0.5m:=

lcon 1.5m:=

Other input
Self weight of sandwich element

qsandwich 0
kN

m2
:=

Load model
Table 1: Number and width of notional lanes (EC1 part 2 table 4.1)

w lele 2 lside- 7m=:=

n1 1 w 5.4m<if

2 5.4m w< 6m<if

floor
w

3m






w 6mif

2=:=

wl 3m w 5.4m<if

w
2

5.4m w< 6m<if

3m w 6mif

3 m=:=

wra w 3m- w 5.4m<if

0 5.4m w< 6m<if

w 3m n1- w 6mif

1 m=:=

wp 0.5m:=

Load model 1 LM1
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Table 2: Load Model 1, characteristic values (EC1 part 2, table 4.2)

q1k 9
kN

m2
:= Q1k 300kN:=

Q2k 200kN:=q2k 2.5
kN

m2
:=

Observe, no safety factors
applied!qrak 2.5

kN

m2
:=

Transverse direction

Load case A (LM1)
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SA1 lele lcon- lside-
wl
2

- 4.5 m=:=

SA2 lele lcon- lside-
3
2

wl- 1.5 m=:=

SA3 lele lcon- lside- 2 wl-
wra
2

- 0.5 m=:=

SAp1 lele lcon- lside- wp- 5.5 m=:=

SAp2 lele lcon- lside- wl wp-( )- 3.5 m=:=

SAp3 lele lcon- lside- wl- wp- 2.5 m=:=

SAp4 lele lcon- lside- wl- wl wp-( )- 0.5 m=:=

MA2q qsandwich lele
lele 2lcon-( )

2
 q1k wl SA1+ q2k wl SA2+ qrak wra SA3- 131.5

kN m
m

=:=

MA2Q Q1k SAp1 Q1k SAp2+ Q2k SAp3+ Q2k SAp4+ 3.3 103
 kN m=:=

The distributed load and point load have to be divided into different parts to be able to preform
global calculations without unit related inconsistencies.

RA1
MA2q m MA2Q+

lele 2 lcon-
686.3 kN=:=

RA1Q
MA2Q

lele 2 lcon-( )
660 kN=:=

RA2 2 Q1k 2 Q2k+ q1k q2k+( ) wl m+ qrak wra m+ RA1- 350.7 kN=:=

RA2Q 2 Q1k 2 Q2k+ RA1Q- 340 kN=:=

RAl1
MA2q

lele 2 lcon-
26.3

kN
m

=:=

RAl2 q1k q2k+( ) wl qrak wra+ RAl1- 10.7
kN
m

=:=
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Load case B (LM1)

SB1 lele lcon- lside-
wl
2

- 4.5 m=:=

SB2 lele lcon- lside- wl-
wra
2

- 2.5 m=:=

SB3 lele lcon- lside- wl- wra-
wl
2

- 0.5 m=:=

SBp1 lele lcon- lside- wp- 5.5 m=:=

SBp2 lele lcon- lside- wl wp-( )- 3.5 m=:=

SBp3 lele lcon- lside- wl- wra- wp- 1.5 m=:=

SBp4 lele lcon- lside- wl- wra- wl wp-( )- 0.5 m=:=

MB2q qsandwich lele
lele 2 lcon-( )

2
 q1k wl SB1+ qrak wra SB2+ q2k wl SB3+ 131.5

kN m
m

=:=

MB2Q Q1k SBp1 Q1k SBp2+ Q2k SBp3+ Q2k SBp4+ 3.1 103
 kN m=:=

RB1
MB2q m MB2Q+

lele 2 lcon-
646.3 kN=:=

RB1Q
MB2Q

lele 2 lcon-( )
620 kN=:=

 + +( ) +  + - =:=
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RB2 2 Q1k 2.Q2k+ q1k q2k+( ) wl m+ qrak wra m+ RB1- 390.7 kN=:=

RB2Q 2 Q1k 2.Q2k+ RB1Q- 380 kN=:=

RBl1
MB2q

lele 2.lcon-
26.3

kN
m

=:=

RBl2 q1k q2k+( ) wl qrak wra+ RBl1- 10.7
kN
m

=:=

Load case C (LM1)

SC1 lele lcon- lside-
wl
2

- 4.5 m=:=

SC2 lele lcon- lside- wl-
wl
2

- 1.5 m=:=

SC3 lele lcon- lside- 2 wl-
wra
2

- 0.5 m=:=

SCp1 lele lcon- lside- wp- 5.5 m=:=

SCp2 lele lcon- lside- wl wp-( )- 3.5 m=:=

SCp3 lele lcon- lside- wl- wp- 2.5 m=:=

SCp4 lele lcon- lside- wl- wl wp-( )- 0.5 m=:=
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MC2q qsandwich lele
lele 2 lcon-( )

2
 q2k wl SC1+ q1k wl SC2+ qrak wra SC3- 73

kN m
m

=:=

MC2Q Q2k SCp1 Q2k SCp2+ Q1k SCp3+ Q1k SCp4+ 2.7 103
 kN m=:=

RC1
MC2q m MC2Q+

lele 2 lcon-
554.6 kN=:=

RC1Q
MC2Q

lele 2 lcon-( )
540 kN=:=

RC2 2.Q1k 2 Q2k+ q1k q2k+( ) wl m+ qrak wra m+ RC1- 482.4 kN=:=

RC2Q 2.Q1k 2 Q2k+ RC1Q- 460 kN=:=

RCl1
MC2q

lele 2 lcon-
14.6

kN
m

=:=

RCl2 q1k q2k+( ) wl qrak wra+ RCl1- 22.4
kN
m

=:=

Longitudinal direction

qdist max RAl1 RBl1, RCl1, RAl2, RBl2, RCl2, ( ) 26.3
kN
m

=:= Case A

Qconc max RA1Q RB1Q, RC1Q, RA2Q, RB2Q, RC2Q, ( ) 660 kN=:=

Rl1
qdist lbridge 2 Qconc+

2
857.25 kN=:=

at lbridge/2
Mmax Qconc

laxle
2









 qdist
lbridge

2

8
+ Rl1

lbridge
2

- 5.294 103
 kN m=:=

WxHEB1000 12900 10 6-
 m3

:=

fyk 355 MPa:=

Slightly smaller than Mmax which is fine
beacuse the "deck flange" will
contribute.

Mcap.HEB1000 WxHEB1000 fyk 4.58 103
 kN m=:=
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10.2 MATLAB source code

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % E2−calculation
3 % Calculates the elastic modulus for the core
4 % INPUT: w (deflection)
5 % E_1 (elastic moduli for flange 1)
6 % E_3 (elastic moduli for flange 2)
7 % t_1 (thickness of flange 1)
8 % t_2 (thickness of core)
9 % t_3 (thickess of flange 2)

10 % v_1 (poisons ratio flange 1)
11 % v_2 (poisons ratio core)
12 % v_3 (poisons ratio flange 3)
13 % b (width of the plate)
14 % d_1 (distance from flange1 to neutral axis)
15 % d_2 (distance from core to neutral axis)
16 % d_3 (distance from flange2 to neutral axis)
17 % NOTE:d_1−d_3 is calibrated for a symmetric
18 % cross−section in the current setting
19 % G (shear modulus in direction of bending)
20 % q (distributed load)
21 % w (deflection)
22 % l (length of plate)
23 %
24 % BY: Anderberg Viktor, Bjorhag Isak
25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26 clc
27 close all
28 clear all
29 %% INPUT
30 E_1=18e9;
31 E_3=18e9;
32

33 t_1=0.0156;
34 t_2=0.1938;
35 t_3=0.0156;
36

37 t=t_1+t_2+t_3;
38

39 v_1=0.3;
40 v_2=0.3;
41 v_3=0.3;
42

43 b=8;
44

45 d_1=((t_1+t_2+t_3)/2−t_1/2);
46 d_2=0;
47 d_3=((t_1+t_2+t_3)/2−t_1/2);
48

49 A=(t_1+t_2+t_3)*b;
50 G=0.1300578035e9;
51 q=5000*b;
52 w=0.00685663;
53 l=5;
54

55 %% CALCULATION
56 E_2=− (((384*E_1*(d_1^2*t_1 + t_1^3/12))/(v_1^2 − 1) + (384*E_3*(d_3^2*t_3 + ...

t_3^3/12))/(v_3^2 − 1))*(v_2^2 − 1))/(384*(d_2^2*t_2 + t_2^3/12)) − (5*l^4*q*(v_2^2 − ...
1))/(384*(w − (l^2*q)/(8*A*G))*(b*d_2^2*t_2 + (b*t_2^3)/12))

57 D=E_1/(1−v_1^2)*(b*t_1^3/12+b*t_1*d_1^2)+...
58 E_2/(1−v_2^2)*(b*t_2^3/12+b*t_2*d_2^2)+...
59 E_3/(1−v_3^2)*(b*t_3^3/12+b*t_3*d_3^2)
60 ∆=5*q*l^4/(384*D)+q*l^2/(8*A*G)
61 disp('Shear deflection (in %):')
62 q*l^2/(8*A*G)/∆*100
63 disp('Bending deflection (in %):')
64 5*q*l^4/(384*D)/∆*100
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1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % E11E22−relation
3 % Produces a 3d−plot of the relations between
4 % E11, E22 and the deflection from the data
5 % found in finaldata.dat. Gradient vector field
6 % is also plotted to indicate how to change
7 % the plate to optimize the material.
8 % A curvefit is implemented using the function
9 % gridfit which can be found in MATLAB−online

10 % recource library.
11 %
12 % BY: Anderberg Viktor, Bjorhag Isak
13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 clc
15 close all
16 clear all
17 %%
18 load('finaldata.dat')
19 x=finaldata(1:9,2);
20 y=x;
21 z=[finaldata(1+9*0:9+9*0,3),finaldata(1+9*1:9+9*1,3),...
22 finaldata(1+9*2:9+9*2,3),finaldata(1+9*3:9+9*3,3),...
23 finaldata(1+9*4:9+9*4,3),finaldata(1+9*5:9+9*5,3),...
24 finaldata(1+9*6:9+9*6,3),finaldata(1+9*7:9+9*7,3),...
25 finaldata(1+9*8:9+9*8,3)];
26 xi=linspace(0,x(9),100);
27 yi=linspace(0,y(9),100);
28 zgrids = gridfit(finaldata(:,1),finaldata(:,2),finaldata(:,3),...
29 xi,yi,'autoscale','on');
30 vx=linspace(0,x(9),20);
31 vy=linspace(0,y(9),20);
32 zgrad=gridfit(finaldata(:,1),finaldata(:,2),finaldata(:,3),vx,...
33 vy,'autoscale','on');
34 [px,py] = gradient(zgrad);
35 surfc(x,y,z)
36 xlabel('E11')
37 ylabel('E22')
38 zlabel('w')
39 figure(2)
40 surfc(xi,yi,zgrids)
41 xlabel('E11')
42 ylabel('E22')
43 zlabel('w')
44 figure(3)
45 contour(xi,yi,zgrids)
46 hold on
47 quiver(vx,vy,px,py)
48 xlabel('E11')
49 ylabel('E22')
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1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % EEM−algoritm
3 % Calculates the equivalent properties of a plate
4 % from a three−layered sandwich plate. A check
5 % is also performed to ensure realistic material
6 % indata.
7 % INPUT: E−moduli in three directions for the three layers
8 % G−moduli in three directions for the three layers
9 % Poisons−ratio in three directions for the three layers

10 % Height of the three layers
11 % OUTPUT: KINA_EQ − equivalent properties calculated
12 % according to Aixi Zhou
13 % EQ − equivalent properties calculated
14 % according to equatins obtained from
15 % bending stiffness
16 % NU − equivalent poisons ratios
17 %
18 % BY: Anderberg Viktor, Bjorhag Isak
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 clc
21 close all
22 clear all
23 format('shortE')
24 %% INPUT
25 %% TOP FACE SHEET (UPPER FLANGE)
26 ET=[23e9, 18e9, 20e9];
27 NU1T=[0.3, 0.3, 0.3];
28 NUT=[NU1T, NU1T(1)/ET(1)*ET(2), NU1T(2)/ET(1)*ET(3), NU1T(3)/ET(2)*ET(3)];
29 GT=[2.6e9, 600e6, 600e6];
30 HT=0.0156;
31

32 %% INTERFACE (CORE)
33 EI=[0, 0, 7e9];
34 NU1I=[0.3, 0.3, 0.3];
35 NUI=[NU1I, NU1I(1)/EI(1)*EI(2), NU1I(2)/EI(1)*EI(3), NU1I(3)/EI(2)*EI(3)];
36 GI=[0.3333e9, 0.140625e9, 0.1046e9];
37 HI=0.1938;
38

39 %% BOTTOM FACE SHEET (BOTTOM FLANGE)
40 EB=[23e9, 18e9, 20e9];
41 NU1B=[0.3, 0.3, 0.3];
42 NUB=[NU1B, NU1B(1)/EB(1)*EB(2), NU1B(2)/EB(1)*EB(3), NU1B(3)/EB(2)*EB(3)];
43 GB=[2.6e9, 600e6, 600e6];
44 HB=0.0156;
45 %%
46 %% CHECK
47 EC=[ET;EI;EB];
48 NUC=[NUT;NUI;NUB];
49 for i=1:length(EC)
50 if NUC(i,1) > sqrt(EC(i,1)/EC(i,2))
51 disp('ERROR not valid material properties')
52 i
53 end
54 if NUC(i,2) > sqrt(EC(i,1)/EC(i,3))
55 disp('ERROR not valid material properties')
56 i
57 end
58 if NUC(i,3) > sqrt(EC(i,3)/EC(i,2))
59 disp('ERROR not valid material properties')
60 i
61 end
62 if 1−NUC(i,1)*NUC(i,4)−NUC(i,3)*NUC(i,6)−NUC(i,2)*NUC(i,5)−...
63 2*NUC(i,4)*NUC(i,6)*NUC(i,2) < 0
64 disp('ERROR not valid material properties')
65 i
66 end
67 end
68 %% CHECK OF ASSUMPTIONS
69 H=HT+HI+HB;
70 xNx=(−EB(1)*HB^2+2*EB(1)*H*HB+ET(1)*HT^2+EI(1)*H*HI)/(2*(EB(1)*...
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71 HB+EI(1)*HI+ET(1)*HT));
72 xNy=(−EB(2)*HB^2+2*EB(2)*H*HB+ET(2)*HT^2+EI(2)*H*HI)/(2*(EB(2)*...
73 HB+EI(2)*HI+ET(2)*HT));
74 if xNx>HT+HI | xNx<HT
75 disp('ERROR neutral axis is not in the core in x−direction')
76 end
77 if xNy>HT+HI | xNy<HT
78 disp('ERROR neutral axis is not in the core in y−direction')
79 end
80 %% CONTROL OF RELATIONS BETWEEN SHEAR VALUES FOR ACCURATE TRANSFORMATION
81 for e=2:3
82 diffG=max([GT(e),GI(e),GB(e)])/min([GT(e),GI(e),GB(e)]);
83 if diffG≥1e3
84 disp('WARNING! LARGE DIFFERENCE IN SHEAR MODULUS. THIS MAY LEAD TO INACCURATE RESULT')
85 end
86 end
87 %% ALGORITHM
88 at=HT/H;
89 ai=HI/H;
90 ab=HB/H;
91 E11=at*ET(1)+ai*EI(1)+ab*EB(1);
92 E22=at*ET(2)+ai*EI(2)+ab*EB(2);
93 E33=1/(at/ET(3)+ai/EI(3)+ab/EB(3));
94 Eeq11=(12*ET(1)*(HT^3/12 + (HT*(− EB(1)*HB^2 + 2*EB(1)*H*HB + ET(1)*HT^2 + ...

EI(1)*H*HI)^2)/(4*(EB(1)*HB + EI(1)*HI + ET(1)*HT)^2)))/H^3 + (12*EB(1)*(HB^3/12 + ...
HB*(H − (− EB(1)*HB^2 + 2*EB(1)*H*HB + ET(1)*HT^2 + EI(1)*H*HI)/(2*(EB(1)*HB + EI(1)*HI ...
+ ET(1)*HT)))^2))/H^3 + (12*EI(1)*(HI^3/12 + HI*(HI/2 + HT/2 − (− EB(1)*HB^2 + ...
2*EB(1)*H*HB + ET(1)*HT^2 + EI(1)*H*HI)/(2*(EB(1)*HB + EI(1)*HI + ET(1)*HT)))^2))/H^3;

95 Eeq22=(12*ET(2)*(HT^3/12 + (HT*(− EB(2)*HB^2 + 2*EB(2)*H*HB + ET(2)*HT^2 + ...
EI(2)*H*HI)^2)/(4*(EB(2)*HB + EI(2)*HI + ET(2)*HT)^2)))/H^3 + (12*EB(2)*(HB^3/12 + ...
HB*(H − (− EB(2)*HB^2 + 2*EB(2)*H*HB + ET(2)*HT^2 + EI(2)*H*HI)/(2*(EB(2)*HB + EI(2)*HI ...
+ ET(2)*HT)))^2))/H^3 + (12*EI(2)*(HI^3/12 + HI*(HI/2 + HT/2 − (− EB(2)*HB^2 + ...
2*EB(2)*H*HB + ET(2)*HT^2 + EI(2)*H*HI)/(2*(EB(2)*HB + EI(2)*HI + ET(2)*HT)))^2))/H^3;

96 G12=at*GT(1)+ai*GI(1)+ab*GB(1);
97 G21=G12;
98 G13=1/(at/GT(2)+ai/GI(2)+ab/GB(2));
99 G31=G13;

100 G23=1/(at/GT(3)+ai/GI(3)+ab/GB(3));
101 G32=G23;
102 test=at*GT(3)+ai*GI(3)+ab*GB(3);
103 NU12=at*NUT(1)+ai*NUI(1)+ab*NUB(1);
104 NU13=at*NUT(2)+ai*NUI(2)+ab*NUB(2);
105 NU23=at*NUT(3)+ai*NUI(3)+ab*NUB(3);
106 KINA_EG=[E11,E22,E33,G12,G13,G23]';
107 EQ=[Eeq11, Eeq22, E33, G12, G13, G23]';
108 NUU=[NU12, NU13, NU23]';
109

110 %% OUTPUT
111 KINA_EG
112 EQ
113 format('short')
114 NUU
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1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % EG−ratio
3 % Produces graphs and equations for the relation between
4 % shear and elastic moduli in different directions with
5 % regard to linear strain over the crossection.
6 % The equations are obtained from curve fitting functions
7 % logfit and ezyfit(G23 and E22) which both can be found
8 % on the online MATLAB recource library.
9 % This is constructed from indata files:

10 % G13E11data.dat
11 % G23grejor.dat
12 % G12shearlag.dat
13 %
14 % BY: Anderberg Viktor, Bjorhag Isak
15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
16 clc
17 close all
18 clear all
19 %% Test values
20 Ex=4.1517*10^9;
21 Ey=7.2311*10^9;
22 G12=6.9733*10^8;
23 G13=1.0676*10^8;
24 G23=1.0676*10^8;
25 %% G13 and E11
26 data=load('G13E11data.dat');
27 x=linspace(data(1,1),data(end,1),100);
28 [s,i]=logfit(data(:,1),data(:,2),'loglog');
29 waapprox=(10^i)*x.^(s);
30 format('shortE')
31 G13ratt=(10^i)*Ex^(s)
32 %% G23 and E22
33 data3=sort(load('G23grejor.dat'));
34 x3=linspace(data3(1,1),data3(end,1),100);
35 d3approx=1.3164*10^8*exp(5.7292*10^−11.*x3);
36 G23ratt=1.3164*10^8*exp(5.7292*10^−11*Ey)
37 %% G12 shear lag
38 data2=load('G12shearlag.dat');
39 x2=linspace(data2(1,1),data2(end,1),100);
40 figure(1)
41 [slope,intercept]=logfit(data2(:,1),data2(:,2),'loglog');
42 yapprox=(10^intercept)*x2.^(slope);
43 Shearp=(10^intercept)*G12^(slope)
44 %% PLOT
45 figure(2)
46 plot(data(:,1),data(:,2),'o',x,waapprox,'−')
47 hold on
48 xlabel('E11 [Pa]')
49 ylabel('G13 [Pa]')
50 figure(3)
51 plot(data2(:,1),data2(:,2),'o',x2,yapprox,'−')
52 xlabel('G12 [Pa]')
53 ylabel('Shear difference (lag) in %')
54 figure(4)
55 plot(data3(:,1),data3(:,2),'o',x3,d3approx,'−')
56 xlabel('E22 [Pa]')
57 ylabel('G23 [Pa]')
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1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Plate isotropic
3 % Calculates the deflection, moments in x,y and xy and
4 % stresses in x, y and xy by means of fourier expansions
5 % for an isotropic plate. Plots the results in graphs.
6 % INPUT: loop − number of itterations
7 % a − width
8 % b − length
9 % steg − step

10 % nu − poisons ratio
11 % E − E−modulus
12 % h − height
13 % P0 − load
14 %
15 % BY: Anderberg Viktor, Björhag Isak
16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17 %%
18 clear all
19 close all
20 clc
21 %% INPUT
22 loop=10;
23 a=5;
24 b=2;
25 steg=0.05;
26 E=210*10^9;
27 nu=0.3;
28 h=0.01;
29 z=h/2;
30 P0=2*10^3;
31 %% CALCULATION
32 x=0:steg:a;
33 y=0:steg:b;
34 wadd=zeros(length(x),length(y));
35 mxadd=wadd;
36 myadd=wadd;
37 mxyadd=wadd;
38 wsum=wadd;
39 mxsum=wadd;
40 mysum=wadd;
41 mxysum=wadd;
42 D=E*h^3/(12*(1−nu^2));
43 for m=1:2:loop
44 for n=1:2:loop
45 for i=1:length(x)
46 for j=1:length(y)
47 wadd(i,j)=sin(m*pi*x(i)/a)*sin(n*pi*y(j)/b)/((m^2/a^2+n^2/b^2)^2*m*n);
48 mxadd(i,j)=((m/a)^2+nu*(n/b)^2)*sin(m*pi*x(i)/a)*sin(n*pi*y(j)/b)/((m^2/a^2...
49 +n^2/b^2)^2*m*n);
50 myadd(i,j)=((n/b)^2+nu*(m/a)^2)*sin(m*pi*x(i)/a)*sin(n*pi*y(j)/b)/((m^2/a^2...
51 +n^2/b^2)^2*m*n);
52 mxyadd(i,j)=cos(m*pi*x(i)/a)*cos(n*pi*y(j)/b)/(a*b*(m^2/a^2+n^2/b^2)^2);
53 end
54 end
55 wsum=wsum+wadd;
56 mxsum=mxsum+mxadd;
57 mysum=mysum+myadd;
58 mxysum=mxysum+mxyadd;
59 end
60 end
61 w=−16*P0/(pi^6*D).*wsum;
62 mx=16*P0/(pi^4).*mxsum;
63 my=16*P0/(pi^4).*mysum;
64 mxy=−16*P0/pi^4*(1−nu).*mxysum;
65 sigx=−192*P0*z/(h^3*pi^4).*mxsum;
66 sigy=−192*P0*z/(h^3*pi^4).*mysum;
67 sigxy=−192*P0*z/(h^3*pi^4)*(1−nu).*mxysum;
68 %% PLOT
69 figure(1)
70 surf(w')

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:127 A-13



71 xlabel('x')
72 ylabel('y')
73 axis([0 max(a,b)/steg+1 0 max(a,b)/steg+1 min(min(w)) max(max(w))])
74 title('Deflection')
75 figure(2)
76 surf(mx')
77 xlabel('x')
78 ylabel('y')
79 axis([0 max(a,b)/steg+1 0 max(a,b)/steg+1 min(min(mx)) max(max(mx))])
80 title('mx')
81 surf(my')
82 xlabel('x')
83 ylabel('y')
84 axis([0 max(a,b)/steg+1 0 max(a,b)/steg+1 min(min(my)) max(max(my))])
85 title('my')
86 figure(4)
87 surf(mxy')
88 xlabel('x')
89 ylabel('y')
90 axis([0 max(a,b)/steg+1 0 max(a,b)/steg+1 min(min(mxy)) max(max(mxy))])
91 title('mxy')
92 figure(5)
93 surf(sigx')
94 xlabel('x')
95 ylabel('y')
96 axis([0 max(a,b)/steg+1 0 max(a,b)/steg+1 min(min(sigx)) max(max(sigx))])
97 title('Sigma x')
98 figure(6)
99 surf(sigy')

100 xlabel('x')
101 ylabel('y')
102 axis([0 max(a,b)/steg+1 0 max(a,b)/steg+1 min(min(sigy)) max(max(sigy))])
103 title('Sigma y')
104 figure(7)
105 surf(sigxy')
106 xlabel('x')
107 ylabel('y')
108 axis([0 max(a,b)/steg+1 0 max(a,b)/steg+1 min(min(sigxy)) max(max(sigxy))])
109 title('Sigma xy')
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1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Plate orthotropic
3 % Calculates the deflection, moment in x, y and xy and
4 % stress in x, y and xy for an orthotropic plate. This
5 % is done by means of fourier expansion.
6 % INPUT: loop − number of itterations
7 % a − width
8 % b − length
9 % steg − step

10 % Ex − E−modulus in x−direction
11 % Ey − E−modulus in y−direction
12 % nux − poisons ratio in x−direction
13 % nuy − poisons ratio in y−direction
14 % h − height
15 % P0 − load
16 %
17 % BY: Anderberg Viktor, Björhag Isak
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19 %%
20 clear all
21 close all
22 clc
23 %% INPUT
24 loop=40;
25 a=5;
26 b=2;
27 steg=0.1;
28 Ex=210*10^1;
29 Ey=210*10^10;
30 nux=0.3;
31 nuy=0.3;
32 h=0.01;
33 z=h/2;
34 P0=−2*10^3;
35 %% Stiffnesses
36 G=sqrt(Ex*Ey)/(2*(1+sqrt(nux*nuy)));
37 Dx=Ex*h^3/(12*(1−nux*nuy));
38 Dy=Ey*h^3/(12*(1−nux*nuy));
39 Dxy=Ex*h^3*nuy/(12*(1−nux*nuy));
40 Ds=G*h^3/12;
41 H=Dxy+2*Ds;
42 %% CALCULATION
43 x=0:steg:a;
44 y=0:steg:b;
45 wadd=zeros(length(x),length(y));
46 mxadd=wadd;
47 myadd=wadd;
48 mxyadd=wadd;
49 wsum=wadd;
50 mxsum=wadd;
51 mysum=wadd;
52 mxysum=wadd;
53 sigxadd=wadd;
54 sigxsum=wadd;
55 sigysum=wadd;
56 sigyadd=wadd;
57 for m=1:2:loop
58 for n=1:2:loop
59 for i=1:length(x)
60 for j=1:length(y)
61 wadd(i,j)=sin(m*pi*x(i)/a)*sin(n*pi*y(j)/b)/(m*n*(Dx*m^4/a^4+2*H*m^2*n^2/...
62 (a^2*b^2)+Dy*n^4/b^4));
63 mxadd(i,j)=Dx*m^2*pi^2/a^2*sin(m*pi*x(i)/a)*sin(n*pi*y(j)/b)/(m*n*(Dx*m^4...
64 /a^4+2*H*m^2*n^2/(a^2*b^2)+Dy*n^4/b^4))+Dxy*n^2*pi^2/b^2*sin(m*pi*x(i)/a)...
65 *sin(n*pi*y(j)/b)/(m*n*(Dx*m^4/a^4+2*H*m^2*n^2/(a^2*b^2)+Dy*n^4/b^4));
66 myadd(i,j)=Dy*n^2*pi^2/b^2*sin(n*pi*y(j)/b)*sin(m*pi*x(i)/a)/(m*n*(Dx*m^4...
67 /a^4+2*H*m^2*n^2/(a^2*b^2)+Dy*n^4/b^4))+Dxy*m^2*pi^2/a^2*sin(m*pi*x(i)/a)...
68 *sin(n*pi*y(j)/b)/(m*n*(Dx*m^4/a^4+2*H*m^2*n^2/(a^2*b^2)+Dy*n^4/b^4));
69 mxyadd(i,j)=pi^2*cos(m*pi*x(i)/a)*cos(n*pi*y(j)/b)/(a*b*(Dx*m^4/a^4+2*H...
70 *m^2*n^2/(a^2*b^2)+Dy*n^4/b^4));
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71 sigxadd(i,j)=m^2*pi^2/a^2*sin(m*pi*x(i)/a)*sin(n*pi*y(j)/b)/(m*n*(Dx*m^4...
72 /a^4+2*H*m^2*n^2/(a^2*b^2)+Dy*n^4/b^4))+nuy*n^2*pi^2/b^2*sin(m*pi*x(i)/a)...
73 *sin(n*pi*y(j)/b)/(m*n*(Dx*m^4/a^4+2*H*m^2*n^2/(a^2*b^2)+Dy*n^4/b^4));
74 sigyadd(i,j)=n^2*pi^2/b^2*sin(m*pi*x(i)/a)*sin(n*pi*y(j)/b)/(m*n*(Dx*m^4...
75 /a^4+2*H*m^2*n^2/(a^2*b^2)+Dy*n^4/b^4))+nux*m^2*pi^2/a^2*sin(m*pi*x(i)/a)...
76 *sin(n*pi*y(j)/b)/(m*n*(Dx*m^4/a^4+2*H*m^2*n^2/(a^2*b^2)+Dy*n^4/b^4));
77 end
78 end
79 wsum=wsum+wadd;
80 mxsum=mxsum+mxadd;
81 mysum=mysum+myadd;
82 mxysum=mxysum+mxyadd;
83 sigxsum=sigxsum+sigxadd;
84 sigysum=sigysum+sigyadd;
85 end
86 end
87 w=16*P0/(pi^6).*wsum;
88 mx=16*P0/(pi^6).*mxsum;
89 my=16*P0/(pi^6).*mysum;
90 mxy=−G*h^3/12*16*P0/pi^6.*mxysum;
91 sigx=−Ex/(1−nux*nuy)*16*P0/pi^6*z.*sigxsum;
92 sigy=−Ey/(1−nux*nuy)*16*P0/pi^6*z.*sigysum;
93 sigxy=−2*G*z.*mxysum;
94 %% PLOT
95 figure(1)
96 surf(w')
97 xlabel('x')
98 ylabel('y')
99 title('w')

100 axis([0 max(a,b)/steg+1 0 max(a,b)/steg+1 min(min(w)) max(max(w))])
101 figure(2)
102 surf(mx')
103 xlabel('x')
104 ylabel('y')
105 title('mx')
106 axis([0 max(a,b)/steg+1 0 max(a,b)/steg+1 min(min(mx)) max(max(mx))])
107 figure(3)
108 surf(my')
109 xlabel('x')
110 ylabel('y')
111 title('my')
112 axis([0 max(a,b)/steg+1 0 max(a,b)/steg+1 min(min(my)) max(max(my))])
113 figure(4)
114 surf(mxy')
115 xlabel('x')
116 ylabel('y')
117 title('mxy')
118 axis([0 max(a,b)/steg+1 0 max(a,b)/steg+1 min(min(mxy)) max(max(mxy))])
119 figure(5)
120 surf(sigx')
121 xlabel('x')
122 ylabel('y')
123 title('sigma x')
124 axis([0 max(a,b)/steg+1 0 max(a,b)/steg+1 min(min(sigx)) max(max(sigx))])
125 figure(6)
126 surf(sigy')
127 xlabel('x')
128 ylabel('y')
129 title('sigy')
130 axis([0 max(a,b)/steg+1 0 max(a,b)/steg+1 min(min(sigy)) max(max(sigy))])
131 figure(7)
132 surf(sigxy')
133 xlabel('x')
134 ylabel('y')
135 title('sigxy')
136 axis([0 max(a,b)/steg+1 0 max(a,b)/steg+1 min(min(sigxy)) max(max(sigxy))])
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