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Engine out NOx estimation in a heavy duty diesel engine
Using sensor fusion techniques to estimate NOx emissions
ADAM ANDERSSON
JOACIM GÖRANSSON
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Abstract
This thesis investigates the possibility to estimate NOx emissions more precise than
what is accomplished today by the built in NOx sensor in a heavy duty truck from
Volvo GTT. Empirically determined engine out NOx models are compared to each
other but also a physical NOx model is developed. The developed NOx model
requires cylinder pressure and cylinder temperature as inputs, therefore models for
these two variables are developed as well. The results obtained from the NOx model
are constantly underestimated but follow trends and variations in a satisfactory way.
Two Kalman filters are developed, a linear Kalman filter with a constant velocity
motion model and a Cubature Kalman filter that uses the developed NOx model
as motion model. Both devolped Kalman filters uses the empirical models together
with a vehicle NOx sensor as measurements. The results from the linear Kalman
filter and the Cubature Kalman filter look promising, both of the filters result in
better estimations than what is accomplished by the NOx sensor used in today’s
vehicles. The linear Kalman filter performs a bit worse than the Cubature Kalman
filter but is about 8000 times faster regarding computational speed, therefore this
filter might be better to use in a real world implementation.

Keywords: CKF, KF, NOx estimation, pressure estimation, sensor fusion, tempera-
ture estimation.
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1
Introduction

The four stroke diesel engine is an engine with high thermal efficiency and is often
the engine of choice in trucks. The diesel engine does not have a sparkplug to
ignite the fuel, as most petrol engines do, but it uses the high temperature achieved
by compressing the gas causing the fuel to be ignited instead. A more detailed
illustration of how the four strokes work can be seen in Figure 1.1.

Figure 1.1: Illustration of the engine cycle of a four stroke compression-ignition
diesel engine. a) Intake, b) Compression, c) Expansion, d) Exhaust.

a) The intake valve is open and air is sucked in to the cylinder as the piston goes
down.

b) When the piston reaches Bottom Dead Center (BDC) the inlet valve is closed
and the compression phase begins as the piston moves up. When the piston is
close to the Top Dead Center (TDC) the injection of fuel begins.

c) Due to the high temperature caused by the compression of the gas in the cylinder
the injected fuel is ignited. This causes a rapid change in pressure which forces
the piston down.

d) When the piston reaches BDC the exhaust valve is opened and the exhaust gas
leaves the cylinder.

It is well known that combustion of fossil fuel causes pollution due to emissions of
carbon monoxides (CO), hydrocarbons (HC), particulate matter (PM), nitric oxides
(NO), nitrogen dioxides (NO2), smoke and soot, [1]. When talking about both NO
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Chapter 1. Introduction

and NO2 a popular abbreviation is NOx. The process that produces NOx during
combustion can be divided into three mechanisms, namely; thermal, fuel and prompt
NOx, described in [2].

The thermal NOx mechanism is the main contributor to NOx emissions in diesel
combustion. This mechanism is often referred to as the extended Zeldovich mecha-
nism, [3] which can be described using equilibrium reactions:

O +N2 ↔ NO +N (1.1)
N +O2 ↔ NO +O (1.2)
N +OH ↔ NO +H (1.3)

The concentration of this thermal NOx mechanism is highly dependent on the tem-
perature during combustion, as it requires very high temperatures (in excess of 1500
K, [2]) to form NOx due to the strong triple bond in the N2 molecule, [4]. The
concentration of oxygen and nitrogen available during the combustion also affects
to which extent thermal NOx is created.

Fuel NOx is formed by oxidation of the fuel bound nitrogen. The reaction from
the nitrogen in the fuel to NO occurs by producing nitrogen compounds, HCn,
amines and cyanides from the pyrolysis, [4]. This mechanism is however not a ma-
jor contributor of the NOx formation in a diesel engine but more present during
combustion of oil and coal, as described in [4].

Prompt NOx or the Fenimore mechanism is another source of NOx in combustion.
This has been found to form promptly in the flame front, which is what it has been
named after, due to reaction of nitrogen in the air with hydrocarbon radicals from
the fuel. This mechanism is however considered as less important than what the
thermal NOx mechanism is at temperatures that are present for diesel combustion,
according to [5].

Due to the emissions several standards have been legislated. In Europe the legisla-
tions are called Euro I - Euro VI, where Euro VI is the latest legislation introduced
in January 2013 and it is also the most restricted so far. If the Euro V and the Euro
VI standards are compared it is seen in Table 1.1 that it is the NOx regulations that
have been affected most significantly, [6, 7].

Table 1.1: EU emission standards for heavy duty diesel engines in steady state
testing for Euro V and Euro VI.

Standard CO HC NOx PM
g/kWh

Euro V 1.5 0.46 2.0 0.02
Euro VI 1.5 0.13 0.4 0.01

In Figure 1.2 the CO emissions and the NOx emissions for Euro I to Euro VI are
illustrated. As can be seen, the CO emissions have not been changed since Euro IV
while the NOx emissions have decreased significantly over the past years.
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Figure 1.2: Illustration of emission regulations of NOx and CO for Euro I - Euro
VI.

Due to sharpened regulations the demand on control of heavy duty diesel engines
have increased. For future regulations Volvo Group Trucks Technology Powertrain
AB (further on called Volvo) have to be able to control the emissions further, es-
pecially the NOx emissions. To be able to achieve this a reliable measurement or
estimation method of the NOx emissions have to be designed. A variety of NOx
models exist, such as mean valued engine models [8], zero-dimensional one-zone
thermodynamical models [9], super-extended Zeldovich mechanism models [10] etc.
Typically NOx sensors are used for the control feedback but in many cases the sensor
accuracy is too low and in some cases there is no available sensor data at all. To
be able to meet upcoming regulations a reliable NOx estimation method has to be
available, where Volvo want to include sensor fusion techniques. Here sensor fusion
means that information from several sensors and models are fused together to be
able to get a result with less uncertainty than the individual sensors or models would
give by using them separately.

1.1 Purpose and aims
The objective of this thesis is to use sensor fusion techniques in order to improve the
estimation of NOx formation in a heavy duty diesel engine. This is to be done with
engine out NOx models and sensor data from NOx sensors and from other available
sensors. The estimation method should be implemented, simulated and tested in
Matlab© and have real time implementation in mind regarding computational ef-
ficiency.

A set of sub problems subject to questions which need to be answered in order
to reach a satisfactory result was created:

• Development and evaluation of NOx models:
1. Which type of NOx model should be used?
2. Is it possible to use multiple NOx models simultaneously?

3



Chapter 1. Introduction

3. Under which conditions do(es) the model(s) work, i.e. gives a valid esti-
mation?

4. Can information from different models be combined and weighted in order
to get a better estimation for a larger range of conditions?

• Analysis and use of sensors:
1. What sensors are available in the ECU and what sensors are appropriate

to use?
2. How accurate are the sensors and under which conditions do they work?

• Sensor fusion and filtering:
1. What filtering method should be used?
2. If multiple models are used, how are the information from these best

fused together in order to get satisfactory results over a large range of
working conditions?

3. How are the information from the sensors and models combined to get
an accurate estimate?

4. Is the difference in performance between filters large enough to draw some
conclusion regarding computational efficiency?

1.2 Scope and boundaries
The scope of the thesis is to estimate engine out NOx more correct than what is
accomplished today. By more correct means that the overall NOx estimation over
time is taken into consideration. Since no ground truth data is available, the most
accurate NOx sensor which is only available in an engine cell and not in the ECU in
the trucks is considered as the truth instead. It is therefore the NOx sensor in the
engine cell that all the NOx estimation results are compared to since it is considered
to be closest to the truth. To be able to estimate the NOx emissions better than
what is accomplished today engine out NOx models, the NOx sensor, other sensors
that are available in the ECU and sensor fusion is used. Since this problem is highly
non linear different filter methods are evaluated with main focus on different Kalman
filters and sigma point methods.

This thesis does not aim to create a new way of modelling NOx but instead use
available information to model the desired system behaviour. Experimental data
will be provided by Volvo so no additional experiments will be performed during
this thesis in order to affect current engine out NOx performance. Only currently
available sensors in the ECU together with sensors in the engine cell are used. The
NOx estimation will be restricted to a heavy duty diesel engine, i.e. there is no
guarantee that the NOx estimation can be applied to other engines/systems with-
out modifications.

1.3 System overview
The data used for simulation and validation comes from a 6 cylinder, 480 hp diesel
engine using Selective Catalytic Reduction (SCR). SCR is a process for reducing
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Chapter 1. Introduction

the amount of NOx emissions, this process does however occur in the Exhaust After
Treatment System (EATS) and does not affect the engine out NOx emissions, which
is what is measured and estimated in this thesis. Another way of reducing the
NOx emissions is to use Exhaust Gas Recirculation (EGR), which reduces the NOx
emissions by recirculating a fraction of the exhaust gas back to the intake manifold.
EGR is thus a process that affects the engine out NOx, however this process is not
used on the engine used in this thesis. In Figure 1.3 an overview of an engine is seen
which includes the EGR hardware for illustration.

Figure 1.3: Overview of a 6 cylinder diesel engine with EGR together with NOx
sensor and boost pressure sensor denoted BoostP .

1.4 Thesis outline
This section describes the layout of the thesis. First three chapters presenting the
different parts of the model are presented. First the cylinder pressure model is
described followed by the cylinder temperature model and last the NOx model is
presented which uses the output from both the cylinder pressure model and the
cylinder temperature model. The modelling chapters are followed by the sensor
fusion chapter where both filtering theory and the filter implementation used in
this thesis are presented. Finally the results, the discussions and the conclusion are
presented.
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2
Cylinder pressure model

To be able to model the NOx formation also the cylinder pressure has to be available.
Today there is no cylinder pressure sensor available in the ECU but only in the engine
cell. Therefore the cylinder pressure has to be estimated and modelled as well.
This chapter is outlined by first presenting fundamental calculations and underlying
theory for cylinder pressure estimation, followed by assumptions that have been
made to the model to work in practice and finally results from the cylinder pressure
model are presented.

2.1 Fundamental theory and calculations to model
cylinder pressure

By rearranging the first law of thermodynamics it is possible to create an expression
that calculates the pressure rate with respect to crank angle θ, according to [11],

dp

dθ
=
(
dQn

dθ
− γ

γ − 1p
dV (θ)
dθ

)(
γ − 1
V (θ)

)
(2.1)

where p is the cylinder pressure, dQn is the heat release rate, V (θ) is the cylinder
volume, dV (θ)

dθ
is the rate of change in volume and γ = cp

cv
≈ 1.3 is the ratio of specific

heats.

2.1.1 Cylinder volume calculations
The cylinder volume is only dependent on engine geometry together with the crank
angle θ and is calculated as:

V (θ) = Vc + πB2

4

(
l + a+ a cos(θ)−

√
l2 − a2 sin2(θ)

)
(2.2)

The rate of volume change dV (θ)
dθ

is the crank angle derivative of the volume and is
calculated as:

dV (θ)
dθ

= πaB2

4 sin(θ)
(

1 + a cos(θ)
(
l2 − a2 sin2(θ)

)−1/2
)

(2.3)

The volume is completely based on engine geometry, this is illustrated in Figure 2.1
where Vc is the clearance volume, B is the cylinder bore, a is the crank radius and
l is the length of the connecting rod.

7



Chapter 2. Cylinder pressure model

Figure 2.1: Illustration of the engine geometry used to calculate the cylinder volume
based on the crank angle θ.

2.1.2 Heat release rate calculations
In order to calculate (2.1) the heat release rate has to be calculated. The heat
release rate is substantial when the injected fuel is ignited due to compression as
explained in Figure 1.1 (c). When the fuel ignites and explodes, the cylinder pressure
is affected drastically and therefore it is natural to include the heat release rate for
the cylinder pressure calculations. The net heat release rate is calculated according
to:

dQn = dQg − dQht,conv − dQht,rad (2.4)

where dQn is formed by three terms, namely the gross heat release rate dQg, the
convective heat loss rate dQht,conv and the radiative heat loss rate dQht,rad, see [11].

The gross heat release rate dQg is calculated as:

dQg =


0 θ < αSOC

C1 (Qfuel,inj −Qg) αSOC ≤ θ < αSODC

C2 (Qfuel,inj −Qg) αSODC ≤ θ

(2.5)

where C1 and C2 are empirically determined constants to match the heat release
rate in simulations to real engine data and Qfuel,inj is the injected fuel energy at a
crank angle θ according to:

Qfuel,inj = QLHV

∫ θ

αSOI
Wfuel (θ) dθ (2.6)

8



Chapter 2. Cylinder pressure model

Wfuel is the fuel mass flow, αSOI is the crank angle for the start of injection (SOI)
and QLHV is the lower heating value which is approximately 42.6 MJ/kg for diesel.

It is seen that before the start of combustion (SOC) there is no heat release. In the
interval from start of combustion (SOC) to start of diffusion combustion (SODC),
the injected fuel during the ignition delay is added to the gross heat release calcu-
lation. The ignition delay is the period from that the fuel is injected in the cylinder
to the point that the fuel is ignited. After SODC the main contribution to the gross
heat release rate calculation is added since most of the combustion is performed
when αSODC ≤ θ.

The convective heat losses are calculated as:

dQht,conv = A(θ)hc (T − Twall) , Twall = 450K (2.7)

where A(θ) is the instantaneous surface area of the cylinder according to:

A(θ) = πB2

2 + πBa ·

 l
a

+ 1− cos(θ) +

√√√√( l
a

)2

− sin2(θ)

 (2.8)

T is the cylinder temperature from the previous crank angle step, Twall is set to a
fixed value of 450 K and

hc = CBm−1pmT 0.75−1.62m ·
[
C1vp + C2

V∆p
V0p0

T0

]m
(2.9)

is the heat transfer coefficient determined by Woschni in [12].

The constants C = 3.26, C1 = 2.28 and C2 in the heat transfer coefficient are
determined by Woschni. C2 is set to different values depending on where in the
combustion cycle the process are, i.e. compression or expansion. In case of com-
pression C2 = 0 and in the expansion case C2 = 3.24 · 10−3. The exponent term
m = 0.8 is selected empirically, B is the cylinder bore, vp is the mean piston speed,
∆p is the instantaneous pressure difference in cylinder and motor pressure. V0, T0
and p0 is the reference volume, temperature and pressure at a certain point in the
combustion process respectively, for example at intake valve close (IVC).

The radiative heat losses are

dQht,rad = Crad (neng, δ)T 4
flame (2.10)

where

Crad (neng, δ) = c0 + c1 · neng + c2 · δ (2.11)

Crad is a semi-empirically determined expression used to fit the simulated model to
measurements where neng is the engine speed, δ is the injected fuel mass and Tflame
is the flame temperature calculated as in Section 3.1.
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Chapter 2. Cylinder pressure model

2.2 Assumptions for cylinder pressure model

From the theory of calculating the cylinder pressure some simplifications has been
made to the cylinder pressure model. These simplifications have been made in order
to reduce the computational effort of the model but still get a satisfactory result.
The pressure model uses two intervals defined by the start of combustion (αSOC)
in (2.5). The αSOC occurs some time after the fuel injection has started and this
time differs between cycles but has in the model been set to a fixed value. When
the model was tested and tuned it was clear that the convective heat losses dQht,conv

did not contribute a lot to the final result. Therefore dQht,conv was excluded in the
implementation of the pressure model. The following subsections will go further into
details about other assumptions and simplifications made.

2.2.1 Choice of initial pressure
To be able to calculate the cylinder pressure as in (2.1) it is necessary to know the
cylinder pressure from the previous crank angle step. This is performed iterative
during the process, however initially the cylinder pressure value has to be deter-
mined. In this section an investigation of how to determine this value and what
impact it has to the final cylinder pressure result is presented. The starting value
of the pressure estimation is of high importance to the result of the cylinder pres-
sure estimation. In Figure 2.2 the area where the starting pressure value should be
chosen is highlighted.
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Figure 2.2: Highlighted area of interest where the initial pressure should be deter-
mined.

As can be seen in Figure 2.3 a small change in the initial pressure value has a large
impact of the behaviour of the resulting cylinder pressure curve. To the left the
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Chapter 2. Cylinder pressure model

initial pressure is set to 0.22 MPa while the resulting cylinder pressure curve to the
right has an initial pressure set to 0.26 MPa.
As seen the pressure curves are affected significantly by the small variation in the
initial pressure. Since the temperature estimation is dependent of the pressure
estimation it is necessary to be able to estimate the initial pressure well, if this can
not be done well enough also the NOx estimation will suffer and the overall result
becomes less accurate.
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Figure 2.3: Illustration of impact for resulting cylinder pressure curves due to
small changes in initial pressure. Left: Initial pressure set to 0.22 MPa. Right:
Initial pressure set to 0.26 MPa.

To be able to model the cylinder pressure correctly a measure for the initial pressure
has to be used. In Figure 2.4 the cylinder pressure in the highlighted area shown
in Figure 2.2 have been selected and the mean values and the variances have been
calculated and are illustrated in form of error bars for different engine speeds. This
is compared to the boost pressure that is available in the ECU and some similarities
are found, at least the curves seem to have a similar trend. Even though the two
curves do not match exactly this was the best measure that was found available in
the ECU, therefore the boost pressure was selected to be used as the initial pressure
for the pressure model.
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Figure 2.4: Comparison of initial cylinder pressure and boost pressure with mean
values and variances shown as error bars.

2.2.2 Fuel injection behaviour
The injection of fuel into the cylinder is performed between the angle of start of
injection (αSOI) and end of injection (αEOI). The behaviour of the fuel flow in
this interval is not a trivial thing to model so a simplification has been made for the
injected fuel. It is assumed that there is no delay in the injector needle which results
in a very fast and exact injection. The assumed fuel injection has been illustrated
in Figure 2.5 where the area under the curve corresponds to the total amount of
injected fuel for one combustion cycle.
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Figure 2.5: Illustration of the fuel injection behaviour.
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Chapter 2. Cylinder pressure model

For this illustration the αSOI is set to −5 CAD and αEOI to 10 CAD. The mag-
nitude of the graph does not correspond to any real values of the fuel flow but is
only used for illustrative purpose.

2.3 Cylinder pressure results

Since no cylinder pressure sensor is available in the ECU, measurements from the
engine cell have been used to validate the cylinder pressure model. In Figure 2.6 six
different cylinder pressure results are shown, the results are performed for different
engine speeds at full load. As can be seen, the estimated cylinder pressure corre-
sponds to the measured cylinder pressure in a satisfactory way for most of the cases.
It is seen that when 700 rpm and 2100 rpm are used the estimated cylinder pressure
differs the most, however those engine speeds are at the extremes of the range and it
is more important that the model estimates the cylinder pressure correct for engine
speeds that are used during normal working conditions.
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Figure 2.6: Comparison between measured cylinder pressure (blue curve) and esti-
mated cylinder pressure (red curve) at different engine speeds.

One measure to quantify how the model performs is to compare the maximum cylin-
der pressure. In Figure 2.7 a comparison of maximum cylinder pressure during the
combustion cycle is shown for different engine speeds together with the absolute
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Chapter 2. Cylinder pressure model

error between the measurement and the estimation from the model. Using a mea-
sure like this does not say anything about how well the curves correspond to each
other more than just the peak value but this is on the contrary already shown in
Figure 2.6. As can be seen the maximum absolute error is about 1 MPa which will
affect the cylinder temperature and the NOx calculations but it is still considered
as a satisfactory result.
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Figure 2.7: Comparison of estimated and measured maximum cylinder pressure
and absolute error for different engine speeds.

In Figure 2.8 a steady state simulation for maximum cylinder pressure is shown,
overall the estimated cylinder pressure corresponds to the measured cylinder pres-
sure. The absolute error are larger for some areas but it is also relatively small for
most of the simulation. Since the result is obtained from a simulation where several
different physical areas are excited, the simulation is a good measure to see how
dynamic the model is. Even though the simulation excites so many different areas
the model is still able to estimate the cylinder pressure in a satisfactory way.
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Figure 2.8: Comparison of estimated and measured maximum cylinder pressure
and absolute error at steady state simulation.
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3
Cylinder temperature model

For the cylinder pressure the cylinder temperature is required in order to model the
NOx formation. As for cylinder pressure there is no cylinder temperature sensor
available in the ECU, but this time it is not available in the engine cell either.
This chapter is outlined by first presenting fundamental calculations and underlying
theory for cylinder temperature estimation, followed by a walk-through of how the
cylinder temperature is estimated and finally results from the cylinder temperature
model are presented.

3.1 Fundamental theory and calculations to model
cylinder temperature

When estimating the cylinder temperature during combustion the flame temper-
ature has to be calculated. This is done by first calculating the adiabatic flame
temperature which is explained in Section 3.1.1. This adiabatic flame temperature,
Tflame,ad, is then compensated for dissociation (Section 3.1.2). Dissociation is needed
for temperatures over 1250 K according to [13], then the flame temperature Tflame
can be calculated, as in [11], with

Tflame = Tflame,ad − feq(p, Tflame,ad, λlocal). (3.1)

Here the function feq(p, Tflame,ad, λlocal) is the dissociation compensation. The ra-
diative heat losses that occur in the combustion process are compensated for as
in

Tflame,ht = Tflame,ad −
dQht,rad

cp
(3.2)

where dQht,rad represents the radiative heat losses, depending on Tflame, and is
explained in (2.10). Based on this temperature the burned zone temperature is
calculated by using isentropic expansion/compression using

Texp = Tburn,perf (θ − 1)
(

p (θ)
p (θ − 1)

) γ−1
γ

(3.3)

Tburn,perf (θ) = Texpmburn (θ) + Tflame,ht (mburn (θ)−mburn (θ − 1))
mburn (θ) (3.4)

Tburn = Tburn,perf (θ)− feq (p, Tflame,ad, λlocal) (3.5)
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Chapter 3. Cylinder temperature model

where mburn is the burnt mass, θ is the notion for current crank angle, θ − 1 is the
notion for previous crank angle and Tburn is the estimated cylinder temperature.

3.1.1 Adiabatic flame temperature calculations
The adiabatic flame temperature in combustion is the result of a complete com-
bustion process where no heat is transferred and no work is performed. Since the
combustion process in a diesel engine takes place in a very short time interval little
heat is transferred and therefore the highest achieved temperature is often near the
adiabatic temperature, as can be seen in [13].

For a known chemical process the adiabatic flame temperature can be calculated,
for example for a fuel-lean combustion with diesel the stoichiometry is calculated
with

CHn + αs
φ

(O2 + 3.78N2)→ CO2 + n

2H2O + αs

(
1
φ
− 1

)
O2 + 3.78αs

φ
N2 (3.6)

where αs = 1 + n/4 and the equivalence ratio φ, is the fuel to air ratio normalized
to the stoichiometric fuel to air ratio. By using the enthalpy of the compounds
(h◦i (T ) = hi(T )−hi(T0)+∆h◦f,i(T )) and the first law of thermodynamics, which states
that the change in the total energy of a closed system is equal to the heat supplied
to the system minus the work done by the system [13], the following equation is
obtained

h◦CO2(T ) + n

2h
◦
H2O(T ) + (O2 + 3.78N2)h◦O2(T ) + 3.78αs

φ
h◦N2(T )

− h◦CHn(T0)− αs
φ
h◦O2(T0)− 3.78αs

φ
h◦N2(T0) = Q−Wx = 0.

(3.7)

The adiabatic flame temperature (Tflame,ad), which solves (3.7), can then be found
by a numerical method.

3.1.2 Dissociation calculations
Dissociation is the process when species that are stable at ambient temperatures
separate or split into smaller particles, which happens at high temperatures and
high pressures. Reactions subject to dissociation are described by

CO +H2O
1←→ CO2 +H2

H2O
2←→ H2 + 1

2O2.
(3.8)

If (3.6) is used as an example with n = 1.8, φ = 1 and allowing incomplete combus-
tion, the chemical equation

CH1.8 + 1.45O2 + 5.48N2 → (1− x)CO2 + xCO + (0.9− y)H2O

+yH2 +
(
x

2 + y

2

)
O2 + 5.48N2

(3.9)
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is obtained. This equation is used in order to solve the gas composition of combus-
tion products. In order to get a first approximation of the composition, chemical
equilibrium can be calculated. This assumes that sufficiently long time has elapsed
for the system to be in equilibrium, which may not be the case but is however used
as a first approximation.

In order to calculate the composition (3.9) has to be solved for x and y, therefore
two linearly independent equilibrium equations are used. These two equilibrium
equations can be used from (3.8) and are written as:

Kp1 = 1− x
x
· y

0.9− y

p−
1/2Kp2 = y

0.9− y

(
x/2 + y/2

7.381 + x/2 + y/2

)1/2 (3.10)

where Kp1 and Kp2 are the equilibrium constants for the two reactions. With these
two equations x and y can be solved yielding the composition of the combustion
products. With the products known a new temperature estimate can be calculated
in the same way as for the adiabatic flame temperature seen in section 3.1.1. This
then becomes an iterative calculation where new compositions are calculated for the
new temperatures until desired precision is achieved.

3.2 Cylinder temperature estimation
As described in Section 3.1 the flame temperature can be estimated by first calculat-
ing the adiabatic flame temperature. The adiabatic flame temperature is calculated
for a stoichiometric combustion of diesel (φ = 1), which can be described with the
chemical equation

CHn + αs (O2 + 3.78N2)→ CO2 + n

2H2O + αs3.78N2 (3.11)

where αs = 1 + n/4 and n = 1.886 lead to

CH1.886 + 1.4715O2 + 5.5623N2 → CO2 + 0.9430H2O + 5.5623N2. (3.12)
From (3.7) an expression for the enthalpy of the compounds, can be rearranged to

[h(T )− h(T0)]CO2 +0.9430 [h(T )− h(T0)]H2O

+5.5623 [h(T )− h(T0)]N2
+ ∆hcL(T0) = 0

(3.13)

where ∆hcL(T0) is the mole-based enthalpy of combustion for the fuel shown in

∆hcL(T0) = −LHV (MH + 1.8MC) + 0.9430LHV. (3.14)

∆hcL(T0) can be calculated since the lower heating value of the fuel (LHV ≈ 42.6
MJ/kg) and the molar mass of the combustion molecules MH and MC are known, as
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described in [13].

By using data for [h(T )− h(T0)]i taken from JANAF tables [14] and the enthalpy
from (3.14) it can be solved for which temperature (3.13) holds. The tabled data
used is only for a certain amount of temperatures so interpolation is needed in or-
der to get a better temperature estimate. This is performed by finding the first
temperature for which (3.13) is positive and then interpolate linearly between this
temperature and the last temperature for when the equation was negative. The in-
terpolation gives the estimation of the adiabatic flame temperature Tflame,ad ≈ 2260
K. The data taken from the JANAF tables are for the pressure p0 = 1 atm = 0.1
MPa.

Since the adiabatic flame temperature is above 1250 K compensation for dissociation
is required as explained in section 3.1.2, which leads to the equilibrium relations

Kp1 = 1− x
x
· y

0.9430− y

p−
1/2Kp2 = y

0.9430− y

(
x/2 + y/2

7.5053 + x/2 + y/2

)1/2

.

(3.15)

The equations shown in (3.15) can be rearranged in order to be used as nonlinear
equations for solving x and y as

f(x, y) = 1− x
x
· y

0.9430− y −Kp1 = 0

g(x, y) = y

0.9430− y

(
x/2 + y/2

7.5053 + x/2 + y/2

)1/2

− p−1/2Kp2 = 0.
(3.16)

The values for the equilibrium constants Kp1 and Kp2 can be found in JANAF tables
[14] and are dependent on the temperature, which initially is set to the adiabatic
flame temperature. The equations in (3.16) are solved using the fsolve solver in
Matlab © using starting values x = 0.01 and y = 0.01. The result after a maximum
of 30 iterations can be seen in Table 3.1.

Table 3.1: Table of result after solving nonlinear equations for dissociation.

x 0.1107
y 0.0206
Kp1 0.1795
Kp2 0.0021

From these values a new temperature can be calculated similar to the method in
section 3.1.1 which is the flame temperature compensated for dissociation. The
compensation is in this case however small so the new flame temperature is Tflame =
2256 K.
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In order to get a temperature trace during the combustion cycle, (3.3) is used. By
setting the temperature to Tflame at start of combustion and using the cylinder
pressure to create the trace, the resulting cylinder temperature trace can be seen in
Figure 3.1.
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Figure 3.1: Estimated cylinder temperature trace for one combustion cycle, starting
with Tflame at SOC and engine speed 700 rpm.

3.3 Cylinder temperature results

Unlike for the cylinder pressure results where a sensor is available in the engine
cell, the cylinder temperature has to be completely estimated since there is no
sensor measuring the cylinder temperature available. An attempt to retrieve data
for comparison was performed with a simulation tool used at Volvo called GT Power,
see [15]. This comparison did however not contribute as validation since the output
from the simulation tool was a mean temperature and could not be directly compared
to the model output which is estimated closer to the flame. In Figure 3.2 the
estimated cylinder temperatures are shown for different engine speeds, note that
the corresponding legend displays the peak temperature. The different cylinder
temperature curves look similar to each other, however the peak values differ more
than 100 K and that difference is sufficient to affect the NOx estimation significantly.
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Figure 3.2: Estimated cylinder temperature at different engine speeds, legend dis-
plays peak temperature.
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4
NOx model

Based on the output from the cylinder pressure estimation together with the out-
put from the cylinder temperature estimation it is possible to estimate the NOx
formation, or more correctly the NO formation which is approximately 95% of the
total NOx formation. This chapter presents the Zeldovich mechanism, explained
in [3] which is used for the NOx estimation, followed by a section describing how
the equilibrium concentrations of species are evolving during combustion and finally
estimated NOx results from the model are presented.

4.1 The Zeldovich mechanism
As mentioned in Chapter 1 there are some chemical reactions that contribute sig-
nificantly to the NOx formation. Here the first two reactions have been taken into
account, hence the Zeldovich mechanism;

d[NO]
dt

=
2R1

(
1− ([NO]/[NO]e)2

)
1 + ([NO]/[NO]e)R1/R2

(4.1)

is implemented rather than the extended Zeldovich mechanism described in Chapter
1. [X] denotes the concentration of specie X and [X]e represents the concentration
of specie X in equilibrium. R1 and R2 are chemical reactions according to:

R1 = k+
1 [O]e[N2]e, k+

1 = 7.6 · 1013e
−38000
T (4.2)

R2 = k−2 [NO]e[O]e, k−2 = 1.5 · 109Te
−19500
T (4.3)

where k+
1 represents the forward reaction rate constant and k−2 represents the re-

verse reaction rate constant and are determined according to Heywood in [16]. The
concentration of oxygen at equilibrium

[O]e = Kp,O[O2]1/2
e

(RT )1/2 , Kp,O = 3.6 · 103e
−31000
T (4.4)

and the concentration of nitric oxide at equilibrium

[NO]e = (Kp,NO[O2]e[N2]e)1/2 , Kp,NO = 20.3e
−21650
T (4.5)

are completely based on the temperature T , the concentration of nitrogen at equi-
librium [N2]e and the concentration of dioxygen at equilibrium [O2]e.
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The concentration of nitrogen at equilibrium [N2]e and the concentration of dioxy-
gen at equilibrium [O2]e are calculated using tabulated values stored in the JANAF
database. The concentrations are calculated according to

[N2]e = fN2(p, T ) (4.6)

[O2]e = fO2(p, T ) (4.7)

where fN2(p, T ) and fO2(p, T ) are functions that interpolate in the matrices created
in Section 4.1.1. These matrices are based on the input cylinder pressure and input
cylinder temperature calculated in Chapter 2 and Chapter 3 respectively. The func-
tions return the mole fraction for respective specie given the cylinder pressure and
the cylinder temperature and are then immediately converted to concentrations.

4.1.1 Equilibrium concentrations
The equilibrium concentrations [N2]e and [O2]e used in the NOx model are calculated
using the same equations as for the dissociation calculations in Section 3.1.2. The
linearly independent equations are solved for a range of pressure and temperature
values. The result from solving the equations are stored in order to be used by
the Zeldovich mechanism in (4.6) and (4.7). Since the results are stored for a
certain range and resolution the data has to be interpolated in order to retrieve the
equilibrium concentration for desired pressure and temperature.
The mole fraction can be seen in Figure 4.1 where 4.1a is the estimated mole fraction
and 4.1b is taken from [13] as a comparison and validation of the result.
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Figure 4.1: Comparison of mole fractions at pressure p0 = 1 atm.
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For temperatures below 1300 K it can be seen that only the most stable species are
present, that is N2, CO2 and H2O. This corresponds well to the equations and as-
sumptions used for calculating dissociation in Section 3.1.2, which is that for higher
temperatures the stable species suffer from dissociation and the amount of the more
unstable species increases.

It is important to be able to model the mole fractions of the different species to
be able to estimate the NOx formation when the engine uses EGR. However the en-
gine that is used in this thesis does not use EGR and therefore a simplification of the
model can be applied by simply setting the mole fraction for N2 and O2 to constant
values. This model uses 0.7 ·N2 and 0.1 ·O2 which is obtained when calculating the
mole fractions as before. The simplification is a reasonable assumption since there is
only an intake of fresh air and no recirculation of gases which otherwise would affect
the compound. Therefore the result of 70% N2 and 10% O2 is reasonable since the
atmosphere contains about 78% N2 and 20% O2. Even though this simplification is
done for the engine used in this thesis the model is prepared for engines that do use
EGR, then the mole fraction calculations just need to be activated.
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4.2 NOx results

In Figure 4.2 different NOx estimations are shown for different engine speeds. As can
be seen is that the model behaves as it should in terms of where the NOx formation
starts and ends. For each engine speed the NOx formation starts after the start of
injection angle, αSOI and ramps up a bit further than the end of injection angle
αEOI. This behaviour is natural since no NOx can be created before any fuel is
injected and it is also natural that some NOx are created after the end of injection
since that fuel has to be combusted as well.
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Figure 4.2: NOx results obtained from model at different engine speeds, note that
αSOI, αEOI and the final NOx levels are displayed.

In Figure 4.3 and Figure 4.4 the NOx model has been validated and compared to
the NOx sensor in the engine cell during both steady state and transient setups. As
can be seen here is that the model constantly underestimates the NOx concentration
but seems to follow the trends and changes in the NOx concentration.
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Figure 4.3: Comparison of measured NOx concentration and estimated NOx con-
centration of a data set with a range of steady state operating points.
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Figure 4.4: Comparison of measured NOx concentration and estimated NOx con-
centration of a transient data set.
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5
Sensor Fusion

This chapter presents some background information of filtering but is especially con-
centrated at Bayesian filtering [17] together with the linear Kalman filter and the
Cubature Kalman filter which is a sigma point method. Lastly the implementation
of the two Kalman filters are presented, the linear Kalman filter is using a constant
velocity model while the Cubature Kalman filter is using the developed NOx model
as motion model.

The reason why a linear Kalman filter with a constant velocity motion model is
developed is to have a computationally cheap filter to benchmark the CKF against.
To be able to use the developed NOx model a filter that can handle nonlinearities
has to be used, therefore the linear Kalman filter cannot be combined with the
NOx model. It exists several different methods for nonlinear problems such as the
extended Kalman filter (EKF), the unscented Kalman filter (UKF) , the Cubature
Kalman filter etc. The reason that the Cubature Kalman filter is developed is that
it contains no tuning parameters and it does not require linearization as the EKF
does.

5.1 Bayesian Filtering
The purpose of Bayesian filtering, based on Bayesian statistics is to recursively
calculate the posterior distribution. The posterior distribution is the distribution of
interest and is represented as:

p(xk|y1:k) (5.1)

xk is the state at the discrete time instant k given the observed measurement history
y1:k from time instant 1 to k, where y1:k = {y1,y2, ...,yk} is a set of observed
measurements collected by one or several sensors. As can be seen the distribution
is a conditional probability and therefor Bayes’ rule can be applied as

p(A|B) = p(B|A)p(A)
p(B) (5.2)

where A and B are events, p(B) 6= 0, p(A) and p(B) are the probabilities that the
events occur independently of each other. Hence p(A|B) is the conditional proba-
bility to observe event A given that event B is true.

Another assumption that is commonly used in Bayesian statistics and filtering is
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the Markov property. Here the Markov property means that the state at time k; xk
is only conditionally dependent on the preceding state at time k − 1; xk−1. Also a
measurement at time k; yk is only conditionally dependent on the current state xk,
therefore the following relationships can be produced:

p(xk|xk−1, ...,x0) = p(xk|xk−1) (5.3)
p(yk|xk, ...,x0) = p(yk|xk) (5.4)

When splitting the observed measurement set into data from the current time in-
stant and data from the previous time instants and using Bayes’ law the posterior
distribution can be described as

p(xk|y1:k) = p(xk|yk,y1:k−1) = p(yk|xk,y1:k−1)p(xk|y1:k−1)
p(yk|y1:k−1) = p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(5.5)

which in turn can be viewed as

Posterior = Likelihood · Prior
Normalization factor . (5.6)

The normalization factor ensures that the posterior density integrates to one, there-
fore if this term is ignored the expression can instead be viewed as

Posterior ∝ Likelihood · Prior. (5.7)

The prior also called the predicted density is described via the Chapman-Kolmogorov
equation by marginalizing over the preceding time step according to:

p(xk|y1:k−1) =
∫
p(xk|xk−1)p(xk−1|y1:k−1) dxk−1 (5.8)

The distribution, p(xk|xk−1) in (5.3) which also occurs in (5.8) are in filtering terms
often recognized as the motion model which is used in the prediction step. The
second term in (5.8) is the posterior distribution at time k − 1 which is used in the
update step at time k − 1 and in the prediction step at time k.

The densities in (5.3) and (5.4) are given by a motion model and a measurement
model respectively [18, p.20]. These models are generally expressed as:

xk = fk−1(xk−1,uk) + qk−1 (5.9)
yk = hk(xk,uk) + rk (5.10)

5.2 The Kalman filter
The well known Kalman filter (KF) presented in [19] is a recursive algorithm that
uses statistical knowledge and observations of a series of measurements to estimate
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unknown parameters. The Kalman filter recursively computes optimal estimates of
elements of the Gaussian distribution namely, a mean value and a variance. These
elements are represented as a state vector x̂k|k and a covariance matrix Pk|k at time
instant k.

With the assumption that the motion model and the measurement model(s) are
linear and with additive Gaussian noise the Kalman filter equations can be derived
with its basis on Bayesian filtering presented in Section 5.1, (5.9) and (5.10) to the
expressions

xk = Ak−1xk−1 + Bk−1uk + qk−1 (5.11)
yk = Hkxk + Bkuk + rk (5.12)

where the process and measurement noises are qk−1 ∼ N (0,Qk−1) and rk ∼
N (0,Rk) respectively.

First the prediction step is derived from (5.8), where x̂k|k−1 is the estimated mean
value and Pk|k−1 is the estimated covariance matrix. Then the prediction step can
be formed as:

x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk (5.13)
Pk|k−1 = Ak−1Pk−1|k−1AT

k−1 + Qk−1 (5.14)

where Ak−1 is the motion model which models the system dynamics and Qk−1 is
the process covariance matrix which captures the inaccuracies in the motion model.

Secondly the measurement update step is used to update the mean value x̂k|k and
covariance matrix Pk|k with new observed measurements yk from the sensor(s) ac-
cording to:

Sk = HkPk|k−1HT
k + Rk (5.15)

Kk = Pk|k−1HT
kS−1

k (5.16)
vk = yk −Hkx̂k|k−1 (5.17)

x̂k|k = x̂k|k−1 + Kkvk (5.18)
Pk|k = Pk|k−1 −KkSkKT

k (5.19)

Here the result is a Gaussian posterior density, N (xk; x̂k|k,Pk|k) where the estimated
density xk has the mean value x̂k|k and covariance Pk|k. These steps in the prediction
and measurement update step are iterated for each time instant k to recursively find
the posterior density at each time step.
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5.3 Sigma point methods
The main idea with sigma point methods is to compute∫

f(x)N (x; x̂,P)dx (5.20)

to perform Gaussian filtering. However it is often hard to compute this integral and
therefore the approximation

∫
f(x)N (x; x̂,P)dx ≈

N∑
i=1

w(i)f(χ(i)) (5.21)

is often used instead, where χ(i) are called σ-points and w(i) are weights.

5.3.1 The Cubature Kalman Filter
In order to compute a Cubature Kalman filter a set of 2n σ-points is formed, where
n is the dimension of x, i.e. the number of states. The sigma points are then formed
according to:

χ
(i)
k−1 = x̂k−1|k−1 +

√
nP

1
2
(k−1|k−1)i, i = 1, .., n (5.22)

χ
(i+n)
k−1 = x̂k−1|k−1 −

√
nP

1
2
(k−1|k−1)i, i = 1, .., n (5.23)

where P
1
2
i is the i:th column of P 1

2 that fulfills P 1
2 ·P 1

2T = P.

The weights are formed as:

w(i) = 1
2n, i = 1, .., 2n (5.24)

When the sigma points and their weights have been calculated the predicted mo-
ments are estimated with

x̂k|k−1 ≈
2n∑
i=1

f(χ(i)
k−1)w(i) (5.25)

Pk|k−1 ≈ Qk−1 +
2n∑
i=1

(
f(χ(i)

k−1)− x̂k|k−1
) (

f(χ(i)
k−1)− x̂k|k−1

)T
w(i) (5.26)

In the update step a new set of 2n σ-points is formed together with the weights:

χ
(i)
k = x̂k|k−1 +

√
nP

1
2
(k|k−1)i, i = 1, .., n (5.27)

χ
(i+n)
k = x̂k|k−1 −

√
nP

1
2
(k|k−1)i, i = 1, .., n (5.28)

w(i) = 1
2n, i = 1, .., 2n (5.29)
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These new σ-points are used for estimating the desired moments as:

ŷk|k−1 ≈
2n∑
i=1

h
(
χ

(i)
k

)
w(i) (5.30)

Pxy ≈
2n∑
i=1

(
χ

(i)
k − x̂k|k−1

) (
h(χ(i)

k )− ŷk|k−1
)T
w(i) (5.31)

Sk ≈ Rk +
2n∑
i=1

(
h(χ(i)

k )− ŷk|k−1
) (

h(χ(i)
k )− ŷk|k−1

)T
w(i) (5.32)

The estimated states and their covariance can then be calculated using the following
equations:

x̂k|k = x̂k|k−1 + PxyS−1
k (yk − ŷk|k−1) (5.33)

Pk|k = Pk|k−1 −PxyS−1
k PT

xy (5.34)

These estimations are then used in the next iteration of the CKF.

5.4 Kalman Filter Implementation
By using a linear motion model a Kalman Filter can be used in order to fuse sensor
data. Here a constant velocity model (CV) is used as motion model. By using a CV
model some dynamics of the state evolution is created which should result in a better
estimation than what is achieved with the current implementation. The choice of
CV model is an initial guess to see if the model can capture the NOx formation
behaviour, if instead no motion model is used the filter can be considered to be
powered by noise also called random walk which really does not take any system
dynamics into consideration. So to be able to catch some system dynamics the CV
model was considered to be better to use than a random walk. The CV model uses
two states

xk =
[
NOx
dNOx
dt

]
. (5.35)

These states are connected by the motion model

xk =
[

1 T
0 1

]
︸ ︷︷ ︸

Ak−1

xk−1 + qk−1 (5.36)

where T is the sample time. The process covariance matrix was determined to be

Qk−1 =
[

T 3

3
T 2

2
T 2

2 T

]
· σ2

cv (5.37)

where σcv = 1.2 was found after some tuning based on trial and error.
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In order for the filter to be able to use information from the sensors a measurement
model is also needed. Since one of the states in xk is NOx and it exists three
measured signals that can be compared to the NOx state then the measurement
model is formed as

yk =

 1 0
1 0
1 0


︸ ︷︷ ︸

Hk

xk + rk. (5.38)

The three measurement signals are from one physical sensor and the other two
originate from empirically determined models for NOx formation here seen as virtual
sensors.

5.5 Cubature Kalman Filter Implementation
Since engine out NOx is the state that is to be estimated with the Cubature Kalman
filter (CKF), this is then needed to be a part of the state vector. Since the previously
developed NOx model needs certain inputs these are also chosen as states. The state
vector does therefore look like

xk =



NOx
rpm

fuelInj
αSOI
αEOI
boostP


. (5.39)

The models for estimation of cylinder pressure, cylinder temperature and NOx are
combined to create the non linear motion model in the Cubature Kalman filter,
fk−1(xk−1,uk). Since all states can be accessed as measurements they are considered
as input signals to the motion model with the exception of NOx which is estimated
through the model. The complete motion model does therefore become

NOx
rpm

fuelInj
αSOI
αEOI
boostP


=



fk−1(xk−1)
0
0
0
0
0


+



0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




rpm

fuelInj
αSOI
αEOI
boostP


︸ ︷︷ ︸

fk−1(xk−1,uk)

+qk−1. (5.40)

The measurements to the CKF are also here seen as three sensors, where one is a
physical NOx sensor and the other two are virtual sensors which in practice are two
different empirically determined models for NOx formation. The output from the
developed NOx model gives the concentration of NOx as a fraction, which then has
to be multiplied with 106 in order to get the value in ppm. In order to be able to
compare the state with the measurements, the measurement model needs to look
like
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yk =

 106 0 0 0 0 0
106 0 0 0 0 0
106 0 0 0 0 0

xk

︸ ︷︷ ︸
hk(xk,uk)

+rk. (5.41)

It is clear that the measurement model is linear and can therefore be handled as
for a regular Kalman Filter. In order for both the CKF and the KF to work two
covariance matrices need to be determined, as described in Section 5.2. The process
covariance matrix, Qk−1, is determined by analyzing a set of input data, u, together
with measured NOx and calculating its covariance matrix. This is then used as the
process covariance. In order to determine the measurement covariance matrix, Rk,
a minimization problem was set up which is further explained in Section 5.6.

As previously mentioned the motion model is non linear and the CKF handles this
with the use of sigma points, described in Section 5.3. This method does however
create the possibility that the states loose their physical meaning, e.g. if the injected
fuel or engine speed become negative which would cause the non linear function to
get unstable. Intuitively it would be desirable to restrict the spread of the sigma
points in order to get rid of unwanted behaviour. This was done by projecting the
infeasible sigma points onto the feasible region, i.e. make sure that the states do
not loose their physical meaning and then the filter steps could continue, similar to
what is described in [20].

5.6 Measurement covariance matrix determina-
tion

The covariance matrices for the two motion models have previously been described
in respective implementation sections. In order to determine the measurement co-
variance matrices for the two filters a minimization problem was set up;

minimize mse1 +mse2

subject to r1, r2, r3 ≥ 0
(5.42)

The objective function was set up in order to minimize the mean squared error of
two different data sets, where mse1 and mse2 represents the two simulated mean
squared errors using the current covariance matrix. The parameters used in order to
minimize the objective function are the diagonal elements of the covariance matrix,
as can be seen below:

R =

 r1 0 0
0 r2 0
0 0 r3

 (5.43)

So for every iteration in the minimization problem a set of parameters, r1, r2, r3, are
chosen and the filtering is performed on two different data sets. The mean squared
errors are calculated and added together, which is used as the objective function for
updating the parameters.
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This optimization problem is executed using the fmincon function in Matlab© for
both the Kalman filter and the Cubature Kalman filter and therefore yields two
different covariance matrices for the two filters.
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6
Results

In this chapter the results obtained from the linear Kalman filter and the Cubature
Kalman filter based on two different data sets are presented. The two data sets are
on purpose chosen to represent two different behaviours, the first set is a set of steady
state operating points whereas the second set represents a transient behaviour. The
data sets have been collected in an engine test cell which makes it possible to use a
larger quantity of sensors and a higher accuracy of the sensors. Since the data was
collected in the engine test cell also the engine cell NOx sensor could be viewed as
the ground truth when comparing results. The inputs to the models are however
taken from sensors that are available in a commercial vehicle.

6.1 Results from the Kalman Filter
The results presented in this section were obtained from simulations using the
Kalman filter with the CV model described in section 5.4. In Figure 6.1 the data
set with steady state operating points have been used.
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Figure 6.1: Result from Kalman Filter using a CV-model showing NOx sensor and
model signals together with engine cell NOx concentration, also a zoomed in section
of the result is shown for clarity.

The illustration shows the engine cell NOx sensor which is considered as the ground
truth, the NOx sensor, the two empirically determined models and the result from
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the Kalman filter. This illustration is included to give an overview of how the
different signals behave and it is seen that all the signals seem to have the same
trend but differ in magnitude.

In Figure 6.2 the same data set is used but for clarity only the Kalman filtered result
together with the engine cell NOx sensor are shown. As can be seen the Kalman
filter follows the desired behaviour relatively correct.
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Figure 6.2: Result from Kalman Filter using a CV-model showing only output from
KF and engine cell NOx concentration.

In Table 6.1 the mean squared errors are shown for the different models, the NOx
sensor and the Kalman filter result. From this it is evident that the result from the
Kalman filter outperforms the other models and the NOx sensor.

Table 6.1: Mean squared error for the different models, the NOx sensor and the
Kalman filter for the steady state operating points data set.

NOx sensor Model1 Model2 KF
MSE (·103) 8.89 6.35 10.41 3.53

In Figure 6.3 a zoomed in interval of the result from the transient data set is shown,
together with the empirical models and the vehicle sensor.
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Figure 6.3: Result from Kalman Filter using a CV-model showing NOx sensor and
model signals together with engine cell NOx concentration.

In Figure 6.4 the Kalman filtered result are shown together with the engine cell NOx
sensor for the transient data set. Also for this data set the results from the Kalman
filter is satisfactory, in Table 6.2 the mean squared errors for the transient data set
are shown. Also in this case the Kalman filter outperforms the other models and
the NOx sensor.
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Figure 6.4: Result from Kalman Filter using a CV-model showing only output from
CKF and engine cell NOx concentration.

Table 6.2: Mean squared error for the different models, the NOx sensor and the
Kalman filter for the transient data set.

NOx sensor Model1 Model2 KF
MSE (·103) 24.31 21.25 26.55 6.20

39



Chapter 6. Results

6.2 Results from the Cubature Kalman Filter
The following results were obtained from simulations using the Cubature Kalman
filter described in Section 5.5. In Figure 6.5 the different signals and the result from
the Cubature Kalman filter for the steady state operating points data set are shown.
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Figure 6.5: Result from Cubature Kalman Filter showing NOx sensor and model
signals together with engine cell NOx concentration, also a zoomed in section of the
result is shown for clarity.

In Figure 6.6 only the result from the Cubature Kalman filter and the engine cell
NOx sensor are shown together for clarity using the steady state operating points
data set. At a first glance the result looks similar to the result obtained when using
the linear Kalman filter, however when the mean squared error is calculated which
is shown in Table 6.3 it is clear that the Cubature Kalman filter performs better
than the linear Kalman filter.
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Figure 6.6: Result from Cubature Kalman Filter showing only output from CKF
and engine cell NOx concentration.
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Table 6.3: Mean squared error for the different models, the NOx sensor and the
Cubature Kalman filter for the steady state operating points data set.

NOx sensor Model1 Model2 CKF
MSE (·103) 8.89 6.35 10.41 2.73

In Figure 6.7 the result for the Cubature Kalman filter is shown together with the
other signals for the transient data set.
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Figure 6.7: Result from Cubature Kalman Filter showing NOx sensor and model
signals together with engine cell NOx concentration.

In Figure 6.8 the result from the Cubature Kalman filter is shown together with the
engine cell NOx sensor. The results obtained from this data set behave in a similar
way as the results obtained with the steady state operating points data set.
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Figure 6.8: Result from Cubature Kalman Filter showing only output from CKF
and engine cell NOx concentration.
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It is evident from Table 6.4 that also for this data set the Cubature Kalman filter
performs better than the NOx sensor and the two models.

Table 6.4: Mean squared error for the different models, the NOx sensor and the
Cubature Kalman filter for the transient data set.

NOx sensor Model1 Model2 CKF
MSE (·103) 24.31 21.25 26.55 6.60

6.3 Comparison of Kalman filters

To easier compare the results obtained from the linear Kalman filter and the Cuba-
ture Kalman filter a short summary is presented in this section. In Figure 6.9 only
the two filtered signals are shown together with the engine cell NOx sensor signal
for the steady state operating points data set.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time [s]

200

400

600

800

1000

1200

1400

1600

N
O

x
 c

o
n
c
e
n
tr

a
ti
o
n
 [
p
p
m

]

Engine cell

KF

CKF

Figure 6.9: Engine cell NOx sensor signal, KF signal and CKF signal for steady
state operating points data set.

The two filtered signals are very similar but when calculating the mean squared
error it is seen in Table 6.5 that the Cubature Kalman filter performs better.

Table 6.5: Mean squared error comparison of Kalman filter and Cubature Kalman
filter for the steady state operating points data set.

KF CKF
MSE (·103) 3.53 2.73

In Figure 6.10 the filtered signals and the engine cell NOx sensor signal are shown
for the transient data set.
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Figure 6.10: Engine cell NOx sensor signal, KF signal and CKF signal for transient
data set.

Also for the transient data set the two filtered signals are very similar where only a
small variation can be seen in favour of the KF in terms of mean squared error as
seen in Table 6.6.

Table 6.6: Mean squared error comparison of Kalman filter and Cubature Kalman
filter for the transient data set.

KF CKF
MSE (·103) 6.20 6.60

6.4 Linear regression model

In order to analyze how well the two filters model the NOx behaviour a linear re-
gression model was created for the two filters; CKF and KF and for the two existing
models for the two data sets. The results can be seen in Figure 6.11 for the steady
state operating points data set and in Figure 6.12 for the transient data set. A
perfect estimation would have the slope 1 and coefficient of determination R2 = 1.
This is however not the case but both the CKF and the KF have a higher coefficient
of determination than the two existing models for both data sets.

In Figure 6.11 it is seen that the CKF has got a slope that is slightly closer to
one than the KF which implies that the estimations from the CKF are more di-
rectly related to the measured NOx than they are for the KF. The CKF also have a
slightly higher coefficient of determination.
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Figure 6.11: Linear regression model and coefficient of determination for developed
filters and existing models, for the steady state operating points data set.

In Figure 6.12 it can be seen that both the KF and the CKF are very similar, they
both have higher coefficient of determination than the two empirical models.

Figure 6.12: Linear regression model and coefficient of determination for developed
filters and existing models, for the transient data set.
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6.5 Simulation time
There is a significant difference in calculation time between the two filters. In Table
6.7 the simulation times can be seen together with how long time it takes for the
filter to process one sample. The results are produced using a 2.5GHz laptop using
Matlab© R2015b.

Table 6.7: Simulation time for the two variations of Kalman filters on the two
different sets of data. The simulation time per sample is also shown.

Simulation time Time per sample
[s] [s/sample]

KF CKF KF CKF
Steady state 0.2696 2090 2.5 · 10−5 0.1976
Transient 2.3235 18645 2.2 · 10−5 0.1743
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7
Discussion

There is a trade off between increased accuracy and computation speed. This is
evident from the results, the CKF performs better than the KF for the steady state
data set in terms of mean squared error. However the KF with the CV model per-
forms similar but is almost 8000 times faster for both the steady state operating
points data set as well as for the transient data set. With that in mind it is hard
to argue to use the CKF instead of the KF which is way faster and also easier to
implement. However when using the CKF the cylinder pressure and cylinder tem-
perature are estimated, so if those variables are of interest for some other function
it might be a good idea to use the CKF since other signals that are not available
via sensors can be extracted ”for free”.

As can be seen in the background theory about the Zeldovich mechanism in Sec-
tion 4.1 the model has a large temperature dependence. The cylinder temperature
model is the part of this thesis that has proven to be the hardest to validate, due
to lack of data to validate against. The effect of this lack of data is that the NOx
estimation become imperfect and does therefore not provide a satisfactory result.
An approach that can be used in order to get a better temperature estimation is to
reverse engineer the temperature model, such that the final NOx estimation matches
the measured. This approach was however rejected in order to keep the physicality
of the temperature model since empirical models are already included in the sensor
fusion.

7.1 Different approaches with Kalman filters

As described in Section 5.5 the inputs that are needed for the models are seen as
control inputs to the motion model. Another approach was tested where these in-
puts was seen as measurements instead which led to a more unstable CKF. The
instability was due to the fact that when the sigma points where calculated they
caused the estimated states to loose their physical meaning, leading to that the
models for pressure, temperature and NOx gave unreliable outputs. This instability
was reduced when using the inputs as control inputs with the addition of restricting
the sigma points to the feasible region as mentioned in Section 5.5. Similar insta-
bility was also experienced when testing yet another way of using the inputs. This
approach viewed fuelInj, αSOI and αEOI as control inputs, since they can be
altered by the engine control. However rpm and boostP was viewed as measure-
ments since these are results of internal processes and cannot be directly controlled
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by the engine control unit. These two alternative approaches are represented as
state space models and are shown in Appendix A. The choice of filter approach was
therefore determined with stability in mind as well as to get a physical meaning of
the estimated states as described in Section 5.5.

7.2 Computational efficiency

As seen in Table 6.7 there is a big difference in computational efficiency of the two
different Kalman filters. The CKF will not be able to work faster than with a sample
time of about 0.2 seconds as it was configured during these simulations. The models
for estimating cylinder pressure and temperature are working with a time step of
0.1 CAD, which may not be necessary to obtain a satisfactory result. By using a
longer time step for those models the simulation time may be reduced and could
be used for a shorter sample time. The difference between the KF and the CKF is
however quite large and the KF will always be faster than the CKF.
As seen in Section 4.2 the derived NOx model constantly underestimates the NOx
concentration, the computational complexity of the model is however assumed to
be roughly as high as for a model with a better estimation. The analysis of the
difference in computational efficiency are therefore valid even if the NOx model is
updated to perform a better estimation.
The computational efficiency of the KF has not been a subject to optimization in
this thesis, it is however possible to create an even faster KF. In Appendix B it can
be seen that the Kalman gain rapidly settles to a certain value, which indicates that
this gain matrix does not need to be further updated and can therefore be excluded
from the update step in order to speed up the filter.

7.3 Future work

Even if the results from this thesis are very promising there are some fields where
more work needs to be performed in order to reach an estimator that can be imple-
mented in the engine control strategy. In this section some different subjects that
may be interesting to investigate further are discussed.

7.3.1 Possibility of cylinder pressure sensor

In order to reduce the amount of calculations performed by the model a sensor could
be used instead of a model that estimates the cylinder pressure. This is nothing that
has been used in this thesis and before a possible sensor can be used instead of the
model some analysis needs to be performed, as the needed accuracy etc. If the
accuracy is good enough a sensor could as mentioned be used in order to speed up
the calculations of the NOx model.
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7.3.2 Cylinder temperature model
As seen during this thesis the NOx model is very sensitive to the cylinder temper-
ature. Since the derived NOx model does not produce a very precise result, the
cylinder temperature model would need more work. The NOx model was used in
this thesis in order to get a better description of how the dynamics of the NOx
formation looks. If the cylinder temperature model would have a better estimation
with respect to the cylinder wall temperature, the NOx model would be even better
at describing the dynamics between combustion cycles. As a result from this the
NOx model would likely be even more reliable and the final result would become
better as well.

7.3.3 Adaptive covariance matrices
The implemented filters have stationary process/measurement covariance matrices
which are responsible for determining how much each sensor or model should in-
fluence the estimation. Analysis of the models and sensors have shown that they
yield diverse estimations for different phases of the data sets. In order to really
answer some of the questions in Section 1.1 a closer analysis of the models and sen-
sors is needed. Such analysis may contribute to a better understanding of when the
different models and sensors should influence more or less. This knowledge should
influence the covariance matrices and result in an even better estimation by the
Kalman filters.
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8
Conclusion

The results presented in this report show that using sensor fusion techniques in order
to better estimate engine out NOx is a promising approach. Both of the developed
filters yield better estimations in terms of mean squared errors than using either of
the existing models or sensors separately. Even though the fact that the derived
NOx model does not give an adequate output in terms of absolute values, the CKF
using the derived NOx model as motion model yields a satisfactory result. Although
the linear Kalman filter performs worse than the CKF in steady state it has an
extensive advantage in terms of computational efficiency. The KF is also straight
forward to implement which is not the case for the CKF. Since the linear Kalman
filter with the constant velocity model as motion model is almost 8000 times faster
than the CKF on average but at the same time performs just slightly worse than
the CKF we would recommend to use the linear Kalman filter in a real world im-
plementation, assuming that the cylinder pressure or cylinder temperature is not of
interest for some other process in the ECU.

Future work would need to involve better knowledge about the sensors and the
empirically determined models and at what conditions they are reliable or not. In-
vestigations of this would yield chance to adapt the covariance matrices iterative to
reach an even better result.
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A
Alternative filter structures

Cubature Kalman filter where the inputs needed for the developed models are seen
as measurements 
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Cubature Kalman filter where some of the inputs needed for the developed mod-
els are seen as control inputs to the motion model and some inputs are seen as
measurements.
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B
Kalman gain settling time

The evolution of three elements from the Kalman gain matrix K can be seen below.
It is seen that the values settle rapidly to a steady state value.
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Figure B.1: Kalman gain settling time for corresponding measurements.
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