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Abstract

As a result of a continuing increase in population the UN predicts that a 70% increase
in worldwide food production, by the year 2050, is needed. This puts pressure on the
horticulture industry to increase its yield to cope with the increasing demands. A
potential way to increase the yield of crops grown in greenhouses is to implement a
biological feedback control system that utilises LED-lights that can alter its spectral
properties, and use this to diagnose the plants and adjust the lamp light depending
on the status of the plant. The plant emit a light called chlorophyll fluorescence,
where the slow chlorophyll fluorescence dynamics, induced by light intensity changes
in the LED light, have been shown to provide information about its current stress
level. This plant light response can be measured and the ultimate goal is to use it as
a feedback signal in a controller concept. The problem is that the fluorescent signal
is weak and sometimes drowns in reflected sunlight, and there is currently no robust
method to extract the fluorescence signal when the sunlight is present. The goal of
the work presented is to, by the help of various signal processing methods, extract the
correct chlorophyll fluorescence signal from a plant in presence of sunlight. Two main
methods have been studied; linear curve fitting and parametric modelling. We found
that the curve fitting method is too sensitive to noise, rendering it useless in most
situations where the sunlight intensity it high. With parametric modelling, two ways
of performing the numeric search for the system parameters were used; Prefiltering
and modified damped Gauss-Newton algorithms, where the latter seems to be able
to extract the correct signal in a lot of cases, sometimes even at high sunlight
intensities. This means that it is possible to extract the chlorophyll fluorescence
from plants in a cheap and effective way even when sunlight is present.

Keywords: Plant stress, Chlorophyll fluorescence, Sensor fusion, Signal processing,
System identification, MATLAB, Simulink

iv





Sammanfattning

Världsbefolkningens fortsatta ökning har lett till att FN har föruspått att en ökning
på 70% av matproduktion måste ske fram till år 2050 för att kunna hålla jämna
steg. Detta sätter stor press på hortikultur-industrin att öka sin skörd för att
kunna matcha det ökade behovet. Implementering av ett biologiskt återkopplat
reglersystem, som utnyttjar LED-ljus speciella egenskaper, kan användas till att
diagnostisera plantor genom att styra ljusnivåer och ljusspektrum. Plantor ger
ifrån sig ljus som kallas klorofyllfluorescens, till följd av ljusexponering. Hos en
planta har klorofyllfluorescensen visat sig kunna tillhandage information om dess
hälsa. Denna ljussignal som plantorna avger kan mätas och det finns en ambition
att använda denna som återkopplingssignal i ett reglersystem. Problemet är dock
att fluorescens-signalen ibland drunknar i störningar, främst reflekterat solljus, när
mätningar görs. För närvarande finns inget billigt eller tillräckligt robust system
som kan extrahera fluorescens-signalen när solljus är närvarande. Målet med detta
projekt är därför att, med hjälp av olika signalbehandligsmetoder, extrahera en kor-
rekt klorofyll fluorescens-signal från en växt. Två huvudmetoder har använts; linjär
kurvanpassning och parametrisk modellering. Kurvpassningsmetoden är för känslig
för brus vilket gör den oanvändbar i de flesta situationer där det är hög solljusin-
tensitet. När det kommer till parametrisk modellering så har två olika sätt för att
beräkna de varierande systemparametrarna använts; Förfiltrering och en dämpad
Gauss-Newton algoritm, där den senare metoden har visat sig kapabel till att få ut
en korrekt signal. ibland även vid starkt solljus. Det betyder att det är möjligt att
extrahera klorofyllfluorescens-signalen från växter på ett billigt och effektivt sätt,
till och med när solljus är närvarande.

Keywords: Plantstress, Klorofyllfluorescens, Sensorfusion, Signalbehandling, Sys-
temidentifiering, MATLAB, Simulink

vi





Preface

This work is for a Master of science degree in Electrical engineering and has been
conducted at Heliospectra AB in a collaboration with Chalmers University of Tech-
nology. The research took place during the period January 2017 - June 2017 and
was supervised by Torsten Wik, Professor in Automatic control at Chalmers, Johan
Lindqvist, R&D Engineer at Heliospectra AB and Lukas Wikander, R&D Engineer
at Heliospectra AB.

Acknowledgements

We would like to send out our gratitude to both Johan Lindqvist and Lukas Wikan-
der for, in a pedagogical way, explaining theories and methods that were crucial for
this thesis. Also for always being available to answer questions and brainstorming
ideas. We would also like to thank Ida Fällström and Grazyna Bochenek for always
being available to answer questions regarding biology in a clear and understand-
able way, even though our biological knowledge prior to this work was very limited.
We would also like to thank Torsten Wik and Anna-Maria Carstensen for giving
meaningful insights and ideas at crucial points of the project. We would also like
to send appreciation to Karel Keesman and Lennart Ljung for, in spite of no initial
involvement giving expert advise in a friendly and helpful manner. Special thanks
to Daniel Bånkestad for proofreading this report as well as lending us his desk at
Heliospectra. Finally, we would like to thank Heliospectra and all its employees, not
only for giving us this opportunity but also for making us feel at home in their office.

Martin Granström, Philip Jansson, Gothenburg, 12/6/17

viii





Nomenclature

OE Output Error

HPS High Pressure Sodium

ARX Auto Regressive with eXogenous input

ARMAX Auto Regressive Moving Average with eXogenous input

PEM Prediction Error Method

LSE Least Squares Error

IV Instrumental Variable

dGN damped Gauss-Netwon

ChFl Chlorophyll Fluorescence

G tube Gershun tube

IT Integration Time

LED Light Emitting Diode

PAR Photosynthetically Active Radiation

PFD Photon Flux Density

DFRA Dynamic Fluorescence Response Analysis

FS Filtered Spectrum

FLS Filtered Line Spectrum

The use of hat over variables, e.g. θ̂, indicate that it is an estimate.

Note that, in the pdf text, the expansion of the acronyms can be seen by hovering over said
acronym.
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1
Introduction

T o cope with the increase in population, the United Nations have predicted
that a 70% increase in worldwide food production needs to be reached by the
year 20501. This will put pressure on the crop growing greenhouses. Tra-

ditional greenhouse lighting comes from High Pressure Sodium (HPS) lamps which
are used to grow crops on a large scale. The crops can be sensitive to the wrong
amount of light causing stress, which can lead to worsened plant health. Too high
exposure causes photoinhibition, which affects the photosynthetic capacity of plants
in a negative way2.

Heliospectra AB is a company focused on developing LED-lights and specialises in
producing different spectral light for growing plants. The main difference between
LED- and HPS-lights is that the latter have a fixed spectrum that is not customiz-
able, while LED lights can have diodes that can alter a spectrums magnitude, for
given wavelengths. During the last decade the efficiency and usefulness of LED based
lights has been vastly improved. As more food is needed, there is also an increased
desire to decrease power consumption during production. The power consumption
can be up to 50% less with LED lights when comparing to HPS-lights while still
outperforming in terms of spectral customisation3.

Previous work has concluded that plant health can be determined by evaluating the
Chlorophyll Fluorescence (ChlF) response to changes in emitted light4, 5, 6. After a
plant is exposed to light, three things can happen; the light is transmitted through
the leaves, the light is reflected off the leaves or the plant absorbs the light, where
most of it is used in photosynthesis and some is re-emitted as ChlF. ChlF occurs
when the absorbed light starts a process where the chlorophyll molecules return from
higher energy levels, and therefore emit light. ChlF contains information about the
plant physiology and can thereby be used to determine the health of plants7.

Studies have shown that the spectral distribution of light affects the biomass of the
plants8. The LED lights developed at Heliospectra AB are able to not only utilise a
more diverse light spectrum than the standard HPS lamps, which can improve plant
health and biomass, but also consumes less power. This thesis work is a continu-
ation on work that revolves around trying to use the plant health status to adapt
the lamp power to yield a better and healthier plant, as well as lower energy costs,
and therefore provide a more environmentally friendly way of growing crops. Other
benefits would be the ability to automatically control harvest dates and growth tra-
jectories.
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1. Introduction

1.1 Background
Today’s technology used for determining a plants health operates either on-leaf or
remotely. The on-leaf technology is very time and resource consuming.A LED that
excites a pulse of light is put on top of the leaf, initiating a ChlF response where its
development over time is measured and evaluated. Some measurement techniques
also require the plant in question to be in a dark-adapted state, like the Fv/Fm
method9. There are ways to measure a ChlF response remotely, and one of those is
the τ -LIDAR. LIDAR uses a laser to induce a fluorescence response from a remote
location10, 11. The major drawback is its high price12, which makes it non-viable in
a commercial greenhouse. Also, this is not a sufficient technique to use in larger
plantations since it can only get a handful of results from different plants within a
limited time. It would be of great value to be able to probe larger sections of plants
at once during any time of the day to determine their status.

Work is being made at Heliospectra AB with the goal of producing a control system
that will be able to control the light intensity of the LED lights with respect to
plant health. Figure (1.1) depicts the concept around the inner workings of such
a controll system. In order to monitor and adjust light intensity in the LED light,
there must be a good way of measuring the ChlF emitted from the plants with a
sensor near the lamp to determine whether the plants need any change in the light.
The problem with measuring the fluorescence signal lies in the many disturbances
present, mainly sunlight. The direct and reflected sunlight is picked up by the sensor
and makes it hard to distinguish what is disturbances and what is fluorescence. The
intensity of the reflected sunlight alone can easily be thousandfold of the intensity
of the fluorescence signal.

This report will revolve around research regarding extraction of the fluorescence
signal in the presence of varying amount of light with the intent of improving one or
multiple methods to do this in an efficient manner. More specifically, the research
question is:

• Is it possible to extract a Chlorophyll fluorescence response, induced by a
light intensity change of a LED-lamp, using signal processing methods when
sunlight is present?

2



1. Introduction

Figure 1.1: A concept of a future system that uses the ChlF from the plants to
feed back information in order to adjust lamp light intensity. Source: Torsten Wik

1.2 Aim
The main aim of this project is to obtain a ChlF step response using sensors, LED
lights and signal processing methods, that is free of sunlight disturbance. The goal
is to be able to do this under any level of background sunlight intensity.

1.3 Objectives
The objective of the presented work was to continue on earlier work carried out on
modelling and simulation of the LED lights and plant systems by Carstensen et.al.4,
Lindqvist5 and Wikander6, as well as utilise sensors in junction with the LED lights
to construct and gather data from simulation and realistic environments. Differ-
ent signal processing methods are tested and evaluated. In the latest work, Lukas
Wikander concluded that model parameter estimation is the key to be able to pro-
ceed with the most promising methods for extracting a ChlF response6.

The objectives were:

• Go further in depth with the signal processing methods for identification of
ChlF response. The two types of methods examined are; Linear curve fitting
and Parametric modelling.

• Setting up a simulation environment of the plant and light systems with the
help of collected data for sunlight and fluorescence responses, in MATLAB
and Simulink.

• Remove sunlight and simulate a ChlF step response with the help of the vari-
ous signal processing methods in the simulated environment.

3
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• Perform simulations where measured reflected and direct sunlight are used to
produce perspicuous results of the overall performance of the specific method
at certain sunlight intensities.

• Plan and execute experiments under realistic circumstances in a greenhouse
environment.

• Analyse and evaluate the results obtained both in the simulation environment,
by comparing the simulation results to actual fluorescence responses, as well
as in the realistic greenhouse experiments by visual inspection.

A demarcation is that there will be no study regarding classification of plant stress.
The focus is on extracting the correct chlorophyll fluorescence signal rather than
determining plant health.
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2
Theory and related work

I n the following chapter, the underlying theory of this thesis work will be ex-
plained. It should give the necessary knowledge for the reader to understand
the methods used and results obtained.

2.1 Electromagnetic spectrum
Electromagnetic radiation comes in different wavelengths. The collection of all these
wavelengths is called the electromagnetic spectrum. An example of the spectrum of
incoming sunlight can be seen in Figure (2.1).

The materials, which the light hits, have different properties and absorption rates for
each wavelength. This makes the relation between wavelength bands for incoming
and reflected light spectrum different from one another.
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Figure 2.1: A visual representation of the spectrum of the sunlight radiation at a
certain point in time. The unit Counts, represents the number of incoming photons
during a certain amount of time called the Integration Time (IT).
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2. Theory and related work

2.2 Photosynthesis and fluorescence
Photosynthesis is a process where bacteria, some protistants and plants use wa-
ter, carbon dioxide and light between 400-700 nm, called Photosyntetically Active
Radiation (PAR), to create chemically bounded energy and oxygen. The chemical
energy can be used to fuel the plant’s activity and is stored as sugar. Chlorophyll
is a green pigment associated with this energy conversion, and absorbs most visible
light. In photosynthesis an electron gains energy and is excited to a higher energy
state. Increasing photosynthesis is always preferable since more chemical energy can
then be stored in the plants13.

The photosynthetic efficiency from conversion of light to chemical energy is 3-6%.
The rest of the absorbed light is dissipated as heat and fluorescence, of which only a
few percent is re-emitted as fluorescence14, 15. In short, the fluorescence is the excess
energy associated with an electron excitation to a higher state. ChlF is a form of
luminescence within 670-800 nm, with two peaks in its spectrum; one at 685nm and
one around 735-755 nm.

A fluorometer or spectrometer can be used to measure the intensity of the ChlF,
which usually measured as Photon flux [µmol s−1]. The Photon flux is made in-
dependent of collection area by dividing it with m2, which converts it to Photon
Flux Density (PFD) [µmolm−2 s−1], which is the standard unit for light intensity
used throughout the thesis. The basic steps are to take in light through a fiber
optic cable, collected over a chosen IT. Light is then reflected by a concave mirror
into a grating, where the gating disperse the light with varying angles into another
concave mirror. This mirror focuses the light into a detector, where the photons are
converted into electrons. A computer software then bases the spectral distribution
on the detected electrons where the output is one scalar of PFD for each wavelength.
This information can then be integrated over a chosen wavelength interval where
the PFD for the actual IT can be determined. This makes it possible to see the
difference in fluorescence over time for any given interval16.

2.3 System identification
System identification is a way of constructing mathematical models of dynamic sys-
tems from measured input and output data. Prior information about the dynamic
system itself can be included and vary from partly known (gray box) to completely
unknown (black box). The procedure to follow when performing system identifica-
tion is to first measure the input and output data. Then selecting a proper model
structure and an estimation method for determining the adjustable parameters of
the structure, and finally evaluating the results of the estimated model17.
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2. Theory and related work

2.4 Black box modelling
Standard black-box modelling uses the sampled input (u) as well as the output (y)
of a system to determine the system parameters. Linear systems can be described
using transfer functions (G(q)), where q is the discrete time shift operator:

y[n] = G(q)u[n] (2.1)
where (2.2)

G(q) = B(q)
A(q) , (2.3)

where B(q) and A(q) are polynomials having the following standard notation

 B(q) = b0 + b1 q
−1 + b2 q

−2 + · · ·+ bnb
q−nb

A(q) = 1 + a1 q
−1 + a2 q

−2 + · · ·+ ana q
−na .

(2.4)

Accordingly, nb is the order of B(q) and na is the order of A(q). The orders also
represent the number of zeros and poles of the system, i.e. the roots of B and
A, respectively. Once input and output data as well as the order of the system is
chosen, the following formula is used to describe the system.

y[n] = B(q)
A(q)u[n] = b0 + b1 q

−1 + b2 q
−2 + · · ·+ bnb

q−nb

1 + a1 q−1 + a2 q−2 + · · ·+ ana q
−na

u[n], (2.5)

which gives a corresponding difference equation

y[n] + a1y[n− 1] + a2y[n− 2] + · · ·+ anay[n− na] =
= b0u[n] + b1u[n− 1] + b2u[n− 2] + · · ·+ bnb

u[n− nb]
(2.6)

for the sampled data. Separating y[n] to one side of the equation yields

y[n] =− a1y[n− 1]− a2y[n− 2] · · · − anay[n− na] + b0u[n] (2.7)
+ b1u[n− 1] + b2u[n− 2] + · · ·+ bnb

u[n− nb]
= θTϕ[n] (2.8)

where

θ = [−a1 − a2 . . . − ana b0 b1 b2 . . . bnb
]T (2.9)

and

ϕ[n] = [y[n− 1] y[n− 2] . . . y[n− na] u[n] u[n− 1] u[n− 2] . . . u[n− nb]]T .
(2.10)
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A dataset of measured outputs y[n] and inputs u[n] is then used to find the param-
eter values for a model that best approximates the outputs for the given inputs.
The determination of these parameters differs depending on the linearity of the re-
gression. There are standardised models for many system dynamics, such as Auto
Regressive with eXogenous input (ARX) which is a model with a linear regression
and Output Error (OE) which results in a nonlinear parameter identification. Both
can be seen in Equation (2.11) below.

 ARX : y[n] = B[q]
A[q]u[n] + 1

A[q]ε[n]
OE : y[n] = B[q]

A[q]u[n] + ε[n]
(2.11)

where ε[n] is assumed to be a white noise term representing the error between
measured values and ideally predicted values, i.e. when ε[n] = 0 ∀n the model
should represent the system perfectly. Estimation techniques for the two models
will be explained in Sections 2.5 and 2.7.1-2.7.2.

2.5 Least squares
In order to determine the approximating linear models, the least squares formula
is used to minimise the error ε[n, θ̂(i)]. Given a set of outputs y[n] the unknown
parameter vector θ can be estimated using the following formula18:

θ̂ = [Φ[n]TΦ[n]]−1Φ[n]Ty[n] (2.12)

where Φ(n) is the regressor matrix:

Φ(n) = [ϕ[1]T ϕ[2]T ... ϕ[n]T ]T (2.13)

2.6 Output error model
From previous work5, 6 it has been shown that when attempting to model ChlF
responses to changes in incoming light, an OE model with 3 poles, 3 zeros and no
delay (OE430) is the highest order needed to catch the dynamics.
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2.7 Prediction error methods
There are several different methods for iterative calculation of the parameter vector
θ for an OE model. One of these is the Prediction Error Method (PEM)18, 19. PEM
is a way to determine the global minimum of the least squared error by using the
error between the output y[n] and the predicted output ŷ[n]18, 19:

ε[n, θ] = y[n]− ŷ[n] (2.14)

where

ŷ[n] = B[q, θ]
A[q, θ]u[n] (2.15)

2.7.1 Prefiltering algorithm for OE systems
If the OE model structure is rewritten as:

A(q, θ)y[n] = B[q, θ]u[n] + A[q, θ]e[n, θ] (2.16)

a filter consisting of A[q, θ̂(i−1)]−1 can be applied preemptively to the input and
output data (u[n] y[n]). With the prefiltering algorithm this is done iteratively via
the the prediction error calculation

e[n, θ̂(i)] = A[q, θ̂(i)][A[q, θ̂(i−1)]]−1y[n]−B[q, θ̂(i)][A[q, θ̂(i−1)]]−1u[n]

⇒ ỹ[n] = B[q, θ̂(i)]
A[q, θ̂(i)]

ũ[n] + 1
A[q, θ̂(i)]

e[n, θ̂(i)] (2.17)

where θ̂0 is the biased Least Squares (LS) parameter estimate from Equation (2.12).

From Equation (2.17) an ARX structure is formed with the new filtered input and
output with a prediction error that is close to white where ỹ[n] = [A[q, θ̂(i−1)]]−1y[n]
and ũ[n] = [A[q, θ̂(i−1)]]−1u[n]. By the use of ordinary LS a non-biased estimation
of the parameter vector θ̂ can then be acquired from Equation (2.17) using ỹ[n]20.

2.7.2 Damped Gauss-Newton
Given the measured output (y[n]) and the measured input (u[n]), the damped Gauss-
Newton (dGN) will make a prediction of y[n], which follows from Equation (2.14),
i.e. when the error e[n, θ̂(i)] is 0, the prediction represent the system exactly. The
Least Squares Error (LSE) is minimised w.r.t. θ̂(i) using the following formula, where
N is the number of samples

9
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VN(θ̂(i)) = 1
N

N∑
t=1

e2[n, θ̂(i)] (2.18)

θ̂
(i)
N = arg min

θ
VN(θ̂(i)) (2.19)

The dGN minimisation technique is given by

θ̂(i) = θ̂(i−1) − µ[V ′′(θ̂(i−1))]−1V ′(θ̂(i−1)) (2.20)
where µ is step length and (2.21)

V ′(θ̂) = − 1
N

N∑
t=1

(y[n]− ŷ[n] δ
δθ
ŷ[n]) (2.22)

V ′′(θ̂) ≈ 1
N

N∑
t=1

( δ
δθ
ŷ[n]) ( δ

δθ
ŷ[n])T (2.23)

The initial value of θ̂0 is calculated by linear least squares from Section 2.5.

θ(i) = [ΦT [n](i−1)Φ[n](i−1)]−1ΦT [n](i−1)y[n] (2.24)

In order to find the global minimum a prefilter, as in Equation (2.17) is used on the
inputs and outputs. This is followed by the derivation of a new Φ[n] in the same way
as in Equation (2.9), but with filtered measurements ỹ[n] and ũ[n]. The regressor
components then looks as follows:

ϕ[n] = [ỹ[n− 1] ỹ[n− 2] . . . ỹ[n− na] ũ[n] ũ[n− 1] ũ[n− 2] . . . ũ[n− nb]]T (2.25)

The Jacobian, δ
δθ
ŷ[n], will be non-conventional, since the standard one does not

incorporate e[n, θ̂(i)]. A new error, ê[n, θ(i)], will also be calculated. This is done by
applying orthogonal-triangular decomposition on a matrix A, consisting of Φ[n] and
e[n, θ̂(i)].

A = [Φ[n] e[n, θ̂]] (2.26)

If the size of Φ[n] is (na+nb+1) × (N −na) and the size of e[n, θ̂(i)] is 1× (N −na),
the size of A is (na + nb + 2) × (N − na).

The orthogonal-triangular decomposition decomposes the matrix A into a product,
QR, where R is the upper triangular part and Q is an orthogonal matrix satisfying
the following criterion:

A = QR (2.27)
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where
QT Q = QQT = I (2.28)

giving the relation that Q is orthogonal if: (2.29)
Q−1 = QT (2.30)

The upper triangular part of Q, of size (na + nb + 2) × (na + nb + 2), will then be
extracted. Note that R will not be used as the upper triangular matrix, it will be
extracted from the Q matrix21.

Extract all data, except for the last column, to get a new Jacobian, J(θ(i), e), with
size (na +nb + 2) × (na +nb + 1), where the error is included. ê[n, θ(i)] is simply the
last column of the upper triangular part matrix22, 23. The dGN formula will then
be as follows:

θ̂(i) = θ̂(i−1) + µ(J(θ(i−1), e) J(θ(i−1), e)T ]−1(ê[n, θ(i−1)] J(θ(i−1), e) (2.31)

2.8 Linear curve fitting
Curve fitting is used to determine the linear equation used to fit two curves. Given
two vectors consisting of data and slack variables called C(t), and another vector
of different data but with same length, f(t). The following equation is then used,
where x =

[
k m

]T
is a 2× 1 vector representing the multiplication factor (k) and

offset (m) of the linearity.

C(t) =
[
z(1) z(2) ... z(N)

1 1 ... 1

]T
(2.32)

f(t) =
[
y(1), y(2) , . . . , y(N)

]T
(2.33)

min
x
‖C(t)x− f(t)‖2 (2.34)

where z and y represents the points in the two equally sized curves.

2.9 Bode plot
A bode plot utilises the frequency domain to visualise properties of a linear system,
where the phase (φ) and magnitude (kmag) of different frequencies can be evaluated.
Using a transfer function H(jω), the magnitude is calculated through

kmag = |H(jω)| (2.35)
where ω is the input frequency. The phase is calculated through

φ = arg(H(jω))24 (2.36)
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2.10 Fit percentage and performance index
In order to get an assessment ground to stand on when comparing the response of
a system and an estimation of it, the normalised root mean square error (NRMSE)
can be used according to23.

fit(t) = 100
(

1− ||y(t)− ŷ(t)||2
||y(t)−mean(y(t))||2

)
(2.37)

Where y(t) is a system output and ŷ(t) is the estimated system output. The fit
is a percentage of how well the two outputs match. This is especially useful when
comparing simulation results and references. A high fit percentage is not always
equivalent to a good result, due to the occurrence of missing crucial dynamics. It is,
however a very effective tool to assess model quality during large simulations which
is why this is the main performance index used throughout this thesis.

2.11 Related work
As mentioned earlier, this thesis aims to take up previous work conducted on plant
stress and remote fluorescence sensing. The following Sections will explain some
related work within Dynamic Fluorescence Response Analysis (DFRA), made by
Carstensen et.al.25 and Lindqvist5, and signal processing methods for DFRA in a
real environment by Wikander6.

2.11.1 Dynamic Fluorescence Response Analysis
DFRA is a method to remotely detect ChlF in order to evaluate stress levels, where
Lindqvist5 defines plant stress as the plant reaction when subjected to sub-optimal
growth. The DFRA studies have been carried out by Carstensen et. al.25 and
Lindqvist5, at Chalmers and at Heliospectra AB.

From a height of 1-2 m, the ChlF response from a step of incoming lamp light in a
controlled environment is evaluated. Using an identified OE model with 4 zeros and
3 poles, the frequency domain properties are examined5. The bode plot is used for
this and the phase properties are studied. The conclusion is that light intensity shift
the plant dynamics in the frequency domain. The plant dynamics are also exam-
ined in the time domain where the responses complexity is reduced with increasing
stress, (see 3.2.1 for more details). At higher stress levels only 3 zeros and 2 poles
are needed and a plant in extreme stress only need, 2 zeros and 1 pole. The lateral
position of some dynamics also changed with the stress level25, 5.

Instead of only using a step excitation to trigger a ChlF response, Carstensen et.
al. also used a sinusoidal varying excitation light, and compared the resulting fre-
quency properties with those found in the bode analysis. The sinus with a frequency
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of 0.1 rad/s yielded similar results for phase shifts as using a step25. Due to quantita-
tive differences for data with low PAR using sinusoidal excitation, the step excitation
seems to be more consistent as a whole, where it can also be studied in time do-
main25. Lindqvist did further research using only the step excitation, making its
underlying research more stable5. Steps are therefore used in this study instead of
sinusoidal excitation.

The ChlF responds to sudden changes in light in a non-linear way. Carstensen
et. al. suggests that this is due to a buffer system of the plant where it uses
internal feedback and the buffers are likely to be metabolite pools25. It is also found
that photosynthesis only takes place after the plant is subjected to a high enough
magnitude of PFD within PAR, working as a dead zone for a certain threshold.

2.11.2 Methods for estimating chlorophyll fluorescence re-
sponse

Wikander attempted to estimate the ChlF response in presence of disturbing sun-
light using multiple approaches, utilising signal processing methods but also spectral
data treatment to gain access to a wider range of options. The spectral data treat-
ments use only spectral data for one sample at a time but take better advantage
of the data within one spectrum, while the signal processing methods use multiple
time samples. Fraunhofer line discrimination (FLD) and spectral quotient are both
methods using the spectral data and are thus not affected by sensor placement in
the same way as the signal processing methods6. They are, however, more sensitive
to noise6 and comes with their own set of problems, which suggested that the signal
processing methods were to be further pursued in this follow-up study, rather than
the spectral data treatment methods.

Curve fitting has already been evaluated by Wikander in a greenhouse environment
with sunlight present6. A similar investigation in the performance of curve fitting is
made in this thesis, although some things differ in terms of fitting time and slack vari-
able value, which might play a role in its ability to properly extract a ChlF response.
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Wikander derived a model of the system, where the reflection properties of the
canopy also was included. As such, the model also included sunlight. The same
model will be used in this thesis for parametric modelling and is described further
in Section 2.11.3 and 3.5. The author concluded that by correctly estimating the
system and sunlight feed forward parameters, a ChlF response could be determined.

For the iterative parameter search in the model, Wikander used the Instrumental
Variable (IV) method6. However, this method did not handle noise well6, finding
the wrong minimum and frequently leading to a faulty estimation of the parame-
ters. More details on the IV method can be found in appendix A. Despite this the
parametric modelling method for estimation of the ChlF was still considered to have
the best prospects for solving the DFRA problem in the presence of sunlight6. To
progress and enhance the parametric model method, other iterative solutions need
to be investigated hopefully handling the noise of the input and output data bet-
ter. Thereof the usage of prefiltering and dGN, which handles the error in a more
efficient way by filtering the input and output data for every iteration.

2.11.3 Measurement model
The measurement model used for the signal processing methods has been defined by
Wikander and structures the available data and light behaviour in a realistic way6.
The fluorescent output yf from the plant is a function of the system g[u[λ, n], λ, n]
and the input u[λ, n] in PAR, i.e.

yf [λ, n] = g[u[λ, n], λ, n], (2.38)

where λ is the wavelength and n is the sample number. The input, in turn, is a
function of the incoming sun d[λ, n] and the lamp light l[λ, n]:

u[λ, n] = l[λ, n] + d[λ, n] (2.39)

The sunlight acts as a disturbance in the ChlF wavelength band (670-800 nm) both
directly via the reflected light and indirectly through its induction of ChlF. The
system output y[λ, n] is thus:

y[λ, n] =

g[u[λ, n], λ, n] + ρ[λ] · d[λ, n], if λ ∈ (670, 800)
ρ[λ] · u[λ, n], if λ /∈ (670, 800)

(2.40)

where ρ is a wavelength dependent reflectance.

Each sample of the signal x[n] is measured in Counts per wavelength. If the response
is to be shown as a function of time, it is often preferable to integrate the data over
specific wavelength ranges6.

x[n] =
λ2∑
i=λ1

x[i, n] (2.41)
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This enables the signal to be converted to Counts in a frequency range of interest,
e.g. PAR (400-700 nm), peak of ChlF (735-755 nm) and a fluorescence free wave-
length band, for instance (800-820 nm). This interval is then converted to PFD
(µmolm−2 s−1) which, for multiple sample data can be displayed over time.
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3
Method

I n this section the approach and the equipment are described more in detail. The
evaluation methods will also be presented as well as all the different experiments
and their corresponding setups.

3.1 Equipment
The specifications for the sensors used to collect data are given in Table (3.1).
Two sensors were used throughout the project with one collecting the incoming
sunlight and lamp light, and the other collecting the reflected light and chlorophyll
fluorescence.

Table 3.1: Spectrometer specifications

Reference name M1 M2
Measurement task (relative plant) Incoming light Reflected light and

chlorophyll fluorescence
Ocean Optics model Maya2000 Pro Maya2000 Pro
Wavelength resolution (FWHM) [nm] 1.85 1.85
Wavelength range [nm] 199.1-1116.7 198.2-1085.6
Fibre diameter [µm] 600 or 50 600
Calibration date 2016-01-29 2016-01-29

The spectrometers also had attachments with the purpose of altering the incoming
light into the fibre. These were a Gershun tube (G-tube) and a cosine corrector. The
G-tube was used to reduce the field of view to focus solely on the canopy. The cosine
corrector increased the field of view to make the sensor less sensitive to the angle of
the incoming light. The sampling frequency used throughout all measurements was 1
Hz. The light used in the greenhouse experiments was provided by two Heliospectra
LX601G LED lights. These lights had three different channels: Blue (450 nm),
Red (660 nm) and White (5700K). The red and white LEDs were used for constant
background light and the blue for the light excitation. The reason for this is that the
excitation light should not interfere with the ChlF band between 735-755 nm, and it
should be as strong as possible. Both the red and white LED-light contained some
energy in the ChlF band while the blue could excite light without any interference
on the ChlF.
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3.2 Data evaluation
The fluorescence signal obtained from the plants was evaluated in time and fre-
quency domains. To confirm model accuracy, the shape of the resulting fluorescence
response after a lamp light intensity step change was studied in the time domain.
The accuracy of the model gave an instantaneous value of the model goodness in
terms of fit percentage when comparing the fluorescence response from the model
with that of the sensor data (see Section 2.10).

With the help of this type of information, bad models were discarded, aiding in
the process of finding suitable parameters for either curve fitting or parametric
modelling. For a better overview of the health of a plant, the frequency domain
was examined as well, during step excitation. The phase shift trumped the time
domain observations in terms of stress indication in one important aspect; it was
more or less independent of the signal amplitude. On a practical level, this means
that it is robust to changes in leaf area, morphology and distance between canopy
and measurement device4. It was also shown by Nedbal that at the frequency
ω ≈ 0.1 rad/s there are dynamical features in the fluorescence signal, which can be
of interest when determining plant health26. The frequency span used to study the
bode plot was therefore chosen to be between 0.01 and 1 rad/s5.

3.2.1 PSMT evaluation
One way of classifying the dynamics exhibited in a fluorescence step response is to
analyse the PSMT pattern. The letters define the step (P), the initial peak (S), the
second peak (M) and the settling time (T). The shape and position of these have to
do with the current dynamics of the plant and was therefore expected to be a valid
evaluation method when it comes to plant diagnostics. Lindqvist et.al. observed
that the time between the S and the M-peak shifted depending on the health of the
plant27. The position and maximum of the M-peak were therefore used, in junction
with the fit, to validate model estimations. Figure (3.1) shows the difference in the
M-peak for different stress levels.

17



3. Method

0 10 20 30 40 50 60 70 80

Time [s]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

P
h
o
to

n
.
u
x

d
en

si
ty

[7
m

ol
m
!

2
s!

1
]

Stress level 1
Stress level 2
Stress level 3

Figure 3.1: An example of the fluorescence response over time with different stress
levels.

3.3 Filtering
In order to filter out noise, a low pass filter of order 5 and cutoff frequency of 1
rad/s was used on both the input u(t) and the output y(t). The filter used was of
Butterworth type given by

H(jω) = 1√
1 + ( jω

jω0
)2n

(3.1)

where ω0 is the cutoff frequency, ω the current frequency and n the filter order. The
normalized phase and magnitude plot of the filter is seen in Figure (3.2).
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Figure 3.2: The bode plot for the Butterworth filter used.

3.4 Linear curve fitting implementation
Using the theory from Section 2.8, the C(t) matrix was the reflected sunlight in
the 800-820 nm band (ρd800−820(t)) and the f(t) vector was the 735-755 nm band
(ρd(t)). The experiments will have a step after 20 s in ρd(t), therefore only the first
20 s was used for the fitting, where ρd800−820(t) was warped (ρd̂(t)) with respect
to the parameters x = [k m]. By subtracting ρd̂(t) signal from ρd(t), the output
should be a fluorescence response induced by lamp excitation with some noise. The
band of choice was 800-820 nm because of the absence of fluorescence (see Figure
(3.3)).
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Figure 3.3: The spectrum around the ChlF band. The fluorescence is considered
to be negligible above 800 nm in the estimation of the sunlight.

3.5 Parametric modelling of the plant system
To be able to interpret plant health from input-output data, a plant model needed
to be acquired. The system that was being modelled consisted of the plant dynamics
g[u[n], n] and the reflection variable ρ, based on the measurement model described
in Section 2.11.3. Figure (3.4) shows an overview of the system. The input, u[n], to
the plant comprised of two signals, i.e. the lamp light l[n] and the sunlight within
PAR dPAR[n]. The output from the system, y[n], therefore consisted of both fluo-
rescence, yf [n], and reflected sunlight, ρd[n]. yf [n] denotes the fluorescence that the
plants emit when excited by light within the PAR region. This was the signal that
was ultimately desired.
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Figure 3.4: The system, showing the canopy, inputs and output. Where l[n] is
the lamp light, d[n] is the sunlight between 735-755 nm, dPAR[n] is the sunlight
within PAR, u[n] is the input to the plant, consisting of l[n] and dPAR[n], yf [n] is
the fluorescence, ρ is the reflectance, g[u[n], n] is a model of the canopy and y[n] is
the measured output.

By accurate parametric modelling, the phase response in frequency domain as well
as the step response in time domain of the model could be used to determine plant
health5. Plants that are more stressed generally exhibits a less complex fluorescent
response27, although for the purpose of this project a OE430 model was sufficiently
complex to describe the necessary dynamics of the systems. From the system in
Figure (3.4) a modified OE model for this project was obtained, where reflected
sunlight was added as a feed-forward disturbance6:

y[n] = g[u[n], n] + ρd[n] = B

A
u[n] + ρd[n]⇒ Ay[n] = Bu[n] + Aρd[n] (3.2)

An OE430 then gives the following difference equation:

y[n] =− a1y[n− 1]− a2y[n− 2]− a3y[n− 3] + ρd[n] + ρa1d[n− 1] + ρa2d[n− 2]+
+ ρa3d[n− 3] + b0u[n] + b1u[n− 1] + b2u[n− 2] + b3u[n− 3]

(3.3)

Written in terms of parameter and regressor vectors

y[n] = θTϕ[n] (3.4)

Where the parameter vector θ was

θ = [a1 a2 a3 ρ ρa1 ρa2 ρa3 b0 b1 b2 b3]T (3.5)

and the regressor vector ϕ was

ϕ[n] =
[
− y[n− 1] − y[n− 2] − y[n− 3] d[n] d[n− 1] d[n− 2] d[n− 3]

u[n] u[n− 1] u[n− 2] u[n− 3]
]

(3.6)
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When a set of data l(t), d(t) and y(t), had been collected it was put in separate
aggregated matrices:

ϕ(t) = [ϕ(na + 1) · · · ϕ(N)] (3.7)

y(t) = [y(na + 1) · · · y(N)]T (3.8)

The parameter vector estimate θ̂ was then calculated using the least squared error18

from Section 2.5, which minimised the squared error of the aggregated matrices
above. For the OE model the ordinary least squares will produce a biased least
squared error18. Iterative methods were therefore used to successively calculate the
best estimate for θ for this parameter nonlinear system. The Prefiltering (2.7.1) and
dGN (2.7.2) methods were used for the numerical search.

3.6 Assumptions and analysis
All methods used in this thesis lean on certain assumptions about the dynamics of
the system. In order for the methods to work, first in theory and then practically,
these assumptions must be valie, at least to a certain extent. The fundamental
reason for these assumptions originate from the fact that nonlinear systems, such as
the plant system considered here, are hard to handle. Therefore, linearization often
takes place to make better use of optimal methods to minimise the mean square
error.

Concerning the reflectance the following assumptions are used:

• The ratio between the reflected light of the wavelengths 735-755 nm and 800-
820 nm is constant throughout all sunlight intensities during the time it takes
to collect the necessary data. Curve fitting (see Section 3.4) rests upon the
assumption that, for the time it takes to fit the different wavelength bands
and estimate the fluorescence, this ratio is constant. This is required in order
to get a good, usable, approximation of the plant fluorescence. The reason
800-820 nm is used as counterpart is because there is no fluorescence present
in that wavelength band0 (see Figure (3.3)).

• The reflection ρ is constant during the amount of time it takes to stimulate a
fluorescence response and letting it settle. For example; if an instance of 80
samples, collected with a sample time of 1 s, is needed the reflection ρ needs
only be constant during those 80 seconds.

When the above assumption turns out to be false, a solution was to multiply the
incoming sunlight data (d(t)) with a correction vector quota (q(t)) to compensate
for ρ not being scalar, that was estimated by the parametric model. This correction
vector q(t) was obtained by calculating the reflectance (ρ(t)) as in Equation (3.9)
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and divide by ρ. This was illustrated in Figure (3.5), where the red line shows the
scalar ρ as a line and the blue line shows ρ(t). Now normalising the static ρ with the
dynamic ρ(t) as in Equation (3.9) gave q(t), as illustrated in Figure (3.6). Note that
dρ(t) is the measured reflected light, d(t) and dρ(t) both have to contain the same
wavelength intervals and ρ will always be estimated from the 735-755 nm interval.
This is due to the wanted fluorescence signal being in this band.

ρ(t) = q(t) · ρ = dρ(t) d(t)−1 ⇒ q(t) = dρ(t) d(t)−1 · ρ−1 (3.9)

where
ρ = ρLS = (dρ(t)T dρ(t))−1 · dρ(t)T d(t) (3.10)
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Figure 3.5: Example data visualising the difference between the static ρ in red
and the dynamic ρ(t) in blue.
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Figure 3.6: Normalised q(t) between dynamic ρ(t) and static ρ from Figure (3.5).

Due to the presence of fluorescence, there was no way of directly obtaining q(t) from
the 735-755 nm band. Another spectral band must therefore be used to estimate
q(t). q(t) of this spectral band had to be very similar to that of 735-755 nm in order
to work as a substitute q(t). Figure (3.7) shows q(t) for all wavelengths during one
sample. The black part of q(t) ranges from 670 -800 nm and was deemed unfit to
use as substitute since fluorescence may be present within that wavelength band.
The band 800-820 nm was, in most samples, the wavelength interval that was most
alike the 735-755 nm band while aso being free from fluorescence. It was therefore
used as a substitute for q(t). Comparing the 735-755 nm q(t) to 800-820 nm for one
sample gave the plot in Figure (3.8).
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Figure 3.7: q(t) for all wavelengths during one sample. Blue line shows q(t),
red mark shows where the fluorescence band starts, yellow mark shows where the
fluorescence band ends and where the substitute band starts and the purple mark
shows where the substitute band ends.
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Figure 3.8: A comparison of q(t) between band 735-755 nm and band 800-820 nm.

To further estimate a substitute q(t), the spectrum signal from Figure (3.7) was
filtered using a mean filter, called Filtered Spectrum (FS). By interpolating between
the start and the end of the fluorescence band, followed by extracting the value at
735-755 nm from this interpolation, an improved q(t) called Filtered Line Spectrum
(FLS) could be used. Both the true q(t) and the substitute can be seen in Figure
(3.9).
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Figure 3.9: Further estimations of q(t) for the 735-755 nm band.

The assumptions are analysed in Section 4.
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3.7 Data collection - simulations
The following subsections describe the different data collections used for the simu-
lation experiments (SE).

3.7.1 31st of January 2017

Table 3.2: Spectrometer setup for the
experiment performed on the 31st of Jan-
uary.

Reference name M1 M2

IT [ms] 300 300

Field of view 180◦ 20◦

Fiber width [µm] 600 600

Distance to canopy [cm] 0 46

An experiment containing six dill plants
standing on a green plastic carpet
and two spectrometers was setup ac-
cording to Figure (3.10) in a green-
house environment in order to collect
data. The goal was to collect data
of the direct sunlight and the cor-
responding reflected light to be used
in simulations. The reason for using
dill plants was that different surfaces
have different light absorption prop-
erties. Thus, to use plants in the
data collection would potentially mean
a more realistic dataset for the simula-
tions.

The test started 10:16 in the morning and ended 11:16 the same day. It was con-
stantly cloudy throughout the experiment but an increasing sunlight intensity was
expected since the sun was still rising. The spectrometer setup can be seen in Table
(3.2)

Sensor

Green house

Sensor

Figure 3.10: Experimental setup with dill plants and spectrometers.
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3.7.2 8th of March 2017

Table 3.3: Spectrometer setup for the ex-
periment performed on the 8th of March.

Reference name M1 M2

IT [ms] 13 35

Field of view 180◦ 20◦

Fiber width [µm] 600 600

Distance to canopy [cm] 0 46

An experiment similar to the one in
Section 3.7.1 was made but on a day
with much stronger sunlight. An-
other difference was also that there
were no plants present, but only
the green plastic carpet used in the
previous experiment. This experi-
ment was made to acquire data for
stronger disturbances to test the dif-
ferent methods on, as well as to bet-
ter be able to analyse the reflec-
tive properties of the different wave-
lengths in the spectrum of the sun-
light.

The experiment was conducted between 11:18 and 12:18, during which the weather
was partly cloudy. The spectrometer setup can be seen in Table (3.3)

Sensor

Green house

Sensor

Figure 3.11: The experimental setup used for data collection on the 8th of March
2017.
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3.7.3 4th of April 2017

Table 3.4: Spectrometer setup for the
experiment performed on the 4th of April.

Reference name M1 M2

IT [ms] 100 15

Field of view 180◦ 20◦

Fiber width [µm] 50 600

Distance to canopy [cm] 0 46

This experiment imitated the one in
Section 3.7.1, where the experiment
was setup as in Figure (3.10). Basil
plants were used together with a spec-
trometer at canopy level facing up
(M1) and another spectrometer a cer-
tain distance above the canopy fac-
ing the plants (M2). The experi-
ment was conducted under clear sky
between 14:06 and 15:06. The spec-
trometer setup can be seen in Table
(3.4).

3.8 Simulation setup
To be able to test and verify the different signal processing methods, a known
reference fluorescence response needed to be used in order to see if the methods
worked. The fluorescence response from a basil plant illuminated by a LED light at
100 µmolm−2 s−1 within PAR in a controlled environment was used as verification
data; the data was measured by Lindqvist5. The parameters of a system with the
transfer function (B(q)

A(q) ) was identified using a OE430 model with lamp light as input
and fluorescence response as output, seen in Figure (3.12).
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Figure 3.12: Lamp intensity and corresponding fluorescence response, with no
sunlight present, was used as the verification data.

The simulation environment was set up in stages. Reflected and incoming data from
3.7.1 and 3.7.2 was used together with the verification data to create simulated sig-
nals similar to what is measured in a real environment. The lamp light l(t) is on
the left and the verification data yf,lamp(t) is seen on the right in Figure (3.12).

The model used in Section 3.5 have a fluorescence response, yf (t), that depends on
sunlight as well as lamp light. The given reference was induced from only lamp
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light, therefore the reference fluorescence response also needs to be dependent of
sunlight. The sun induced fluorescence (yf,sun(t)) was then added to yf,lamp(t) to
create yf (t) = yf,sun(t) + yf,lamp(t). yf,sun(t) was calculated in Simulink by filtering
the sunlight within PAR, dPAR(t), with the same system that was obtained through
the verification data B(t)

A(t) , producing the signal shown in Figure (3.13).
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Figure 3.13: The fluorescence response from both the lamp light and sunlight put
together to simulate a real fluorescence response. Note the LED-light step excitation
at 20 seconds, induced by a change in the lamp light.

yf (t) was then added to the reflected light ρd(t) producing the total system output
y(t) that can be seen in Figure (3.14).
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Figure 3.14: The raw sensor input from which the fluorescence response from
Figure (3.12) need to be extracted.

The plant system model is thereby written as

y(t) = yf (t) + ρd(t) + e(t)⇒ (3.11)

y(t) = B(q)
A(q) (l(t) + dPAR(t))︸ ︷︷ ︸

u(t)

+ρd(t) + e(t) (3.12)

Where d(t) was the incoming sunlight within the 735-755 nm band, this in order to
extract the ChlF response. Even though d(t) was the incoming sunlight, ρd(t) was
measured as reflected sunlight using sensor M2 in Section 3.7.1. e(t) was the error
between estimated signal and true true signal.

Finally the input u(t) and output y(t) was filtered with the same low-pass Butter-
worth filter to remove noise, see section 3.3 for details on the filter.

A data set length of 80 s was used throughout the project as it is a sufficient amount
of time to observe the full ChlF response while still having 20 s prior to the step.

3.8.1 Simulation results visualised
The dataset needed in order to perform one of these simulations needed to match
the length of the ChlF response, i.e. the same 80 second length. The data was,
however, collected during a full hour with a 1 second sampling time, which means
3520 different points where the yf,lamp(t) and LED-light step l(t) could be added
when doing the setup. Since all collected data were 3600 samples, but only 80 sam-
ples were used for calculations, the collected data was divided into 80 samples long
simulation sets. The first simulation set was acquired by using sample 1 to 80, from
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the 1 hour dataset, adding yf,lamp(t) and do estimations where the fit (2.10) and
error was saved. The next dataset started from sample 2 to 81 and so on. This
meant 3520 separate tests for each method, each with its own fit and error, which
is described below. When evaluating curve fitting an OE430 was fitted to the fi-
nal result to be able to calculate a fit, and when using parametric modelling the
estimated parameters made out the system that was to be compared to the known
reference step response. All of these fits were saved and sorted in a rising order to
visualise how well the methods performed on every dataset.

There were two ways of calculating the error of the results, one for curve fitting and
one for the parametric modelling methods. The error of curve fitting was calculated
as the difference between ρd(t) and ρd̂(t), which was supposed to be zero if a perfect
fit was obtained. The sum of squared errors was then calculated from that differ-
ence. The same sorting index that was used to sort the fit was used to sort all 3520
error values.

As for the parametric modelling, the difference between q(t) for the 735-755 nm
band and the q(t) substitute was squared and summed. This substitute band is
explained further in Section 3.6. The error was then sorted with the same indies as
the fit. This was done to investigate if there was a correlation between the fit and
q(t) error.

3.9 Data collection - realistic test environment
The final tests were performed in the Heliospectra greenhouse where five basil plants
were used as canopy along with two lamps (LX601G). Three thermometers were also
used to measure the average temperature near the canopy. The lamps excited the
canopy with blue light in the 450 nm spectrum in order to get a ChlF step response
but the red and white LEDs were also needed to act as background light. Compar-
ing the lamps background light spectrum to that of the sun, both with the same
intensity in PAR, gave data like the one in Figure (3.15).
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Figure 3.15: A visual representation of the sunlight and background light produced
by the LED-lamp. Both spectra produced the same PFD in PAR

.
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3.9.1 12th of April 2017 - Greenhouse experimental setup

Table 3.5: Spectrometer setup for the experi-
ments performed on the 12th of April.

Reference name M1 M2

IT [ms] 100 15 / 100*

Field of view 180◦ 20◦

Fiber width [µm] 50 600

Distance to canopy [cm] 0 40

Naturally, the data collected in
the greenhouse was contaminated
by sunlight and there was no
way of knowing if the final re-
sults were correct or not. A
reference was needed to validate
the results, where the dynamics
between the measurements were
studied and mostly the position
of the PSMT evaluation technique
(PSMT)-peaks. A dark environ-
ment, free of sunlight, was there-
fore constructed in the greenhouse
for reference measurements (see

Figure (3.16)) with a tarpaulin covering the stall and blocking the sunlight, which
could easily be removed. This allowed for swift blackout of the canopy after making
measurements in sunlight. The lamps were then used to mimic the sunlight inten-
sity by illuminating the canopy with similar intensity as the sun outside, using red
and white LEDs. One difference between the light sources was that the lamp did
not have a significant output in the ChlF band. Therefore, all of the reflected data
collected in the 735-755 nm range would only contain fluorescence and no reflected
light. The reason the lamps needed to have approximately the same background
light as the sun was because the fluorescence response of a plant changes depending
on what light the plant was adapted to4. Using the same background light intensity
in both cases will get a reference that should be as similar as possible to the true ChlF
step response and can therefore be used as an indication of the quality of the results.

The experiments were first conducted in sunlight, where the lamps excited the
canopy with blue light at 100 µmolm−2 s−1 in PAR after 20 seconds. When the
measurement was completed the tarpaulin was pulled down and the red and white
LEDs were turned on with intensity that matched the suns’. The blue LEDs then
turned on, like before, and exited the canopy to obtain a reference response.

The measurements were performed in intervals of five minutes. First of four mea-
surements were made under sunlight to collect different data for analysis. When
the initial phase was completed, the tarpaulin was pulled over the stall and four
reference measurements were made. A measurement was made with five minute
intervals, giving the plant time to acclimate to the background light of the lamp
during the reference data collection. This routine was done for two different light
intensity levels (around 50 and 100 µmolm−2 s−1 in PAR), where 8 references and
8 test measurements were made in total.

* 15 ms was used during the first data collection and 100 ms during the second.
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Figure 3.16: The stall used in the greenhouse experiments, note that the tarpaulin
is not included in this Figure.

3.9.2 26th of April 2017 - Greenhouse experimental setup

Table 3.6: Spectrometer setup of the experi-
ment performed on the 26th of April.

Reference name M1 M2

IT [ms] 150 / 100* 13

Field of view 180◦ 20◦

Fiber width [µm] 50 600

Distance to canopy [cm] 0 40

This test was also done in the
Heliospectra greenhouse, and the
same setup was used as in Sec-
tion 3.9.1. The sunlight intensity
for this measurement was higher
compared to previous measure-
ments, which was also intended
in order to evaluate the meth-
ods under different light condi-
tions.

Since the plants have an adapta-
tion time of roughly 15 minutes28,
the reference data was this time

collected 20 minutes after the tarpaulin was pulled down. The following 4 mea-
surements were made every 2 minutes. A shorter time between the measurements
was used to minimise the effect of the increasing temperature on the plants in the
stall. Note that the sunlight intensity for the tests were higher than the lamps could
imitate, the lamps could only go as high as 500 µmolm−2 s−1 in PAR.

Another reference measurement was made where no background lights was used,
where a response of only an excitation of the blue light was made. This was done
since the noise level of the signal increases with increasing lamp intensity, which was
a problem in the first 4 reference measurements. The idea is that since the first 4
reference measurements all contain noise but a shape can clearly be seen, then if the

* 150 ms for the test with sunlight and 100 ms for the reference measurements.
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final 4 reference measurements has the same dynamics but without the noise, they
can be used to get a noiseless reference signal.
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4
Results

T he result section contains the results that have been obtained through
the experiments. It also encloses the results of the assumption analysis to
answer the questions put forward in Section 3.6. The simulations are shown

before the greenhouse testings, and all tests are presented in chronological order of
the different methods used. To show the simulation results in a way that is easy to
overview the resulting fit has been sorted in increasing order with its corresponding
error.

4.1 Curve fitting assumption analysis
Curve fitting builds upon the assumption that the ratio between the spectrum 735-
755 nm and 800-820 nm is constant throughout different reflected sunlight intensi-
ties. To test this assumption the data from the sunlight collection experiments was
used to see if the ratio between the two wavelength bands was, in fact, constant.
Each data sample from the 735-755 nm band was divided with the corresponding
sample from the 800-820 nm band.
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Figure 4.1: Ratio of 735-755 nm to 800-820 nm of the reflected sunlight in the
experiment in Section. 3.7.1.

From Figure (4.1) it can be concluded that the ratio is not perfectly constant. It is
also not correct to state constant stress levels during all periods of 80s. However,
this particular data set contains some fluorescence from the dill plants which can
be the reason for the varying behaviour. Figure (4.2) shows the same dataset but
incoming light intensity.
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Figure 4.2: Incoming sunlight from 10:16 to 11:16, see data collection from Section
3.7.1
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During the data collection from Section 3.7.2, the weather was more variated. This
was found to create a much more nonlinear ratio between the wavelength bands.
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Figure 4.3: Ratio of reflected 735-755 nm and 800-820 nm from the second data
collection, see section 3.7.2

From Figure (4.3) it can be observed that it would be hard, even for a period of 80
s, to capture constant behaviour of the ratio which is, again, needed for curve fitting
to work properly. A connection can be drawn to the incoming sunlight which varied
intensely. Note that comparing it to the incoming light intensity from Figure (4.4),
the ratio is correlated with the light intensity.
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Figure 4.4: Incoming sunlight from 11:18 to 12:18, see data collection from Section
3.7.2

In the final data collection, the sunlight was very strong, creating a nonlinear ratio
between the wavelength bands where Figure (4.5) also shows a varying reflectance.
Figure (4.6) shows the dataset for the corresponding incoming light intensity.
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Figure 4.5: The ratio is clearly depending on the sunlight intensity. It decreases
when the sunlight gets strong and increases when the sunlight decreases.
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Figure 4.6: Incoming sunlight from 14:06 to 15:06, see data collection 3.7.3

4.2 Parametric modelling assumption analysis
The idea that the reflection ρ would be constant during an arbitrary time period
was something that was generally believed to be true. Also, the assumption that
the reflection ratio would occur for all wavelengths that is not conflicting with PAR
was made.
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Figure 4.7: ρ for the fluorescent wavelength band during the one hour of measure-
ments made in the end of January.

Figure (4.7) show that ρ appears constant within relatively small boundaries except
for the dips in the end of the measurement. The reason for the dip is most likely
due to one sensor being partly shadowed. The same dip can be seen in Figure (4.1)
since this also is from the first data collection, (3.7.1).

The assumption that ρ would be the same for different wavelengths is tested by doing
the same calculations for the 800-820 nm band. From Figure (4.8), it was found that
ρ behaves in another manner, and is thereby not the same for all wavelengths.
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Figure 4.8: ρ for the non-fluorescent wavelength band during the one hour of
measurements made in the end of January.

When testing the "constant ρ assumption" on the March data, the assumption was
found to be wrong. The large change in sunlight intensity caused the reflection to
vary a lot (see Figure (4.9)).
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Figure 4.9: ρ for the fluorescent wavelength band during the one hour of measure-
ments made in March (no plants). Note the peak between 100 and 300 seconds,
which is probably the result of a shadow passing over sensor M1.
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4.3 Simulation results
The following section shows the results from all three data collection simulations.
The visualisation of the simulation results are explained more thoroughly in Section
3.8.1.

4.3.1 Simulation experiment 31/1/2017
The collected sunlight data from Section 3.7.1 can be seen in Figure (4.10).
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Figure 4.10: Incoming and reflected light integrated over the 735-755 nm band
with incoming light in PAR at an average of 40 µmolm−2 s−1.

Curve fitting
Figure (4.11) shows the fit, from Equation (2.37), and error for all collected data
simulated at each sample throughout the full hour of measurements. The error is
the difference between d̂(t) and the ground truth d(t), from Section 3.4.
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Figure 4.11: The samples are sorted, in rising order, with respect to its fit per-
centage. The error shows little correlation to the fit. Mean fit: 74,45% Median fit:
81,90%

Prefiltering algorithm
The results for the parametric models are evaluated according to the error between
the real and substitute q(t), explained in Section 3.6, and the fit between true output
and estimated output. The fit has been sorted in rising order with its corresponding
error. A clear connection between the two can be observed in Figure (4.12).

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

7

8

P e(
t)

2

Error
Fit

0 500 1000 1500 2000 2500 3000 3500
Samples

0

10

20

30

40

50

60

70

80

90

100
Fi

t [
%

]

Figure 4.12: A gathering of all the fits and corresponding errors from the experi-
ment in Section 3.7.1 when using the prefiltering algorithm, using FS. The samples
are sorted, in rising order, with respect to its fit percentage. Mean fit: 87,64%
Median fit: 96,10%
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dGN algorithm

Similar results are seen when using the dGN algorithm (see Figure (4.13)).
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Figure 4.13: A gathering of all the fits and corresponding errors from section 3.7.1
when using FLS. The samples are sorted, in rising order, with respect to its fit
percentage. Mean fit: 88,61% Median fit: 95,94%

Although the q(t) error is varying between the simulations, because of FLS and FS,
the trend is still clearly visible. Less error means a better fit and result.

4.3.2 Simulation experiment 8/3/2017
Figure (4.14) show the measured light of the data collected in the experiments in
Section 3.7.2.
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Figure 4.14: Measured light intensities from experiment in Section 3.7.2

The sunlight intensity is shifting a lot and is significantly stronger than the data
collected in Section 3.7.1. Figure (4.15) shows the performance when simulating and
evaluating the final fit and the error between the treated incoming sunlight and the
reflected sunlight.

Curve fitting

The simulation results for curve fitting can be observed in Figure (4.15).
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Figure 4.15: Results of performance of curve fitting on the 3.7.2 data. The samples
are sorted, in rising order, with respect to its fit percentage. Mean fit: 2,08% Median
fit: 0%.

Figure (4.15) demonstrates the lack of performance of the curve fitting method when
stronger sunlight is present. Only about a tenth of the samples produced a fit over
0%.

Prefiltering algorithm

The simulation results for the Prefiltering algorithm can be observed in Figure (4.16).
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Figure 4.16: A gathering of all the fits and corresponding errors from the exper-
iments in Section 3.7.2, using FLS. The samples are sorted, in rising order, with
respect to its fit percentage. Mean fit: 85,74% Median fit: 93,18%

The results are significantly better with the prefiltering algorithm when comparing
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to curve fitting for the same data.

dGN algorithm

The simulation results for the dGN algorithm can be observed in Figure (4.17).
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Figure 4.17: A gathering of all the fits and corresponding errors from the ex-
periments in Section 3.7.2, using FS. The samples are sorted, in rising order, with
respect to its fit percentage. Mean fit: 93,72% Median fit: 96,23%

The results show that parametric modelling drastically outperforms curve fitting for
higher sunlight intensities.
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4.3.3 Simulation experiment 4/4/2017
Figure (4.18) shows the results of the data collection from the experiment in Section
3.7.3.
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Figure 4.18: Measured light intensities from experiment in Section 3.7.3

Curve fitting
The simulation results for curve fitting can be observed in Figure (4.19).
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Figure 4.19: A gathering of all the fits and corresponding errors from 3.7.3. The
samples are sorted, in rising order, with respect to its fit percentage. Mean fit:
0,63% Median fit: 0%.
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Prefiltering algorithm
The simulation results for the Prefiltering algorithm can be observed in Figure (4.20).
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Figure 4.20: A gathering of all the fits and corresponding errors from the exper-
iments in Section 3.7.3, using FLS. The samples are sorted, in rising order, with
respect to its fit percentage. Mean fit: 13,72% Median fit: 0%.

dGN algorithm
The simulation results for the dGN algorithm can be observed in Figure (4.21).
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Figure 4.21: A gathering of all the fits and corresponding errors from 3.7.3, using
q(t) for band 800-820 nm (without FLS or FS). The samples are sorted, in rising
order, with respect to its fit percentage. Mean fit: 47,56% Median fit: 52,54%.
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4.4 Greenhouse results
In the following the results are shown for the tests made in a realistic environment
in the Heliospectra greenhouse. These results are made as a practical test for the
methods tested in previous simulations.

4.4.1 Greenhouse Experiment 1 and 2 - 12/4/2017
The greenhouse experiments are divided into the order of which they were made,
starting with the first test.

1)
Figure (4.22) shows the data collected from the experiment in Section 3.9.1 and is
called Experiment 1. Figure (4.23) contains the reference data of the experiment.
The sunlight intensity in PAR was around 100-130 [µmolm−2 s−1] during these 4
tests. Table (4.1) shows the temperature for all reference measurements. The mean
temperature during the sunlight tests were 20, 0 ◦.
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Figure 4.22: Collection of all four test measurements in Experiment 1. The fluo-
rescence response is hard to distinguish from the raw data. There were five minutes
between each test, starting with (a).
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Figure 4.23: Collection of all four reference measurements in Experiment 1. The
fluorescence response is relatively easy to distinguish from the raw data. There were
five minutes between each data collection start, starting with (a).

Table 4.1: Temperatures in Experiment 1.

Reference Temperature

(a) 25,1 ◦

(b) 25,6 ◦

(c) 25,8 ◦

(d) 25,5 ◦

In order to be able to use the reference measurements and compare them to the sun-
light tests, the system needs to be estimated with a parametric model from the raw
data. Using an OE430 model, results like the ones in Figure (4.24) were achieved
for the identifications from the reference measurements.
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Figure 4.24: The four step responses and corresponding OE430 response from the
reference measurements. In order from first to last.

In this case, system (a) is used for validation since it showed plausible dynamics
and was the reference closest in time to the sunlight tests. However, a downward
trend can be spotted in the first three measurements. This is believed to occur due
to the change from sunlight to lamp light. Even though the intensity is roughly the
same the change in spectrum may cause the plant to behave slightly different. The
trend would therefore be a result of the plant adapting to the new light spectrum
and thus decreasing its fluorescence response during the first 10 to 15 minutes. Note
that reference raw data with obvious trends will be de-trended in the upcoming
validation tests to make a more fair comparison.

Curve fitting

Each curve fitted result was estimated, and thus smoothed, with an OE430 model
to better be able to compare the results. These results are seen in Figure (4.25).
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Figure 4.25: Results from the Curve fitting estimations of the Experiment 1 data.
The results are shown in both time domain and frequency domain.

Prefiltering algorithm

Figure (4.26) shows the estimated results for both time and frequency domain using
the Prefiltering algorithm.
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Figure 4.26: Experiment 1 results when using the Prefiltering algorithm.

dGN algorithm

Figure (4.27) shows the estimated results for both time and frequency domain using
dGN.
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Figure 4.27: Results from the dGN algorithm estimation of the Experiment 1
data.

2)
Figure (4.28) shows the data collected from the Experiment in Section 3.9.1. The
PFD in PAR was around 60-80 µmolm−2 s−1 during these 4 tests. Figure (4.29)
shows the corresponding reference measurements. Table (4.2) shows the temperature
for all reference measurements. The mean temperature during sunlight tests were
16, 0◦.
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Figure 4.28: Collection of all four test measurements in Experiment 2. The flu-
orescence response is much easier to distinguish from the raw data in Experiment
2 because of the low sunlight intensity. There were five minutes between each data
collection, starting with (a).
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Figure 4.29: Collection of all four reference measurements in Experiment 2. The
fluorescence response is clearly visible in the raw data. There were five minutes
between the start of each data collection, starting with (a).

In order to get a good estimation this this dataset, an OE540 model had to be used,
the estimations are illustrated in Figure (4.30). System (d) is used in the upcoming
validation since the model estimation contains all necessary dynamics seen in the
raw data.
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Figure 4.30: The four step responses and the corresponding OE540 responses for
the reference measurements in Experiment 2. In order from first to last.

Table 4.2: Temperatures for Experiment 2.

Reference Temperature

(a) 18,3 ◦

(b) 18,5 ◦

(c) 22,4 ◦

(d) 22,9 ◦
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Curve fitting
Figure (4.31) shows the estimated results for both time and frequency domain using
curve fitting.
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Figure 4.31: Results from the Curve fitting estimations for Experiment 2 data.

Prefiltering algorithm

Figure (4.32) shows the estimated results for both time and frequency domain using
the Prefiltering algorithm.
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Figure 4.32: Results from the Prefiltering algorithm estimations for Experiment
2 data.

dGN algorithm
Figure (4.33) shows the estimated results for both time and frequency domain using
dGN.
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Figure 4.33: Results from the dGN algorithm estimations for Experiment 2 data

4.4.2 Greenhouse experiment 3 - 26/4/2017
Figure (4.34) shows the test data collected from Section 3.9.2, which is called Ex-
periment 3. The sunlight intensity in PAR was between 400-800 µmolm−2 s−1.
Six tests were made instead of four because of the increased estimation difficulty
that comes with higher background light. Four reference measurements were taken
where the lamp intensities were set at their maximum (see Figure (4.35)) but since
the noise level increases with increasing lamplight intensity, four references were also
measured without any background light (Figure (4.36)). These four final measure-
ments were taken with 80 second intervals instead of 5 minutes. Table (4.3) shows
the temperature for all reference measurements. The mean temperature during the
sunlight tests were 23, 4◦.
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Figure 4.34: Collection of the six test measurements in Experiment 3. The fluo-
rescence response is hardly distinguishable in the raw data for any of the collected
data sets. There were five minutes between the start of each data collection, starting
with (a).
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Figure 4.35: The four reference measurements in Experiment 3 taken directly after
the tarpaulin had been pulled down with five minutes between each measurement
starting with (a).
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Figure 4.36: The final four reference measurements where the plant had been
acclimated to total darkness. These final measurements were made approximately
an hour after the sunlight tests. The data collections are made directly after one
another, i.e. 80s between each start.

Table 4.3: Temperatures for Experiment 3 with background light.

Reference Temperature

(a) 24,7 ◦

(b) 29,9 ◦

(c) 33,3 ◦

(d) 39,3 ◦
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Figure 4.37: The first four step responses and the corresponding OE430 responses
from the reference measurements. In order from first to last.
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Figure 4.38: The last four step responses and their corresponding OE430 responses
from the reference measurements. In order from first to last.

OE430 models were fitted to all eight fluorescence reference datasets and the results
can be seen in Figure (4.37) and (4.38). The first plots are for the data with back-
ground light and the latter ones without. System (d) in Figure (4.38) will be used
for upcoming validation. Note that the second set of measurements was done with-
out background lights. Although this is the case, the S and M peak have merged
together in the first set as well as in the second, making their dynamics relatively
alike. This yields the second set of reference measurements a decent substitute for
the one with background lights. Temperature data is missing for the Experiment
3 references without background light. However the temperate is most likely above
40◦ on average.
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Curve fitting
Figure (4.39) shows the estimated results for both time and frequency domain using
curve fitting.
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Figure 4.39: Results from the Curve fitting estimations to the data from Experi-
ment 3.

Prefiltering algorithm
Figure (4.40) shows the estimated results for both time and frequency domain using
the Prefiltering algorithm.
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Figure 4.40: Results from the Prefiltering algorithm estimations to the data from
Experiment 3.

dGN algorithm
Figure (4.41) shows the estimated results for both time and frequency domain using
dGN.
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Figure 4.41: Results from the dGN algorithm estimations for the data in Experi-
ment 3.

4.5 PSMT evaluation results
In the following results, the time until the M-peak can be seen for each experiment
and method used. Note that the plant stress level is assumed to be roughly the same
for each marking of the same colour. As an example, the plants stress level in Ex-
periment 3 is roughly the same despite large variations in the PFD in Figures (4.43)
and (4.44). The number of data for each experiment is 4 test data for greenhouse
Experiment 1 and 2 (described in Section 3.9.1), and 6 test data for greenhouse
Experiment 3 (described in Section 3.9.2). Note that the absence of data points is
due to the inability of the method to find a system from which an M-peak could be
determined.

4.5.1 Curve fitting
For curve fitting, there are only 3 datasets for Experiment 1 and 2, and 0 datasets
for Experiment 3 (see Figure (4.42)). The reasons are the curve fitting results
in Sections 4.4.1 and 4.4.2, where an M-peak could only be established in a few
estimation cases.
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Figure 4.42: The PSMT evaluation for the Curve fitting method. For the data
with lower sunlight intensity there was a much higher chance of observing a PSMT
shape of the estimation.

4.5.2 Prefiltering algorithm
The Prefiltering algorithm could find the M-peak for 4 datasets for Experiment 1
and 2, and 5 datasets for Experiment 3 (see Figure (4.43)).
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Figure 4.43: The PSMT evaluation for the Prefiltering algorithm. The result for
test 3 where the background sunlight intensity was strong caused bad results with
the Prefiltering algorithm
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4.5.3 dGN algorithm
The dGN algorithm could distinguish an M-peak in 4 datasets for Experiment 1 and
2, and 5 datasets for Experiment 3 (see Figure (4.44)).
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Figure 4.44: The PSMT evaluation for the dGN algorithm. This algorithm per-
formed by far the best results.
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B ecause of the project’s many research elements, the results are sometimes
hard to interpret. In this chapter we will try to explain the results and some
phenomena observed to the best of our abilities.

5.1 Simulation data analysis
Some of the data that gave poor estimation results went through a major shift some-
where along the dataset. It could for example be when the data went from being
varying to constant. One reason for this could be cloud interference, where the cloud
could contribute to sudden change in the dynamics of the data. This makes ρ more
varying but it also seems like the q(t) solution can not handle this large difference
in ρ during a dataset. What is strange is that this seems to mostly occur when the
data goes from dynamic to static, not the other way around.

Another problem is when a shadow is cast on the area where the sensors are facing,
or on the sensor directly. For instance if, for a few samples, one sensor is in the
sun while the other is covered completely, or partly, by shadows, the estimation of
parameters could potentially yield corrupt data.

The error used in linear curve fitting is the error that represent the methods flaw the
most, though the error does not seem to correlate with the fit in any way. This is
probably due to the methods sensitivity to pure noise where the measurement noise
is overwhelming. The q(t) error used for parametric modelling estimation seem to
be more correlated, since using q(t) for the band 735-755 nm yields a close to per-
fect estimation, making the substitute q(t) closer to the actual was expected to give
better estimation.

An interesting relationship between the wavelength ratios and the incoming sunlight
was observed. The ratio seems to be dependent on the sunlight intensity. This
connection could potentially prove useful during, for instance Curve fitting, since it
provides us with an extra piece of information. See Appendix B for a plot from the
experimental data collected on 08/03 - 2017 that illustrates this connection.
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5.2 Experimental data analysis
There is a disturbance in the middle left plot in Figure (4.34), where only one of
the sensors caught a shadow, although this corrupted the data, the response could
be estimated.

The same phenomenon as in the simulation data occurs in the middle right plot
in Figure (4.34), where the data went from being dynamic into being static. This
resulted in a very poor estimation for all methods.

5.3 Greenhouse setup - sources of error
Problems with the experimental setup are factors that differentiate the test signal
from the reference signal. One big problem is the matching of light intensity, where
it is hard to reproduce the same light intensity in the reference as in the realistic
test. For example, in Experiment 2, where the sunlight intensity was as low as 30
µmolm−2 s−1 in PAR, the lamps could not reach that low light intensity without
going into PWM-mode, affecting the plants and making the reference signal differ
from the test. On the other end of the spectrum, in Experiment 3 the sunlight in-
tensity was too strong for the lamps to match. The plants will in these cases adapt
to the changes in light, where a bigger difference leads to longer adaptation time.
Even if a matching intensity between reference and test is obtained, the difference in
electromagnetic spectrum distribution could potentially also add to the adaptation
time making the reference and test signals vary (see Figure (3.15)).

The fluorescence response is only known from a constant background light with a
step in the blue light. With dynamic sunlight interference, the receptivity of the
plants fluorescence could vary - making the magnitude of the responses in time do-
main differ. This may explain the differences between test and reference in Figures
(4.27), (4.33) and (4.41).

Since the reference measurements were taken inside a black tarpaulin, the temper-
ature around the plants during the reference measurements was higher compared
to the tests. This changes the stress level of the plant and makes the reference
conditions different from the test signal. It could also prolong the adaptation time
for the plants.

5.4 Quota
It has been confirmed that the reflectance ρ is not constant over time. Things like
cloud interference and O2-absorption rates makes the signals themselves vary but
do not necessarily cause a varying ρ. What was found is that the reflection ρ most
likely deviates because of more palpable factors. Wind drafts cause movements of
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the canopy and thus the areas and angles at which the sensor is facing. The green-
house, however, is windproof but the fans from the lamps caused slight perturbation
of the canopy. Although this could be the case for the experiments, the simulations
never utilised a lamp. Another cause could be varying transmission rates when light
transmits through the plants as well as varying absorption rates, which would di-
rectly affect the reflectance. These rates depend mostly on incoming light intensity
but also on the stress of the plant, which should not change too much over a period
of shorter time. What can be concluded by comparing Figure (4.7) and (4.2) is that
ρ does not vary in a linear relation to sunlight intensity.

Another reason for the difference in reflectance over time could be that the spectrom-
eters have different calibrations. Each spectrometer should be calibrated regularly
and the calibration files used at the time of the thesis were quite old. The different
spectrometers also use different calibration files, making them different from one
another regarding offset and gain, possibly yielding a varying reflectance.

If the reflectance would be specular, ρ would possibly be constant. Since the used
surfaces are all rough though, diffuse reflection probably occurs where the light re-
flects in a more stochastic way - possibly triggering the varying reflectance.

The sunlight intensity could vary in between the sensors iteration times. For exam-
ple, if one sensor is using 15 ms integration time and the other is using 100 ms, they
are both open for 15 ms while only one of them is open 85 ms longer. If the sunlight
intensity is not constant during these 85 ms, the reflectance should vary because
of this. In Experiment 2, from Section 3.9.1, the same integration time for both
sensors was used. Even though this still yielded a varying reflectance the problem
might still lie in the sensors ability to provide simultaneous data.

5.5 Different methods
Out of all three algorithms used; Curve fitting, parametric modelling with Prefilter-
ing and with dGN, the latter generally gives the best estimations in all datasets.
For low as well as middle light intensities, the Prefiltering algorithm produces good
estimation and in some cases so did Curve fitting, but they are still outperformed
by dGN. The dGN method is the default method used in the MATLAB System
Identification Toolbox29. It is preferable because of its efficiency, especially near the
minimum, although it has a drawback in that it is sensitive to bad initial estimates.
This is, however, compensated for somewhat with the damping of the step size.
Many different ways of obtaining a better initial guess than the one obtained using
linear least squares were tried, but no general method could be suggested.

As for the simulations, the dGN algorithm appeared to find good estimations up
to around 800 µmolm−2 s−1 in PAR, after which the intensity got too high, com-
pare Figure (4.17) and (4.21). The Prefiltering algorithm started to produce poor
estimates earlier at around 400-600 µmolm−2 s−1 in PAR but sometimes even as
low as 200 µmolm−2 s−1 in PAR, compare Figure (4.17) and (4.21). Curve fitting
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estimated poorly throughout most middle to high sunlight intensities but also some-
times as low as 30 µmolm−2 s−1 in PAR, compare Figure (4.13) and (4.17).

As for the experiments, the dGN algorithm produced decent estimations up to
around 800 µmolm−2 s−1 PAR (see Figure (4.44)) - where all the red dots are
clearly separated from the others and are fairly close to the reference. The prefilter-
ing algorithm started to give poor estimations around 80-150 µmolm−2 s−1 PAR
(see Figure (4.43)). Curve fitting started to give poor estimations somewhere be-
tween 150 and 500 µmolm−2 s−1 PAR (see Figure (4.42)).

From the greenhouse experiment data, some estimations had some ripples after the
M-peak. This could be an effect of the Gibbs phenomenon30, although it should
not occur if both input and output have been filtered the same way. Therefore, the
ripples seem to be an effect of the estimation itself, where the optimal minimum was
not found. The ripples seem to have the same frequency as the M-peak, making the
bode plots increase in phase but not shift in frequency.

The Curve fitting itself could be studied more, for example by manipulating the
spectrum seen in Figure (2.1) to better match the 735-755 nm band. Although im-
provements could be made, the parametric modelling felt more promising to develop
further. The difference between both parametric modelling methods were the num-
ber of tuning parameters as well as the incorporation of the estimation error vector.
Prefiltering only had one tuning parameter, the number of iterations, while dGN
also included stepsize and direction. Prefiltering did not have any direct feedback
of the previously estimated error, where it was incorporated both in the Jacobian
as well as the numerator in Equation (2.21) for dGN.

5.6 Differences between simulation and experi-
ment

The simulations were set up in a way to reflect a real experiment as accurately as
possible, where the only difference from the real test is the emitted fluorescence sig-
nal. The fluorescence signal used in simulation had a two step approach, where the
first step was to estimate a model from lamp light and its corresponding fluorescence
signal. The next step was to simulate the fluorescence induced by the sun. This
was made by using the previously estimated model and the raw sunlight data as
input to that system, then the resulting output is the simulated fluorescence signal.
In the simulation, it is assumed that the model of the plant that is estimated from
only lamp light and lamp induced fluorescence would be the same model as if being
estimated from the sun and lamp. There can, however, be problems with how the
fluorescence signal behaves after a response from a more dynamical light source,
such as the sun. In the simulation case, the model was estimated with a linear input
signal, where the derivative was roughly around zero except for the step itself. The
input for the model in the greenhouse experiment had a more varying derivative
that was both negative and positive. Hysteresis in the plant system probably plays
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a role in the creation of strange results where different signs of the derivative causes
the system to behave differently. Something that was not calculated for in the sim-
ulations.

Another difference between simulation and experiment is the wavelengths that can
be used for calculating q(t), which should be free from fluorescence. In the simu-
lated data, the 800-820 nm span could be used without any problems since there
were no ChlF present. In the experiment, a span of 800-820 was also used and it
was assumed to not contain any fluorescence. What is not considered is that with
increased light intensity, the fluorescence band gets a small "tail" into the adjacent
wavelengths. This "tail" is always there but too small at low light to have any sig-
nificant impact. Therefore fluorescence could exist in the 800-820 band for higher
light intensities resulting in a poor estimation where fluorescence is cut out. Since
the estimation with q(t) gets better the closer it is to 735-755 nm (see Figure (3.7)),
a more adaptive wavelength span could be used that take incoming light intensity
into account.

5.7 Difference between sunlight intensities
From Figure (4.13), 4.17 and 4.21, it can be seen that the error in q(t) decreases
with increasing sunlight intensity. This is probably due to the sensor noise being
uncorrelated with the sunlight intensity, yielding a high Signal to Noise Ratio (SNR).

Although the error between q(t) from the 735-755nm band and the 800-820 nm band
is reduced with increased sunlight intensity, the estimation gets worse because the
fluorescence signals magnitude decreases relative to the amount of reflected light.

5.8 Future work
An experiment to compare the step induced fluorescence response with static and
dynamic background light would be a way to learn how the ChlF response behaves
during the different excitations. A dark room, where the lamp excites a step as in
Figure (3.12) as well as a sinusoidal step could be used for this. Parametric models
based on the input and output would then be estimated and compared between the
two cases. Note that for this to work, the canopy would have to stay in roughly the
same stress level for the period of time it takes for the test to be done.

The next step could be to do the greenhouse experiments with a better reference
method. Instead of using one canopy and one tarpaulin to black it out, two set
of canopies could be used where one is constantly used as a reference and one is
used as test. The reference would have to be in a dark environment with matched
background light, temperatures and plant stress with the test.
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We also believe that if the fluorescence-less q(t) for 735-755 nm band could be found,
the dGN will find a perfect estimation of the system. Therefore, more work could
be put in to find the correct q(t). A start would be to collect incoming and reflected
light from a flat surface, where more specular reflection occurs, and see if ρ still
varies. Trying this in a controlled environment with a static lamp light as well as a
dynamic lamp light would be most beneficial. If it does not yield a more constant
ρ, it could be the sensors that is causing the problem. As mentioned earlier, the im-
portance of simultaneous sensor measurements might play a role in acquiring more
correlated data in terms of reflectance. To make the sensors more synchronised with
the ability to have a higher sample rate could be of great use.

A higher sampling rate would also give more data points for the parametric mod-
elling estimation, making the global minimum easier to find. It could also give more
opportunities to find better filters, where the current cutoff-frequency of 1 rad/s is
dangerously close to the sampling rate being used.

The current PSMT method seems like a decent classification method, although a
lot of research has to go into creating reference data for a large variety of plants.
With the advancements in deep learning a neural network that has been trained on
a lot of ChlF data could potentially be used instead as a classification method, in
the future. This method requires, however, a vast data pool to make the network
reliable in its training.

To improve upon the dGN a combination can be made with so called subspace
methods. This could help in eliminating some of the local minima that might be
caught when using only the dGN31. One could also try different model structures.
For instance, the Nonlinear Auto Regressive Moving Average with eXogenous input
(NARMAX) might have some unforeseen properties that the OE model structure
lacks.

A possible way around a lot of the problems regarding sensor noise and uneven
calibrations is to only use one sensor. This would mean that the incoming light
would have to be estimated from the sole sensor measuring the reflected light and
ChlF-response from the plant. Issues with this technique is that the estimation of
the incoming light would have to be fairly accurate to make up for the difference
between M1 and M2. An issue which, after this project, has been deemed very
hard to compensate for. Since light is behaving so volatile and inconsistently it is
plausible to believe that the benefits of using only one sensor does not outweigh the
problems it creates.
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T he future holds many challenges. As the earth’s population is increasing,
it puts a large strain on the food industry to keep equal pace while still
maintaining high quality of the products they sell. As more crops need to

be grown, more surface area is needed and the growth cycle have to be as short as
possible. Artificial light using LED-lamps and vertical farming is an efficient way of
both decreasing the space needed and to keep the growth of plants independent of
good weather or hour of the day. To be able to control the intensity of light in order
to maximise growth, minimise spill and to minimise the effects on the environment
is the next step in the evolution of greenhouse farming. By using techniques to
model the plant system and thus estimating their ChlF response the results of this
project show promise.

Visual inspection of the results both in time- and frequency domain indicate the
capabilities of parametric modelling and dGN to solve the minimising argument
(Equation (2.19)). The results reflects the difficulties of dealing with highly non-
linear biological systems as well as volatile and noisy light signals, as evident by most
results of the less extensive prefiltering method and the linear curve fitting. Despite
this, it is clear that with proper identification methods a ChlF response to a lamp-
induced light intensity variation can be extracted from plants, even with sunlight
present. This further strengthens the notion that remote sensing of plant health can
be reliable to the extent that it can be used as feedback to control artificial light
for growth in greenhouses, in a not so distant future. A way to further enhance the
chance of localising the correct minimum in the numerical search for the parameters
is by finding ways of better estimating the initial guess or to complete the dGN
with methods to make the search itself better. The answer to the research question
posed in the start of the paper is simply, yes. It is clear that the fluorescence can be
estimated by the use of parametric modelling if only the correct algorithm is used
and the collected data stays within reasonable standards.

As living standards are increasing rapidly in a lot of developing countries. the
demand on leafy greens, like herbs, will rise. Therefore, the need for energy efficient
solutions is on top of the wish list for many companies and producers, not only
because of the potential positive economical aspect but also because the awareness
of the need to preserve the environment.
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A
Appendix

Instrumental variables (IV) method
The ϕ used in many methods looks as follows

ϕ =



y(nf − 1) ... y(0) u(nf − 1) ... u(nf − nb)

y(nf ) ... y(1) u(nf ) ... u(nf − nb + 1)

y(nf + 1) . . .

. . . .

. . . .

. . . .

y(N − 1) ... y(N − nf ) u(N − 1) ... u(N − nb)



(A.1)

The IV method takes this one step further and uses a matrix Z which is a lot like
ϕ but uses the estimated output instead of measured, and looks as follows

Z−1



ŷ(nf − 1, θi−1) ... ŷ(0, θi−1) u(nf − 1) ... u(nf − nb)

ŷ(nf , θi−1) ... ŷ(1, θi−1) u(nf ) ... u(nf − nb + 1)

ŷ(nf + 1, θi−1) . . .

. . . .

. . . .

. . . .

ŷ(N − 1, θi−1) ... ŷ(N − nf , θi−1) u(N − 1) ... u(N − nb)



(A.2)

The initial parameter guess θ(0) is approximated using linear least square. The
updated θ is then calculated using the following least squares formula

θ(i) = [Z(i−1)Tϕ]−1Z(i−1)Ty (A.3)
For each iteration, a new θ is calculated and used in Z 21.
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The ratio gets lower with increasing sunlight intensity (see Figure (B.1)).
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Figure B.1: The ratio is clearly depending on the sunlight intensity. It decreases
when the sunlight gets strong and increases when the sunlight decreases.

This gives the impression that a connection between the two can be found which
can help balancing the nonlinearity and thus making the ratio more constant.
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