
XCP over Ethernet
Master’s thesis in Embedded Electronic System Design

Ekin Ada Ustundag
Honglu Bian

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

XCP over Ethernet

Ada Ustundag Honglu Bian

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

XCP over Ethernet
Ada Ustundag Honglu Bian

© Ada Ustundag and Honglu Bian, 2020

Supervisor: Tomas Olovsson, Networks and Systems
Company Supervisors: Sumeet Thombre and Sara Gothäll, Volvo Group
Examiner: Per-Larsson Edefors, Embedded Electronic System Design

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2020

XCP over Ethernet
Ada Ustundag and Honglu Bian
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

iii

Abstract
Modern vehicles are increasingly becoming dependent on computers to control the
equipment, such as cruise control, engine monitoring and so on. The computers
and hence the ways to deal with the data transmissions are becoming more and
more advanced. This has meant that the tools used for development, testing and
debugging are no longer sufficient to be able to transfer the large amounts of data
traffic that are created. To be able to handle these new data volumes, Volvo Group
would like to adapt the newer standards i.e. the implementation of XCP(Universal
Measurement and Calibration Protocol) over Ethernet. By the case of ECUs, it is
important to have an optimal iterative process of measurement and calibration at
the run-time. This is to fetch or tune the parameters that reside in the memory
of ECU. During updating the firmware, flashing is used to update the application
and to adapt the parameters in the ECU. Before, Volvo Powertrain used the tool
ATI Vision which uses CCP (CAN calibration protocol) to achieve flashing and
monitoring of the ECU over CAN. Many CCP implementations are migrating to
XCP for calibration, data acquisition, and ECU flashing due to its independence
from the transport layer and higher throughput.

Keywords: XCP, CCP, ECU, Measurement, Calibration, Ethernet, CAN

Acknowledgements
Hereby, we would like to thank the following people for providing us constant support
throughout our thesis project. Without them this would not come true:
Sumeet Thombre, our supervisor at Volvo, who was with us from the start till the
end, always bringing the brightest idea with a smile,
Sara Gothäll for her tutoring and monitoring,
Tomas Olovsson, our supervisor at Chalmers, who worked hard to guide us in the
correct direction for a successful thesis,
Per-Larsson Edefors for helping us setting up the first steps of the project,
Magnus Stålesjö for taking our applications, although it was late,
Andrei Kovacz for all the instructions and laughter and,
all the amazing people at Volvo Powertrain for making us feel at home from day
one.
Last but not least, we would like to thank our families for the constant support!

Ada Ustundag, Honglu Bian, Gothenburg, 2020

Contents

List of Figures vii

List of Tables ix

1 Introduction 2
1.1 Aim . 3

1.1.1 Research Questions . 3
1.2 Motivation . 3
1.3 Thesis Outline . 3

2 Technical Background 4
2.1 Network Topologies . 5
2.2 E2E Throughput and Frame Rates Per Second 6
2.3 CPU Load . 7
2.4 Background on Volvo’s Measurement and Calibration 7
2.5 CCP (CAN Calibration Protocol) . 8

2.5.1 CAN (Controller Area Network) Bus 9
2.5.2 Ethernet . 10

2.6 XCP (Universal Measurement and Calibration Protocol) 10
2.6.1 XCP Protocol Layers . 11
2.6.2 XCP Transport Layer . 12
2.6.3 Polling vs DAQ (Data AcQuisition) 13

2.7 Software Components Platform . 15
2.7.1 AUTOSAR . 15
2.7.2 AUTOSAR Layer Infrastructure 15

2.8 Component stack for XCP over Ethernet 16

3 Problem Description 18

4 Tools 19
4.1 Software Tools . 19
4.2 DaVinci Configurator . 19
4.3 CANape . 20
4.4 CANalyzer . 21
4.5 Trace32: T32 . 22
4.6 VISION Software . 22
4.7 A2l file . 22

vi

Contents

4.8 Hardware Tools . 23
4.8.1 VN5610A - Ethernet/CAN Interface 23

5 Results 25
5.1 Asynchronous Measurement: Polling 27
5.2 Synchronous Measurement: DAQ . 29

5.2.1 DAQ with 1 XCP event . 29
5.2.2 DAQ with two XCP events . 32
5.2.3 DAQ with three XCP events 33

5.3 Benchmarking . 34
5.4 Calibration . 35

6 Conclusion 37
6.1 Future Work . 37

vii

List of Figures

2.1 Master-slave network model . 5
2.2 Client-server network model [13] . 5
2.3 CCP Communication flow between the master and slave [16] 9
2.4 CAN bus Frame Format . 9
2.5 Ethernet Frame Format . 10
2.6 An XCP Master communicate with multiple slaves concurrently . . . 11
2.7 XCP message structure . 11
2.8 XCP Communication . 12
2.9 XCP layers . 12
2.10 XCP message on CAN bus . 13
2.11 XCP message over Ethernet . 13
2.12 ODT to RAM mapping . 14
2.13 DAQ list and ODT configurations . 15
2.14 AUTOSAR Architecture . 16
2.15 Component Stack for XCP over Ethernet 16
2.16 XCP over Ethernet Stack . 17

3.1 Overiew of the XCP over Ethernet system 18

4.1 DaVinci configuration of the network stack 20
4.2 CANape project creation . 21
4.3 CANalyzer packet creation . 21
4.4 A2l parsing via CANape . 23
4.5 VN5610A Ethernet/CAN Interface 23

5.1 Real Implementation Connection . 25
5.2 Connect command in XCP [29] . 25
5.3 Communication through XCP over Ethernet 26
5.4 Calibration achieved through CANape 27
5.5 Polling 80 parameters via CCP depicted on VISION 27
5.6 XCP polling only the CPU l7oad in CANape 29
5.7 Measurement configuration of the XCP event 30
5.8 Signals chosen for measurement . 30
5.9 Measurement log of the XCP event 31
5.10 Measurement log of the XCP event 32
5.11 DAQ with 1 event . 32
5.12 DAQ with 2 events . 32

viii

List of Figures

5.13 DAQ with 3 events . 33
5.14 CPU load measured through T32 . 34
5.15 Calibration achieved through CANape 35
5.16 Calibration achieved through CANape 36

ix

List of Tables

5.1 XCP polling with time interval 10ms 28
5.2 XCP polling with time interval 1.25ms 28
5.3 CCP with maximum amount of variables that can be measured . . . 35
5.4 CCP via A7/A8 units vs XCP . 35

1

1
Introduction

Automotive companies and manufacturers of electronic control units (ECU) try to
reduce the development costs and shrink the time to market. Concurrently, more
challenging requirements on exhaust gas emissions, drivability, on-board electron-
ics and obviously fuel/energy consumption is leading the industry into a complex
paradigm. Architecturally, this equates to more control parameters and look-up
tables (LUTs) in the ECU.

For the sake of these requirements, the calibration and measurement has become
time-consuming and expensive task to tackle within the ECU (Electronic Control
Unit) development systems. The powertrain teams constantly need ways to mit-
igate the over-complicated systems in order to efficiently conduct calibration and
measurement [1].

There are three functions that are of significant importance to ECU application
processes. They are measuring, calibrating and flash programming [2]. Measurement
is the process of reading signals and parameters from the ECU. It aids to monitor
key parameters of the ECU. Calibration is the iterative mechanism of tuning the
ECU parameters. Flash programming means overwriting the EEPROM of the ECU
is utilized to update the application already embedded within the ECU.

Today, the automotive industry introduces more complex systems and tend to
have more strict timing constraints such as measurement/calibration delays. Ev-
ery initiative such as Automotive Open Software Architecture (AUTOSAR) and
third-party solutions are built to simplify the integration of these difficult appli-
cations. Therefore, under these circumstances, the tasks pertaining to the ECUs
such as measurement, calibration and flashing become more and more challenging
to achieve. Additionally, in vast environments such as Volvo Group interoperability
and portability also gain higher priorities.

In the light of these premises, the thesis is structured in a way to overcome the
weaknesses which were posed by CCP (Can Calibration Protocol). CCP is delimiting
in the sense of allowing the usage of only one transport medium i.e. CAN bus.
However, via migrating to XCP (Universal Measurement and Calibration Protocol),
not only cumbersome waiting times are eliminated, but also interdependence to the
transport layer is attained.

In this thesis, the goal is to implement XCP over Ethernet. In order to be
compatible with the latest technology and know-how and the implementation is done
conforming the requirements specified by Volvo Group. Afterwards, we have done
some benchmarking where the throughput and data rate of the new implementation
were compared to the default CCP implementation.

2

1. Introduction

1.1 Aim
The purpose of this work was to implement and integrate XCP over Ethernet to
facilitate testing and troubleshooting. After the implementation is done, the paper
will look forward to juxtapose XCP and CCP to examine the CPU load of ECU.
Moreover, there will be some benchmarking done and compare the throughput of
new implementation to the default, existing CCP implementation. The goal is
to use and adapt the next generation engine controller ECM4 with a supported
Ethernet interface, which is a Vector delivered SIP (Software in Package) tailored
for Ethernet communication. The tool CANape with support for XCP devices will
be used to measure and calibrate. Additionally, a Vector CAN gateway VN5610A
will be utilized to connect to the ECU.

1.1.1 Research Questions
In the light of the aforementioned points, we propose the following research ques-
tions:

1. What are the metrics of performance in computer networks that can be
applied to measurement and calibration?

2. How does XCP over Ethernet perform vs CCP over CAN on the metrics of
performance?

1.2 Motivation
Apart from the practical reason that the implementation is going to be used in the in
house applications at Volvo Powertrain, the thesis also investigates how performance
is defined within the network domain and how that translates into the benchmarking.
Another upside would be the elimination of serial interface module’s of ATI A7s and
A8s. According to Volvo, they are expensive ECU add-on technologies that would
be good to minimize the need of.

1.3 Thesis Outline
The thesis will follow this format:

• Chapter 2: Technical Background expresses the communication protocols
and constitutes a background for the thesis.

• Chapter 3: Problem Description is an outline of the problem that is
intended to be solved.

• Chapter 4: Tools are the collection of all the software and hardware tools
that are used throughout the thesis.

• Chapter 5: Results present the outcome, the improvements over CCP and
the benchmarking between XCP and CCP.

• Chapter 6: Conclusion indicates the summary of the whole work and also
adds what could be done, as for the future work.

3

2
Technical Background

The technical background chapter’s aim is to explain the concepts and the method-
ology that was followed throughout the thesis. First, network theory and modelling
is to be examined. Afterwards, the metrics of performance within the networking
applications are identified. To list, these are: end-to-end throughput (E2E through-
put), Transmission Rate in Frames per Second (FPS) and CPU load [3], [4], [5].

Within the computer sciences domain, performance is a term that holds many
definitions. Hence, more often than not, it requires a context-specific clarification.
When the field of computer networks are considered, once again many definitions
appear. Performance of a node can be measured in terms of queuing delay, prob-
ability of packet loss, probability of link down, end-to-end throughput and so on
[5].

To counteract the confusion that might be aroused due to the indistinct def-
initions of performance, a research has been conducted to come up with suitable,
well-fitting criteria. End-to-end throughput is a recurring performance metric oc-
curring in the context of computer networks such as in [6], [7] and [8]. All these
sources evaluate performance in networks via measuring the throughput. Addi-
tionally, bandwidth is another performance criteria that is inspected in [5] and [9].
Hence, addressing the first research question, the project takes the following metrics:
bandwidth and end-to-end throughput.

XCP and CCP are two network protocols developed by ASAM (Association
for Standardization of Automation and Measuring Systems). As an introduction to
these protocols, they are both implemented to specifically target the ECU communi-
cation field. It must be mentioned that CCP was the predecessor of XCP and CCP
was only bound to CAN bus. XCP, on the other hand, is more portable across the
transportation layers, which gives itself an edge against its older brother in terms of
performance [10]. Further in this section , there will be distinctive subsections (2.5
for CCP and 2.6 XCP) to thoroughly explain them. End-to-end (E2E) throughput
is the amount of data per second that can be transferred. E2E throughput is an
interesting metric to look at in XCP over Ethernet, while using DAQ. It opens up
good contrast points between XCP and CCP. It is also highlighted that two critical
aspects of performance in computer networks are E2E throughput and bandwidth
[5]. Bandwidth management is the process of monitoring and controlling the traffic
over a communication line. A particular transport layer’s bandwidth is not much of
a significant metric in the given project, due to the scarce amount of transmitting
objects. There are no concerns such as fairness or bandwidth throttling, simply
because there is only one hub (i.e. one master) that pushes data on the link. Hence,
the link speed and bandwidth management are not thoroughly examined for the

4

2. Technical Background

purpose of this project.

2.1 Network Topologies
A network topology is used in many areas to provide a medium to connect and
interact with the other nodes in the network remotely. From the local area networks
to the wide area networks, there are many types of networks tailored for use-cases.
However, the simplest cases is the distributed peer-to-peer networks, where there is
one client and one server. The other scenario is that there exists a master and a
slave. These paradigms are quite close, yet they have their differences [11].

Figure 2.1: Master-slave network model

As observed in Fig. 2.1, the master is the requesting or "demanding" node
which establishes the communication and requests data from the slave. In a master/
slave network, the slave cannot request nor initiate communications with the other
devices. The slave node’s responsibility is to respond the corresponding request and
wait for the next request [12]. The master can change the memory of the slave device.
This is useful within the context of the thesis, due to the calibration demands.

Figure 2.2: Client-server network model [13]

On the other hand, Fig. 2.2 describes how the client/server model is established
between two computers. The client is the initiator of the communication and the
server is expected to serve the query. The service request is done by the client and it
is fulfilled by the server [14]. Quoting Wilfried Voss, "A Client/Server configuration
is used for accessing but not modifying data in the Server since there could be
unpredictable results if multiple Clients modified the data in an unsynchronized way"
[14], master/slave networking is used in the applications where data manipulation
and unidirectional transmission is desired. Therefore, master/slave archetype was
better suited for what Volvo aimed to achieve.

5

2. Technical Background

Next up, we have investigated the metrics of performance within the computer
networks, especially in the standards that are used in the automotive industry.

2.2 E2E Throughput and Frame Rates Per Sec-
ond

Calculating FPS is a reliable way to rate the performance metric of a network. It
is mostly used for the so-called monitoring and control systems. By definition, FPS
yields the amount of frames that are transferred over in a given second [15]. Before
looking at the FPS of each network protocol, it is beneficial to examine the rates of
transmission these protocols offer. The distinctive rates of E2E throughput clearly
play an important role to determine the FPS. The Ethernet protocol that was used
granted 1000 Kbps. On the other hand, CAN yielded 500 Kbps. Therefore, without
even considering the packaging and PDUs, Ethernet has the advantage here.

Hereby, the FPS investigation regarding CAN vs Ethernet is done. However,
before that it is critical to note several premises. Actually, Ethernet alone cannot
be compared to CAN in terms of FPS. The reason is raw Ethernet does not pro-
vide a re-transmission in case of a discarded/lost frame. Ethernet requires another
layer to notify the transmitter. Therefore, higher level protocol layer, in this case
TCP/IP, is needed, as an additional layer to get a confirmation message delivered
to the transmitter. With this setup, the not acknowledgement is delivered to the
transmitter, upon the frame’s loss. The TCP/IP is taken into consideration, and
hence the overhead [15].

An Ethernet package can contain 333 bytes with the following: MAC Preamble
(7 bytes), Start Frame Delimiter (1 Byte), Destination and Source MAC Addresses
(6 bytes each, 12 bytes in total), IP-Header (20 Bytes), TCP - Header (20 Bytes),
Padding Bytes (6 Bytes), Frame Check Sequence (4 Bytes), Interframe Gap (12
Bytes), Payload (255 Bytes). With 1000 Kbps and 8 bytes per frame, it yields

1000000 bits/s
333 × 8 bits/frame

= 3003 frames/s

On the other hand, CAN packet is formed as below: SOF (1 Bit), Identifier +
RTR (12 Bit in total), Data Length Code (6 Bits), CRC (16 Bits), ACK-Field (2
Bits), additional data (7 Bits), Interframe Space (3 Bits), Stuff Bits (3 Bits), so in
total 114 Bits for 8 Bytes of Payload.

For a CAN network with 500 Kbps throughput,

500000 bits/s
112 bits/frame

= 4385 frames/s

Just by solely looking at the FPS performance metric, CAN is the winner
between the two protocols. It must be noted, though, that the net payload that is
transferred by each frame also holds a significance. If the net payload is defined as,

(frame/s) · (payload/frame)

then for CAN, it would yield:

6

2. Technical Background

4385 frames/s × 8 bits/frame = 35080 bits/s

For XCP,

3003 frames/s × 255 bits/frame = 765765 bits/s

It actually implies that Ethernet transmits 21.8 times more net payload than
CAN in a second. While measuring or calibrating, the net data that is transferred
over the data bus is the most important parameter to monitor. Therefore, FPS
metric alone, may not be enough to judge the performance of a network.

2.3 CPU Load
There are many relevant theories and field-specific research that presents the CPU
utilization and load, as a performance metrics [3], [11], [5]. In our project, the CPU
utilization was not measured, however the load was examined and benchmarked.
The CPU load is a measurement signal that is fetched from the ECM (Engine
Control Module). It is a significant metric to monitor due to how much of a trade-
off Volvo ends up paying for opting Ethernet. In the previous section it is described
that the net payload transfer of Ethernet is significantly higher than that of CAN,
therefore, there will be a price to pay in the means of CPU load. In the Results
section, this will be investigated and how much of a pay-off there is for opting
Ethernet will be laid out.

Consequently, although CAN outperforms Ethernet in terms of raw efficiency,
the standalone FPS would not be a meaningful performance metric to assess whether
a network is inferior to the other [15], [4]. When the bandwidth and the payload
is taken into account, it is quite clear that the winner is the Ethernet. Ethernet
not only has higher E2E throughput, but also has greater payload, resulting into
its superiority over CAN. As also another automotive research lays out, Ethernet is
marginally the better interface, when the bandwidth requirements get higher. CAN,
on the other hand, seems to be the go-to solution for the industry professionals,
when the cost is the driving decision mechanism [4]. This is, due to the fact of the
low efficiency nature of the Ethernet. Since Ethernet can transfer more data per
packet, the packets contain more payload and also the transmission rate is higher,
the decision was to opt for that instead of implementing XCP over CAN. For the sake
of CPU load, there is a need to empirically test and observe, which implementation
performs better, hence the CPU load will be scrutinized in the Results section.

2.4 Background on Volvo’s Measurement and Cal-
ibration

At the start of the thesis, Volvo Powertrain used the tool called ATI Vision. This
is an application tool using CCP to conduct flashing and measurement/calibration
via CAN bus communication. Based on the Volvo implementation, it takes around

7

2. Technical Background

20 minutes to flash the memory of the ECU which became cumbersome and asked
to be improved by the measurement engineers.

For the sake of faster data transmission, the newer technology is rebranded as
XCP (Universal Measurement and Calibration). Compare to CCP which can only
be used on CAN bus, XCP is able to work on different transport layers (CAN bus,
Ethernet,USB,etc) which means more flexible load and better compatibility.

Polling and DAQ (Data AcQuision) are two ways of measuring data based on
XCP or CCP. These two methods for data transmission are used in this project and
the speed of data delivery and data amount are compared in the result. It is worth
mentioning here that CCP is only available for polling, so XCP is already better for
more approaches of data measurement than CCP.

Besides the explanation of protocol used in the project, the software components
platform is mentioned in Section 2.7. AUTOSAR (Automotive Open System Archi-
tecture) system combined with more third party components is the basic structure
Volvo Powertrain uses in Bus industry nowadays. The whole platform is composed
by multiple functioning layers from the bottom hardware to the highest level appli-
cation.

Based on the knowledge of platform in Section 2.7.1, to build XCP over Ethernet
in the AUTOSAR, drivers and interfaces between different layers and components
should be activated. Section 3.4 contains the stack of the XCP over Ethernet where
seven software modules functioning XCP over Ethernet are introduced.

The scientific literature was also researched which we conclude after reading
some other projects, papers, studies and other types of research. They are very
important experiences from others which are quite helpful for this thesis and even
further implementation.

2.5 CCP (CAN Calibration Protocol)
Back in the 1990s, CAN Calibration Protocol was developed for the purposes such
as supporting the development of ECU, conducting functional and environmental
tests of an ECU and for on-board testing and measurement [16]. The motivation was
to move from proprietary, company-specific calibration schemes to a standardized,
centralized protocol for calibration and data acquisition tools.

The CAN Calibration Protocol is a CAN-based master-slave protocol for cali-
bration and data acquisition. Two types of CAN messages is needed, CRO and DTO
as shown in Fig. 2.3. The CRO (Command Receive Object) messages are sent from
master to slave and contain control commands. DTO (Data Transmission Object)
messages are sent from slave to master. When a slave has received a CRO message
it performs the given instructions and then answers with a DTO message containing
a CRM (Command Return Message). CRM tells the master if the corresponding
control command has been performed as planned or not.

The master device (host) is a calibration tool or a monitoring/diagnostics tool
or a measurement system which start the data transfer on the CAN bus by sending
packets to the slave devices. The CCP implementation both supports the commands
for trivial memory transfers and for large torrent transfer of data acquisition [16].

8

2. Technical Background

Figure 2.3: CCP Communication flow between the master and slave [16]

Despite the fact that CCP is still used within the industry, it is considered to
be obsolete and no longer updated by the ASAM (Association for Standardisation
of Automation and Measuring Systems)[10]. Even though the technology of CCP
is quite mature in the Automotive industry, since the limit of CCP that is only
available for CAN bus but not working on Ethernet and other transport layers,
XCP over Ethernet is replacing it nowadays.

2.5.1 CAN (Controller Area Network) Bus
Controller Area Network is a communications protocol which is developed and main-
tained by Robert Bosch GmbH. The protocol is designed to manage multiplexed
communications between multiple CPUs. It is control information oriented, uses
non-destructive bit-wise arbitration to decide, which node "owns" the bus, and has
a message priority scheme based on the value of the message identifier transmitted
with each message.

Figure 2.4: CAN bus Frame Format

CAN bus is a robust vehicle bus responsible for communication between Elec-
tronic control units (ECUs). CAN has four types for frames: data frame, error
frame, remote frame, overload frame. Data frame is the only frame for actual data

9

2. Technical Background

transmission among them. Observed from the base frame format shown in Fig. 2.4,
we can see six parts compose a complete CAN frame. They are start of frame, ar-
bitration field, Control, Data, CRC field and End of frame. However, the Data field
which contains the data to be transmitted is at most 8 bytes which is quite limited.
This means, if we have large amount of data, we need to send a great number of
CAN frames and it takes more time than using Ethernet frame which we talk about
in the next section.

2.5.2 Ethernet
Ethernet, a data link layer protocol which is most widely used in LAN technology
in homes, offices, and factories, is increasingly utilized in the automotive world in
the form of Automotive Ethernet. Vehicles now routinely accommodate multiple
cameras, on-board diagnostics, advanced driver assistance systems (ADAS), info-
tainment systems, and in-dash displays. With all the added hardware and software
comes a massive demand for bandwidth.

Figure 2.5: Ethernet Frame Format

Ethernet frame contains Preamble, Start of frame (SFD), Destination MAC
address, Source MAC address, EtherType, Payload, Frame checks, etc as shown
in Fig. 2.5. Payload meaning field which contains data to be transmit is able to
accommodate up to 1500 bytes which is much higher than CAN bus. Meanwhile,
the speed of the Ethernet frame reaches to 100Mbits/s in industry which means
sending same amount of data, using Ethernet frame with higher capacity and speed
than CAN bus is much faster.

2.6 XCP (Universal Measurement and Calibra-
tion Protocol)

XCP implies ’Universal Measurement and Calibration Protocol’ which is an ASAM
standard for calibrating parameters and measuring signals between ECUs and the
development tool. The idea is to interconnect calibration systems with the ECUs
[17]. It is mainly used for development and testing, by being able to retrieve and
send information, and thus examine how an ECU behaves in different situations.
As a replacement of CCP, XCP is developed to implement read and write access to
internal ECUs data via variable and changeable transport layers.

AUTOSAR’s definition of XCP is as follows: “XCP was designed according to
the following principles: minimal slave resource consumption (RAM, ROM, run-
time), efficient communication, simple slave implementation" [18]. The ECU is the

10

2. Technical Background

slave and the measurement and calibration tool is the master. Based on the physical
connection in between, master and slave communicate in the XCP standard and one
master can contact many slaves concurrently as shown in Fig. 2.6.

Figure 2.6: An XCP Master communicate with multiple slaves concurrently

A significant functionality of XCP is that XCP implements read and write access
to the slave memory. Read access allows measurement of parameters from RAM,
and write access enables calibration of parameters in RAM. Furthermore, acquiring
the measured values from RAM is synchronous to the events in the ECU [10].

XCP is subdivided into two layers as mentioned before:a transport layer and a
protocol layer. XCP data in the protocol layer package is embedded in the frame of
the transport layer. XCP can both work over CAN and Ethernet.

XCP came as the successor of CCP, because the ECUs started to support
more networks and hence the interface was expected to have more compatibility to
different transport methods. Furthermore, the higher demands of throughput was
also desired which was greater than CCP could provide [19].

2.6.1 XCP Protocol Layers
XCP data is generated in the protocol layer transmitted between master and slave.
The structure of XCP message contains three parts: the XCP header, XCP packet
and the XCP Tail as shown in Fig. 2.7. The contents of the XCP header and the
XCP tail are based on type of transport layer used.

Formed independent of the transport layer, XCP packet consists of identification
field, timestamp field and current data field. Identification field is used to identify
the packet which decides the function of the packet. Timestamp field supplies the
time information of measured data. Data field stores the data sent between slave
and master.

Figure 2.7: XCP message structure

11

2. Technical Background

Compared to CCP communication between the master and slave, XCP com-
munication is also divided into two ways: one way is via CTOs (Command Transfer
Objects) and one way is via DTOs (Data Transfer Objects) as shown in Fig. 2.8.

Within CTOs, command is sent from master to slave. When slave receives a
command from the master, slave should react with RES (response) or ERR (error)
as a response to the master. Contact between the master and the slave is initiated
in this way. As to other messages in CTOs, EV (Event package) and SERV (Service
Request Packet) are sent [20].

Figure 2.8: XCP Communication

For exchanging synchronous measurement and calibration data, DTOs consist
of DAQ (Data AcQuisiton) and STIM (STIMulation). DAQ is the path for measured
data sent from slave to master which is synchronous to internal events. Triggering of
measurement data acquisition and transmission is controlled by events in the ECU.
STIM is used for sending data from master to slave in the opposite direction [20].

2.6.2 XCP Transport Layer
XCP is able to support multiple transport layers: CAN, FlexRay, Ethernet and USB
as shown in Fig. 2.9. XCP over different transportation layers are used for various
requirements of speed, load, safety and the hardware restriction. For example, CAN
network has a upper bound of 1 Mbit transfer rate which is merely possible with no
other bus load. Data transmission above CAN bus is limited to 8 useful bytes.[16].

Figure 2.9: XCP layers

CAN bus is a serial communication bus used for communications between micro-
controllers. In the case of XCP over CAN, Communication initiation between master
and slave need command and response sent thus they take up the first useful byte

12

2. Technical Background

of CAN. This means that only seven bytes are available per CAN message for each
data transmission,but it allows for transfer of data without identifier by using the
CAN packet identifier. XCP message over CAN is shown as Fig. 2.10.

Figure 2.10: XCP message on CAN bus

XCP over Ethernet can be used for both TCP/IP or UDP/IP. The difference
between TCP and UDP is that TCP can detect the loss of a packet with handshake
and is responsible to resend missing packets. UDP ignores the package loss.

The structure of XCP message over Ethernet shown in Fig. 2.11 is different
from the structure of XCP over CAN. The header consists of a control field with
LEN (length of the XCP packet) and the CTR (counter for detecting packet loss
only used in TCP). As a single Ethernet packet is able to contain multiple XCP
packets but an XCP packet may not take up all the UDP/IP packet, thus the XCP
tail over the Ethernet is empty.

Within the initiation of slave-master communication by XCP over the Ether-
net, the response of slave contains: IP address, port number, TCP, UDP or both,
information on the status (connected, unconnected).

Figure 2.11: XCP message over Ethernet

2.6.3 Polling vs DAQ (Data AcQuisition)
The most intuitive way to read memory contents of ECU is via polling which is
trivial and straight-forward to implement. Basically, the idea is to ask for the
measurement in a periodic manner initiated by the master. However, for every
cyclic request, we need to issue a command to measure from the master and a
response from the slave. That means for every measured value, the traffic in the
stack is two messages. The extra generated overhead clogs the network twice for
each measured variable. Bandwidth optimization, therefore is a problem [10]. The
other drawback is that the acquisition time is not synchronized with the ECU tasks
[21]. Due to the aforementioned reasons, we have chosen to implement synchronous
DAQ in our project.

13

2. Technical Background

XCP enables to use and configure DAQ lists. They include tables that are called
ODT (Object Descriptor Table). These offer to transmit vast amounts of data in
a continuous manner with the mentioned advantages [17]. A DAQ list is a set of
ODTs. Each entry in a DAQ list points to a memory element with specified address
and length. DAQ lists are distinguished by different PIDs appended to the packets.
Different DAQ lists can be configured in order to cover different events [10]. The
address and the object length are the indicators to identify a measured object. The
message is transmitted as a DTO.

Figure 2.12: ODT to RAM mapping

To clarify how DAQ tackles the problems listed above, the features of DAQ
should be investigated. The correlation of the measured values are achieved through
binding the acquisition of the measurements to the events triggered in the ECU.
The measured values are stalled and not transferred till all the computations have
been finished. For reducing the load on the network, there are two phases called
configuration and the transfer phase. In the configuration stage, Master states the
values to be measured and the transfer stage only involves Slave dispatching the
requested addresses [10].

XCP Master can list the desired parameters in the lists called DAQ lists. The
events correspond to the measured variables. After the initial configuration is de-
livered to the Slave, the Slave fetches the addresses and the measured values are
buffered.

It sorts out both problems that occur in polling: bandwidth is used efficiently,
because the Master no longer needs to poll each value during the measurement and
the values are synchronized with the Slave.

This methodology is specifically tailored for sending periodic events/measured
values.

14

2. Technical Background

Figure 2.13: DAQ list and ODT configurations

2.7 Software Components Platform

2.7.1 AUTOSAR
Electrics and electronics (EE) is a pivotal part of the current automotive industry.
The approach to conduct the development within the sector has been transformed
over the years [18].

Contemporary development process within the automotive industry is replaced
by function-driven process. According to AUTOSAR, "Engineering does not only
aim at optimizing single components but optimizing on system level. This requires
an open architecture as well as scalable and exchangeable software modules" [22].
Hence, it aims to create a joint environment of software development with OEMs,
individual companies so as not to clog the industry with proprietary solutions. The
main idea is also described as the re-using the software components so that the
increased complexity can be governed in the future [22].

Habitually, the way to develop EE in vehicles is to have one unit for every ser-
vice. Building XCP over Ethernet using AUTOSAR is not only because the current
ECUs in Volvo Powertrain is settled on AUTOSAR, but also AUTOSAR has very
clear hierarchy. Modules in side each hierarchy are having independent function-
alities. Building XCP over Ethernet in AUTOSAR just needs to set functioning
modules and activate corresponding interfaces and drivers making sure not affecting
the orginal process of ECUs.

2.7.2 AUTOSAR Layer Infrastructure
The AUTOSAR platform has three main layers, with each layer having different
functionalities. The bottom layer of the AUTOSAR platform is Basic Software
Layer (BSW) which is connected to the Microcontroller Layer directly and enables
the communication between MCU with the Runtime Environment (RTE). As shown
of the Fig. 2.14, the platform consists of a number of modules which are used by
application layer. The second layer is the Runtime Environment which is responsible
for mapping the components in the application layer with the modules in basic soft-
ware layer. The third layer is application layer which includes software components

15

2. Technical Background

Figure 2.14: AUTOSAR Architecture

providing functionalities to the vehicle system.
The basic software layer which is the only layer having access to the hardware

consists of a number of modules. Each module satisfies different requirements of
the AUTOSAR system and divided into 3 sub-layers: Micro Controller Abstraction
Layer (MCAL), ECU Abstraction Layer, Services Layer.

Looking at the Fig. 2.15, the stacks that have been implemented are placed
onto the AUTOSAR standard.

Figure 2.15: Component Stack for XCP over Ethernet

2.8 Component stack for XCP over Ethernet
Within the basic software layer of XCP over Ethernet, 7 blocks are used for the
component stack. They are Ethernet Driver, Ethernet Transceiver, Ethernet Inter-
face, Ethernet State Manager, TCPIP, Socket adapter and XCP as shown in Fig.
2.16.

The ETH (Ethernet Driver) provides hardware independent access to configure
and control Ethernet Controllers integrated in the microcontroller or connected to

16

2. Technical Background

Figure 2.16: XCP over Ethernet Stack

it via an external interface like for example SPI. In this module, we have to ensure
the Ethernet drivers are working and pins are set correctly.

The EthTrcv (Ethernet Transceiver Driver) provides hardware independent ac-
cess to control connected transceivers in a generic way. It offers the functionality to
control the mode of operation of connected transceivers as well as to determine their
current state. The transceiver itself is a hardware device, which mainly transforms
the logical I/0 signals of the Ethernet Controller to the bus compliant electrical
levels, currents and timings.

The Ethernet Interface (EthIf) provides hardware independent access to control
connected Ethernet Controller Drivers and Ethernet Transceiver Drivers in a generic
way. Ethernet frames are sent and received through EthIf as well as it is an interface
for MCAL to connect to higher layers.

The EthSM realizes a software layer between Ethernet Interface (EthIf) and
Communication Manager (ComM). It handles the start-up and shutdown of the
communication of an Ethernet network. It works as a state machine for Ethernet
Communication.

The TCPIP, or the Transmission Control Protocol/Internet Protocol, is a suite
of communication protocols used to interconnect network devices on the internet.
Here is a block which provides access to a socket interface based on the Internet
protocol (IPv4 and IPv6) over Ethernet.

The Socket Adaptor provides communication between PDU based communica-
tion and socket based communication via TcpIp. It supports the TCP and UDP
sockets over lower module TCPIP.

XCP is a higher level protocol used for communication between a measure-
ment and calibration system and an electronic control unit. It can be connected to
application directly. XCP layer here supports the ASAM XCP 1.1 Specification.

17

3
Problem Description

The goal of this thesis work is to implement a new protocol according to the the-
sis’ specification i.e. to provide at least the features Volvo had in the CCP via the
XCP implementation. We then do some benchmarking and compare the throughput
and data rate of the new implementation to the default, existing CCP implemen-
tation. We will also investigate how performance is investigated and defined in the
sentiments of the network research.

The described problem can be depicted as below in Fig. 3.1:

Calibration and Measurement
System

ECU(Engine Control Module 4)

XCP
driver(slave)

*.a2L

ECU Description File

ASAM MCD-2 MC

ASAM MCD-1MC XCP

Configure XCP,
Import a2L file
Get object address from Map file
Set up measurements
Set up calibration
 XCP driver

Figure 3.1: Overiew of the XCP over Ethernet system

XCP as a whole is quite extensive to implement and hence the following features
have been selected to be implemented: calibration and measurement of ECU pa-
rameters over XCP. Following that, metrics of performance evaluation are efficiency
and bandwidth are also studied.

18

4
Tools

4.1 Software Tools
As it is been laid out, tremendous help was granted from other software vendors who
provide key solutions in the use case of the XCP project. One of such companies
that was used throughout the course of the thesis was Vector Group. Vector serve
many tools which address the common problems within the automotive industry.
In the course of the thesis numerous Vector tools were used. They are DaVinci
Configurator, CANape, CANalyzer and lastly Ethernet/XCP adapter VN 5610A.

4.2 DaVinci Configurator
DaVinci Configurator was a pivotal part of the project and as it will be discussed
later, one of the significant contributors to the handful issues the thesis workers had.
A snapshot of the tool can be observed in Fig. 4.1. According to Vector, DaVinci
is: "... the central tool for configuring, validating and generating the basic software
(BSW) and the runtime environment (RTE) of an AUTOSAR ECU" [23]. It is used
for a similar purpose in Volvo Group: to generate the BSW and to interconnect the
network stack, which is thoroughly explained in the Background section.

According to the component stack shown in Fig. 2.16, 7 blocks (ETH, EthTrcv,
EthIf, EthSM, TCPIP, SoAd and XCP) are added as mentioned before.

The Ethernet Driver is connected to the hardware layer directly. In the whole
system, it functions for the initialization, activation and deactivation of the Ethernet
controller. In addition, it is used for transmission and reception of Ethernet frames.
MAC address and the size of the Ethernet frame should be set correctly in this
module as shown in figure.

The Ethernet Transceiver module is connected to the hardware through Ether-
net Driver layer. It masters the initialization of the Ethernet transceiver and setting
and getting the Transceiver mode.

The Ethernet Interface module mainly manage the mode of Ethernet driver and
Ethernet Transceiver Driver. It is also responsible for transmission and reception of
Ethernet frames.

The Ethernet State Manager is a state machine for transmitting Ethernet
Frame. It handles the start-up and shutdown of the communication of an Ethernet
network.

19

4. Tools

Figure 4.1: DaVinci configuration of the network stack

4.3 CANape
CANape is a calibration tool for ECUs. Fig. 4.2 depicts the program window. The
communication between CANape and ECU was done with XCP and interface with
VN5610. The user can identify an XCP device with Ethernet and configure A2L to
track/change parameters via plots and tables on CANape [24].

The internal data measured by CANape can be accessed via ASAM standard-
ized protocols such as CCP or XCP.

There are three main windows that are addressed. It is fruitful to identify
them in the CANape tool. They are the Trace Window, Data Window and lastly
the Write Window. The Trace Window is much like an output window, where the
verbose output commands and other details are listed. The Data Window displays
the data which are added to the watch window. The engineer, then, can proceed to
query and fetch those signals. Finally, the Write Window is the window that shows
the time stamps of Tool state changes, error and warning logs.

20

4. Tools

Figure 4.2: CANape project creation

4.4 CANalyzer
CANalyzer was mainly used to send ETH packets with the Ethernet Packet Builder
functionality. The packet creation process can be observed in Fig. 4.3. The Packet
Builder enables user to form an ETH packet with a source/destination address and
an upper layer of choice. Hence, it is possible to send ETH frames to a specified
destination. The test was to observe whether the ECU responded to the ETH
frames. It is also possible to analyze and stimulate the network communication [25].

Figure 4.3: CANalyzer packet creation

21

4. Tools

4.5 Trace32: T32
TRACE32 is a multipurpose debugger tool from Lauterbach GmbH. According to
the product specification, T32 is a high performance MCU debug, trace and logic
analyzer tool which support over 60 processor architectures. The debugger will
supervise and control the CPU execution such as writing in the memory on the fly
[26]. Real time monitoring of the target variables are also supported, as the CPU
load was depicted by T32 in the Result section of the report.

The tool helps with debugging and monitoring of multicore systems. Further-
more, it allows the embedded engineer to step into the APIs line-by-line and setting
up breakpoints within the source code. The embedded software specialist can easily
flash the MCU, monitor the flow of the flashed progrom and the memory locations
of the MCU. Since the flashing was omitted for the sake of timely completion of the
thesis, software download was sustained through T32 [27].

A PowerDebug JTAG Debugger probe is needed to access the ECU. This tool
lets the T32 access the MCU within the ECU. It is convenient to start/stop the
execution of the program and step in the function calls or skip through any API
through the T32 functionality [26].

4.6 VISION Software
Although only used for benchmarking purposes, Vision is a data acquisition and
calibration tool. Unfortunately, through the course of the thesis Vision had not
supported Vector’s Ethernet/CAN Interface, VN5610A, hence additional solutions
had to be taken. Vision was only used for testing CCP and software download in
CCP.

4.7 A2l file
The A2l file contains the integral part of the work that has been done. In the case
of measurement and calibration, the user may try to access the addresses in ECU.
An A2l file basically is a gigantic mapping file which contains symbolic names that
correspond to the addresses. The file provides better accessibility and ease-of-use,
hence the measurement/calibration engineer does not have to deal with the direct
hex addresses of flash [10]. It creates a more manageable and familiar environment
to work with.

At this point, CANape was used to parse the A2l file and get the correct logical
namings of the addresses. Afterwards, the engineer just has to highlight the object
by the name and the XCP Master would know the corresponding address, data type
and the data size. Many of the parameters that are of interest to the calibration
have also a minimum and maximum value which can be predefined in the A2l file.
This especially is a very helpful safety-lock in the cases where hazardous results
may occur, such as tuning the power output or engine torque. Of course for some
other parameters, outlying ranges can be more forgiving, but in the case of engine
speed, it is no longer a redundant field. Lastly, there is a set called parameter set

22

4. Tools

within the A2l that defines the communication between the ECU and the measure-
ment/calibration tool. All in all, the A2l consists of everything that the tool needs
in order to connect and communicate with the ECU [10].

Figure 4.4: A2l parsing via CANape

Fig. 4.4 shows how the A2l file looks like on CANape. It is a parsed version
where it is possible to see all the signals in the measurement and calibration tool.
By choosing one of the measurement variables on the window, it is possible to read
and write to the memory without having to decode the memory address mapping.

4.8 Hardware Tools

4.8.1 VN5610A - Ethernet/CAN Interface

Figure 4.5: VN5610A Ethernet/CAN Interface

As can be seen in Fig. 4.5, VN5610A is a Vector hardware that works as a
gateway between the ECU and the PC. It supports 10BASE-T and 100BASE-T1.

23

4. Tools

The device enables the monitoring and saving Ethernet data flows with precise time
stamps [28]. In the thesis’ use case, time stamping was not utilized.

The device can be tailored to fit many use cases such as bus analysis, diagnostics
and calibration purposes with CANape.

24

5
Results

The realization of the setup of the problem description was done as shown in Fig.
5.1

Figure 5.1: Real Implementation Connection

Establishing an XCP connection over Ethernet was the first achievement in the
thesis work. If the ASAM’s document on XCP is checked, the CONNECT command
would yield as shown in Fig. 5.2.

Figure 5.2: Connect command in XCP [29]

In order to do that, the master needs to issue an XCP packet containing the
payload FF.

25

5. Results

For the first initial result, the XCP communication was initiated via the tool
Vector CANalyzer. The figure below depicts that the first messages that were trans-
ferred over the XCP network.

For the sake of testing, the master forms and sends two XCP packets. Due to
the requirement of the protocol, the first step that the master is obliged to send a
CONNECT command. Hence, these two packets are shown in Fig. 5.3.

Figure 5.3: Communication through XCP over Ethernet

Clearly, the slave (ECU) responds with an affirmative reply by returning OK to
the connect command to the master. The destination MAC address is 02:00:00:00:00:02,
while using the IPv4. Source port is 5556 and destination port is 5555. Once the
slave responds with the reply OK, the XCP connection has been established until
the Master sends a DISCONNECT command.

Despite of the fact that XCP communication between the ECU and the PC was
established via CANalyzer, it was problematic to work with. The reasons for that
were stemming from CANalyzer inherit properties. CANalyzer is originally an ECU
network analyzer. It is not designed to be a measurement and calibration tool. At
this point, Volvo Group acquired a license of a professional calibration/measurement
tool called CANape.

After tweaking the settings according to the requirements of the project, the
XCP communication was sustained through CANape shown in Fig. 5.4.

26

5. Results

Figure 5.4: Calibration achieved through CANape

5.1 Asynchronous Measurement: Polling
One of the first implementations done over the XCP/Ethernet stack was to conduct
polling. When the system is in the polling mode, once the XCP master sends the
request command which contains the datum address to slave side, the slave responds
one data information immediately. The advantage of this mode is that the master
could get a fast reply from slave. Both VISION and CANape were used for polling.

Figure 5.5: Polling 80 parameters via CCP depicted on VISION

Using VISION, only 80 to 82 parameters can be configured to be asynchronously
measured. The size of the elements are problematic in CAN due to the inherited
8-byte payload restriction. In Fig. 5.5, the yellow warning signs indicate that the

27

5. Results

signal could not be read from the ECU. In Ethernet, however the maximum payload
is 1500 bytes [30].

The issue is exacerbated, when adding more than 80 parameters to poll via
CCP. All the new added signals get locked due to congestion in the communication
bus. We are unsure, whether this is an implementation error or a protocol-induced
threshold.

There was not such a locking limit in the case of XCP. However, of course the
delay between fetched parameters were increasing, as more parameters have been
added to the queue. As shown in Table 5.1, the command which requests for the
data of CPU load is sent every 10ms to ECU. As the increment number of the
parameters, there is heavier Ethernet Bus load and time to receive the CPU load
is longer. However the data can be still obtained even the number of parameters
is raised to 2000. In addition, when the time interval of the command is decreased
to 1.25ms, the CPU load can be fetched very quickly (2.5s) through Ethernet as
shown in Table 5.2. It is much more efficient than using CCP through CAN which
is observed by the VISION figure above. CCP could barely poll at a maximum
efficiency of 80 signals. On the other hand, the performance gains of XCP over
Ethernet is basically uncapped and limitless, since it is possible to poll incomparable
figures.

Table 5.1: XCP polling with time interval 10ms

Table 5.2: XCP polling with time interval 1.25ms

There is also another bottleneck that needs to be addressed. This was caused
by the limitation of CTO/DTO sizes in the Vector tool: DaVinci Configuration,
where the maximum packet size was set to 255 bytes. Further experimentation was
done for the 255 bytes cap later on.

28

5. Results

Another notion to emphasize for the sake of benchmarking is CPU load. CPU
is a very critical resource for the sake of ECU. Hence, the excessive borrowing from
the lower priority tasks must be prohibited. By all means, Volvo’s point of view
is that the ECU Ethernet communication it is the most significant measurement
variable to track. For the higher priority tasks, it holds pivotal importance. This is
more investigated under the section 5.3 Benchmarking.

Figure 5.6: XCP polling only the CPU l7oad in CANape

The CPU load in this case is measured as 43.6 % as shown in Fig. 5.6.

5.2 Synchronous Measurement: DAQ
In synchronous measurement, first the Master communicates to the Slave which data
should be sent for different events. And then the Slave replies the data to Master
until the Master says ’Measurement Stop’. Within the implementation for the high
level, XCP events should be pre-defined through DaVinci before writting them to
ECU memory. Hence, once they are called, the slave can understand of which event
the master is referring to. The XCP events are embedded into a2l file as well so
that CANape can send DAQ related commands from Master side automatically.

5.2.1 DAQ with 1 XCP event
During the implementation, the first hardship was to put parameters into one event
and conduct measurement. After succeeding measurement with one XCP event, the
goal was to set multiple events. The performance tests, therefore, were done via
testing with one, two and three XCP events. Pushing the ECU and the underlying
XCP network was one of the tests that was conducted. Moreover, the CPU load
increase was another topic, attracting the attention of the performance investigation,
as laid out in the research question.

As shown in Fig. 5.7, a full packed XCP DAQ request can be found. As
aforementioned, the design was restricted by the 255 bytes bottleneck and could not
utilize the max Ethernet MTU: 1500 bytes. It can be observed that there are 245
total measurement signals in one XCP event with a total size of 253 bytes and the
first 2 bytes are Ethernet Identification as defined in XCP.

29

5. Results

Figure 5.7: Measurement configuration of the XCP event

Figure 5.8: Signals chosen for measurement

30

5. Results

Measured signals are shown in Fig. 5.8. Overtly, the boolean signals are mea-
sured and has a physical value according to their assignment in their respective ECU
addresses. Fig. 5.9 is the Trace Window of CANape depicting the overall frames
being sent with their timestamps. The log depicts that the whole frame (255 bytes)
of XCP was used up. This is due to the 2 bytes overhead that the XCP appends to
the payload.

Figure 5.9: Measurement log of the XCP event

As pointed out before the bottleneck in the design, where the maximum CTO/DTO
size was 255 bytes, was also experienced empirically. We tried to send more than
255 bytes through one event. As expected, there were dropped frames. The result is
shown in Fig. 5.10 displaying the problem encountered. A rather nonverbose prompt
is on the Write Window of CANape stating the ECU overrun and the amount of
messages that were lost during the course of the measurement.

To clarify, the timings that were selected as 10ms, 20ms and 100ms were the
windows that were previously used in the CCP implementation. So as not to disturb
the coherency and consistency, the same cyclic periods were used. After stopping
the measurement process, another prompt called FIFO overflow arrives. There is
data loss experienced and some signals are omitted during the measurement.

The performance tests were conducted as well. As shown in Fig. 5.11, for
event 10ms, the largest ODT number is four which means at most send 1012 bytes
parameters within 10ms. But for event 20ms and event 100ms, 8 ODTs which
means 1518 bytes parameters are adaptable. Compared to CCP over CAN bus,
more data can be delivered efficiently. In addition, the CPU load went up till 45.7%
less than 50% which means the requirement and consuming of the processor is good.

31

5. Results

Figure 5.10: Measurement log of the XCP event

Figure 5.11: DAQ with 1 event

5.2.2 DAQ with two XCP events
In this scenario, two XCP events are configured. All the three configurations are
exploited 10ms with 20ms, 10ms with 100ms and 20ms with 100ms. The results
are displayed as Fig. 5.11.

Figure 5.12: DAQ with 2 events

32

5. Results

Three ODTs from 10ms and one ODT from 100ms worked without ECU being
overrun in this configuration. Furthermore, up to six ODTs via 20ms and 100ms
could be arranged.

5.2.3 DAQ with three XCP events
The events were already configured to be 10ms, 20ms and 200ms. Therefore, there
are three identical XCP events created. The results are produced, accordingly:

Figure 5.13: DAQ with 3 events

Similar results have been obtained. Where a configuration leading to six ODTs
would not cause an ECU overrun. However, 2-2-2 configuration would yield an ECU
overrun.

33

5. Results

5.3 Benchmarking
There was an interest to observe the CPU load without any Ethernet block and
XCP implementation. Hence, the remaining software blocks were the base software.
Originally, before this implementation there was not a similar network stack and
processing done at the ECU, hence it would be logical to expect the CPU activity
being increased on the ECU side. To address the question quantitatively, any addi-
tional modules were removed from the ECM4 structure and the BSW was compiled
without any XCP or Ethernet module. Only retaining the CCP and CAN modules
at the CSWC, the load was measured to be 38%. Clearly, CCP is less taxing on the
CPU load than the Ethernet implementation.

Figure 5.14: CPU load measured through T32

CPU load via Polling was increased by 18%, when the interrupt was scheduled
at 1.25ms instead of 10ms, from average 44.2% to 52.1%. This is considered to
be a good pay-off regarding Volvo’s perspective, even though the performance is
increased by 8 times, however the load has increased more than 12.5%.

On average, having additional DAQ setups do not hinder the CPU load. The
average of one, two or three XCP events appear to be around 45.5%. Nevertheless,
the CPU load has marginally decreased, while switching the measurement method
from Polling to DAQ. The decrease is 12.6%.

It holds a paramount importance to highlight the CCP’s shortcoming where the
amount of parameters that can be measured via DAQ are given in the Table 5.1.

These measurements are CCP measurements without using on-board A7/A8
units. Volvo Group has stated in multiple points that it would be good to minimize
the need of those, due to cost of the units. The further findings suggest that the XCP
performance even surpasses the maximized throughput, which CCP can output.

34

5. Results

Period Number of measured
parameters

10 ms 5
20 ms 15
100 ms 38

Table 5.3: CCP with maximum amount of variables that can be measured

Period CCP with A7/A8 XCP
10 ms 75 200
100 ms 400 545
20 ms N/A 540

Table 5.4: CCP via A7/A8 units vs XCP

The result of the juxtaposition of XCP over Ethernet and CCP heavily lays in
favor of XCP over Ethernet. As depicted by the Table 5.4, the amount of variables
that can be measured by the 10ms event achieved 167% increase by XCP over CCP.
The 100ms event, however, has gained a 36% boost. The differences are greater,
when comparing the true CCP i.e. without the A7/A8 devices with XCP, according
to Table 5.3 and 5.4.

5.4 Calibration
As mentioned before, calibration is the process of optimally tuning the ECU param-
eters [10]. In Volvo Group’s use case, that would be adding a signal parameter from
CANape to the list of calibration elements and adjusting that parameter.

The Fig. 5.15 was created via the calibration functionality of the tool CANape.
A random parameter was selected from the memory and the value was changed to
8041 in hex. The trace window depicts the breakdown of the command chain.

Figure 5.15: Calibration achieved through CANape

To explain the command chain, first "Short-Download" command is issued by

35

5. Results

the master denoting four points within the XCP frame. The first is the number of
data elements to download. The second is address extension which is zero in this
case. The third is address in hexadecimal value. The last one is the actual data to
be written to the address given in hex. Overtly, the first command underscores the
parameter residing in 807AADFCh and the value to be changed to 8041h. After the
command is executed, the slave responds as OK. Thereafter, in order to verify the
parameter change, the master issues the "Short-Upload" command. Basically, the
master would like to fetch the same address that the change was incurred. Slave’s
response is OK with the value of that address: 8041h. It indicates that the selected
parameter is altered successfully.

Figure 5.16: Calibration achieved through CANape

The above Fig. 5.16 clarifies that the signal called abco_AMB_PRES_POS_ERR_LIM
is incremented to 16 kPa. The highlight on the signal identifies that the parameter
has been successfully calibrated.

36

6
Conclusion

The XCP over Ethernet was realized within the use cases of Volvo Group. A next
generation ECU, ECM4, was powered via XCP over Ethernet. The ECU parameters
were measured and calibrated successfully via XCP packets that are sent along the
Ethernet link. The work was found to be promising and received positive responses
mostly due to faster measurement and calibration tasks and higher throughput i.e.
higher amount of parameters that can be fetched at the same time, both via syn-
chronous and asynchronous data acquisition methodologies.

To summarize, with 10ms periodicity, XCP achieves 2.67 times as many mea-
surement values as CCP achieves. With 100ms periodicity, XCP could fetch 1.37
times as many measurement signals as CCP.

The conclusion is dire, while looking at the CCP performance measurements
done without an A7/A8 unit. XCP accomplishes 39 fold increase than CCP for the
10ms periodic measurement requests. 13 fold increase is calculated for the case of
100ms periodicity between XCP and CCP.

87% of increase was reached for the sake of synchronous measurement with the
period of 10ms.

The greatest difficulty regarding the completion of the thesis, which can also
be used to bolster the argument of the three months delay to the delivery, was;
Familiarizing with the OEM solutions and integrating them into the Volvo Group’s
BSW, configurating the network stack via the Vector DaVinci Configurator and
enabling the Ethernet communication enabler, pin settings and speed grade settings
within the new generation ECM4.

6.1 Future Work
The following checkpoints can be achieved in order to take this project further. They
are omitted either for time restrictions or for environmental dependencies:

• Flashing or software download needs to be achieved via XCP over Ethernet.
This was omitted due to the time restrictions of the thesis project.

• Increasing the CTO/DTO packet sizes further from 255.
There were discussions with Vector’s German office that this is actually at-
teinable, however in the current DaVinci Configurator settings, the maximum
CTO and DTO packet sizes were set to 255. Given the Maximum Transmis-
sion Unit is 1500 [30], there is a potential resource to be used. The current

37

6. Conclusion

implementation only uses 0.17 of the total resource available by the MTU.

• CANape dependecy.
Volvo Group’s interests and the know-how at the time of the thesis did not
align with CANape. The powertrain teams were experienced to use the tool
VISION, hence the teams are not familiar with CANape. Furthermore, VI-
SION license is still ongoing for Volvo Group. The drawback is that VISION
did not support VN5610A during the time of the thesis, hence CANape had
to be used to attain measurement and calibration via XCP over Ethernet.

• Implementing seed/key exchange for security.
Seed/key exchange algorithm is of course supported by XCP. This was ne-
glected, due to the time constraints. Nevertheless, seed/key is a very signifi-
cant security functionality in ECU communication protocols that needs to be
implemented in Volvo Group’s point of view.

• Checksum support.
Checksum is useful to determine the changes in the memory. Otherweise, the
measurement and calibration tool has to check all the memory addresses one-
by-one in order to determine whether they have been changed or not.

• Timestamping coming from the ECU.
Timestamping is provided via the CANape. This is prone to errors due to the
added propagation delay. The change should be made so that the timestamp-
ing would be generated from the ECU, hence no offset between the time that
the data is generated and reaching to the master.

38

Bibliography

[1] Andre Rolfsmeier et al. “A New Calibration System for ECU Development”.
In: (2003).

[2] Andreas Patzer. “Optimize ECU parameters with XCP”. In: (2009).
[3] Pucha et. al. “Understanding Network Delay Changes Caused by Routing

Events”. In: (2007).
[4] Mark Sauerwald. CAN bus, Ethernet, or FPD-Link: Which is best for automo-

tive communications? url: http://www.ti.com/lit/an/slyt560/slyt560.
pdf.

[5] Kurose and Ross. “Computer Networking - A Top Down Approach”. In: (2000).
[6] Kim et al. “Performance Analysis of the TCP/IP Protocol Under UNIX Op-

erating Systems for High Performance Computing and Communications”. In:
(1997).

[7] Maping Li. “Performance Analysis of Wireless Network Maximum Throughput
Based on Network Coding”. In: (2017).

[8] Dridi et al. “Coupling Latency Time to the Throughput Performance Analysis
on Wireless CAN Networks”. In: (2006).

[9] Nguyen et al. “A cross-layer approach for improving WiFi performance”. In:
(2014).

[10] Andreas Patzer and Rainer Zaiser. XCP - The Standard Protocol for ECU
Development. 2016. url: https : / / assets . vector . com / cms / content /
application-areas/ecu-calibration/xcp/XCP_ReferenceBook_V3.0_EN.
pdf.

[11] Vasudeva Varma. “Software Architecture: A Case Based Approach”. In: (2009).
[12] Theory and Terminology - Master/Slave vs Peer-to-Peer. url: http://info.

bannerengineering.com/cs/groups/public/documents/literature/tt_
masterslave.pdf.

[13] url: https://stackoverflow.com/questions/13121531/multi-client-
server-common-way-for-2-way-connection-in.

[14] Wilfried Voss. Industrial Ethernet Guide - Client/Server vs Master/Slave.
url: https://copperhilltech.com/blog/industrial-ethernet-guide-
clientserver-vs-masterslave/.

[15] Konrad Etschberger. “Comparing CAN- and Ethernet-based Communication”.
In: ().

[16] H. Kleinknecht. CAN Calibration Protocol. 1999. url: https://automotivetechis.
files.wordpress.com/2012/06/ccp211.pdf.

39

http://www.ti.com/lit/an/slyt560/slyt560.pdf
http://www.ti.com/lit/an/slyt560/slyt560.pdf
https://assets.vector.com/cms/content/application-areas/ecu-calibration/xcp/XCP_ReferenceBook_V3.0_EN.pdf
https://assets.vector.com/cms/content/application-areas/ecu-calibration/xcp/XCP_ReferenceBook_V3.0_EN.pdf
https://assets.vector.com/cms/content/application-areas/ecu-calibration/xcp/XCP_ReferenceBook_V3.0_EN.pdf
http://info.bannerengineering.com/cs/groups/public/documents/literature/tt_masterslave.pdf
http://info.bannerengineering.com/cs/groups/public/documents/literature/tt_masterslave.pdf
http://info.bannerengineering.com/cs/groups/public/documents/literature/tt_masterslave.pdf
https://stackoverflow.com/questions/13121531/multi-client-server-common-way-for-2-way-connection-in
https://stackoverflow.com/questions/13121531/multi-client-server-common-way-for-2-way-connection-in
https://copperhilltech.com/blog/industrial-ethernet-guide-clientserver-vs-masterslave/
https://copperhilltech.com/blog/industrial-ethernet-guide-clientserver-vs-masterslave/
https://automotivetechis.files.wordpress.com/2012/06/ccp211.pdf
https://automotivetechis.files.wordpress.com/2012/06/ccp211.pdf

Bibliography

[17] Joakim Plate and Peter Fridlund. XCP OVER CAN AND ETHERNET ON
AUTOSAR. 2011. url: http://publications.lib.chalmers.se/records/
fulltext/140407.pdf.

[18] AUTOSAR Release Management. Specification of Module XCP. 2013.
[19] ATI Support. The Move from ASAM CCP to XCP Communication Protocol.

2016. url: https://www.kvaser.com/wp-content/uploads/2016/05/ccp-
and-xcp-papermay2016.pdf.

[20] Kim Lemon. Introduction to the Universal Measurement and Calibration Pro-
tocol XCP. 2003. url: https://saemobilus.sae.org/content/2003-01-
1205/#abstract.

[21] ASAM MCD-1 XCP. url: https://www.autosar.org/fileadmin/user_
upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.
pdf.

[22] AUTOSAR Release Management. Layered Software Architecture. 2017. url:
https://www.autosar.org/fileadmin/user_upload/standards/classic/
4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf.

[23] DaVinci Configurator Pro. url: https://www.vector.com/int/en/products/
products-a-z/software/davinci-configurator-pro/#c6343.

[24] ECU Calibration with CANape. url: https://www.vector.com/int/en/
products/products-a-z/software/canape/.

[25] Analyzing ECUs and Networks with CANalyzer. url: https://www.vector.
com/int/en/products/products-a-z/software/canalyzer/.

[26] Lauterbach TRACE32 Target Interface. url: https://www.nxp.com/docs/
en/user-guide/LAUTERBACHTRACE32UG.pdf.

[27] Product Overview. url: https://www.lauterbach.com/product-overview_
flyer_web.pdf.

[28] VN5610/VN5610A Ethernet/CAN Interface Manual. url: https://assets.
vector.com/cms/content/products/VN56xx/docs/VN5610_Manual_EN.
pdf.

[29] ASAM. “ASAM MCD-1 (XCP) Universal Measurement and Calibration Pro-
tocol”. In: (2017).

[30] Ethernet - Maximum transmission unit (MTU). url: https://gerardnico.
com/network/mtu.

40

http://publications.lib.chalmers.se/records/fulltext/140407.pdf
http://publications.lib.chalmers.se/records/fulltext/140407.pdf
https://www.kvaser.com/wp-content/uploads/2016/05/ccp-and-xcp-papermay2016.pdf
https://www.kvaser.com/wp-content/uploads/2016/05/ccp-and-xcp-papermay2016.pdf
https://saemobilus.sae.org/content/2003-01-1205/#abstract
https://saemobilus.sae.org/content/2003-01-1205/#abstract
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.vector.com/int/en/products/products-a-z/software/davinci-configurator-pro/#c6343
https://www.vector.com/int/en/products/products-a-z/software/davinci-configurator-pro/#c6343
https://www.vector.com/int/en/products/products-a-z/software/canape/
https://www.vector.com/int/en/products/products-a-z/software/canape/
https://www.vector.com/int/en/products/products-a-z/software/canalyzer/
https://www.vector.com/int/en/products/products-a-z/software/canalyzer/
https://www.nxp.com/docs/en/user-guide/LAUTERBACHTRACE32UG.pdf
https://www.nxp.com/docs/en/user-guide/LAUTERBACHTRACE32UG.pdf
https://www.lauterbach.com/product-overview_flyer_web.pdf
https://www.lauterbach.com/product-overview_flyer_web.pdf
https://assets.vector.com/cms/content/products/VN56xx/docs/VN5610_Manual_EN.pdf
https://assets.vector.com/cms/content/products/VN56xx/docs/VN5610_Manual_EN.pdf
https://assets.vector.com/cms/content/products/VN56xx/docs/VN5610_Manual_EN.pdf
https://gerardnico.com/network/mtu
https://gerardnico.com/network/mtu

	List of Figures
	List of Tables
	Introduction
	Aim
	Research Questions

	Motivation
	Thesis Outline

	Technical Background
	Network Topologies
	E2E Throughput and Frame Rates Per Second
	CPU Load
	Background on Volvo's Measurement and Calibration
	CCP (CAN Calibration Protocol)
	CAN (Controller Area Network) Bus
	Ethernet

	XCP (Universal Measurement and Calibration Protocol)
	XCP Protocol Layers
	XCP Transport Layer
	Polling vs DAQ (Data AcQuisition)

	Software Components Platform
	AUTOSAR
	AUTOSAR Layer Infrastructure

	Component stack for XCP over Ethernet

	Problem Description
	Tools
	Software Tools
	DaVinci Configurator
	CANape
	CANalyzer
	Trace32: T32
	VISION Software
	A2l file
	Hardware Tools
	VN5610A - Ethernet/CAN Interface

	Results
	Asynchronous Measurement: Polling
	Synchronous Measurement: DAQ
	DAQ with 1 XCP event
	DAQ with two XCP events
	DAQ with three XCP events

	Benchmarking
	Calibration

	Conclusion
	Future Work

