
Parametric frequency conversion in two
coupled superconducting resonators

Master’s thesis in Nanotechnology

ANDREAS BENGTSSON

Department of Microtechnology and Nanoscience
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2015





Master’s thesis 2015:05

Parametric frequency conversion in two coupled
superconducting resonators

Andreas Bengtsson

Department of Microtechnology and Nanoscience
Quantum Device Physics Laboratory
Experimental Mesoscopic Physics

Chalmers University of Technology
Gothenburg, Sweden 2015



Parametric frequency conversion in two coupled superconducting resonators
Andreas Bengtsson

© Andreas Bengtsson, 2015.

Supervisor and examiner:
Jonas Bylander

Master’s Thesis 2015:05
Department of Microtechnology and Nanoscience
Quantum Device Physics Laboratory
Experimental Mesoscopic Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Micrograph of the two coupled superconducting resonators used in this
project.

Typeset in LATEX
Printed by Reproservice
Gothenburg, Sweden 2015

iv



Parametric frequency conversion in two coupled superconducting resonators
Andreas Bengtsson
Department of Microtechnology and Nanoscience
Chalmers University of Technology

Abstract
In this work, we have designed, fabricated, and characterized two coupled supercon-
ducting microwave resonators.

Using this system, we investigate a parametric frequency conversion process in
the microwave regime. We modulate the resonance frequency at the difference fre-
quency between two modes, i.e. by three-wave mixing. An incoming signal, resonant
with one of the modes, is then converted to the other mode. We demonstrate this
behavior in several different schemes, e.g. using one or two modulation tones. We
report a conversion efficiency of 50%, meaning that 50% of the incoming wave am-
plitude gets converted to the other frequency.

Finally, we discuss the possibilities to use such a system in a quantum computing
architecture.

Keywords: Frequency conversion, Parametric, Superconducting, Coupled, Resonators,
Microwave, Beam splitting.
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1
Introduction

Physicists are driven by curiosity, curiosity about how the universe (or parts
of it) works and how it can be described by a mathematical model. But it
does not stop there: the next question is, what can we predict from these
models and what happens if we do this or that? The original idea behind

the work presented in this thesis arose from just a question like that. We have an
idea of creating and manipulating coupled photonic condensates, but to reach that
goal, we need to start somewhere.

This thesis is just that start – we present the design and fabrication of a first
prototype. We carried out initial characterizations, and we also used the device to
perform parametric frequency conversion, which is explained more later.

First, some background of quantum physics will be presented, followed by a few
applications, and finally, the goals of the project in this thesis will explained. Briefly,
the goals are to design and fabricate two coupled superconducting resonators in the
microwave regime, and to characterize such a system. Based on previous work in our
field, we chose to perform parametric frequency conversion to suffice as a verification
that the two coupled resonators perform as expected. We delimit the work in this
thesis to that goal, and do not touch upon the subject of photonic condensates.

1.1 Quantum physics
The world of quantum physics contains several fundamental, non-intuitive phenom-
ena. To think about these and utilize them in experiments one needs to try to
develop at least some intuition by creating analogues and methods to visualize the
theory. Some of the fundamental aspects of quantum mechanics are:

1. Quantization. Energy is quantized. This was discovered by Planck in 1900
[2], and elaborated on by Einstein in 1905 [3]. It means that energy comes
in small packages and one example is the electron orbitals around the atomic
nucleus in Bohr’s model. The electronic energy is quantized in the sense that
only certain radii of the orbitals are allowed. An analogue scaled to a macro-
scopic world could be that the possible speeds of which you could drive your
car would only be to be 10, 20, 30 km/h, etcetera. You might have noticed the
absence of 0 km/h. This was on purpose since in quantum mechanics nothing
can be completely still or empty, there will always be vacuum fluctuations.
But since energy is quantized in very small steps we do not notice it in our ev-
eryday life. This is why you usually need small features and low temperatures
to observe quantum mechanical effects.
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CHAPTER 1. INTRODUCTION

2. Superposition. In the quantum world, a system can be in two or more states
at the same time. When you try to observe which state it is in, you will force
the system to choose one of the states and this will be what you measure.
This implies that your system is non-deterministic, i.e., even if you repeat an
experiment using the exact same parameters, you can get a different result.
Using the same analogue as before, it would be like the car was driving at both
20 and 30 km/h, at the same time. Then, when you measure what speed it is
actually driving, you will force the car to choose one of the speeds and this will
be what you measure. Superposition is one of the fundamental reasons why a
quantum computer can achieve speed-up beyond what is classically possible.

3. Entanglement. Not only can a system be in two states at the same time, it
can also be entangled with another system, and what you do to one of them,
will affect the other one instantaneously, independently of the distance. The
analogue would now be two cars, which are entangled in a certain way in a
superposition between 20 and 30 km/h. Let us then measure the speed of car
1, and if the result is 20 km/h, then car 2 is automatically driving at 30 km/h,
or vice versa. One might think that this would enable transfer of information
faster than the speed of light, but this is not the case, since the person with
the other particle must know exactly what you did to your particle, and hence
a classical communication channel is required.

4. Particle-wave dualism. The fact that we can choose to look upon a object
as either a particle or a wave, is both non-intuitive and very useful. Depending
on the situation, e.g. when describing how light travels, it is advantageous to
see it as a wave, but as soon as it collides with matter we change to the particle
description with an associated position and momentum.

Eventually, we would like to perform our experiments in the quantum regime. How-
ever, most of the measurement results in this thesis can be explained by a classical
model. But the road to the quantum regime is rather straightforward and will be
pointed out when we discuss the outlooks of this project.

1.1.1 Quantum optics
Classical optics, the study of how light behaves in different media, e.g. air, glass
and water, and how it interacts with matter, is usually what we think of when we
hear the word optics. We can do similar studies, but in the quantum regime instead,
meaning how single particles of light (photons) interact with matter (single atoms).
This field of study is called quantum optics [4], and has been a hot topic in research
for the last 100 years or so. Historically, one has studied the interaction between
laser light in the optical regime, and ordinary atoms.

Isolating and locating single atoms is hard. However, since the discovery of
superconducting qubits [5], which is an artificial nanoscale system with properties
similar to real atoms, scientists are able to place a single "atom" at an arbitrary
position. This enables very precise control over the atom and its couplings to other
systems, e.g. light or other atoms [6, 7].

2



1.1. QUANTUM PHYSICS

a) b)

Figure 1.1: Illustration of the principle behind two optical devices. a) Beam
splitter, one input that is split into two outputs. The color of the light is preserved
b) Frequency converter, one input and one output, but the light is split into two
different colors.

Many experiments in the settings of quantum optics utilize resonators for con-
trolling light. A resonator can be thought of as a trap for light. When light is
incident on the resonator, it gets absorbed, and stays there for some time before it
leaks out again. One example with optical light is the Fabry–Pérot cavity, which
consists of two parallel mirrors where light can bounce back and forth. The mirrors
need to be of high quality, otherwise the light will just scatter, and after a few round
trips, the light is lost. The distance between the two mirrors sets the frequency of
which the light is bouncing back and forth (the number of round trips in one second),
and is called the resonance frequency of the resonator.

In this work however, we use microwaves instead of optical light, and the res-
onators are therefore designed differently. They are fabricated on a small chip (5x7
mm2), and there are no real mirrors in the sense of what we are used to – instead we
use electrical circuits that are equivalent to the optical case. To make these circuits
with very high qualities, we use superconductors, due to their low losses.

1.1.2 Quantum computing
A classical computer uses bits, i.e. two-level systems that are either 0 or 1, to
encode information. However, if we have a quantum two-level system (qubit), we
can use the phenomenon of superposition, to make the qubit be both in the 0 and
the 1 state, at the same time [8]. This can be utilized to speed up calculations, if
one can find an algorithm to transfer the problem onto the quantum system and
taking advantage of its quantum properties. The two main research areas relating
to quantum computing are: to find smart algorithms, and to build a controllable
system with sufficiently many qubits of high quality [9].

It is possible to divide all qubits into two different categories: stationary qubits,
and flying qubits. A flying qubit is a two-level system that is moving in space.
Usually it is light (photons), but one could think of using also sound (phonons)
[10]. The information is then encoded into e.g., the polarization of the light, or
the frequency of it. The advantage of this method is that is easier to transfer the
information around, since the qubits themselves are photons that move with the
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CHAPTER 1. INTRODUCTION

speed of light, and it is possible to manufacture optical fibers with very low loss.
However, photons does not like to interact with other photons, making it more
difficult to actually perform calculations with them.

A stationary qubit is the opposite of a flying qubit. It is a two-level system that is
fixed in a spatial location, and then controlled by some source of light usually, e.g. a
laser or a microwave generator. Examples of stationary qubits are the transmon [11],
quantum dots [12], and NV-centers in diamonds [13]. These can be easier to control,
since you always know where the qubits are.

Another application of qubits is quantum simulation. On a classical computer
it is only possible to simulate the simplest atoms and molecules, but with a clever
design of a network with qubits, one can simulate more advanced systems, in a much
shorter time [14].

1.2 Goals of this project
The goals of this project are to build two coupled superconducting resonators, and
investigate parametric frequency conversion in such a device. This device works in
the microwave regime, at frequencies between 4 and 8 GHz, but analogues can be
made to the optical regime, for simpler understanding. If we, for example, would
send blue light into such a device, we can get red light out, or a bit of both.

This can also be done in a quantum regime, where we would send in just one blue
photon, which we can coherently swap between blue and red. We could even put it
into a superposition of blue and red, which means that it will have both colors at
the same moment. It is not until we observe its color, that it determines what color
it has. This experiment was already done by Zakka-Bajjani, et al. in 2011 [15], but
in a slightly different system. They used two modes in one resonator, whereas we
will use the two modes of two coupled resonators in this project.

There are at least three different applications for a device like this. First, it can be
used in the context of (quantum) optics. Because, as we will see later, the frequency
conversion is described by the same equations as an optical beam splitter. A beam
splitter is a device which, in the classical regime, can be used to split incoming light
into two paths, see Figure 1.1 for a comparison between the beam splitter and the
frequency converter. However, in the quantum regime with single photons – it will
not split the photon, it will force it to go either one way or the other. In our device,
it will not be two output paths, it will be two output frequencies.

Secondly, the device can be used directly for quantum computing, as flying
qubits. If a photon (flying qubit) is incident on our device, we can do gates on
this qubit by applying different pump schemes, e.g. flipping the state from 0 to 1,
or putting it in a superposition of 0 and 1.

Thirdly, it can mediate information in a quantum computer using stationary
qubits. One could, for example, use this device to first create entanglement between
one stationary qubit and the resonator, and then to transfer the state of the resonator
to a second stationary qubit, hence creating entanglement between the two qubits.

4



2
Theoretical descriptions

In this chapter we introduce the theory that describes our devices and that ex-
plains the results of our measurements. Our focus is mainly on the physics
of two coupled resonators, together with parametric frequency conversion, in-
tended to create an understanding of the measurements performed in this work.

These derivations will be explained more in detail, while the theory behind concepts
such as superconductivity and microwave resonators will only be briefly outlined.
Interested readers, or those new to the subject, can refer to basic textbooks, such as
[16, 17]. We explain the bigger picture, and derive only the most important parts,
and point out where to find more information and full derivations as we go along.

2.1 Superconductivity

As the word suggests, superconductivity is a phenomenon where the conductivity is
very large. In fact it is infinite for DC (low frequencies), meaning exactly zero resis-
tance. Superconductivity was first observed by H. K. Onnes in 1911, using mercury
[18]. When the mercury was cooled down below a certain critical temperature Tc,
he observed an abrupt decrease in resistance, by several orders of magnitude. As it
turns out, this is not the only effect that happens in a superconductor, it also expels
all magnetic field from its interior, called the Meissner effect [19]. For the first half
of the 20th century, despite enormous efforts; there existed no microscopic theory
for superconductivity, until in 1957 when Bardeen, Cooper and Schrieffer published
the so called BCS-theory [20], eventually yielding them a Nobel-prize. In principle,
their theory posits that two electrons inside the material can pair up due to an
attractive interaction, and create a so-called Cooper-pair. Cooper-pairs, in contrast
to electrons, are bosons; meaning that below a critical temperature, can condense
into a single state and be described by a single wavefunction or order parameter
Ψ = √nseiθ, where ns is the density of Cooper pairs and θ the phase of the con-
densate. The Cooper-pairs can move without scattering inside the superconductor,
hence giving rise to zero resistivity. More information about the BCS-theory and
two phenomenological models, the London theory and the Ginzburg-Landau theory,
can be found in [16]. The two phenomenological theories are very well suited for
creating an understanding and intuition of how a superconductor can be used.
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CHAPTER 2. THEORETICAL DESCRIPTIONS

2.1.1 The Josephson effect
The Josephson effect is a phenomenon in a system of two superconductors, coupled
by a tunneling barrier, where two coupled electrons (Cooper-pairs) tunnel through
the barrier, without dissipating energy; hence it is possible to draw a current trough
this barrier without applying any voltage across it. This was first derived theoret-
ically by Brian Josephson in 1962 [21], and observed experimentally by Anderson
and Rowell the year after [22]. In the famous Feynman Lectures on Physics [23],
Richard Feynman makes an elegant and more simplified derivation of the Josephson
effect, which we outline in Appendix B. The result is two relations between current,
voltage and phase across the junction

I = Ic sinϕ, (2.1)

V = ~
2e

dϕ
dt , (2.2)

where Ic is the critical current of the junction, V is the voltage and ϕ the phase
difference across the same. If we differentiate (2.1) and use it together with (2.2)
we arrive at

V = ~
2e

1
Ic cosϕ

dI
dt . (2.3)

Recalling the voltage-current relation for an inductance, V = L dI/ dt, we can define
the Josephson inductance from (2.3) as

LJ = ~
2e

1
Ic cosϕ (2.4)

However, the Josephson relations can be further extended to include more general
Bose-Einstein condensates [24]. It has been observed, for example, in superfluid
helium-4 [25], laser-cooled atoms [26], and exiction-polariton systems [27]. If one
were able to create two coupled photonic condensates, there should also be a photonic
Josephson current, obeying the Josephson relations.

2.1.2 SQUID
A superconducting quantum interference device (SQUID) consists of two Josephson
junctions in a loop, as illustrated in figure 2.1. Assuming identical junctions, i.e.
the same critical current, we can modify (2.1) to

I = 2Ic cos
(
π

Φ
Φ0

)
sinϕ, (2.5)

where Φ is the magnetic flux through the SQUID loop and Φ0 = h/(2e) is the
magnetic flux quantum. For a symmetric SQUID one usually drops the factor 2 and
redefines Ic to mean the critical current of the SQUID (two impedances in parallel).
The most important feature of the SQUID is that the effective critical current can
be tuned by changing the magnetic flux through the loop. This also implies that
the formula for the Josephson inductance gets modified to

LJ = ~
2e

1
Ic| cos(πΦ/Φ0)| cosϕ. (2.6)
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F

Figure 2.1: Illustration of a SQUID. It consists of two Josephson junctions (rep-
resented as squares with a cross) in parallel, effectively forming a loop. Φ denotes
the magnetic flux through this loop.

The SQUID was first demonstrated in 1964 by Jaklevic et al. [28], and for a com-
prehensive review, see [29].

The fact that the SQUID’s current and voltage is sensitive to a small fraction of
a single flux quantum is used in several different applications today. First of all, it
is a very sensitive magnetometer with applications in medicine, e.g. as detectors in
MRI and MEG. Since the inductance of the SQUID is highly non-linear due to the
cosine dependence of ϕ, it is used to modify a harmonic oscillator into an anharmonic
one, introducing the ability to isolate only two energy levels of the oscillator, hence
creating a quantum bit or qubit. Qubits are the fundamental building blocks for
quantum computers, and superconducting qubits are one of the most promising
architectures for building such a system [5, 30].

Due to the geometry of the SQUID, there is also some capacitance in parallel with
the inductance from equation (2.6). This creates an LC resonator, with resonance
frequency around 40 GHz. We need to operate below this frequency if we want the
SQUID to behave as an inductor.

2.2 Transmission lines and resonators
A transmission line is used to guide electromagnetic waves (light) from one point to
another. There are many different types of transmission lines, the most common ones
being the coaxial cable, microstrips, and co-planar waveguides. A transmission line
can be described by the telegraph equations [17], which uses that the transmission
line carries some inductance per unit length, L0, and some capacitance per unit
length, C0. The impedance seen by an incoming wave sees, is called the characteristic
impedance of the transmission line, and is denoted by Zc. For a lossless transmission
line we have Zc =

√
L0/C0.

2.2.1 Resonators
Many experiments in quantum computing and quantum optics using superconduct-
ing qubits also utilize a superconducting resonator to store photons [31, 32], achieve
strong coupling to qubits [6, 33] and parametrically amplify signals with quantum-
limited noise [34].

When working with something that oscillates, it is always good, from a peda-
gogical point of view, to make the analog with an ordinary mechanical pendulum,

7
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Figure 2.2: An electrical resonator coupled to a transmission line. The resonance
frequency is given by ωr = 1/

√
LRCR. RR describes the losses inside the resonator.

e.g. a swing. A simple pendulum, i.e. a massive object attached to a massless
rod, is described for for small oscillations by the differential equation of a harmonic
oscillator

d2x

dt2 + 2Γ dx
dt + ω2

rx = F (t), (2.7)

where x is the angle of the pendulum relative to its resting position, Γ is the damping
of the system, ωr the resonance frequency and F (t) is an external driving force. In
the case of a pendulum we can express the resonance frequency as ω2

r = g
l
where g

is the acceleration due to gravity and l is the length of the rod.
However, in our case ωr is the resonance frequency of an electrical circuit, the

damping Γ is the total loss rate of signal, both external and internal, and the driving
force F (t) is the applied signal. External loss, Γ0, refers to the signal that leaks back
to the transmission line used to probe the resonator, whereas internal loss, Γi, is
signal lost inside the resonator due to some imperfections. When Γ0 > Γi, the
system is overcoupled, meaning that more signal is leaking out to the transmission
line, than what is lost inside. Γ0 = Γi is called critically coupled, and Γ0 < Γi is
called undercoupled. Usually we prefer to work in the overcoupled regime, since the
signal that leaks out into the transmission line is measurable.

An electrical resonator can be described as an inductance LR in parallel with
a capacitance CR, see Figure 2.2. The resonance frequency is then given by ωr =
1/
√
LRCR. To model the internal loss, we add a resistor RR to the circuit. To

probe the resonator we add a capacitance Cout in series with the resonator, this
gives the external loss rate. Instead of talking of loss rates, one can instead use
quality factors. The quality factor is the amount of oscillations needed for the signal
to decrease to 1/e of its inertial value. We define the internal and external quality
factors as Qi = fr/2Γi and Qe = fr/2Γ0, respectively, and relate these to the circuit
parameters in the following way

Qi = frRR(CR + Cout), (2.8)

Qe = CR + Cout

Z0C2
outfr

. (2.9)

If we send in a signal to the resonator described above, we can measure the
reflection of this signal, S11. The reflected signal is equal to

S11 = Zr − Z0

Zr + Z0
= ∆− i(Γi − Γ0)

∆− i(Γi + Γ0) = ∆2 + Γ2
i − Γ2

0 + i2∆Γ0

∆2 + (Γi + Γ0)2 , (2.10)

8
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wg g

Figure 2.3: A schematic of the co-planar waveguide. w is the width of the center
conductor and g is the gap between the center conductor and the ground planes.

where Zr is the impedance of the resonator, Z0 the characteristic impedance of the
transmission line (50Ω), and ∆ the detuning from the resonance frequency fr.

2.2.2 Co-planar waveguides
So far we only talked about transmission lines and resonators in terms of theory,
assuming there is a system described with the equations in previous sections. Here,
we introduce the transmission line used in this work, namely the co-planar waveguide
(CPW) [35], which has been used extensively in both normal and superconducting
circuits. The most simple description of the CPW is to have a coaxial cable, and
take a cross-section through the center, i.e. it is a center strip of metal of width w,
surrounded by two ground planes with some gap distance, g, to the center conductor,
as shown in Figure 2.3. These two widths determine the inductance and capacitance
per unit length.

As we saw before, a transmission line has a characteristic impedance Zc. The
most common Zc for microwave equipment is 50Ω, thus we need to design our CPW
to also have this to avoid unwanted reflections at the interfaces. The characteristic
impedance is given by Zc =

√
L0/C0, where L0 and C0 are the inductance and

capacitance per unit length of the CPW, respectively. The phase velocity of the
light in the CPW is given by vph = 1/

√
L0C0.
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Figure 2.4: λ/4 resonator based on a CPW. a) Illustration of the resonator. At
the top is the coupling capacitor, and at the bottom the center conductor is shorted
to the ground planes. Not to scale, d is usually orders of magnitude larger than both
the width of the center conductor and the width of the gaps. b) Electric potential
as a function of the position inside a λ/4 resonator. c) Equivalent circuit close to
resonance.

To create a resonator out of a CPW, we ground it at one end, and put a capacitor
at the other, shown in Figure 2.4 a. The distance, d, between these two points is
then equal to a quarter of the wavelength, corresponding to the resonance frequency,
Figure e 2.4 b. Hence, we call it a λ/4 resonator. Close to resonance, we can treat
the resonator as a lumped-element LC-resonator, Figure 2.4 c, with the resonance
frequency

fλ/4 = vph

4d = 1
4d
√
L0C0

= 1
2π
√
LrCr

, (2.11)

where LR = 8dL0/π
2 and CR = 2dC0/2 are the lumped element equivalent induc-

tance and capacitance of the resonator, respectively. RR corresponds to the losses
inside the resonator.

Since the resonance frequency is also dependent of L0 and C0, which are deter-
mined by the design of the CPW, the design will determine both the characteristic
impedance and the resonance frequency of the resonator.

2.2.3 Tunable resonators

The resonators described above are fixed in frequency, in some applications this
is sufficient. However, in this project, a tunable resonance frequency is necessary
for two reasons: first, we should be able to tune it statically to a desired working
frequency. Secondly, it allows for fast modulation around this working frequency.
This modulation can even be faster than the resonance frequency, if desired.

To introduce these properties we add a SQUID at the grounding point. From
an electrical circuits point of view this will add an inductance in series with the
LC-resonator, when close to resonance. Since the resonance frequency is dependent
on the total inductance, it is now also dependent on the magnetic flux through the
SQUID. The resonance frequency of the resonator terminated by the SQUID is well

10
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approximated by [36, 37]

fr(F ) ≈ 1
2π
√

(Lr + Ls(F ))Cr
≈

fλ/4
1 + γ0/| cos(F )| , (2.12)

where F = πΦdc/Φ0, and fλ/4 is the bare resonance frequency, meaning the resonance
frequency that the resonator would have without the SQUID. γ0 is the inductive
participation ratio, defined as γ0 = LJ/Lr, the Josephson inductance of the SQUID,
divided by the inductance of the resonator.

Adding a SQUID to the resonator not only enables frequency modulation, both
statically and dynamically, but it also adds a non-linearity to the system due to
the cosine dependence of the phase ϕ across the junction in equation (2.6). By
Taylor expanding this term to second order, we get a cubic term in the equation
of motion for the oscillator, equation (2.7). This non-linearity is called the Duffing
non-linearity, since it gives the resonance the shape of a Duffing oscillator [38]. The
Duffing term introduces a frequency shift of the resonance frequency, depending on
the current trough the SQUID, which is proportional to the number of photons in
the resonator. The frequency shift is quantified with the parameter α, which is the
frequency shift per photon in the resonator. As hinted above, it also changes the
lineshape of the resonance, depicted and analyzed more in [39].

2.2.4 Two coupled resonators
If we couple two resonators, (A) and (B), with the same resonance frequency to-
gether, two new resonances emerge symmetrically around the original resonance
frequency, this is called hybridization. The two new resonance frequencies, f1 and
f2, are given by [32]

f1,2 = fA + fB
2 ±

√√√√J2 +
(
fA − fB

2

)2

, (2.13)

where fA and fB are the resonance frequencies of each resonator, and J is the
coupling strength between them. In this work we denote the higher mode 1. When
the detuning |fA− fB| is much larger than the coupling J , equation (2.13) gives the
two original frequencies, fA and fB, hence there is no interaction between the two
resonators. For zero detuning, the two resonance frequencies are split by 2J .

For two tunable resonators, we use equation (2.12), together with (2.13), to get
an expression for the resonance frequencies as a function of magnetic flux in each
SQUID.

To go from an equivalent electrical circuit, Figure 2.5, for the two coupled res-
onators to something we can measure, i.e. S-parameters, we use the ABCD-matrices.
The advantage of using them is that if we want to cascade several two-port networks,
we just use matrix multiplication. The ABCD-matrix relates the currents and the
voltages of a two-port network in the following way(

V1
I1

)
=
(
A B
C D

)(
V2
I2

)
. (2.14)
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Figure 2.5: Equivalent electrical circuit for two coupled λ/4 resonators each ter-
minated by a SQUID, close to resonance. 1 and 2 denotes the reference ports used
in the ABCD-matrix calculation.

We draw the equivalent circuit for the two coupled resonators as in Figure 2.5. Each
series impedance Z we write as(

A B
C D

)
=
(

1 Z
0 1

)
, (2.15)

and for each shunt admittance Y(
A B
C D

)
=
(

1 0
Y 1

)
. (2.16)

For the two coupled resonators this yields the following ABCD-matrix(
A B
C D

)
=
(

1 1/iωCout
0 1

)(
1 0
YA 1

)(
1 1/iωCc
0 1

)(
1 0
YB 1

)(
1 1/iωCout
0 1

)
,

(2.17)

with YA/B = 1/iω(LR + L
A/B
J ) + iωCR + 1/RR, assuming identical resonators, and

where LA/BJ are the Josephson inductances of each SQUID depending on the flux
through the loop, as given in equation (2.6). The coupling strength between the two
resonators are set by the capacitance Cc.

The ABCD-matrix can then be converted to S-parameters using simple relations
[17], e.g. the reflection at resonator (A) is

SAA = A+B/Z0 − CZ0 −D
A+B/Z0 + CZ0 +D

, (2.18)

where Z0 is the impedance of the transmission lines used to probe the resonators.
It might be interesting to know how the electric field of the two modes are

distributed inside the resonators, when the detuning is zero. Following the method
developed in [40], and expanded to two resonators in [41], we arrive at the plot in
Figure 2.6. We see an odd and an even mode, with slightly different frequencies.
The derivation leading up to these results are performed in Appendix C.
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Figure 2.6: Mode structures for two identical, coupled, λ/4 cavities, each termi-
nated by a SQUID, c.f. Figure 2.5. Plotted is the superconducting phase, as a
function of position inside the resonators, in units of d, the length of one resonator.
The coupling capacitor Cc is located at x = 0.

2.3 Parametric pumping

Parametric pumping refers to the pumping (modulation) of one of the parameters
of a system. In the case with a resonator we have two possibilities, to modulate
the damping or the resonance frequency. When placing a SQUID at the end of the
resonator we get a resonator with a tunable resonance frequency. By modulating
the magnetic field with a sinusoidal signal, we get a modified version of equation
(2.7):

d2x

dt2 + 2Γ dx
dt +

(
ω2
r + ε2 cos(ωpt)

)
x− αx3 = F (t), (2.19)

where ωp is the angular frequency that modulate the resonance frequency, ε is the
amplitude of the variation, and α is the Duffing term. This problem can, in some
situations, be treated via quantum network theory [42, 43] or the method of slow
variables [44]. Slow variables refers to that the amplitude of the oscillations in the
resonator is changing much slower than the oscillations themselves.

Another solution to this problem was developed by Wustmann and Shumeiko
[40]. They use a resonator field amplitude formalism, where they describe the am-
plitude of the field inside the resonator with a parameter A. Then, they derive a
simplified Langevin equation of the resonator, when using various parametric pump-
ing conditions. For example, they treat the cases of parametric amplification and
parametric oscillations. For a comparison between the different methods for treating
parametric pumping, see [45].

2.3.1 Frequency conversion
The theory for parametric effects with just one resonance can be further developed
to a multimode case, where the signal and the idler lie in two different modes, in
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contrast to the single-mode case where they are at the same frequency. This can be
utilized for multimode parametric amplification [46], where power is converted from
one frequency to another via the nonlinear interaction. In a quantum picture, a
pump photon splits into two, one in each mode, fp = f1 + f2, i.e. three-wave mixing
or parametric down-conversion.

One could also pump at the difference frequency between two modes fp = f1−f2,
rather than the sum as described above. This will lead to parametric up-conversion,
where the pump photon and a photon at mode 1 will combine and create a photon
at mode 2, or vice versa. As we will see, the outcome of this is very similar to
that of an optical beam splitter, but instead of splitting an incoming beam into two
spatially separated beams, the parametric conversion splits the incoming wave into
two frequency-separated waves.

Here, we derive the input-output equations for the parametric frequency conver-
sion, using the resonator field amplitude formalism. We define the pump frequency
as fp = f1−f2 +2δ where f1 > f2 are the cavity eigenmodes. The relations between
the original fields, aj, inside the resonator, and the slow amplitudes, Aj, are

a1(t) = A1(t)e−i2π(f1+δ)t, (2.20)
a2(t) = A2(t)e−i2π(f2−δ)t. (2.21)

Thus the dynamical equations for the field inside the cavities Aj are

iȦ1 + ζA1 + i(Γ(1)
i + Γ(1)

0 )A1 + εA2 =
√

2Γ(1)
0 B1(t), (2.22)

iȦ2 + ζA2 + i(Γ(2)
i + Γ(2)

0 )A2 + εA1 =
√

2Γ(2)
0 B2(t). (2.23)

We see that A2 is coupled to A1 via the parametric pump strength ε, and vice versa.
ζj are the pump-mode detunings including the Duffing non-linearity,

ζ1 = δ + α1|A1|2 + 2√α1α2|A2|2, (2.24)
ζ2 = δ + α2|A2|2 + 2√α1α2|A1|2. (2.25)

Bj are the slow amplitudes of the input-fields given by

b1(t) = B1(t)e−i2π(f1+δ)t, (2.26)
b2(t) = B2(t)e−i2π(f2−δ)t, (2.27)

where bj are the original input fields. The slow amplitudes of the output fields Cj
are expressed as,

Cj(t) = Bj(t)− i
√

2Γ0
jAj(t). (2.28)

Now, consider that the input signal is detuned by ∆ from f1 + δ and f2− δ, and
that the system has reached its steady state, meaning Ȧj = 0. This modifies (2.22)
and (2.23) to

(∆ + ζ1 + i(Γ(1)
i + Γ(1)

0 ))A1 + εA2 =
√

2Γ(1)
0 B1, (2.29)

(∆ + ζ2 + i(Γ(2)
i + Γ(2)

0 ))A2 + εA1 =
√

2Γ(2)
0 B2. (2.30)
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These two coupled equations have the solution
(
A1
A2

)
= 1

Det

(
∆ + i(Γ(2)

i + Γ(2)
0 ) + ζ2 −ε

−ε ∆ + i(Γ(1)
i + Γ(1)

0 ) + ζ1

)√2Γ(1)
0 B1√

2Γ(2)
0 B2

 ,
(2.31)

with the determinant Det = (∆ + i(Γ(1)
i + Γ(1)

0 ) + ζ1)(∆ + i(Γ(2)
i + Γ(2)

0 ) + ζ2) − ε2.
Doing input-output theory we arrive at(

C1
C2

)
= V̂

(
B1
B2

)
, (2.32)

with the input-output matrix elements

V11 = 1− 2iΓ(1)
0 (∆ + i(Γ(2)

i + Γ(2)
0 ) + ζ2)

Det , (2.33)

V22 = 1− 2iΓ(2)
0 (∆ + i(Γ(1)

i + Γ(1)
0 ) + ζ1)

Det , (2.34)

V12 = i2ε
√

Γ(1)
0 Γ(2)

0

Det , (2.35)

V21 = V12. (2.36)

These are exact non-linear formulas containing the Duffing shift but not the pump-
induced frequency shift of δ [40, 39].

Assuming weak signals and neglecting the Duffing correction, ζ1 → δ and ζ2 →
−δ, we can express equations (2.33)-(2.36) as

V11 = (∆ + δ + i(Γ(1)
i − Γ(1)

0 ))(∆− δ + i(Γ(2)
i + Γ(2)

0 ))− ε2

(∆ + δ + i(Γ(1)
i + Γ(1)

0 ))(∆− δ + i(Γ(2)
i + Γ(2)

0 ))− ε2
, (2.37)

V22 = (∆ + δ + i(Γ(1)
i + Γ(1)

0 ))(∆− δ + i(Γ(2)
i − Γ(2)

0 ))− ε2

(∆ + δ + i(Γ(1)
i + Γ(1)

0 ))(∆− δ + i(Γ(2)
i + Γ(2)

0 ))− ε2
, (2.38)

V12 = i2ε
√

Γ(1)
0 Γ(2)

0

(∆ + δ + i(Γ(1)
i + Γ(1)

0 ))(∆− δ + i(Γ(2)
i + Γ(2)

0 ))− ε2
, (2.39)

V21 = V12. (2.40)

These formulas contain two resonances, at ∆ = ±δ, i.e. the two original eigenmodes
hybridize into four because of the pumping. At δ = 0 they would formally cross,
but finite ε produces an avoided crossing. At δ = 0 and in the absence of internal
loss, the distance between the hybridized modes is equal to 2ε. At this point the
frequency conversion is perfect, meaning |V11| = |V22| = 0 and |V12| = |V21| = 1,
however, a finite internal loss will reduce the efficiency. The two cases are shown in
figure 2.7 a. We define the efficiency of the parametric frequency conversion as the
maximum value of the magnitude of V21. For lossless resonators, it is always unity,
but decreases for finite internal loss. In Figure 2.7 b, we plot the efficiency as a
function of the ratio between internal and external loss rates.
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Figure 2.7: Matrix elements for frequency conversion. (a) Zero and finite internal
loss. Blue lines are for Γ(1)

i = Γ(2)
i = 0, while red represents a finite internal loss

Γ(1)
i = Γ(2)

i = 0.2Γ(1)
0 . Solid lines are |V11| and dotted lines |V12|. For all traces

ε = 10Γ(1)
0 = 10Γ(2)

0 . b) Frequency conversion efficiency, max(|V12|), as a function of
the ratio between internal and external loss, assuming identical resonators.

One can verify that |V11|2 + |V12|2 = 1, |V11| = |V22| and |V12| = |V21| for zero
internal loss. This guarantees that the number of photons is conserved during the
frequency conversion. As seen in figure 2.7 a, as expected, this is not the case for
finite internal loss, since the definition of the internal loss itself is that photons are
lost.

As briefly introduced in the previous chapter and illustrated in Figure 1.1, para-
metric frequency conversion and optical beam splitting is similar. A lossless optical
beam splitter is described by(

Ec
Ed

)
=
(
rac tbc
tad rbd

)(
Ea
Eb

)
, (2.41)

where Ea and Eb are the input electric fields, and Ec and Ed are the output electric
fields. r and t, are the reflectance and transmittance through a certain path in
the beam splitter. The r and t matrix obey |rac|2 + |tad|2 = 1, |rac| = |rbd|, and
|tbc| = |tad|, the exact same relations as for the input-output matrix of the parametric
frequency conversion. Hence, we can talk about frequency conversion as a beam-
splitting -like operation.
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3
Experimental methods

Working in an experimental environment is a constant battle of problem
solving. It follows a certain path, with some smaller or larger detours
as you keep working against the goal. The goal is usually to observe
some effect that has been described theoretically. At least this is the

idea from the beginning, but as the project goes on, one might find that the results
do not agree with the the theoretical prediction, so then one needs to go back and
modify the theory or the design of the device. This means that the process is an
iterative one, which in general contains four steps:

1. Modeling and designing the samples. A very important step to put the
device parameters in the correct regime, where the theory predicts interesting
results.

2. Device fabrication. Here we try to realize the design from step 1. Depending
on the level of difficulty of the clean room processes involved, this step can
take from a few days, to several years.

3. Measurement. When we have our device, we need to test if it behaves as
expected. This step begins with designing a measurement setup that allows us
to measure what we are interested in. This might include cryogenics, wiring
of RF- and DC cables, installation of magnets, etcetera.

4. Data analysis. What did the measurement tell us? Is it what we expect and
how can we modify the design to improve the device’s performance? Or do we
need to modify the theory? Sometimes there is something completely new in
the results, which no one had thought of before, and a completely new theory
needs to be developed.

These four steps are repeated until the measurements and its analysis is satisfactory.
Even though the process can be described quite generally, each project has its own
problems and solutions. In one project the fabrication step might last for two years,
while in another one the fabrication is easy, but the measurements are not. It might
be hard to predict which step is going to take the most time beforehand, since each
project is unique. Here we go through the basics of the three first steps, and how
they are implemented in our device.
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Figure 3.1: Illustration of a co-planar waveguide (CPW). In this work the substrate
is made of sapphire (Al2O3), with a relative dielectric constant εr = 9.3. The metal
is niobium, and the center conductor width w = 15 µm, and a gap width g = 6 µm.
Above the CPW is only vacuum, with the relative dielectric constant 1.

Table 3.1: Input (to the left) and output (to the right) parameters of the conformal
mapping method [1], used to simulate a co-planar waveguide.

w g εr h εeff vph C L Z0
15 µm 6 µm 9.3 330 µm 5.15 0.44 c 148.7 pF/m 385.1 nH/m 50.9 Ω

3.1 Simulations and device modeling

Even though simulations does not always give very precise results, modeling and
computer simulations are important to gives us an idea of how to design the samples,
and what results to expect. We can split the modeling into two part: the first step
is to model the physics with a theory, i.e., what parameters do we need. The second
step is, how do we achieve these parameters?

Using the theory presented in the previous chapter, we can simulate what circuit
parameters are needed for the two coupled superconducting resonators, in order to
observe interesting results, e.g. frequency conversion.

To achieve these parameters, we start by designing the co-planar waveguides
(CPW) that constitute our transmission lines and the two resonators. The definition
of the relevant parameters are shown in Figure 3.1, and as seen in section 2.2.2,
the width of the center conductor, and the widths of the gaps in the CPW, will
determine characteristic impedance, Z0 =

√
L/C, of the CPW. This impedance we

would like to be as close to 50Ω as possible, to avoid reflections at the interfaces
to the 50Ω coaxial cables. To simulate the required widths, we use the method of
conformal mapping [1], a transformation, used in complex calculus, that preserves
angles locally. Here it is used to transform the geometry of a CPW to that of a
parallel plate capacitor, whose capacitance is well known and easy to calculate. The
advantage of this method, is that is provides us with analytical expressions for the
capacitance and inductance per unit length of the CPW. The input parameters to
the conformal mapping, are the width of the center conductor, w, the width of the
gap, g, the effective dielectric constant of the substrate, εr, and its thickness, h. The
parameters used in this project, and the result of the conformal mapping, are found
in Table 3.1.

Next, we simulate the capacitance of the input ports, and also the capacitance
between the two resonators. This is done in the software Microwave Office, which
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uses finite-element methods to solve Maxwell’s equations, in a geometry defined by
the user. In this project we use inter-digital finger structures, seen in Figure 3.2
c. This design provides large "contact" areas between the two electrodes, but in
a small area of the sample. To simulate these structures in Microwave Office, we
simply draw the geometry, and define the properties of the materials used; since there
is no superconductor in the program, we instead use a perfect electrical conductor.
However, these simulations unfortunately do not give accurate absolute numbers for
the capacitance, but the relative number between two designs does agree to some
extent. This means that if we simulate, fabricate, and measure one capacitor, we
can use that as a reference for all future designs, as long as the capacitances of the
new capacitors are roughly of the same order of magnitude as the the capacitance
of the reference capacitor.

3.2 Fabrication
We fabricated the two coupled resonators in a state-of-the-art clean room, the
Nanofabrication Laboratory at Chalmers University of Technology. Here we intro-
duce the techniques and main ideas that are used on a daily basis for fabrication of
nano devices. More details of the processes are found in [45], and the recipes used
in this work are found in appendix A.

Our devices are fabricated on a 2", c-plane sapphire substrate, due to its low
dielectric losses, hence, yielding high internal quality factors of the resonators. First,
a thin film of niobium (80 nm) is sputtered onto the substrate, covering its entire
surface. Then photolithography is used to define contact pads and alignment marks.
These consists mainly of gold (80 nm), but with a layer of titanium (3 nm) beneath,
to increase the adhesion between niobium and gold. Both the titanium and the gold
are evaporated in the same vacuum cycle, using an electron-beam evaporator.

Next, electron-beam lithography is performed to define the co-planar waveguides
in the niobium. Since this is an etching process, we expose the areas that should not
have niobium, using a positive resist. Example of such an area, is the gap between
the center conductor and the ground plane in the CPW. The lithography is followed
by an inductively coupled plasma etch using NF3 gas, which etches niobium but not
sapphire, making the etching process fairly simple, since there is no critical timing
issues.

The last part of the fabrication is to create the SQUIDs and divide the wafer
into 24 individual samples. This is done by first using electron-beam lithography
together with a bilayer resist system, to pattern two rectangles, separated by a short
distance (250 nm), creating a so called Dolan-bridge [47]. We then dice the wafer
into 5x7 mm2 samples using a saw with a diamond blade.

Then, the resists on the chips are developed one-by-one. One chip at the time is
then inserted into a electron-beam evaporator only equipped with aluminum targets,
ensuring that the targets and the chamber are kept as clean as possible. Inside the
vacuum chamber there is also an ion gun used to etch away the native niobium-oxide
before evaporation, to improve the contact between the niobium and the aluminum.
To create the three parts of the Josephson junctions, we use a sequence of two
evaporations, with an oxidation step in between. The first evaporation is done from
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Figure 3.2: Micrographs of the fabricated sample used in this project. (a) Two ca-
pacitively coupled λ/4 resonators, each terminated by a SQUID, with their flux lines
for DC-tuning and RF-pumping, and their transmission lines for probing. Along the
edges are six test structures, each containing one SQUID. The reason of the horizon-
tal gap in the middle of the sample is to confine DC currents through the flux lines
to their respective resonator. (b) A closer look on the SQUID and the pump line
design. (c) The three capacitors used: the small one is the coupling between the
two resonators and the slightly larger ones are the couplings between each resonator
and the transmission lines.

an angle −α, creating the first electrodes of the Josephson junctions. Then the
top parts of the evaporated aluminum is oxidized with a controlled oxygen pressure
inside the chamber, thus creating the insulating parts of the Josephson junctions.
Last, a second evaporation is done from an angle +α, so the new aluminum overlaps
the oxidized aluminum, creating the second electrodes of the Josephson junctions.

When a sample is ready, we measure the normal state resistance of the SQUIDs,
using six test structures located along the edges of each sample. Fabricating each
sample separately allows fine tuning of the normal-state resistance of the junctions,
which determines the critical current, and therefore also the Josephson inductance,
of the SQUIDs. Hence, after fabricating and measuring one sample, we get feedback
on the resistance, which we can use to change the oxidation parameters in the SQUID
fabrication process for the next iteration, i.e., if we would like a higher resistance,
we increase the oxidation time or the oxygen pressure inside the chamber.
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3.3 Cryogenics and measurements
To achieve superconductivity and to observe quantum effects we need to cool down
the samples well below 1 K. This is achieved in a dilution refrigerator, which uses
a mixture between helium-3 and helium-4 to reach a temperature around 20 mK,
where the thermal energy is much less than the excitation energy of our resonators,
e.g. hf/kB ≈ 290 mK for a frequency of 6 GHz, allowing us to perform measure-
ments unaffected by thermal fluctuations.

In this work we used an Oxford 400 HA wet dilution refrigerator. In this context,
wet refers to that the cryostat is submerged into a bath of liquid helium to reach
a temperature of 4 K. A pickup tube is then used to withdraw some liquid helium
into a pot inside the cryostat, attached to this pot is also a vacuum pump, this
will reduce the temperature to 1.5 K. This pot is therefore named the 1K pot. A
temperature of 1 K is enough to condense the mixture of helium-3 and helium-4 into
their liquid phases, one can then do the same trick and pump on the liquid mixture
to reach lower temperatures. Below 0.86 K, there is a phase separation, where the
mixture separates into one helium-3 rich part (concentrated phase), and one helium-
4 rich part (diluted phase). If helium-3 is transported from the concentrated phase,
through the phase boundary, to the diluted phase, cooling will occur, and this is
what happens inside the mixing chamber, which is the coldest part of the cryostat.
For more details about a dilution refrigerator, and cryostats in general, please see
[48].

3.3.1 Measurement setup
An illustration of the measurement setup used in this project is seen in figure 3.3.
Both the probe and the pump signals are attenuated on their way down in the cryo-
stat. This serves three purposes: first, it thermally anchors the lines to the different
stages of the cryostat, secondly, it puts the signal in the power regime needed, below
the level where the resonator is driven non-linear due to the Duffing shift. Finally, it
also attenuates the thermal noise generate at the different temperature stages inside
the cryostat. The attenuation of the probe lines are 109 dB in total, whereof 59 dB
inside the cryostat, and for the pump lines the attenuation is 39 dB, all inside the
cryostat. Additionally, there is also some attenuation in all the cables, feedthroughs,
and connectors, summing up to roughly 10 dB for each line.

In this work, we mainly measure reflection from one of the input ports, but we
cannot just measure at the input port, since the signal would then first get atten-
uated by 109 dB, and then whatever is reflected would see the same attenuation
on its way up again, literally eliminating all signal. Therefore, we use a circulator
inside the cryostat to direct the reflected signal to another cable, which is not at-
tenuated. However, this is not enough. The signal is too weak, and it needs to be
amplified before we can measure it. This is done in two stages: first, we have a high
electron mobility transistor amplifier, with a noise temperature of around 2 K inside
the cryostat at the 4 K stage, which we call a low noise amplifier (LNA). At room
temperature, we have two cascaded amplifier to boost the signal even further. If
the gain of the LNA is high enough, its noise temperature will determine the total
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system noise. The gain of the LNA used here is 35 dB, and the room temperature
ones are 23 dB each, yielding a total gain of 91 dB.

The sample is mounted on a printed circuit board (PCB), inside a gold-plated
copper box, which is mounted on the mixing chamber of the cryostat, shown in
Figure 3.4. The sample box has four SMK-connectors, which are rated from DC to
46 GHz. Two of these are connected to the transmission lines used for probing the
resonators, and the other two are connected to the flux lines.

The sample box is surrounded by an aluminum can, also mounted on the mixing
chamber, which acts as a shield for magnetic fields . Since aluminum is a super-
conductor, it will expel all magnetic field from the inside of the can, hence reducing
the magnetic flux noise through the SQUIDs on the sample. To provide even more
shielding, a mu-metal shield is mounted on the cold plate of the cryostat. The mu-
metal will absorb a large part of any low frequency magnetic field penetrating into
the cryostat [49].

To change the magnetic flux inside the SQUIDs, there are three possibilities,
an external coil, and two on-chip flux lines. The external coil is mounted on the
outside of the sample box, which ideally provides a uniform magnetic field density,
across the sample. Depending on the number of turns in the coil, the magnetic field
produced per current unit can be made rather high, meaning that this is preferable
if we want a larger field. However, the trade off is that this field cannot be swept
fast.

There are also two individual flux lines on the sample, their purpose is twofold.
First, it enables the possibility to change the static magnetic field, locally at each
resonator, using a DC current through the flux line. Second, we will use it to
modulate the magnetic field fast, also locally at each resonator, using an RF signal.
To be able to use both DC and RF on the same flux line, we use a bias-tee, mounted
on the connector to the flux line. A bias-tee is a three-terminal device with one DC
port, one RF port, and one output port where the two signals are combined.

3.3.2 Measurement techniques
In this project we use two different measurement techniques, first we use a vector
network analyzer (VNA) to measure scattering matrices. The scattering matrix of a
two terminal device consists of four elements, in our case the reflection at port (A),
SAA, the reflection at port (B), SBB, the transmission from (A) to (B), SBA, and
the transmission from (B) to (A), SAB. These four parameters are, in general, com-
plex numbers, where the magnitude corresponds to the amount of signal that gets
reflected or transmitted, while the phase tells you the amount of phase shift when
the signal gets reflected or transmitted. The reflection coefficients can be directly
compared with equation (2.10) to find the resonance frequency and the quality fac-
tors. Also, the ABCD matrix, equation (2.17), for the two coupled resonators, can
be converted directly to an S-matrix.

In the second measurement technique, we use a separate signal generator, and
for the measurement we first downconvert the signal, using heterodyne mixing to an
IF frequency of 187.5 MHz, which is then sampled with an analog-digital converter
(ADC), illustrated in Figure 3.5. This technique is used for measurements done with
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Figure 3.3: Measurement setup used in this project. In this work we refer to the
resonator, SQUID and pump line on the left side as (A) and on the other side as
(B). The sample is mounted on a PCB inside a gold-plated copper box with four
SMK-connectors, two for the input-output ports, and two for the flux lines. On each
of the two connectors for the flux lines, a bias-tee is mounted, combining one RF
and one DC line.
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Figure 3.4: Photographs of the sample box, mounted on the tail of the mixing
chamber in the dilution refrigerator. a) The sample box, together with the external
coil, the two bias tees and four coaxial cables. b) The open sample box. Inside
is a PCB with six CPWs, leading to the wire bonded sample with two coupled
resonators.
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Figure 3.5: The heterodyne detection scheme used in some of the characterizations
of the device under test (DUT). Here we use an LO frequency 187.5 MHz above the
measurement frequency fm. Note that we can set fs and fm independently of each
other.

separate signal frequency, fs, and measurement frequency, fm. Another advantage
is the fast sampling frequency of the ADC, and the direct access to the raw data in
the time domain, allowing for more advanced post-processing of the data than when
using a VNA.
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4
Results and discussion

The main part of any project is the results, this is what we have been build-
ing up towards with theoretical descriptions and experimental setups. In
this chapter, we present first the initial characterization of two coupled
resonators. This part is crucial for understanding and explaining the rest

of the results. Without proper understanding of the basics, how can you expect to
do anything more advanced?

After characterizing the device with all of its components, we move on to the
main results of this work, namely the frequency conversion in degenerate and non-
degenerate coupled parametric resonators. We have investigated frequency con-
version in a few different regimes, as we will explain below. We also try to give
interpretations and a physical meaning of the results, when possible. Some of the
observations cannot yet be fully explained with a quantitative model. In these cases
we will do a bit of reasoning of what the observations could be, but it will require
more work to explain them satisfactory.

4.1 Initial characterization
We first characterize the basic properties of the sample with two coupled, tunable,
resonators. The properties we are interested in are resonance frequencies, quality
factors and circuit parameters. This serves as a verification of our modeling and
simulations of the design, and it allows us to further simulate, using the extracted
parameters, what results to expect in future experiments.

First, the two coupled resonators are characterized using a vector network an-
alyzer (VNA) to find their resonance frequencies as a function of magnetic flux
through the SQUIDs. This is done by varying the current through either the exter-
nal coil or the individual flux lines. With the VNA, we register both the reflected
magnitude and phase as a function of frequency. Ideally, the current through flux
line (A) should only affect the flux through SQUID (A), while leaving SQUID (B)
unaffected (and vice versa), however, this is hard to achieve in reality, leading to
unwanted crosstalk.

We characterized the device by measuring the reflection of an incoming signal
at port (A), SAA, refer to Figure 4.1 for the naming convention. We were limited to
SAA, due to only having one amplifier. While varying the global magnetic flux and
measuring SAA, with zero flux offset between the SQUIDs, we obtained the data
shown in Figure 4.2 a. A second scan, where we sweep the current through flux line
(B), while keeping the current through flux line (A) constant, is shown in Figure 4.2

27



CHAPTER 4. RESULTS AND DISCUSSION

A B

Input A Input B Flux line BFlux line AOutput A

Figure 4.1: A simplified measurement setup, showing the different signal ports,
which are referred to throughout this chapter.

b. Through data fitting using equations (2.13), (2.10), and (2.12), we extract the
internal and external quality factors, Qint and Qext, inductive participation ratios
γ, and bare resonance frequencies fλ/4 for both resonators. The fits to both the
measurements, are shown in Figure 4.2 c-d, respectively. Additionally, we get the
mutual inductance from the flux lines to their respective SQUID, MF , but, also
the crosstalk, Mcrosstalk. The last thing we extract is the mutual inductance to
the external coil, MC . The external coil couples with very similar strengths to both
SQUIDs – the difference is less than 1%, meaning that the magnetic field it produces
is uniform across the sample, and that the areas of the SQUIDs are the same.

When the two resonators are tuned to the same frequency, the modes hybridize,
and create two new modes. This provides a so called avoided crossing, it looks like
the two resonators do not want to cross each other, and instead bend off. This is
clearly seen in Figure 4.2 b, at roughly -1 mA. By observing where the avoided
crossing between the two resonances is minimum, we can extract the geometric
coupling strength J = 22.95 MHz between the two resonators. The physical meaning
of J is the rate of which the signal is transferred between the two resonators. All
the extracted parameters are found in Tables 4.1 and 4.2. We observe that the
parameters of the two resonators are very similar, which is to be expected since
they are designed to be nominally the same; hence this provides a verification of the
reproducibility of our fabrication.

There is however, one issue here. Since we have two ports, (A) and (B), but can
only measure at (A) in this experiment, any signal escaping through (B) is lost to
us. An offresonant signal is completely reflected at the port, and we do not lose
any signal. A signal on resonance, on the other hand, couples into the resonator,
and if the two resonators are degenerate, we lose some of the signal into the other
resonator, and therefore also out via the other port. Exactly on resonance, and
with zero detuning between the two resonators, we lose exactly half the the power,
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Figure 4.2: Measurements of |SAA| as a function of global and local magnetic
fluxes, together with theoretical fits. (a) Tuning of both SQUIDs with a global
magnetic flux through the external coil, with zero flux offset between (A) and (B).
Since there is no flux offset between the two SQUIDs, the distance between the two
resonances equals 2J = 46 MHz. (b) Tuning using flux line (B). Note the avoided
crossings and also the small crosstalk to the other SQUID. (c) and (d) Extracted
resonance frequencies (blue) from the data in a and b, together with theoretical fits
(red) using equations (2.12) and (2.13). Plotted in d is also the predicted frequency
of resonator (B) even though we cannot measure it directly.
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Table 4.1: Extracted parameters relevant to flux tuning for each of the resonators.
The parameters were extracted through data fitting using equations (C.1) and (2.12).
The data and the fits are shown in Figure 4.2.

Resonator γ fλ/4 [GHz] MF [mA/Φ0] Mcrosstalk [mA/Φ0] MC [µA/Φ0]
A 6.96 % 5.58 35 3 341
B 7.09 % 5.58 35 3 341

Table 4.2: Extracted circuit parameters for resonator (A). The uncertainty for
resonator (B) was to large to be able to extract any parameters.

Resonator Cr Lr Rr Cc Qint Qext
A 0.24 pF 4.17 nH 1.96 MΩ 6.41 fF 14 882 3 742

meaning a factor of
√

2 for the amplitude, assuming identical resonators. This will
make the magnitude dips appear deeper as they should be.

This means that, when trying to fit quality factors, where any lost signal will
appear as an internal loss, gives a worse estimate of the quality of the resonators.
This problem is solved partially by fitting the quality factors for resonator (A) when
resonator (B) is detuned. Then no signal will leak out through the port (B). But,
since we have no amplifier on port (B), we cannot do the same trick for resonator
(B). Instead we will have to fit the two new eigenmodes for the combined system,
when the resonators are degenerate, using equation (2.17), already knowing the
quality factors of resonator (A). This is a tricky, though, since if there is a slight
detuning between the two resonators, this will change the interaction, giving rise to
unequal weights of the two modes, which also looks like a change in quality factors.
This means that one needs to have a high resolution of the flux tuning to find the
bias point with zero detuning, but also in frequency, since one needs quite many
points inside the resonance to be able to fit it. All this leads to several millions of
data points and is therefore time consuming. Unfortunately,the data we have for
this were not good enough, hence the circuit parameters for resonator (B) were not
extractable with any accuracy, the uncertainty in the fit was just to large.

4.1.1 Crosstalk - DC and RF
Since it is desirable to operate the individual resonators independently of each other,
we need to characterize the crosstalk between the input lines, and from flux line (A)
to SQUID (B), and vice versa. The DC crosstalk, between the flux lines, can be
extracted from the data in Figure 4.2 d. It is done by calculating the ratio of the
current necessary to tune the invisible resonator (B) by one flux quantum, compared
to that needed to tune the visible resonator (A), by the same amount, using the same
flux line. We extract this ratio as 10.7, meaning that if we tune resonator (B) by a
certain amount using flux line (B), we will also tune resonator (A) by 9.3% of that
amount. Doing this characterization carefully for both flux lines and both SQUIDs,
allows us to compensate for the crosstalk using the other flux line. This is done by
writing the 2x2 matrix for the mutual inductances, and then diagonalize it.

The RF crosstalk between the two input lines can be measured by applying a
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signal on port (A), off resonance, while measuring the outputs of both (A) and (B).
Then the signal is applied to port (B) instead, and the measurement is repeated,
meaning that we measure the full S-matrix. If there is no crosstalk we expect full
reflection, i.e. |SAA| = |SBB| = 1 and |SBA| = |SAB| = 0, and any deviation from
this will tell us the amount of crosstalk. However, since we only have one amplifier
in the measurement setup, we first apply a signal at port (A) and measure the
output on the same port only, and then switch the input signal to port (B), while
maintaining the measurement on port (A). In terms of S parameters this means
measurements of |SAA| and |SAB|, respectively. Ideally this should give us the same
result as the other experiment described first, but due to different attenuation in
the lines, etcetra, we could have some errors.

We measured this, and conclude an isolation of about 50 dB, meaning that we
lose one part out of a hundred thousand to the other input line. If one would need a
more exact number, a proper calibration of all the cables and the amplifiers would
be needed. However, right now we are only interested in knowing that the crosstalk
is low enough, so that it does not cause problems, and even if the error should be
as large as 10 dB, an isolation of 40 dB is more than enough.

4.2 Frequency conversion
Here we present the main experimental results of this project. As described earlier,
we can operate the device as a beam splitter in several different ways. Either the
detuning between the two resonators is very small (degenerate), thus yielding two
modes separated by 2J ≈ 46 MHz, or the detuning can be large (non-degenerate),
meaning no direct interaction between the two resonators. Furthermore, we can
choose the number of pump tones and also which flux lines to use. In this section
we will present results in both the degenerate and non-degenerate regimes and using
one or two pumps. In all the measurements shown in this section, we measure SAA,
and in the cases with two pumps, they are applied at different flux lines. The
DC-flux bias point used is close to Φ0/4, thus yielding a good slope for parametric
pumping. This bias point corresponds to resonance frequencies around 5.1 GHz,
but you will see that they change a bit between different experiments, due to some
instabilities in the magnetic flux inside the cryostat.

4.2.1 Degenerate case
With zero or very small detunings between the resonators, such that |fA − fB| �
ΓA,B, where ΓA,B are the linewidths of the resonators, we introduce a direct interac-
tion between them, and the system hybridizes into two new eigenmodes, separated
by 2J ≈ 46 MHz, shown in Figure 4.2. As in previous chapters, we call the higher
of these two new modes f1 and the lower one f2. We call this the degenerate regime,
and here the two resonators are a combined system, meaning that the eigenmodes
are not localized to one resonator, instead they are spread out over both resonators.
This was described in section C, where we derived the electric field amplitude as a
function of position in the resonator. This means that it should not matter if we
apply the pump tone to SQUID (A) or (B), since the system is symmetric around
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Figure 4.3: Pump scheme used for measuring frequency conversion. (a) The two
eigenmodes of the system in the absence of a parametric pump. (b) By turning on a
pump at the difference frequency, the modes couple together and hybridize into four
new modes. By applying a signal B2 close to f2 we can measure what gets reflected,
given by V22B2, and what gets converted, V12B2. The two matrix elements are given
by equations (2.37) and (2.39), respectively.

the coupling capacitor and both SQUIDs acts as a boundary condition for both the
modes, since they are spread out over both resonators, shown in Figure 2.6. We first
consider the simplest case of just one pump signal; the result is then described by
the theory in section 2.2.4, and mainly by equations (2.37)- (2.40).

Using one pump

By using one pump tone with a frequency fp = 2J (the distance between the two
resonances f1 and f2), we achieve frequency conversion (or beam splitting) between
these two modes. This is depicted in Figure 4.4, where the pump is applied to
SQUID (A) with a power of -10 dBm at the generator, and the pump frequency
fp is swept close to 2J . First, when the pump frequency is far detuned from 2J ,
the two modes are left intact. As it gets closer, each mode starts to split up again,
generating two new avoided crossings with an invisible mode, shown in Figure 4.3.
There is now a direct interaction between f1 and f2, similar to the one between the
two resonators. However, this new interaction is supplied by the parametric pump,
and, as we shall see, it is also tunable in coupling strength. Then, when the pump
frequency gets higher, the system returns to the two original modes.

We then repeated the same experiment, but instead we applied the pump signal
to SQUID (B). This gave the same results as the previous experiment, as expected
for two identical resonators, since the system is then symmetric around the coupling
capacitor.

Next, we investigate the observed splitting at zero pump detuning, as a function
of pump power Pp. From equation (2.37) it follows that the minimum splitting
observed in Figure 4.4, assuming no internal losses, is equal to 2ε, i.e. twice the
effective pump strength, which is proportional to the pump amplitude (not the
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Figure 4.4: Beam splitting in the degenerate case, using one pump tone on SQUID
A. (a) Depicted is the measurement of |SAA|, as a function of pump frequency fp,
at a power of Pp = −8 dBm at the generator. The white, dashed, lines, illustrates
the invisible mode that couples to the orignal modes, hence creating the avoided
crossings. (b) Pump amplitude dependence of the splitting distance between the
two new modes, using a parametric pump at fp = f1− f2. The observed splitting is
clearly linearly dependent on the pump amplitude, as expected from theory.

power). In Figure 4.4 b, we plot the splitting distance as a function of pump
amplitude and a linear dependence is clearly observed, as expected from theory. This
means, in analogue with the capacitive coupling strength J between the resonators,
that the coupling strength between mode f1 and f2 is ε, and that it is tunable with
pump power. ε can also be interperated as the rate of which the signal is converted
between the two modes. One could also imagine situations where the pump signal
is turned off and on, hence temporally removing the coupling completely. This is
not possible for the capacitive coupling, since the capacitor is always there and at
a constant value. However, the coupling between (A) and (B) can be turned off by
detuning them from each other, but this also means that their frequencies change,
which could be a problem in a larger system, where there are other components
with similar frequency close by, to which we do not want to couple. If everything
is stationary in frequency, as in the parametric coupling, it is easier to avoid any
undesired couplings.

The measurements shown in figure 4.4, and discussed above, provides suggest
that we achieved frequency conversion, but all we have seen so far is a splitting of
the eigenmodes. In order to verify that we achieve frequency conversion, we do a
second measurement of the acutal conversion. To measure the conversion from one
frequency to another, i.e. the V12 and V21 elements from equations (2.38) and (2.40),
we need to send in a signal at one mode, and measure at the other, e.g. fs = f2, and
fm = f1. If there is frequency conversion from f2 to f1, we should measure some
signal at f1, even though we do not apply any signal at that frequency. For these
measurements we use the heterodyne detection scheme illustrated in Figure 3.5,
instead of the VNA. This allows us to set the signal frequency, and the measurement
frequency, independent of each other. But since we also can set the frequencies
to be identical, this allows us to measure the full V̂ matrix. However, changing
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Figure 4.5: Frequency conversion using one parametric pump in two degenerate
λ/4 resonators. (a) Reflected magnitude |SAA| as a function of signal and measure-
ment frequencies. Away from resonance, all of the applied signal is reflected back at
the signal frequency, but on resonance some parts gets reflected at fs±fp, illustrated
by the white arrows. (b) Three linecuts of a, indicated by arrows in corresponding
colors. The four pairs of resonance are measurements of the magnitude of the four
input-output matrix elements in equations (2.37)-(2.40), and the solid lines are fits
using these equations. Blue is V11 and V22, while green is V12, and red is V21. The
black arrows corresponds to how the signals are converted.

either the signal frequency, fs, or the measurement frequency, fm, removes the
phase information, since for each new frequency, the signal gets a random phase,
making it impossible to compare how the phase response varies with frequency.
This means that we can only measure the magnitude of the matrix elements using
this method. Also this method is slower than using the VNA, meaning that the
parameter space (signal, measurement, and pump frequencies, together with pump
power) measurable in a reasonable amount of time is limited. The result of this
measurement is depicted in Figure 4.5 a. This gives us direct evidence that it is in
fact frequency conversion that we observe.

One might say that the conversion efficiency is not so high, only 30% of the
incoming signal is converted. However, we need to take into account the problem of
signal leaking out through port (B). With access to that information, the peaks in
V12 and V21 should be multiplied by a factor

√
2, meaning a real conversion efficiency

of 50%, limited by the internal losses of the resonators.

Using two pumps - phase dependence

One might ask, what happens if we introduce a pump signal on SQUID (B) as
well? To answer this, let’s first consider the case when both pumps are identical in
frequency and power. The only degree of freedom left is the phase difference between
the two signals. Figure 4.6 a shows beam splitting as a function of phase difference
between the pump signals. We can clearly see regions of enhanced splitting, but
also regions of almost complete elimination of the splitting. These specific phase
differences correspond to a breathing mode and a translation mode, respectively.
We can fit this with a simple modification to the input-output matrix: in equations
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4.2. FREQUENCY CONVERSION

Figure 4.6: Beam splitting using two degenerate pump tones, sweeping the phase
offset between the two pump signals. Note that zero phase difference is set arbitrarily
and has no physical meaning. (a) Experimental data, the two pump tones are set to
identical frequencies fp = 45 MHz and pump powers Pp = −1 dBm at the generators.
(b) Fit of the peak separation as a function of the phase difference θ where blue is
the data and red the fit with ε′ = 12.5 MHz.

(2.37)-(2.40) we introduce an effective pumping strength ε = ε′ sin(θ/2), where ε′
is the pumping strength in absence of the second pump and θ is the phase angle
between the two pumps. The fit is shown in Figure 4.6 b and the extracted effective
pump strength is ε′ = 12.5 MHz. There is some discrepancy between the frequency
of the oscillations in the fit and the data, which could be due to a frequency offset
between the two pump signals, hence giving rise to a time-varying phase difference.

Using two pumps - multi mode

In this case we also use two pump tones, one on each SQUID, but we remove the
constraint of same frequency and pump power. Due to different frequencies, the
phase dependence also vanishes. First we lock one pump signal, at SQUID (A), to
the difference frequency between the two modes, and then we sweep the frequency of
the pump at (B). The first pump splits the two original modes into four, and when
the second pump’s frequency matches the distance between two or more modes, we
get further splittings. The result of this experiment is depicted in Figure 4.7.

4.2.2 Non-degenerate case
Another point of operation is when the two resonators are separated in frequency.
This turns off the direct interaction between the resonators and we are left with two
individual systems, i.e., the modes are localized in each resonator. This means, for
example, that all signal sent into resonator (A) will stay there or leak out through
port (A) again. However, we can introduce an interaction just as before by pumping
on the difference frequency between the two resonators (fp = |fA − fB|). There is,
however, one major difference to be pointed out here: in the previous experiment
it did not matter which SQUID we pumped, since both were identical and acted as
a boundary condition for both modes. Now, in the non-degenerate mode, SQUID
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Figure 4.7: Beam splitting using two pump tones. The pump on SQUID (A)
is locked at 46 MHz and a power of 6 dBm at the generator, whereas the pump
on SQUID (B) is swept in frequency, while maintaining a power of 2 dBm at the
generator.

(A) is only a boundary condition for resonator (A) and vice versa. This should
mean that if we send in a signal, resonant with (A), on port (A), while pumping
SQUID (A) we can get conversion into resonator (B); however, if we send a signal
on another frequency and port combination, e.g. a signal on port (B) while still
pumping SQUID (A), or a signal on (A) and instead pump on SQUID (B), we will
not achieve frequency conversion.

This implies that we can shuttle photons from resonator (A) to (B), while block-
ing the other way around, creating an isolator for microwaves. However, this isolator
also changes the frequency of the signal, which could be an undesirable effect of an
isolator. In Figure 4.8 a, we see such an experiment where we measure SAA when
a pump signal is applied to (A) at fp = |fA − fB|. We can see the same behaviour
as before with the avoided crossing and two new eigenmodes. If we then switch to
pumping SQUID (B) with the same frequency and amplitude, but still measure SAA
we see in Figure 4.8 b that the effect is heavily reduced and it is not possible to
resolve the two modes anymore. The fact that we can still see some tendencies of an
avoided crossing could be explained by crosstalk from flux line (B) to SQUID (A)
and will need further investigations.
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Figure 4.8: Beam splitting in the non-degenerate case. In both figures we measure
|SAA| as a function of pump frequency and with a constant pump power Pp = 6
dBm at the generator. (a) Here the pump signal is applied at SQUID (A) and for
(b) it is applied at SQUID (B).
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5
Conclusions and outlooks

In this work we have gone from a theoretical description of a parametric fre-
quency converter in the microwave regime, to a fully functioning device. The
device consisted of two coupled superconducting resonators, which were tun-
able to allow for parametric modulation. We have shown how to simulate,

fabricate and measure such a device. It was designed to have low cross talk between
both RF-ports, and DC flux lines. The coupling strengths were designed to be rea-
sonable for a proof of concept. All of these criteria were met in the experiment. The
DC-crosstalk between the two flux-tuning lines was measured to be 9.3%; this might
seem quite high, but we can compensate for it using the two flux lines, giving us full
control of the individual frequencies of the resonators. The RF-crosstalk between
port (A) and (B) was measured to 50 dB, making it negligible.

Next, the parametric frequency conversion itself was performed. It was done with
a few different parametric modulation schemes: with the resonators degenerate and
non-degenerate, with one and two pump signals, and finally, with and without phase
dependence of two pump signals. In the case of degeneracy and one pump signal,
we reached a frequency conversion efficiency of 50%.

A few improvements and measurements should be carried out in future work.
First, an amplifier should be installed on the probe line for resonator (B), so that
all the S-parameters can be obtained simultaneously, allowing us to extract the
parameters of resonator (B) with higher accuracy. With a second amplifier we would
also be able to measure and verify the isolation in the non-degenerate case, meaning
that light is only converted one way. One would need to show that |SAA| = |SAB| = 0
and |SBB| = |SBA| = 1.

To build a device with higher frequency conversion efficiency, one would need
to decrease either the internal loss rates, Γi, or increase the external couplings, Γ0,
since the ratio of these two sets the efficiency. Increasing the external coupling
rate is straightforward, just by making the coupling capacitance to the probe lines,
Cout, higher. However, we need to make sure that the coupling between the two
resonators, J , is still much larger than Γ0. Decreasing Γi is more difficult, since it
is set by how well we can fabricate the resonators and the SQUIDs.

A good and natural next step would be to repeat the experiment done by Zakka-
Bajjani et al. [15], where they show one photon in a superposition of two different
colors, or frequencies. The challenge in this experiment is to first create a single
photon, and then to measure the state of this single photon. In their experiment,
they used a superconducting qubit to first generate a single-photon Fock state, which
can then be coherently transferred between the two modes by turning on the pump
for a certain amount of time. The qubit is then used as a probe by tuning it into
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resonance with one of the modes, absorbing the single photon (if it is there) and
then reading out the state of the qubit out using the standard technique of dispersive
readout[6, 33]. If the measurement shows that the qubit was in its excited state, it
follows that the photon must have been in that mode as well.

To implement this experiment in the device presented in this work, one would
need to add at least one qubit to the system. For symmetry purposes one could
think of adding a qubit to each resonator, enabling measurements of the spatial
location of the photon. Every qubit would also need individual flux-tuing lines to
enable fast control of their transition frequencies, hence increasing the complexity
of the design.

If, in the non-degenerate case, we can show that photons are only converted
one way, e.g. from port (A) to port (B), but not vice versa, it should be possible,
in a pulsed pump scheme, not only to put the photon in a superposition of two
frequencies, but also in a superposition of spatial locations. A pumping scheme
similar to the one used in [15] would be utilized to study the coherent transfer of
photons, not only in frequency but also in space.
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A
Clean room processes

• Cleaning of substrate

– 1165 Remover at 70◦C for 5 min
– IPA bath, circulation for 2 min
– Rinse in water
– Blow dry with N2

– Strip in oxygen plasma, 250W for 1 min

• Sputtering of Nb

– Annealing at 1200◦C overnight, ramp 5◦C per min
– Sputtering of Nb

• Contact pads and alignment marks

– 1165 Remover at 70◦C for 5 min
– Rinse in IPA
– Blow dry with N2

– Ash in oxygen plasma, 50W for 20 sec
– Pre-bake at 110◦C for 1 min
– Spin LOR3B at 3000 rpm for 1 min
– Soft-bake at 200◦C for 5 min
– Spin S1813 at 3000 rpm for 1 min
– Soft-bake at 110◦C for 2 min
– Expose for 8.5 sec using low-vac mode
– Develep using MF319 for 50 sec
– Ash in oxygen plasma, 50W for 20 sec
– Evaporation of 3 nm of Ti, 80 nm of Au and 10 nm of Pd

• Resonator and transmission lines

– 1165 Remover at 70◦C for 5 min
– Rinse in IPA
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APPENDIX A. CLEAN ROOM PROCESSES

– Blow dry with N2

– Ash in oxygen plasma, 50W for 20 sec
– Pre-bake at 130◦C for 1 min
– Spin UV60 at 3000 rpm for 1 min
– Soft-bake at 130◦C for 1 min
– Expose with 70 nA with a dose of 27 µC/mm2

– Develep using MF319 for 50 sec
– Ash in oxygen plasma, 50W for 20 sec
– Etching using NF3

• SQUIDs

– 1165 Remover at 70◦C for 5 min
– Rinse in IPA
– Blow dry with N2

– Ash in oxygen plasma, 50W for 20 sec
– Pre-bake at 170◦C for 1 min
– Spin MMA(8.5)EL10 500 rpm for 5 sec, 2000 rpm for 45 sec
– Soft-bake at 170◦C for 5 min
– Spin ARP 3200.09 2:1 3000 rpm for 1 min
– Soft-bake at 170◦C for 5 min
– Expose with 2 nA with a dose of 280 µC/mm2

– Dice into 24 samples
– Develep top layer using n-Amylacetate for 2 min
– Develep bottom layer using H2O:IPA 1:4 for 7 min
– Ash in oxygen plasma, 50W for 20 sec
– Evaporate 40 nm aluminum from 25◦

– Oxidize with a pressure of 0.2 mBar for 30 min
– Evaporate 65 nm aluminum from −25◦
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B
Derivation of the

Josephson-relations

We start out by writing two coupled Schrödinger equations for two superconductors
separated by an insulating layer, assuming a constant coupling K between the two
superconductors

i~
∂ψ1

∂t
= U1ψ1 +Kψ2

i~
∂ψ2

∂t
= U2ψ2 +Kψ1 (B.1)

where ψ1 and ψ1 represents the wavefunctions in each superconductor and U1, U2
are the energies of the lowest energy states on respective side of the insulating layer.
If there are no coupling (K = 0) we would just have two equations describing the
lowest energy state in each of the superconductors, the coupling introduces a leakage
from one side to the other.

Since the Cooper-pairs in a superconductor forms a Bose-Einstein condensate
we can describe the Cooper-pairs with a single wavefunction, constant in space if
we assume the London gauge: ψ1 = √ρ1e

iθ1 , where ρ1 is the density of Cooper-pairs
and θ1 their phase. If we plug this into equation (B.1) we get:

i~
(

1
2
ρ̇1√
ρ1

+ i
√
ρ1θ̇1

)
eiθ1 = U1

√
ρ1e

iθ1 +K
√
ρ2e

iθ2

i~
(

1
2
ρ̇2√
ρ2

+ i
√
ρ2θ̇2

)
eiθ2 = U2

√
ρ2e

iθ2 +K
√
ρ1e

iθ1 (B.2)

Next multiply the first equation with ψ∗1 and the second one with ψ∗2, yielding:

i~
(1

2 ρ̇1 + iρ1θ̇1

)
= U1ρ1 +K

√
ρ1ρ2e

i(θ2−θ1)

i~
(1

2 ρ̇2 + iρ2θ̇2

)
= U2ρ2 +K

√
ρ1ρ2e

−i(θ2−θ1) (B.3)

Now we define δ = θ2 − θ1 and separate the equations into their real and imaginary

III



APPENDIX B. DERIVATION OF THE JOSEPHSON-RELATIONS

parts, giving us four equations:

ρ̇1 = 2
~
K sin δ

ρ̇2 = −2
~
K sin δ

θ̇1 = −U1

~
− K

~

√
ρ2

ρ1
cos δ

θ̇2 = −U2

~
− K

~

√
ρ1

ρ2
cos δ (B.4)

The current transported through the insulator is,

I = 2eρ̇1 = −2eρ̇2 = 4e
~
K sin δ = Ic sin δ, (B.5)

the factor 2 comes from that current is transported as Cooper-pairs, i.e. two elec-
trons. The two last equations in (B.3) gives us how the phase changes with time,

δ̇ = θ̇2 − θ̇1 = U1 − U2

~
+ K

~

(√
ρ2

ρ1
−
√
ρ1

ρ2

)
cos δ. (B.6)

If we assume ρ1 = ρ2 the phase derivative is proportional only to the energy difference
between the two sides, which for example can be introduced by putting a voltage V
over the junction, yielding δ̇ = eV

~ . If we integrate this with respect to time, assume
a constant voltage and plug it into equation (B.5) we get I = Ic sin(eV t/~), i.e. we
get oscillations in the current with angular frequency eV/~
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C
Derivation of the superconducting
phase in two coupled resonators

Consider the system in figure C.1. We have the wave equation for the field inside a
cavity

ϕ̈− 1
L0C0

ϕ′′ = 0, (C.1)

where L0 and C0 is the inductance and capacitance per unit length. We also have
two boundary conditions from the SQUIDs

~2

ECJ
ϕ̈(d) + 2EJ cos fR sinϕ(d) + EL,cavdϕ

′(d) = 0, (C.2)

~2

ECJ
ϕ̈(−d) + 2EJ cos fL sinϕ(−d)− EL,cavdϕ′(−d) = 0, (C.3)

where ECJ = (2e)2/(2CJ), EJ = (~/2e)2/LJ and EL,cav = (~/2e)2/(L0d). LJ is the
inductance of one SQUID. Now add a capacitance Cc in the middle at x = 0

~2

ECc
(ϕ̈(0+)− ϕ̈(0−)) + EL,cavdϕ

′(0+) = 0, (C.4)

~2

ECc
(ϕ̈(0−)− ϕ̈(0+))− EL,cavdϕ′(0−) = 0, (C.5)

where ECc = (2e)2/(2Cc). Adding these two equations gives ϕ′(0+) = ϕ′(0−), i.e.
the derivative of the phase must be continuous. To calculate the cavity spectrum
we linearize equations (C.2) and (C.3). This is possible since ϕ(x) will be close to
zero near the boundaries due to the fact that they are grounded there

2CJ ϕ̈(d) + 2
LR

ϕ(d) + 1
L0
ϕ′(d) = 0, (C.6)

2CJ ϕ̈(−d) + 2
LR

ϕ(d)− 1
L0
ϕ′(−d) = 0, (C.7)

where 1/LR,L = cos fR/L/LJ are the inverse Josephson inductances of the SQUIDs
at respective side. We now make an ansatz for the solution

ϕ(±x, t) = e−iωt(a± cos kx+ b sin kx) + c.c, (C.8)
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APPENDIX C. DERIVATION OF THE SUPERCONDUCTING PHASE IN
TWO COUPLED RESONATORS

A B

Figure C.1: Two coupled λ/4 resonators each terminated by a SQUID.

where ω = k/
√
L0C0. We insert the ansatz into equations (C.6), (C.7) and (C.4), it

is enough to take only the first term of the ansatz( 2
LR
− 2CJω2

)
(a+ cos kd+ b sin kd) + k

L0
(−a+ sin kd+ b cos kd) = 0, (C.9)( 2

LL
− 2CJω2

)
(a− cos kd− b sin kd)− k

L0
(a− sin kd+ b cos kd) = 0, (C.10)

a+ − a− = k

2ω2CcL0
b. (C.11)

Let us introduce ã = a+−kb/(4ω2CCL0) = a−+kb/(4ω2CCL0) and rewrite equations
(C.9) and (C.10) as[( 2

LR
− 2CJω2

)
cos kd− k

L0
sin kd

]
ã+[(

k

L0
+
( 2
LR
− 2CJω2

)
k

4ω2CcL0

)
cos kd+

(
2
LR
− 2CJω2 − k2

4ω2CcL2
0

)
sin kd

]
b = 0,

(C.12)[( 2
LL
− 2CJω2

)
cos kd− k

L0
sin kd

]
ã−[(

k

L0
+
( 2
LL
− 2CJω2

)
k

4ω2CcL0

)
cos kd+

(
2
LL
− 2CJω2 − k2

4ω2CcL2
0

)
sin kd

]
b = 0.

(C.13)

Solving these equations can only be done numerically, where k is the unknown
variable.

VI
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