
 

 

Refining the workflow of a
web survey management application
A Bachelor Thesis in Computer Science and Engineering

FILIP CARLÉN
HAMPUS FORSVALL
SIMON PERSSON
ERIK THOLÉN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2015



The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish theWork electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and Uni-
versity of Gothenburg store the Work electronically and make it accessible on the
Internet.

Refining the workflow of a web survey management application
Filip Carlén,
Hampus Forsvall,
Simon Persson,
Erik Tholén,

© FILIP CARLÈN, JUNI 2015.
© HAMPUS FORSVALL, JUNI 2015.
© SIMON PERSSON, JUNI 2015.
© ERIK THOLÉN, JUNI 2015.

Examinator: Dag Wedelin

Bachelor Thesis: 2015:40
Department of Computer Science and Engineering
Chalmers University of Technology
412 96 Gothenburg, Sweden
Phone: +46 (0)31-772 1000



Abstract
This bachelor thesis describes the process of improving the workflow for marketing
analysts creating online questionnaires by supplementing the currently used legacy
software with a new web application. The goal is to reduce time spent on creat-
ing questionnaires in order to allow for more time analyzing the results. Design of
graphical user interfaces (GUI) is an area of research in constant change, regularly
affected by new trends. This causes existing design to quickly become outdated,
sometimes greatly affecting the usability of the applications behind them.

The workflow was improved by first analyzing the existing software and its short-
comings in terms of user experience (UX), and then developing a new application
with these in mind. The new application would allow for a better workflow along
with new features that the existing software did not have, e.g generating documents
compatible with Microsoft® Word and storing commonly used questionnaires in a
database for later reuse.

The result is a web application called QuestBuilder that can be accessed through
a web browser. The application is tailored to the needs of marketing analysts and
offers a handful of new features. The application is considered a prototype and
therefore does not cover all features from the old software. However the features
that are implemented offer a significantly improved workflow compared to the old
software.



Sammanfattning
Detta kandidatarbete beskriver processen av att förbättra arbetsflödet för marknad-
sanalytiker som skapar onlineformulär genom att komplettera den nuvarande mjuk-
varan med en ny webbapplikation. Målet är att reducera den tid som spenderas
på att skapa frågeformulär så att användarna kan ägna mer tid åt att analysera
resultaten istället. Design av grafiska gränssnitt är ett område under ständig förän-
dring, regelbundet påverkat av nya trender. Detta medför att existerande design
snabbt blir utdaterad och i vissa fall påverkar användbarheten hos applikationerna
nämnvärt.

Arbetsflödet förbättrades genom att först analysera den existerande mjukvaran och
dess tillkortakommanden med avseende på användarvänlighet för att sedan utveckla
en ny applikation med dessa i åtanke. Den nya applikationen skulle erbjuda ett
bättre arbetsflöde med nya funktioner som den existerande mjukvaran saknade, till
exempel möjligheten att generera dokument kompatibla med Microsoft® Word och
att lagra vanligt förekommande frågeformulär i en databas för senare återanvänd-
ning.

Resultatet blev en webbapplikation kallad QuestBuilder som kan bli åtkommen via
en webbläsare. Applikationen är skräddarsydd efter marknadsanalytikers behov och
tillgodoser en mängd nya funktioner. Applikationen anses vara en prototyp och har
därför inte alla funktioner som den gamla mjukvaran har. Däremot erbjuder de
funktioner som faktiskt är implementerade ett signifikant förbättrat arbetsflöde.



Acknowledgements
We wish to thank everyone that has helped in the writing and proof-reading of this
thesis as well as in the development of the application by providing feedback and
technical help. Without the assistance of our supervisor Dag Wedelin the outcome
of this project would not have been the same. We express our gratitude to the com-
pany we worked towards and their representatives Jakob Werner and Christophoros
Antoniades for their continuous support and feedback on the developed application.



Contents

1 Introduction 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Legacy application . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.3 The new application . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.1 Agile Development . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.2 Programming Languages . . . . . . . . . . . . . . . . . . . . . 5
1.5.3 Software evaluations . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.4 Version Control . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theory 6
2.1 Migrating desktop applications to the cloud . . . . . . . . . . . . . . 6

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Benefits of migrating to the cloud . . . . . . . . . . . . . . . . 6
2.1.3 Creating dynamic web applications with AngularJS . . . . . . 7

2.2 UX and HCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 What is HCI and UX? . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 HCI and UX importance . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Problems with High-functionality applications . . . . . . . . . 11

2.3 GUI Evaluation methods . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Heuristic Evaluation . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Cognitive Walkthrough . . . . . . . . . . . . . . . . . . . . . . 13

3 The legacy software and the previous workflow 15
3.1 The legacy software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Workflow at AMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 AMA’s opinions on previous workflow and software . . . . . . 18
3.3 AMA’s visions for the new workflow . . . . . . . . . . . . . . . . . . . 19
3.4 UX Evaluation process . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Cognitive Walkthrough of current software . . . . . . . . . . . 20
3.4.2 Heuristic Evaluation of the legacy software . . . . . . . . . . . 21
3.4.3 Evaluation Summary . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 The prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 QuestBuilder 27
4.1 Presentation of QuestBuilder . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Main View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Select Question . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 Skip Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



Contents

4.1.4 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.5 Constructed List . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.6 Import and Export . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Cognitive Walkthrough . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Heuristic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Development Phase 36
5.1 Modelling the surveys in Java . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Building the front end . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.1 Angular Modules . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 Third party Angular modules . . . . . . . . . . . . . . . . . . 43

5.3 Connecting the front and back end . . . . . . . . . . . . . . . . . . . 44
5.3.1 Converting between Java and JSON objects . . . . . . . . . . 44
5.3.2 Generating and sending files to the client . . . . . . . . . . . . 45
5.3.3 Persisting survey data . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusion 47
6.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Bibliografi 49

A Appendix I
A.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

A.1.1 Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . I
A.1.2 Problem solving, synthesis, and analysis . . . . . . . . . . . . II
A.1.3 Report contributions . . . . . . . . . . . . . . . . . . . . . . . II

A.2 Interview with AMA . . . . . . . . . . . . . . . . . . . . . . . . . . . III
A.3 GUI Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V



Vocabulary
Agile - Iterative way to run projects.
AMA - American Marketing Analysts. A fictional name for the company the pro-
totype has been developed for.
AngularJS - A popular JavaScript framework.
Back End - In this project a collective word for all code running on the server side
of the application.
Cloud Computing - When processing power is accessed through the web instead
of being in the personal computer.
Cognitive Walkthrough - A way to evaluate GUI.x
Cryptographic Protocols - Techniques to make data secure.
Data Binding - The synchronisation of data between model and view components.
Desktop application - Software running locally on a computer.
DOM - Document Object Model. Describes the content of a website.
Front End - In this project a collective word for all code running on the client side
of the application.
Git A version control software
GUI - Graphical user interface. What the user of a software sees and works with.
HCI - Human-Computer Interaction. The science of how humans understand and
work with computers.
Heuristic Evaluation - A way to evaluate GUI.
High-functionality Application - Software most commonly used in the business
world. Can be recognized by the amount of features implemented.
HTML - Static markup language used to create web pages.
Java - An object oriented programming language.
Java Virtual Machine (JVM) - The virtual environment in which the Java com-
piler is run
JavaScript - A scripting language offering some object oriented options.
jQuery - A JavaScript library.
JSON - A open standard format for storing data using key-value pairs
Legacy Software - Outdated software using old design principles.
PERL - A scripting language.
Personas - Make believe persons used for evaluating GUI.
Product owner - The individual responsible for the product in a Scrum project.
QuestBuilder - The prototype web application software built in this project.
Questionnaire - An inquiry sheet.
ROI - Return on investment, A way to measure profit.
Scrum - An agile development method.
UX - User Experience. How pleasant a software is to work with.
Version Control - Used to keep track of software when multiple people work on
it.
Waterfall model - A start to end, no change allowed, way of running projects.
Web Application - A website with behaviour similar to a desktop application.
Wire-framing - The act of creating mock-ups of interface before implementation.
Workflow - A collective word for how a certain kind of work is carried out.
WYSIWYG - What-You-See-Is-What-You-get



Contents



1. Introduction

A common problem with software tools built for managing complex and large data
structures is to design an intuitive user interface for them[Fischer, 2001]. Often it is
the case that the end users of such a tool end up trying to adapt their workflow to
the poorly designed user interface, instead of the other way around. The software
controls the user when in fact, the user should control the software. Thus the ben-
efits of using the software are greatly reduced and the software does not achieve its
full potential.

The ideal situation would be where the software does not limit the capabilities of
the user but instead empowers them and provides a way for the user to easily re-
alize their potential. Users of software are seldom as technical as the people who
created it and therefore learning and using the software can be very time-consuming.

A poor user interface can result in extensive learning curves and an unnecessarily
time-consuming workflow. In worst case, the end user might even end up never
using some of the more advanced features that the program provides. There is a
risk that the software is not utilized to its full potential and the end users spends
more time than necessary to get their actual work done. And as time often equals
money, this could result in actual profit loss for a company using such software.

This project is about finding user interface shortcomings in an existing software that
is used to create web surveys and to produce a new application that improves upon
these shortcomings.

1.1. Purpose
The thesis aims at improving the workflow of producing online questionnaires for
American Marketing Analysts (AMA), by developing a prototype that provides a
more efficient process. This new workflow will be tailored to the specific needs of
AMA, simplifying previously repetitive and tedious tasks.

1.2. Limitations
The final product produced by this project is considered to be a prototype. Due
to the nature of the legacy application, the prototype will not be a standalone
application. Instead the prototype will act as a middleware that aims to enhance a
selection of features from the legacy application.

1.2.1. Functionality
The original software application, which the prototype is meant to complement, in-
cludes a vast amount of features. The development process has been geared towards
implementing a subset of these features in the prototype, in addition to new features
in order to improve the workflow at AMA. The reason for this being that AMA has
requested a certain subset of features that need to be implemented.

1.2.2. Testing
The purpose of testing within a software engineering project is to ensure that the
end product is secure, solid and fulfills the purpose of the application [ISTQB, 2015].
The prototype will continuously receive feedback from user tests at AMA in order
to tailor the prototype to their needs. This feedback will be considered as the main

1



1. Introduction

testing aspect of the project. In addition, the new application will be manually
tested to ensure that it is able to open and save files compatible with the legacy
application.

1.2.3. Security
The prototype will be deployed and running at the intranet used by AMA. Access
is therefore only granted to employees at AMA or through a VPN (Virtual Private
Network) connection to the intranet. Due to this, no additional security measures
are considered necessary.

2



1. Introduction

1.3. Background
The American Marketing Analyst (AMA) company is a multinational corporation
specialising in the highly competitive field of creating and analyzing industry stan-
dard questionnaires. As a part of their survey creation process AMA currently use
a legacy software with many features. However, this software is cumbersome and
makes the entire process unnecessarily tedious for the employees.

In order to counter the negative effects of the legacy software AMA began an in-
house project aimed towards improving their workflow. Unfortunately the lack of
competence in software development at the company hindered the process and an
alternative solution was sought. As a result they contacted the Information Tech-
nology program at Chalmers University of Technology and proposed this bachelor
thesis.

Instead of creating a new desktop application it was decided to develop a comple-
mentary web application featuring new ideas and techniques. By deploying the new
application in the cloud it would become more accessible and future proof.

3



1. Introduction

1.4. Problem
This section will cover the problem that this thesis aims to solve. In order to improve
the workflow of AMA, the problem will be broken down into the following parts:

• Finding shortcomings of the current workflow

• Evaluation of the legacy application

• Developing the new application

These parts will ultimately contribute to a software solution prototype that will
improve the workflow of AMA.

1.4.1. Workflow
In order to develop the prototype, it is of high value to find the weaknesses and
shortcomings of the current workflow utilized at AMA to identify what features
the prototype should include. These features must counteract the weaknesses and
shortcomings of the current workflow. In order to gain an understanding of what
features are required to do so, discussions with AMA must be held.

1.4.2. Legacy application
The prototype aims not only to improve the general workflow at AMA, but also
to offer an enhanced user experience in comparison to the legacy application. The
prototype must offer much of the same functionality that is offered in the legacy
application. However, the prototype must offer this functionality in a more intuitive
and user-friendly manner.
In order to improve the user experience, the legacy application must be evaluated.
The results will then be taken into account when developing the new application.

1.4.3. The new application
In order to ensure that the new application fulfills the requirements it must also
be evaluated in the same manner as the evaluation of the legacy application. The
purpose of the evaluation is to compare the web application with the legacy appli-
cation.
The new application must also cancel the negative aspects identified in the old
workflow. To ensure this, continuous discussion with AMA must be held regarding
the new workflow that the new application offers.

4



1. Introduction

1.5. Method
This section describes the most common techniques used to realize this project.
These techniques cover project planning and execution. It also covers how the source
code has been shared between all collaborators and the programming languages used
to develop the prototype.

1.5.1. Agile Development
The chosen software development method was Agile. Agile development is a col-
lection of several software project methodologies that is used to organize software
projects resulting in better end products [Dyba, 2008]. The main idea of Agile de-
velopment focuses upon four pillars [Beck, 2001]. The core notion of these pillars
is that time consuming activities, such as documentation and contract negotiations
are down prioritized. Functioning software and collaboration is valuable. Also,
individuals should interact with each other directly instead of using external tools
and processes. The last pillar mentions that changes of plans should not be an issue.

The agile methodology chosen for this project is Scrum. In Scrum, the software is
developed by self organizing teams. The team should be cross-functional and consist
of a Product Owner, a development team and a Scrum Master. [Schwaber, 2013]
The Product Owner is responsible for the product and for maximizing the value of
it, while the Scrum Master ensures that the Scrum process is applied without any
major friction.

1.5.2. Programming Languages
Early in the process it was decided to use Java in the back end of the application
due to the group being familiar with the language, thus easing the process of de-
velopment. It was also decided to use JavaScript for the logic in the front end.
JavaScript differs from Java but is similar enough that the group felt comfortable
using it. Since the resulting software would be a web application, HTML was also
used in order to create the views.

1.5.3. Software evaluations
Two methods were chosen in order to evaluate the legacy software and the prototype.
The first method that was chosen is Heuristic Evaluation, a well recognized and
adopted method of evaluating software regarding GUI[Nielsen, 1994]. The second
method is Cognitive Walkthrough, a method used to discover the flaws of interface
design down to graphical component level.[Spencer, 2000]

1.5.4. Version Control
In order to ease collaboration and push out releases frequently the use of version
control was considered a necessity. The method agreed upon was Git. Git eases
the process of creating branches in a project to allow for independent work. These
branches can then be merged together in order to create a release [Driessen, 2010].
To further ease the use of Git the plugin Git-flow was used. Git-flow promotes the
use of master, develop and feature branches, making it simple to track the work
done by all members and allowing for a structured development phase. [Kummer]

5



2. Theory

The specific problem considered in this project is an example of the more general
problem of creating software that covers a great deal of functionality. In this chap-
ter we will give an overview of the more general problem and describe the historical
development of web-based software and why it could be preferable over desktop ap-
plications.

2.1. Migrating desktop applications to the cloud
This section will provide some background on the evolvement of the web in order
to motivate why developing a web application is beneficial and in some cases even
favored over developing a desktop application.

2.1.1. Background
The world wide web has developed into a network of interconnected computing de-
vices and resources more powerful than most of us could have ever imagined. This
network has lead us to yet another large scale revolution in the field of computing
and information technology. The era of desktop computing is transitioning into the
era of the web. Comparing today’s computing with the early days of computing,
the web can now, in many ways, be considered to be an infinitely powerful, shared
mainframe computer that is accessible by everyone [JOTHIRAMALINGAM, 2012].

It is not uncommon for enterprises to migrate some of their resources to the cloud
[Cohen, 2013]. By doing so, the resources become more easily accessible for every-
body involved and benefit from a plethora of new capabilities that the web has to
offer.

2.1.2. Benefits of migrating to the cloud
Many of today’s companies have software resources that need to be shared amongst
their employees. These resources could be anything from servers and storage to
actual applications, whereas the latter applies to AMA mentioned earlier. Since the
cloud is all about connectivity and content distribution, the benefits of migrating
desktop applications to the cloud are clear [Group, 2011].

Moving an application to the cloud often means centralizing the resource both phys-
ically and administratively, thus lessening the overall IT management burden on the
employees. The process is in many ways similar to outsourcing the IT resources of
a company to a third party vendor [Chou, 2015].

Another important benefit of cloud computing is scalability. If a company hires new
staff that will need access to the software resources, all the new employees will need
is a web browser and connectivity to the centralized resource. Compared with the
more traditional desktop approach where the new employees would have to make
sure they have compatible hardware for the software and then install it locally, the
benefits are clear.

Yet another quite descriptive comparison of desktop versus cloud computing that
emphasizes the benefits of the latter is the process of upgrading an application. With
the desktop approach, every client computer needs to be upgraded locally with the

6



2. Theory

latest software. Thanks to the more distributed nature of cloud applications how-
ever, the upgrade only needs to take place once on the server itself.

An environment using desktop applications typically operates as to the left in fig-
ure 2.1 below. Every user is operating a desktop application (app.) running on a
computer which is communicating in a network of computers.

In the right figure in picture 2.1 below, every user gains access to the application
through their computer (denoted as client here). This centralizes the entire work-
load.

Figure 2.1: A network of desktop computers (left) and an
application used as a shared resource (right)

Developing a web application is not very different from developing a website. In
fact, a web application is basically a website with the exception that it manages
more logic in order to act more like a high functionality application.

2.1.3. Creating dynamic web applications with AngularJS
As mentioned in the background section, originally almost all web pages were static
[O’Reilly, 2007]. They were used to simply display information, very much in the
same way a newspaper or magazine does.

Many desktop applications have to be able to do more than just display informa-
tion to the user and therefore some problems might arise when trying to migrate a
desktop application to the cloud. There is no point in doing such a transformation
if important features of the original application are lost in the process.

For a web application to work similarly to a desktop application it needs to be dy-
namic, meaning that the content displayed to the user can change depending on
the input the user gives. A common way to achieve this is to use JavaScript, a
scripting language that has become extremely popular amongst all different kinds
of web sites. In fact, in 2011, 93% of the world’s 500 most popular web sites were

7



2. Theory

using JavaScript [Brown, 2012].

JavaScript is mainly used on the client side of web applications [Brown, 2012]. The
code gets executed by the user’s web browser and its JavaScript engine. Scripts
can be embedded within a normal HTML document and are, amongst other things,
used to dynamically manipulate the so called Document Object Model (DOM) that
describes the content of the web page. This way it is possible to remove, add and
update content that is displayed to the user on the fly.

A popular JavaScript framework is AngularJS, also known as just Angular [Google-
Trends, 2015]. Amongst other things, Angular allows for easy two way data binding.
If the data changes in one place the change is also reflected in all the elements that
references it. Angular and its features are further discussed in later sections. Angu-
lar makes use of a JavaScript framework called jQuery that, amongst other things,
simplifies the process of programmatically traverse and manipulate the DOM. Con-
sider the following:

Assume that a site should show a message to a user that enters his/her name in
the web page. The message should say “Hello” followed by the name that the user
inputs. This can be done with or without Angular. Without Angular the code
would look something like in figure 2.2.

Figure 2.2: HTML and JavaScript code for displaying "Hello"
followed by an entered name

8



2. Theory

This quickly gets muddled and can be hard to read at first sight. However, with
Angular the above example can be solved as seen in figure 2.3 where one states that
the model which the input field should update is “name” and then bind the value
of “name” by enclosing it within curly braces. This notation is used to tell Angular
that whatever is inside the braces should refer to the dynamic value referred to as
“name”. It is clear that Angular simplifies a lot of things.

Figure 2.3: Displaying "Hello" followed by an entered name
using HTML and AngularJS

2.2. UX and HCI
The purpose of this section is to research more thoroughly into the subject of user
experience enhancement. In order to improve the workflow of creating question-
naires, the user interface had to be made more intuitive and logical than that of the
legacy software.

2.2.1. Background
Human Computer Interaction (HCI) and User Experience (UX) have existed as
long as the possibility to interact with computer systems. In 1968, the computer
scientist Douglas Engelbart presented his ideas of matching capabilities of humans
and computers [Barnes, 1997]. This event played a major part in the history of
computer science and is considered to be the beginning of the evolution of Human
Computer Interaction [Fischer, 2001].

2.2.2. What is HCI and UX?
HCI is a research field where studies are centered around the usability and design
of computers. Research in HCI has primarily been focusing on interface issues in
order to create systems that are more easy to interact with [Fischer, 2001]. On the
basis of this, the main area of investigations concerning HCI has been in regards
to development of rules and criteria for designing intuitive graphical user interfaces
(GUI). The reason for this research is to improve the UX and to lower the learning
curve for the end user. Since research concerning GUI has evolved, interface prob-
lems have been better understood.

The term UX has previously been tightly connected with HCI but UX has grown
in importance and can be seen as a positive side of HCI [Hazzenzahl, 2006]. Where
HCI primary focuses on the creation of systems that are easy to interact with, UX
aims to give the end user a pleasant experience. This experience would allude to
the user emotions, and try to prevent negative feelings.

To offer a pleasant experience for the user, the design of the GUI is highly val-
ued. For example, it takes no longer than 50 ms for a user to appraise a web page
[Lindgaard, 2006] and therefore the visual experience has to be aesthetically appeal-

9



2. Theory

ing. Aesthetics plays a major role in how users obtain information [David, 2010].

To sum up this section, a computer system needs to be easy to use, allude to the
end users emotions and be aesthetically appealing.

2.2.3. HCI and UX importance
Ever since Engelbart and his team presented their vision in 1968 [Barnes, 1997] HCI
and UX have grown in importance for software companies all over the world. The
basis for HCI at the very core of the subject has not changed. The graphical user
interface sets expectations on functionality and provides a way for the user to access
said functionality.

To quantify the importance of HCI in software projects, a real and relevant method
of measurement must be used. One such measurement method that arguably works
despite the abstract and subjective nature of UX is the return of investment, ROI,
method [Beattie, 2014]. The basis of ROI is to measure how many dollars worth
every dollar invested returns. To achieve realistic ROI all relevant aspects need to
be taken into account. Some of these aspects are costs in development, end user
response and and the amount of post-deployment service needed.

At the start of a new project, focusing on the user experience leads to clearly de-
fined requirements. This makes it easier to both implement the front end and to
provide the back end functionality. This aspect can be so advantageous that the
development takes up to half as much time. Other important tools are personas and
wireframing. Studies have shown that they result in more realistic time estimates,
reduced amount of requests for clarification and that they also lower the need for
rework and bug fixing after deployment [Spillers, 2014].

Figure 2.4: The importance of proper UX development can be
represented with the 1:10:100 rule. Spend $1 on research, $10 to

change design or $100 to change something already in
development. Picture from [Spillers, 2014]

newpage

10



2. Theory

Examples where UX investments paid off are when McAfee experienced a 90% re-
duction in support costs after increasing their usability testing [Spillers, 2014] and
that Airbnb went from failure to a billion dollar company after listening more closely
to customer feedback on their service [Gebbia, 2013]. Data shows that on average
10% of the development budget is spent on this area and that the ROI can range
between $10 and $100 for every dollar spent [Lai, 2014]. The average return of
investment after a redesign is 83% [Nielsen, 2008].

2.2.4. Problems with High-functionality applications
In the corporate world, the kind of software used is often advanced and complex.
Usually these systems are directed to professional users and, most commonly, have
a high learning curve. These complex system are called High functionality applica-
tions (HFA)[Fischer, 2001]. The ambition with these applications is to model the
existing world as accurately as possible. These ambitions often lead to applications
that are unnecessarily advanced and unintuitive. Companies developing this kind
of software more often mention that the professional users using these applications
will learn to use them after spending some time with them. How complex a HFA
becomes depends on the amount of features that needs to be implemented. Fischer
mentions a hypothesis in his article that reads as follows:

“If you asked 100 different people what features they would like to have in a partic-
ular application, you would end up with a very large number of features.”

The essence of this quote is that it is hard to create software that offers a pleasant
experience for the user that also satisfies a large group of users. To create a HFA
that satisfies the majority of the users but still takes design into account, the ap-
plication has to get rid of unused functionality. This means that they cannot get
in the way for features that are being used more frequently. Still, the features that
are hidden have to be easily accessible when they have an actual value for the user.
The last design issue that needs to be taken into account is that the core features
need to be easy to use and learn.

Corporations working in the financial sector, such as AMA, have more recently
taken user experience into account regarding their business systems[Kumar, 2014].
The article suggests that this change in attitude depends on three factors. The
first factor is the changing conditions of technology. In the 21st century the new
and modern technology first reached private individuals. New phones, computers
and applications are first acquired by individuals, rather than corporations. This is
different from the attitude just a decade ago. Back then, new technology reached
corporations before consumers. This change tells us that since consumers adapt new
technology more rapidly, they also get the first sight of new user experiences. Sud-
denly, the software used at work feels outdated and not as aesthetically appealing.

Another factor that signals a major change in attitude regarding business software
is that the barriers between work and private life are fading away. The demographic
change of workers in the concerned industries has to be considered [Kumar, 2014].

11



2. Theory

Many of the employees of today’s corporations have grown up in a society where
computers have been a natural element of their everyday life.

2.3. GUI Evaluation methods
UX design in software is still a very young field. There are many different methods
to evaluate a particular application and all of them have different advantages and
disadvantages.

2.3.1. Heuristic Evaluation
Heuristic Evaluation is a well recognized and adopted method of evaluating soft-
ware in regards to how well its Graphical User Interface(GUI) manages to empower
the user [Nielsen, 1994]. The method involves a set of evaluators that evaluate the
software by discussing how well it conforms to a set of predefined principles. Even
though these predefined “heuristics” can be created specifically for a certain ap-
plication, it is much more common to go by some of the already established ones
[Nielsen, 1995a]. One of these are the Nielsen’s heuristics [Nielsen, 1995b]. They
were developed by Jakob Nielsen in 1995 and is still the most used Heuristic evalu-
ation method. This method covers a large set of issues that has to be addressed in
creating a great user experience.

The ten heuristics are as follows:

"Visibility of system status" [Nielsen, 1995b]
The user should be fully aware of what task the system is performing.

"Match between system and the real world" [Nielsen, 1995b]
To fully cater to a wide user base, the application should communicate by
means that are easily recognized by the user rather than using language or
performing actions that are too technical.

"User control and freedom" [Nielsen, 1995b]
The user should never feel as if a choice can’t be reversed. The user has to be
able to perform erroneous actions and not be punished by them, but rather
be offered to undo.

"Consistency and standards" [Nielsen, 1995b]
The application should follow a uniform standard when it comes to all forms
of user interaction. This makes navigating and interaction less cumbersome
for the user.

"Error prevention" [Nielsen, 1995b]
Prevent the user from performing unintentional errors.

"Recognition rather than recall" [Nielsen, 1995b]
The user should be able to recognize events within the software to easily act
upon them, this is far superior to requiring the user to memorize them.

"Flexibility and efficiency of use" [Nielsen, 1995b]
Allow an expert user to engage in a faster and more efficient workflow.

12



2. Theory

"Aesthetic and minimalist design" [Nielsen, 1995b]
By getting to the point and eliminating unuseful information the user can
engage more thoroughly in the message that you, as a developer, are trying to
convey.

"Help users recognize, diagnose, and recover from errors" [Nielsen, 1995b]

When errors occur, try to enable the user to handle these himself by providing
easily understood instructions.

"Help and documentation" [Nielsen, 1995b]
Help and documentation should only be presented for the sole purpose of
enabling the user to fully understand and operate the application. Therefore
it is important that the documentation is easily understood and absorbed.

2.3.2. Cognitive Walkthrough
Cognitive Walkthrough is, just as the heuristic evaluation, a method of analysing
the user interface of an application or product[Spencer, 2000]. The walkthrough
aims at identifying actual flaws of the user interface down to the exact graphical
component rather than providing a general understanding of the weaknesses of the
application, which is what the heuristic evaluation provides.

The method involves evaluators that will evaluate the software and moderators that
lead the proceedings (moderators can also be evaluators themselves). Performing
a cognitive walkthrough is based around a set of questions and a certain task that
are predetermined by the evaluators [Spencer, 2000]. The questions can be of any
nature and of any quantity, although the goal is to properly identify the flaws of the
interface, and the task should put the evaluators through a part of the application.
An example of a task would be to send a text message on a phone, if the evaluators
were to evaluate a text messaging app on a phone.

Even though one can construct questions freely, there are already many sets of ques-
tions available from researchers within the field. They range from fast and stream-
lined approaches such as Spencer’s “Streamlined cognitive walkthrough” [Spencer,
2000], that aims to simplify the process and make it more accessible, to more broadly
adopted versions such as the one described in the third edition of “Interaction De-
sign - Beyond Human Computer Interaction” [Rogers, 2011].

The sets of questions described there are as follows:

1. “Will the correct action be sufficiently evident to the user?" [Spencer, 2000]
(Will the user know what to do to achieve the task?)

2. “Will the user notice that the correct action is available?" [Spencer, 2000] (Can
users see the button or menu item that they should use for the next action?
is it apparent when it is needed?)”

13



2. Theory

3. “Will the user associate and interpret the response from the action correctly?"
[Spencer, 2000] ( Will the users know from the feedback that they have made
a correct or incorrect choice of action?)”

14



3. The legacy software and the previous workflow

In this section, the shortcomings of the legacy software and the workflow that comes
with it are discussed. Also, methods for evaluating both the legacy software and the
new web application are presented along with evaluation results.

3.1. The legacy software
The key feature of the legacy software is the ability to create questionnaires. These
questionnaires are used in research studies, and are uploaded to the Internet where
research subjects can be interviewed about their opinions concerning a specific issue.
In the legacy application it is possible to use six different components for interviewing
the research subjects. Each component can be seen as a set of different question
types that can be used to customize the questionnaire. The components that can
be accessed are the following:

• General Computer Interviewing (CiW)

• Choice-Based Conjoint (CBC)

• Adaptive Choice-Based Conjoint (ACBC)

• Adaptive Conjoint Analysis (ACA)

• Conjoint Value Analysis (CVA)

• Best/Worst Scaling (MaxDiff)

In this project, the primary focus has been on CiW. CiW consists of the main
elements that are used to build questionnaires. They provide the possibility of
creating questions, and there are 11 different question types to choose from. All of
them are not relevant for this project, but the essential ones are the following:

• Select Question. Used to ask the research subject a question and give him or
her a set of answers to choose from.

Figure 3.1: A Select Question

15



3. The legacy software and the previous workflow

• Numeric Question. Used to ask the research subject to type a number as a
response to a question.

Figure 3.2: A Numeric Question

• Open-End Question. Used to give the research subject the possibility to answer
a question in a text area.

Figure 3.3: An Open-End Question

• Grid Question. Used to ask a series of questions where every question has the
same set of answers.

Figure 3.4: A Grid Question

16



3. The legacy software and the previous workflow

Apart from the different question types, the legacy software also contains features
such as skip logic. This feature makes it possible to give questionnaires a dynamic
behaviour. With skip logic, the contents of the questionnaire can be seen as a tree
structure, where different paths show different questions. As seen in the picture
below, skip logic can be used in different ways referred to as "skip logic patterns".
For example, it is possible to specify that some questionnaire items should be skipped
all together, if the subject gives a certain answer to some previous question. Refer
to figure 3.5 below for clarification.

Figure 3.5: Different ways of using Skip Logic

3.2. Workflow at AMA
AMA is a multinational company working with quantitative and qualitative research
studies, providing the study results to research agencies and consultancy firms. In
order to do research and analysis for their customers, a software that supplies the
relevant services is essential for the company. The purpose of the legacy application
is for AMA to create studies about specific topics. These studies will later be sent
out to the chosen research subjects. The creation of questionnaires is one part of
the services that AMA provides their customers, but in this project the focus will
be delimited on this.

The delimited process regarding AMA’s services is centered around a repetitive
pattern of how to create and visualize questionnaires in a comprehensible way for

17



3. The legacy software and the previous workflow

customers. The workflow at AMA consists of two major parts. AMA begins by
producing a text document containing all relevant information about the question-
naire, including the structure of the skip logics and all the questions. When the text
document is considered to be complete it will be sent to the client for feedback.

Figure 3.6: Example on what a Numeric Question looks like in
the text document.

The second step in the workflow at AMA, is the creation of the questionnaire in the
legacy application, using the text document mentioned above as a template. This
questionnaire will also receive feedback from clients when needed, and according to
this, changes would be made until an approval from the client. At this point the
process would be considered done, and the survey produced in the current software
will be sent to its research subjects. Below is a chart describing the entire workflow.

Figure 3.7: The workflow at AMA

3.2.1. AMA’s opinions on previous workflow and software
According to AMA, this workflow consists of highly time consuming work. The
construction of the questionnaire itself is particularly tedious due to the iterative
process towards the clients that created prolix cycles of feedback. AMA also men-
tions that the creation of questionnaires is far from ideal. There are no possibility

18



3. The legacy software and the previous workflow

to reuse old standard questions, which implies a great deal of repetitive work. This
results in a time-consuming process without value for the company.

According to the interview with representatives from AMA, found in appendix A.2,
the overall impression of the legacy application is that it feels old and does not
give the user a pleasant experience. It contains many features but few of which are
actually used on a daily basis. The relevant features can be hard to find and use
and the software does not offer a pleasurable overview of the survey.

3.3. AMA’s visions for the new workflow
AMA mentions in an interview, found in appendix A.2, that they have great visions
of how their workflow should be. This vision include a new software that addresses
the shortcomings of the previous workflow. AMA mentions in the interview:

“The overall objective is to provide a software that makes the creating process of
clients’ questionnaire and surveys more efficient, standardized and of higher quality.”

To do this, the two main parts of the questionnaire creation process have to be
merged into one. The new software would be able to automatically generate the
text documents from a questionnaire. This means ultimately that when the client
has received the text document and agreed on the content, the survey would also
be approved. Figure 3.8 shows what the new workflow would look like.

Figure 3.8: The desired workflow at AMA

AMA also mentions visions and ambitions about the appearances of the new soft-
ware. First of all, it should offer a clear overview of the questionnaire, and every
survey item within the questionnaire should be easy to find. The questionnaire
overview should look like the text document.

Another issue that AMA wants to eliminate, is the amount of unused features that
the current software have. The most used ones should be easy to access and use.

19



3. The legacy software and the previous workflow

The more seldomly used features should remain easily accessible without being in
the way for the more frequently used ones.

The last vision that AMA has for the new software is the ability to reuse questions.
A vast amount of time is spent on recreating standard questions for every new ques-
tionnaire. The objective is to have a central database where sets of questions can
be saved. Since the database is shared, a large volume of questions would be easily
accessed by all employees.

AMA’s aim is to replace the usage of word processors and the current software com-
pletely. However, the first step is to create a software that fulfills the most basic
visions, such as text document generation and database support mentioned earlier.
Additional settings that the new software does not cover will need to be done in the
legacy software.

The ambition with these changes is to encourage a workflow that meets the client’s
demand on faster delivery. The new workflow will make the process less time con-
suming and therefore more cost effective.

3.4. UX Evaluation process
To fully understand the negative and positive aspects of the legacy application, user
experience evaluations were performed.

3.4.1. Cognitive Walkthrough of current software
The cognitive walkthrough concluded that the legacy software is quite divided and
non-uniform. There are sometimes plenty of ways to perform a task while there
might just be one at other times. Icons and buttons are seldomly uniform and this
causes quite some confusion. Even though this is the case, the legacy software gen-
erally enables the user to perform the wished task.

The main problem with the legacy software is the constant need for opening new
windows whenever the user wishes to perform a new action. This makes it very
cumbersome for the user to navigate between different features.

"Will the correct action be sufficiently evident to the user?" [Spencer, 2000]

Often, the next step is not intuitive. The user has to perform a set of ac-
tions to achieve the desired goal rather than cutting straight to the point. An
example of this would be that a user wants to perform a change to a question.
Rather than enabling the user to easily correct something within a question
from the overview window, the user has to navigate a set of ,at times confusing,
menus to achieve the initial goal.

"Will the user notice that the correct action is available?" [Spencer, 2000]

Most of the time, the option is quite evident. Even though icons and but-
tons does not always conform to the standard, they are often clearly visible.

20



3. The legacy software and the previous workflow

This is mainly due to the fact that the legacy software is trying to display
all the available features rather than highlighting the most important ones.
The result of this is a cluttered interface that might be hard to navigate but
nevertheless allows the user to find the correct button eventually.

“Will the user associate and interpret the response from the action correctly?"
[Spencer, 2000]
This turned out to be the field in which the legacy software performed the
best. Since it often opens a new window for each feature, the user instantly
understands that a new task has been performed by the application. The only
problem can be that, as previously mentioned, the application is not uniform
in the way it conveys information. Therefore it can sometimes be hard for the
user to tell if the new window that appears is the correct one for what the user
might wish to accomplish.

3.4.2. Heuristic Evaluation of the legacy software
The conducted heuristic evaluation concluded that the legacy software contains a
vast amount of graphical interface and user experience related shortcomings.

Even though the application showed promise in some isolated areas, the majority
of the opinions of the evaluators were of the criticizing nature rather than of the
praising kind.

Positive aspects

One major positive feature that permeates the whole application is also, in
some sense, negative. The legacy software displays a pop up when a new fea-
ture is initiated (Example: Editing a question, Entering skip logic etc. etc.).
This helps the user to understand what the application is doing and goes in
accordance with the first out of the ten Nielsen heuristics.

The application is uniformly designed in accordance with the third Nielsen
heuristic which takes into account the freedom of the user. The legacy soft-
ware allows for the user to fully revert the actions that is taken. This is done
using regular “Cancel” and “Close” buttons on many views.

The third positive aspect of the legacy software is the error messages. These
messages are clear and straight to the point, describing in detail what went
wrong in a way the user will understand. This falls under the ninth Nielsen
heuristic which describes the importance of having easily understandable error
messages.

21



3. The legacy software and the previous workflow

Negative aspects

The application boasts a long list of wrongfully designed components in re-
gards to the user experience.

As stated earlier, the way that the legacy software displays pop ups for most
new features makes the user aware of what the application is doing. But on the
other hand, the workspace gets very cluttered and there is no sense of overview
since the user is constantly navigating back and forth between different levels
of the interface.

Something that is a major issue for the original application in general is the
lack of a uniform design when it comes to buttons and icons. These interactive
components are often combined and put in a suboptimal order and position
in regards to each other. Also they do often times not match the standard
usages within other applications (an extreme example of this would be that
the magnifying glass icon does not enable a search function, something that is
considered a universal standard[Nielsen, 2014]).

The positioning and usages of these buttons and icons contribute to the clut-
tered and cumbersome interface of the application. Often the application tries
to fit in every aspect of a feature within the same view, something that results
in the view being filled to the brim with graphical components. This also
results in important features not being given enough space to stand out and
therefore blending in with less important ones.

Another issue with the application is the technical nature of the documenta-
tion. A large quantity of the text components of the user interface includes
technical language that a novice user would not be able to fully understand.

There are also two major parts of the application that causes great confusion
to a novice user.

The first one is the Skip Logic view. Creating skip logics is far from easy.
Apart from the somewhat minor defects of the graphical interface within the
skip logic view, the actual skip logics themselves are very cryptic and very
hard to fully understand without the guidance of an expert user. The skip
logics are composed by using an odd and unintuitive programming language
that takes quite some time to get used to.

The issues regarding the creation of skip logics is very similar to that of the
constructed list creation process. The list creation view is both cluttered,
unintuitive and even features some bugs that crawled their way through the

22



3. The legacy software and the previous workflow

development process. But just like the skip logic feature, the creation of con-
structed list also requires programming skills. The constructed list is created
by constructing a small PERL script that generates the list. This goes far and
beyond what is supposed to be needed by the user and hence incapacitates
the novice user.

3.4.3. Evaluation Summary

The evaluation of the legacy software concluded that the program contains
a broad range of critical errors in regards to the user experience. It is cum-
bersome to operate even for the experienced user, something that flattens the
learning curve for a new user.

The legacy software provides a non-uniform approach to graphical user inter-
face design and goes against many rules of user experience design. It shows
great promise in what features it provides but the graphical user interface bur-
rows these features in a layer of unnecessarily complex and confusing maze of
buttons, windows, icons and more.

The main things that have to be done are the following:

1. Provide a better overview of the Survey and the questions it contains
2. Prioritize the functionalities of the application and make these easier to

access
3. Eliminate the use for programming knowledge
4. Prevent errors, this could be done by checking text fields so they aren’t

empty for example
5. Provide a more uniform approach to button positioning, phrasing and

the use of icons
6. Simply work towards making the application less cumbersome and thereby

both increase the efficiency of the workflow and also make it easier for
novice users to adopt it.

3.5. The prototype
According to AMAs’ opinions and the results received from both the cognitive
walkthrough and the heuristic evaluation, GUI drafts were produced to give
an outline on how the new software should look like. The ambition with the
prototype, called “QuestBuilder”, is to create an application that produces a
text document and a survey file. The sole purpose of this project is to aid the
structuring of a new and more efficient workflow for AMA consultants.

23



3. The legacy software and the previous workflow

The features that were ultimately implemented in the final software are:

• Select Question
• Skip Logic
• Constructed Lists
• Database Export
• Text document generation
• Survey file Export
• Survey file Import
• Pagebreaks
• Skip logic notes
• Quota notes
• General notes
• Request to client notes

The back end supports all CiW question types.

The major goal is to create a software that gives a good overview of what is
actually being created. When doing this, the principles mentioned in 2.2.4 will
be taken into account [Fischer, 2001]. The principles says that features that are
commonly used need to be clearly visible and easy to access. The ambition
with QuestBuilder is to make the question creating process more intuitive,
since that feature plays a key role in the process of constructing questionnaires.
When dragging a question type into the center stage, the question will be
created and visualized for the user. The user edits the question in real time,
and the result is displayed in the same way as in the text documents. It
should also be possible to arrange the questions, giving the user the possibility
to place the questions in the preferable order. Figure 3.9 shows an early draft
of what the center stage could look like.

24



3. The legacy software and the previous workflow

Figure 3.9: Early draft of the center stage with one question
added to the survey

As mentioned in section 2.2.4, HFA of good quality needs to have seldom used
features easy to access when they have an actual value [Fischer, 2001]. The
goal of QuestBuilder is to collect every infrequently used feature, which in
this case usually are advanced settings, into a unique separate view for every
question type. This advanced view should be easy accessible for the user with
a single mouseclick from the center stage. The advanced settings will be in
the shape of a popup that covers almost the whole screen. By doing this, the
ambition is to offer a way to reach the advanced settings, but yet to remain in
control of the questionnaire in the making. In Figure 3.10 the ambitions with
the popup window will be shown.

Figure 3.10: Early draft of advanced settings

Previous evaluations showed that the method of creating skip logics is far from

25



3. The legacy software and the previous workflow

optimal. A major issue is that it is hard to understand the logics created, and
how it will evaluate in the end. Since everything is based upon text and not
actual visuals, the user needs to have a deep understanding of how skip logics
work. The goal of skip logics in QuestBuilder is to eliminate these obstacles
of creating skip logics, but yet to keep the complexity that the legacy soft-
ware offers. By doing this, the thoroughgoing topic of always having a general
overview of the questionnaire will impregnate skip logic as well. The solution
is to give the user control over how the skip logic looks like, and to always
show the conditions that will activate the skip.

To create constructed lists is far from ideal, according to the evaluation in
section 3.4. The ambition with the new application is to make it more intu-
itive to create lists, even if the user has no experience of PERL scripting. The
ambitions are similar to ambitions of skip logics; to eliminate the obstacles.
However, constructed lists have several additional features that are hard to
simplify. A combination between accessible features and PERL scripting is
therefore considerable.

By developing the software according to these ideas, the belief is to offer a HFA
designed according to the ideas mentioned in section 2.2.4. By emphasize the
core features and have them easily accessible, the problems of having a large
quantity of functionality visible will be eliminated. The advanced features will
be reachable by a single button press. This way, they will not take up space
from the fundamental features. Lastly, the basic features have to be intuitive
to use and learn. In QuestBuilder, the ambition is to provide a logical pattern
throughout the whole application and to give the user total control over the
questionnaire creating process.

.

26



4. QuestBuilder

At the time of the creation of this publication and evaluation, the prototype
is in the final stages of development. The shortcomings and issues addressed
here will be taken into account before the final release of the prototype.

4.1. Presentation of QuestBuilder
What follows in this section is a presentation of how the GUI of the new appli-
cation looks like. All found shortcomings regarding the desktop application,
both from AMA and the evaluations made in section 3.4, have been taken into
account during the development. The design has continuously been reviewed
by AMA in order to tailor it to their needs.

4.1.1. Main View

The main view follows a design pattern called Center Stage [Tidwell, 2015], a
pattern used to put focus on the most relevant parts of the software but still
offer access to other features. In QuestBuilder, the user can access every type
of question in a side panel. The question can subsequently be dragged into the
center stage in order to add that element to the survey. Every survey item,
including page breaks, operates according to this standard.

Navigation to different parts of the web application, is located in a menu bar at
the top. When browsing the main view, a second bar is positioned at the top
of the center stage. This is where file options such as importing and exporting
survey files as well as exporting text documents is located. This is also where
the toolbar with text editing options, such as bold formatting, will appear
when it is needed.

Figure 4.1: Mainview of the QuestBuilder application

27



4. QuestBuilder

4.1.2. Select Question

Questionnaire items such as "Select Question" are added to the questionnaire
by dragging the desired item from the sidebar to the center stage.

It is possible to edit a question item in the center stage. When a Select Ques-
tion is created, the user will be forced to specify the name of the question.
The question will then be visualized according to how it will look in the text
document generated from the application, with the same styling and word
wrapping.

Figure 4.2: Basic Select Question editing

A select question has an advanced view. It is accessed by pressing the settings
button at the top corner of every question item in the center stage. This view
is a pop up window, which lays on top of the center stage.

The advanced view includes settings that are rarely used. The user can change
the response type, and based on which response type that has been chosen,
unique settings for that response type will be visualized.

28



4. QuestBuilder

Figure 4.3: Advanced Select Question editing

4.1.3. Skip Logic

The Skip Logic view uses the same center stage pattern as the main view. In
the left side panel, the different question types have been replaced on behalf
of the contents of the questionnaire. To create a skip logic the user chooses
a question from the list from which it should skip from. The skip logic is
visible in plain text at the bottom of the center stage, and the user can choose
to manually construct a skip logic without pressing the buttons. Since a skip
logic can be based on several questions, all questions that precede the question
chosen to skip from can be accessed as well.

Figure 4.4: Adding skip logic to a question

29



4. QuestBuilder

4.1.4. Database

The possibility of saving questions to a database, is an additional feature that
helps improving the workflow at AMA. The database makes it possible to save
a set of questions to a shared database accessible by all employees.

From the main view of QuestBuilder the user can unlock the possibility of
selecting which questions that should be saved to the database. After the
questions has been selected a pop up similar to the settings view will be dis-
played. In this pop up it is possible to specify the name of the set but also to
pick four different tags that AMA has proposed.

When a set of questions have been stored in the database, the users can search
for that set and import it to their own surveys. This is done in the Database
view. This view is also based upon the Center Stage pattern. Located in
the top half of the side panel is a search field, used to search for stored sets
of questions. The results are immediately shown in the bottom half of the
side panel. The user can sequentially choose the sets to import in the survey.
The chosen sets, including their questions, will be visible in the center stage.
Ultimately, when all the preferable sets have been selected, the import button
can be pressed in order to import them to the ongoing survey.

Figure 4.5: The Database View

4.1.5. Constructed List

The view where the user can create Constructed Lists, is available by choosing
“Lists” in the navigation bar at the top. The intention with this view is to make
the creation of Constructed Lists more intuitive. Constructed Lists are built
by first choosing a parent list, the list that the new constructed one should
depend on. The user then drags elements from the left half into the right
half. The left half elements are Origin Questions, which are questions created

30



4. QuestBuilder

with the chosen parent list. There are also static elements, which at this stage
of development can be used to randomize options or to write code in pure text.

By choosing elements from the left pane, and drag them to the right one, the
user can build the constructed list. If an origin question has been chosen,
the user has the possibility of adding logical operations to the response op-
tions. These options are “Add if Chosen” (AIC), “Add if not Chosen" (ANC)
and “Always Add” (ADD). These options will generate PERL code that is
displayed in the bottom right half.

Figure 4.6: Creating a constructed list

4.1.6. Import and Export

QuestBuilder is capable of importing existing survey files, as well as exporting
questionnaires to this file format. It is also able to generate Microsoft® Word
compatible documents from the prototype. Questions will have the exact same
appearance in the document as it will in the application. This can be seen in
figure 4.7 below. This way, the employees at AMA does not need to create
a text document and a survey file in two different processes. Instead, both
the document and the questionnaire itself can be produced in QuestBuilder
simultaneously.

31



4. QuestBuilder

Figure 4.7: A Numeric Question in the main view of
QuestBuilder (top) and a Numeric Question in a text document

(bottom)

4.2. Cognitive Walkthrough
The cognitive walkthrough of the Questbuilder application uncovered a few
instances where the application obfuscated the features, making the user ex-
perience confusing and inhibiting an efficient workflow.

Even though there were some flaws, the evaluators general opinion where that
the application had improved upon the concepts of the legacy application.
This is the result of a number of adopted design principles.

Firstly, the new web application provides a more overview centered approach.
The application focuses on putting the content first. This is done by providing
all the produced content (Questions, response options etc.) within reach at all
times. This makes it very easy for the user to get an overview at any given time.

Secondly, a major part in providing a “content centered” experience is de-
ciding what is not relevant. In the legacy application, a lot of features were
crammed into a small view. This made the navigation cumbersome and did
not highlight the most high priority features. QuestBuilder has a whole new
approach to this. The features are prioritized and receive visual space accord-
ing to their individual importance. This eases the use of the application and
enables the user to engage in a far superior workflow.

32



4. QuestBuilder

"Will the correct action be sufficiently evident to the user?" [Spencer, 2000]

This is where the majority of the issues with the new web application
arises. Often a feature might seem obvious for the experienced user and
even the novice user. The problem lies in that the application lacks in-
formation for the first time user. The main view in figure 4.1 is a great
example.

There is no clear indications as to where to begin. The correct action
would be to drag one of the question types from the left pane into the
center stage. This is obvious as soon as the user has done it for the first
time. Although, for the first time user, there needs to be a more clear
indication.

"Will the user notice that the correct action is available?" [Spencer, 2000]

The different actions within a certain view is generally visually acces-
sible. As stated before, the available actions within every part of the
application has been prioritized and given visual space accordingly. The
result of this is an easy to navigate graphical user interface.

Even though the actions, in the form of buttons, icons, menu items etc.,
are generally easy to find the initial confusion that some views invoke
for the first time user makes it hard to understand how to interact with
the options at hand. As seen in the example earlier, the actual option
for creating a question is clearly visible although how to interact is quite
unintuitive and unclear.

“Will the user associate and interpret the response from the action correctly?"
[Spencer, 2000]

This is where the new web application really shines. Every aspect of
the application produces an appropriate response in the form of visual
feedback. The user is always in control and has full awareness when it
comes to what actions the software performs.

4.3. Heuristic Evaluation
The Questbuilder application is still in a development phase, and even though
there is still much more to come, there is a lot of well developed and designed
features that enables an efficient workflow. However, going with a minimalistic
and more stripped down approach to design comes with a price. Some features
become less intuitive for the first time user since the application overestimates
the ability of the user.

Positive aspects

33



4. QuestBuilder

The new web application has adopted a content centered approach to de-
sign. This means that the produced content remains in focus throughout
the application.

The goal with this approach is to enable the user to easily alter the pro-
vided content at any given time, making the application feel and work
more efficiently towards the goal of the user, namely to construct a ques-
tionnaire.

Another aspect of the “content first” approach within Questbuilder is the
way text is portrayed. The application has adopted a “What-You-See-Is-
What-You-get” (WYSIWYG) design pattern. This means that the result
of the input from the user is presented exactly as it will look in the final
product, the actual survey. This might seem trivial but another, well
adopted approach, is to provide one view for only editing and one for
previewing the produced content. One example of this would be html-
tags within text. The application would have one view where the user
entered the text with the desired html-tags, then another view where it
presents how the actual content would look.

The design also introduces a lot of areas where the application notifies the
user of what task is performed. An example of this would be when a user
adds questions from the database to the current survey. The application
simply informs the user of what has happened and where to find the
newly imported questions.

Figure 4.8: Visual feedback provided by Questbuilder

Negative Aspects
The majority of what can be considered to be plain negative aspects of
the new web application can be linked to how different actions or infor-
mation is presented to the user. Questbuilder is developed with a very
specific target audience in mind. This group of potential users have had
previous experiences with the legacy application that is currently in use
at AMA. These users grasps the basic technical vocabulary that is re-
quired to understand the application fully.

The downside of this is that a first time user, that has no previous expe-
rience with neither the new web application nor the legacy application,
initially will have a hard time understanding some of the features. There
is currently a very small amount of documentation, something that could
solve this issue.

34



4. QuestBuilder

Questbuilder tries to eliminate the use for error messages. This is done
by designing with error prevention in mind, i.e. not being able to in-
sert numbers into a name field for example. Even though some areas of
the application adopts this approach to the fullest extent, others needs
to be improved to eliminate bugs and unintentional application behaviors.

The final negative aspect of the application can be seen as both a neg-
ative and a positive aspect. Questbuilder is a web application and with
that comes a whole new approach to design that introduces new design
patterns that does not exist in desktop applications, or at least are not
as prominent.

This might inhibit some users from fully taking advantage of the applica-
tion at first while adapting to these new principles. These are for example
drag and drop that’s very uncommon in legacy high-functionality appli-
cations such as the current desktop application.

But as the user starts getting used to this new way of providing a high-
functionality application experience, the user will become more efficient
and the project group is confident that the new web application enables
the user to engage in an efficient workflow.

35



5. Development Phase

This section describes how the development of the web application Quest-
Builder was carried out, problems that were faced during the development
and how they were circumvented.

5.1. Modelling the surveys in Java
A big part of the development of QuestBuilder was the reverse engineering
of the Survey file format. This is the format of the files that the original
legacy software generated after creating a survey. The files consisted solely of
numbers and boolean statements in addition to lines of plain text which were
all divided by line breaks. This section will explain how the reverse engineering
of these files was deducted and how the knowledge gained was used to create
a data model of the files.
The back end, along with the data model, was written with the programming
language Java. Java is an object oriented, class based language supporting
concepts such as inheritance, polymorphism and encapsulation; all of which
were important when modeling the survey files. Each question type has its
own Java class representation and inherits attributes and functionality that
is common for all question types from a parent class. Refer to 5.1.2 for an
example of how Java’s polymorphism has been used.

From a technical point of view, the purpose of QuestBuilder is to generate
files in the Survey format that can be opened in the original legacy software.
In order to manually create these files, some knowledge about their structure
and how they are created becomes a prerequisite. The model that would come
to act as the underlying structure of QuestBuilder would be created with this
knowledge.

5.1.1. Analysis
An new empty file, created by the original legacy software, is the baseline for
how Survey files are formatted. By comparing this file to a nearly identical
file, but with some small changes made to it, the identification of what each
and every line meant was determined.

By breaking down each and every type of element in the original legacy soft-
ware this way, the understanding of how the elements were composed followed.
The repeated task of changing a setting in the legacy software and comparing
the file to its previous state, where that setting was different, proved to be
useful.

As the analysis of the files went on, the requirement for a structured docu-
mentation grew. The analysis of the elements was kept in separate documents,
one for each element. These documents contained the complete code for the
entire element, with every line explained in detail. Keeping a well structured
documentation was key in order to be able to make the analysis useful later on.

36



5. Development Phase

Another thing worth mentioning is also that these elements could be composed
in a great deal of different ways. A typical element had more than ten param-
eters where these parameters could be affecting each other, which caused the
analysis to prove more complex than first expected.

37



5. Development Phase

5.1.2. Result

From the analysis, a domain model was created. By understanding how the
original legacy software functioned, a similar behaviour could be implemented
in our model. Below is a diagram showing all classes that the model consists
of, and how they are built upon each other.

Figure 5.1: UML Diagram of the QuestBuilder model

The most important and interesting classes can be explained as follows:

Survey

The Survey object serves as a container for all other objects in a ques-
tionnaire. It contains lists of every exportable element such as questions,
quotas, and lists. The Survey object, however, does not only work as a
container for other elements. It also embodies some crucial core function-
ality, such as methods for exporting the survey to an Survey file that can
later be opened in the original legacy software.

Methods for adding new exportable objects to the survey are also part of
the Survey object and all these methods makes good use of the polymor-
phism that the Java programming language has to offer. When calling
the “addExportable” method, the Java Virtual Machine (JVM) automat-
ically decides which exact method to call based on what parameter that
is passed to it.

Exportable

38



5. Development Phase

The Exportable interface is in some ways the core of the model. Every
class that implements Exportable must also implement a way to export
itself to the Survey file format. By having practically every used class to
implement Exportable, the code to export an entire model to an Survey
file becomes rather elegant: for every class in the model that implements
the Exportable interface, run the export method. The rules for how each
and every class should be exported is never the same, and the method
itself is implemented differently in each of them.

AbstractQuestion

A Survey file is in general terms a Survey that consists of questions
amongst other things. It turns out that these questions have many fea-
tures in common, such as having a name or having some text to describe
the question. In order to simplify the model the abstract class
AbstractQuestion was created. Every type of question in QuestBuilder is
an extension of this class and inherits the most basic parts that a question
has. The specifics of each question is then implemented in the specific
class. For example, the grid question makes use of a grid in order to store
data whereas no other question type does this.

AbstractList

In addition to questions, a Survey has lists of response options. The grid
in a grid question is made up by a row list where every response option
represents a row, and also similarly a column list. The response options
shown in a select question are also stored in a list.

There are two types of lists. Either a list is static or constructed. A
static list is just a simple list with response options and there is nothing
special about it. A constructed list, on the other hand, is a list where the
response options shown may vary. The response options will be shown
according to some logic such as “if this is true, then show that response
option”. The response options to show originate from a parent list, which
can in turn be another constructed list or a static list.

Since these list types are similar as a whole, but still vastly different in
the details, it becomes natural to make use of yet another abstract class
in order to make use of the object-oriented paradigm as much as possible.

AbstractGridSpecificQuestion

Apart from being a unique question type, the grid question can have
three different response types. We refer to these as grid specific questions.
For example, a response can be numeric, which means the user would be
prompted to enter a numeric answer to a question. Just as with the other
abstract classes, the grid specific questions have many things in common

39



5. Development Phase

and are all extensions of the abstract class AbstractGridSpecificQuestion.

What makes this so useful is that the grid question must have at least
one of these grid specific questions, but the model does not care for what
type it is. Thus having a reference to the abstract class states that the
grid specific question can be any of the three types.

SurveyParser

One important functionality of the backend is the ability to read Survey
files and instantiate a Java object representing the data. This is the task
of the SurveyParser. Given an input stream, it is possible to fully parse
the file and create Java objects to represent the survey. An input stream
is simply a continuous flow of data that becomes available over time and
the stream can be connected to many different kinds of data sources,
such as local files and network connections. The parser creates the Java
objects needed to represent the survey by simply reading the data from
the given input stream in the order it appears.

Thanks to the simple and well formed structure of the Survey file format,
parsing files is rather uncomplicated. For example, each Survey element
is designated by an identification number and this is extensively utilised
when parsing data from a stream.

Each and every Survey element type requires its own method for parsing.
When the parser encounters an integer that is known to be an identi-
fication number of a certain element, the appropriate method is called,
which then handles the specific parsing of that element. After the method
call is finished the parser simply continues with scanning the file for yet
another identification number and repeats this process until there are no
more data left to read.

It is not uncommon for a typical survey to contain elements that ref-
erences each other in some way, and this turned out to be problematic
when parsing a stream of data in the order it appears. For example, if
the parser encounters data describing a constructed list whose parent list
is yet to be parsed it is not possible to instantiate a java object represent-
ing the list until its parent has been parsed as well. This was solved by
adding items with temporarily broken references to a queue and correct
the references afterwards when the whole stream had been parsed.

40



5. Development Phase

5.1.3. Testing

The model was not tested until all the classes were written. The reason for
this was that a passed test would mean that a file created with the model was
compatible with the original legacy software. Just creating a separate instance
of a certain question and exporting it to Survey format would thus not create
a valid Survey file.

When the entire model was deemed ready to be tested, different Survey sce-
narios were simulated. A typical scenario for testing a specific question type
was to create an empty Survey with just a single question of that type. The
exported file would then be opened in the original legacy software and if it
was able to read the file, the test was considered as passed. Different settings
and parameters were tweaked and the test was repeated until every scenario
for that question type had been tested.

As soon as all questions had passed the tests, surveys with different types of
questions were created and tested in a similar way. Due to the fact that the
number of different combinations that a survey could be composed in stretched
over a thousandfold and that the testing process was time consuming, only the
most common and reasonable combinations were tested.

Aside from this method of testing, a few bugs eventually appeared as Quest-
Builder was developed. Whenever this happened it was due to small mistakes
or a faulty detail in the analysis. These bugs were rather painless to solve
and test in a similar manner as the model once identified, however identifying
them was at times rather time consuming.

5.2. Building the front end
In a web application, the user usually does not notice what is happening in
the back end. Even though the model is accurate and powerful, without a
front end the back end is rendered useless. The front end represents the back
end and is thus what the user sees and interacts with. It was written in
JavaScript to be able to make use of tools such as AngularJS described in the
section below. By using AngularJS it was possible to structure the front end
according to the Model View Controller (MVC) pattern, making it modular,
scalable and easy to organize.

5.2.1. Angular Modules

As previously mentioned in 2.1.3, AngularJS is one of the more popular JavaScript
frameworks and was used when building the front end for QuestBuilder.

AngularJS makes use of modules, which is a key feature that separates the
different parts of the application from each other. By making the applica-
tion modular and delegate responsibilities amongst the different modules, the

41



5. Development Phase

application embraces the scalability property that is required by a dynamic
web application. QuestBuilder is made up by a separate module for each page
displayed, along with a shared module. The shared module is used to handle
the occasional need for passing data between separate modules.

Each module is typically made up by the three following parts:

Controllers
The controllers are mainly used to perform calculations and conditionally
manipulate the DOM. Furthermore, controllers are typically also used to
initiate needed data before a view is rendered. For example, a controller
for a view meant to display all questions in a questionnaire might fetch
the required data and set relevant variables before the view is ultimately
displayed to the user.

Many of the controllers in QuestBuilder also includes methods to be called
when the user performs a certain action in the graphical user interface,
such as clicking on a button.

Services
The data fetched in the controllers is typically provided by a service.
Services are only instantiated once, when the client opens a new instance
of the web application, and all the components that depend on a service
reference this single instance created by AngularJS. QuestBuilder makes
use of a shared service in order to provide all the controllers with the
same surveys. Due to the fact that the service is only instantiated once,
if one controller modifies the survey the changes made will propagate to
all other controllers as well.

Views
This part contains all HTML files relevant to the particular angular mod-
ule. Since the web application has been developed using the AngularJS
framework many of the HTML files makes use of so called Angular direc-
tives.

An angular directive is a type of marker to be used on DOM elements
that makes it possible to attach certain behaviour to them. For example,
it is possible to specify when a DOM element should be visible based on
a boolean expression and dynamically change the appearance of it. It
is also possible to construct custom directives and specify custom DOM
manipulation behavior.

42



5. Development Phase

5.2.2. Third party Angular modules

To be able to focus the development of QuestBuilder on functionality that
is specific to this particular application, many third party Angular modules
have been used. The AngularJS community offers an extensive list of Angular
modules that can help extend web applications with commonly needed func-
tionality and enhance visual appearances.

A suitable example of a third party module that is used extensively in Quest-
Builder is “textAngular”. By including this module in the application it be-
comes trivial to create full fledged, customizable WYSIWYG text editor fields
and use them for data input from the user. This module offers features such
as keyboard shortcuts for applying bold font styling, undo/redo functionality
in addition to other text formatting options as seen in figure 5.2 below.

Figure 5.2: The text-Angular editor with a customised toolbar

Another third party module that has been of great significance during the
development of QuestBuilder is “angular-drag-and-drop-lists”. It can be used
to add drag and drop functionality to lists of almost any kind of DOM elements.
The workflow of the so called “main view” of QuestBuilder, where the user is
able to build a questionnaire, is built around this functionality. For example,
to add another question to the questionnaire, the user simply grabs the wanted
question type and releases it onto a list containing all current questionnaire
elements as demonstrated in figure 5.3.

43



5. Development Phase

Figure 5.3: A question element being added to a questionnaire
using drag and drop

5.3. Connecting the front and back end
In order to have a complete web application, communication is needed between
the back and front end. The main communication consists of API calls from
the client to the server, telling the backend to process survey files and generate
Microsoft®Word compatible documents.

5.3.1. Converting between Java and JSON objects

As noted earlier, questionnaires are modeled as Java objects in the back end.
In the front end, however, which is written in JavaScript, JSON objects are
being used. Therefore, when passing data between the back and front end, a
layer of conversion between the different object types is needed.

The conversion between Java and JSON objects is done solely in the back end
using a Java library called Gson. This library is capable of easily converting
back and forth between the two object types, often without any need for ad-
ditional setup or configuration. However, some configuration was needed due
to the use of abstract Java classes and interfaces in QuestBuilder.

A Survey object, representing a questionnaire in Java, contains a list of ele-
ments in the questionnaire, all of which is of the type “Exportable”. The type
declaration is as follows:

Figure 5.4: Declaration of the survey elements

However, each and every object in this list also has a sub type, such as “Selec-
tQuestion”, “GridQuestion” etc that specifies the exact type of the element.
Trying to convert a Survey object with such a list becomes problematic for the
Gson library because it is not aware of the subtypes and therefore does not

44



5. Development Phase

know how to convert the objects properly.

To solve this problem an adapter had to be created that, when converting from
a Java object to a JSON object, appends a “type” attribute to the created
JSON object specifying the actual subtype of the object. All other attributes
originating from the Java object being converted is then wrapped in a nested
“data” JSON object. Please refer to figure 5.5 for a text representation of an
example object.

Figure 5.5: A JSON originating from a Java object representing
a so called Quota Cell

With the adapter in place, the Gson library is able to convert from JSON to
Java objects by using the “type” attribute for determining which type of Java
object it should create.

5.3.2. Generating and sending files to the client

A web application does not have direct access to the file system of the client,
which is both advantageous and disadvantageous. A direct advantage is the
heightened level of protection by not allowing the application to access files
on the hard drive. On the other hand, the complications that arise when the
application actually needs to access files are clear.

QuestBuilder has the ability to generate Microsoft®Word compatible docu-
ments. The difficulty lies in how to transfer the generated document to the
hard drive of the client that requested it. As mentioned in 5.1.2, a file sent
to the server can be seen as an input stream. In a similar manner, a file sent
to the client is an output stream. When the client requests a document, an
output stream is opened that the back end can write the document to. When
the stream is closed, the back end creates a link to the finished document that
is automatically clicked and therefore requested by the client as a saved file.
What the user sees is an indication that the server is producing a document
and when the document is ready, a prompt to save the document is shown.

The process is very similar when the client requests a survey file. However, a
survey file is represented with the Survey format whereas the Microsoft®Word
compatible document uses the docx format. What differentiates these formats

45



5. Development Phase

is how they are represented in pure text. A file using the Survey format can
be opened and read by humans. A docx document on the other hand contains
uninterpretable signs and is not readable by the human eye. In fact, creat-
ing and sending a survey file is more simple than sending a Microsoft®Word
compatible document due to how they are encoded.

5.3.3. Persisting survey data

To be able to reuse often recurring standard questions such as “What is your
gender?” and “Do you agree to this privacy statement?” QuestBuilder provides
the possibility to persist sets of questions in a database whose resources are
shared amongst all users of the application.

QuestBuilder has a MongoDB database and makes use of a library called
Morphia for mapping Java Objects to and from MongoDB objects. All that
is required to be able to persist a Java object using Morphia is to annotate
the classes to persist and create simple data access objects that performs the
CRUD (Create, Read, Update and Delete) operations on it.

The annotations used by Morphia is pretty straight forward. To make a Java
class persistable the class declaration header is annotated with an “@Entity”
tag. “@Id” tags can be used to specify which attribute of the class that should
hold the database id and “@Embedded” is for telling morphia that an object
referenced from within the class is to be embedded in the generated MongoDB
object, instead of being persisted in a separate object.

46



6. Conclusion

6.1. Result
The QuestBuilder application offers a streamlined approach to constructing
advanced surveys. It provides a minimalistic user experience where the user
can easily access the most important features. This is the product of priori-
tizing features and giving them visual space based on their priority status. A
complete visual review of the application can be read further in chapter 4.

A lot of the positive aspects of the new web application lies in the minimalistic
design that makes it easy to navigate between views. By so doing it enables an
intuitive workflow. Comparing to the legacy software, QuestBuilder empowers
the users and gives him or her a better control over the process.

Even though the application is great in many areas, there are still issues that
have to be addressed. Firstly, the application needs more documentation that
facilitates the features to a first time user. The application assumes that the
users have basic knowledge of the features implemented. Secondly, the ap-
plication needs to provide a better error prevention strategy in every part of
the application. Solving these issues will most definitely greatly increase the
usability of the application.

As mentioned in section 3.2.1, AMA had ideas for how their new workflow
should behave and look like. The main vision was to eliminate the repetitive
tasks, in order deliver products of higher quality. To do this, the new work-
flow should contain a database where employees could share questions. The
new workflow also included the dreams of an application that could generate
both survey files and Microsoft® Word documents. This goal has been met by
providing a far superior user experience than that of the legacy application.
The prototype even provides the features that AMA wished for; QuestBuilder
has a shared databased which makes it easier for employees to collaborate.
The two consecutive steps of creating a Microsoft® Word document and to
develop a questionnaire in the legacy application, can be done by only using
QuestBuilder. After the questionnaire is developed in the prototype, it can
be exported to a Microsoft® Word document. Since the survey file has been
analyzed and modelled in the back end, a survey file can as well be exported.
This makes it possible to add additional and advanced functionality and the
legacy software afterwards.

The result is a software that will act as a complement to the legacy software,
and not to replace it. This affected the results, since no additional features
regarding the actual questionnaire could be added. No new question types
could be added, nor additional behavior. The prototype therefore depended
entirely on how the legacy application acted, and the survey file structure was
the fundamental.

47



6. Conclusion

6.2. Discussion
QuestBuilder fulfills the required features within the limits of the project and
has the capability of greatly improving the workflow of building questionnaires
at AMA. Now, Microsoft® Word compatible documents can be generated au-
tomatically from a questionnaire, completely removing the need for creating
such documents separately. Furhermore, sets of questions can be saved and
then later on imported into new surveys.

The evaluation of QuestBuilder’s GUI implies that it, in many ways, is superior
to the legacy desktop application originally used by AMA. The more overview
centered approach of QuestBuilder provides a constant awareness of how both
the questionnaire and the document to be shared with the client will look like.
QuestBuilder also has very few pop ups and windows obstructing the view of
the application for the user compared to the legacy application. Thus, the
navigation between the different views of QuestBuilder becomes more fluent
and intuitive.

AMA intends to continue the development of QuestBuilder in order to cover
even more features from the legacy software. The possibility to stop using
the legacy software is however very low. If the goal was to eventually not
use the legacy software, QuestBuilder would not need to be compatible with
the file format of the legacy software and the limitations would be greatly
reduced. However, the legacy software is required at AMA and QuestBuilder
will greatly enhance their workflow.

The main focus of this project has been on delivering new features as fast as
possible. Due to this, the planning and analysis phase was rushed, possibly
resulting in design choices that were suboptimal. For example, the conver-
sion back and forth between JSON and Java objects would not be necessary if
both back- and front end had been written in JavaScript. Another downside
of having such a focus on fast delivery of features is the lack of proper software
testing. Without software testing it is hard to verify and prove the quality and
correctness of QuestBuilder.

Due to the fact that a major part of this project was to provide a better user
experience, evaluation of the GUI were of great importance. One could there-
fore argue that these activities could have been expanded upon and possibly
involve potential users to a larger extent.

The project has proven to be a great learning experience for everyone in-
volved. The authors have encountered many challenges that have resulted in
a far greater understanding when it comes to both web application projects
and large projects in general.

48



6. Conclusion

Not only the evaluation and the authors opinions matter in this case. AMA,
the originators of the project and the company that will have an actual value
of the end product, is pleased by the looks and functionality of QuestBuilder.

49



Bibliography

S. B. Barnes. Douglas carl engelbart: Developing the underlying concepts
for contemporary computing. Ieee Annals of the History of Computing, 19:
16–26, 1997.

Andrew Beattie. Fyi on roi: A guide to calculating return on invest-
ment, 2014. URL http://www.investopedia.com/articles/basics/10/
guide-to-calculating-roi.asp. Acquired 2015-05-18.

M. Beck, T. Beedle. Agile manifesto, 2001. URL http://agilemanifesto.
org/. Acquired 2015-05-18.

Andy et. Al Brown. The uptake of web 2.0 technologies, and its impact on
visually disabled users. Universal Access in the Information Society, 11:
185–199, 2012.

D.C. Chou. Cloud computing: A value creation model. Computer Standards
Interfaces, 38:72–77, 2015.

Reuven Cohen. The cloud hits the mainstream: More than
half of u.s. businesses now use cloud computing, 2013. URL
http://www.forbes.com/sites/reuvencohen/2013/04/16/
the-cloud-hits-the-mainstream-more-than-half-of-u-s-businesses-now-use-cloud-computing/.
Acquired 2015-05-18.

A. Glore. P David. The impact of design and aesthetics on usability, credibility,
and learning in an online environment, 2010. URL http://www.westga.
edu/~distance/ojdla/winter134/david_glore134.html. Acquired 2015-
05-27.

Vincent Driessen. A successful git branching model, 2010. URL http://nvie.
com/posts/a-successful-git-branching-model/. Acquired 2015-05-18.

T. Dyba, T. Dingsoyr. Empirical studies of agile software development: A
systematic review. Information and Software Technology, 50:833–859, 2008.

G Fischer. User modeling in human-computer interaction. User Modeling and
User-Adapted Interaction, 11:65–86, 2001.

Joe Gebbia. How design thinking transformed airbnb from failing startup to
billion-dollar business, 2013. URL https://www.youtube.com/watch?v=
RUEjYswwWPY. Acquired 2015-05-18.

GoogleTrends. Compare angular js, backbone js, ember js, knockout js, react
js, 2015. URL http://bit.ly/1PQqnzn. Acquired 2015-05-18.

The Open Group. Cloud computing for business : What is
cloud?, 2011. URL http://www.opengroup.org/cloud/cloud/cloud_
for_business/what.htm. Acquired 2015-05-18.

N. Hazzenzahl, M.; Tractinsky. User experience - a research agenda. Behaviour
Information Technology, 25:91–97, 2006.

50

http://www.investopedia.com/articles/basics/10/guide-to-calculating-roi.asp
http://www.investopedia.com/articles/basics/10/guide-to-calculating-roi.asp
http://agilemanifesto.org/
http://agilemanifesto.org/
http://www.forbes.com/sites/reuvencohen/2013/04/16/the-cloud-hits-the-mainstream-more-than-half-of-u-s-businesses-now-use-cloud-computing/
http://www.forbes.com/sites/reuvencohen/2013/04/16/the-cloud-hits-the-mainstream-more-than-half-of-u-s-businesses-now-use-cloud-computing/
http://www.westga.edu/~distance/ojdla/winter134/david_glore134.html
http://www.westga.edu/~distance/ojdla/winter134/david_glore134.html
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://www.youtube.com/watch?v=RUEjYswwWPY
https://www.youtube.com/watch?v=RUEjYswwWPY
http://bit.ly/1PQqnzn
http://www.opengroup.org/cloud/cloud/cloud_for_business/what.htm
http://www.opengroup.org/cloud/cloud/cloud_for_business/what.htm


Bibliography

ISTQB. Why is software testing necessary?, 2015. URL http://
istqbexamcertification.com/why-is-testing-necessary/. Acquired
2015-05-18.

PRAKASH JOTHIRAMALINGAM. Desktop application development : Is
there a future?, 2012. URL https://devmanagement.wordpress.com/
2012/08/22/desktop-application-development-is-there-a-future/.
Acquired 2015-05-18.

J. Kumar. Humanizing the enterprise. Design, User Experience, and Usability.
User Experience Design Practice, 25:61–70, 2014.

Daniel Kummer. git-flow cheatsheet. URL http://danielkummer.github.
io/git-flow-cheatsheet/. Acquired 2015-05-18.

Willy Lai. User experience design for roi, 2014. URL http:
//uxstrategiessummit.com/assets/files/pres/UXSSSanFrancisco_
WillyLai_upload.pdf. Acquired 2015-05-18.

G. Dudekx C. Brown J. Lindgaard, G. Fernandes. Attention web designers:
You have 50 milliseconds to make a good first impression! Behaviour In-
formation Technology, 25:115–126, 2006.

Jakob Nielsen. Enhancing the explanatory power of usability heuristics. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 152–158, Boston, Massachusetts, USA, 1994. ACM.

Jakob Nielsen. How to conduct a heuristic evalua-
tion, 1995a. URL http://www.nngroup.com/articles/
how-to-conduct-a-heuristic-evaluation/. Acquired 2015-05-18.

Jakob Nielsen. 10 usability heuristics for user interface design, 1995b. URL
http://www.nngroup.com/articles/ten-usability-heuristics/. Ac-
quired 2015-05-18.

Jakob Nielsen. Usability roi declining, but still strong,
2008. URL http://www.nngroup.com/articles/
usability-roi-declining-but-still-strong/. Acquired 2015-05-
18.

Jakob Nielsen. The magnifying-glass icon in search design: Pros
and cons, 2014. URL http://www.nngroup.com/articles/
magnifying-glass-icon/. Acquired 2015-06-01.

Tim O’Reilly. "what is web 2.0: Design patterns and business models for the
next generation of software. International Journal of Digital Economics, 65:
17–37, 2007.

H. Preece J. Rogers, Y. Sharp. Interaction Design: Beyond Human - Computer
Interaction. John Wiley Sons Ltd, 3 edition, April 2011. Chapter: 15.2.2.

51

http://istqbexamcertification.com/why-is-testing-necessary/
http://istqbexamcertification.com/why-is-testing-necessary/
https://devmanagement.wordpress.com/2012/08/22/desktop-application-development-is-there-a-future/
https://devmanagement.wordpress.com/2012/08/22/desktop-application-development-is-there-a-future/
http://danielkummer.github.io/git-flow-cheatsheet/
http://danielkummer.github.io/git-flow-cheatsheet/
http://uxstrategiessummit.com/assets/files/pres/UXSSSanFrancisco_WillyLai_upload.pdf
http://uxstrategiessummit.com/assets/files/pres/UXSSSanFrancisco_WillyLai_upload.pdf
http://uxstrategiessummit.com/assets/files/pres/UXSSSanFrancisco_WillyLai_upload.pdf
http://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
http://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
http://www.nngroup.com/articles/ten-usability-heuristics/
http://www.nngroup.com/articles/usability-roi-declining-but-still-strong/
http://www.nngroup.com/articles/usability-roi-declining-but-still-strong/
http://www.nngroup.com/articles/magnifying-glass-icon/
http://www.nngroup.com/articles/magnifying-glass-icon/


Bibliography

J. Schwaber, K. Sutherland. The scrum guide™, the definitive guide to
scrum:the rules of the game, 2013. URL http://www.scrumguides.org/
docs/scrumguide/v1/Scrum-Guide-US.pdf. Acquired 2015-05-18.

Rick Spencer. The streamlined cognitive walkthrough method, working around
social constraints encountered in a software development company. In Pro-
ceedings of the SIGCHI conference on Human Factors in Computing Sys-
tems, pages 353–359, The Hague, The Netherlands, 2000. ACM.

Frank Spillers. Making a strong business case for the roi of ux,
2014. URL https://www.experiencedynamics.com/blog/2014/07/
making-strong-business-case-roi-ux-infographic. Acquired 2015-05-
18.

J Tidwell. Center stage, 2015. URL http://designinginterfaces.com/
firstedition/index.php?page=Center_Stage. Acquired 2015-05-17.

52

http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf
http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf
https://www.experiencedynamics.com/blog/2014/07/making-strong-business-case-roi-ux-infographic
https://www.experiencedynamics.com/blog/2014/07/making-strong-business-case-roi-ux-infographic
http://designinginterfaces.com/firstedition/index.php?page=Center_Stage
http://designinginterfaces.com/firstedition/index.php?page=Center_Stage


A. Appendix

A.1. Contributions
The planning of the project was done continuously throughout the project,
since Scrum was chosen to be the project method. The sprint duration was
two weeks, and at the end of every sprint AMA reviewed the work and the
group received feedback.

A.1.1. Responsibilities

Filip Carlén
Analysis of Legacy Software (GUI)
Front End structure
GUI Research
GUI Drafts
Main View
Select Settings
Database Export
Analysis of New Software

Hampus Forsvall
Analysis of Legacy Software (GUI)
Front End structure
GUI Research
GUI Drafts
Main View
Shared Database
Database View
Analysis of New Software

Simon Persson
Analysis of Legacy Software (survey files)
GUI Drafts
Model
Back end
Server setup
Front and back end communication
Import and export of survey files
Main View
Skip Logic View
Back end refractoring
Back end testing
Visual authentication
Persistence

Erik Tholén
Analysis of Legacy Software (survey files)
GUI Drafts

I



A. Appendix

Model
Back end
Server setup
Front and back end communication
Import and export of survey files
Main View
Skip Logic View
Generation of Microsoft® Word compatible documents

A.1.2. Problem solving, synthesis, and analysis

Problems that encountered members of the project, were more often solved
individually or in pairs. Major issues that influenced the project as a whole
were discussed at a group meeting until an agreement had been reached.

A.1.3. Report contributions

Filip Carlén
Sections: Purpose, Problem, 1.5.1, 2.2.1, 2.2.2, 2.2.4, 3.1-3.3, 3.4.4, 4.1,
Result, Discussion

Hampus Forsvall
Sections: Problem, Limitations, 2.3, 3.4.1-3.4.3, 4.2, 4.3, Results, Discus-
sion

Simon Persson
Sections: Abstract, Sammanfattning, Introduction, Acknowledgements,
2.1, 5, 6

Erik Tholén
Sections: Abstract, Sammanfattning, Introduction, Acknowledgements,
1.2, 1.4, 2.1, 5, 6

II



A. Appendix

A.2. Interview with AMA
How does the creation of surveys looks like at AMA today?

“Today the creation of surveys contains two steps. At first, the employee
needs to produce a text document in an optional word processor. These text
documents are styled according a company standard. The meaning of these
documents is to give our clients a brief and easy overview of what the survey
will contain. Another meaning of the text documents is that the clients can
have the survey documented. All questions that will be implemented in the
survey are listed together with response options and comments on how the
skip-logic will work. When this step is considered to be done, it will be sent
to the client for feedback. The feedback will be taken into account, and the
text documents are changed according to the feedback.

The second phase is the creation of the actual survey. We use a software for
making these surveys. The survey will look and behave exactly to the agree-
ment that have been met before this step. Even though an agreement has
been met, the survey will receive another round of feedback before it’s time
for the survey to go live!”

What are the major issues with the current workflow?
“The major issue with the current workflow is all of the repetitive tasks that it
contains. When creating the text document, we usually tries to find questions
that have been used in earlier questionnaires. These question do we paste
into the new one. This is extremely inefficient. And when we are trying to
implement the survey in there are no possibilities to import old questions.
Therefore we have to do everything over and over again. Since the current
software does not give any pleasant experience, the employees at AMA usu-
ally gets frustrated.

Meeting clients’ demand of faster delivery, requires efficiency in all phases of
the internal project process. Therefore we need to make the current workflow
much more efficient.”

What are the major issues with the current software?
“There are two fundamental issues with the current software. At first, it does
not give the users a pleasant experience at all. It is not intuitive and easy to
use. Even though our employees have learnt how to use the features, it would
still be better if all the features not used on a daily basis, could be hidden in
order to make the important ones much more easy to use. It is also difficult to
have a total overview of what’s going on, and what has been done previously.
It would be much better if you could see how the question would look like by
default, instead of pressing preview buttons.

III



A. Appendix

The other fundamental issue is the lack of possibilities to reuse old questions.
It can be done, but it’s not smooth at all. An easy way to save frequent
questions would be a feature with a high value for our company.”
What are your visions for how a better workflow would look like?
“The overall objective is to provide a software that makes the creating process
of clients’ questionnaire and surveys more efficient, standardized and of higher
quality. One ambition is to merge the creation of text documents and surveys
into one process, instead of two. To gather these two separate processes into a
hub where both the text document and the survey file can be exported from.
In this hub, it would be easy to overview how the survey would look like in the
end. If the styling of the question types in the survey could look like the styling
in the text document, that would be fantastic. The new software, should be
good looking and easy to use. All features that are not used on a daily basis
should be hidden, and the more commonly used ones should be very easy to
use.

What is very important is to have a database where all of employees could
save questions for future use. For example, questions regarding age, gender
and home district are used in almost every survey. They should be saved in
a set which can be easily imported in another survey. Since the database is
shared, a large amount of questions could be easy accessible. If this works,
our company would save enormous amounts of time.”

Which benefits would AMA gain from a new workflow?
“A more efficient process will result in higher quality, cost savings and more
available time for fun and value-added work. Cost savings will gain efficiency
and result in higher project profitability. A more standardized process would
result in higher and more consistent quality. Reducing repetitive and dull
tasks and doing more stimulating work will increase employees’ satisfaction.”

Should the current application be replaced, or do you still want
to use that software to make changes and adding more advanced
features?

“Of course, it would be fantastic to replace our current software by 100 percent.
But since there are an enormous amount of features implemented, it feels
like an impossible assignment to replace it all. The functionality the current
software offers, regarding exercises, works fairly good at the moment. It is
also a very advanced feature, which is almost impossible to imitate in another
software. If we could have a software that does everything that we are asking
for, such as database import/export, text document generation and gives a
much better user experience, it would be enough to start with. New features
can be implemented successive. We can use SSI Web to complement the
questionnaires exported from the new software. Same with the text document

IV



A. Appendix

generation. We can complement it. We still believe that the amount of time
that will be saved by doing it this way, have a powerful impact for us as a
company.”

A.3. GUI Evaluations

V



Tasks 
 

1. Create survey 
2. Create a Select Question 

a. Name: S1 
b. Header 1:“Are you over 18? 
c. Response Options:  “Yes/No” 
d. Set Randomize 
e. Set respondent specify on option “No” 
f. Activate none of the above on response option “Yes” 
g. Remove response option “Yes” 

3. Skip Logic. 
a. Question S1 
b. Alternative under 18 
c. Terminate 

4. Create a constructed list based on if you are over 18. The constructed list will then 
be used on the next question to determine the last response option. 

a. “ Tea/Coffee/Soda/(If the respondant is over 18, then beer, otherwise juice)  

 

Legacy Application 

Cognitive Walkthrough 
 

1. Creating a survey 
a. File > New Study 

i. Yes, this follows the standard desktop application design principles. 
Although the other “New Survey” button is unintuitive and redundant. 

ii. Yes 
iii. Yes, the pop up makes it very clear 

b. A pop up with different input fields appears 
i. Yes 
ii. Yes 
iii. No, the pop up disappears but workspace behind it remains the 

same. There is very minor change (A small text changes to the name 
of the survey) 

2. Create a Select Question 
a. Create Questionnaire by Clicking the “Pencil icon” 

i. No, the icon does not conform to the standard. That a survey 
contains a Questionnaire is quite unintuitive as well. Also there are 
many ways to open the questionnaire window rather than having one 
clear choice.  

ii. No, there are plenty of buttons but none that clearly show which one 
to choose. 



iii. Yes, it is quite apparent what the menu is for. 
b. Name the question “S1” 

i. Yes, the name input field is easily visible 
ii. Yes 
iii. Yes, the user arrives at the select question edit page 

c. Add Header 1: “Are you over 18? 
i. Yes, the text field is visible 
ii. Yes 
iii. No, even though the text appears in the input field there is no way of 

knowing how it will appear in the actual survey. 
d. Add Response options “Yes/No” 

i. Press the Response Options tab 
1. Yes, the tab is clearly visible 
2. Yes 
3. Yes, the “Add” button is easily visible and, in conjunction with 

the empty text pane, indicates that this is where the response 
options should be entered 

ii. Press the Add button 
1. Yes, the input field that appears indicates that this is where 

the response options should be typed.  
2. Yes, it appears in the middle of the screen 
3. Yes, the response options appears in the initial text pane 

when you press “ok”. 
e. Randomize Respone Options 

i. Tick the checkbox 
1. Yes, the checkbox is very visible 
2. Yes 
3. Yes, even though there are no feedback. 

f. Respondent specify on “No” 
i. No, the option is greyed out as long as no response option is 

selected 
ii. Yes, the option is clearly visible 
iii. Yes, this is similar to the randomize option in this regard 

g. Activate none of the above on response option “Yes” 
i. No, the option is greyed out as long as no response option is 

selected 
ii. Yes, the option is clearly visible 
iii. Yes, this is similar to the randomize option in this regard 

h. Remove response option “Yes” 
i. No, the button does not conform to the standard 
ii. No, even though the button is visible, the buttons next to it look as if 

they could contain a delete button rather than having one with 
“Delete” in plain text 

iii. Yes, the option disappears from the list 
3. Skip logic 

a. Press skip logic 



i. No, the skip logic menu is not linked to the actual question 
ii. Yes, the button is very visible 
iii. Yes, the pop up indicates that this is the skip logic view 

b. Press Add 
i. Yes, everything is greyed out to indicate that a new object has to be 

created 
ii. Yes, the add button is quite visible 
iii. Yes, the greyed area is no longer greyed out and the skip logic name 

is shown in the list 
c. Choose S1 in the “Skip from” dropdown 

i. Yes 
ii. Yes 
iii. Yes 

d. Type the code for the the “No” response option 
i. No, this is very unintuitive and requires training 
ii. No, there is no real indication as to where the user should insert the 

code 
iii. No, there is no feedback that indicates that the code is correct 

e. Choose terminate in the Skip to dropdown 
i. Yes 
ii. Yes 
iii. Yes 

4. Create a constructed list 
a. Open List menu 

i. No, the icon is hard to see and understand 
ii. Yes, it is easily visible 
iii. Yes, the pop up window indicates that this is the list view 

b. Press Add constructed list 
i. Yes 
ii. Yes 
iii. Yes 

c. Choose parent list 
i. Yes 
ii. Yes 
iii. Yes 

Heuristic Evaluation 
 

1. Create survey 
a. The user can easily follow along since, when the “new survey” button is 

pressed, a new pop up appears. 
b. The file path should be hidden, it’s irrelevant. 
c. The new survey icon does not follow the uniform standard.  
d. Does not prevent errors, display error messages instead. 

2. Surveys’ been created 



a. the overhead view doesn’t really provide any information and can be 
confusing. 

b. “Data fields” is not a good word for survey items. 
c. The application provides a lot of features on the menu bar, should probably 

hide some? 
d. The language is a bit too technical 
e. Icons are not uniform to the standard metaphors. 
f. A lot of empty space, does not take advantage of the workspace. 

3. Create Question 
a. “Write Questionnaire” is not a good way to communicate the action. 
b. The “Write Questionnaire” view is the main view that the user interacts with 

and therefore it should be the first view to appear after creating a survey. 
c. The Program allows for cancellation of the user's action, in the form of 

“Cancel” and “Close” buttons.  
d. The save button doesn’t give any feedback as to what it actually does. 
e. No good overview of the questionnaire, you have to actually open up the 

individual questions to get an idea of what that say. 
f. Again, data fields… 
g. Icons aren’t descriptive of what actions they perform(magnifying glass isn’t 

search…) 
h. It’s a very messy interface 

4. Add to Questionnaire view 
a. abbreviations are unnecessary and confusing  
b. Requires the user to understand every question type in advance  
c. Doesn’t prevent errors 

5. Select Question view (question text) 
a. Requires the users to know what a question contains in SSI (Header1, 

Header2 etc..) 
b. No overview, needs to press preview to see changes 
c. Pen and pencil buttons are unnecessary, should provide these functions in 

the actual view 
d. Error when previewing an empty question is fairly good, allows the user to 

fix them 
e. Why is rename a separate button and view? 

6. Select Question view (response option) 
a. Alot of dead space 
b. What is an existing list and should I make a new list? The existing list is 

actually the list for this question, so why would I create a new one? 
c. Add button is easy to find but why does it open a new view?  
d. “Are you sure” when deleting a response option, not that big of a deal 
e. The language is very technical and could easily confuse a novice user 
f. Nonminimalistic, displays all the features at once 
g. Different names for the same thing throughout the view 

7. Select Question view (Settings) 
a. This might be the best view in SSI 
b. Only displays relevant information 



c. Clarifies what the different select formats means 
d. Some features might be redundant though but overall a good view 

8. Skip Logic 
a. The skip logic option is easy to find 
b. Half the view is greyed out if the user hasn’t created a skip logic yet 
c. Delete displays error messages if no SL is chosen 
d. Why do you need to press a button to validate your code? should be done 

automatically. 
e. Agian, icons are all messed up 
f. Print allows for printing empty skip logics 
g. Text editor is redundant 
h. The skip logics are not visible from the main view which could make 

debugging a hassle 
9. Constructed list 

a. Displays a “help text” that says “To edit a list, select a single list on the left”, 
This is greyed out though, should be more visible 

b. The list allows for multiple select even though it doesn’t support it properly 
c. When selecting a list, the view displays the same views as when adding 

response options to a question. This is fairly good since the user recognizes 
the interface 

d. Constructed lists uses a very confusing PERL scripting interface. Although it 
gives no indication as to how this should be performed. You have to know 
what to do otherwise you’re lost. The help function shows a list of API calls, 
this doesn’t really help the novice user at all. 

  
 

Questbuilder Evaluation 

Cognitive Walkthrough 
1. Create Survey 

a. It’s unclear if you’ve already made a survey or if you need to create one 
somehow 

b. Same here since you’re not sure how to proceed if you don’t know whether 
or not you’ve got a new survey 

c.  
2. Create SQ 

a. The option might be unclear if the user is not familiar with drag and drop 
b. The option is in plain sight 
c. The question is shown in the center stage 

3. Name the question 
a. It’s very clear 
b. Should probably add a “ok” button 
c. Yes! 

4. Set header 1 to “Are you over 18?” 
a. It’s very easy 



b. The input field is in plain sight 
c. Yes 

5. Response options 
a. Yes, you can easily see the response options 
b. It’s very easy as it’s in plain sight 
c. The options are displayed in plain sight 

6. Set randomize 
a. It’s not that clear at first, the user must press the settings button 
b. When the user has entered the settings view the option is clearly visible 
c. The checkbox displays that the option has been chosen. 

7. Set Respondents specify 
a. No, the option isn’t that clear 
b. The button is clearly visible but it’s hard to tell what it does 
c. Which response option that’s chosen is hard to see. 

8. Activate non of the above 
a. Same as the previous task 

9. Remove response option 
a. Yes the option is very clear in the settings view 
b. Yes 
c. Yes, the option disappears 

10.  Skip logic, when not over 18 terminate 
a. Fairly, the text describes how proceed 
b. The button/list item is very visible 
c. The user shifts his attention to the middle, making it less obvious that he 

needs to pick an option on the left 
11.  Constructed List 

a. Yes, the info pane describes what has to be done 
b. Yes 
c. Yes, there’s a save button 

 

Heuristic Evaluation 
 

1. Create Survey 
a. It’s not quite clear whether a survey is created from the start or not 
b. It’s unclear where to start 
c. The application does not use a language that is too technical since a 

certain level of knowledge can be expected 
d. Minimalistic design 

2. Select Question 
a. Drag and drop needs to more clear 
b. When a question is created it’s very easy to get an overview of the 

application 
c. It’s unclear which fields that has to be filled out to proceed 
d. The view is not very descriptive, requires previous knowledge 
e. After the question has been added, the view provides great overview 



f. The edit button doesn’t really show whether or not the user is in the “edit 
mode”. Needs to be more clear 

g. The view could use more tooltips to describe the different components 
h. It’s not obvious that questions can be rearranged using drag’n’drop 

3. Select Question (Settings) 
a. Minimalistic design 
b. Easy overview 
c. The button to add lists is a bit unclear 
d. It’s hard to tell which response options are “NotA” and Respondent Specify 
e. The question name field is a bit unclear, needs some sort of label 
f. The input fields includes HTML 
g. More tooltips to describe the different aspects 
h. Checkboxes are not a great way to present togglable features 

4. Skip Logic 
a. The information is clear but needs to adapt to the amount of questions at 

hand 
b. The text that states the sort of question is too small 
c. The mousepointer is the same as the one in the main view that indicates 

that an item can be moved using drag’n’drop even though it isn’t available 
d. The questions need to, more clearly, indicate how they are selected 
e. The mouse pointer changes when interacting with the left panel, even 

though it doesn’t change the behaviour 
f. The language is still a bit technical, needs some sort of tooltip to clearify 
g. “Clear FROM question” button is not very clear, needs to be rephrased 
h. The left side should indicate more clearly how many skip logics that falls 

under the question 
i. What does the AND/OR buttons at the bottom right mean? 

5. Constructed List 
a. The language is quite technical, needs reworking and clarification 
b. The drag’n’drop feature is not clearly presented, needs some sort of visual 

queue 
c. When dragging, it’s hard to know where you can drop the item 
d. The options shouldn’t be selected by default 
e. Needs tooltips to ease the learning curve of a novice user 
f. Great overview! 
g. The different components aren’t labeled, which makes it hard to distinguish 

the different features 


	Introduction
	Purpose
	Limitations
	Functionality
	Testing
	Security

	Background
	Problem
	Workflow
	Legacy application
	The new application

	Method
	Agile Development
	Programming Languages
	Software evaluations
	Version Control


	Theory
	Migrating desktop applications to the cloud
	Background
	Benefits of migrating to the cloud
	Creating dynamic web applications with AngularJS

	UX and HCI
	Background
	What is HCI and UX?
	HCI and UX importance
	Problems with High-functionality applications

	GUI Evaluation methods
	Heuristic Evaluation
	Cognitive Walkthrough


	The legacy software and the previous workflow
	The legacy software
	Workflow at AMA
	AMA’s opinions on previous workflow and software 

	AMA’s visions for the new workflow
	UX Evaluation process
	Cognitive Walkthrough of current software
	Heuristic Evaluation of the legacy software
	Evaluation Summary

	The prototype

	QuestBuilder
	Presentation of QuestBuilder
	Main View
	Select Question
	Skip Logic
	Database
	Constructed List
	Import and Export

	Cognitive Walkthrough
	Heuristic Evaluation

	Development Phase
	Modelling the surveys in Java
	Analysis
	Result
	Testing

	Building the front end
	Angular Modules
	Third party Angular modules

	Connecting the front and back end
	Converting between Java and JSON objects
	Generating and sending files to the client
	Persisting survey data


	Conclusion
	Result
	Discussion

	Bibliografi
	Appendix
	Contributions
	Responsibilities
	Problem solving, synthesis, and analysis
	Report contributions

	Interview with AMA
	GUI Evaluations


