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Abstract
In modern cars, Intelligent Speed Assistance (ISA) is becoming increasingly com-
mon. The purpose of an ISA system is to advise the driver of the current speed limit
on the road. These systems do not work flawlessly, and in 2022 the European Union
will implement requirements regarding their correctness. Volvo Cars currently uses
manually annotated speed limit data to verify the correctness of their ISA system.
This work aims to investigate whether speed limit data from Volvo Cars can be
automatically annotated through a combination of test drive data and offline data
sources, thus removing the need of manual annotations. The offline model runs in a
simulation environment using pre-collected data from test drives. Two data sources
are used by the online ISA system in the test cars: speed sign detections from the
camera system and speed limit data from the digital map supplier Google Maps.

In this work, two offline data sources are investigated. One based on speed limit data
from the digital map supplier Here Technologies, and the other based on a neural
network for detecting speed signs in videos collected by the test car. To improve
the performance further, speed signs close to off-ramps are filtered out using an off-
ramp detection system. The reason for filtering out speed signs close to off-ramps is
because they might belong to adjacent roads and can still be detected by the camera
system, leading to an incorrect speed limit prediction. To account for variations in
data source quality between different countries, tuning parameters are introduced
in the offline model.

This work shows that by fusing data from the test car with an offline digital map, a
promising model for offline annotation of speed limits can be developed. The offline
model was evaluated on log files that make up 2526 kilometers of test driving.
Compared to the ISA system in the car which attained a correctness of 69.8%, the
offline model attained a higher correctness of 84.2%. The correctness is measured
as the distance with the correct annotated speed limit, divided by the total distance
driven. The tuning parameter method makes the model adapt well to log data from
different countries, outperforming the ISA system in five out of the six countries
log data was collected for. The high correctness and the adaptability of the offline
model makes it a suitable choice to propose speed limit annotations for test drives,
compared to manually annotating data.

Keywords: Dempster-Shafer theory, computer vision, digital maps, sensor fusion,
machine learning, advanced driver assistance systems
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ADASIS Advanced Driver-Assistance Systems Interface Specifications
AHP ADAS Horizon Provider
AHR ADAS Horizon Reconstructor
CAN Controller Area Network
DS Dempster-Shafer
EH Electronic Horizon
GNSS Global Navigation Satellite Systems
GPS Global Positioning System
IMU Internal Measurement Unit
ISA Intelligent Speed Assist
IoU Intersection over Union
LiDAR Light Detection And Ranging
MPP Most Probable Path
PRN Pseudo-Random Noise
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RSI Road Sign Information
YOLO You Only Look Once
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Nomenclature

Below is the nomenclature of the sets, parameters, and variables that have been
used throughout this thesis.

Sets

θ Frame of discernment (all possible speed limits)
2θ Power set of θ (all possible combinations of the elements in θ)
∅ Empty set
x, y, z Propositions

Parameters

λcoord Coordinate loss weight parameter
λnoobj Object loss weight parameter
κt Curvature threshold value.
αcam Camera reliability tuning parameter.
αGoogle Google map reliability tuning parameter.
αHere Here map reliability tuning parameter.
αoff−ramp Off-ramp detection confidence gain tuning parameter.

Variables

TPD True positive distance.
mi Probability mass value.
k Conflict factor.
L Loss function.
(xi, yi) Center of predicted bounding box j in grid cell i.
(x̂i, ŷi) Center of ground truth bounding box j in grid cell i.
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(wi, hi) Width of predicted bounding box j in grid cell i.
(ŵi, ĥi) Height of ground truth bounding box j in grid cell i.
Ci Confidence score of predicted bounding box j in grid cell i.
Ĉi Confidence score of ground truth bounding box j in grid cell

i.
pi(c) Predicted conditional class probability of object class c in grid

cell i.
p̂i(c) True conditional class probability of object class c in grid cell

i.
1
obj
ij Binary variable in loss function when there is an object in grid

cell i in bounding box j.
1
noobj
ij Binary variable in loss function when there is not an object

in grid cell i in bounding box j.
κ Curvature.
κright, κleft Curvature of left and right road edge clothoid.
γ(t) Parametrization of clothoid by parameter t.
xt Maximal distance the clothoid model is valid.
Rp(t) Pseudorange.
tr(T2) Time when GNSS signal is received.
ts(T1) Time when GNSS signal was transmitted.
mGoogle Probability mass values based on speed limit data from

Google Maps.
mHere Probability mass values based on speed limit data from Here

Map.
mcam Probability mass values based on speed limit detection from

camera.
mGoogle,cam Fused probability mass value from Google Maps and camera.
mGoogle,cam,Here Fused probability mass value from Google Maps, camera and

Here map.
sGoogle Speed limit reading from Google Maps.
sHere Speed limit reading from Here map.
scam,i Speed limit reading i from speed sign detection by camera.
ccam,i Speed limit reading confidence i from speed sign detection by

camera.
sbe Best estimated true speed limit.
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1
Introduction

Car manufacturers have traditionally tried to make their vehicles as safe as possible
in case of an accident. In recent years, driving assistance technology has evolved
to prevent accidents from happening in the first place. Consequently, the driver
support system Intelligent Speed Assistance (ISA) is now becoming increasingly
common in new cars. The role of an ISA system is to advise the driver of the speed
limit on the road. A study conducted by the Norwegian Institute for Transport
Economics (TØI) in 2014 compared driving support systems regarding driver safety
and found ISA to be the most effective one [1].

The importance of improving road safety cannot be overstated. According to the
World Health Organization, about 1.3 million people die each year as a result of
road traffic injuries [2]. In the EU alone, it is estimated that 115 lives are lost every
day due to road traffic injuries [3], causing an unimaginable tragedy. It has been
shown that there is a strong connection between the behavior of the driver and the
risk of accident [4], where disobeying the speed limit is an evident risk behavior.
ISA can provide the driver with the current speed limit of the road, thus making
the driver more likely to follow it.

In 2022 the European Union will make ISA a mandatory function on all new cars
sold in the EU and set a number of requirements for these systems [5]. One of
these requirements is that over a distance driven, the ISA system needs to show
the correct speed limit for 90% of that distance. To measure this, the metric true
positive distance (TPD) is used, defined as the distance with correct annotated speed
limit (dcorrect) divided by the total distance (dtotal) driven [5].

TPD = dcorrect

dtotal
(1.1)

For Volvo Cars, these criteria need to be met by their ISA system, called the Road
Sign Information (RSI) function. Currently, the true positive distance is measured
by using manually annotated speed limit data collected during test drives. Manually
annotating data is a labor-intensive and low efficient process that cannot be done
efficiently at a large scale. If this process could be automated, it would save both
time and resources. Therefore, this work aims to investigate whether speed limit
data can be automatically annotated through a combination of test drive data and
offline data sources.

1



1. Introduction

1.1 Background
The RSI system uses cameras for speed sign recognition and the GPS to obtain
speed limit data from a digital map supplier. These two data sources have their
respective strengths and weaknesses. The reliability of the camera depends on good
lighting conditions, the presence of speed signs and a well-functioning sign detection
algorithm in order to make accurate predictions. The digital map speed limit data
depends on the GPS signals not being blocked or masked to obtain the correct vehicle
position [6]. Even when map data is obtained, it is not faultless. For example,
during road work, the speed limit might be decreased temporarily, which is not
always corrected by the digital map supplier. To counter these weaknesses, the two
data sources are fused in order to make the best possible estimation of the correct
speed limit. The RSI function, interchangeably referred to as the onboard model
since it runs in the car, is limited by the computational power in the car.

To evaluate the performance of the RSI function, manually annotated speed limit
data is currently used. By processing the data collected by the test car offline, a
model for automatically annotating the speed limits could be built which essentially
removes the constraint regarding computational power. Running the model offline
also enables the use of additional data sources that are not available in the car.
This model will be referred to as the offline model, since it does not run in the
car. Data from all time steps can also be used, unlike in the RSI which must run
in real-time. Road geometry and sign positions, which can be modelled using data
from the forward-looking camera in the car, are two potentially useful additional
data sources [7], [8]. This data can be used to generate estimates of the relevant
speed sign positions and distinguish them from signs belonging to adjacent roads.
In addition, more map data sources could be incorporated as a complement to the
map data currently available in the car. In Figure 1.1, an overview of the input and
output of the offline and onboard models is illustrated. To evaluate the performance
of the offline model, the correctness measurement defined in (1.1) will be used.

Onboard model
Runs on test car 

Runs in real time 

Offline model
Runs on computer in Simulink

More computational power available

Input Output

Sensor data from 

test car

Sensor data from 

test car, off-line 

data

Annotated RSI 

data

Manual annotationTest driver input

Annotated RSI 

data

Ground truth 

annotated RSI 

data

Figure 1.1: The inputs and outputs of the onboard model, the offline model and
the manual annotation.
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1. Introduction

1.2 Purpose
The purpose of this work is to build an offline model which automatically annotates
speed limit data based on data log files from Volvo Cars test vehicles, in order to
replace the manually annotated data. The offline model does not run in the car,
nor in real time. The aim is for the offline model to come as close to the manually
annotated data as possible, regarded as the ground truth. The goal is for the speed
limit data produced by the offline model to be able to validate the RSI function in
the car.

1.3 Scope and delimitations
The scope of the work is to build a model in Simulink, a graphical programming
environment for modeling and simulating systems, which automatically annotates
the speed limit. Since the model runs offline, data from all time steps can be used
to make estimations. Building an offline model allows more computational power to
be used, thus allowing additional data sources to be incorporated. The work aims
to investigate if additional data sources, for example the sign positions and the lane
geometry as well as additional map data sources, can be incorporated in order to
build an automatic speed limit annotation model. The goal is for the offline model
to achieve a higher correctness, defined in (1.1), than the RSI function in the car.

The performance of the model is limited by the performance of the sensors and the
data processing accuracy. For example, the signs captured by the cameras have been
classified by a machine learning algorithm in the car, which is not necessarily strictly
accurate [9]. However, evaluating the performance of the classification algorithm in
the car is out of the scope of this study.

In this study, one of the potential additional data sources that will be investigated
is an additional speed sign detector that uses the videos recorded by the test car.
To limit the amount of data needed to train this model, only Swedish road signs
are to be used. However, for the evaluation of the offline model, data from various
countries are used. The reasons for this are that the amount of data the model can
be evaluated on is significantly larger than if only Swedish log files are used, and to
show that the model can adapt to different data source quality in different countries.

1.4 Ethical and sustainability aspects
The ethical challenges of this project are related to the field of autonomous driving.
Two main challenges are described by Zhu et al. [10]. The first challenge addresses
moral dilemmas for autonomous vehicles, for example whose safety should be prior-
itized. Should the car act egoistically and try to save itself and its owner, or should
it try to save as many people as possible? Does age matter or should all people be
viewed as equal? Questions like these have to be answered before self-driving cars
can become a reality. The other problem stated is about where responsibility lies
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when an accident happens. The three main agents are the driver, the car and the
car manufacturer. A report by the German Ministry of Transport states that as
cars get more autonomous, the responsibility for accidents move from the driver to
the car manufacturer [11]. Even though advanced driver assistance systems (ADAS)
are implemented in new cars, the driver still bears the utmost responsibility. Car
manufacturers will likely want to keep it this way for as long as possible. Perhaps
legislative changes will be needed to clearly define where responsibility lies as cars
get more and autonomous.

Regarding sustainability, one study performed partly by Volvo states that there are
large environmental benefits within autonomous cars [12]. This paper found that
that when comparing cars using adaptive cruise control (ACC) versus cars without
ACC, the travel-weighted fuel consumption rate was 5-7% lower when ACC was used
[12]. The paper also states that the framework used for quantifying the difference
that ACC makes could be used for other future changes that follows, suggesting
that several other fuel consumption benefits can be drawn from a higher level of
autonomy within cars.

4



2
Theoretical Background

This chapter introduces the theoretical concepts needed in order to build the of-
fline model. Firstly, Dempster-Shafer theory is introduced, which enables fusion
of multiple data sources. Secondly, stochastic optimization is described, which is
applied to tune parameters in the offline model. Car data from the vision, digital
map and Global Navigation Satellite Systems (GNSS) will be incorporated into the
offline model. Therefore, theories regarding road sign detection, road edge detec-
tion, global navigation satellite systems, and digital maps are explained. Within
the theories, the respective strengths and weaknesses of the different data sources
are discussed. Based on this, the aim of this chapter is to provide a foundation for
understanding the core concepts of the development of the offline function and a
motivation to why fusion of the data sources can lead to a well-functioning offline
model.

2.1 Sensor fusion
A common definition of sensor fusion is the process in which data from multiple
sources is combined. By fusing the data, it is possible to reduce the uncertainty
of the individual sensors. In this work, sensor fusion will be applied to speed limit
sign detections from the camera as well as speed limit data from the digital map.
Both data sources collect the same attribute, the speed limit at each time instance.
Hence, competitive fusion is used with the aim of making the system more robust
[13]. In the following section, Dempster-Shafer theory is introduced which is used
for the fusion of vision- and digital map data.

2.2 Dempster–Shafer theory
The Dempster-Shafer theory is a commonly used sensor fusion algorithm for fusing
vision- and map data in road sign recognition systems. Using Dempster-Shafer
theory in this context would be a well-functioning method based on [14], [15]. The
reasons for using Dempster’s rule of combination to fuse data are that it provides
a method of low computational complexity which can handle multiple data sources,
and that the confidence from each sensor reading can be used as evidence in the
Dempster-Shafer fusion.

The Dempster-Shafer (DS) theory is defined as a scheme for handling uncertainties
in different propositions [16]. One proposition can for example be a single value,
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x, or a set of values, {x, y, z}. The set of all mutually exclusive and exhaustive
propositions is called the frame of discernment and is denoted by θ [14]. Mutually
exclusive and exhaustive propositions means that the propositions are not subsets
of each other and that only one proposition can be true at a time. The power set of
θ is denoted by 2θ. The difference between θ and 2θ, given the mutually exclusive
and exhaustive propositions x, y, z, is illustrated in (2.1).

θ = {x, y, z}
2θ = {x, y, z, {x, y}, {x, z}, {y, z}, θ}

(2.1)

Each proposition gets assigned a probability mass value based on the evidence for
each proposition. The evidence can for example be a sensor reading that indicates
a certain proposition. The definition of a mass value for proposition x is given in
(2.2) where the empty set is denoted by ∅.

0 ≤ m(x) ≤ 1∑
x∈2θ

m(x) = 1

m(∅) = 0

(2.2)

In order to fuse data according to Dempster-Shafer theory, Dempster’s rule of com-
bination is used which combines mass values from two data sources [17]. The Demp-
ster’s rule of combination is defined by first introducing two massfunctions, m1(x)
and m2(x) defined for x ∈ 2θ. The conflict factor, k1,2, can then be computed as

k1,2 =
∑

x1,x2∈2θ
x1∩x2=∅

m1(x1)m2(x2) (2.3)

The summation is over all pairs of propositions (x1, x2) such that x1 ∩ x2 = ∅. The
Dempster-Shafer combination of m1(x) and m2(x) for all x ∈ 2θ can be computed
when k1,2 < 1 as

m1,2(x) = (m1 ⊕m2)(x) = (2.4)

=


1

1−k1,2

∑
x1,x2∈2θ
x1∩x2=x

m1(x1)m2(x2), x 6= ∅

0, x = ∅
(2.5)

(2.6)

Dempster’s rule of combination is a way of calculating the combined mass values
of two data sources by summing the product of the two mass values when the data
sources agree. This is mathematically defined as x1 ∩ x2 = x. The conflict factor
is defined as the summation of the mass values when the data sources disagree,
denoted by x1 ∩ x2 = ∅. The data sources are perfectly aligned when k = 0 and in
total conflict when k = 1.

Dempster’s rule of combination is commutative and associative which makes it pos-
sible to combine more than two data sources sequentially in any order [18]. An
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example of this is shown in (2.7) where three mass values (m1,m2,m3) are com-
bined into the mass value m4. Note that the symbol, ⊕, is used for Dempster’s rule
of combination between mass values. As shown, the order in which the mass values
are combined does not affect the result.

m4 = (m1 ⊕m2 ⊕m3)(x)
= (m1 ⊕ (m2 ⊕m3))(x)
= (m2 ⊕ (m3 ⊕m1))(x)
= (m3 ⊕ (m2 ⊕m1))(x)

(2.7)

2.3 Stochastic optimization
The following section aims to introduce evolutionary algorithms, which is a stochas-
tic optimization method. Unlike classic optimization algorithms which most often
require a differentiable objective function, stochastic optimization algorithms do
not. Evolutionary algorithms are a subcategory of stochastic optimization methods
which draw inspiration from biological mechanisms. These evolutionary algorithms
use concepts such as reproduction, mutation and selection [19].

To make this more concrete, a simple example will be given where the aim is to
find a pair of tuning parameters for a data fusion algorithm. The objective function
which is to be minimized measures the quality of the data fusion algorithm by
computing the error. This error measures the difference between the output of the
data fusion algorithm and the ground truth data, giving an error percentage. The
objective function here is non-differentiable, and therefore a stochastic optimization
method would be a suitable choice. In genetic algorithms, the goal is to maximize
a fitness function [19]. This is done by computing the fitness value, which in this
case measures the similarity between the output of the data fusion algorithm and
the ground truth data, giving a correct percentage. This means that minimizing the
objective function is analogous to maximizing the fitness function. In Figure 2.1,
the following three steps are illustrated. Each individual, illustrated as the red dots,
is a pair of candidate parameter values. The following steps are taken in order to
find the optimal parameter values.

1. Initialize a population randomly
2. Evaluate the fitness of all individuals. Crossover the individuals with the

highest fitness values to form new, slightly mutated, individuals
3. Repeat step 2 until a satisfactory solution has been found

2.4 Computer vision
The following section aims to describe the theoretical framework regarding object
detection, road sign classification, road edge modelling and road edge detection. All
of these are computer vision methods which use images as their primary data source.
A general overview of different object detection and road sign classification methods
are given and the YOLO (You Only Look Once) algorithm is described. Finally,
common error sources among computer vision methods are discussed.
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Figure 2.1: Three steps during the process in which an evolutionary algorithm
maximizes a fitness function.

2.4.1 Object detection
Object detection is the task of both identifying the presence and location of ob-
jects in images. Object detection can be divided into two main approaches, neural
network-based or non-neural network-based. Among the non-neural network-based
approaches there are three main feature extraction methods, Haar- [20], SIFT- [21]
and HOG features [22]. In this context, features refer to parts or patterns in an im-
age which helps to identify objects. This can for example be the edge of the traffic
sign, which is typically clearly different from its background.

Among the neural network-based methods, R-CNN (Region Based Convolutional
Neural Networks) [23] is a common method, as well as YOLO (You Only Look
Once) [24]. When non-neural network-based methods are used, an additional clas-
sification step is needed, where support vector machines (SVM) are commonly used
[25]. The neural network-based methods do not need explicitly defined features for
classification and can run significantly faster than non-neural network-based meth-
ods. In comparative studies, YOLO was found to run more than ten times faster
than the SVM methods [24], [26]. YOLO has also been reported to be feasible to
run in real time, which is not possible for the non-neural network-based methods
[24].

When Fast R-CNN and YOLO was compared in a previous study, it was shown that
Fast R-CNN ran at 0.5 frames per seconds and YOLO at 45 frames per second [24].
The mean average precision (mAP) of the models was found to be 63.4 for YOLO
and 70.0 for Fast R-CNN, hence a slight advantage for Fast R-CNN. The average
precision (AP) is a combined measurement of the precision and recall for a certain
object. This is done using several different overlap thresholds for the predicted- and
ground truth bounding boxes and the average value is computed, since there is a
trade-off between precision and recall. To obtain the mAP, the mean of the AP for
all classes is computed. This metric is commonly used to evaluate the performance
of object detection algorithms.

2.4.2 Road sign classification
Road sign classification is the task of classifying what speed limit value is shown
on the sign in an image. The state-of-the-art models for doing road sign classifi-
cation can achieve human-level performance, meaning a correct recognition rate of

8



2. Theoretical Background

around 99% when tested on the German Traffic Sign Recognition Benchmark data
set (GTSRB) [27]. These models are neural network based methods. An important
distinction between the theoretical classification processes and sign classification in
the car is that in the car, the traffic sign can be seen in multiple frames. If that
sign then is classified equally across multiple frames, the cumulative classification
accuracy is increased. The signs themselves can however be a source of error. For
example, deterioration, vandalism or rotation can complicate the road sign classi-
fication process [25]. What most classifiers do is that they augment the road sign
data during training to synthesize real-life variations of the road signs. This is done
by, for example, random rotation and scaling, changing the brightness, saturation
and contrast, or by adding noise to the images [9].

2.4.3 YOLO
YOLO is an algorithm which does object detection and classification. This is done
by taking an image as input, and computing the output which is the predicted
bounding boxes and class probabilities of objects in the image. These predicted
bounding boxes and class probabilities are the output of the algorithm. The evalua-
tion can be divided into two steps. The first step is to propose a region in the image
in which there is a speed sign, and the second step is to classify the speed sign. Fol-
lowing is a brief description of how YOLOv2 does detection and classification [28].
The network architecture used has a total of 119168 parameters which are learned
through training, which consists of weights and biases in each layer of the network.

First, the image is divided into 13x13 grid cells, which can be seen to the left
in Figure 2.2. For each of these grid cells, a few anchor boxes are tested which
can be seen to the right in Figure 2.2. The size, shape and number of anchor
boxes are hyperparameters in the network which affect both the accuracy and the
computational cost. The anchor boxes are proposals of the appropriate bounding
boxes, which encode where in the image the speed sign appears. Anchor boxes should
represent the general shape and size of the true bounding boxes in the training
data. The bounding boxes are not limited within the grid cells that they belong
to but can scale and move freely within the image. However, the objects will most
likely belong to the grid cell in which they have their center. This also allows the
network to associate objects with a certain part of the image. Then the objectness is
computed, which is a measurement of how confident the network is of the presence of
an object in a certain bounding box. For each of the bounding boxes, the speed sign
class probabilities are also computed. The final step is to perform non-maximum
suppression to obtain as many predictions as desired.

2.4.3.1 Loss function

Since the objective of the model is both to predict accurate bounding boxes as well
as the correct classes, a multi-part loss function is needed. This loss function was
proposed by Redmon et al. [24] and is here divided into three parts: localization-,
confidence- and classification-loss, according to

Ltotal = Llocalization + Lconfidence + Lclassification (2.8)
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Figure 2.2: Left: the image divided into grid cells. Right: a number of bounding
boxes tested for a grid cell to find the one that fits the true bounding box the best.

The localization loss is two-fold and can be seen in (2.9). The first term accounts for
the distance between the center of the predicted bounding box to the center of the
true bounding box. Here the variables (xi, yi) and (x̂i, ŷi) denote the center of the
predicted- and ground truth bounding box j in grid cell i. The variables (wi, hi) and
(ŵi, ĥi) denoted the width and height of the predicted- and ground truth bounding
box j in grid cell i. The second term accounts for the error regarding the width and
height of the bounding box. The binary variable 1objij ∈ {0, 1} is used to ensure that
only the best bounding box is penalized. The best bounding box is the one which
has the highest intersection over union, a measurement of how well the predicted
bounding box fit the true bounding box. This is discussed further in Section 2.4.3.2.
The variable 1objij = 1 for the bounding box with the highest IoU, and 1

obj
ij = 0 for

the other bounding boxes. This means that only one bounding box is responsible
for the predicted object. A tuning parameter denoted λcoord > 0 is also used in this
loss function, which can change the weight of prediction errors for the bounding box.
The summations indices S2 and B stand for the total number of cells and bounding
boxes respectively, both which are visualized in Figure 2.2.

Llocalization = λcoord
S2∑
i=0

B∑
j=0

1
obj
ij [(xi − x̂i)2 + (yi − ŷi)2]

+ λcoord
S2∑
i=0

B∑
j=0

1
obj
ij [(√wi −

√
ŵi)2 + (

√
hi −

√
ĥi)2]

(2.9)

The confidence loss is defined in (2.10). The two terms account for when there
is, and when there is not, an object in bounding box j in grid cell i. To ensure
that only the best bounding box is penalized, the binary variables 1objij ∈ {0, 1} and
1
noobj
ij ∈ {0, 1} are used. To decide which bounding box is the best, the intersection

over union (IoU) for the different bounding boxes predicted by the algorithm is
computed before the loss is evaluated. 1

noobj
ij = 1 if bounding box j in grid cell i

does not contain an object, and 1
noobj
ij = 0 otherwise. A tuning parameter denoted

λnoobj > 0 is also used, which can change the weight of the error when no object is
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detected in the predicted bounding box. The reason for doing this can be seen in
Figure 2.2, where most of the grid cells does not contain speed signs, and therefore
the loss from these cells might overpower the loss from cells with objects. The
tuning parameter λnoobj aims to neutralize this. The variable Ci and Ĉi denotes the
confidence score of both the prediction and the ground truth, meaning the certainty
of there being an object in bounding box j in grid cell i.

Lconfidence =
S2∑
i=0

B∑
j=0

1
obj
ij (Ci − Ĉi)2 + λnoobj

S2∑
i=0

B∑
j=0

1
noobj
ij (Ci − Ĉi)2 (2.10)

The definition of classification loss is presented in (2.11). Here the predicted speed
sign class is compared to the true speed sign class. Since only grid cells with objects
should be considered for classification errors, the binary variable 1

obj
i ∈ {0, 1} is

used. The value of 1obji is 1 if an object is detected in the grid cell regardless of by
what bounding box, and 0 if no object is detected. The variable pi and p̂i denote
the estimated and true conditional class probabilities in each grid cell.

Lclassification =
S2∑
i=0

1
obj
i

∑
c∈classes

(pi(c)− p̂i(c))2 (2.11)

2.4.3.2 Anchor box estimation

The anchor boxes are a crucial hyperparameter in the network which affect the
accuracy and the computational cost. Both the size, shape and number of anchor
boxes must be selected. To estimate how well the anchor boxes fit the true bounding
boxes, the intersection over union (IoU) can be computed [28]. An illustration of
the IoU is provided in Figure 2.3. The IoU is scale invariant, meaning that the
error is equal for both small and large anchor boxes. Many anchor boxes will likely
increase the IoU, since more boxes increases the probability that one of them fits
each of the true bounding boxes well. This does however increase computational
cost and could potentially lead to overfitting. The suitable number of anchor boxes
is therefore a trade-off between accuracy and computational speed.

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 (𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛)

𝐴𝑟𝑒𝑎 (𝑢𝑛𝑖𝑜𝑛)
=

Anchor box

True 

bounding 

box

Figure 2.3: The IoU measurement, used to compute appropriate anchor boxes.
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2.4.3.3 Transfer learning

To make YOLO work well, transfer learning is often used [28]. The idea behind
transfer learning in image classification is that the first layers of the network are
responsible for feature extraction, and the final layers are responsible for mapping
combinations of features to specific objects. By replacing the final layers of the
network, it is possible to remap these to objects in a new dataset with significantly
less time and less training data required, opposed to what would be needed to train
the model from scratch [29]. When YOLO was originally introduced [24], the model
was trained on the ImageNet 1000-class competition dataset, which has over 590,000
annotated objects [30]. After this, the model was fine-tuned to the PASCAL VOC
datasets from 2007 and 2012 [31], [32]. These datasets contain 12,608 and 27,450
annotated objects in their training- and validation sets. These datasets contain 20
classes and have an average of about 2350 objects per class.

2.4.4 Road edge modelling
Clothoids are curves whose curvature changes linearly with their length. Because
of this property, they are commonly used in highway- and railroad curve design
to prevent sudden changes in lateral acceleration [33]. To reduce computational
complexity, the following approximation of the clothoids is used, which can be seen in
(2.12) where F (x) is a polynomial which represents the shape of the road edge. This
is inspired by Sánchez-Reyes and Chacón, who used polynomials to approximate
clothoids [34].

F (x) = a+ bx+ cx2 + dx3, if 0 ≤ x ≤ xt (2.12)

The clothoids are in the car’s coordinate system, with the origin in the center of the
rear axis, see Figure 2.4. In (2.12), xt denotes the maximal longitudinal distance for
which the model is valid.

To find out to what degree the road turns and in which direction, the signed curvature
can be computed [35]. The signed curvature is expressed in (2.13), x′, y′ and x′′, y′′
are the first and second derivatives with respect to time.

κ = x′y′′ − y′x′′

(x′2 + y′2) 3
2

(2.13)

However, using the formula expressed in (2.13) requires a parametrization of the
clothoid defined in (2.12), since the functions need to be differentiable, and hence the
following expression is used. Here γ(t) denotes the parametrization of the polynomial
defined in (2.12) expressed by the parameter t representing time, and tt represents
the upper threshold corresponding to the maximal longitudinal distance which the
road edge is valid.

γ(t) = (x(t), y(t)) = (t, a+ bt+ ct2 + dt3), if 0 ≤ t ≤ tt (2.14)

Positive curvature values mean the road edge is turning left with regards to the
direction that the car is driving, and negative values means that the road edge is
turning to the right [35].
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x

y

Figure 2.4: Car coordinate system aligned with the rear axis. The longitudinal-
and lateral axis are denoted by x and y respectively.

2.4.5 Road edge detection
The detection of road edges is crucial in ADAS, since this information can be used to
prevent the vehicle from driving off the road. Janda et al. [36] defines the road edge
as the change from road surface to non-road area, as illustrated by the red lines in
Figure 2.5. The difficulties faced when doing road edge detection and classification
are like those faced when doing road sign detection. The main issues are adverse
lighting conditions and shadows, as well as the possible absence of lane markings
[36]. Some road edge detection systems do not only use the cameras, but also the
radar sensors to detect road edges [36]. The latter is particularly useful when there
are barriers on the side of the road, which is a common feature on highways for
example. An example of this is illustrated in Figure 2.5, where there are concrete
barriers to the left. In this scenario the radar sensors could be useful for detection
of the concrete barriers.

Figure 2.5: Image from the forward-looking camera. The road edges are illustrated
by the red lines.

2.4.6 Error sources for vision-based methods
The mentioned vision-based methods for object detection, road sign classification,
road edge modelling and road edge detection have common sources of error. Among
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the most common are adverse lighting and weather conditions, which can affect the
camera performance. Examples of such conditions are low lighting, direct sunlight,
shadows and rain, which all affect the camera performance negatively [25]. Snow
can also make the lanes as well as road edges hard to distinguish. Besides, both cars
and trees might occlude objects which will affect the performance of all aforemen-
tioned methods. Another issue is viewpoint variation, where objects look different
depending on the point of view [37]. It is essential when merging vision-based data
with data from other sources to understand the strengths and weaknesses of each
data source.

2.5 Global navigation satellite systems
Global navigation satellite systems (GNSS) are based on satellite navigation where
a global network of satellites is orbiting the earth and transmitting radio signals to
a ground-based antenna in order to determine e.g. position and velocity of a ground
object. There are in total five different GNSS constellations in operation where the
two largest ones are the Global Positioning System (GPS) owned by the United
States and GLONASS owned by the Russian Federation. The remaining three are
QZSS from Japan, Beidou from China, and Galileo which is developed by the EU
and the European Space Agency [38].

The frequency bands of the transmitted GNSS signals are different for each con-
stellation and range from 1 to 2 GHz. Each GNSS constellation transmits signals
in at least two different frequencies. The three main components of the signal are
the carrier frequency, the ranging code and the navigation message. The carrier
frequency is the frequency of the electromagnetic signal that gets transmitted from
the satellite. The ranging code is the main component and consists of a sequence
of binary numbers called Pseudo-Random Noise (PRN) [39]. The PRN sequence
holds information about the identity of the satellite and a time stamp of when the
signal was transmitted. The navigation message contains data about the health
of the satellite, biases of the satellite clock, the satellite ephemeris (parameters for
calculating the position and velocity of the satellite) and other complementary data.

The PRN code and the navigation message are combined using modulo 2 summation
performed using an exclusive OR operation. The result is a new binary sequence
including information from both the PRN sequence and the navigation message.
The carrier signal is then modulated using the Binary Phase Shift Keying (BPSK)
modulation technique. In this technique, the phase of the carrier signal is shifted
positively 180◦ if the binary signal is changed from 0 to 1, and negatively by the
same amount if the signal is changed from 1 to 0 [39].

Since the transmitted signal contains information about when the signal was trans-
mitted, an approximate range between the satellite and the receiver can be com-
puted. This range is referred to as the pseudorange and can be seen in (2.15) [40].

Rp(t) = c[tr − ts] + ε (2.15)
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In (2.15), Rp(t) denotes the pseudorange, c is the speed of light, tr is the time when
the signal is received measured by the receiver clock, ts is the time when the signal
was transmitted measured by the satellite clock and ε represents the error term.
The error term will be discussed further in Section 2.5.1. The transmitted time,
ts, is decoded either by code phase processing using the PRN signal or by carrier
phase processing using the carrier signal directly. Receivers that use carrier phase
measurements are in general more accurate and of higher complexity, compared to
the ones that use code phase measurement [41].

The main information that can be extracted from a single satellite is the time dif-
ference between when the signal is transmitted and received, which can be used to
calculate the distance between the ground object and the satellite. This is however
not enough to determine the position of the ground object. Positioning is done by
combining distances to several satellites using a geometrical method called trilater-
ation [42].

The concept of trilateration is illustrated in Figure 2.6 where three satellites (located
at A, B and C) and one object (located at D) receiving satellite signals are shown.
Each satellite has a circle with a radius equal to the measured distance from the
object to the satellite. By intersecting the three circles, it is possible to find a
unique intersection point corresponding to the 2D position of the object. This can
be extended to 3D where spheres are used instead of circles, in this case four satellites
are needed to determine the 3D-position of the object.

Figure 2.6: Trilateration to find position of object D using satellite A, B and C.

2.5.1 Limitations of GNSS
The limitations of GNSS are are important to acknowledge when designing a system
using GNSS since the performance cannot be expected to be perfect in all cases and
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depends on a number of different factors. The GNSS accuracy is affected by the
satellite, the receiver and by the propagation medium. These factors are discussed
in the following sections. The concepts that are introduced in the following sections
apply to all GNSS systems, but the accuracy metrics are specific for GPS systems.

2.5.2 Satellite errors

The satellites contain very accurate atomic clocks that are used to obtain a precise
timestamp of when the signal was transmitted (contained in the PNR). The satellite
clocks are however not perfect and have an error of about 8.64 to 17.28 ns per
day which corresponds to a distance error of 2 to 5 m [43]. The accuracy of the
satellite clocks is verified by ground stations based on the biases transmitted from
the satellites as part of the navigation message [44].

Another aspect that affects the GNSS accuracy is the ephemeris error, caused by
an incorrect prediction of the satellite position. The satellite positions are predicted
by overlapping observations from the ground stations together with a model of the
forces acting on the satellite. This error is usually in the range of 2 to 5 m [44].

2.5.3 Receiver errors

The crystal clocks that are generally used in receivers are far less accurate than
the atomic clocks used in satellites [45]. The errors from the inaccurate receiver
clocks can however be minimized by differentiating between different satellites, or
by treating the receiver clock error as unknown when making the prediction [44].
Differentiating between satellites essentially means that two or more satellites are
used at the same time to cancel out the clock error. This is possible since two ob-
servations made at the same time have the same clock error which makes it possible
to cancel this term.

The signal path from the satellite to the receiver is important for making an accurate
prediction of the position. In some scenarios, the signal is reflected which causes
the antenna to receive the signals from different paths, see Figure 2.7. This error
is called multipath error and is caused by interference between the reflected- and
direct signal [46].
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Figure 2.7: Illustration of multipath error.

The effect of multipath error can be reduced by using a receiver location with few
reflective areas, introducing a choke ring antenna that attenuates the reflected signal,
or by using an antenna with a similar polarization as the GNSS signal [44].

Hardware impairments at the receiver side are also a source of error. This adds noise
to the received signal which decreases the accuracy of the estimated position [44].

2.5.4 Signal propagation errors
Signal propagation errors occur when the signal is delayed during propagation
through the atmospheric layers. The gases in the ionospheric layer are ionized,
causing the electron density to vary. High electron density causes the ionospheric
layer to be a dispersive medium which means that the propagation speed of an
electromagnetic wave is dependent on the frequency [47].

A GNSS signal consists of multiple components at different frequencies. Since the
propagation rate in the ionospheric layer depends on the frequency of the signal,
each component of the GNSS signal is delayed differently. The speed of the carrier
signal is increased while the speed of the PRN- and navigation message is decreased
in the ionospheric layer. The result is a longer measured distance if the PRN code
is used and a shorter measured distance if the carrier signal is used [47].

The signals are also affected by propagation through the troposphere, called tro-
pospheric delay. The troposphere is, in contrary to the ionospheric layer, a non-
dispersive medium for frequencies below 15 GHz. This means that all frequencies
in GNSS signals, which are electromagnetic waves, are delayed equally [48]. This
causes the same delay for all GNSS components, and the measured distance will be
longer than the actual distance regardless of which component that is used.
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The tropospheric delay cannot be compensated by using information from the dif-
ferent components since all components are delayed by the same amount. Instead,
mathematical models based on meteorological measurements are used to predict the
amount of delay [44]. The delay can be divided into a dry and a wet component.
The dry component causes approximately 90% of the delay and can be accurately
predicted, while the wet component, causing 10% of the delay, is harder to predict
[49].

2.6 Digital Map
A digital map is a data set that describes a geographical location virtually [50].
Depending on the available data, digital maps have varying levels of detail. Typical
attributes of digital road maps are lane geometry, location of traffic lights, the
current speed limit and the number of lanes [51].

Digital maps have long been used together with GNSS-coordinates for navigation
and routing purposes in cars. In recent years, the scope of applications has increased
and several ADAS functions demand digital map information [52]. A key motivation
for using the digital map is that it allows the car to see further ahead compared to
built in sensors like the LiDAR, cameras and radars, which have a limited range of
up to a few hundred meters [51]. Another benefit of the digital maps is that they
provide data past solid objects such as cars and buildings, something not possible
for the previously mentioned sensors.

2.6.1 ADASIS
In 2001, the Advanced Driver Assistance Systems Interface Specifications (ADASIS)
Forum was founded with the purpose of creating a standardized map data interface
between stored map data and ADAS applications [53]. The members of the ADASIS
Forum are high profile automotive manufacturers such as BMW and Ford. Since
the forum was founded three versions of the ADASIS protocol have been released
and the protocol is nowadays accepted as an industry standard [54].

2.6.2 ADASIS Horizon
The core idea of ADASIS is to provide a method for extracting necessary attributes-
from the digital map and utilize it for ADAS applications. The first step of this
process is to extract the vehicle’s position, speed and heading using a combination
of GNSS-positioning and dead reckoning. The GNSS-positioning is used in most
cases but sometimes is the accuracy limited due to blocked signals, discussed in sec-
tion 2.5.1. The solution is to use dead reckoning in these cases, which is a method
for fusing information from the internal measurement unit (IMU) to calculate the
heading, speed and position of the car. However, dead-reckoning drifts over time
because of integration errors and can therefore only be used for short periods of
time, for example when the car drives trough a tunnel [55].
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The second step is to perform map-matching to connect the vehicle to the road
network [56]. This process uses information such as the position, speed and heading
of the vehicle to calculate the road segment that the vehicle is most probable to
travel on, called the Most Probable Path (MPP). One approach for estimating the
MPP is to assign weights to road segments nearby based on different criteria [56].
One weight could for example be how much the road segments are aligned with the
heading of the vehicle. The map-matched position is generated by choosing the road
segment with the highest sum of weights, and by matching the GPS vehicle position
to the closest point on that segment. The third step is to extract all necessary
attributes from the digital map of the MPP to create an Electronic Horizon (EH).
The EH is a collection of road attributes such as the speed limits, sign information
and other relevant information given by the map data. Figure 2.8 illustrates the
MPP and the corresponding EH of a road network with four paths. The attributes
of the EH are in this case two speed signs, one elevation indication and one stop
sign.

Figure 2.8: MPP and EH of a road network with four paths.

2.6.3 ADASIS System architecture

The core components of the ADASIS system are the ADAS Horizon Provider (AHP),
the ADASIS protocol and the ADASIS Horizon Reconstructor (AHR) [54]. The AHP
is responsible for extracting all relevant attributes from the digital map, the ADASIS
protocol describes how the EH is decoded to enable Controller Area Network (CAN)
communication and finally, the AHR is used to reconstruct the EH for each ADAS
application. A simplified version of the system architecture is illustrated in Figure
2.9.
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Figure 2.9: ADASIS system architecture.

2.6.4 ADASIS messages
The digital map attributes becomes translated to a number of different messages in
the AHP [54]. These messages are listed below:

1. Segment message: extracting and merging the most important attributes of
a road segment. The attributes can for example be the speed limit, road class,
number of lanes and so on. A segment is defined as a fraction of a road where
the attributes are constant. A full path is built by one or several segments.

2. Profile message: Includes the road curvature and geometry.
3. Attachment Message: Includes attributes such as signs on a path. The

path is identified using an index, and the message also includes information
about the distance to the signs.

4. Stub Message: Similar information as the Attachment message besides that
the Stub message only contains information from the MPP which simplifies
the reconstruction since less data is regarded.

5. Position Message: Information about the current position of the vehicle.
The vehicle speed, timestamp from the positioning system and the current
lane is also included.

The messages get decoded and encoded via the ADASIS protocol which enables
transmission of the EH data to ADAS applications.
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3
Methods

This chapter aims to provide a description of the different methods used for the
development of the offline model. First, a proposed model is introduced, which
gives an overview of the different subsystems and how they will be combined to
produce a final model. Subsequently, a section about the data collection from the
test vehicle is included. The section provides an insight into what data is extracted
from the test vehicle and how manual annotations are used as ground truth. Each
subsystem defined in the proposed model is then described and evaluated. The last
section outlines the architecture of the final model based on the performance of each
subsystem.

3.1 Proposed model structure
The first step of the development of the offline model was to make a design choice
of the system architecture. This model is referred to as the proposed model. The
core idea was to use processed sensor data provided by the sensor setup in the test
car and fuse it with additional offline data sources to create a more reliable model.
Figure 3.1 shows the proposed model structure.

The main input of the proposed model is the test-vehicle data log files containing
all sensor data sampled at 40 Hz. The data is then filtered and only the necessary
data is extracted. The vision- and Google data can be processed and used directly
to produce mass values for the Dempster-Shafer fusion, see section 2.2. The offline
blocks, illustrated by the gray color in Figure 3.1, are additional data sources used
for speed limit estimation. The first block utilizes the position, speed, and times-
tamps as input and produces map-matched positions that can be combined with an
additional digital map to produce speed limit estimations. The second block takes
the front camera video stream as input and classifies the speed signs using a YOLO
network.

One of the core issues, described in section 1.1, was that the vision system captures
speed signs belonging to adjacent roads creating wrong speed limit estimations from
the vision. To solve this issue, an off-ramp filtering system is used which decreases
the probability of the vision reading when an off-ramp is present.

The output from the map and the vision systems for the off- and online data is first
fused together separately using Dempster-Shafer fusion. Thereafter, the output is
fused again to produce a final speed estimation. The speed estimation from the
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Figure 3.1: Proposed system architecture.

offline model is finally compared with the manual annotations in the performance
evaluation block to calculate the true positive distance, TPD, defined in Section 1.
The RSI speed limit estimation is also extracted and compared to the manual an-
notations in order to obtain a performance reference for the offline model.

Each subsystem of the proposed model will be described, tested and evaluated sep-
arately in the following sections. Finally, the subsystems with the most promising
performance will be combined to create a final system architecture of the offline
model.

3.2 Data collection from test vehicle
The data used for developing the offline model was based on data log files from
Volvo’s test vehicles. The sensor data is sampled at 40 Hz and stored as .mat-files
in a common data cluster. Relevant sensor signals can be retrieved from the files and
used for simulation purposes. Sensor signals related to object detection, positioning,
the Google map, RSI and manual annotations were extracted for development of the
offline model, see proposed model, Figure 3.1.

Performance of the offline model is evaluated based on the ground truth data. The
ground truth is defined as the true speed limit on road segments and consists of
manual annotations. Each annotation gets a timestamp which makes it possible to
sync it with the current position and thus a continuous signal for the true speed
limit can be created.
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3.3 Fusion between map- and camera data from
test vehicle

Fusion between map- and camera data from the test vehicle is a core component of
the offline model. Before fusing the data using Dempster’s rule of combination, the
data must be pre-processed. This section will first describe the map- and camera
data pre-processing steps, respectively, and then how the data was fused. As the
final step, performance metrics will be obtained from the fused data.

3.3.1 Pre-processing of Google data
The host vehicle retrieves attributes from the Google data through the AHP. One
of those attributes is the speed limit on the current road. The map attributes are
organized as different messages and profiles in the forward horizon, as described in
Section 2.6.4. The different attributes are associated with a path and a longitudinal
offset (relative to the host car). To retrieve the current status of map attributes, an
AHR is used to align the vehicle’s current position on its MPP to attributes on the
associated path. If the AHR works correctly, a speed limit estimation can be given
directly by the AHR.

However, the onboard AHR sometimes experiences software bugs resulting in an
incorrect speed limit estimation. But since all map messages and profiles are logged,
it is possible to reconstruct the map attributes using an offline implementation of
the AHR. This bypasses the software issues and makes the map data usable even
when the onboard function has errors.

The software bugs for the AHR and AHP are systematic for some countries in the
EU which makes it possible to create a general offline reconstructor. The offline
reconstructor uses the map messages and profiles with corresponding longitudinal
positions and timestamps to match it to the position and MPP of the host car.

The speed limit from the Google map is static which means that new speed limit
changes, due to roadwork or similar, are not captured by the digital map. To account
for these errors, a tuning parameter, αGoogle, was introduced. This tuning parameter
was meant to decide how much the current reading was trusted. For example, if
αGoogle = 1, then the Google speed limit is trusted to 100%, but if αGoogle is a lower
value, then the map is not trusted fully. This parameter was used to construct mass
values used in the DS-fusion. The collection of all possible speed limits in a country
is denoted by θ, and is defined as the frame of discernment by Nienhuser et al. [14].
In Sweden this set is θ = {10, 20, ..., 120, 130}. The Google map speed limit reading
is assigned a mass value of αGoogle and the frame of discernment, θ, is assigned a
mass value of 1− αGoogle. This is mathematically defined as:

mGoogle(∅) = 0
mGoogle({sGoogle}) = αGoogle

mGoogle(θ) = 1− αGoogle
(3.1)
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Where sGoogle is the speed limit given by the Google reading and mGoogle(∅) = 0
means that no mass value is assigned if the Google reading does not contain any
information (generating ∅). One example of assigning mass values from the Google
data is given below where sGoogle = {80} and αGoogle = 0.9:

mGoogle({80}) = 0.9
mGoogle(θ) = 0.1

(3.2)

These mass values mean there is a probability of 90% that the speed limit is 80
km/h and a 10% probability that the speed limit is any value in the set of θ.

3.3.2 Pre-processing of test vehicle vision data
The onboard vision system is sampled at 40 Hz and is limited to maximally eight
road sign detections at each time step. The highest possible number of detections
in one frame is a design choice by the onboard object detection supplier. Each
detection has a classification confidence. Since the signs are only classified in a few
camera frames, but the fusion algorithm runs continuously at each time step, the
camera readings need to be kept for some time. In the following list, the processing
steps of the camera signals is described. The inputs are the speed sign detections,
the classification confidences, and the relative distance to the sign from the car. The
input is then mapped to the probability mass values for different speed limits.

1. Only consider speed signs within a 10 m radius of the car.
2. If multiple signs of the same speed limit are detected in a single frame, for

example two 50-signs, use the detection with the highest confidence.
3. If multiple signs with different speed limits are detected in a single frame, for

example a 50-sign and a 70-sign, decrease the probability of both detections
in proportion to their classification confidence.

4. Adjust the probabilities using the camera confidence tuning parameter αcam.
5. Keep the last speed sign detection for up to five minutes, given that no new

speed signs are detected.

In what follows scam,i denotes the detected speed limits in a camera frame, and ccam,i
represents the corresponding confidence. Since eight detections can be made in one
camera frame, the index 1 ≤ i ≤ 8 is used for labeling the detections.

Even if the confidence of the classification is close to perfect (ccam,i = 1), there is
still a possibility that the detected sign belongs to the wrong road. To capture this
uncertainty a tuning parameter denoted by αcam was introduced. This parameter
was used together with the confidence ccam,i to determine the mass value for each
speed class, defined in Section 3.3.1. The mathematical definition of mass values
are shown in (3.3).

mcam(∅) = 0

mcam({scam,i}) = αcam ·
1
n
· ccam,i

mcam(θ) = 1− αcam ·
1
n
·
n∑
i=1

ccam,i

(3.3)
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In (3.3), scam,i and ccam,i are the speed limit and confidence respectively for the i-th
sign detection. The total number of detections are denoted by n. The benefits of
assigning mass values in this way are to be able to use the tuning parameter αcam to
decrease the confidence of the readings, to be able to handle multiple detections and
finally to decrease the confidence if two or more different speed signs are captured
at the same time since only one of the detections is reliable. Some examples of
assigning camera mass values are shown below.

A toy example of a perfectly classified 70 km/h (ccam,1 = 1) is shown in (3.4). The
tuning parameter αcam is set to 0.9, meaning that even a perfect classification is not
trusted undoubtedly. The probability of any speed class, θ, is 0.1 in this case.

mcam(∅) = 0

mcam({70}) = 0.9 · 1
1 · 1 = 0.9

mcam(θ) = 1− 0.9 · 1
1 ·

1∑
i=1

ccam,i = 0.1

(3.4)

When the confidence of the classified sign is decreased to 0.8 (ccam,1 = 0.8) while
αcam is kept the same, the mass values of mcam({70}) will decrease and mcam(θ) will
increase. This is shown in (3.5).

mcam(∅) = 0

mcam({70}) = 0.9 · 1
1 · 0.8 = 0.72

mcam(θ) = 1− 0.9 · 1
1 ·

1∑
i=1

ccam,i = 0.28

(3.5)

In (3.6), an example where two different signs are detected at the same time, both
with probability 1 is considered. The tuning parameter is kept the same (αcam =
0.9). Both speed limits have the same mass values which is expected since they have
the same confidence.

mcam(∅) = 0

mcam({70}) = 0.9 · 1
2 · 1 = 0.45

mcam({80}) = 0.9 · 1
2 · 1 = 0.45

mcam(θ) = 1− 0.9 · 1
2 ·

2∑
i=1

ccam,i = 0.1

(3.6)

Another case is considered in (3.7), where the 80 km/h sign is classified with a con-
fidence of 0.8 and the 70 km/h sign is classified with a confidence of 0.6. The tuning
parameter is set to αcam = 0.9. In this case, any speed limit, θ, is believed with the
highest probability. This is because of the two conflicting speed sign detections, as
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well as the camera confidence tuning parameter αcam being less than 1.
mcam(∅) = 0

mcam({70}) = 0.9 · 1
2 · 0.6 = 0.27

mcam({80}) = 0.9 · 1
2 · 0.8 = 0.36

mcam(θ) = 1− 0.9 · 1
2 ·

2∑
i=1

ccam,i = 0.37

(3.7)

3.3.3 Dempster-Shafer implementation
By using Dempster-Shafer’s rule of combination, the mass values from the camera
and the Google map can be fused. This can be seen in (3.8), where the variables x,
sGoogle and scam,i are single speed limit values.

mGoogle,cam({x}) = 1
1− k

∑
sGoogle∩scam,i=x

mGoogle({sGoogle}) ·mcam({scam,i})

k =
∑

sGoogle∩scam,i=∅
mGoogle({sGoogle}) ·mcam({scam,i})

(3.8)

The best estimation from the fused data is then selected as the speed limit with the
highest fused mass value mGoogle,cam. This is mathematically defined as:

sbe = arg max
θ

(mGoogle,cam({x})) (3.9)

with sbe representing the best speed estimation (with the highest confidence). Some
examples of different scenarios are considered below.

In scenario 1, shown in Table 3.1, both the Google map and the camera shows 50
km/h with high confidence. In this case, both data sources are perfectly aligned
resulting in a fused mass value of mGoogle,cam({50}) = 0.995 and a conflict factor
of k = 0, resulting in a best estimation of sbe = 50 km/h. The fused mass value
is higher than the mass values of the individual sensors which means that fusion
strengthens the accuracy when the sensors are aligned.

Table 3.1: Camera and map data fusion scenario number 1.

mGoogle mcam mGoogle,cam

{50} 0.9 0.95 0.995
{θ} 0.1 0.05 0.05
k 0 0 0
sbe 0 0 {50}

In scenario 2, shown in Table 3.2, the Google map receives a reading of 80 km/h
and the vision system receives two readings of 70 km/h and 80 km/h. The two data
sources are not perfectly aligned, since two different readings are retrieved from the
vision, resulting in a conflict factor of k = 0.2430. The fused mass value with the
highest probability is mGoogle,cam({80}) = 0.9155 and a best estimation of sbe = 80
km/h.
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Table 3.2: Camera and map data fusion scenario number 2.

mGoogle mcam mGoogle,cam

{70} 0 0.27 0.0357
{80} 0.9 0.36 0.9155
{θ} 0.1 0.37 0.0489
k 0 0 0.2430
sbe 0 0 {80}

In scenario 3, shown in Table 3.3, the two sensors are in total conflict with a reading
of 90 km/h from the Google map and readings of 100 km/h and 80 km/h from the
camera. The result is a high conflict factor of k = 0.54 and the highest mass value of
mGoogle,cam({100}) = 0.6087 resulting in a best estimation of sbe = 100 km/h. The
fused mass values are lower than the individual mass values for each sensor since
the sensors are in conflict.

Table 3.3: Camera and map data fusion scenario number 3.

mGoogle mcam mGoogle,cam

{80} 0 0.2 0.1739
{90} 0.6 0 0.1304
{100} 0 0.7 0.6087
{θ} 0.4 0.1 0.0870
k 0 0 0.5400
sbe 0 0 {100}

3.3.4 Performance evaluation
To evaluate the performance of the DS-fusion between the camera and the Google
map, six simulations are executed for different countries. Each simulation consists
of signal pre-processing for the Google- and vision data, DS-fusion and performance
evaluation where the performance was evaluated in terms of true positive distance
TPD defined in (1.1). The tuning parameters are set to αGoogle = 0.5 and αcam =
0.5 which gives equal reliability for the Google map and the camera. The tuning
parameters are not optimized in any way but set to equal values to give a first
indication of the performance.

Table 3.4 shows the TPD for the camera, Google map and the fused result. The
conclusion is that DS-fusion improves the performance of the individual sensors for
log files 1,2,3 and 6. The performance for log files 4 and 5 are however decreased
which indicates that a different tuning setup is needed for these countries.
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Table 3.4: Performance (TPD) of the camera, Google map and DS-fusion between
the Google map and the camera.

Log Country
Driving
distance
[km]

Camera (%) Google (%)
Google &
Camera
(%)

1 Germany 103.6 41.4 64.4 66.2
2 Sweden 181.4 48.4 94.0 96.8
3 Netherlands 110.3 64.9 95.5 95.6
4 France 316.2 33.5 87.6 86.6
5 Luxembourg 56.3 33.3 86.0 84.7
6 Belgium 42.3 33.3 80.6 80.7

3.4 Additional map data source
As a part of the proposed offline model, defined in Section 3.1, an external digital
map data source is to be added. The requirement for the external digital map was
to provide speed limits given map-matched position coordinates with coverage of all
relevant road networks in Europe. One digital map supplier that offers this is Here
Technologies [57]. The data provided by Here is available through an open API where
road attributes can be extracted directly. To simplify the process further, a function
called Here Route Matching v8 was used to calculate the MPP and extracting the
speed limit from the EH [58]. The input to Here Route Matching v8 is a GNSS-
trace, headings, time stamps and vehicle velocities which can be extracted from the
log files collected by the test vehicles.

3.4.1 Dempster-Shafer implementation
The process of adding the Here-map consists of four steps, shown in Figure 3.2. The
first step was to retrieve GNSS-traces, headings, timestamps and vehicle velocities
from the test vehicle data for each time step. The second step was to process the
data and create a CSV-file that can be used as input to the Here Route Matching v8
function. The third step was to run Here Route Matching v8 to get map matched
positions and corresponding speed limits for each time step.
The output speed limit output from the Here map can then be used to construct
mass values in a similar way as for the Google map but with a different tuning
factor, αHere. This is illustrated in (3.10).

mHere(∅) = 0
mHere({sHere}) = αHere

mHere(θ) = 1− αHere
(3.10)

The Google-, camera- and Here-data can then be combined by applying Dempster’s
rule of combination in two steps:

mGoogle,cam,Here = (mHere ⊕ (mGoogle ⊕mcam))(x) (3.11)
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Figure 3.2: Process of extracting speed limits from the Here map.

One example of a multiple fusion between the three data sources is shown below
in Table 3.5, where both the Google map and the Here map retrieves a reading of
40 km/h with a mass value of 0.8 and 0.65 respectively. The vision gets a reading
of 30 km/h with a mass value of 0.9. The result of only fusing the Google- and
vision-data is a speed limit of 40 km/h but with a probability of 0.2857 that it also
could be 30 km/h. Fusing the result with the Here data gives a best estimation of
30 km/h. The result illustrates that having two sources with lower mass values (0.8
and 0.65) provides more evidence for a proposition compared to having one source
with a high mass value (0.9) when using DS in this case.

Table 3.5: Mass value output by performing DS-fusion between the camera, the
Google map and the Here map.

mGoogle mcam mHere mGoogle,cam mGoogle,cam,Here

{30} 0.8 0 0.65 0.2857 0.5706
{40} 0 0.9 0 0.6429 0.3865
θ 0.2 0.1 0.35 0.0714 0.0429
k 0 0 0 0.72 0.4179
sbe 0 0 0 {40} {30}

3.4.2 Performance evaluation
The same six log files as shown in Table 3.4 were used to evaluate the performance
after adding the Here map. The tuning parameter is set to αHere = 0.5 which is the
same value used for the Google map and the camera. The results show an increased
performance for all log files except the one collected in the Netherlands, log file 3.
This is explained by the speed regulations on highways in the Netherlands where
100 km/h is valid during the day (06:00-19:00) and 120 km/h or 130 km/h is valid

29



3. Methods

during the night (19:00-06:00) [59]. The Here map does not take this into account,
which results in a worse performance after adding it. As shown in Figure 3.3, the red
graph of the upper plot illustrates the speed limit from the Here map, which gives
incorrect outputs of 120 km/h and 130 km/h. This results in some disturbances in
the fused result which can be seen by the blue line representing the offline speed
limit in the lower plot. Some odd values can also be seen in the upper plot, where
the value 0 km/h corresponds to no speed limit value from the camera, and 250
km/h corresponds to unlimited speed limit.

Table 3.6: Performance (TPD) of the DS-fusion between the Google map, the
vision and the Here map.

Log Country Driving
distance [km]

Google &
Camera
(%)

Google &
Camera &
Here (%)

1 Germany 103.6 66.2 68.6
2 Sweden 181.4 96.8 97.4
3 Netherlands 110.3 95.6 92.5
4 France 316.2 86.6 89.1
5 Luxembourg 56.3 84.7 87.8
6 Belgium 42.3 80.7 83.5
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Figure 3.3: Speed limit estimations for log 3. Data collected in the Netherlands.

Adding the Here map can improve the performance of the speed limit estimations,
however it can degrade the performance as well, since the map quality seems to vary
for different countries. The solution is to tune αHere differently for each country.
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3.5 Road sign classification and detection imple-
mentation

In the test car, there is a forward-looking camera which records a video while driving.
These videos can be used as input to an offline speed sign detection and classification
algorithm, which provides the offline model with an additional vision data source.
By implementing a detection and classification network and adding it to the offline
model, the correctness of the model could be improved. Further, this provides an
insight into how object detection and classification algorithms works in practice. The
following section aims to show that YOLO as a network architecture is a suitable
choice for the purpose of detecting and classifying speed signs. The network will be
trained using a dataset which only contains Swedish speed signs. The reason why
a Swedish dataset is used is the fact that lots of videos from driving in Sweden are
available from the test cars, and therefore these are suitable to use when testing the
detection and classification model.

3.5.1 Network architecture
In order to detect and classify speed signs a convolutional neural network archi-
tecture called Tiny YOLOv2 was used. As the name suggests, this network is a
reduced version of the YOLOv2 architecture. A smaller network should reduce both
the risk of overfitting as well as the training time, albeit at the cost of some potential
performance. The model used is pre-trained on the Common Objects in Context
(COCO) dataset, containing over 1.5 million object instances [60].

3.5.2 Training dataset
To train the model, a Swedish road sign dataset is used [61]. Since our network
model aims to solely detect and classify speed signs, these signs were extracted from
the dataset. Extracting only images with speed signs made the dataset significantly
smaller, and therefore some additional images were manually annotated. The im-
ages used for this were sampled from the Mapillary Street-Level Sequences dataset
(MSLS) [62]. This dataset consists of street-leveled images with geographical data
that are crowd-sourced, making the dataset very large (over 1.6 million images in
June 2020). Computer vision technologies have then been used in order to match
these images to a digital map, which can be seen on Mapillary’s webpage [63]. 285
images were manually annotated, creating a total data set of 1283 images.

Since the dataset is small compared to other datasets used to train YOLO models,
the expected performance is limited. The mean number of images in each class is
117, significantly less than the PASCAL VOC datasets that were used to fine-tune
the original YOLO model [24], which has about 2000 images per class [31], [32].

A random sample from both the Swedish dataset and the MSLS dataset can be seen
in Figure 3.4, where it is possible to see that the images have similar characteristics.
As illustrated in Figure 3.5, some sign types are over-represented. The cause of this
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Figure 3.4: Left: sample from the MSLS dataset [62]. Image by Magol is licensed
under CC-BY SA 2.0. Right: sample image from the Swedish dataset [61].

Figure 3.5: Histogram showing frequency of each sign type in the dataset.

is likely that some signs are more common, and that more images can be captured if
the signs are passed slowly. This distribution might lead to overfitting to the most
common sign types in the dataset.

3.5.3 Anchor box estimation
Since anchor boxes are crucial hyperparameters in the network which has to be
estimated. By using the bounding boxes in the training data, the mean IoU can
be computed to get an estimation of how well the suggested anchor boxes fit the
bounding boxes in the training data. As can be seen in Figure 3.6, a higher number
of anchor boxes gives a higher IoU. However, choosing a high number of anchor
boxes increases the computational complexity of the network [28]. Therefore five
anchor boxes seem like a reasonable trade-off.

3.5.4 Network training
To train the model, augmented training images were used. This is done in order to
synthesize variations in speed signs and hence decrease the risk of overfitting. For
training, 80% of the total dataset was used. The images were scaled up or down
randomly as much as 10%, and the contrast, saturation and brightness were adjusted
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Figure 3.6: Intersection over union for different number of anchor boxes.

randomly as well. To be able to stop training before the model overfits, a validation
dataset was used, making up to 15% of the total dataset. These images are not used
in training and can be used to compute the validation loss, which gives an unbiased
evaluation of the model’s performance. Finally, a test set was also created for the
final assessment of the model’s performance, consisting of 5% of the total number
of images. The model was trained for 200 epochs until the validation loss did not
decrease anymore, a process which took about 20 hours using a Nvidia GeForce
RTX 2060s graphics card.

3.5.5 Network evaluation
The model’s performance was evaluated from three perspectives: detection accuracy,
classification accuracy and inference time. The detection accuracy, meaning the
model’s ability to detect where in the image the speed sign is, was checked visually
using the images in the test set. This also provides a sense of how well the predicted
bounding boxes fit the speed signs. A montage of the predicted bounding boxes
plotted over their corresponding speed signs can be seen in Figure 3.7. What is
interesting to note from this montage is that some of the speed signs are of such
low resolution that it is difficult to even manually distinguish the speed limit of the
sign. This means that the dataset is perhaps not ideal to train a classifier on, since
the digits on the signs need to be clearly visible for the classifier to learn the right
features. Overall, the model predicts bounding boxes that fit the speed signs well.
It is crucial for the classification part that the bounding boxes contain the entire
sign, so that all digits on the sign are visible. An example of when this does not
occur can be seen in the top left image in Figure 3.7, where the necessary features
for an accurate classification are not present within the bounding box.

The classification accuracy is tested by comparing the predicted speed sign classes
with the true speed signs, using the images in the test set. Since the model can
predict multiple overlapping bounding boxes and labels at once, non-maximum sup-
pression was used in the final step of the process. For each bounding box, the
product between the objectness and the classification score is computed. This prod-
uct gives an indication of the combined confidence of both the detection and the
classification. This value can be used to threshold out predictions where the score
was too low, effectively removing uncertain predictions.
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Figure 3.7: Bounding boxes predicted by the YOLO network.

How the threshold value is set affects the performance of the model. A high threshold
value means that only high-scoring predictions are used, which might filter out
correct ones that have a low score. On the other hand, a low threshold leads to the
use of low-scoring predictions which are more likely to contain incorrectly classified
speed signs, certainly an unwanted behavior. To evaluate the classification accuracy,
the precision and recall can be computed. The precision states how many of the
predictions that are correct divided by the total number of predictions. This is
important since false positive classifications are undesirable. The recall computes
how many of the predictions that are correct divided by the total number speed
signs. The test set consists of 92 speed signs distributed over 66 images. The model
makes 58 correct and 12 incorrect predictions of the true speed limit in the images.
Multiple signs can be detected in the same image. This gives the following metrics,
seen in (3.12).

Precision = 58
58 + 12 ≈ 0.83 Recall = 58

92 ≈ 0.62 (3.12)

From the precision value, it is possible to see that when the model classifies a speed
sign, it is on average correct about 83% of the time. The model does however miss a
fair number of signs. As can be seen in (3.12), only about 62% of the speed signs in
the test set are detected and classified correctly. However, this might not be as big
of an issue as it seems, since the camera on the front of the car captures multiple
frames when a speed sign is passed. This means that the model gets multiple chances
to make a prediction. Figure 3.8 shows an image sequence from when a 70-sign is
passed. Here the model makes predictions in four sequential frames.
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Figure 3.8: Video sequence where 70-sign has been detected and classified in four
subsequent frames.

The inference time is the time the model takes to process an image and compute
a prediction. To get a reference of how fast the YOLO network runs, a R-CNN
network was also trained for the same purpose [23]. The YOLO network has 119168
parameters, and the R-CNN network has 119436 parameters, meaning both net-
works have roughly the same number of parameters. The mean inference time was
computed when the networks run on a large set of images. The YOLO network
has a mean inference speed of 94 frames per second using the Nvidia GeForce RTX
2060s graphics card. The RCNN network obtains just 5 frames per second on the
same setup. This means that YOLO runs over 18 times faster than R-CNN. This
difference makes YOLO feasible to run in real-time and to be used on the videos
from the test vehicle.

To summarize the evaluation of the network performance, the following can be said
about detection, classification and inference.

• When a detection is made with reasonable confidence, the speed sign is most
often contained within the bounding box.

• A more diverse dataset is required to generalize the network.
• The low inference time makes YOLO feasible to run at real time.

This leads to the conclusion that using YOLO for speed sign detection is a promising
method, but it will not be incorporated in the offline model. The main reason for
this is because the network does not seem to generalize well to images outside of the
test set. The precision, shown in (3.12), also indicates that the classification does
not work flawlessly.

Previous work shows that YOLO networks trained on large and diverse datasets
generalize well [24], meaning that this should be possible speed signs as well. How-
ever, it is beyond the scope of this work and would likely require a larger and more
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diverse dataset than the one used. More computational resources would also be
required since the training time would increase tremendously.

Finally, it was found that manually annotating images and adding to the dataset
was a feasible method to increase the amount of data, and that the MSLS dataset
was a suitable source of additional images [62]. The Swedish dataset is not ideal
for training a classifier since some of the images are of such low resolution that the
digit features become indistinguishable.

3.6 Off-ramp road sign filtering
One source of error in the RSI function is the case when speed signs belonging to
adjacent roads are detected by the camera system. This can for example happen
when an off-ramp is passed. By finding out when an off-ramp is passed, the speed
sign detections in that region can be filtered out by decreasing the mass value from
the camera reading. This was done by adding a tuning parameter, αoff−ramp, which
takes a value between 0 and 1. This tuning parameter is then multiplied with αcam
to decrease the mass value when an off-ramp is present. The corresponding mass
value calculation is illustrated in (3.13).

mcam(∅) = 0

mcam({scam,i}) = (αoff−ramp · αcam) · 1
n
· ccam,i

mcam(θ) = 1− (αoff−ramp · αcam) · 1
n
·
n∑
i=1

ccam,i

(3.13)

This solution relies on first finding the off-ramps. To do this, two methods have
been tested. One based on camera data, and one based on data from the GPS and
digital map. In the camera-based method, the road edges are detected and then
modeled using clothoids. This method is described in detail in Section 3.6.1. In the
other method which can be seen in Section 3.6.2, the GPS position is combined with
digital map data to compute the distance to the intersection. The performance of
both methods is evaluated in Section 3.6.3.

3.6.1 Off-ramp detection using road edges
To filter out the speed sign detections close to off-ramps, the road edges that are
detected by the camera system are modelled as clothoids. The theory behind mod-
elling the road edges is covered in Section 2.4.4. The camera detections are used to
reconstruct polynomials which describes the shape of both the left- and right road
edge. The results of reconstructing the road edges in a couple continuous time steps
can be seen in Figure 3.9, where the blue square denotes the origin at the car’s rear
axis.

To filter out off-ramps using the road edge detections, a case where an off-ramp
with a different speed limit than the main road was studied, illustrated in Figure
3.10. Here the speed sign belong to the off-ramp (dark grey road segment) but is
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Figure 3.9: Road edges reconstructed in two subsequent time steps.

positioned similarly as if it belonged to the main road (light grey road segment).
A human driver could easily understand this, but the RSI system might struggle
in this scenario. If the sign is classified with high enough confidence, the speed
limit 70 km/h is incorrectly shown to the driver by the RSI function. This sequence
of events can be seen in Figure 3.11, where the RSI function starts showing the
incorrect speed limit in the last time step.

70

80 km/h

𝒕𝟎 𝒕𝟏 𝒕𝟐

70 km/h

Figure 3.10: Car passing an off-ramp and sampling data in three different time
steps. The light grey road segment has a speed limit of 80 km/h, and the dark grey
a speed limit of 70 km/h. The speed sign is positioned such that it belongs to the
off-ramp.

By illustrating the road edges seen by the car in different time steps when passing
an off-ramp, conclusions can be drawn about how the shapes of these could be used.
In Figure 3.11, it can be seen that before and after the off-ramp (t0 and t2), the
road edges are straight, but just when passing the off-ramp (t1), the right road edge
clothoid turns to the right.

By looking at the right road edge in Figure 3.11b, it can be seen that it turns to
the right in relation to the car. By computing the curvature for the right road edge,
defined in (2.13), a negative value would be obtained. This could potentially be
used to filter out off-ramps.
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Figure 3.11: Road edges (red) detected by the car for the three different time steps
shown in Figure 3.10.

To use the curvature of the road edges in order to detect possible off-ramps, a couple
of conditions have to be formulated, where κt denotes a threshold value used to figure
out if the road edge is turning enough. Positive curvature values mean the road edge
turns to the left, and negative values mean that the road edge turns to the right. If
both of the conditions shown in (3.14) are fulfilled, then the off-ramp case shown in
Figure 3.11b should be possible to detect. The first condition shown in (3.14) tests
if the right road edge turns to the right in relation to the direction that the car is
driving. The second condition shown in (3.14) tests if the left road edge is relatively
straight. This is done using two curvature values denoted κright and κleft, which are
the curvature of the left and right road edge respectively. A positive threshold value
κt is used to

κright < −κt, −κt < κleft < κt (3.14)

As can be seen in Figure 3.9, reconstruction sometimes differs a lot between two
subsequent time steps, in particular regarding how far ahead of the car the clothoid
model is valid. By plotting this value for a sequence of ten seconds, which is shown
in Figure 3.12, it can be seen that the values are rapidly varying. Janda et al.
states that in their road edge detection method, individual image frames from the
video are used to extract reference points [36]. This can cause the reference points
to vary a lot between each frame. From these reference points the road edges are
then modelled. It is reasonable to assume that something similar is done here, and
therefore the maximal distance for which the clothoid model is valid depends on
the reference points that the camera system is able to find in each frame. Since
each frame is processed individually, it is not unreasonable that the result varies
a lot between each image, as can be seen in Figure 3.12. Another notable aspect
about Figure 3.12 is that sometimes the road edge cannot be modelled at all, which
happens when the maximal distance is equal to zero. This is likely a result of the
camera detection system not finding enough valid reference points. Both the rapidly
varying character of the data, and the fact that occasionally the road edges cannot
be modelled at all, makes off-ramp modelling using road edges challenging.
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Figure 3.12: Maximal distance for which the road edge is valid for a driving
sequence of 10 seconds. The variable shown here is used as xt in (2.12).

3.6.2 Off-ramp detection using map data
By combining the vehicle position from the GPS with data from Google maps, the
distance to the next intersection can be obtained. The intersection data is one of
the attributes provided by the EH for the MPP by Google. By combining this data,
it can be detected if the car is in the vicinity of an off-ramp.

The logic used was to first filter out off-ramp intersections and then use the distance
to intersection as an indicator of when the vehicle is close to an off-ramp. To
compensate for possible inaccuracies in the map data, a distance of 50 m around
the intersection will be used to define an off-ramp area. This scenario is illustrated
in Figure 3.13 where the car at time t1 and t2 is considered to be inside the off-
ramp area. The main issue with using this approach is that the map matching and
MPP prediction need to be correct. Incorrect MPP predictions will lead to off-ramp
indications for wrong road segments compared to the actual trajectory of the car.

Figure 3.13: Illustration of the 50 m radius around an intersection indicating an
off-ramp area.

3.6.3 Off-ramp road sign filtering evaluation
Two different log-files from the test vehicle were used to evaluate the performance
of the off-ramp detection systems. The specification of each log is shown in Table
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3.7. These were selected since they contained many off-ramps.

Table 3.7: Specifications of data log files used for off-ramp filtering testing.

Driving Country Start location End location Number of
distance off-ramps

Log 1 182.1 km Sweden Volvo Torslanda Strömstad 38
Log 2 172.6 km Sweden Volvo Torslanda Lidköping 39

By running both off-ramp detection systems on the log files, the systems makes
predictions about whether there exists an off-ramp or not at each time steps. To
evaluate if these predictions were correct, the output from the functions was inserted
into Quantum Geographic Information System (QGIS) which is an open source
platform for geographic information were the full trajectories could be visualized.
One example is shown in Figure 3.14. Here, both the map- and the road edge system
detects the off-ramp successfully. The red dots belong to the map system and mean
that the car is within 50 m of the point that Google maps defines as the center of the
intersection. The blue dot is where the road edge system has detected an off-ramp.
The green dots means that neither system has detected an off-ramp. The evaluation

Figure 3.14: Output from the off-ramp-detection systems. Green dots mean no
off-ramp detected, red dots indicate an off-ramp detected by the map system and
blue dots indicate an off-ramp detected by the road edge system.

was done manually for the full trajectories using the QGIS visualization illustrated
in Figure 3.14. A detection is considered to be true if it is within 50 m of the center
of the off-ramp.

Two performance metrics are used for the off-ramp systems. The precision captures
how often the retrieved off-ramp detections are correct, and the recall how many of
all true off-ramps that are detected. The result is shown in Table 3.8. Since the
evaluation is performed manually, the metrics might have some errors and can only
give a rough estimation of the performance.
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Precision:
Map (%)

Recall:
Map (%)

Precision:
Road edge (%)

Recall:
Road edge (%)

Log 1 100 94.7 16.3 21.0
Log 2 94.6 89.7 8.5 10.3
Total 97.4 92.5 12.5 15.4

Table 3.8: Precision and recall for the map- and road edge based off-ramp detection
systems. Combined values for both log files are shown in the last row of the table.

The conclusion from the evaluation is that the precision and recall is significantly
lower for the road edge system compared to the map system for both log files. The
low precision for the system can be explained by many false positive cases due to
wrong road edge geometry estimations. One example of this is illustrated in Figure
3.15 where the camera detects a road edge (red lines) on a side road which gives
a false indication of an off-ramp using the conditions in (3.14). The result from

Road edge detection Car trajectory Off-ramp detection

Figure 3.15: Detection of road edge on side road. Adapted from [64].

the evaluation gives a clear indication that the map-system should be used as an
off-ramp detector when constructing the offline model. This means that no further
improvements was done on the road edge system. The reason for this is because
the input data for re-constructing the road edges is inconsistent and sometimes
inaccurate, for example in the case when a road edge of a side road is detected.

3.7 System architecture
This section presents the final system architecture used for the offline model. The
choice of which subsystems to be included in the offline model was based on the
performance of each subsystem, evaluated in Section 3.3-3.6. The final system ar-
chitecture is illustrated in Figure 3.16.

The final architecture is similar to the proposed architecture defined in Section 3.1
but with some changes. First of all, the YOLO network for speed sign classification
showed limited performance. Therefore, it is not considered to be able to enhance
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Figure 3.16: Final system architecture.

the performance of the offline model and is hence excluded. The second change is
the addition of tuning parameters as input to the offline model, which gives the
possibility to tune the reliability of each sensor differently for each country. The
tuning is done using an evolutionary algorithm that updates the parameters in each
iteration until a satisfactory result is reached. This process is illustrated in Figure
3.17.

Figure 3.17: Optimization of tuning parameters.
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3.7.1 Parameter tuning and performance evaluation
The offline model was evaluated using log files from several different countries. For
each country, some of the log files are used to tune the parameters, and the rest
of the log files are used to test the offline model. About 30% of the total driving
distance was used for tuning, and log files are selected accordingly. Of course, more
test data can be used for tuning, but this also means less data will be available for
evaluation, which makes it harder to draw general conclusions from the result.

The tuning parameters affect to what degree each data source is trusted. Country-
specific tuning is necessary since the quality of the data sources vary by country.
For example, in some countries one digital map is more reliable than the other. The
same applies for the vision-based data source, whose reliability also varies between
different countries. This could be because the appearance and frequency of speed
signs differs slightly between different countries, which affects the performance of
the sign detection system. The values of the tuning parameters give an indication
of how reliable each data source is in each country.

Because two maps and one camera are used, there are three tuning parameters which
indicate the reliability of the different data sources: αGoogle, αHERE and αcam. If
any of these have a high value, it indicates that the data source should be used to
a large extent in order to obtain good performance.

Off-ramps might entail that speed signs on adjacent roads, which do not apply to
the road that the car is driving on, are detected. Therefore an off-ramp tuning
parameter is used, denoted by αoff−ramp. This parameter affects to what degree
the mass value of the speed sign detections from the vision are decreased when an
off-ramp is passed, as described in Section 3.6. A low αoff−ramp decreases the trust
for the vision data while αoff−ramp = 1 has no effect on the mass value.
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Results

In the following chapter, the performance of the offline model is presented for several
European countries. The performance of the model is measured using the metric
true positive distance, TPD, shown in (4.1). It is defined as the distance with correct
annotated speed limit (dcorrect) divided by the total distance (dtotal) driven during a
test drive [5]. To put the performance of the offline model in context, it is compared
with the performance of the RSI function in the car. Since the performance of the
RSI function in the car depends on the Google map, which is continuously updated,
the results may differ depending on the time that the log files are collected.

TPD = dcorrect

dtotal
(4.1)

The motivation behind evaluating the performance country by country is the changes
in quality of the data sources. This shows that the model can adapt to the quality
of various data sources by adjusting the reliability tuning parameters. Besides the
performance, the values of the reliability tuning parameters are also shown, which
gives an indication of how reliable each data source is in each country. Furthermore,
specifications about the log files used for parameter tuning and testing are shown.
The total driving distance for each country gives an indication of how well-founded
the conclusions drawn for each country are. Countries with lots of data, such as
Sweden, can provide a more thorough analysis. Finally, some log files are analyzed
in depth. This aims to illustrate why the offline model works well for some scenarios
but struggles for others.

4.1 Sweden
To tune the parameters in the model for Sweden, two log files have been used, which
can be seen in Table 4.1. The log files used for tuning contain 28.7% of the total
driving distance for Sweden. The rest of the Swedish log files are used for evaluation
of the offline model which is compared with the RSI function in the car.

Table 4.1: Log files from Sweden for parameter tuning.

Log Time [min] Distance [km] Country
1 137 172.0 Sweden
2 113 102.1 Sweden
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In (4.2), the parameter values obtained when tuning the model for Swedish log files
are shown.

αcam = 0.44, αGoogle = 0.44, αHere = 0.45, αoff−ramp = 0.69 (4.2)

All tuning parameters have approximately the same value which indicates that all
data sources are equally reliant in Sweden. The off-ramp tuning parameter is used
to temporarily decrease the reliability of the camera when an off-ramp is passed,
by multiplying the camera reliability tuning parameter with the off ramp tuning
parameter. For the parameter values presented in (4.2), both maps have a higher
reliability than the camera during off-ramps. The performance is shown in Table
4.2. The total performance is 97.8% for the offline model which is an improvement
compared 96.1% for the RSI. The offline model performs better for all log files except
for log 6 and 8. The difference between the TPD of the RSI function and the offline
model is shown in the rightmost column in the table below, where positive values
indicate that the offline model performs better than the RSI function.

Table 4.2: Performance evaluation for log files from Sweden.

Log Time [min] Distance [km] RSI Offline model ∆
TPD [%] TPD [%] TPD [%]

1 132 181.4 97.4 97.9 0.5
2 87 134.3 94.2 99.4 5.2
3 65 75.8 96.0 98.7 2.7
4 108 101.3 96.5 97.3 0.8
5 84 79.2 96.5 97.5 1.0
6 35 23.0 93.3 90.5 -2.8
7 77 48.0 93.9 97.7 3.8
8 30 39.4 99.7 96.7 -3.0
Total 618 682.4 96.1 97.8 1.7

Two log files are analyzed in depth. The offline model performs poorly for log file
number 8, which is shown in Figure 4.1. Small errors have a large effect on the true
positive distance since the total driving distance is relatively short for this log file.
By looking at Figure 4.1, the incorrect output of the offline model can be explained.
Since the reliability tuning parameters are similar for all three data sources, the
model often choose the speed limit of the data sources that agree. Therefore, the
main source of error is when two data sources agree on an incorrect speed limit.
This happens at around minute 16 and 20, which can be seen in Figure 4.1. At
minute 26-29, an off-ramp is detected which decreases the reliability of the camera.
This is the reason why the offline model does not always trust the two data sources
that agree during this time sequence.

For log file number 2, the offline model performs very well and obtains an accuracy
of 99.4% which is shown in Figure 4.2. In this case, two data sources agree most of
the time and therefore the model obtains a satisfying performance. Here, the model
successfully filters out the incorrect speed limit predictions from the camera system
at minute 40 to 45.
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Figure 4.1: Top: speed limit data from the different data sources.
Bottom: predicted speed limit by the offline model compared with the ground truth.
Data collected in Sweden.
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Figure 4.2: Top: speed limit data from the different data sources.
Bottom: predicted speed limit by the offline model compared with the ground truth.
Data collected in Sweden.
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4.2 The Netherlands
The specification of the tuning log for the Netherlands is shown in Table 4.3. The
driving distance for the tuning log is 27.2% of the total driving distance.

Table 4.3: Log files from the Netherlands for parameter tuning.

Log Time [min] Distance [km]
1 82 100.4

The tuning paramaters for the Netherlands are shown in 4.3.

αcam = 0.41, αGoogle = 0.54, αHere = 0.18, αoff−ramp = 0.97 (4.3)

The Google map tuning parameter gets the highest reliability followed by the camera
and lastly the Here map. This indicates that the Google Map is a reliable data source
in the Netherlands and should be used to a large extent in the offline model to obtain
good performance.

As can be seen in the total performance of Table 4.6, the offline model performs
significantly better than the RSI function. The RSI function worked poorly at times
during the test runs, due to software issues in the AHR. This caused an incorrect
speed limit to be delivered to the RSI function. These errors were corrected by
using the offline reconstructor of the AHR, discussed in Section 3.3.1. The overall

Table 4.4: Performance evaluation for log files from the Netherlands.

Log Time [min] Distance [km] RSI Offline model ∆
TPD [%] TPD [%] TPD [%]

1 43 73.2 61.4 93.4 32.0
2 72 110.3 56.3 95.5 39.2
3 78 85.8 83.1 90.3 7.2
Total 193 269.3 66.2 93.3 27.1

performance for the offline model in the Netherlands is over 90% for all log files.
Log 3, which attained the worst performance for the Netherlands is illustrated in
Figure 4.3. The manual annotations on the bottom graph have some discontinuities
due to invalid data at some time steps. These time steps are not used when calcu-
lating the TPD. The offline model makes some miss-predictions between minute 20
to 30 which is explained by a combination of incorrect readings from the camera and
the Here map not being updated for variable speed limits on highways, as discussed
in Section 3.3.4. Between minute 42-45, the camera is correct while the two map
data sources are incorrect leading to an incorrect prediction by the offline model.
This is explained by a temporary speed change that is not accounted for by the map
sources.
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Figure 4.3: Top: speed limit data from the different data sources.
Bottom: predicted speed limit by the offline model compared with the ground truth.
Data collected in the Netherlands.

4.3 Luxembourg
Table 4.4 shows the specifications of the tuning log for Luxembourg, which con-
stitutes 32.5% of the total driving distance for the country. Note that only a few
log files, containing short driving distances, are available. This makes it difficult to
draw general conclusions based on the results.

Table 4.5: Log files from Luxembourg for parameter tuning.

Log Time [min] Distance [km]
1 34 min 42.3

The tuning parameters for Luxembourg are presented in (4.4).

αcam = 0.15, αGoogle = 0.49, αHere = 0.52, αoff−ramp = 0.54 (4.4)

The two map data sources are the most reliable data sources for Luxembourg. The
Here map gets a slightly higher tuning parameter value than the Google map. The
true positive distance correctness for Luxembourg is shown in Table 4.6. The offline
model performs better for all log files with a total performance of 91.9% compared
to 62.1% for the RSI function. The AHR used by the RSI had similar software issues
as for the Netherlands which is an explanation for the poor performance of the RSI
function.
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Table 4.6: Performance evaluation for log files from Luxembourg.

Log Time [min] Distance [km] RSI Offline model ∆
TPD [%] TPD [%] TPD [%]

1 71 56.3 76.9 92.1 15.2
2 19 16.4 44.4 96.4 52.0
3 23 15.2 26.3 86.3 60.0
Total 113 87.9 62.1 91.1 29.0

The offline model’s output for log 1 is illustrated in Figure 4.4. The offline model has
good accuracy for most time steps but appears to make incorrect predictions between
minute 23 to 32, as shown in Figure 4.4. During this period, the predicted speed
limits from all data sources disagree with the manual annotation. By inspecting the
front camera video for this log file, it is possible to conclude that the annotation for
this time period is incorrect. The video from the forward-looking cameras showed
driving in a small village with a true speed limit of 50 km/h, not 120 km/h as
indicated by the manual annotations. Errors like these are not corrected when
calculating the performance, since it is too time consuming to analyze the videos
from all log files.
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Figure 4.4: Top: speed limit data from the different data sources.
Bottom: predicted speed limit by the offline model compared with the ground truth.
The discontinuities of the manual annotations are explained by invalid data.
Data collected in Luxembourg.
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4.4 France
In France, one log containing 11.2% of the total driving distance is used for tuning
the parameters. The specification of this log is shown in Table 4.7. The test data
for France is limited and divided into only three log files, where only a small amount
of data is used for tuning purposes. More data could be used for tuning, but this
would mean that less data is available for evaluation.

Table 4.7: Log files from France for parameter tuning.

Log Time [min] Distance [km] Country
1 60 42.0 France

The tuning parameters for France are presented in (4.5)

αcam = 0.76, αGoogle = 0.80, αHere = 0.82, αoff−ramp = 0.08 (4.5)

It can be concluded that all three data sources have similar reliability. The off-
ramp tuning parameter is however very low (αoff−ramp = 0.08) which means that
the offline model relies only on map data when an off-ramp is detected. It is also
observable that the Here map works slightly better than the Google map in France,
since the reliability tuning parameter of the former is higher.

Two log files are used for evaluation. The total performance of the offline model is
88.9% which is higher than the RSI performance of 80.1%.

Table 4.8: Performance evaluation for log files from France.

Log Time [min] Distance [km] RSI Offline model ∆
TPD [%] TPD [%] TPD [%]

1 24 18.3 88.2 86.9 -1.3
2 194 316.2 79.6 89.1 9.5
Total 218 334.5 80.1 88.9 8.9

The offline model output for log 2, which consist of most evaluation data for France,
is illustrated in Figure 4.5. The offline model shows a good accuracy for most time
steps with some discrepancies around time 5-12 min. When the front camera video
is inspected, it is possible to verify that the true speed limit over this road segment
is 130 km/h and not 90 km/h which was indicated by the manual annotations. The
offline model is however making the correct speed limit prediction.
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Figure 4.5: Top: speed limit data from the different data sources.
Bottom: predicted speed limit by the offline model compared with the ground truth.
The discontinuities of the manual annotations are explained by invalid data.
Data collected in France.

4.5 Germany
For Germany, two log files containing 21.6% of the total driving distance are used
for tuning. The specifications of the tuning log files are illustrated in Table 4.9.

Table 4.9: Log files from Germany for parameter tuning.

Log Time [min] Distance [km]
1 98 141.5
2 62 120.5

According to the expedition report of the log collection in Germany, a lot of road
work was encountered which explains the high camera reliability seen in (4.6).

αcam = 0.90, αGoogle = 0.39, αHere = 0.29, αoff−ramp = 0.89 (4.6)

The tuning parameter for the Google map has a slightly higher value compared to
the Here map. This indicates that the Google map is more reliable than the Here
map in Germany.

Table 4.10 shows the result for the evaluation-logs in Germany. The offline model
has a total accuracy of 72.1% in Germany compared to 45.7% of the RSI function.
Both the RSI and the offline model are affected by the high number of road works
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since it limits the performance of the map data sources. For some of the log files,
the same software issues as for the Netherlands and Luxembourg were encountered,
causing the RSI to obtain an incorrect reconstruction of the Google map. The offline
model uses the offline reconstructor which bypasses this problem.

Table 4.10: Performance evaluation for log files from Germany.

Log Time [min] Distance [km] RSI Offline model ∆
TPD [%] TPD [%] TPD [%]

1 72 103.6 49.2 67.6 18.4
2 151 199.4 41.0 73.4 32.4
3 165 192.8 47.2 53.7 6.5
4 68 104.1 28.5 69.9 41.4
5 155 266.0 43.3 84.3 41.0
6 73 85.9 76.7 81.2 4.5
Total 684 951.8 45.7 72.1 26.4

Figure 4.6 illustrates the offline output for log 5 which is the longest log file for
Germany. It can be seen that the two map data sources agree in most time steps
while the vision deviates. This is explained by the number of road works encountered
when collecting the log files. The tuning parameters are tuned such that the vision
is trusted in a large extent. This is notable at time 72-102 min where the two map
data sources are aligned but the offline model still bases its speed limit prediction
on the vision output.
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Figure 4.6: Top: speed limit data from the different data sources.
Bottom: predicted speed limit by the offline model compared with the ground truth.
The discontinuities of the manual annotations are explained by invalid data.
Data collected in Germany.
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4.6 Belgium
In Belgium only four log files are available. One of these was allocated for parameter
tuning, which can be seen in Table 4.11, and the other three for testing.

Table 4.11: Log files from Belgium for parameter tuning.

Log Time [min] Distance [km]
1 34.1 42.3

The tuning parameters are shown in (4.7).

αcam = 0.48, αGoogle = 0.35, αHere = 0.61, αoff−ramp = 0.26 (4.7)

it can be seen that the Here map appears to be a reliable data source in Belgium,
suggested by the high reliability tuning parameter value in (4.7). Some interesting
results are obtained for the third testing log file, where the offline model performs
significantly worse than the RSI function. In Figure 4.7, the result of plotting the
speed limit readings from the different data sources is shown, along with the output
of the offline model. Here, the three data sources at times completely disagree with
one another, causing the offline model to struggle. The reason for this could be the
fact that the different regions in Belgium apply different general speed limits [65].
An example of this could be that a highway sign implies different speed limits in
different regions. This might explain the difference between speed limit values from
the Google Maps and the Here map, illustrated in Figure 4.7.

Table 4.12: Performance evaluation for log files from Belgium.

Log Time [min] Distance [km] RSI Offline model ∆
TPD [%] TPD [%] TPD [%]

1 18.6 17.8 90.8 98.6 7.8
2 22.1 18.3 79.2 94.2 15
3 143.6 163.8 86.0 66.2 -19.8
Total 184.3 199.9 85.8 71.6 -14.2
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Figure 4.7: Top: speed limit data from the different data sources. A speed limit
value of 250 km/h indicates unlimited speed limit.
Bottom: predicted speed limit by the offline model compared with the ground truth.
Data collected in Belgium.
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In the following chapter the offline model’s performance and the model architecture
are discussed. Secondly, the parameter tuning method is analyzed in terms of how
well the model adapts to different countries with their respective data source quali-
ties. Thereafter the off-ramp detection system is discussed in terms of its effect on
the model. Finally, suggested future work is presented, where suggestions on how
to improve the model is given.

5.1 Model performance
In total, the model was evaluated on 25 log files. On 21 of those, the offline model’s
true positive distance was higher than the RSI function. The reason why the relative
difference to the performance of the RSI function is interesting is because the quality
of the data sources varies between countries, as well as the test drive conditions. This
explains why both the offline model and the RSI function obtains higher correctness
in some countries than others. The results for Sweden, Germany and Belgium are
discussed further. The reason for this is because Sweden and Germany have the
highest amount of log data available, and because Belgium is the only country
where the RSI function performs better than the offline model.

The high true positive distance values for both the offline model and the RSI function
in Sweden can be explained by high quality digital map data, a high density of speed
signs, as well as the fact that all speed limit changes are marked by speed signs.
The RSI function obtains a true positive distance corresponding to a correctness
of 96.1%, whereas the offline model obtains a 97.8% correctness. The high values
suggests that explicitly marked speed limits are favorable for both the RSI function
and the offline model to work well.

In Germany, the results are rather different. The RSI function only achieves a
correctness of 45.7%, suggesting that the data sources are incorrect, and possible
non-ideal driving conditions. This could be explained by road work in progress,
meaning temporarily decreased speed limits. These changes are generally not cap-
tured by the digital maps, which would result in incorrect speed limit data. The
offline model handles this by setting the tuning parameter of the camera to a high
value in relation to the two map reliability tuning parameters. Since it is common
practice to put out speed signs during road work, high reliance on the camera is
reasonable. This makes the offline model obtain a correctness of 72.1%, a significant
improvement over the RSI function’s performance.
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In Belgium, the RSI function obtains a correctness of 85.8%, and the offline model
a correctness of 71.6% when the results are computed for the total distance. In
particular, log file 3 decreases the average performance of the offline model. It could
be the case that the test drive conditions are different for that log file, meaning that
the tuning parameters selected are not suitable. This log file also showed a large
discrepancy between the two map data sources, illustrated in Figure 4.7, indicating
that one of them is incorrect.

One limitation of the evaluation of the offline model’s performance is the correct-
ness of the manual annotations. Errors in the manual annotations were detected
in several cases when observing the front camera videos. This was for example en-
countered for log file 1 in Luxembourg, discussed in section 4.3 and for log file 2
in France, discussed in section 4.4. Since manual annotations are used for tuning,
incorrect ones can definitively impair the performance of the offline model. Besides,
incorrect annotations deteriorate the results when the model is evaluated. On the
other hand, scenarios like the one shown in Figure 4.4 shows a major advantage of
the offline model. Since no data source agree with the manual annotation, this is a
strong indication that the annotation might be incorrect.

5.2 Model architecture
The number of data sources used is a key element which affects the performance
of the offline model to a large extent. A high number of data sources increases
the probability that the correct speed limit is provided by at least one of the data
sources. More data sources also increase the probability that the data sources agree.
If the data sources agree they provide the same, often correct, speed limit.

The RSI function in the car uses two data sources, a road sign detection system and
speed limit data from Google Maps. Data from these two sources were used as the
foundation of the offline model developed in this work. To improve the performance
beyond what would be possible by just fusing the onboard data sources, an additional
map data source was incorporated in the offline model. This was found to be an
appropriate way to improve the speed limit annotation accuracy.

5.3 Parameter tuning method
Another factor which greatly impacts the performance of the offline model is the
way in which it combines the data sources. Since data sources varies in quality
between different countries, tuning parameters in the data fusion algorithm are
used. These tuning parameters act as a bias toward the data sources that prove
to be the most reliable and are found by allocating log files solely for the purpose
of parameter tuning. The parameter tuning was done separately for each country
because of the country-wise variation of data source quality. For example, if one
of the map suppliers proves to be very reliable in a country, it is reasonable to
trust this data source to a large extent. From the result shown in Chapter 4, the
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difference in reliability tuning parameter values between countries is significant. As
a consequence, the model should adapt well to the data source quality in different
countries.

A weakness of the parameter tuning method is that it requires manually annotated
data which is representative for the test log files. If the data source reliability changes
in one country, for example if the digital maps are updated, the model might require
re-tuning.

5.4 Off-ramp detection system
The off-ramp detection system does not likely affect the overall performance of
the model to the same extent that the model architecture and the reliability tuning
parameters do. The reason for this is that in the context of error sources in the offline
model, such as choosing the wrong data source, speed signs belonging to adjacent
roads are likely a minor issue. The benefit of incorporating the off-ramp detection
system into the offline model is therefore considered to be limited. However, on its
own, the system works well in terms of detecting if the car is close to an off-ramp.

5.5 Industrial implementation
The purpose of this project was to develop an offline annotation model, whose output
is as similar to the manual annotations collected during test drives as possible.
However, by inspecting the videos from the front camera, it could be concluded that
the onboard manual annotations are not always correct and can therefore not be
used as ground truth when validating the RSI. To obtain ground truth speed limit
annotations it would therefore be required to refine the annotations, for example by
using videos from the forward-looking camera. Offline refinement using the videos
from the forward-looking camera gives the opportunity to rewind, pause and slow
down the video to get more correct annotations. The total process of gathering
ground truth data would therefore consist of two steps, first by collecting manual
annotations during test drives and secondly by manually refining the output using
videos from the forward-looking camera.

The first step can be replaced with the offline model which automatically annotates
speed limits. This model is however not perfect which means that the second step
of refining the output is still needed. The advantage of using the offline model
is that the process is automatic which decreases the manual labor and decreases
unpredictable human errors. It is also easier to identify errors in the annotations,
by observing the alignment of the data sources in the offline model.

5.6 Further development
To improve the offline model further, another additional map data source could
be added. A map data source is preferred over a vision-based one because it is
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simple to incorporate into the model. An offline vision-based data source would
require processing of videos from the entire driving sequence, a computationally
heavy process. In contrast, adding another map data source can be as simple as
retrieving speed limit values at a set of coordinates which make up the path of the
vehicle.

Another potential improvement is to make the offline model context aware to a
higher extent, as suggested by Nienhüser et al. [14]. This means that environmental
factors such as time of day, road work and weather can be used to temporarily
reduce the mass values of the data sources. An example of this could be if a road
work is detected. In this scenario temporary speed limits are commonly used which
generally is not captured by the map data sources. This makes it reasonable to
reduce the mass values of the map data sources temporarily. Another example
could be to use unfavorable weather conditions such as rain as an indicator of when
to reduce the mass value for the camera [14].

A third improvement is to use signal processing to refine the speed limit from the
offline model. This could be done by filtering speed limit values which only apply
for a few time steps. The reason is because the temporary detections are often
incorrect. As can be seen in Figure 4.1, the camera system incorrectly gives the
speed limit value 50 km/h after around 19 minutes. It would be desirable to filter
out detections like this.
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By incorporating an additional data source, the Here map, the offline model was able
to outperform the RSI function on 21 out of the 25 log files it was evaluated on. On
average for all log files, the offline model’s true positive distance is 84.2%, compared
to 69.8% for the RSI function. This illustrates that combining the data sources
in the test car with an offline map data source, a promising model for automatic
offline annotation of speed limits can be developed. The tuning parameters used in
the fusion algorithm provide a useful method to tune the model depending on the
reliability of the different data sources.

The offline model gives an automatic proposal of the correct speed limit, replacing
manually annotated data collected during test drives. The advantage of using the
offline model is that the process is automatic, which decreases the need of manual
labor. This also makes it easier to identify errors by inspecting the alignment of the
data sources, and decreases the risk of unpredictable human errors. However, the
speed limit annotations proposed by the offline model are not without inaccuracies,
and therefore manual refinement is needed to obtain perfect annotations.
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