
DF

Temporal Logic Specifications in
Reinforcement Learning
Methods for imposing constraints

Master’s thesis in Systems, Control and Mechatronics

CARL-JOHAN HEIKER

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021

Master’s thesis 2021

Temporal Logic Specifications in
Reinforcement Learning

Methods for imposing constraints

CARL-JOHAN HEIKER

DF

Department of Electrical Engineering
Division of Systems and Control
Automation Research Group

Chalmers University of Technology
Gothenburg, Sweden 2021

Temporal Logic Specifications in Reinforcement Learning
Methods for imposing constraints
CARL-JOHAN HEIKER

© CARL-JOHAN HEIKER 2021.

Supervisor and Examiner: Bengt Lennartson, Chalmers University of Technology

Master’s Thesis 2021
Department of Electrical Engineering
Division of Systems and Control
Automation Research Group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Interpretation of a constrained behaviour visualised as a modified radio
pulsar.

Typeset in LATEX, Carl-Johan Heiker
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

iv

Temporal Logic Specifications in Reinforcement Learning
Methods for imposing constraints
CARL-JOHAN HEIKER
Department of Electrical Engineering
Chalmers University of Technology

Abstract
This work, consisting of two parts, examines the possibilities and issues with enforc-
ing specified behaviors when performing reinforcement learning (RL). For a discrete
event system, modelled as a Markov decision process (MDP), a specification dictat-
ing the present and future system behavior can be formulated as a linear temporal
logic (LTL) formula, which is then realised by a Büchi automaton. A constrained
MDP control policy can then be obtained through RL, performed on a product sys-
tem constructed by a form of synchronous composition of the MDP and the Büchi
automaton.

In the first part of this thesis, a small research platform is constructed where
discrete time MDPs and LTL realising Büchi automata can be implemented. Path
planning control problems for so called slippery grid worlds are formulated, and the
chosen specifications test the limits of TL constrained RL. Specifically, constraints
that are hard to fulfill with classic RL are considered, such as sequential state visits
and liveness specifications.

Three different composite algorithms are proposed, tested and evaluated, and
they draw inspiration from existing methods for TL constrained RL. Firstly, a
standard TL constrained Q-learning is considered. Secondly, a detached accept-
ing frontier extension that rewards reaching specific intermediate automaton states
is formulated for the standard algorithm. Thirdly, a potential function that rewards
the RL agent, depending on the direction of travel, is fitted to the aforementioned
second algorithm.

In the second part of this thesis, a method to reduce the computational burden
for the TL constrained RL algorithm is considered. By the use of modular analy-
sis, a jointly controlled path planning and admission control problem modelled as a
continuous time MDP is divided into two partitions, where one part is modelled as
a queue for which a threshold type admission control policy can be found analyti-
cally. This reduces the RL exploration needed while also reducing the infinite joint
state space, making it possible to find the path planning policy through tabular TL
constrained RL.

The results of the first part show that there are situations, such as when the state
space is large, in which additional methods are needed to solve temporal logic con-
strained reinforcement learning problems. The experiments presented in the second
part entail that modular analysis successfully reduces the amount of exploration
needed for the learning agent to find a path planning policy that agrees with a
formulated specification.

Keywords: Reinforcement learning, Temporal logic, Reward shaping, Büchi au-
tomata, Safety, Liveness, Fairness

v

Acknowledgements
The author would like to thank Bengt Lennartson for his guidance throughout this
project, without which this thesis would not have been possible. While this work
was conducted with a large degree of freedom in terms of research direction, many
long discussions provided all of the necessary inspiration and were crucial to find a
clear path to the goal when this was not apparent.

Furthermore, Constantin Cronrath has had a keen eye for when motivation and
moral needed to be injected into the project. His ability to provide the right per-
spective and put things in the right light has been very much appreciated.

Many thanks to my family for supporting me throughout this project and for
always believing in me.

Carl-Johan Heiker, Gothenburg, January 6, 2021

vii

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Background . 2
1.2 Aim . 3
1.3 Limitations . 4
1.4 Research Questions . 5
1.5 Contributions . 5
1.6 Structure . 7

I Temporal Logic Constrained Reinforcement Learning 11

2 Reinforcement Learning 13
2.1 Discrete Event Systems . 13
2.2 Markov Decision Processes . 13
2.3 Reinforcement Learning Fundamentals 17
2.4 Q-learning . 21
2.5 Summary . 23

3 Temporal Logic Specifications 25
3.1 Temporal Logic and Predicate Logic 25
3.2 Linear Temporal Logic . 26
3.3 Formal Languages . 26
3.4 Automata . 28
3.5 Translating LTL Formulae to Automata 29
3.6 Büchi Automata . 30
3.7 Summary . 34

4 Algorithms and Methods 35
4.1 Algorithm 1: Temporal Logic Constrained

Reinforcement Learning . 35
4.2 Algorithm 2: LDBA Constrained

Reinforcement Learning . 38
4.3 Algorithm 3: Shielded Reinforcement

Learning . 41

ix

Contents

4.4 Reward Shaping . 42
4.5 Advice Based Exploration . 44
4.6 Comparing and Combining Algorithm

Features . 45
4.7 Summary . 48

5 Problems and Measurement Techniques 51
5.1 Evaluating LTL Constrained Reinforcement

Learning . 51
5.2 Reinforcement Learning Problem Categories 52
5.3 Measuring Algorithms . 54
5.4 Summary . 57

6 Implementation of Research Platform 59
6.1 Environment . 59
6.2 Automata . 63
6.3 Statistics . 65
6.4 Experiment Implementation . 66
6.5 Summary . 66

7 Experiments 67
7.1 Experiment Structure . 67
7.2 Safe Navigation to Destination . 69
7.3 Sequential State Visits Experiment 1 74
7.4 Sequential State Visits Experiment 2 78
7.5 Liveness and Fairness Experiment 1 84
7.6 Liveness and Fairness Experiment 2 88
7.7 Sequential State Visits Experiment 3 93
7.8 Potential for Initial Guiding Experiment 97
7.9 Summary . 101

8 Conclusions of Part I 103
8.1 Research Platform Evaluation . 103
8.2 Conducted Experiments . 104
8.3 Answers to Research Questions . 106
8.4 Additional Conclusions and Suggestions for Future Work 108

II Modular Analysis 111

9 Introduction to Part II 113
9.1 Background . 113
9.2 Problem Formulation . 113
9.3 Limitations . 115
9.4 Changes to Implementation . 115

x

Contents

10 Generalised Semi Markov Processes and the
Poisson Distribution 117
10.1 Stochastic Timed Automata and GSMP 117
10.2 Poisson Counting Process . 119
10.3 The Poisson Distribution . 123
10.4 Superposition of Multiple Poisson Processes 126
10.5 Summary . 128

11 Modelling with Discrete and
Continuous Markov Chains 129
11.1 Continuous Time Markov Chains 130
11.2 Discrete Time Markov Chains . 134
11.3 Uniformisation . 137
11.4 Joint Markov Chains . 139
11.5 Summary . 145

12 Queuing Theory 147
12.1 Concepts and Notation in Queueing Theory 148
12.2 Markovian Queueing Systems . 150
12.3 Markov Decision Processes and Analytical Solutions to the Opti-

mality Equation . 156
12.4 Summary . 161

13 Control Problems 163
13.1 Admission Control for M/M/1 Queues 163
13.2 Two Methods of Finding the Optimal

Threshold . 168
13.3 Path Planning and Admission Control in Continuous Markov Pro-

cesses . 172
13.4 Summary . 181

14 Experiments 183
14.1 M/M/1 Queues . 183
14.2 M/M/1/K Queues . 192
14.3 Optimal Admission Control Threshold 198
14.4 Temporal Logic Constrained Q-learning of Joint Path Planning and

Admission Control Process . 203
14.5 Summary . 212

15 Conclusions of Part II 213
15.1 Evaluation of Method and Implementation 213
15.2 Conducted Experiments . 216
15.3 Answers to Research Questions . 218
15.4 Final Project Conclusions and Suggestions for Future Work 219

Bibliography 221

xi

Contents

xii

List of Figures

2.1 A deterministic transition from s4 to s1 via the action N 16
2.2 Probabilistic transitions resulting from selecting the action N 17
2.3 The interaction based reinforcement learning principle. 18

3.1 DFA with the marked state q3 and the forbidden state q2. 28
3.2 Automaton from [1] realising ϕ = ♦p ∧�¬q. 30
3.3 NBA from [2] that satisfies the LTL property ϕ = �b ∧�♦a. 31
3.4 DBA from [2] that satisfies the LTL property ϕ = �b ∧�♦a. 32
3.5 NBA from [2] representing the language of (a+ b)∗bω. 32

4.1 Visualized example from [1] of the productM⊗Bϕ between an MDP
M and a Büchi automaton Bϕ. 36

4.2 Temporal logic constrained reinforcement learning. 37
4.3 LDBA constrained reinforcement learning. 40
4.4 The shielding principle from [3]. 41

5.1 Extracting the optimal policy from a converged Q-table. 56

6.1 Example of indexed coordinate states. 60
6.2 The new transition probability assignment method. 63

7.1 Grid world representation of the safe navigation to destination problem. 69
7.2 Colored deterministic Büchi automaton specifying safe navigation to a

destination. 70
7.3 Statistics from the safe navigation to destination experiment. 72
7.4 Representative state sequences derived from the converged Q-tables. . . 73
7.5 Grid world MDP visualisation for the first sequential experiment. . . . 74
7.6 Deterministic Büchi specification for the first sequential state visits

experiment. 75
7.7 Statistics from the first sequential state visits experiment. 77
7.8 Representative state sequences derived from the converged Q-tables. . . 78
7.9 Grid world MDP for the second sequential problem. 79
7.10 Deterministic Büchi automata with one set of colored states per speci-

fied sequence. 80
7.11 Statistics related to the second sequential state visits experiment. . . . 82
7.12 Representative state sequences for the second sequential state visits

experiment. 83
7.13 Grid world MDP for the first liveness and fairness problem. 84

xiii

List of Figures

7.14 DBA for liveness and fairness suggested in [4] with generalized deter-
ministic Büchi automaton proposed in [2]. 85

7.15 The statistics for the first liveness experiment. 87
7.16 Representative state sequences for the liveness experiment. 88
7.17 A modified version of the GBA from [2]. 89
7.18 Statistics for the second liveness experiment. 91
7.19 Representative state sequences derived from the converged Q-tables. . . 92
7.20 16× 16 grid world MDP designed for the large scale sequential problem. 93
7.21 Deterministic Büchi realization of a sequential LTL specification. 94
7.22 Statistics for the third sequential experiment. 96
7.23 Representative state sequences derived from the converged Q-tables. . . 97
7.24 Statistics for the initial potential guiding experiment. 99
7.25 Representative state sequences derived using the Q-tables of the initial

potential guiding experiment. 100

10.1 The Poisson distribution for different λ and t. 126

11.1 Continuous Markov chain describing a pure birth process. 134
11.2 Oscillatory versus stationary state probability development. 137
11.3 State transition rate and state probability diagrams for the continuous

time pure death Markov chain and its uniformised discrete counterpart. 139
11.4 Two independent continuous Markov processes that form one joint system.142
11.5 Example of a uniformised joint system. 145

12.1 A basic single server queueing system. 147
12.2 State transition rate diagram for the M/M/1 queueing system. 151
12.3 State transition rate diagram for the M/M/1 queueing system. 153
12.4 State transition diagram for the uniformised M/M/1/K system. 154
12.5 State transition diagram for the uniformised M/M/1/K system. 155

13.1 Example state space of the continuous time Markov grid world. 174
13.2 Intended direction transitions λ and slip transitions ω. 175
13.3 Possible transitions when a(t) =

[
0 1 0 0

]T
. 176

13.4 The joint process ordered as a tower of path planning state sets. 177
13.5 Joint state with admission control over the queue transitions and path

planning controlled directional transitions with slip. 178

14.1 State transition rate diagram for the M/M/1 queueing system. 183
14.2 Relationship between probability and time interval through the expo-

nential CDF. 184
14.3 M/M/1 queueing system simulation with recorded state time distribu-

tions. 187
14.4 State transition diagram for the uniformised M/M/1 queueing system. 188
14.5 Results for the uniformised M/M/1 simulation experiment. 189
14.6 Stationary state time distributions for the M/M/1 and uniformised

M/M/1/K systems. 191
14.7 State transition rate diagram for the M/M/1/K queueing system. . . . 192
14.8 Results for the M/M/1/K simulation experiment. 194

xiv

List of Figures

14.9 State transition diagram for the uniformised M/M/1/K system. 195
14.10 Results for the uniformised M/M/1/K simulation. 196
14.11 State time distributions for theM/M/1/K and the uniformisedM/M/1/K

systems. 198
14.12 Expected total undiscounted cost of admission controlled queues with

different thresholds. 200
14.13 Simulated discounted cost of admission controlled queues for different

limits K. 202
14.14 Principle sketch of the two ways of viewing a process. 205
14.15 Generalised Büchi automaton for the final experiment. 206
14.16 Q-table development. 210
14.17 Recommended actions, denoted by arrows, for all joint states. 211

xv

List of Figures

xvi

List of Tables

3.1 Predicate logic propositions with examples. 25
3.2 LTL modalities with examples. 26

7.1 Parameters for the safe navigation to destination experiment. 71
7.2 Parameters for the first sequential state visits experiment. 76
7.3 Parameters for the second sequential experiment. 80
7.4 Parameters for the first liveness and fairness experiment. 85
7.5 Parameters for the second liveness experiment. 90
7.6 Parameters for the first sequential experiment on a 16× 16 grid world

MDP. 94
7.7 Parameters for the potential guiding experiment. 98

14.1 Rate parameters for the joint path planning and admission control ex-
periment. 205

14.2 Cost parameters for admission control. 207
14.3 Temporal logic constrained RL parameters. 208

xvii

List of Tables

xviii

1
Introduction

A Markov decision process (MDP) is a common way of modelling discrete event
systems (DES) which, in essence, are systems consisting of states between which
transitions, triggered by actions, are made. MDPs are versatile, since most systems
to some extent can be modelled as deterministic or probabilistic transition processes.

Environment modelling using Markov decision process is a standard approach in
reinforcement learing (RL), in which an agent shall interact with an environment
MDP by the use of actions. The RL problem aims to derive a way of selecting the
actions, and the derived strategy is called a policy which is optimal with respect to
a defined cost function.

An MDP model may include probabilistic transitions between states, and this is
often a reasonable abstraction for unmodelled parts of an environment. An optimal
control policy can be obtained even for models with stochastic properties by the
use of RL. This is due to the Markov property, which says that all information
of the previous states is encapsulated in the current state of the system. In RL,
this property is combined with the fundamental Bellman optimality principle and
dynamic programming, to form an iterative policy deriving algorithm that assigns
values to the observed states and actions of the environment.

Although RL can find the optimal policy, this can understandably not happen
at any cost in practical applications. Often, there is a need to develop a solution
that is not only optimal, but also safe. As an example, if an optimal way to walk
through a city is to be derived, it is reasonable to avoid walking on highly trafficked
and dangerous roads.

In this setting, temporal logic (TL), and in particular linear temporal logic (LTL),
can be used to impose constraints on a learning problem. LTL is a type of modal
logic, dictating both the present and the future behaviour of a system. For exam-
ple, a requirement may be that a certain state shall always be reached eventually.
Naturally, the opposite constraint may also be formulated, if avoiding certain states
is desired. Specific LTL formulae can be realised as regular languages for which it is
possible to formulate a corresponding automaton that embodies that language in its
transitions. Depending on the language, different types of automata are required.

This work concerns ways of solving reinforcement learning problems on systems
that are constrained by LTL specifications, formulated as automata. These specifi-
cations are inspired by realistic and practically applicable constraints that may be
necessary to formulate for a wide range of systems.

1

1. Introduction

1.1 Background
Machine learning is becoming an increasingly popular topic in industry, and the
method is being utilized due to its versatility and availability; many different prob-
lems can be solved by methods that are easily accessible for everyone. With basic
knowledge in reinforcement learning, it is easy to adapt the formality of minimizing
a cost function to economic efficiency or resource management optimisation. How-
ever, this perspective is not always compatible with the ethical aspects of machine
learning. Topics such as safety may become less interesting, while remaining very
important as the complexity and extent of systems increase with time.

Due to the interest of the industry and the vast number of problems that are
being solved with reinforcement learning, a currently active area of research is to de-
rive new ways of ensuring that different types of specifications can be fulfilled. The
possibilities of developing a framework for which increasingly complicated specifica-
tions, describing many different system behaviors, thus serve as motivation for both
industry and research.

While there are many different reasons to constrain a system, one of them is
purely based on the physical limitations of the system that is modelled. However,
to some extent it is possible to motivate the imposing of constraints to a deeper
level. For certain systems, solely ethical dilemmas are not very far fetched. For
example, take the popular problem in which an RL based strategy for navigating a
self driving car is to be derived. It might be hard to guarantee that the algorithm
will produce an optimal policy that does not include dangerous states, which in
this case could mean life or death, and ensuring a safety specification may in this
case save lives. Therefore, while not pretending to solve ethical dilemmas, this
project is in a position to help increase safety in a vast variety of processes and
thus contribute to increased safety while still maintaining a focus on optimization,
keeping it attractive in industrial applications. More information about the work
towards safety in machine learning can be gathered from the Institute for Ethical
AI & Machine Learning [5].

To motivate this work further, one of the major topics in reaching the current
national climate goals (available from the Swedish Energy Agency [6] where the na-
tional goals are put in context to the established European climate goals for 2020
and 2030) is to minimize the energy consumption. Sectors such as trade, transporta-
tion and industry are responsible for a majority of the Swedish energy consumption
[7], and as any measurement of pollution or CO2 emission could in theory be turned
into an RL performance criterion, constrained reinforcement learning may be a use-
ful investment to combat the climate change challenges that we stand before.

Regardless of the application of this broad theory, the question remains the
same: what are the possible benefits and challenges with trying to impose logical
constraints on reinforcement learning problems?

2

1. Introduction

1.2 Aim
This is a two part Master’s thesis, and in the first half, focus lies on exploring
different methods for imposing specifications formulated in LTL expressions on re-
inforcement learning problems. The work done in Part II, where the method of
modular analysis is used to solve a highly specific control problem, is very much
dependent on the concepts developed in Part I. Therefore, the aim presented here
can be applied to the entire project.

The goal of the project is to demonstrate how one can benefit from formulating
constraints for reinforcement learning problems in temporal logic, and to investigate
different situations and special cases in which modifications to a particular method
is needed. Furthermore, it is of interest to describe, nuance and possibly solve the
aforementioned potential contradictions that may emerge. For example, integrating
the LTL constraints into RL problems may include additional performance measure-
ments that are to be minimized. Therefore, the task runs the risk of introducing
contradictions and trade offs between maximising performance reward and ensuring
that a safety specification is not violated. Thus, exposing, exploring and discussing
challenging and contradictory situations is a part of this project, and the aim here
is to propose ways of handling these difficulties.

In the first part of this project, the performance of the main algorithm, proposed
in [1], is tested on different challenging specifications. To develop solutions to the
problems that arise, an extensive literary study is conducted where other variants
of logically constrained reinforcement learning are investigated. The purpose of this
is to draw inspiration from other methods, and integrate the key features of these
into the basic version of the main algorithm as improvements, which may make it
possible to solve more challenging problems. In essence, this project investigates
the possibilities, but also the limitations of methods for imposing temporal logic
constraints on reinforcement learning. When a limitation is discovered, the aim is
to both highlight the challenges that one should expect will arise in the particular
scenario, and propose ideas for how to handle them.

In the second part of the project, the results of the first part of the project are
complemented by the formulation of the previously mentioned modular analysis,
which is one of the proposed future research directions formulated in [1]. The pur-
pose of this is to evaluate if the method of modular analysis is an efficient way of
solving temporal logic constrained reinforcement learning problems when the envi-
ronment can be modelled as distinct partitions working together. Specifically, by
identifying control policies for each partition of a jointly controlled path planning
and queueing process, the goal is to find situations in which the modular analysis
method reduces the complete reinforcement learning problem such that it can be
solved more efficiently than if reinforcement learning was used to find the solution
to the whole problem.

3

1. Introduction

1.3 Limitations

In this section, limitations are formulated for the first part of this project. Limi-
tations for the second part are found in Section 9.3 of Part II, and are formulated
there due to the fact that they depend upon the evaluation of Part I of this thesis.

To evaluate the performance of the algorithms under different circumstances and
with different additional modifications, it is in the first part of this project necessary
to develop a platform where RL problems for different specification automata and
MDPs can be formulated. There are certain demands on this implementation that
must be met, but it is also important to keep it as simple and stable as possible in
order to produce quality results.

The environment with which the algorithms interact can thus be considered
the core of the platform. A scalable and easily modified grid-world environment is
sufficient to explore basic problems and is also one of the most common environments
in experiments with reinforcement learning. An effort is first made to implement
this type of environment in a minimal way from the ground up, but if it proves to
be a more stable solution, an open source environment will be used instead.

The LTL formulae needed for this project are deemed simple enough to be man-
ually translated to corresponding automata. However, if the automaton represen-
tation proves to be difficult to find, there is a software tool called OWL [8] which
outputs an automaton realizing a given LTL specification. Implementing the trans-
lation of an LTL formula to an automaton itself is thus not in the scope of this
project.

In Part I, there is a need to compare the main algorithm in [1] to some of the
similar algorithms in the field. Outside of the standard Q-learning method which
is the basic RL method that most of the other algorithms operate with, an action
supervising reactive shield system proposed by Alshiekh et. al [3] is studied. In
addition to this, the method proposed by Hasanbeig et. al. in [9] and [4] is also of
interest. Lastly, it is interesting to investigate additional methods designed to solve
highly specific issues. Therefore, methods such as advice based learning [10] and
reward shaping [11] are within the scope of this work.

Furthermore, as the focus lies on developing the method in [1], the exploration of
the other implementations is kept to a minimum, as their role is to act as references.
With this in mind, implementing the key features of these algorithms is highly
relevant. The idea is to regard these algorithms as fully working final products,
allowing them to be used for reference and comparison.

When evaluating performance, the most important metrics are considered. For
example, although computational complexity is a common measurement to make
when evaluating an algorithm, it is not a common way of evaluating reinforcement
learning algorithms. Measuring the number of iterations through a learning process,
or the agents interactions with the environment before convergence to an optimal
policy, is more interesting. Therefore, computational complexity is not used as a
measurement, and a slightly more detailed motivation to why this is the fact is
provided in later sections.

The research questions in the next section are formulated for both Part I and Part
II of this thesis, and are also restricted by certain limitations. They are formulated

4

1. Introduction

to mainly focus on the potential conflicts that may arise between the specification,
environment and additional performance goals in constrained reinforcement learning.
The purpose of this is to highlight how the performance of the reinforcement learning
method is affected when introducing temporal logic constraints.

1.4 Research Questions
This project aims to answer the following research questions.

1. By imposing LTL constraints on an already existing reinforcement learning
problem, how can potential conflicts that may arise within the combined re-
inforcement learning cost function be handled, in order to ensure a mutually
beneficial relationship between the LTL constraints and the original optimiza-
tion problem?

2. Most often, a model prediction may be enhanced by observations gathered
from simulation, measurements or information gathered elsewhere. What are
the possible improvements on estimation that can be made by assuming partial
knowledge of a large system, in terms of additional knowledge of the MDP,
and how can they be integrated into the basic method for temporal logic
constrained reinforcement learning?

3. How does the temporal logic constrained reinforcement learning perform in
terms of constraint violation, optimality, and computational efficiency com-
pared to classical Q-learning and other constrained reinforcement learning
methods, where safety is imposed in other ways? Are there solutions that
are more efficient for certain problems?

1.5 Contributions
The following contributions are made in Part I and Part II of this project:

• Complex LTL specifications can easily be formulated as automata. How-
ever, for specifications of relatively low complexity the rewards or punish-
ments supplied by the accepting and forbidden states run the risk of being too
sparse. This implies that even with high exploration and an extensive num-
ber of episodes, rewards will not be handed out until the automaton reaches a
marked state. This is unlikely to happen even in one episode during the course
of learning, making it impossible for the agent to find a correct path through
the MDP. The solution to this is the accepting frontier function, described
in Section 4.2.2. The method uses the concept of colored automata states to
hand out intermediate rewards that effectively guide the agent along an MDP
trace that does not break the LTL specification. Experiments showing this are
found in Sections 7.3 and 7.7.

• The problem of sparse rewards described above can be induced in any problem
by scaling up the state space dimensionality of the MDP. In this case, even

5

1. Introduction

the accepting frontier cannot lower the exploration time needed to find a path
that satisfies the LTL formula of a problem. It is very unlikely that complex
LTL specifications can be realised in these settings, solely due to the size of
the MDP. A solution to this is to use the potential function, and the success
of this function is independent on distance between MDP states. This type of
function is a reward shaping technique designed to reward the learning agent
for going in the direction of one or more goal states, and the effects of this can
be observed in the experiment conducted in Sections 7.7 and 7.8.

• When introducing different functions such as potential and the accepting fron-
tier, tuning is required between the reward sources. This is due to the potential
functions inability to grasp dangerous states, and it will override the punish-
ments given by the marked and forbidden states of the automaton or the rec-
ommendations from the accepting frontier. These conclusions can be drawn
from many of the experiments, but a particularly sensitive situation is found
in Section 7.4.

• Theoretically correct automata implementations of LTL formulae do not nec-
essarily work in the practical context of temporal logic constrained tabular
Q-learning. In Section 7.5 it is shown that for a liveness specification, the
mappings between rewards, states and actions done in the Q-function will ef-
fectively be overwritten due to that the automaton always returns to the same
state after parts of the specification has been fulfilled. A solution to this is
shown in Section 7.6 where a slight modification to the problematic automaton
from the failed experiment in Section 7.5 is made.

• The last experiment of Part I, found in Section 7.8, finds that the potential
function can be used on the first few episodes of a large scale MDP sequential
problem and after this be turned off to let an accepting frontier extended TL
constrained RL method take over. Essentially, the potential function is used
as a boost rocket for the agent, which then uses a method designed for small
scale problems to converge to a policy that satisfies the LTL formula.

• In Part II, the main contribution is the evaluation of the modular analysis
method with which the specific problem of joint path planning and admission
control is solved. This method consists of first formulating a continuous time
Markov decision process that can be split into two independent processes, and
then deriving control policies for each of these sub-processes both analytically
and through reinforcement learning. The procedure is described in its entirety
in Chapter 13, and solved for specific numerical parameters in Chapter 14.

• For the sub-process that can be modelled as a queue, two successful methods
to find threshold type solutions to the admission control problem are provided
in Section 13.2.1 and Section 13.2.2.

6

1. Introduction

1.6 Structure
The first part of this thesis explores the concept of temporal logic constrained rein-
forcement learning, while the second part focuses on the concept of modular analysis.

Part I
The first part of this thesis consists of Chapter 2 through Chapter 8, in which tem-
poral logic constrained reinforcement learning is described and evaluated, starting
with basic concepts.

Reinforcement learning

In the second chapter, the theory behind reinforcement learning is covered, as this
is one of the corner stones of this work. From a basic definition of discrete event
systems, topics such as

• Discrete time Markov decision processes

• Dynamic programming

• Value function iteration

• Q-learning

are explained.

Temporal logic specifications

Temporal logic specifications is the second par of the foundation for this thesis. This
concept is presented on the basis of

• Formal languages

• Automata classes

• Automata that realise LTL formulae

and is covered in the third chapter.

Algorithms

Starting with the previous research in the field of temporal logic constrained rein-
forcement learning, the fourth chapter discusses three algorithms in particular:

• Temporal Logic Constrained Reinforcement Learning

• LDBA Constrained Reinforcement Learning

• Shielded Reinforcement Learning

7

1. Introduction

Additionally, a discussion on the key elements of these algorithms is conducted,
resulting in additional methods with which path planning problems can be solved.
Three new composite algorithms are proposed:

• Online executed LTL constrained RL

• LTL constrained RL with detached accepting frontier

• LTL constrained RL with detached accepting frontier and potential based
rewards

Evaluation of proposed algorithms

Starting with chapter five, the three main categories of path planning problems for
reinforcement learning are presented. These are

• Safe navigation to destination

• Sequential state visits

• Liveness and fairness

Furthermore, suitable techniques for measuring the performance of the proposed
algorithms are presented here.

The algorithms are evaluated through experiments on specific problems from the
three path planning problem categories. The sixth chapter describes the implemen-
tation of the small research platform necessary for conducting these experiments in
the first part of this project.

The seventh chapter describes the seven experiments conducted in Part I of this
thesis. Through these, conclusions regarding the three proposed algorithms can be
made. Among these, the most important ones are that

• The detached accepting frontier is necessary to induce initial specification
compliance even in small scale systems.

• Potential methods can be used to solve problems with large state spaces.

• Potential can be used for initial exploration guidance when this information is
expensive.

The conclusions are presented in the eight chapter of this thesis. Here, notes on the
technical implementation and experiments, ideas for future work, and the answers
to the research questions that Part I provides are also found.

Part II
The second part of the project focuses on modular analysis as a method to solve
temporal logic constrained reinforcement learning problems in systems that have
multiple distinct sub-processes. Specifically, the type of modular processes consid-
ered are systems consisting of a grid world and a queue.

8

1. Introduction

Continuous Markov chains

The basic process that lays the foundation of Markovian queueing systems, the
Poisson distribution, is introduced in the first chapter of the second part of this
thesis. As this is a process in which discrete events occur at random points in
continuous time, it is also necessary to introduce the concept of Generalised semi
Markov processes (GSMP), in which the event timings can be described technically.

Chapter 10 starts with the definition of continuous Markov chains, and aims to
highlight the differences between these and the discrete Markov chains used in the
first part of this project. As reinforcement learning still requires discrete Markov
decision process descriptions, an important method called uniformisation is intro-
duced to discretise continuous time Markov processes. In the final part of Chapter
10, the proposed structure of joint Markov processes is formulated, along with a
method for discretising those.

Queueing theory

Chapter 12 focuses entirely on queueing theory. It starts with some fundamen-
tal concepts and notation, before moving on to describe two Markovian queueing
systems, the M/M/1 and M/M/1/K queues.

The two types of queues that are discussed are continuous Markov processes.
As reinforcement learning is done on discrete processes, uniformisation is described.
This operation produces a discretised version of a continuous Markov process.

The chapter is finished with a few sections that explain how cost functions can
be expressed for continuous and uniformised Markov processes, and how these can
be used to find analytical solutions to control problems. In the end, the specific
threshold type solutions are considered.

Path planning and admission control

Chapter 13 formulates the main control problem of this part, which is solving a
jointly controlled path planning and admission control problem. This problem is
difficult to solve with reinforcement learning as the state space is infinitely large.

Modular analysis implies deriving control policies for separate parts of a joint
system, such that reinforcement learning can be used to find the policy on a finite
representation of the state space. The solution is presented in several stages:

• Developing a threshold type solution to an admission control problem for
M/M/1 queues.

• Identifying the threshold using an analytical method.

• Identifying the threshold using simulation.

• Using reinforcement learning to find the solution to the temporal logic con-
strained path planning problem in the joint process.

9

1. Introduction

Evaluation of modular analysis method

In Chapter 14, the experiments of Part II are formulated and conducted. These are
organised in four categories:

• Simulating unlimited queueing systems.

• Simulating limited queueing systems.

• Cost estimation for admission control problems. Here, a parameter that limits
the infinite joint state space is found.

• Joint path planning and admission control on the joint system.

In Chapter 15, the conclusions concerning the second part of this project are
presented. These are formulated in two parts, which are:

• Evaluating the method of modular analysis.

• Evaluating the implementation and conducted experiments.

After this, answers are provided for the two selected research questions that are
studied in the second part of the project. In the final conclusions of this thesis,
some notes on the entirety of the project are given, along with suggestions for future
work.

10

Part I

Temporal Logic Constrained
Reinforcement Learning

11

2
Reinforcement Learning

To describe the methods that are studied and used in this project, there is a need
to explain concepts ranging from the basics of reinforcement learning to regular
languages, automata and temporal logic. This chapter focuses on the first, and the
structure aims to help the reader build a strong fundamental understanding of the
mechanisms that work behind the fundamental reinforcement learning algorithm
used in this work, called Q-learning. This is crucial to understand the problems and
methods investigated in the succeeding experiments and conclusions of this work.

2.1 Discrete Event Systems
A system can, according to [12], in its fundamental meaning be intuitively defined
as the concept of different entities exchanging information with each other, through
some function. To describe the behaviour of a system, a system model may be
constructed, describing the change of a set of parameters. Some of these may be
influenced by an input and some may be measured to form an output.

When modeling dynamical systems describing for instance position and velocity
of a particle, it is natural to assume that all system states are in some way depen-
dent on time. They are continuous-time state systems, and their state transition
mechanisms are time-driven. However, there are also systems where the state transi-
tion mechanism is driven by the occurrence of discrete-time events, instantaneously
taking the system from one state to another, for example the pressing of a button
that changes the light bulb state from off to lit.

Therefore, a practical way to view discrete event systems is a discrete state
space, event driven system where the transitions between states are dependent on
occurrences of asynchronous discrete events over time. Based on this, the specific
discrete event system class called Markov decision processes can be defined.

2.2 Markov Decision Processes
A Markov decision process (MDP) is a system model of a discrete-time stochastic
process. It can be viewed as a transition system where a probability distribution
over state transitions is defined in each state, and this non-determinism is very
useful for modelling an environment that may behave in an unpredictable way. A
fundamental definition of an MDPM, following in the style of [2], is

M = 〈S,A, P, pinit, AP, λ〉 (2.1)

13

2. Reinforcement Learning

where

• S is a finite set of discrete states.

• A is a finite action set such that A(s) ⊆ A is the subset containing the actions
that can be performed from the state s ∈ S.

• P is a mapping over the probabilities of transitioning between states, such
that P : S ×A × S → [0, 1] describes the probability to transition from state
s to state s′ via action a as P (s, a, s′).

• pinit describes the probability distribution that determines the starting point
of the process such that pinit : S → [0, 1]. Naturally, the probability of any of
the states being the initial state is always one.

• AP is the set of state labels, and here they are specifically called atomic
propositions.

• λ is the mapping that connects each state to the atomic propositions as
λ : S → AP ∪ ∅. An important assumption embedded in this notation is
that at most one element of AP can be mapped to each state. Another way
of expressing this is that at most one of all possible atomic propositions can
hold true in each MDP state. This is common in the grid world type MDP
applications considered in this work, and is thus a special case of the general
setting where more than one label from AP can be present in each state. In
the general case, this relationship is then instead denoted λ : S → 2AP , but
this is again not the case in this work.

Furthermore, as P is a probability function it is important to note that∑
s′∈S P (s, a, s′) = 1 which intuitively says that the probability of performing any

transition possible from a state s is one. As mentioned before, the probability of
any state being the initial state is given by ∑s∈S pinit(s) = 1.

However, for reinforcement learning applications the MDP description can vary.
One way of modifying the definition is to consider the initial state as a deterministic
entity, making the probabilistic notation pinit redundant. This convention is used
in [9] and [4], and may be formally defined by exchanging the distribution pinit to a
specific initial state sinit in the MDP definition of (2.1). It should also be noted here
that even sinit is a somewhat redundant notation; it is often exchanged for s0. In
this work, the practical ordering of MDP states into grids is used which technically
implies that each state is associated with a coordinate. This means that if each state
has an index i, each i can be mapped to coordinates (xi, yi). To avoid confusion,
when s0 is used to denote the initial state, it does not necessarily mean that the
state with coordinates (0, 0) is the initial state.

In [3], another way of describing an MDP is used. Rewards are important in
reinforcement learning, and they can be included in the MDP description. Formally,
the environment reward convention is described by including the element
ρ : S × A × S → R in the tuple in (2.1). The function maps a transition from
P (s, a, s′) to a reward, received when completing the transition. Furthermore, in [3]
the atomic propositions and state labeling functions are disregarded.

14

2. Reinforcement Learning

Lastly, a third modification to the MDP is considered. This description is used
in [1], and it includes both the concept of atomic propositions with corresponding
state labeling function, and that of rewards. Formally, the tuple in (2.1) is extended
toM = {S,A, P, s0, AP, λ, ρ}.

With these descriptions, an MDP environment model may be modified to see fit.
However, the core concept of Markov decision processes remains consistent through-
out the different modifications, and is what makes the MDP a good environment
representation in reinforcement learning. This concept is called the Markov prop-
erty.

2.2.1 The Markov property
The Markov property, here described as in [13], is interesting as it addresses the
problem of finding the probability of the environment being in a specific state. In
the context of reinforcement learning, the probability of a discrete process receiving
rewards r in state s at discrete time point k + 1 depends on all previous states,
rewards and actions. The joint probability distribution for the reward and state at
k + 1 is then said to be conditioned on all these different factors, and it is given by

Pr{s(k + 1) = s′, r(k + 1) = r|s(0), a(0), r(1), . . . , r(k), s(k), a(k)} (2.2)

where general probability is denoted by Pr. However, if the Markov property holds,
all information needed to express the next state and reward is encapsulated in the
expression for the state, action and reward at the previous discrete time point k.
The joint probability is then said to be conditioned on the available information at
k only, such that the probability of the next state assuming some specific value s′
and the next reward being r is given by

Pr{s(k + 1) = s′, r(k + 1) = r|s(k) = s, a(k) = a} (2.3)

The information about the process is thus propagated through the iterations of
k and can be accessed without considering all previous states. To dive further into
the statistical background of the Markov processes, the concept of determinism and
probabilism is explained in the next section.

2.2.2 Deterministic and probabilistic Markov processes
The relationship between the states S and the set of actions A in the MDPM can
be both deterministic and probabilistic. To understand this, consider a controller
responsible for selecting the actions performed in the process. This setting can be
illustrated as in [14] by the following example.

A robot is navigating through a discrete grid world. The environment is described
by the MDP MD = 〈S,A, PD, sinit, ρ〉 where S = {s0 . . . s8} and the action space
is A = {N,E, S,W} representing the four cardinal coordinates. The initial state is
sinit = s4, the center.

By assuming a transition probability function PD defined as PD(s, a, s′)→ [0, 1]
that assumes values between 0 and 1, the action a needs to be defined in order to
get the probability of transitioning from s to s′. This action is somehow determined

15

2. Reinforcement Learning

s0 s1 s2

s3 s4 s5

s6 s7 s8

PD(s4, N, s1) = 1

Figure 2.1: A deterministic transition from s4 to s1 via the action N .

by the controller, but often motivated by maximising the total number of rewards
for transitioning between states, given by ρ. Having defined s and a, the probability
of transitioning to any other state in the state space S is now given by PD.

For deterministic Markov decision processes such as the robot in Fig 2.1, the
probability of transitioning between states by an action is always exactly one or zero.
Therefore, it is common to express deterministic Markov processes using transition
functions denoted T instead of probability functions denoted P . However, as this
work focuses on probabilistic Markov processes only, the probabilistic notation is
used. In the example, if the robot is in state s4 and the controller selects action N ,
the probability function PD gives the values

PD(s4, N, s
′) =

0, s′ = {s0, s2, s3, s4, s5, s6, s7, s8}
1, s′ = s1

(2.4)

and ∑
s′∈S

PD(s4, N, s
′) = 1 (2.5)

Both the action selection and the resulting transition are deterministic in that there
is a 100 percent probability of transitioning to another specific state. If the robot is
in s4 and the action selected is N , the robot will definitely move north to state s1
at all times, according to the deterministic probabilities in PD.

Now imagine the same setting, except that oil has been spilled on the floor,
making it slippery. As the robot might slip and move unexpectedly, this must be
included in the model. The function P is a probabilistic transition function, and
the environment MDP is now described by the tupleMP = 〈S,A, P, sinit, ρ〉. In the
same manner as in the deterministic setting, the robot is in its initial state sinit = s4
when the action a = N is chosen by the controller. Since the floor is slippery, the
actual transition resulting from this is now determined by P as

P (s4, N, s
′) =

0, s′ = {s0, s2, s4, s6, s8}
0.1, s′ = s3

0.1, s′ = s7

0.3, s′ = s5

0.5, s′ = s1

(2.6)

16

2. Reinforcement Learning

s0 s1 s2

s3 s4 s5

s6 s7 s8

P (s4, N, s1) = 0.5

P (s4, N, s5) = 0.3

P (s4, N, s7) = 0.1

P (s4, N, s3) = 0.1

Figure 2.2: Probabilistic transitions resulting from selecting the action N .

and∑
s′∈S

P (s4, N, s
′) = P (s4, N, s3) + P (s4, N, s7) + P (s4, N, s5) + P (s4, N, s1)

= 0.2 + 0.1 + 0.3 + 0.5 = 1
(2.7)

Although the controller selected the northern action, the robot may slip and
instead go west, south or east with the corresponding probabilities 0.1, 0.1 and 0.3,
visualized in Fig 2.2. Only with probability 0.5 will the robot actually go in the
northern direction. A probabilistic MDP describes the probability of transitioning
from one state to another, after the action has been independently selected according
to some external policy. The probabilistic property does not change the probability
of selecting an action or what actions are available in a specific state, but it affects
the model response to those actions.

With this setting explained, the concept of reinforcement learning can be de-
scribed in the next section.

2.3 Reinforcement Learning Fundamentals
The principle behind reinforcement learning, as described in [13], may be defined as
learning by repeated interaction with the environment and reinforcing an observed
and desired behavior. In practice, the procedure can be summarized as developing
a mapping from environment states and agent actions to a quantifier in order to
classify each action available in a state as desired or undesired.

Reinforcement learning is considered alongside so called supervised and unsuper-
vised learning as a separate type of machine learning. In comparison to supervised
learning, in which improvements to an existing hypothesis are made if the output
of the hypothesised model differs from that of the actual environment, RL does not
go through labeled data sets and its learning is thus independent of any predefined
answers, or “supervision”. Even so, RL is not a form of unsupervised learning either,
as unsupervised learning is associated with pattern finding, whereas RL is merely
trying to maximise the collected total reward to achieve its goal.

17

2. Reinforcement Learning

Environment

Agent

ActionStateReward

Figure 2.3: The interaction based reinforcement learning principle.

As implied before, an environment and an agent (equivalent to the previously
used controller term) are the two central entities in RL, visualized in Fig 2.3. The
reward, the value function and the policy are also considered main characters of the
reinforcement learning setup. Although the environment is assumed to behave as an
MDP, an explicit model of the environment is not always used in RL. If implemented,
a model can help predict the future states of the environment based on observations
of the current state, which is fitting in situations where the environment behaves
according to some discretised physical dynamic process, and examples of this can
be found in [13]. However, in this work, the model free variant of reinforcement
learning is used.

The principle mechanism of RL, further described in the style of [13], is thus that
the agent interacts with the environment, and through the structure of the MDP
it receives a reward dependent on the transitions that are made. These rewards
effectively serve as a guide for the agent, and immediate rewards are used to achieve
a higher goal. For example, if the navigating robot is ultimately supposed to move
from state sa to sb then rewards might be handed out for transitioning between sa
and some intermediate state sc and then for the transition between sc and sb. The
goal is to maximise the total reward, but this cannot be done by only considering
the immediate reward.

The value function puts the concept of rewards into the context of traces through
the MDP, as it maps an environment transition to a value that is not only dependent
on the immediate reward signal, but also on the expectation of future rewards. For
example, if the robot would get a large reward for going to a state in a neighborhood
of states that all imply large negative rewards, the value function would take the
risk of receiving many negative rewards into account when evaluating the transition
to the positive reward state, and this state may ultimately be abandoned in order
to avoid negative rewards in the future.

When the transitions have been valued, a policy can be derived. This will in part
depend on the value of the transitions, but not only, as a problem in reinforcement
learning is that a certain degree of exploration is needed to find out if there exists
a better strategy to achieve the goal. This is in [13] described as one of the main
challenges of reinforcement learning, and often implies finding a balance between
exploration and exploitation.

To describe reinforcement learning technically, the starting point is to define
what has already been touched upon; considering future rewards.

18

2. Reinforcement Learning

2.3.1 Return and discount
As mentioned before, a value function will not only take immediate reward into
account, but also potential future rewards. Therefore, as done in [13], it is convenient
to define the return r at discrete time points as

g = r(k + 1) + γr(k + 2) + γ2r(k + 3) + · · · =
∞∑
i=0

γir(k + i+ 1) (2.8)

where γ denotes the discount factor which is a weighting parameter that changes how
far from k individual rewards are taken into consideration in the return function.
The return g at point i is thus a weighted sum of all the future rewards. Using this,
the optimisation target in reinforcement learning can be described as maximising
the return.

2.3.2 Connection to dynamic programming and optimal
value functions

Dynamic programming, originally proposed in [15] and efficiently summarised in
[16], builds upon Bellmans principle of optimality which states that any part of an
optimal process is also optimal. Its name comes from the application to computer
programming and that it is suitable for dynamic processes, as in the following opti-
mal control based description obtained from [16]. The next state of a discrete time
system can be described by

s′ = f(s, a) (2.9)
where f is a function describing the system dynamics, s is the state at time k and a
is the control signal at time k. A cost function for the complete process is given as

J(s) = S(s(K)) + V (s, a) + V (s′, a′) + V (s′′, a′′) . . . (2.10)

where the states and actions over a time horizon are evaluated in terms of value.
Here, S denotes the cost at the final state when k = K and V is the value function.
If the optimal control, state and cost a∗, s∗ and J∗ are evaluated, the principle of
optimality can be used to write the optimal cost function at stage k as

J∗(s) = min
a

[
V (s, a)

]
+ J∗′(s∗′) (2.11)

Thus, the solution to a discrete time optimisation problem can be formulated as
a recursive process. This principle is also exploited in reinforcement learning to find
the optimal values of two specific functions, concerning the values of the states and
the values of the actions. The optimal cost function is not necessarily deterministic,
and can in the stochastic case be formulated as maximising the optimal expected
value of the stochastic cost function.

2.3.3 Optimality in state and value functions
To use the principles of dynamic programming in a reinforcement learning setting,
following in the style of [13], the starting point is to consider a function that assigns

19

2. Reinforcement Learning

a value to the MDP states, according to a control policy π. As dynamic program-
ming is open for stochastic cost functions, the probabilities must now be taken into
consideration, which is why the expected value of the return at a given state is
considered. Let the state value at discrete time point k according to the policy π
be defined as

Vπ(s) = Eπ[g|s] = Eπ
[∞∑
i=0

γir(k + i+ 1)|s
]

(2.12)

This function is thus the expected value of the return that was previously described
in (2.8). Continuing in this fashion, the decision to take a specific action a in a
specific state s according to π at a discrete time point k may be valued according to

Q(s, a) = Eπ[g|s, a] = Eπ
[∞∑
i=0

γkr(k + i+ 1)|s, a
]

(2.13)

The Bellman principle of optimality can now be used to express the state value
function as the actions that maximise the action value function. This follows the
same principle as (2.11), but now the notation regards MDP states s and actions a.
Therefore, instead of formulating the optimality in discrete time steps, the Markov
property is used to express the probability of the specific next state, which is now
denoted s′. Accordingly, the next action is now denoted a′. The optimum of the
value functions for the state and action selection described in (2.12) and (2.13) are
now given in terms of the MDP as

Q∗(s, a) = max
π

Q(s, a) =
∑
s′∈S

P (s, a, s′)
[
r′ + γmax

a′
Q∗(s′, a′)

]
V ∗π (s) = max

π
Vπ(s) = max

a∈A(s)

∑
s′∈S

P (s, a, s′)
[
r′ + γV ∗π (s′)

] (2.14)

The final expressions for the optimal state and action values in (2.14) are called
the Bellman optimality equations for the two functions. Here, P is the MDP element
that denotes the probability of transitioning to state s′ from state s via action a.
For illustrative purposes, the notation includes the specific reward value r′ that is
obtained by completing the transition, but the expression remains equivalent to the
one used in the definition of the MDP.

2.3.4 Policy iteration
Previously, it has been discussed how the Bellman principle of optimality is used
in the context of an MDP and how the Markov property is utilized to produce
an equivalent function for a probabilistic MDP for one specific policy. Now, if two
different policies π and π′ are given, and their state value functions can be compared
such that Vπ′(s) ≥ Vπ(s) in all states s ∈ S, then Vπ′(s) is at least as good or better
then than Vπ(s). One example of this is the greedy policy described as in [13], and
given by

π′(s) = arg max
a∈A(s)

∑
s′∈S

P (s, a, s′)
[
r′ + γVπ(s′)

]
(2.15)

for which the value function is Vπ′(s). Since the better policy is derived from the
old one, this procedure is called policy improvement. Evaluation and improvement

20

2. Reinforcement Learning

can be done consecutively until a point where Vπ′(s) = Vπ(s) which implies that

Vπ′(s) = max
a∈A(s)

∑
s′∈S

P (s, a, s′)
[
r′ + γVπ′(s′)

]
(2.16)

Comparing this expression to the Bellman optimality equation (2.14), the equiva-
lence between them becomes clear. Therefore, as Vπ′ = V ∗, π′ must be the optimal
policy. The procedure of iteratively deriving a better policy until convergence is
called policy iteration.

2.3.5 Value iteration
According to [13], computing the policy evaluations in the policy iteration procedure
includes repeated evaluations of the whole state set. Furthermore, the convergence
to the optimal value occurs only in the limit, and it may be a very beneficial trade
off between computation time and accuracy to consider finish close to convergence
instead of in the exact limit. Value iteration may thus be expressed as a combination
of policy improvement and a shortened policy evaluation as

Vi+1(s) = max
a∈A(s)

E[r′ + γVi(s′)|s, a]

= max
a∈A(s)

∑
s′∈S

P (s, a, s′)
[
r′ + γVi(s′)

] (2.17)

for all states s ∈ S. Here, i does not denote discrete time, but rather a general
iterative index indicating that V (s) is a value that is recursively improved upon.
This convenient iteration is guaranteed to converge to the optimal value function,
and plays a central role in a fundamental type of reinforcement learning called Q-
learning.

2.4 Q-learning
Q-learning is an algorithm that produces an estimate of Q, the function that values
the selection of actions in states, given previously in (2.13), hence its name [13].
The estimate is denoted Q̂k(s, a) and follows the principles of value iteration until
it converges to the optimal action value function Q∗(s, a) from the Bellman opti-
mality equation (2.14). The fundamental version of Q-learning originally proposed
in [17] is a model free reinforcement learning algorithm, but there are also ways of
incorporating a model of the environment in the process.

2.4.1 Model free Q-learning
The formal definition of model free Q-learning follows in the style of [1], and is the
type of Q-learning that is used in this work.

Consider a basic MDPM = 〈S,A, P, sinit, AP, λ, ρ〉. The extended value func-
tion Q : S × A → R can be seen as a mapping from states and actions to a value
and the probability expressed in the value iteration described in (2.17) is now given
by the MDP transition probability map P : S × A × S → [0, 1], while the rewards

21

2. Reinforcement Learning

are given by the mapping ρ : S × A× S → R. Under the assumption that Q∗(s, a)
describes the action value at the optimum, the Bellman equation for optimality of
the action value function in (2.14) writes as

Q∗(s, a) =
∑
s′∈S

P (s, a, s′)[ρ(s, a, s′) + γ max
a′∈A(s′)

Q∗(s′, a′)] (2.18)

Note here that r′ is replaced with the MDP element ρ(s, a, s′). Furthermore, given
that this denotes the function at the optimum, the optimal policy is naturally given
by

π(s) = arg max
a∈A

Q∗(s, a) (2.19)

To further motivate that the Q-function approximate can be expressed by the
principles of value iteration, consider that the estimated sample mean of a random
variable X is expressed as m̂k = ∑k

i=1 xi/k where xi are samples of the variable. As
explained in [1], weighted refinements of the estimate can be expressed recursively
in terms of an increasing set of samples as

m̂k+1 = m̂k + α(xk+1 − m̂k) (2.20)

where α is the weighting. Now, let the estimated Q-function Q̂(s, a) replace m̂.
Then recall that the evaluation of an action is based on both the immediate reward
and the return, and replace the new sample xk+1 with the sum of the immediate
reward and the γ weighted previous estimation of the Q-value at the next state and
next action, which is ρ(s, a, s′) + γmaxa′∈A(s′) Q̂k(s′, a′). Then

Q̂k+1(s, a) = Q̂k(s, a) + α[ρ(s, a, s′) + γ max
a′∈A(s′)

Q̂k(s′, a′)− Q̂k(s, a)] (2.21)

becomes the expression for the recursive Q estimate, as described in [1]. As a
reminder, 0 < γ < 1 is called the discount factor, and it determines how far away
Q-values shall influence a new approximation. This result coincides with the original
formulation of the Q-learning iteration in [17], where it is derived in a similar manner.

Finally, note that in reinforcement learning, it is well known that the Q-function
is an estimate that is continuously developed in the learning process. Because of
this, the estimate notation of Q̂ is often expressed as a plain Q.

2.4.2 Action selection
While the optimal action taken in a certain state s is said to be given by the optimal
policy in (2.19), little has been said about how to select actions when developing
it. As mentioned in Section 2.3, the Q-function estimate develops by the agent
taking the actions with the largest Q-values, but there is also a need to keep ex-
ploring different paths through an MDP process to find different, possibly better,
paths to maximise the total reward. Therefore, two concepts of action selection are
considered.

As explained in [18], selecting the action a with the largest Q-value in state
s is called greedy action selection. To introduce exploration, consider choosing a
random action with probability ε from a uniform probability distribution over the

22

2. Reinforcement Learning

set of available actions. With probability 1 − ε, the action is selected greedily.
Formally, if m actions exist to choose from, this can be expressed in terms of a
probability distribution as

π(a|s) =

ε/m+ 1− ε if a = max

a∈A(s)
Q(s, a)

ε/m otherwise
(2.22)

Note that π here denotes a probability distribution describing the general ε-greedy
action selection principle, and does not denote a policy in the traditional sense.

After many iterations, when the approximation of the Q-function starts to con-
verge to the optimum, the need for exploration generally decreases. There are many
ways of ensuring that the probability ε decreases with the iterations, increasing the
probability of selecting an action greedily. For example, exponentially or linearly
decaying ε functions are common [19].

With the Q-learning fundamentals outlined, the field of temporal logic is de-
scribed in the next chapter.

2.5 Summary
From a basic definition of discrete event systems, the concept of Markov decision
processes utilising the Markov property is considered as the fundamental descrip-
tion of an environment in a reinforcement learning setting. MDPs are said to be
either probabilistic or deterministic, which regards transitions between states after
an action has been selected.

Reinforcement learning is concluded to build upon the dynamic programming
principle and its implementation of the Bellman optimality principle. Basic concepts
such as policy and value iteration leads up to the definition of tabular Q-learning,
for which model free Q-learning and ε-greedy action selection are described.

23

2. Reinforcement Learning

24

3
Temporal Logic Specifications

This chapter handles the second cornerstone of the theory behind this project which,
next to reinforcement learning, is temporal logic (TL).

3.1 Temporal Logic and Predicate Logic

Predicate logic presented as in [20] is used to state propositions, a form of declarative
statements, about variables that can be either true or false. Common operators are
negation, implication, conjunction and disjunction. In this work, it suffices to briefly
summarise the commonly used propositions in the form of a table with illustrative
examples.

Note that the example for conjunction in Table 3.1 can never be true. Such
a statement is called a contradiction, and in similar manner a statement which is
always true is called a tautology.

The difference between classical predicate logic and temporal logic as described in
[21] is that temporal logic makes it possible to express logical statements in relation
to time, which is why it is very useful when planning the behavior of systems. The
expressions used in TL are similar to modal logic, where modalities such as possibly
and necessarily are used to extend predicate logic statements. For example, the
statement “p is possibly true if q is necessarily false” can be formulated in modal
logic, while only absolute statements such as “p is true if q is false” can be formulated
by the use of predicate logic. In temporal logic, different modalities are used, such
as always and eventually. To elaborate on this, the specific form of temporal logic
called linear temporal logic is introduced next.

Table 3.1: Predicate logic propositions with examples.

Proposition Sign Example Read out
True T p = T p is true.
False F q = F q is false.
Negation ¬ p = ¬q p is not q.
Disjunction ∨ p ∨ ¬p = T p or not p is true.

Conjunction ∧ p ∧ ¬p = F
p and not p is
false.

Implication → p→ q
If p true then q
true.

25

3. Temporal Logic Specifications

Table 3.2: LTL modalities with examples.

Modality Word Example Read out

Next ϕ = #p ∧ ¬# q
Next is p and not
q.

♦ Eventually ϕ = ♦(p ∨ q) Eventually p or q
will be true.

� Always ϕ = �p ∧�¬q
p is always true
and q is never
true.⋃ Until ϕ = p

⋃
q

p is true until q
is true.

3.2 Linear Temporal Logic
Linear temporal logic, which gets its name from the linear time relation that it builds
upon, is introduced and formulated in the style of [2]. To begin with, linear discrete
time can be defined as a set in which any two elements, which can be regarded as
points in time, are related by one of them being larger than the other. The smaller
element of the two must then necessarily occur before the larger one; this is called
a linear order.

Only a few fundamental modalities need to be explained in order to understand
how temporal logic are used in this work, and they are as in [2] compiled in a
summarising table. In Table 3.2, some of the more common modalities are pre-
sented along with illustrating examples. LTL formulae are further defined using the
principle of induction according to the following statements:

• If p ∈ AP , then p is considered an LTL formula.

• If ϕ1 and ϕ2 are both LTL formulae, then ¬ϕ1, ϕ1 ∧ ϕ2, #ϕ1 and ϕ1
⋃
ϕ2 are

also LTL formulae.

Moreover, two interesting special cases of LTL formulae arise when modalities
are combined. They are �♦ϕ, meaning “infinitely often ϕ”, and ♦�ϕ which means
“eventually forever ϕ”.

In connection to the MDP setting described in Section 2.2, LTL formulae can be
defined for variables such as p and q from the set of atomic propositions AP . Later in
this thesis, it is explained how to take advantage of the fact that atomic propositions
can be assigned as state labels in the MDP formulation. First, to explain the method
in which temporal logic is combined with reinforcement learning and MDPs, there
is a need to briefly describe formal languages.

3.3 Formal Languages
Formal languages are here used to describe the behavior of certain discrete systems.
It is therefore necessary to define the basic properties that make up a language.

26

3. Temporal Logic Specifications

3.3.1 Symbols, words, alphabets and languages
In accordance with [22], a symbol is considered the fundamental element, and can
be for instance a letter or a digit. A sequence of symbols is called a word or string,
and these annotations will be used interchangeably. For symbols and words, the
following properties are defined:

• An alphabet, denoted Σ, is a finite set of symbols from which words can be
formed.

• The empty word is denoted ε.

• The length of a word w is denoted |w| and simply equates to the number of
symbols in the word.

• A concatenation of two words w and v is a word defined as the first word
followed by the second. Concatenations of a word w with the empty word ε,
both before and after, results in the same word w.

• The prefix of a word is any number of leading symbols of a word. For example,
the prefix of mad is ε, m, ma, or mad.

• The suffix of a word is any number of trailing symbols. In the mad example,
the suffixes are ε, d, ad and mad.

• A formal language L is a subset of possible words that can be derived from an
alphabet. For example, if the alphabet is Σ = {a, b} then a language, in this
case denoted L ⊆ Σ∗ 1, is a set L = {ε, a, ab, b, ba, aab, bba, . . . }. The empty
set ∅ and the set with only the empty string ε are also considered languages.

3.3.2 ω-languages
Extending the definition of languages derived from finite words, languages consisting
of infinitely long words are also possible. This concept is here described as in [2].

Infinite length words are never ending sequences of symbols from a finite al-
phabet, and the notation Σω describes the set of all infinite words that can be
constructed using Σ. Subsets of Σω are called ω-languages, and concepts such as
union and concatenation that in Section 3.3.1 were used for finite sequences, apply
here with infinite repetition.

To formally express the infinite repetition in the context of a language, define a
language L ⊆ Σ∗. The ω-language Lω is then a subset of words Lω ⊆ Σω formed by
an infinite number of concatenations of finite words gathered from Σ, so that

Lω = {w1w2w3 . . . |wi ∈ L, i ≥ 1} (3.1)

The concept of ω-languages is central to this work, as it is used as an exten-
sion to the relation between infinite fulfillment of a specification and its automata
representation, which is described next.

1The ∗ operator used here is the Kleene star [22], which since Σ is a set of symbols implies the
set of all words over the symbols in Σ.

27

3. Temporal Logic Specifications

3.4 Automata
The basic finite automaton (FA), sometimes deterministic finite automata (DFA)
with the non-stochastic property emphasized, is a discrete model of a system ac-
cording to [22]. It is, in a similar tuple fashion as the MDP, formally described by
the tuple

A = 〈Q,Σ, δ, q0, Qm〉 (3.2)

where Q is a finite set of states, Σ is a finite input alphabet, q0 ∈ Q is the initial
state and Qm ⊆ Q is the set of marked or accepting states. Sometimes, such as
in [21], a set of forbidden states Qx ⊆ Q is also included. The transition function
mapping δ : Q×Σ→ Q describes the transitions between states via a configuration
of symbols from the input alphabet, such that δ(q, σ) returns a state for each q ∈ Q
and σ ∈ Σ.

A language can be defined as in [22] for the automaton input alphabet Σ in the
way it is described in Section 3.3.1. The sequence of inputs from the alphabet makes
up a word, and since the inputs result in transitions between automaton states, the
different words formed by the input alphabet can be assigned different properties
depending on which states their associated sequences of transitions visit. A word w
is accepted by the automaton if δ(q0, w) = qm for some qm ∈ Qm, and by association
the accepted or marked language Lm of an automaton is the set {w|δ(q0, w) ∈ Qm},
meaning the set of words for which the sequence of transitions finishes in a marked
state. Analogously, the forbidden language can also be defined if there are forbidden
states in the automaton definition.

Fig 3.1 describes an example automaton with the state set Q = {q0, q1, q2, q3},
alphabet Σ = {a, b, c, d}. State q0 is the initial state, state q2 is forbidden while
state q3 is marked, meaning the marked language is Lm = {ad} and the forbidden
language is Lx = {b, c}.

3.4.1 Coloured deterministic finite state automata
Marked and forbidden states of an automaton make it possible to express marked
and forbidden languages in terms of input words. Sometimes, it is also necessary
to characterise these words in terms of which automaton states are visited when
performing the sequence of actions that the word implies, without neccessarily being
associated with marked and forbidden states.

To categorize states, an addition to the automaton tuple definition can be made.

q0

q1

q3

q2

a

b c

d

Figure 3.1: DFA with the marked state q3 and the forbidden state q2.

28

3. Temporal Logic Specifications

This can according to [23] be viewed as a generalization of the deterministic finite
state automata class, and is called coloured deterministic finite state automata. This
type of automaton is here formally defined as

A = 〈Q,Σ, δ, q0, Qm, C, χ〉 (3.3)

where the function χ : Q→ C maps a state q ∈ Q to a colour in C such that χ(q) is
the color of state q. Using this notation, states can be categorized in a convenient
way.

Specifically, the concept of coloured states is in this work used to label automaton
states in scenarios when state categories such as marked and forbidden are insuffi-
cient. In figures describing automata, the colour of an automaton state is visualised
by an actual colour, and different colours thus indicate different labels. The default
color of a state is white, which is also reflected in the figures.

3.5 Translating LTL Formulae to Automata
Similar to the connection between finite languages and finite automata, described in
Section 3.4, there is a connection between the infinite languages and another form
of automata.

3.5.1 The key idea
The procedure of translating an LTL formula to an automaton is best explained by
an example from [1]. Consider the LTL formula

ϕ = ♦p ∧�¬q (3.4)

This is interpreted as eventually, p occurs while q must never be true. In other
words, the negation of q must be repeated forever according to the formula. As
described in Section 3.2, LTL formulae such as (3.4) can be defined for a set of
atomic propositions, AP . For the example above, the associated set is AP = {p, q},
and it is assumed that there is a way for the automaton to observe the elements of
this set and their value, which can be either true or false.

In practice, the key step is now to construct the automaton that realises (3.4)
by building an automaton alphabet of temporal logic statements from the elements
of AP . In the example above, a corresponding automaton is the one in Fig 3.2. It
can in Fig 3.2 be observed how words can be constructed by making transitions in
the automaton. For example, p and q can both be false until some point where p is
true, and a transition is made to the marked state. If q becomes true in any case,
a transition is made to the forbidden state, which is undesired, and this behavior
agrees with (3.4). This must then hold infinitely often.

Hence, LTL formulae can be realised as languages of infinite words over the
alphabet 2AP . This comes from the definition of (2AP)ω being the set of words that
is the result of infinite concatenation of words in 2AP [2]. To summarise the principle
behind the procedure in theory, an LTL property can, as described in [1], be defined
by the infinite sequences σ = σ(0)σ(1)σ(2) . . . that can be formed from the alphabet

29

3. Temporal Logic Specifications

q0 q1

q2

p ∧ ¬q

q

q

¬p ∧ ¬q ¬q

Figure 3.2: Automaton from [1] realising ϕ = ♦p ∧�¬q.

Σ. These sequences are part of the set denoted Σω, and the symbols σ(i) ∈ Σ where
Σ = (2AP). Thus, LTL properties are fulfilled by ω-languages based on an alphabet
of atomic propositions. If LTL properties can be realised by an ω-language, there
are also automata structures that can describe these languages. In this way, an
automaton can be defined to represent an LTL-property.

However, the specific automata form required for this has not yet been discussed.
As the automaton in the example of Fig 3.2, this class of automata is called Büchi
automata.

3.6 Büchi Automata
Finite automata require a finite number of transitions to reach an accepting state.
The words formed from the input language are finite, and all possible words that
imply reaching the marked state make up a finite marked language. To express
an infinite marked ω-language for an automata, this automata needs an accepting
condition suitable for infinite words, according to the definition in [2].

The formal difference between an automaton that realises a finite marked lan-
guage and one that realises a marked ω-language is that for the automaton with a
finite marked language, it is enough that the input word leads to an accepting state
once. If the marked language is an ω-language, however, the entire infinite input
word must be checked so that it always leads to an accepting state. This means
that the acceptance condition is in this case defined for infinite runs of the automa-
ton, according to [2]. There are several different automata for which the acceptance
condition is to visit a state an infinite number of times, but the types that are used
in this work are variants of the Büchi automaton.

3.6.1 Nondeterministic Büchi automata
The non-deterministic Büchi automaton (NBA) is a general form of the Büchi au-
tomaton, and is by following the definition in [2] described by the tuple
B = 〈Q,Σ, δ, Q0, Qm〉 where Q is a finite set of states, Σ is the alphabet,
δ : Q × Σ → 2Q is the transition function mapping, Q0 is the set of initial states
and Qm ⊆ Q is the set of marked states. Note that the transition function mapping
returns a set of states, not a single state, and the initial state condition is also a set
of states.

30

3. Temporal Logic Specifications

q0 q1

b

a ∧ b

b a ∧ b

Figure 3.3: NBA from [2] that satisfies the LTL property ϕ = �b ∧�♦a.

The accepting ω-language of the NBA is given by

Lω(B) = {σ ∈ Σω|∃ an accepting run for σ ∈ B} (3.5)

where a run is defined as a state sequence resulting from applying an input sequence
from the alphabet. An infinite run is thus defined as an infinite sequence of visited
states, and the accepting language is then all the infinite input words constructed
from the alphabet that produce the infinite runs in which the accepting states appear
infinitely often.

The behaviour of a non-deterministic Büchi automata can be illustrated by the
specific example in [2] that relates linear temporal logic properties to both non-
deterministic and the deterministic special case of the Büchi automata. The non-
deterministic Büchi automaton in this example, illustrated in Fig 3.3, is given by
B = 〈Q,Σ, δ, Q0, Qm〉 where Q = {q0, q1}, Σ = 2AP contains the expressions a, b and
a ∧ b formed from a set AP = {a, b}. Furthermore, Q0 = {q0}, Qm = {q1} and the
transitions are defined according to Fig 3.3. By inspection, it can be seen that this
NBA fulfills the LTL property ϕ = �b ∧�♦a.

As explained in [2], it can be seen that B is not deterministic, because no matter
what symbol is chosen, properties are fulfilled for transitions to both state; if in q0
and b is true, it cannot be determined if a transition to q1 shall be made or not, but
the language is still that of the specified LTL formula. This automaton is a Büchi
automaton since the runs that contain the marked state, such as the run q0q

ω
1 , are

the result of applying infinitely long words from the accepting language. These runs
can be observed to contain the accepting state an infinite number of times.

3.6.2 Deterministic Büchi automata
A Büchi automaton B = 〈Q,Σ, δ, Q0, Qm〉 is according to [2] deterministic (DBA) if
the initial state set has size one, and the transition function only returns one state.
The descriptions for the elements in the tuple B are in all other aspects the same as
in the description for nondeterministic Büchi automata.

The determinism property is illustrated by the same example from [2] that is
used to describe the nondeterministic Büchi automaton in Section 3.6.1. Consider
the automaton B where Q = {q0, q1}, Σ = 2AP with AP = {a, b}, Q0 = {q0},
Qm = {q1} and the transitions that are defined according to Fig 3.4. Just as the
non-deterministic Büchi automaton described in Fig 3.3, the automaton describes
the property ϕ = �b ∧�♦a.

The DBA in Fig 3.4 thus fulfills the same LTL properties as the NBA in Fig 3.3,
but it is deterministic since the transition mapping from source state and action to

31

3. Temporal Logic Specifications

q0 q1

a ∧ b

¬a ∧ b

¬a ∧ b a ∧ b

Figure 3.4: DBA from [2] that satisfies the LTL property ϕ = �b ∧�♦a.

a destination state only returns one destination state, and not several. For exam-
ple, there are no actions available from the q0 state that imply staying in q0 and
transitioning to q1 at the same time, which was the case in the automaton of Fig
3.3.

A very important property is that NBAs are more general than DBAs, meaning
that for every ω-language that can be represented by a DBA, there exists an NBA
that represents the same language, but the converse is not true. There exist ω-
languages that can be represented by an NBA, but not by any DBA; this can be
proven by contradiction.

3.6.3 Some languages have an NBA representation, but not
a DBA representation

The following proof is outlined from the more comprehensive version found in [2].
Consider the ω-language given by (a+ b)∗bω.

A corresponding NBA can be seen in Fig 3.5. For the word σ = wbω where w
is some word from {a, b}∗, the NBA has the options to either stay in state q0 or
“guess” when the b-suffix of w starts (at the point where w = aaaabbb . . . switches
from a to b repetitions) and thereby move to the accepting state q1; this behavior is
non-deterministic and can not be represented by a DBA.

As explained in the proof of Theorem 4.50 of [2], start by assuming that the
language of a DBA is formed by the same expression such that
Lω(B) = Lω((a + b)∗bω) for a DBA B = 〈Q,Σ, δ, q0, Qm〉. Given the deterministic
property, the transition function δ∗ : Q×Σ∗ → Q is a mapping to one state and not
to a set of states.

The word σ1 = bω is in Lω(B), implying the existence of an accepting state
q1 ∈ Qm and n1 > 1, such that
δ∗(q0, b

n1) = q1 ∈ Qm. Similarly, the word σ2 = bn1abω is also in Lω(B), which
results in a corresponding accepting state q2 and natural number n2 > 1 so that
δ∗(q0, b

n1abn2) = q2 ∈ Qm. The same conditions hold for the word σ3 = bn1abn2abω

and corresponding q3 ∈ Qm and n3 > 1. Iterating this relation until i and gathering

q0 q1
b

a ∨ b b

Figure 3.5: NBA from [2] representing the language of (a+ b)∗bω.

32

3. Temporal Logic Specifications

the terms results in
δ∗(q0, b

n1) = q1 ∈ Qm

δ∗(q0, b
n1abn2) = q2 ∈ Qm

δ∗(q0, b
n1abn2abn3) = q3 ∈ Qm

...
δ∗(q0, b

n1abn2a . . . bni−1abni) = qi ∈ Qm

(3.6)

As the DBA has a finite number of states, there must exist an i < j such that

δ∗(q0b
n1a . . . abni) = δ∗(q0, b

n1a . . . abni . . . abnj) (3.7)

implying that B accepts the sequence

bn1a . . . abni(abni+1a . . . abnj)ω (3.8)

Since this implies an infinite repetition of a, this is a contradiction, because this
feature is not described by the language Lω(B) = Lω((a + b)∗bω), according to the
conclusion of the proof in [2].

3.6.4 Generalized Büchi automata
The generalized Büchi automata is a modified version of the NBA, but the difference
lies in the acceptance condition which states that the automaton has to visit several
sets Qm infinitely often, in accordance with the definition from [2]. The definition of
a GNBA is thus the same as for NBA, but the set of accepting states Qm is replaced
with Qm, a set consisting of a finite number of accepting state sets Q1

m . . . Q
k
m ⊆ Q.

Formally, a GNBA G is given by

G = 〈Q,Σ, δ, Q0,Qm〉 (3.9)

where Qm is a subset of 2Q. Another note that can be made is that while a non-
deterministic Büchi has been shown to be a generalization of the deterministic Büchi,
a deterministic Büchi with several acceptance sets can also be defined as a special
case of the non-determinstic and more general GNBA, making it a GBA.

3.6.5 Limit deterministic Büchi automata
The last class of Büchi automata that is important in this work is the limit determin-
istic Büchi automata (LDBA). This type is in turn a modification of the generalized
Büchi automata class. Originally proposed by Sickert et al in [24], but explained in
the context of reinforcement learning in [9] and [4], the GBA G is limit deterministic
if the state set Q can be split into two sets Q = QN ∪QD (where ∪ is the set union
operator) such that

• δ(q, σ) ⊂ QD and |δ(q, σ)| = 1 for every state q ∈ QD and for every σ ∈ Σ.

• Qj
m ⊂ QD for every acceptance set Qj

m ∈ Qm.

Now, sufficient theory has been covered to present algorithms that uses these
concepts in reinforcement learning.

33

3. Temporal Logic Specifications

3.7 Summary
This chapter elaborates on the principles of temporal logic and starts with a distinc-
tion between that and predicate logic. Linear temporal logic is specifically defined
as the central form of logic used in this work.

Moreover, formal languages and specifically infinite so-called ω-languages are de-
fined as a fundamental concept to understand the connection between LTL-specifications
and automata realisations. After this, the most fundamental type of automata is
introduced, followed by the key principle between translating an LTL formula to an
automaton.

For ω-languages, automata with infinite accepting conditions are required, and
therefore so-called Büchi-automata are introduced. Within this group, a distinction
between deterministic and non-deterministic Büchi automata is made, followed by
some useful variations to these specific forms of automata.

34

4
Algorithms and Methods

In this chapter, results from previous research in the field of temporal logic con-
strained reinforcement learning is presented and thoroughly analysed. The results
come in the form of three algorithms, which are presented alongside additional meth-
ods for handling large scale systems. After this, three new composite algorithms are
proposed on the basis of the previous research.

4.1 Algorithm 1: Temporal Logic Constrained
Reinforcement Learning

All of the algorithms try to derive an optimal policy for an unknown MDP, whilst
ensuring that the optimal policy follows a specification. The specification is in all
cases formulated in a formal language based on temporal logic expressions, and all
algorithms use tabular Q-learning as the underlying reinforcement learning method.
However, there are variations in the details of these algorithm, and this work is
focused on investigating those differences in order to evaluate the potential perfor-
mance differences, advantages and disadvantages with the methods.

The first algorithm is presented according to the formulation in [1], and it here-
inafter referred to as the TL constrained RL algorithm. The idea behind the algo-
rithm is to consider an MDP and a Büchi automaton that represents a temporal
logic specification, and then formally compute a Büchi weighted product MDP on
which Q-learning can be performed such that marked states in the Büchi automaton
are rewarded. In this way, the learning agent is not only taught the control policy
that is optimal, but also the LTL behavior specified by the Büchi automaton.

4.1.1 Büchi weighted product MDP
Though it is shown in Section 3.6.3 that there are languages that can only be
represented by NBAs, it is stated in [1] that practically usable LTL formulae are
most often possible to express with DBAs. Therefore, for an LTL specification
ϕ, consider the DBA Bϕ = 〈Q,Σ, δ, q0, Qm〉 with a language Lω(Bϕ) that fulfills
ϕ. Next, let M be the MDP given by M = 〈S,A, P, s0, AP, λ, ρ〉. The product
betweenM and Bϕ is then defined as

M⊗Bϕ = 〈S⊗,A, P⊗, s0,⊗, AP⊗, λ⊗, ρ⊗〉 (4.1)

where the following holds:

35

4. Algorithms and Methods

• The combined state space is formed by a cross product between the two state
spaces, such that S⊗ = S ×Q.

• The initial state is s0,⊗ = (s0, q0).

• The combined transition probability from the combined state (s, q) to (s′, q′)
is

P⊗((s, q), a, (s′, q′)) =

P (s, a, s′) q′ = δ(q, λ(s′))
0 otherwise

• The set of atomic propositions of the product is AP⊗ = {M,F}, representing
marked and forbidden product states. These are the only state labels in the
product, as the more complex restrictions based on the state labels ofM are
handled by the DBA before the synchronization.

• The state labeling function for the product is λ⊗ : S×Q→ AP⊗ and it maps a
labelled product state to either a marked or a forbidden atomic propositional
label.

• The reward for the product is given by

ρ⊗(s, q) = ρ(s) +

ρM > 0 λ⊗(s, q) = {M}
ρF < 0 λ⊗(s, q) = {F}
0 otherwise

but it should be noted that the environment rewards ρ(s) are often disregarded
in practical purposes, and in this work it is only used in classical Q-learning
and never with additional reward methods.

The product is well understood by the graphical example in [1]. The LTL formula
ϕ = ♦p ∧�¬q, which is familiar from Section 3.5.1, can be realized by a DBA Bϕ,
and computing the product between this DBA and a simple MDPM results in the
productM⊗Bϕ.

The product system can be seen in Fig 4.1, along withM and Bϕ individually.
The MDP state labels are the atomic propositions p and q and the formula ϕ is
formulated using those atomic propositions, but in the product the atomic proposi-
tions are just M and F (represented in the product by a double circle and a dashed

s0 s1

s2 s3

M
{q}

{p}

a

b

c
c

q0 q1

q2

Bϕ

p ∧ ¬q

q q

¬p ∧ ¬q ¬q

s0, q0 s1, q2

s2, q1 s3, q1

M⊗Bϕ

a

b

c
c

Figure 4.1: Visualized example from [1] of the productM⊗Bϕ between an MDP
M and a Büchi automaton Bϕ.

36

4. Algorithms and Methods

circle, respectively) depending on whether or not the DBA state is in a marked or
forbidden state.

4.1.2 Online execution equivalence

Since the probability of transitioning in the product is either the probability of
transitioning in the MDP or zero, and since the total reward is given as a sum
of the MDP reward and the Büchi reward, the transition process of the MDP is
independent on that of the Büchi. Transitioning in the product can be divided into
first transitioning in the MDP, and then making a transition in the Büchi depending
on the new state label in the MDP. Thus, computing transitions sequentially for the
MDP and the Büchi is equivalent to transitioning in the product, and this is referred
to as an online execution of the Büchi.

4.1.3 Algorithm presentation

Finally, an algorithm that describes the Q-learning procedure for the Büchi weighted
product is presented. The underlying algorithm is the tabular Q-learning, explained
in Section 2.4.1, but it is here extended by a dimension to also incorporate the
automaton states. The algorithm is shown in Fig 4.2 and shows the full procedure
of the reinforcement learning loop. The method proposed in [1] has been shown to
guarantee safety and liveness for a model free Q-learning problem.

Result: Optimal policy π∗(a|s) that satisfies the LTL formula ϕ.
Initialise
MDP M,
Büchi automaton Bϕ,
Q table as in 2.4.1 but for the product state and actions,
episode number = 0,
iteration number = 0.
while Q is not converged do

episode number++
while q ∈ Bϕ is not forbidden and iteration number < iteration threshold do

Choose MDP action a ∈ A(s) ε-greedily.
Move to s′ by a in the MDP.
Read atomic proposition labels in s′.
Move to q′ in the Büchi according to the atomic propositions.
Recieve the total reward ρ⊗(s′, q′).
Q(s, q, a)← Q(s, q, a) + α[ρ⊗(s′, q′) + γmaxa′∈A(s′) Q(s, q′, a′)−Q(s, q, a)]

end
Update ε and learning rate α as function of episode number if desired.

end

Figure 4.2: Temporal logic constrained reinforcement learning.

37

4. Algorithms and Methods

4.2 Algorithm 2: LDBA Constrained
Reinforcement Learning

This method, presented in [9] and [4], is similar to the previous algorithm but uses
the limit deterministic Büchi automata class to assert that the LTL property holds.
In the original paper, it is proven that the algorithm finds an optimal policy that
maximises the probability of satisfying the LTL constraints if an optimal solution
exists. If it is not possible to satisfy the given LTL formula, the control policy that
is produced is still "reasonable".

4.2.1 Generalized Büchi automata application and
ε-transitions

The environment is in this method, as expressed in [9], defined as an MDP tuple
M = 〈S,A, P, s0, AP, λ〉, and note that there is no reward associated withM. The
goal is again to ensure that when using the derived policy, the sequence of states
from s0 and forward (often called a path or trace through M) satisfies the LTL
formula ϕ. This is done by reading the atomic propositions in the MDP state labels
and evaluating the Büchi automata associated with the LTL formula.

As the Büchi automata N = 〈Q,Σ, δ, Q0,Qm〉 is limit deterministic, the state
set can be divided into two disjoint sets, QN and QD and the following definitions,
all gathered from [9], of the sets are made:

• QD is the accepting set, and it is invariant which implies that the automaton
is unable to escape from it when it is reached.

• QN is considered the initial set.

• Both QD and QN are deterministic.

• Between QD and QN there are non-deterministic so-called ε-transitions. These
transitions are spontaneous, and do not require the reading of any atomic
propositions.

• A non-accepting sink component is a subset O ⊂ Q which induces a strongly
connected directed graph and does not include all accepting sets in Qm. Fur-
thermore, the sink component is such that there is no other set O′ ⊂ Q, O′ 6= Q
such that O ⊂ O′.

The ε-transition reflects a “guess” on reaching the invariant acceptance set. If a
label cannot be read after such a transition, this means that the guess was wrong
and the trace does not satisfy the LTL property.

4.2.2 Accepting frontier
The acceptance condition can be represented as several sets of accepting states. It
may be noted that this acceptance condition can also be defined for a generalized

38

4. Algorithms and Methods

Büchi automaton, as the important feature is the sets of accepting states and not
the non-determinism. In both cases, a way to make sure the agent visits all these
sets infinitely often is needed. This method is defined in both [9] and [4] as the
accepting frontier function Acc : Q× 2Q → 2Q, and reads

Acc(q,Q) =

Q \Qj

m if q ∈ Qj
m ∧Q 6= Qj

m⋃
k=1:f

Qk
m \Qj

m if q ∈ Qj
m ∧Q = Qj

m

Q otherwise

(4.2)

This function operates on the accepting frontier set Q. This set is initialized as
Q = ⋃

k=1:n
Qk
m whereQ1

m, Q
2
m, . . . , Q

k
m, . . . , Q

n
m ∈ Qm, the union of all sets of accepting

states in the LDBA. When a new state is reached in the LDBA, the accepting frontier
is updated using (4.2) as Q ← Acc(q′,Q). This function evaluates if q′ is in one of
the sets Qk

m ∈ Qm; if it is, this set is removed from the accepting frontier. Now,
this set does not need to be visited again. This procedure continues until all sets
Qk
m ∈ Qm but one have been visited and Q = Qn

m where n denotes the index of
the last set in Q. After this, the accepting frontier is re-initialized to the union of
all accepting state sets as before. In this way, the algorithm makes sure that all
accepting conditions of the LTL formula are fulfilled.

To distinguish frontier sets in the automata of this work, the concept of coloured
states from Section 3.4.1 is used. A specific frontier set is thus given a specific color,
and this is also highlighted in figures, where all colors except white denote frontier
sets.

4.2.3 Product MDP and reward function
As in the DBA constrained RL algorithm [1], a product between the MDP
M = {S,A, P, s0, AP, λ} and the LDBA N = {Q,Σ, δ, Q0,Qm} is computed in [4]
and [9] as

M⊗N = 〈S⊗,A, P⊗, s0,⊗, AP⊗, λ⊗〉 (4.3)

where S⊗ = S ×Q, s0,⊗ = (s0, q0), AP⊗ = Q, λ⊗ = S ×Q→ 2Q so that
λ⊗(s, q) = q. The joint transition probabilities are given by P⊗ : S⊗×A×S⊗ → [0, 1],
implying that P⊗((s, q), a, (s′, q′)) = P (s, a, s′). The accepting condition is to visit
all combined states in which the automaton state is in one of the marked state
defined in Qm of the LDBA N .

In addition to this, there are two modifications that need to coexist with the
above definition of the product MDP:

• The ε-transitions to LDBA state q are handled by an action εq that is added
to A⊗ = A ∪ {εq, q ∈ Q}. In the algorithm, both A and A⊗ are used, so this
formulation does not replace the defined actions of the product MDP.

• Probabilities to travel via the ε-transitions are given by

P⊗((s, q), εq, (s′, q′)) =

1 if s′ = s, q′ εq→ q

0 otherwise

39

4. Algorithms and Methods

The reward function is furthermore defined using the accepting frontier function
as

ρ(s⊗, a) =

r+ if q′ ∈ Q, s⊗′ = (s′, q′)
0 otherwise

(4.4)

where r+ and 0 denote positive neutral rewards.

4.2.4 Algorithm presentation

By comparison to how the LDBA constrained reinforcement learning algorithm is
presented in the original paper [9], the additional algorithm steps that calculate the
probability of LTL property satisfaction have here been removed as they are not,
in practice, central to this work. Furthermore, as the equivalence between direct
computation of the product MDP and online execution of the Büchi holds in this
case as well, the algorithm is formulated in terms of the product in order to keep
the notations concise. The algorithm for LDBA constrained reinforcement learning
is shown in Fig 4.3.

Next, a third algorithm that considers the concept of shielded reinforcement
learning is studied.

Result: Optimal policy π∗(a|s) that satisfies the LTL formula ϕ
Initialise
MDP M,
LDBA Nϕ,
Q table Q : S⊗ ×A⊗ → R+

0 ,
Accepting frontier set Q,
episode number = 0.
iteration number = 0.
while Q is not converged do

episode number ++.
s⊗ = (s0, q0).
while q /∈ sink : s⊗ = (s, q) and iteration number < iteration threshold do

Choose MDP action a as argmax
a∈A

Q(s⊗, a), or ε-greedily.

Receive the reward ρ⊗(s⊗, a).
Update the accepting frontier function as Q← Acc(q′,Q).
Q(s⊗, a)← Q(s⊗, a) + α[ρ⊗(s⊗, a) + γmaxa′ Q(s′⊗, a′)−Q(s⊗, a)].
s⊗ = s′⊗.

end
Update ε and learning rate α as function of episode number if desired.

end

Figure 4.3: LDBA constrained reinforcement learning.

40

4. Algorithms and Methods

Environment Agent Shield

Rewards

Observations Actions

Observations

Safe actions

Safe actions

Figure 4.4: The shielding principle from [3].

4.3 Algorithm 3: Shielded Reinforcement
Learning

The concept of a shield, proposed in [3], can easily be explained visually. A principle
sketch is therefore provided in Fig 4.4. The idea is to have a second system, called a
shield, that observes and analyses the actions selected by the reinforcement learning
agent. When an action is considered unsafe, the shield suggests another action that
is better.

4.3.1 Principles of shield synthesis
In [3], the shield is described as a finite state reactive system, which has an input
and output alphabet, and is technically defined as a Mealy machine. However, the
system operates in a similar way as the Büchi automata in the previous algorithms.
The system satisfies a given LTL formula by accepting an ω-language, and the
objective is that the LTL property shall be satisfied for infinite traces through the
environment.

It is stated in [3] that the algorithm achieves safe reinforcement learning by
considering the safety specification formulated in LTL and expressed as a “safety
word automaton” ϕs = 〈Q,Σ, δ, q0, Qm〉. The goal is achieved by solving a safety
game constructed from ϕs and an abstraction of the environment. The environment
behaves as an MDPM = 〈S,A, P, s0, ρ〉, and the abstraction ϕM can be described
as the original MDP, with behaviour restricted by the safety word automaton ϕs.
The game is played by the actual environment and the system, and in every step
the environment and the system takes turn selecting input actions and outputs. If
only safe states are visited, then the safety game is won.

An example of an MDP abstraction is discussed in [3], in which a water heater
serves as the observed system, which behaves as an MDP. The energy consumed by
the heater depends on the water level in the tank. The volume of the tank is known,
and it is also known that there is an inflow and outflow of water, where the volume
per time unit capacity is known for both the in- and outflow. With this knowledge
only, a safety specification can be formulated for keeping the water level within the
limits of running dry and overflowing; this is the abstraction of the water tank.

41

4. Algorithms and Methods

In [3], a shield is synthesized by transforming the safety specification ϕs and the
abstraction ϕM into a safety game. After this, a winning region in which only safe
states can be reached is computed, and then both the game and the winning region
are translated into the reactive system that constitutes the shield.

4.3.2 Shielded reinforcement learning
While a more detailed description of the shield construction can be found in [3], the
operation of the shield is quite straight forward. In each step of the reinforcement
learning process, the action a1 is selected by the agent. This action is forwarded to
the shield, and if a1 is unsafe according to the specification, it is substituted for the
safe action a 6= a1, and the environment executes a instead. It moves to the state
s′, and the agent receives the reward r′ which is used to update the Q-function for
the safe action.

There are two possible ways of using the obtained reward when an action a1 is
substituted for the safe action a. The first way is to punish the original selection of
the unsafe state; this is done by assigning the punishment r′ to a1. The second way is
to assign a reward r′ to the same unsafe action a, which may seem counterproductive.
However, while it does imply that unsafe actions are part of the final policy, the
unsafe actions are in this way always mapped to a safe action. Hence, the behavior
of mapping an unsafe action to a safe one is rewarded in the end.

The advantage of using any of the mentioned reward strategies is that the safety
specification ϕs is never violated in practice, as unsafe actions are never executed
in the environment but still punished in the Q-learning. The main downside is that
the shield must in both cases still be active when the learning phase is done and the
policy shall be executed.

A second subject that is discussed in [3] is the concept of action ranking. The
purpose of this is for the system to be less restrictive to the learning algorithm. The
idea is that in each step, the agent performs a ranking of some available actions,
such that rank = {a1, a1 . . . aj}. The action with rank one is prioritised according to
some known information, such as a desired general direction through a maze. The
ranking does not need to be performed on all available actions; the agent selects the
highest prioritised action in the ranked set, and only chooses actions outside of the
ranked set if all of the ranked actions are unsafe according to the specification.

With the three main algorithms described, two additional methods are discussed
below. They are not considered to be separate algorithms, as they target very
specific problems in general reinforcement learning. Rather, they are treated as
helper functions that may offer solutions to certain problems that occur in specific
learning situations.

4.4 Reward Shaping
Reward shaping, as described in [11], is an additional method affecting the behavior
of the agent in a reinforcement learning problem by giving out additional rewards
in a strategic manner to meet a criterion. In [11], the method is mainly motivated
by the problem of teaching an agent to perform a sequence of tasks, for example to

42

4. Algorithms and Methods

visit certain states of an MDP in a specific order. It is shown that this can be done
by the use of a potential function.

4.4.1 Potential based reward shaping function
According to the definition in [11], the reward shaping function has the structure
F : S × A × S → R for an MDP. This is also valid for the labeled MDP type
M = 〈S,A, P, s0, AP, λ, ρ〉 considered in this thesis. By selecting the potential
reward function as

F (s, a, s′) = γΦ(s′)− Φ(s) (4.5)
the value of selecting an action in a particular state s and then transitioning to
another state s′ can be valued in terms of the next state and the current state.
Here, γ is the discount factor of the reinforcement learning algorithm, and Φ can
be seen as a “gravitational pull” (or any other type of physical potential, such as
voltage).

In the experiments constructed on gridworld MDPs in [11], a Manhattan distance
to a desired goal state is considered as a basis for the potential function. The
Manhattan distance between two points s1 and s2 in a cartesian coordinate frame
is given by

Manhattan(x1, y1, x2, y2) = |x1 − x2|+ |y1 − y2| (4.6)
In [11], a probabilistic MDP environment is considered. In each state, the prob-

ability of going in the intended direction upon selecting an action a is 80% while
the probability of going in any other direction is 20%. Therefore, it is expected
that the agent on average will perform 0.8 steps in the Manhattan direction per
RL algorithm time step, so the weight 0.8 is assigned to the Manhattan function to
accommodate for the probabilistic behavior of the MDP.

As a positive reward shall be handed out for a step in the direction towards the
goal state sgoal, Φ(s) can be selected as −Manhattan(s, sgoal)/0.8 and then

F (s, a, s′) = γΦ(s′)−Φ(s) = −γ 5
4Manhattan(s′, sgoal)+ 5

4Manhattan(s, sgoal) (4.7)

If s′ is closer to sgoal than s is, it is easy to see that F (s, a, s′) will provide a positive
reward.

4.4.2 Applications
As mentioned previously, this method is in [11] applied to problems where certain
states in an MDP are to be visited in a sequence. This is just one of the possible uses
of this function, and the function is in this work mainly used due to its independence
from state space dimensionality.

As the potential is formulated as a distance between two points in a grid world
MDP, it can be used in scenarios where the state space dimensions make exploration
very time consuming. As it is often reasonable that some knowledge of the MDP
strucure and where the goal regions are is available, this function can be imple-
mented with limited but sufficient knowledge of where to navigate in an MDP, and
particularly in a grid world example. Next, an additional method for handling large
state spaces in RL problems is described.

43

4. Algorithms and Methods

4.5 Advice Based Exploration

Advice based exploration is in [10] motivated by the previously mentioned MDP
state space dimensionality problem. It is noted that practical possible applications
of reinforcement learning will most often involve problems with very large state
spaces, and a method to handle these situations is therefore crucial.

A solution is presented in the form of advice based exploration, and advice is
here described as a softer way of manipulating the development of an optimal policy
in contrast to a harder constraint specification. In practice, the advice is in [10] im-
plemented on the same basis as the three previously described TL constrained RL
algorithms, as LTL specifications formulated as automata are used in the reinforce-
ment learning loop to provide the advice for the agent. An MDP and an automata
are used in an online execution similar to the one proposed in [1].

There are two important features that can be extracted from the method de-
scribed in [10]. Firstly, the situation in which the agent enters a dangerous state is
considered. In such a case, the automaton of the LTL formula may in certain cases
reach a dead end, which is entirely possible during the learning phase even if the LTL
formula forbids it. In practice, reaching this dead end implies that learning cannot
proceed in a useful manner as the automaton which is used in the Q-function up-
date is stuck. Therefore, in such situations the automaton is returned to its previous
state in order to be able to continue the learning.

The second feature that is worth noting is the so-called background knowledge
function. This is described as a function that can be defined manually, arbitrarily,
and reasonably with respect to the available information about the MDP. As men-
tioned in an example in [10], a background knowledge function could be the number
of steps required to reach a specific goal state from the current state.

Using the notation of automaton dead ends and the background knowledge func-
tion, the advice function central to the work in [10] is split into two properties.

• Advice guidance implies in a grid world scenario that actions taken in the
direction of a goal state are recommended by the guiding function.

• Advice warnings imply that, by in each MDP state defining a subset of actions
leading to the previously mentioned automaton dead end, undesirable actions
are sorted out.

The key elements to take away from this is thus that it is often reasonable
to assume that a distance based function, such as the one described in [10] or a
potential function described in [11], can be obtained. Another interesting feature of
the method in [10] is the advice warnings, which are given before transitioning to an
undesired state. The use of this function suggests that some knowledge of the next
state is available before actually making the transition, and that this information
can be used to disregard dangerous transitions by one step ahead predictions.

44

4. Algorithms and Methods

4.6 Comparing and Combining Algorithm
Features

In many practical situations, some of the elements in each algorithm described so far
are very similar to parts in other algorithms. Therefore, the different algorithms are
here viewed as variants of LTL constrained reinforcement learning methods, where
each method has a key feature that differentiates it from the others. These key
features are used to construct new proposed algorithms that utilise different types
of available information.

It is very important to underline that the key features of each method may make
the method hard to compare to the others, because it may involve having access to
additional information that the others do not have. Therefore, it seems irrelevant to
compare the methods in terms of “which one is better”, but it is highly relevant to
instead compare them in terms of “how does this particular additional information
affect learning”. In this setting, all comparisons of the methods illustrate how and
why they work, and not which one is superior to the other. However, before the
key features from each algorithm are described, features that apply to all of the
proposed algorithms are covered.

4.6.1 General methods
Before describing and comparing the differences between the three composite algo-
rithms that are experimented with in this work, some general features that apply to
them all are considered.

Firstly, as described in Section 4.3, the concept of shielded reinforcement learning
implies that actions selected by the agent are monitored by the shield and corrected
if the shield determines that it will lead to a dangerous state. For this to be possible,
some information about the next state and whether or not this is dangerous is to
some degree necessary in the construction of the shield. Based on this, a reasonable
assumption to make is that in a certain MDP structure such as a grid world, the
next state can be crudely estimated one step ahead. For example, if the action N
for north is selected, a reasonable prediction of what the next state will be is the
state north of the current state.

Similar to the strategy for avoiding the dead end automaton states described
in [10], a shield inspired assumption is made in all proposed algorithms. When an
action that leads to a dangerous state is selected, the agent receives the punishment
for that action selection. However, in practice, neither the MDP state nor the
automaton state is in any algorithm updated to the corresponding dangerous and
possible dead end states. This is to avoid getting stuck in bad states and halting
the learning procedure. One way to look at this is to imagine that a “border” is set
around the bad states, and the agent learns to avoid them using the same knowledge
as in traditional reinforcement learning problems, and only actually transitioning
to the dangerous states is avoided. Despite not being a very large change to the
development of the policy, this procedure is not technically model free as a one step
ahead prediction is made; this can be argued to also apply to both the shielding
method and the advice learning technique.

45

4. Algorithms and Methods

4.6.2 Proposed algorithm 1: The LTL constrained RL
algorithm

The algorithm described in Section 4.1 performs Q-learning for a product between
the MDP and the Büchi automaton representation of the LTL specification, using the
online execution. Therefore, the key feature of this algorithm is considered to be the
usage of the deterministic Büchi automaton as opposed to the more complicated non-
deterministic version. As such, the LTL specification is formulated as an automaton
that can have both marked and forbidden states, regulating the reward supplied to
the agent, and the transitions are formulated using the atomic propositions of the
MDP.

This algorithm is in its simplicity considered to be the baseline reinforcement
learning algorithm, where the behavior is specified by an LTL formula. The formula
is realized by an automaton, and the type of automaton that is necessary depends
on the specification at hand. The only modification to the algorithm proposed in
[1] is that the total reward consists solely of the positive and negative rewards that
are delivered when the automaton enters a marked or forbidden state in the online
execution.

4.6.3 Proposed algorithm 2: LTL constrained RL algorithm
with detached accepting frontier

The second reference algorithm, described in Section 4.2, is the algorithm that uses
the online execution of the limit deterministic Büchi automaton to fulfil the LTL
specification. In the practical cases considered here, the LDBA is found to be
equivalent to the DBA. This makes it hard to argue for the difference between
algorithms, but there is one more property that the original paper discusses, and
that is the accepting frontier function.

The accepting frontier function in the LDBA constrained algorithm in [9] and [4]
is defined for generalized Büchi automata, described in Section 3.6.4. The algorithm
can handle language specifications requiring the visiting of several sets of marked
states infinitely often, and the accepting frontier function is here intended to shift
focus to another set of accepting states once an accepting state set has been visited
in the automaton. Inspired by this mechanism, the idea is to detach the principle
of an accepting frontier function from a specific automata type, and formulate it for
simpler automata models.

Consider an automaton Bϕ = 〈Q,Σ, δ, q0, Qm, Qx〉 representing an LTL specifica-
tion ϕ. Furthermore, extend the definition of the automaton to incorporate coloured
states according to Section 3.4.1, so that the formal definition of the automaton be-
comes Bϕ = 〈Q,Σ, δ, q0, Qm, Qx, C, χ〉. In this case, a subset of Q can be defined as
the set of states in the automaton that are not necessarily marked, but crucial to
visit in order to finally arrive in the marked state or states.

With this setup, an accepting frontier function is now defined similarly to Sec-
tion 4.2.2. In the second proposed TL constrained RL algorithm of this work, the
accepting frontier function is in each episode initialised as a set of coloured states
called the frontier states, in the LTL specification automaton Bϕ. These need to be

46

4. Algorithms and Methods

visited in order to get to the final state. This frontier function can be considered as
a detached observer function that has access to the coloured states and the current
state of Bϕ, which is far from unreasonable as the specification is defined by the
user.

The procedure in the algorithm is identical to that of the first proposed algorithm,
except that an additional positive reward can be supplied to the agent if it enters
a frontier state. When doing so, the frontier state is removed from the frontier
set, implying that this type of frontier reward can only be handed out one time
per frontier state until all frontier states are visited. Once the frontier state is
emptied, the procedure can repeat itself, ensuring a balanced reward distribution to
the frontier states.

As it is still necessary to provide both negative rewards when the agent enters
forbidden states and positive rewards when it enters a marked state, the frontier
reward is considered an additional feature that can be added to the first proposed
algorithm in Section 4.6.2.

4.6.4 Proposed algorithm 3: LTL constrained RL algorithm
with detached accepting frontier and potential based
rewards

The third algorithm draws inspiration from the shielded reinforcement learning de-
scribed in Section 4.3, the reward shaping potential function strategy in Section 4.4
and the advice based learning of Section 4.5.

Firstly, the shielded reinforcement learning algorithm [3] raises the important
question of “do we treat all MDPs equally?”. In many practical scenarios, conclusions
or predictions can be made about the system that the MDP describes; from this,
an abstraction can be made and analysed, even if the procedure after this is not
necessarily shield synthesis.

For instance, having knowledge of that a system behaves in a predictive manner,
such as a water tank that can be either filled or emptied as in [3], can allow the user
to model an abstraction where an action, such as supplying water, in most cases
leads to the state of the tank water volume being raised. Similarly, an abstraction
for a navigation transition system can be formulated as a grid world, and knowledge
of what will probably happen when selecting for instance the north direction. With
this information, there are still differences between the abstraction and the actual
environment, such as unknown transition probabilities and unknown locations of
the forbidden states. With this said, not having reasonable knowledge of these
underlying structures is a severe disadvantage compared to having accessed to this
additional information.

Secondly, with an underlying MDP structure known, the reward shaping strate-
gies of [25] can be used. In this third proposed algorithm, the potential based
reward function from Section 4.4 is implemented as an MDP observer function that
has access to the current state that the MDP is in, the next state that a selected
action leads to, and a set of states from which a goal position can be formulated.
To formulate the goal, two strategies are considered.

47

4. Algorithms and Methods

• The goal is initially a set of unvisited MDP states, and it is desired to go in the
general direction of these. It is not desired to stay in one of these states only,
so once reached, the state is removed from the set, much like the accepting
frontier set of the LTL automaton, but for the MDP. The goal is now all of
the remaining unvisited states, and the potential reward for a transition will
be based on the average Manhattan distance to all remaining states in the set.
This method is suitable when the exact position of a goal state is unknown,
but a general region can be guessed.

• The goal is a list of states that must be visited in sequence. Once a state in
the sequence is visited, it is removed from the list, and the next goal becomes
the next state in the list. This version is suitable when an exact state sequence
must be executed.

The usage of an additional function that provides a potential between the current
state and a goal state is very similar to the approach of advice learning, where
knowledge about going in the direction of the goal state is provided. The motivation
behind implementing the potential based function is that the automaton strategies
assume that the agent is able to find an accepting trace, or part of it, through the
MDP and only after that receive a reward that reinforces this behavior. However,
this assumption might not be fulfilled for certain combinations of MDPs and LTL
specifications. In [25] the problem that is illustrated is the sequential state visits
problem, and in [10] the problem of large state spaces is the main motivation behind
these types of functions. Both these types of problems are investigated further in
Section 5.1.

In the practical implementation of the third composite algorithm, the additional
potential based reward is added to the method of LTL constrained reinforcement
learning with detached accepting frontier function described in Section 4.6.3. As the
forbidden states are not known, it is impossible for the potential function to steer
the agent away from these.

In cases where the first form of potential is used, the accepting frontier function
is also necessary, since upon arrival to a group of states included in the potential
function, a specific order or state to visit is not specified in the potential function.
For instance, if the specification says that the agent must observe a label p before
going to the goal state, and the potential is set to explore a region in which that
label is believed to be, only the accepting frontier function would provide incentive
to find the exact location of the state in which p is.

4.7 Summary
The chapter describing the core algorithms in this work starts with the introduction
of the first algorithm gathered from previous research in the field. It is described in
[1] and is here referred to as the temporal logic constrained reinforcement learning
algorithm. Within this section, the Büchi weighted product MDP is explained and
exemplified, followed by a note on the equivalence between online execution of the
product MDP and the Büchi and MDP pair. The first algorithm is then presented
in terms of a pseudo-code.

48

4. Algorithms and Methods

The second algorithm from previous research, originally described in [9] and
[4], is then described. It utilizes the concept of a limit deterministic and generalized
Büchi automata, and also mentions a so-called accepting frontier function to organize
the different acceptance sets in the automaton, both of which are described. The
details behind the reward function is then touched upon, followed by a pseudo code
description of the algorithm for clarity.

The third algorithm, described in [3] regards the concept of shielded reinforce-
ment learning. Here, descriptions on how a shield is synthesised is provided, followed
by a portrayal of the actual algorithm; however, a pseudo code is not necessary for
this algorithm as it would not do the core concepts of the algorithm justice.

Next, reward shaping, specifically the Manhattan distance potential function,
is described along with a note on its applications. After this, another additional
method for handling large scale systems called advice based exploration is illustrated.

The section describing the composite algorithms contains the algorithms that
are implemented in this work. They are called the proposed algorithms and take
inspiration from the key elements of the algorithms from previous work in the field.
The first of the three is the standard LTL constrained algorithm, while the second
proposed algorithm is the LTL constrained RL algorithm with a detached accepting
frontier function. The last algorithm builds upon the second and further uses the
Manhattan potential function to perform guided learning.

49

4. Algorithms and Methods

50

5
Problems and Measurement

Techniques

This chapter firstly discusses various problems in temporal logic constrained rein-
forcement learning, in order to evaluate the strengths and weaknesses of the algo-
rithms and methods described in the previous section. Secondly, the fundamental
methods for measuring the performance of the algorithms are described.

5.1 Evaluating LTL Constrained Reinforcement
Learning

The goal of the first part of this project is to investigate LTL constrained reinforce-
ment learning by answering the research questions in Section 1.4. The questions are
focused on the potential problems or conflicts that may arise when trying to solve
certain problems that are relevant to many practical reinforcement learning prob-
lems. Furthermore, the interesting problem of integrating additional information
such as potential into the strategy is considered. Lastly, it is of interest to compare
the performance of all three proposed algorithms; how do they compare to classic
Q-learning and what are the reasons for the potential similarities or differences?

To answer all of the questions, a collection of scenarios must be formulated.
Considering the potential conflicts of interest within the different objective functions
of the algorithms, combinations of MDP structures and LTL specifications that
can potentially put the algorithms in ambiguous situations are highly interesting.
Furthermore, problems where it is expected that the algorithms will perform very
differently are also of interest.

To answer the second research question, focus lies on ways of improving the
convergence to the optimal solution of the reinforcement learning problem by the
use of additional information, such as the potential function, and problems are
formulated with this in mind. Lastly, as question three addresses the performance
of all the proposed methods, there is a requirement on the type of data that must
be collected during the experiments, which is why a thorough motivation for the
selected measurements is needed.

In the next section, three types of problem categories are explained, and after
that a description of the necessary performance measurements is provided.

51

5. Problems and Measurement Techniques

5.2 Reinforcement Learning Problem Categories

For all reinforcement learning problem categories, the MDP is a grid world described
by the tuple

M = 〈S,A, P, s0, AP, λ, ρ〉 (5.1)

This MDP is always probabilistic to some degree. The set of actions is in all cases the
four cardinal directions A = {N,E, S,W}, and the initial state s0 is for simplicity
always the origin in the grid world Cartesian coordinate frame. Parameters that
differ between the problems are the size of the state space S, the set of atomic
propositions AP , the state labeling function λ and the exact values of the probability
to transition between states.

5.2.1 Safe navigation to destination

This category concerns the general MDP M where the states, actions, proba-
bilities, and reward function are described above. The atomic propositions are
AP = {p, q, r}, and the state labeling function maps the label p to the final desti-
nation or goal state, q to certain MDP states that are considered dangerous, and
finally r to intermediate states that can be visited before the goal state but are not
mandatory to visit.

The specification that is enforced has to steer the agent to the goal state, either
via an intermediate state or directly towards the goal, and the LTL formula that
expresses this is

ϕ = ♦
(
p ∨ (r ∧ ♦p)

)
∧�¬q (5.2)

where eventually, either p or the alternative r and eventually p will hold, while q is
never true. Due to the fact that the specification requires p to hold infinitely often
once eventually reached, the language that satisfies this property is an ω-language
and can only be realised by an automaton that can handle these languages, and
similar examples can be found in [2].

In simulated cases it is not necessary to require infinite repetition. In the safe
navigation to destination setting, the problem can be considered solved when the
agent converges to a policy that ends in the destination state. However, this is only
a practical distinction. In this work, it can be assumed that all specifications require
Büchi automata realisations.

This setting is ideal for an initial experiment where classical Q-learning is com-
pared to a constrained reinforcement learning problem. Since temporal logic con-
strained reinforcement learning, both with an accepting frontier function and with
potential, should not behave differently in a setting where the standard Q-learning
algorithm can find a correct policy, this situation is useful to compare the proposed
algorithms performance in terms of execution time, convergence to the optimal pol-
icy and developed policy.

52

5. Problems and Measurement Techniques

5.2.2 Sequential state visits
Here the MDP is againM, but the atomic propositions are now {p, q, r, s . . . }. The
state labeling function maps, as before, p to the goal state and q to dangerous
states, but r, s and potential subsequent letters in the alphabet are mapped to
states which are necessary to visit in a specified order before reaching the goal state.
Upon reaching the goal state or a dangerous state, the agent must stay there forever.
An LTL specification for this behavior, with an increasing number of required state
visits, is

ϕ1 = ♦
(
s ∧ ♦p

)
∧�¬q

ϕ2 = ♦
(
r ∧ ♦(s ∧ ♦p)

)
∧�¬q

ϕ3 = ♦
(
t ∧ ♦(r ∧ ♦(s ∧ ♦p))

)
∧�¬q

...

(5.3)

This problem is interesting, because it describes a situation where the classic
Q-learning cannot, except in very limited scenarios, be used to find the optimal
policy. It cannot (in any practical scenario) receive a strong enough incentive to
find an intricate sequence by purely ε-greedy exploration and environment rewards,
compared to the TL constrained methods which supply the agent with rewards for
selecting a specific path through the MDP.

In a sequential state visits problem, the accepting frontier may prove useful
compared to the pure LTL constrained RL algorithm, which only receives rewards
upon visiting forbidden or marked states. In the case of the third of the proposed
algorithm, which uses potential, this problem may prove challenging if obstacle
avoidance is to be performed beyond the sequential state visits. Here, a conflict of
interest between the elements in the final method may arise.

5.2.3 Liveness and fairness
Other than safety specifications, there are specifications that enforce the repetition
of “good” behaviors. An example of such a specification is the liveness property.
This property, formally described in [2], is naturally an LTL property that cannot
be realized by finite words, or traces, in a corresponding automaton. Intuitively,
the property is in [2] defined as the ability for any finite prefix to be extended
into an infinite trace that satisfies the liveness property. An example of a liveness
specification that is used in this work is to demand that the agent travels back and
forth between two states, indefinitely.

Fairness in the context of liveness is in [2] exemplified as a problem where n
processes require service. The liveness specification may state that service of all
processes shall be repeated infinetly often, expressed as several infinite acceptance
conditions. If one of the processes constantly requests service, and also gets service
upon its request, this corresponding acceptance condition is fulfilled more often than
the others. This behavior might be valid according to the liveness LTL specification,
but it is intuitively considered to be an unfair strategy.

53

5. Problems and Measurement Techniques

A liveness LTL specification that is considered here is given by

ϕ = �♦p ∧�♦r (5.4)

Automaton realizations of this property can be found both in [4] and [2]. While the
latter uses a generalized Büchi automaton with two acceptance conditions that must
be fulfilled infinitely often, the former uses a standard Büchi formulation. Therefore,
it is interesting to see if there is a practical difference between these formulations,
and this problem thus investigates how important the selection of automaton is in
practical situations, and how each of the proposed algorithms handle a scenario
where there is no goal state to end up in.

5.3 Measuring Algorithms
To evaluate the algorithms, data on relevant properties must be collected when
running experiments in the different settings that were described previously. Five
different ways to measure algorithms are considered, but not all are used when
performing experiments.

5.3.1 Time and memory complexity
Time and memory complexity is a common way of determining what is expected
of an algorithm in terms of time and memory requirements [26], independent on
hardware. Complexity is expressed using the mathematical concept of function
order to compare the rate of growth of an algorithm. For two functions f(n) and
g(n), a brief definition of order is formulated according to [27] as

• f(n) = O(g(n)) if ∃ c > 0 such that for large enough n, f(n) ≤ cg(n).

• f(n) = Ω(g(n)) if ∃ c > 0 such that for large enough n, f(n) ≥ cg(n).

• f(n) = Θ(g(n)) if ∃ c, c′ > 0 such that for large enough n,
cg(n) ≤ f(n) ≤ c′g(n).

Then, the growth rate of f(n) can be expressed in terms of g(n). In this context,
f(n) is an algorithm while g(n) is a function in n, which can be viewed as “number
of elemental operations”. For example, a triple nested for loop where each loop
can execute n iterations has the time complexity of f(n) = O(n3). Some common
rates that can be found in [26] are the constant g(n) = c, logarithmic log(n), linear
g(n) = n, linear logarithmic g(n) = nlog(n), quadratic g(n) = n2 and exponential
rate g(n) = 2n.

This method is applicable to both time and memory requirements of algorithms,
but this way of measuring algorithms is not always necessary, and it does not always
provide a relevant statistic that is practically usable. In supervised learning, it is in-
teresting to study both computational complexity and sample complexity (how large
must the training set be to achieve learning), but in the more realistic reinforcement
learning setting, this is harder for a few reasons, as discussed in [28].

54

5. Problems and Measurement Techniques

• The environment with which the agent interacts does not provide labeled train-
ing and testing sets, so there is no “ground truth” to compare to, making it
hard to know the true number of interactions needed for learning.

• The information received by the agent is only “partly labeled”, since the agent
must maximise a long term reward while only seeing the current reward at a
given time instance.

• There is no clear segregation between training and testing; the time the agent
spends until convergence to the optimal policy occurs is dependent on the
interaction with the environment and other parameters such as the trade off
between exploration and exploitation.

In short, interacting with an environment makes it hard to measure performance
in terms of complexity. A more common way of measuring the performance is there-
fore to measure directly how many interactions with the environment are necessary
before the reinforcement learning algorithm converges to an optimal policy. There-
fore, the most important parameter to measure is the number of episodes needed
for convergence.

5.3.2 Convergence of entries in Q-table
Firstly, the term convergence must be explained. In the scope and context of this
thesis, the term implies the specific development of a value as a function of discrete
time, such that the value approaches a region where the fluctuations of that value
are practically bounded around some arbitrary constant with an arbitrary tolerance.

In a tabular Q-learning problem, the values are updated as the agent collects
rewards and moves around in the environment. If a problem is solved correctly, the
agent develops a path through the environment, stops exploring additional states and
thereby ceases to collect more rewards. This practically means that most elements
in the Q-table are not updated anymore.

To see when an algorithm converges in a tabular Q-learning problem, one way
to do so is therefore to look at the average value of all entries in the Q-table versus
episode number. In this way, the development of the whole Q-table can be sum-
marised in one value per episode, and that value will stabilise when the elements in
the table cease to be updated for a sufficient number of episodes. Thus, the number
of episodes needed for convergence to the optimal policy is easily accessible.

The reason for using this measurement instead of going by total collected rewards
is that in a TL constrained RL setting, rewards are fairly sparse; on one episode,
the agent might only collect either +1 or −1, making the reward per episode mea-
surement very noisy. Therefore, Q-element value convergence is the most stable
measurement available in this context.

5.3.3 Rewards
Since the rewards that the agent receives are few and may come from either an
automaton, the environment or a potential function, it is interesting to see how

55

5. Problems and Measurement Techniques

much reward the agent receives per episode and how it is distributed across all
different types of rewards. Using this metric, it can be seen approximately how
many intermediate states, goal states, dangerous states and automaton goal states
are visited during an episode.

5.3.4 Time
In this work, all experiments are conducted on the same hardware. Therefore, it
is in this case relevant to measure the time it takes for the machine to perform an
episode of any of the proposed algorithms. Since each algorithm performs different
sub-processes that the other algorithms do not, it is interesting to see if any slightly
superior performance is worth it in terms of execution time.

5.3.5 Relevant parameter development
In reinforcement learning, it is common to change parameters between episodes
during training. This is often done to manipulate the trade off between exploration
and exploitation, but may also be done to regulate how much neighboring Q-table
values shall influence the current Q-function value. Therefore, to see if there is
a significant relation between convergence and parameter value development, all
parameters that change with episode number are measured in the experiments of
this project.

5.3.6 Policy visualisation
In these types of problems, the Q-table may converge while still not following the
desired LTL specification. For example, if the LTL formula states that a sequential
state visit shall be performed in a large MDP state space, it may not be possible
to find all sequential states if they are very far apart. Thus, showing the resulting
policy is crucial to determine if the policy is correct or not.

This can be done by running a greedy action selection algorithm on the given en-
vironment and potential automata, and the procedure is illustrated in the algorithm
of Fig 5.1.

Result: Optimal policy from converged Q-table
Initialise
MDP M (and automaton B if present).
while MDP (or product MDP) state is not the goal state/ accepting state do

Choose optimal action a∗ = max
a

Q(s⊗, a).
Record a∗ and MDP state s⊗ ∈M.
Perform a∗ and go to s′⊗ from s⊗.
Set current state s⊗ to s′⊗.

end
Return the optimal action sequence and the optimal state sequence

Figure 5.1: Extracting the optimal policy from a converged Q-table.

56

5. Problems and Measurement Techniques

The state sequence that this pseudo code snippet produces can then be visualized
in the grid world so that its correctness can be determined visually.

5.3.7 Averaging over several experiment runs
To provide a stable measurement, and to examine the repeatability of the exper-
iments, several runs of each algorithm can be made. Then the average result in
terms of time, reward and mean Q-table element value can be derived. The optimal
policies of each run, which hopefully are the same, can be visualised to see if all of
them follow a single path through the MDP.

5.4 Summary
After having described the proposed composite algorithms central to this work in
the previous chapter, the function of this chapter is to discuss the situations in which
they are tested.

The chapter starts out with a motivation touching on how and why the algo-
rithms are tested. Next, three problem categories are formulated in a grid world
context; safe navigation to destination, sequential state visits and finally liveness
and fairness.

After this, a formal description of the concepts of time and memory complexity
is given, but along with this comes a motivation for why these ways of measuring
algorithms are not used in this work. This is followed up with a description of
the measurements that are used to describe performance; these are convergence
of entries in the Q-table, rewards, processor time, non-static parameters, ways to
visualise the final policy and finally the concept of running several experiments and
averaging their data.

57

5. Problems and Measurement Techniques

58

6
Implementation of Research

Platform

Here, the work behind creating the small research platform is described. If detailed
information about the project is needed, the entire source code is available on Github
at github.com/CJHeiker/master.

6.1 Environment
A necessary part of this project is the implementation of an environment. This
section outlines the technical specifications of this MDP structure and the imple-
mentation of the platform.

6.1.1 Requirements
The grid world environment is selected because it is natural to interpret a transition
system as physically travelling through a square world. The standard probabilis-
tic grid world is represented by the MDP M = {S,A, P, sinit, AP, λ, ρ}, and the
implementation of it must in some way meet the following requirements:

• The state space is given by the set S = 〈s0, s1, . . . , si〉 where i = 63 or 255.
Furthermore, the grid world is always a square 8×8 or 16×16 grid of numbered
states.

• The action space is restricted to tower chess moves, such that
A = {N,E, S,W}, where it can be noted that it is not possible to stay in a
state. Furthermore, the actions are always available in every state.

• The probability map P may either be probabilistic or deterministic, mean-
ing the probability of transitioning is in the probabilistic case the transition
probability obtained from P (s, a, s′) is between zero and one, and in the de-
terministic case P (s, a, s′) gives either zero or one.

• For the initial state, sinit = s0 in all experiments, for simplicity.

• The atomic propositions are AP = {p, q, r, s, t, . . . }.

• The state labeling function λ maps the atomic propositions to different MDP
states. These are used by the automaton to evaluate the LTL specification.

59

https://github.com/CJHeiker/master

6. Implementation of Research Platform

• The environment reward function ρ maps transitions to a real number, and
the design of this function can be selected as needed for the reinforcement
learning problem at hand. However, this type of reward is only used in the
standard Q-learning case, without an LTL specification.

To clarify, the grid world is “square” in the sense that the graph representation
of the MDP states and transitions can be ordered in a Cartesian coordinate frame,
where the coordinates are given as a function of the state index. Using this property
a state index can be translated to a coordinate in the plane by

y = floor
(
i

d

)
x = i− y × d

(6.1)

where x and y are the column and row indices of a 2D grid, i is the state index, and
d is the dimension of the grid world (d = 4 for a 4× 4 grid world). For example, the
coordinates for state i = 5 in a 4× 4 grid world are y = floor(5/4) = floor(1.25) = 1
and x = 5− 1× 4 = 1, which holds if compared to the grid world in Fig 6.1.

Moreover, according to the transition probabilities it is possible to for example
perform the action a = W in a state which is graphically considered to be the
western border of the grid. These types of transitions are interpreted as self loops,
and the intended destination state is the same as the origin state.

6.1.2 OpenAI Gym and the Frozen Lake environment
With the basic features required for the environment explained, it is now time to
describe the implementation of it in the context of the other parts of the small
research platform that is implemented in the first part of this project.

In the platform, it must be possible to generate MDPs which can be interacted
with and visualized, run all of the proposed algorithms, create tests from which data
can be extracted, and finally visualise the statistics. The platform is implemented
entirely in Python.

(0, 0)s0 (1, 0)s1 (2, 0)s2 (3, 0)s3

(0, 1)s4 (1, 1)s5 (2, 1)s6 (3, 1)s7

(0, 2)s8 (1, 2)s9 (2, 2)s10 (3, 2)s11

(0, 3)s12 (1, 3)s13 (2, 3)s14 (3, 3)s15

Figure 6.1: Example of indexed coordinate states.

60

6. Implementation of Research Platform

The first attempts to create an MDP environment were made entirely from the
ground up, defining the state space, actions and other units of the MDP using
fundamental data structures in Python. However, some unforeseeable problems that
appeared in later stages of use required extensive work to straighten out. In short,
an entire structure based on a flawed foundation is very hard to change from the top,
as both the errors and the required solutions propagate through the whole structure.
A more stable starting point is therefore to use an existing MDP implementation as
a basis, and customise it where necessary.

The OpenAI Gym [29] is a very popular Python toolkit designed entirely for
reinforcement learning. Its purpose is to provide open source implementations of
different MDP environments, often modeled on physical phenomenons such as in-
verted pendulums, balancing jointed bodies and classic Atari games.

The environment that is interesting for this work is the OpenAI Gym “Frozen
Lake” environment. Placed within the “toy text” category of environments, Frozen
Lake is a 4 × 4 probabilistic grid world MDP with one initial state and one state
labeled goal. The remaining states can be either slippery ice or dangerous water,
and the objective is to get from the initial state to the goal state without accidentally
slipping into the water.

The Frozen Lake is a good basis that can be modified, so the source code of the
entire OpenAI Gym is downloaded and installed locally as a new Python project,
instead of using it as a “black box”, which is how it is often used if no modifications
are to be made to it.

6.1.3 Required modifications to Frozen Lake
The following properties of the standard Frozen Lake environment needs modifica-
tion:

• Frozen Lake offers two predefined sizes of grid worlds, 4 × 4 and 8 × 8. This
needs to be extended so that any sized square grid world can be used.

• Frozen Lake is probabilistic with unknown probabilities in its original descrip-
tion. There is a need to implement both deterministic environments and create
a way to assign known probabilities for the non-deterministic versions.

• The only possible state labels are S (Start), F (Frozen), H (Hole) and G
(Goal). For this application, the MDP must be extended so that arbitrary
atomic propositions can be set as state labels in the Frozen Lake MDP.

• Frozen Lake offers a text based visual interface which becomes insufficient
when more complicated state labels are added, and must therefore be ex-
changed for a new one.

The solutions to these problems are presented and discussed in the following sections.

6.1.4 State space extension
As Frozen Lake already describes a grid world, many parameters such as the number
of actions and transitions follow a certain pattern. This is apparent in the standard

61

6. Implementation of Research Platform

implementation, as there are several ways of changing the standard grid, and this
implementation can be viewed on the Github page of OpenAI Gym Frozen Lake
[30]. When creating the environment object, there is a choice between a standard
4× 4 and an 8× 8 grid world both with F and H states, and a randomly designed
grid world of any square dimension can also be selected.

The two standard alternatives are represented as character arrays. The charac-
ters are the standard state labels S, F , H and G. The arrays are selected internally
from a look-up table by the keywords “4x4” and “8x8” which the user provides as
an argument to the environment constructor. As random environments are not in-
teresting here, the way of implementing arbitrarily sized grid worlds is done in the
style of character arrays. Any square character array is valid as an environment
map, provided it has the correct characters in it. Therefore, the only modification
done here is to instead provide the environment map from outside the constructor,
and send it as an argument instead. In that way, the user has the ability to define
the map freely.

6.1.5 Deterministic representation
The Frozen Lake environment does have a constructor argument that regulates if
the grid world is deterministic or probabilistic [30]. In the deterministic case, only
one transition is defined for a selected action and state. As this function is already
implemented, this part of the standard implementation is left untouched.

6.1.6 Custom transition probability assignment
The environment constructor assigns probabilities automatically by considering that
the agent either goes to an intended state, considered to be “forward” in the coor-
dinate frame of the agent, or slipping to the left or right state of the current state.
These probabilities are fixed to 0.33, meaning it is as likely to go to one of two
incorrect next states as it is to go to the correct next state, and it cannot slip
“backwards”.

This is not a fitting probabilistic setup for this project. Instead, this method is
redesigned to take a total probability p of going in any unintended direction, assign
the probability of 1−p of going in the right direction, and distribute three (instead of
two) probabilities that all sum to p among each incorrect next state corresponding to
the left, right and backwards incorrect state. The pseudo code for the new method
is shown in Fig 6.2.

A special case is defined when the agent moves to a dangerous state, in which
the probability to remain there is set to one. Note that the agent may transition to
a dangerous state in the same manner as to any other state, but once it gets there
it cannot escape.

6.1.7 State labels and state labeling function
In the RL algorithm, interactions can be made with the environment via the step
function. This function updates the state of the MDP, and returns a flag describing
if a goal state or a forbidden state is reached. As this project requires an MDP state

62

6. Implementation of Research Platform

Result: Transition probability mapping P
Input: Probability p of going in any unintended direction
Initialise P (s, a, s′)→ [0, 1] to zero
for States s ∈ S do
for Actions a ∈ A do

Assign a, a1, a2, a3 and aN as the intended, left, right, backwards and null
actions
if s is a dangerous state then

Assign the stay in state probability P (s, aN , s) = 1
else

Compute the resulting states s′0, s′1, s′2, s′3 deterministically
Randomly select p1, p2 and p3 such that ∑3

i=1 pi = p Select p0 = 1 − p
Assign the probabilities
P (s, a, s′0) = p0
P (s, a, s′1) = p1
P (s, a, s′2) = p2
P (s, a, s′3) = p3

end
end

end

Figure 6.2: The new transition probability assignment method.

labeling function, the ability to beforehand assign custom labels and also to access
these when performing an MDP step is needed.

The state labels are assigned by sending a state label array similar to the MDP
state construction character array as an argument to the constructor. A function
that obtains the state label, taking a state as an argument, is also implemented in
the MDP class.

6.1.8 Visualising the environment
The new grid world visualisation runs through the character array that defines where
dangerous states, intermediate states and the goal state of the MDP are. It then
creates a matrix representation of the grid world, where different state labels have
different identification numbers. Then, a heat map with a custom colour associated
with each identifier is plotted. The initial state is marked in green, the intermediate
states are yellow, dangerous states are blue and the goal state is red. Furthermore,
the states are indexed by their coordinates.

6.2 Automata
Intended to be used in parallel with the MDP, the automata class must have a
similar type of step function as the MDP implementation. The automata class is
implemented with the following properties in mind.

• There are different types of automata. In this project DBAs and GBAs are

63

6. Implementation of Research Platform

the ones that require implementation. DBAs have one accepting state, and
are designed to realise infinite accepting sequences, while GBAs have several
accepting state sets where the acceptance condition is that all of these sets
must be visited infinitely often.

• The step function takes a list of MDP state labels (atomic propositions) and
performs a transition to another state if possible, returning the new state.

• As in the MDP implementation, a reset function is necessary to enforce the ini-
tial state when starting a new episode after having ended up in an automaton
sink state.

• Marked and forbidden states must be described.

• The optional accepting frontier function is dependent on the existence of au-
tomaton colored states, which are not the same as marked and forbidden states,
although they may coincide in some cases.

The most challenging implementation step of the automaton is the definition of
actions and transitions. As it is known what labels can be expected from an MDP,
each action can be implemented as a function that takes a list of boolean values rep-
resenting the availability of a label in an MDP state. If the predefined configuration
of label values corresponding to the transition condition in the automaton is true,
the function returns the next state. Upon constructing the automaton, all actions
can be defined accordingly, and then a list of source state and action index pair
tuples will ultimately link the source state to the destination state via the action.
The functions are implemented as anonymous lambda functions, and an example of
this follows below.

Consider the transition between automaton state q0 and state q1. There are
three labels that can be true or false, p, q and r. The transition condition between
q0 and q1 is p ∧ q ∧ ¬r, and in this case the lambda function defining the transition
condition is given by

lambda labels: q1 if labels(0) and labels(1) and not labels(2) else NaN (6.2)

If this is the action with index three in the list of all actions, and it can be
performed from state q0, then a transition tuple is defined by (q0, a3), effectively
linking the state q0 to state q1 via action a3 that can be performed depending on
the truth values of the labels p, q and r.

6.2.1 Accepting frontier
The accepting frontier is dependent on the existence of coloured states, but the
function itself is implemented outside of the automaton class. The frontier states
are defined as a simple map just as the marked and forbidden states. The option
to include frontier states is not necessary if the frontier function is not used. The
frontier function is ultimately implemented exactly as Section 4.2.2 describes.

64

6. Implementation of Research Platform

6.3 Statistics
The generated statistics are slightly different between each experiment, which makes
it easier to have individual statistics subroutines for each experiment. In general,
the plots that are generated show the development of the average Q-table value
where the dimension describing automaton states is summed, making the trajectory
comparable to the standard Q-table which does not have this dimension. The tra-
jectory is normalised to the individual maximum for easy comparison. An example
of this is seen in Fig 7.3, describing the statistics of the first experiment.

In the second plot of Fig 7.3, the average reward distribution over environment,
automaton, accepting frontier and potential rewards for an algorithm is shown as a
bar graph. This is not normalised, as it is important to compare the actual levels of
the distribution. Below the reward distribution comes the exploration development,
which describes the value of the exploration parameter as a function of episode
number.

The episode time is also shown, below the exploration development in Fig 7.3,
but it should be noted that the shown statistic is a moving average of the actual
time, which is noisy. This is considered reasonable, as the average value over a
number of subsequent episodes still provides enough information about the time it
generally takes for one episode.

The state sequence derived by stepping through the converged Q-tables as de-
scribed in Section 5.3.6 is both visualised as a trace through a coordinate frame, and
as a curve describing the state identification number versus step index. Examples
of this can be seen in Fig 7.4. In the coordinate frame plot, it can be observed how
many times the agent enters each state in the policy, and in the chronological plot
it can be seen when these steps were taken, as this cannot always be deciphered
from the coordinate trace. It is very important to note here that when an experi-
ment is performed, a list of MDP states is provided containing all of the interesting
states that need to be contained in what is regarded as a successful typical state se-
quence derived from the Q-table. This list does not care about order, and therefore
a visualised MDP trace might still need visual inspection. Furthermore, if several
experiments are run, the algorithm can generate one or more example traces per
experiment, and then visualise the first one that contains the desired states. If it is
desired to see how many of the example traces that are successful, each of them can
be inspected in the text file that is generated after each experiment. This file also
contains other data of the experiment, such as:

• Date and time for the experiment.

• Number of MDP states.

• Probabilities for all transitions.

• Information about the automaton used.

• Experiment ID, and other information of the parameters used in the RL loop.

• All the policy candidates for each sub-experiment a), b), c) and d).

65

6. Implementation of Research Platform

6.4 Experiment Implementation
An experiment is defined as a separate Python file, and is always divided into four
sub-experiments that are to be compared. In each experiment an MDP is defined,
followed by an automaton, and configurations regarding accepting frontier and po-
tential. All settings required for the experiment, and for the statistical plots are
made in this file.

An important feature of the experiments is that they can be run several times
to provide a more reliable measurement. The defined transition probabilities of the
MDP are not changed between these runs. Thus, while the transition probabilities
are identical between runs, the selected transitions will still change according to
the outcome of the probabilistic scenarios, which can affect learning. If a very high
probability to step in the wrong direction is selected, it is recommended to perform
more runs than if the probability is very low or zero. When all runs are performed,
the average Q-entry, reward distribution, and time per episode is averaged between
episode number over all runs. The exploration development does not change between
runs, and does not need to be averaged over the runs.

The way that the exploration factor ε, described in Section 2.4.2, evolves through
episodes is called exploration development. This development is in all experiments
exponentially decaying according to

ε(k) = (εmax − εmin)e−βk + εmin (6.3)

where k denotes the episode number, εmax is the maximum exploration factor, εmin is
the exploration when k approaches infinity (and not the exploration factor value at
the last episode) and β is the exponential decay rate coefficient. This decay model is
selected because it is a bit more flexible than a linear model, but it can be changed
easily by replacing the episode dependent lambda function that implements it in the
main RL loop.

Furthermore, through εmin it is possible to define an exploration that does not
approach zero after all episodes have terminated. This possibility is included because
personal experience has shown that it is sometimes not possible to find a policy with
an exploration factor approaching zero.

6.5 Summary
The research platform is a cornerstone of the first part of this project, and this
chapter describes its implementation. Starting with the demands on the environ-
ment implementation followed by a description of the OpenAI MDP starting point,
details are given concerning the required modifications on the OpenAI Frozen Lake
environment that are made to fit this application.

A fundamental part of the implementation is the automata structure, which is
shown next, along with a brief description of the accepting frontier implementation.
Lastly, some details on how statistics are generated are provided, followed by a
description of the general structure of the experiment implementation. Here, a
function for the exploration factor development is provided as well.

66

7
Experiments

In this chapter, all experiments conducted in Part I are described in detail in terms
of environment, specification, setup, hypothesis, result and analysis. Results for
each of the experiments are shown in two figures; a statistics plot and a graph of
a typical state sequence derived from the converged Q-table. Before describing the
experiments in detail, it is necessary to describe the outline of each experiment and
motivate their design.

7.1 Experiment Structure
In each experiment, four different algorithms are used to solve a problem. In most
of the experiments, these algorithms are standard Q-learning, basic temporal logic
constrained reinforcement learning, the accepting frontier extended version, and the
extended version that uses both the accepting frontier and the potential function.
However, in a few of the experiments such as in the very last one, the test cases
are a bit different. In the last one, for example, only the algorithm that uses both
the accepting frontier and the potential function is used as this experiment mainly
explores properties of the potential function.

The problems are expressed as combinations between an MDP and a specifica-
tion, illustrating different scenarios from Section 5.2. In each experiment, both the
MDP and the specification automaton are presented and explained. Before describ-
ing the experiments, the parameters, MDP types and statistics interpretation are
covered.

7.1.1 Basic parameters
Each experiment is run ten times. The statistics shown in the first figure of each
experiment is an average taken over all ten runs, producing a more representative
and stable statistic than one experiment alone. The main reason for doing so is that
all environments are probabilistic, with the probability of going in an unintended
direction being 0.15. Additional to the ε-greedy Q-learning algorithm, the proba-
bilistic environment will cause variations in the learning process to some degree, and
it is therefore desired to show the average development between the runs.

All algorithms shown have the tabular Q-learning algorithm as a common de-
nominator. For this, the discount factor γ and the learning rate α are kept at 0.9
and 0.1 respectively through all of the experiments. In this thesis, the fundamental
Q-learning algorithm is not itself meant to be experimented upon, and therefore

67

7. Experiments

these parameters are not tuned any further.

7.1.2 Two grid world MDP sizes
The environment MDPs used in the experiments of Part I in this project are different
in detail, but there are only two categories in terms of state space dimension; 64 and
256. An environment with 64 states is a square grid world with dimensions 8 × 8,
and a 256 state MDP thus represents a 16× 16 grid.

The smaller environment MDPs are designed with the intent to eliminate prob-
lems related to dimensionality of the state space. Experiments conducted on this
type of MDP include the safe navigation to destination problem, along with sequen-
tial state visits and finally liveness and fairness, all described in Section 5.2.

For the last two experiments of Part I, 16 × 16 grid world MDPs are used, but
with the same actions as before and the affected attributes adjusted to accommodate
the higher state dimensionality. Moreover, these grids do not contain any danger-
ous states. The experiments conducted on these MDPs address exactly what the
experiments done on smaller grids avoid, and methods to solve state dimensional-
ity problems are tested. Again, all environments are probabilistic with the risk of
performing unintended transtions kept at 0.15.

7.1.3 Interpreting the results
The statistics plots firstly show the average Q-table element value. The reason for
displaying this value instead of the collected reward per episode is that in the setting
of TL constrained RL, this is a more stable measurement of the same property and
a more detailed motivation can be found in Section 5.3.2. Since the algorithms can
collect very different amounts of rewards during an episode, each corresponding Q-
element value plot is normalised to its individual maximum, which makes it easier
to (visually) compare the points of convergence of each algorithm.

Regarding the reward distribution plots, there are four sources that rewards
can be collected from; the environment, the marked and forbidden states of an
automaton, the detached accepting frontier function and the potential function. To
show which of the sources each algorithm uses the most, a reward type distribution
averaged over all 10 runs is provided. This distribution is not normalised in order
to show the actual relationships between the reward sources and algorithms. In the
plots, this is represented as a bar graph with the four categories on the x-axis and
the average reward displayed as a colour-coded bar where each colour represents an
algorithm.

Next, the development of the exploration factor ε is provided, one for each al-
gorithm. The time measured between starting and finishing an episodes is also
provided, and this measurement is also averaged over all runs. As it has quite a
high variance, it is low pass filtered to display the overall trend over a few episodes.
Finally, a chronological graph shows one of the states sequences derived from each
of the converged Q-tables, with intermediate states and goal states in the MDP
marked as black x:es where the state sequences visit these. These sequences are also
shown on a representation of the grid world in the second figure of each experiment

68

7. Experiments

0 1 2 3 4 5 6 7
x coordinate

0
1

2
3

4
5

6
7

y
co

or
di
na

te

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Environment map

Frozen

Init

Danger

Goal

Intermediate

Figure 7.1: Grid world representation of the safe navigation to destination problem.

result section.
It is important to note that the state sequences, also shown in the second figure

of each experiment, are derived by stepping through the product MDP and greed-
ily selecting actions recommended by the Q-table; with the probabilistic setting,
different paths may therefore be derived from the same Q-table, and they are not
guaranteed to always satisfy the LTL specification. However, when a complicated
LTL formula is satisfied, it is not by chance and the algorithms producing the results
can then be assumed to produce a correct MDP trace in the majority of cases due
to the relatively low probabilistic MDP behavior used in these experiments.

7.2 Safe Navigation to Destination
This section concerns the experiment in which the agent must navigate safely from
the initial state to a goal state. The environment is depicted in Fig 7.1. From the
initial green state, the agent must learn a policy that guides it to the red state 63,
either by visiting one or several intermediate yellow states or by going directly to the
final state. Dangerous states, marked in blue, must be avoided in the final policy.
In each intermediate state is the label r, in the dangerous states lies q and in the
goal state is the label p. The LTL formula that specifies this behaviour is

ϕ = ♦
(
p ∨ (r ∧ ♦p)

)
∧�¬q (7.1)

and states that one possible behavior that satisfies this formula is observing p once,
which implies observing it forever. Another alternative is to observe r, and then
eventually observing p forever. At all times, q is never observed as this would
lead to observing q forever. The automaton realisation of the specification in this
experiment is shown in Fig 7.2. Here, the accepting frontier states are marked using
colored states, and the blue color denotes that states q1 and q2 make up the frontier
set.

69

7. Experiments

q0

q1

q2

q3

r

q

p

q

p

q

¬p ∧ ¬q ∧ ¬r

¬r ∧ ¬q

¬q

T

Figure 7.2: Colored deterministic Büchi automaton specifying safe navigation to
a destination.

An important note is that the automaton is formulated under the assumption
that at most one label p, r or q can be observed (or true) in a state. Therefore, it
is valid to state that r alone causes a transition to q1 from q2, as q cannot be true
at the same time. Moreover, if r is true, the loop condition ¬p ∧ ¬q ∧ ¬r is false.
Having at most one true label per state also motivates why it is enough to have only
p or q as conditions for the outgoing transitions of state q1.

Lastly, the specification assumes that once p is observed, the agent can either
observe q and go to the forbidden state, or not observe q over and over. In the
practical implementation, however, the learning is terminated as soon as the marked
state is reached once.

7.2.1 Setup

The first algorithm to be examined is the ordinary Q-learning with ε-greedy explo-
ration. The second is the temporal logic constrained RL algorithm from Section
4.6.2, which uses the automaton in Fig 7.2. The third algorithm used is the second
proposed algorithm form Section 4.6.3 and it uses the accepting frontier function
that regards both DBA state one and two as coloured frontier states. These states
have the color blue in Fig 7.2. Lastly, the aforementioned temporal logic constrained
RL algorithm is extended with the potential function, which constitutes the third
proposed algorithm described in Section 4.6.4 and is thereby the fourth algorithm
tried in the experiment.

The experiment described above is conducted using the parameters in Table 7.1.
Note that εmin is a parameter, denoting exploration in the limit. In practice, the
minimum exploration in this experiment is around 0.5.

70

7. Experiments

Table 7.1: Parameters for the safe navigation to destination experiment.

Exp Algorithm No.
exp εmax εmin β Eps s/e

a) Standard Q 10 0.9 0.1 0.0001 10000 100
b) TL-RL 10 0.9 0.1 0.0001 10000 100
c) TL-RL w/ AF 10 0.9 0.1 0.0001 10000 100

d) TL-RL w/ AF &
Pot 10 0.9 0.1 0.0001 10000 100

7.2.2 Purpose
The purpose of this is to show that in certain simple settings, an RL problem
can be solved without being constrained by temporal logic. With this being said,
it is interesting to see if a temporal logic specification, accepting frontier and a
potential function can make the algorithm converge faster to the optimal policy.
The automaton in Fig 7.2 realizes the first LTL specification in Section 5.2.1, an
ω-language, as the marked and forbidden language includes an infinite number of
visits to the single marked and forbidden states.

However, even though this automaton is formulated in the experiment, the
episode is terminated by the MDP when the goal state is reached, meaning the
looping behavior will not be learned. This is not considered to be a problem, since
an increasing number of rewards would be handed out upon arrival to this state
if the MDP would not terminate, and there is no doubt that this would make the
optimal policy stay in the final state once it is reached one time.

7.2.3 Hypothesis
For the Q-learning to work, there must be a sufficient initial exploration that de-
creases towards greedy as the Q-table converges. This algorithm only receives re-
wards from the environment, meaning the intermediate rewards must be significantly
smaller than the final goal reward, and the previously mentioned exploration must
be high enough for the agent to move past the intermediate rewards until it gets to
the goal state. The hypothesis for the Q-learning algorithm is that it will approach
the intermediate state that is not as close to the dangerous states as the others, and
then go to goal.

When it comes to the standard temporal logic constrained reinforcement learning
algorithm, rewards are received only for going to the goal state. Intermediate states
are a possible detour in the specification, but they are not rewarded. In relation
to the ordinary Q-learning algorithm that receives rewards for intermediate states,
rewards are sparse in the LTL constrained RL solution. This may result in a slower
convergence, but it does not run the risk of staying in an intermediate state as the
Q-learning does due to possibly unbalanced reward weightings between intermediate
and goal state transitions.

In the case of the accepting frontier extended algorithm, there is a slight chance
that the algorithm goes to several intermediate states before goal, which might make

71

7. Experiments

it converge to a policy that selects a longer state sequence. However, it is believed
to solve the problem of sparse rewards discussed before, without risking to get stuck
in intermediate states as frontier states are removed upon the first visit.

When adding potential, there must be a balance between aiming for a the inter-
mediate and goal states and avoiding regions with dangerous states. In this case,
there is a clear path to goal which makes it possible for the potential reward to be
quite high. Among all algorithms, this one is believed to converge first and also
converge to the optimal policy that selects the shortest path to goal.

7.2.4 Results
The results of the safe navigation to destination experiment are shown in Fig 7.3.
A heatmap describing an example of a selected path derived using the converged

0 2000 4000 6000 8000 10000
Episode

−1

0

1

Av
g.
 Q
 e
le
m
en

t v
al
ue

(N
or
m
. o

n
in
di
v.
 m

ax
.)

Average Q element value Standard Q
Automaton
Automaton with
AF
Automaton with
AF & pot.

Env Pot Aut Acc
Reward type

−1

0

1

Av
er
ag

e
re
wa

rd

-0.24 0.0 0.0 0.00.0 0.0 -0.85 0.00.0 0.0 -0.96 1.080.0 1.32 -0.85 0.06

Reward type distribution

0 2000 4000 6000 8000 10000
Episode

0.4

0.6

0.8

Ex
pl
or
at
io
n
fa
ct
or Exploration

0 2000 4000 6000 8000 10000
Episode

0.001

0.002

0.003

Ti
m
e
[s
]

(m
ov
in
g
av
er
ag

e) Time/episode

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Step

0

25

50

St
at
e
in
de

x

State sequence candidates

Figure 7.3: Statistics from the safe navigation to destination experiment.

72

7. Experiments

0 1 2 3 4 5 6 7
x

0
2

4
6

y
1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0

0 0 1 1 0 1 0 0

0 0 0 1 1 2 0 0

0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1

Standard Q

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 1 2 3 4 5 6 7
x

0
2

4
6

y

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 2 1 0 0 0 0 0

0 0 1 1 1 1 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1

Automaton

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 1 2 3 4 5 6 7
x

0
2

4
6

y

1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 1 0 1 0 0 0

0 0 1 1 3 1 0 0

0 0 0 0 2 2 0 0

0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1

Automaton with
AF

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7
x

0
2

4
6

y

1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 1 1 0 0

0 0 0 0 1 2 2 0

0 0 0 0 0 0 2 1

Automaton with
AF & pot.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Policy candidates

Figure 7.4: Representative state sequences derived from the converged Q-tables.

Q-table is shown in Fig 7.4.

7.2.5 Analysis
All algorithms converge, which agrees with the initial hypothesis. According to the
hypothesis, the standard Q-learning algorithm would go to the goal state via an
intermediate state. This is not represented in the sequences of Fig 7.4 which is
somewhat surprising but may be due to the much larger reward received by going
to goal directly.

With the standard TL constrained RL algorithm, intermediate states are disre-
garded; something that is entirely plausible due to that no rewards are collected for
this. Using the accepting frontier, the hypothesis states that the agent would visit
several intermediate states, but this also turns out to be incorrect for this particular
state sequence. Furthermore, the prediction stating that the potential function con-
verges to the shortest path policy due to the clear path to goal is incorrect, but it
is actually almost as long as the standard Q-learning by inspection of the last plot
of Fig 7.3.

By inspecting Fig 7.3, it can be seen that the standard Q-learning algorithm and
the standard TL constrained RL algorithm receive many negative rewards in early
episodes. This is because they find the optimal policy by visiting many dangerous
states and eliminate them from the list of possible paths to take. The potential
function algorithm increases steadily and in a smoother fashion than the accepting

73

7. Experiments

frontier algorithm, which has one acceleration phase per newly found reward state.
An interesting side note is that the automaton constrained algorithms have two

possible alternative behaviours that are enforced in the learning; going directly to
goal or going to goal via one or more intermediate states. The accepting frontier
rewards transitions to the intermediate states, and in the learning this is represented
by positive acceleration phases when a new correct MDP trace is found. Despite
this, actually stepping through the product MDP could naturally result in either of
the allowed traces, as in Fig 7.4.

Regarding the reward distributions, the potential algorithm has the option to
collect both rewards from the accepting frontier and the reward from the marked
and forbidden automaton states, but it more or less disregards the accepting frontier
rewards due to the greater reward accumulated from the potential. Getting a reward
from the automaton is probably a bi-product from being drawn to the goal state in
the MDP by the potential function. The automaton rewards are in all cases negative
on average. In the case of the algorithm using potential, this property is crucial as
the potential does not see dangerous states in the way of the optimal path.

The time it takes for the TL constrained RL, accepting frontier and the po-
tential algorithms is in this case around 30% more than standard Q-learning. If
implemented on larger problems, this may point towards a possible drawback.

7.3 Sequential State Visits Experiment 1
A visualisation of the environment is shown in Fig 7.5. In the first sequential exper-
iment, the agent must learn a policy in which a sequence of states must be visited,
while dangerous states are avoided.

According to the specification, the agent must first visit state 7, then state 56
and finally state 63 without visiting any dangerous states. State 7 has the label r,
state 56 is labeled s, state 63 is labeled p and the dangerous states all have the label

0 1 2 3 4 5 6 7
x coordinate

0
1

2
3

4
5

6
7

y
co

or
di
na

te

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Environment map

Frozen

Init

Danger

Goal

Intermediate

Figure 7.5: Grid world MDP visualisation for the first sequential experiment.

74

7. Experiments

q0 q1 q2 q3

q4

r ∧ ¬q

s ∨ p ∨ q q

s ∧ ¬q

p ∨ q

p ∧ ¬q

q

¬r ∧ ¬s ∧ ¬p ∧ ¬q

¬s ∧ ¬p ∧ ¬q

¬p ∧ ¬q

¬q

T

Figure 7.6: Deterministic Büchi specification for the first sequential state visits
experiment.

q. The LTL formula for this behavior is thus

ϕ = ♦
(
r ∧ ♦(s ∧ ♦p)

)
∧�¬q (7.2)

This formula states that eventually, the sequence r, s, p is observed. Further-
more, q is never observed. The Büchi automaton that realises this is shown in Fig
7.6. In this automaton, frontier states are colored blue, the marked state is depicted
with a double circle and the forbidden state is crossed out.

In this case, the transition to the forbidden state from the marked state by
observing q is included, but in practice, the learning stops as soon as the marked
state is reached. It is assumed that the agent has the same incentive as in the
previous experiment to stay in the final state once it is reached, given that ¬q is
observed indefinitely in the end. Furthermore, the assumption that there is only
one state label per MDP state makes it possible to formulate the transition between
state q0 and q4 without regarding if r is true or false. If s or p or q is true there,
r cannot be true. This principle holds for the rest of the transitions as well, which
makes the automaton completely deterministic.

7.3.1 Setup
Classical Q-learning and the LTL constrained RL method are in this experiment
compared with the detached accepting frontier extended version and the algorithm
that uses both the accepting frontier and the potential function. Furthermore, this
experiment is run using the parameters in Table 7.2.

7.3.2 Purpose
This problem may be solved by ordinary Q-learning, but only under special circum-
stances, for example if environment rewards for intermediate states and goal states
are very carefully scaled to hopefully enforce a sequential policy. If the temporal
logic specified version of the RL problem is a more convenient and more reliable way
of enforcing the sequential behaviour, it is interesting to see if the accepting frontier
or the potential function can improve convergence.

75

7. Experiments

Table 7.2: Parameters for the first sequential state visits experiment.

Exp Algorithm No.
exp εmax εmin β Eps s/e

a) Standard Q 10 0.9 0.7 0.0001 15000 100
b) TL-RL 10 0.9 0.7 0.0001 15000 100
c) TL-RL w/ AF 10 0.9 0.2 0.0001 15000 100

d) TL-RL w/ AF &
Pot 10 0.9 0.2 0.0001 15000 100

7.3.3 Hypothesis
The problem is considered small enough for all methods using an automaton to
manage the problem. Classical Q-learning does not have any incentive to induce any
specific seqential behavior and will in essence treat this problem as a safe navigation
to destination problem. The TL constrianed RL algorithm does not get a reward
until the whole sequence is finished, which is a disadvantage. This may require a
higher amount of exploration throughout the learning process. If this is the case,
the accepting frontier should remedy this and reward the agent for going to the
intermediate states.

From Fig 7.2, it can also be seen that it is not possible for the agent to be re-
warded for completing the sequence in the wrong order. The potential function may
enforce the same behavior, but does not punish the agent for going to the dangerous
states, which is why there is a risk of having a conflict of interest between reward
sources around state 56 which is close to dangerous states. However, as the potential
function aims to push the agent towards the intermediate states independently of
exploration, it is believed that if the algorithm does produce a correct policy, it will
also produce the shortest state sequence.

7.3.4 Results
The results of the first sequential experiment are shown in Fig 7.7. A heatmap
depicting an example of a selected path through the MDP, where actions are selected
using a converged Q-table is shown in Fig 7.8.

7.3.5 Analysis
All algorithms except standard Q-learning shall converge to the specified policy
according to the hypothesis, but this is only partly a correct prediction. Q-learning
indeed does not manage to find a solution that contains all the necessary sequential
states, which is the reason that no state sequence is displayed in the corresponding
top left sub figure of Fig 7.8.

Although a higher degree of exploration is used, the standard TL constrained RL
algorithm using only an automaton can not collect a sufficient amount of positive
rewards to induce the sequential behavior. However, according to Fig 7.7, the Q-
table elements are updated to negative values which indicate that incorrect behaviors

76

7. Experiments

0 2000 4000 6000 8000 10000 12000 14000
Episode

−1

0

1

A0
g.
 Q
 e
le
m
en

. 0
al
ue

(N
or
m
. o
n
in
di
v.
 m

ax
.)

Average Q element value Standard Q
Automaton with
M/F states
Automaton with
M/F states & AF
Automaton with
M/F states,
AF & pot.

Env Pot Aut Acc
Reward type

0

5

Av
er
ag
e
re
wa

rd

-0.46 0.0 0.0 0.00.0 0.0 -1.73 0.00.0 0.0 -0.83 1.470.0 8.27 -0.88 1.45

Reward type distribution

0 2000 4000 6000 8000 10000 12000 14000
Episode

0.4
0.6
0.8

Ex
pl
or

at
io
n
fa
ct
or Exploration

0 2000 4000 6000 8000 10000 12000 14000
Episode

0.002

0.004

Ti
m
e
[s
]

(m
ov

in
g
av

er
ag

e) Time/episode

0 5 10 15 20 25 30 35 40
Step

0

25

50

St
at
e
in
de
x

State sequence candidates

Figure 7.7: Statistics from the first sequential state visits experiment.

are at least punished. Therefore, even though the derived sequence does not contain
the correct states, increasing the number of episodes and steps per episode may
eventually lead to the agent finding the correct path. Even so, that is an inefficient
strategy.

The accepting frontier does remedy the incorrect behavior of the standard TL
constrained RL algorithm, and makes the agent complete the specified sequence,
which is somewhat expected. For the fourth algorithm sequence seen in the bottom
right sub figure in Fig 7.8, the accepting frontier and the potential do seem to agree
with each other on where to go around the intermediate states, contradictory to the
hypothesis that states that they would disagree when intermediate states are close
to dangerous states. In fact, the sequence is in this case slightly more defined when
using the potential; this may indicate that as long as there are no conflicts between
the potential and the automaton, using potential will help produce a more stable
policy.

In the statistics plot of Fig 7.7, the algorithm using potential has a smooth
Q-element convergence curve on average, which seems to agree with the previous
statement about potential producing a stable policy. The reward from the potential
function makes up a large portion of the total reward, and in comparison to the algo-
rithm that only uses the accepting frontier it is easy to see why the Q-learning curve

77

7. Experiments

0 1 2 3 4 5 6 7
x

0
2

4
6

y
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Standard Q

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0 1 2 3 4 5 6 7
x

0
2

4
6

y

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Au oma on wi h
M/F s a es

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0 1 2 3 4 5 6 7
x

0
2

4
6

y

2 3 1 1 1 1 1 1

1 1 0 0 0 0 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 2 1 0

0 0 0 0 1 1 0 0

1 3 3 2 2 2 1 1

Au oma on wi h
M/F s a es & AF

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7
x

0
2

4
6

y

1 1 1 2 1 1 1 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 1 0 0

2 3 2 2 2 1 1 1

Au oma on wi h
M/F s a es,
AF & po .

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Policy candida es

Figure 7.8: Representative state sequences derived from the converged Q-tables.

is so much smoother than the same curve corresponding to the accepting frontier
algorithm. The latter reacts quickly once it gets a reward from a newly discovered
correct sequence state, which can be seen in the bumps of the average Q-element
curve. The standard Q-learning algorithm converges very quickly and collects pos-
itive rewards, but to a policy that is incorrect according to the specifications. In
theory, there is a chance that the Q-learning algorithm can find a sequence either
by chance or by strategic placement of rewards in intermediate states, but in this
case it fails to do so.

As can be seen both in Table 7.2 and in the third sub figure of Fig 7.7, a very high
exploration is given to the algorithms that are believed to not converge to the correct
policy easily, but this attempt does not bear fruit. Time-wise, the algorithms seem
to take up more time as they find all the states, and the time it takes for an episode
converges to a somewhat constant trend of around three to four milliseconds. Lastly,
of the two working algorithms, the algorithm using potential does indeed produce
the shortest state sequence, which is predicted in the hypothesis.

7.4 Sequential State Visits Experiment 2
In the second sequential state visits experiment, the idea is to offer the agent two
alternative paths from start to goal. This MDP has no dangerous states, but four

78

7. Experiments

0 1 2 3 4 5 6 7
x coordinate

0
1

2
3

4
5

6
7

y
co

or
di
na

te

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Environment map

Frozen

Init

Danger

Goal

Intermediate

Figure 7.9: Grid world MDP for the second sequential problem.

different intermediate states (7, 31, 56 and 59) and a goal state (63), which are
depicted in Fig 7.9.

Here, the dangerous states are eliminated for simplicity, and the intermediate
states 7, 31, 56 and 59 are marked in yellow. They are assigned the labels r, u, t
and s, respectively. The final state 63 is marked red as before, and is labeled p. In
this MDP, there are no dangerous states labeled q.

A specification in which two different sequences can be selected is defined, such
that the agent must travel either from state 7 to state 59 and then to 63, or it must
select the alternative sequence 56, 31, 63. The LTL formula describing this is

ϕ = ♦
(
r ∧ ♦(s ∧ ♦(p)

)
∨ ♦

(
t ∧ ♦(u ∧ ♦p)

)
∧�¬q (7.3)

which states that either the sequence r, s, p or t, u, p is observed while never
observing q. The colored Büchi automaton that realizes this specification is seen in
Fig 7.10, where blue and yellow denote two different accepting frontier sets. The
marked state is coloured red, since it has to be part of both accepting frontier. In
practice, another state color corresponding to the chosen sequence is applied to the
marked state.

Fig 7.10 shows the two alternative sequences that leads to the marked state. As
in previous specifications, this automaton is deterministic due to the fact that only
one label can be observed in the MDP at a time. For example, if r is observed in q0,
it is assured that no other labels are true. Therefore, it is not possible to travel to
q6, q0 or q4 since the conditions for these transitions are not true if r is true. This
principle holds for all transitions in the automaton.

Although there are no dangerous states in this experiment, the specification still
accommodates for this since there are many ways of ending up in the forbidden
specification state even without dangerous states. Should there exist dangerous
states, which is actually something that is not known in a “real world” scenario,
these must be punished as well as incorrect sequential behavior, even if the sequence
is completed. As in earlier experiments, the learning is terminated once the marked

79

7. Experiments

q0

q1 q2

q3

q4 q5

q6

r ∧ ¬q

t ∧ ¬q

u ∨ s ∨ p ∨ q

s ∧ ¬q

t ∨ u ∨ p ∨ q

p ∧ ¬q

t ∨ u ∨ q

q

u ∧ ¬q

r ∨ s ∨ p ∨ q

p ∧ ¬q

r ∨ s ∨ q

¬r ∧ ¬t ∧ ¬q

¬s ∧ ¬q ¬p ∧ ¬q

¬q

¬u ∧ ¬q ¬p ∧ ¬q

T

Figure 7.10: Deterministic Büchi automata with one set of colored states per
specified sequence.

state is reached.

7.4.1 Setup
This experiment compares classical Q-learning with standard TL constrained RL,
again with the accepting frontier and potential extensions applied. The parameters
used are displayed in Table 7.3.

7.4.2 Purpose
This specified behavior is very difficult to solve with a standard Q-learning algo-
rithm, as it has no incentive to disregard some intermediate states or choosing to
visit others. This must be shown in the results, which is why standard Q-learning
is still used as the first algorithm. Furthermore, it cannot in one state receive two

Table 7.3: Parameters for the second sequential experiment.

Exp Algorithm No.
exp εmax εmin β Eps s/e

a) Standard Q 10 0.9 0.7 0.0001 30000 100
b) TL-RL 10 0.9 0.7 0.0001 30000 100
c) TL-RL w/ AF 10 0.9 0.1 0.0001 30000 100

d) TL-RL w/ AF &
Pot 10 0.5 0.1 0.0001 30000 100

80

7. Experiments

different recommendations to go to different states in a sequence depending on what
previous sequence states have been visited. Thus, LTL constrained Q-learning is
very much required in this scenario, and this experiment underlines that statement.

Since there are two alternative paths, once a sequence has been chosen, no incen-
tive to visit states of the other sequence are allowed. This means for example that
there are different ways of implementing the accepting frontier; in one alternative,
all states q1...5 have the same color. In this case, either sequence is enforced, as there
is only one way to the accepting state in the Büchi. Or, there are two colors, making
it possible to switch between a desired sequence. In this case, however, the states
cannot be implemented simultaneously because the color mapping is one to one by
definition, and as the final state is part of both sequences, the option to select which
sequence shall be colored is implemented.

When it comes to the potential function, it is not possible at all to include all
intermediate states in the list of sequence states, simply due to the fact that it is
only desired to lead the agent through one of the sequences. Although a powerful
function if the position of the sequence states are known, potential is naturally prone
to produce a faulty policy if this information is incorrect.

7.4.3 Hypothesis
This problem is different to the first sequential problem in a not so apparent way.
A problem with TL constrained Q-learning is that it is only awarded for complete
sequences, and going to another sequence state in the wrong order implies a tran-
sition to a forbidden, and punished, Büchi state. With an alternative sequence as
well, the agent is further punished if it visits states in the alternative sequence if
it first selected the first sequence. This implies extensive punishment, from which
a correct path may emerge. Therefore, the basic TL constrained RL method may
have a better chance of performing well for this problem.

Furthermore, it is expected that the accepting frontier performs well, probably
better than the standard algorithm, and the same goes for the potential function.
Due to the lack of dangerous states, the potential function may have an even greater
chance of success than in the previous experiment. Lastly, the chance that standard
Q-learning converges to a correct policy is slim, to say the least.

7.4.4 Results
The results of the second sequence experiment are shown in Fig 7.11. An example
of a path through the MDP where actions are selected using a converged Q-table is
shown in Fig 7.12.

7.4.5 Analysis
The fact that there are more alternative sequences implies the existence of more
paths that lead to a forbidden state in the Büchi automaton, since it is only allowed
to visit states in one of the sequences. This means that it is easier for the standard
TL constrained RL method to find the optimal policy, by excluding all forbidden

81

7. Experiments

0 5000 10000 15000 20000 25000 30000
Episode

51

0

1

A1
g.
 Q
 e
le
m
en

t v
al
ue

(N
or
m
. o

n
in
di
v.
 m

ax
.)

Average Q element value Standard Q
Automaton with
M/F states
Automaton with
M/F states & AF
Automaton with
M/F states,
AF & pot.

Env Pot Aut Acc
Reward type

−5

0

Av
er
ag

e
re
wa

rd

0.82 0.0 0.0 0.00.0 0.0 -5.93 0.00.0 0.0 -0.07 1.360.0 2.82 0.76 1.48

Reward type distribution

0 5000 10000 15000 20000 25000 30000
Episode

0.25
0.50
0.75

Ex
pl
or
at
io
n
fa
ct
or Exploration

0 5000 10000 15000 20000 25000 30000
Episode

0.0025

0.0050

0.0075

Ti
m
e
[s
]

(m
ov

in
g
av

er
ag

e) Time/episode

0 5 10 15 20 25 30
Step

0

25

50

St
at
e
in
de

x

State sequence candidates

Figure 7.11: Statistics related to the second sequential state visits experiment.

paths. This part of the hypothesis seems to be fulfilled, as seen in the upper right
sub figure of Fig 7.12.

When using the accepting frontier, one sequence is selected beforehand, which
works. Lastly, using both the accepting frontier and the potential function is also
successful, but some lingering behavior around the intermediate states occurs here.
However, as in the previous experiment, using potential seemed to introduce a bit
more stability to the state sequence; how much of this that is by pure chance is hard
to determine. Furthermore, this raises the question of whether or not it is wise to
use the potential function for small problems, as it may do more harm than good.

From Fig 7.11, it becomes apparent that both the standard TL constrained RL al-
gorithm and the one that uses the accepting frontier mainly receive negative rewards
as the mean value of all Q-elements is negative. The accepting frontier algorithm
and the potential algorithm converge slightly quicker than the standard algorithm,
which is expected, but they are not as superior as what is initially predicted.

Looking at the reward distributions of Fig 7.11, the role of the potential in the
fourth algorithm is played down. This is to ensure that incorrect behaviors are
punished; although the potential does not directly make the agent go to incorrect
states in the sequence, it may very well disregard going around them. Therefore,

82

7. Experiments

0 1 2 3 4 5 6 7
x

0
2

4
6

y
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Standard Q

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0 1 2 3 4 5 6 7
x

0
2

4
6

y

2 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

1 0 0 0 0 1 1 2

1 0 0 0 0 1 0 1

1 0 1 1 1 1 0 1

1 1 1 0 0 0 0 1

Au oma on wi h
M/F s a es

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 1 2 3 4 5 6 7
x

0
2

4
6

y

1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 1

1 1 2 1 1 1 1 2

1 2 0 0 0 0 0 1

0 2 0 0 0 0 0 1

0 2 0 0 0 0 0 1

3 3 1 0 0 0 0 1

1 0 0 0 0 0 0 1

Au oma on wi h
M/F s a es & AF

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7
x

0
2

4
6

y

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1

1 0 0 1 1 1 1 1

1 0 1 1 0 0 0 1

2 0 1 0 0 0 0 2

2 2 1 0 0 0 0 1

Au oma on wi h
M/F s a es,
AF & po .

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Policy candida es

Figure 7.12: Representative state sequences for the second sequential state visits
experiment.

the automaton is needed to override the potential function when threading carefully
around other sequence states is desired. In the case of the standard TL constrained
RL algorithm, the automaton rewards are mainly very negative which is underlines
the explanation that extensive wrongdoing can lead to finding the correct path.
Lastly, the standard Q-learning algorithm can be seen to converge quickly, albeit to
an incorrect policy.

When inspecting the development of time per episode of each algorithm, a cor-
relation with exploration can be observed. This is not unexpected, as unnecessary
exploration leads to visiting more states before arriving to the goal state and ter-
minating the episodes. Therefore, it becomes apparent that the exploration should
be minimised as much as possible to reduce the demand on time for any algorithm.
Lastly, the sequential state sequence plot shows that the standard TL constrained
RL algorithm actually produces the shortest state sequence, which is unexpected.
Out of the two remaining TL constrained RL algorithms, the one that uses potential
produces the next shortest state sequence, a result that was also seen in the previous
experiment.

83

7. Experiments

0 1 2 3 4 5 6 7
x coordinate

0
1

2
3

4
5

6
7

y
co

or
di
na

te

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Environment map

Frozen

Init

Danger

Goal

Intermediate

Figure 7.13: Grid world MDP for the first liveness and fairness problem.

7.5 Liveness and Fairness Experiment 1
According to the definition of liveness and fairness in Section 5.2.3, the constraint
says that two states in the MDP shall eventually be visited infinitely often. The
fairness part of the constraint requires an equal distribution between visits to the
first and second marked state. In the first experiment on liveness and fairness, the
MDP has the initial state 0 and two intermediate states 7 and 56. In Fig 7.13, these
are coloured green and yellow, respectively, and the two intermediate states 7 and
56 have the labels r and p. In this experiment, there are no dangerous states and
no goal state either.

Two automata are considered, and these realise the specification

ϕ = �♦p ∧�♦r (7.4)

which states that both p and r are always eventually observed.
The first automaton that realises the liveness and fairness specification, described

further in [4], is a DBA and does have an infinite marked language but clearly
enforces a sequential behavior. Although it may realise the LTL-specification, this
automaton does not provide a real choice in what order the states are visited, and
the agent must observe p before r over and over.

The second, taken from the chapter on liveness and fairness in [2], is a generalized
Büchi automaton with an accepting condition requiring infinitely often visiting two
different states. In this specification, the order and distribution between state visits
are not enforced properties. As usual, the accepting frontier states are blue, and
in this case they coincide with the set of marked states denoted by a double circle.
Both automata can be seen in Fig 7.14, where the colored (frontier) states are blue
and the marked states have double circles. In the GBA to the right, tautologies T
are used to immediately transition back to the initial state once a marked state has
been visited.

84

7. Experiments

q0 q1

q2

¬p

p

¬p

p

¬r

r
q0

q1 q2

¬r ∧ ¬p

p

T T

r

Figure 7.14: DBA for liveness and fairness suggested in [4] with generalized de-
terministic Büchi automaton proposed in [2].

Moreover, these automata are deterministic under the assumption that if p is
true, r cannot be true and vice versa, since an MDP state has at most one label per
state. Finally, both automata are formulated for an MDP that has no dangerous
states marked q.

7.5.1 Setup
Firstly, this experiment runs the standard Q-learning algorithm followed by the
standard LTL constrained RL algorithm, constrained by the DBA seen to the left
in Fig 7.14. Secondly, the LTL constrained RL with the accepting frontier function
is performed, but where the constraint is realised by the GBA to the right in Fig
7.14. Lastly, the algorithm using both the accepting frontier and the potential is
run, also here with the constraint implemented by the GBA in Fig 7.14.

When conducting the liveness and fairness experiment, the parameters seen in
Table 7.4 are used.

7.5.2 Purpose
The goal is to investigate the difference in behavior between the two different spec-
ification automata realizations. Moreover, while classic Q-learning can simulate a

Table 7.4: Parameters for the first liveness and fairness experiment.

Exp Algorithm No.
exp εmax εmin β Eps s/e

a) Standard Q 10 0.9 0.1 0.0001 5000 100
b) TL-RL 10 0.9 0.1 0.0001 5000 100

c) TL-RL w/ Büchi
1 & AF 10 0.9 0.1 0.0001 5000 100

d) TL-RL w/ Büchi
1, AF & Pot 10 0.9 0.1 0.0001 5000 100

85

7. Experiments

sequential behavior from one MDP state to the other if increasing environment re-
wards are placed sequentially, this strategy becomes problematic when the “bread
crum” traces cross paths. In a liveness problem, which would require placing increas-
ing rewards in a circular pattern in the grid world, the agent would once having come
full circle be forced to select a reward much smaller than the one before. This would
ultimately make the agent stay in the one state giving the largest reward.

In essence, the natural solution to these problems is introducing time or event de-
pendent rewards, removed after a cycle is completed. This is naturally not possible
in classical Q-learning, but is effectively what happens in TL constrained RL meth-
ods. Considering the complex and sensitive nature of strategically placing rewards in
classical Q-learning to find even a partly correct liveness policy, this experiment may
showcase both the power and simplicity of LTL constrained reinforcement learning,
in relation to classical Q-learning.

7.5.3 Hypothesis
In theory, there is no reason to expect different behaviors from the different speci-
fication realisations. However, there is a clear difference between the automata, in
that the GBA automatically returns to the initial state after having visited a marked
state. While the LTL formula is realized, this may imply difficulties in practice, as
the Q-learning problem is still tabular, with the difference being that it has an extra
dimension for automaton states. Therefore, for the same MDP state it should not be
possible to get two different recommended transitions depending on the automaton
state, as this will always be the initial state.

The hypothesis is that the automaton proposed in [4] works in practice, while the
automaton in [2] is a more correct liveness and fairness specification. It is possible
that the standard Q-learning algorithm can in fact find a policy that when used
covers both states, but a cyclic behavior is to expect too much as there is no built
in mechanism to handle this; rather, if the standard Q-learning method does find
both states, it likely stays in the last state forever.

7.5.4 Results
In the first liveness and fairness experiment, the main results are presented in Fig
7.15. Examples of paths generated by the agent choosing actions from converged
Q-tables are shown in Fig 7.16.

7.5.5 Analysis
The hypothesis from Section 7.5 states that the first of the two automata would
work in practice because once one of the states in the liveness problem had been
visited, the next reward would be mapped to a different automaton state in the Q-
table, thus making it possible to recommend going in several different directions for
each MDP state. By inspection of the state sequences shown in Fig 7.16, this seems
to be a correct prediction, as only the upper right sub plot produces an acceptable
behavior. There is a lingering behavior around both of the intermediate states, but
it can in the last sub plot of Fig 7.15 be confirmed that the algorithm using the

86

7. Experiments

0 1000 2000 3000 4000 5000
Episode

0.0

0.5

1.0

Av
g.
 Q
 e
le
m
en

t v
al
ue

(N
or
m
. o

n
in
di
v.
 m

ax
.)

Average Q element value Standard Q
Automaton with
M/F states
Büchi 1 with
M/F states & AF
Büchi 1 with
M/F states,
AF & pot.

Env Pot Aut Acc
Reward type

0.0

0.5

1.0
Av

er
ag

e
re
wa

rd

0.02 0.0 0.0 0.00.0 0.0 0.53 0.00.0 0.0 0.0 1.030.0 0.5 0.0 1.03

Reward type distribution

0 1000 2000 3000 4000 5000
Episode

0.6

0.8

Ex
pl
or
at
io
n
fa
ct
or Exploration

0 1000 2000 3000 4000 5000
Episode

0.004

0.006

Ti
m
e
[s
]

(m
ov
in
g
av
er
ag

e) Time/episode

0 20 40 60 80 100
Step

0

25

50

St
at
e
in
de

x

State sequence candidates

Figure 7.15: The statistics for the first liveness experiment.

first automaton has a cyclic behavior between the two extremities of the MDP state
space.

The lower left sub figure of Fig 7.16, corresponding to using the accepting frontier
function and getting rewards from marked and forbidden states from the second
Büchi automaton, shows that no policy containing both states can be derived from
the Q-table. When using the potential, as seen in the lower right sub figure, it is
possible to visit both states, but the algorithm seems to first get stuck in the first
state and then it breaks away and gets stuck in the other state instead. As both
the accepting frontier and the potential focuses on one state at a time, the faulty
Q-table mapping explanation seems to be the only reasonable one for this behavior.

In the statistics plots of Fig 7.15, all of the algorithms are evidently collecting
positive rewards. Two of the three algorithms that produce unacceptable results
have Q-table entries that decay in different degrees. This could illustrate that there
are initial rewards being obtained, but after that they stop coming. The algorithm
that uses the first automaton converges in a stable way, but is significantly delayed
compared to the two faulty ones. The standard Q-learning algorithm is very quick
to converge, but it must get stuck in the first intermediate state.

The distribution between rewards in the case of the second automaton and the
potential function shows that most rewards come from the accepting frontier, while
the potential reward is not as prominent. This is reasonable as the selected policy

87

7. Experiments

0 1 2 3 4 5 6 7
x

0
2

4
6

y
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Standard Q

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0 1 2 3 4 5 6 7
x

0
2

4
6

y

1 1 2 2 2 3 2 3

0 0 0 0 0 7 5 4

0 0 3 3 3 7 1 1

0 3 6 2 2 2 0 0

0 5 3 0 0 0 0 0

5 5 0 0 0 0 0 0

10 6 0 0 0 0 0 0

2 0 0 0 0 0 0 0

Automaton with
M/F states

0

2

4

6

8

10

0 1 2 3 4 5 6 7
x

0
2

4
6

y

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Büchi 1 with
M/F states & AF

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0 1 2 3 4 5 6 7
x

0
2

4
6

&

1 1 2 7 20 18 8 13

0 0 0 2 4 4 3 3

0 0 0 0 0 1 1 0

0 0 0 0 1 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

2 3 1 1 1 0 0 0

Büchi 1 with
M/F states,
AF & pot.

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Polic& candidates

Figure 7.16: Representative state sequences for the liveness experiment.

in most cases does not approach the state that the source for the potential, as can
be confirmed in Fig 7.16.

When it comes to average time per episode, the algorithm producing the correct
trajectory is also the one with the lowest episode time, not including the standard
Q-learning. As there is no goal state and no dangerous states that can terminate an
episode, all episodes are 100 steps. Therefore, the difference in time is due to the
specific differences in algorithms. However, the differences are not very significant,
which can serve as a hint towards that the different procedures in the internal
workings of each algorithm themselves take approximately the same amount of time.

Lastly, the chronological plot of the derived state sequences entails that the
algorithm using the first automaton successfully alternates between the two states
close to six times while the other, poorly working, algorithm alternates once and
revisits intermediate states frequently. In essence, it seems as if the core hypothesis
is verified; the first automaton works in practice while the second is not so successful.

7.6 Liveness and Fairness Experiment 2
In the second liveness and fairness experiment, the setting is the same as in the
previous problem in terms of MDP and automaton, except for one detail. In the

88

7. Experiments

q0

q1 q2

¬r ∧ ¬p

¬r

p

r p

r

¬p

Figure 7.17: A modified version of the GBA from [2].

GBA specifying the LTL formula ϕ = �♦p ∧�♦r, previously depicted in Fig 7.14,
a small modification to the transitions is made.

In the new automaton, which can be seen in Fig 7.17, the immediate transition
to the initial state is conditional on having observed both labels in a sequence. In
the modified GBA, returns to the initial state after having been to a marked state
are conditional on observing the second label. Transitions leading to the first state
are mapped to q0 in the Q-table while transitions performed afterwards are mapped
to one of the other states q1 or q2 until the first state has been visited again.

As in the previous experiments, the automaton is completely deterministic due
to the assumption that at most one label can be observed in the MDP. Thus, it
is for example possible to transition between states q0 and q1 if p is true, because
this assures that r is false, and vice versa. From the marked states, there are only
transitions dependent on one variable, and therefore the other label is a don’t care
term. Although, if there were transitions from the marked states dependent on the
other label, the two labels could not be true at the same time, anyway.

7.6.1 Setup

In this experiment, where the adjusted GBA is used, the standard Q-learning algo-
rithm is compared to the more advanced methods. These consist of the temporal
logic constrained reinforcement learning, first without any helper functions, and then
with the accepting frontier and lastly with the accepting frontier and the potential
function. The experiments are run with the parameters in Table 7.5.

7.6.2 Purpose

The experiment aims to investigate if a small modification to a GBA specification
can solve the problem of that the second liveness and fairness specification in prac-
tice produces an unfair distribution between visits to the marked states. If so, an
interesting limitation to the implementation is discovered.

89

7. Experiments

Table 7.5: Parameters for the second liveness experiment.

Exp Algorithm No.
exp εmax εmin β Eps s/e

a) Standard Q 10 0.9 0.1 0.0001 10000 100
b) TL-RL 10 0.9 0.1 0.0001 10000 100

c) TL-RL w/ Büchi
2 & AF 10 0.9 0.1 0.0001 10000 100

d) TL-RL w/ Büchi
2, AF & Pot 10 0.9 0.1 0.0001 10000 100

7.6.3 Hypothesis
Upon first selecting one of the states, all algorithms now receive a reward for going
to one of the marked states. After this, the agent must visit the other MDP state
before being able to collect another reward. This creates a problem for the algorithm
receiving both automaton rewards and accepting frontier; staying in a marked state
must not generate unlimited rewards without going to the initial state in between.
Therefore, the algorithm using the accepting frontier will only receive rewards from
the accepting frontier. This holds for the algorithm implementing both the accepting
frontier and the potential function as well.

Regardning the change made in the liveness automaton from [2], the hypoth-
esised outcome can be explained by the use of an example. If the MDP state 7
is visited first, the GBA starts off in the initial state q0, and Q-table entries at
positions corresponding to the states q0 and si are filled until i = 7 and the first
destination in the liveness problem is reached. Without the modification, the GBA
would immediately return to the initial state, and as the potential function and the
accepting frontier would now focus on reaching MDP state 56, the Q-table would
be filled at indices corresponding to the same GBA state q0 and arbitrary states sj
of the MDP. Around the first destination, there is a chance that si = sj, causing
the table to overwrite previous entries that were going to lead the agent to the first
destination. With the modification, it is ensured that after visiting the first desti-
nation, the GBA state is either q1 or q2, making it impossible to overwrite tables in
the Q-table.

The hypothesis is now that this improvement helps the Q-learning to map the
recommended actions correctly. After having been in the initial Büchi state until
the first intermediate MDP state is visited, subsequent actions drawing the agent
towards the other MDP state are mapped to another state in the Büchi. In that
sense, the Q-table is able to recommend the agent to go in two directions at a
specific MDP state, depending on where it came from, which is crucial in liveness
type problems.

7.6.4 Results
The results of the second liveness experiment are shown in Fig 7.18. Example paths
generated by selecting actions recommended by the different converged Q-tables are

90

7. Experiments

0 2000 4000 6000 8000 10000
Episode

0.0

0.5

1.0

Av
g.
 Q
 e
le
m
en

t v
al
ue

(N
or
m
. o
n
in
di
v.
 m

ax
.)

Average Q element value Standard Q
Automaton with
M/F states
Büchi 2 with
M/F states & AF
Büchi 2 with
M/F states,
AF & pot.

Env Pot Aut Acc
Reward type

0

1

2

Av
er
ag
e
re
wa

rd

0.03 0.0 0.0 0.00.0 0.0 0.88 0.00.0 0.0 0.0 2.290.0 1.8 0.0 2.21

Reward type distribution

0 2000 4000 6000 8000 10000
Episode

0.4

0.6

0.8

Ex
pl
or

at
io
n
fa
ct
or Exploration

0 2000 4000 6000 8000 10000
Episode

0.004

0.006

Ti
m
e
[s
]

(m
ov

in
g
av

er
ag

e) Time/episode

0 20 40 60 80 100
Step

0

25

50

St
at
e
in
de
x

State sequence candidates

Figure 7.18: Statistics for the second liveness experiment.

displayed in Fig 7.19.

7.6.5 Analysis
The predicted outcome of this experiment is according to the hypothesis in Section
7.6.3 that the modification done to the GBA makes the Q-function map the rewards
to different elements in the table. By observing the policies of Fig 7.19, this indeed
seems to be the case. In all cases except the case of the standard Q-learning, the
states 7 and 56 are visited five to seven times when using the GBA from [2] while
the algorithm using the automaton from [4] makes only three visits to each state
although having a more defined trajectory with a lower spread.

However, by inspecting the chronological plot in Fig 7.18, it becomes apparent
that the algorithms actually produce as many cycles between the states, and the
additional number of visits to states 7 and 56 are actually due to fluctuations back
and forth to the state during the same cycle. In total, all algorithms produce around
5 alternations between the two states. Again, the standard Q-learning method does
not produce a result that contains the two necessary states.

91

7. Experiments

0 1 2 3 4 5 6 7
x

0
2

4
6

y
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Standard Q

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0 1 2 3 4 5 6 7
x

0
2

4
6

y

1 0 0 0 3 3 6 3

1 1 1 3 3 3 4 1

0 0 0 3 4 4 3 2

0 1 1 3 2 0 2 0

0 1 3 1 3 1 1 0

0 3 3 0 3 0 0 0

0 3 2 3 3 0 0 0

3 6 3 1 0 0 0 0

Automaton with
M/F tate

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7
x

0
2

4
6

y

1 0 0 0 0 1 2 6

1 0 0 0 0 1 3 3

1 0 0 0 0 0 3 2

2 0 0 0 2 2 3 2

3 0 2 2 2 1 4 3

1 3 3 1 1 1 3 1

5 3 2 2 1 0 1 0

7 2 3 1 1 1 3 3

Büchi 2 with
M/F tate & AF

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
x

0
2

4
6

y

1 1 1 1 3 1 3 5

0 0 0 0 5 4 5 6

0 0 2 3 6 2 0 2

1 1 2 0 1 0 0 2

1 0 1 0 1 0 0 2

2 0 1 0 1 0 0 2

3 0 1 0 0 0 1 2

5 3 5 4 3 2 2 1

Büchi 2 with
M/F tate ,
AF & pot.

0

1

2

3

4

5

6

Policy candidate

Figure 7.19: Representative state sequences derived from the converged Q-tables.

The convergence of the Q-elements looks quite different between the algorithms.
In Fig 7.18, the algorithms using the accepting frontier and the potential function
can be seen to start converging faster, but at a slower rate than the algorithm using
only the first automaton and rewards for the marked state. It takes around 6000
episodes for all algorithms to converge, and that happens at about the same time.
As before, the standard Q-learning algorithm converges to an incorrect solution very
quickly, which can be used as an example on how much longer it may takes to find
an LTL specified trace through an MDP.

The reward distribution between the algorithms is expected. The standard Q-
learning algorithm receives very little in relation to the others, and the first algorithm
using an automaton only receives rewards from that automaton. The first algorithm
using the modified GBA has its rewards supplied only from the accepting frontier,
and the second gets rewards from both the accepting frontier and the potential
function. The exploration is the same over all algorithms, and the difference in time
is not very significant, but in all algorithms it seems to partly correlate with the
exploration as there is a slight decay in all time curves.

92

7. Experiments

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x coordinate

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

y
co

or
di
na

te

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Environment map

Frozen

Init

Danger

Goal

Intermediate

Figure 7.20: 16 × 16 grid world MDP designed for the large scale sequential
problem.

7.7 Sequential State Visits Experiment 3
The third sequential state visits experiment is formulated as a sequential problem
exactly as described in Section 7.3, but for a larger 16×16 grid world. In this exper-
iment the agent must learn a policy in which the states 15, 240 and 255 are visited,
in that order. The MDP depicted in Fig 7.20 is designed with two intermediate
states in yellow, an initial state marked in green and a goal state marked red. State
15 has the label r, state 240 is labeled s and state 255 has the label p. While there
are no dangerous states in this formulation, they would bear the label q.

The LTL formula for this specification is

ϕ = ♦
(
r ∧ ♦(s ∧ ♦p)

)
∧�¬q (7.5)

which states that eventually, the sequence r, s and p is observed while q is never
seen. The specification is the same as (7.2) in Section 7.3 and is thus realised by
the DBA in Fig 7.6, which is repeated here in Fig 7.21. Frontier states are coloured
in blue, marked state depicted with a double circle and the forbidden state with a
dashed circle. This automaton works on MDPs both with and without dangerous
states.

Finally, the assumption stating that at most one label per MDP state can be
observed holds in this experiment as well, and makes the automaton in Fig 7.21
completely deterministic for the same reasons as in the experiment conducted in
Section 7.3.

93

7. Experiments

q0 q1 q2 q3

q4

r ∧ ¬q

s ∨ p ∨ q q

s ∧ ¬q

p ∨ q

p ∧ ¬q

q

¬r ∧ ¬s ∧ ¬p ∧ ¬q

¬s ∧ ¬p ∧ ¬q

¬p ∧ ¬q

¬q

T

Figure 7.21: Deterministic Büchi realization of a sequential LTL specification.

7.7.1 Setup
The algorithms that are tested are firstly standard Q-learning, then the standard
TL constrained RL algorithm, with the specification shown in Fig 7.21. Thirdly, the
algorithm with the accepting frontier function working on the set of colored states,
also visible in Fig 7.21, is investigated. Finally, the TL constrained RL algorithm
with only the potential function extension constitutes the fourth algorithm in the
experiment. The parameters that are used in this experiment are found in Table
7.6.

7.7.2 Purpose
The purpose is to find out how the algorithms handle larger state spaces. It is a very
fundamental problem that must be solved if any of these methods are to be applied
on real world applications which often feature systems with thousands of states.

7.7.3 Hypothesis
According to earlier hypotheses made for lower dimension sequence problems, it is
improbable that the standard TL constrained algorithm observes its initial reward
since it would have to complete the entire sequence on pure chance according to the

Table 7.6: Parameters for the first sequential experiment on a 16× 16 grid world
MDP.

Exp Algorithm No.
exp εmax εmin β Eps s/e

a) Standard Q 10 0.9 0.7 0.0001 10000 100
b) TL-RL 10 0.9 0.7 0.0001 10000 100
c) TL-RL w/ AF 10 0.9 0.7 0.0001 10000 100

d) TL-RL w/ AF &
Pot 10 0.9 0.1 0.0001 10000 100

94

7. Experiments

ε-greedy action selection. For conventional Q-learning problems it is usually said
that an algorithm that visits all states will find the optimal policy, and a desired
feature of an RL algorithm is usually for it to converge without having to do this
exhaustive task. Here, even visiting all states is not enough, since some also have
to be visited in a specific order. This is a daunting task if the state space is large
as well.

The accepting frontier effectively rewards the agent for visiting intermediate
states, increasing the probability of sequence completion. However, if at some limit
the state space becomes large enough, the atomic propositions of the MDP are less
frequently observed and therefore the problem must sooner or later, even with the
frontier, experience similar reward sparsity problems as without the frontier. The
question is if a 16× 16 grid world is above or below this limit.

The only method that is invariant to the dimensionality issues is the potential
function. The incentive to move towards a goal state is calculated before each step
and rewarded, and it is unaffected on the actual distance to the target. Therefore,
the hypothesis is that the algorithm that uses the potential function is guaranteed to
work, and if the algorithm using the accepting frontier converges it is just a matter
of the 16×16 specifically not being large enough to exploit the unavoidable. It is not
believed that either the classical Q-learning function or the standard TL constrained
RL converges to an acceptable policy for this problem, under reasonable number of
episodes and exploration conditions.

7.7.4 Results
The results for the large scale sequential state visits experiment are found in Fig 7.22.
Paths that are generated by using the converged Q-table of each tested algorithm
are shown in Fig 7.23.

7.7.5 Analysis
According to the hypothesis, it is very improbable that either the standard Q-
learning algorithm or the standard TL constrained RL algorithm would find the
optimal policy, as the whole state sequence would have to be visited. While the
accepting frontier is stated to have the ability of dividing the problem into sub-
sequences that can be completed one after the other, the derived representative
policies in Fig 7.23 imply that the distance is too far between the states for this
to work. As expected, the only successful algorithm is the one that only used the
potential function.

The statistics in Fig 7.22 indeed show that while the algorithm using the ac-
cepting frontier does not find an optimal policy, it does receive rewards for visiting
intermediate states, just not enough of them to find the complete sequence. This
algorithm may still find the optimal policy under different circumstances, such as
other exploration settings or a greater number of episodes.

The algorithm using only potential converges smoothly while the standard al-
gorithm actually converges to negative Q-table element values. As a reminder, the
plot of the average Q element value is normalised to the individual maximum of

95

7. Experiments

0 2000 4000 6000 8000 10000
Episode

−1

0

1

A0
g.
 Q
 e
le
m
en

. 0
al
ue

(N
or
m
. o
n
in
di
v.
 m

ax
.)

Average Q element value Standard Q
Automaton with
M/F states
Automaton with
M/F states & AF
Automaton with
pot. only

Env Pot Aut Acc
Reward type

0

20

Av
er
ag
e
re
wa

rd

0.0 0.0 0.0 0.00.0 0.0 -0.23 0.00.0 0.0 -0.22 0.20.0 34.49 0.0 0.0

Reward type distribution

0 2000 4000 6000 8000 10000
Episode

0.4

0.6

0.8

Ex
pl
or
at
io
n
fa
ct
or Exploration

0 2000 4000 6000 8000 10000
Episode

0.006

0.008

Ti
m
e
[s
]

(m
ov

in
g
av

er
ag

e) Time/episode

0 10 20 30 40 50 60 70
Step

0

100

200

St
at
e
in
de
x

State sequence candidates

Figure 7.22: Statistics for the third sequential experiment.

the curve, which explains the relation between all the non zero curves and the very
small to non-existent rewards in the reward distributions. The Q-element plot shows
that the standard Q-learning algorithm converges to an incorrect policy including
at least one of the intermediate states, and that the standard TL constrained RL
algorithm makes mainly incorrect decisions without finding a correct policy in the
end.

As in previous experiments, the difference in time is not very significant for this
type of problem, and the problem needs to have much higher complexity before a
practically noticeable difference in time is observed. Furthermore, despite the larger
risk of endless exploring that takes too much time, significant ability to explore is
given to the algorithms that does not use potential, but this is to no avail.

Lastly, the chronological plot confirms that the algorithm using potential indeed
visits the states in the correct order, and the representative state sequence takes
around 75 steps from start to finish. With this knowledge, the upper limit of 100
steps may be optimistic, and may be one reason for why the algorithm that uses the
accepting frontier and the automaton rewards does not find the correct sequence.

96

7. Experiments

0 2 4 6 8 10 12 14
x

0
3

6
9

12
15

y

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Standard Q

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0 2 4 6 8 10 12 14
x

0
3

6
9

12
15

y

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Automaton with
M/F tate

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0 2 4 6 8 10 12 14
x

0
3

6
9

12
15

y

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Automaton with
M/F tate & AF

&0.100

&0.075

&0.050

&0.025

0.000

0.025

0.050

0.075

0.100

0 2 4 6 8 10 12 14
x

0
3

6
9

12
15

y

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 2 2 0
0 0 0 0 1 1 1 2 1 1 1 1 1 1 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Automaton with
pot. only

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Policy candidate

Figure 7.23: Representative state sequences derived from the converged Q-tables.

7.8 Potential for Initial Guiding Experiment

This experiment investigates the idea of using the potential function under a few
episodes in the beginning, and then once a trajectory through the MDP has been
found once, switch to fine tuning the algorithm by means of an accepting frontier
with the standard TL constrained RL method.

This scenario can be motivated by a person who is training for an upcoming
championship in the sport of orienteering, which is originally a Swedish military
training exercise that consists of optimally navigating between checkpoints in a forest
using only a compass and a paper map. Being an engineer, the person understands
that this task is much better solved by using a GPS. However, the GPS is low
on battery and the information calculated by it is therefore very expensive. The
engineer can only use the GPS a few times to find an approximate route, but once
the battery dies, only the surrounding environment can be used to perfect the route.

The problem is modelled in the exact same way as the sequential problem in

97

7. Experiments

Table 7.7: Parameters for the potential guiding experiment.

Exp Algorithm No.
exp εmax εmin β Eps s/e

a)
Standard Q w/
AF & Pot, no
limit

10 0.1 0.1 0.0001 20000 100

b) TL-RL w/ AF &
Pot, 8k limit 10 0.1 0.1 0.0001 20000 100

c) TL-RL w/ AF &
Pot, 4k limit 10 0.1 0.1 0.0001 20000 100

d) TL-RL w/ AF &
Pot, 25 limit 10 0.1 0.1 0.0001 20000 100

Section 7.7. The 16 × 16 grid world in Fig 7.20 is used here, and there are still no
dangerous states, although the automaton used (visible in Fig 7.21) accommodates
for the inclusion of these while still working as intended without dangerous states.

7.8.1 Setup
Four different settings are explored. All algorithms use identical combinations that
include the rewards from the standard TL constrained RL method and the accepting
frontier. The difference is that for the first configuration, the potential reward
extension is present throughout all the episodes, while for the three other algorithms
it is switched off after a number of episodes. When this happens, the other reward
systems take over and are present until all episodes have passed.

The experiment uses the parameters shown in Table 7.7. With the exception
of standard Q-learning, the same algorithm is used, but different episode limits are
used on the potential function.

7.8.2 Purpose
The goal is to investigate for how long the potential function is needed, such that it
can be used in situations where the information coming from the potential function
is so expensive that it cannot be used through the whole learning process.

7.8.3 Hypothesis
It is not far fetched to assume that the policy may be found as soon as the complete
sequence is produced. However, there is still a risk that the exploration factor is high
enough to send the agent off from the correct trajectory before a sufficient number
of Q-table elements that are a reasonable distance from the trajectory have enough
non zero elements for the greedy part of the algorithm to work. Furthermore, the
same stochastic issue can be induced by the fact that the MDP is probabilistic to
start with. All things considered, there is a risk that the potential function must be
present until a number of alternative but correct paths have been discovered in the

98

7. Experiments

MDP before the potential can be disengaged.

7.8.4 Results
The results for the experiment concerning initial usage of the potential function are
shown in Fig 7.24. In the different cases, the paths taken by using the recommended
actions from the converged Q-tables are shown in Fig 7.25.

7.8.5 Analysis
The hypothesised behaviour that is formulated in Section 7.8.3 is that while it is
reasonable to assume that the correct path needs to be found only once before the
potential could be turned off, but this is not confirmed by the experiment outcome.
This may be because of two factors, which are considered in the hypothesis.

Firstly, the ε-greedy exploration selects a random action in 10% of the cases,
which provides a source for diverging from a previously found path. This is the

0 2500 5000 7500 10000 12500 15000 17500 20000
Episode

0.0

0.5

1.0

Av
g.
 Q
 e
le
m
en

t v
al
ue

(N
ot
 n
or
m
al
ise

d) Average Q element value

Automaton with
M/F, AF,
& no limit pot.
Automaton with
M/F, AF,
& 8k limit pot.
Automaton with
M/F, AF
& pot. limit 4k eps.
Automaton with
M/F, AF
& pot. limit 25 eps.

Env Pot Aut Acc
Reward type

0.0
2.5
5.0

Av
er
ag
e
re
wa

rd

0.0 7.05 0.93 2.930.0 2.81 0.85 2.810.0 1.4 0.87 2.830.0 0.0 0.34 2.34

Reward type distribution

0 2500 5000 7500 10000 12500 15000 17500 20000
Episode

0.095

0.100

0.105

Ex
pl
or
at
io
n
fa
ct
or Exploration

0 2500 5000 7500 10000 12500 15000 17500 20000
Episode

0.006

0.007

Ti
m
e
[s
]

(m
ov

in
g
av

er
ag

e) Time/episode

0 10 20 30 40 50 60 70 80
Step

0

100

200

St
at
e
in
de
x

State sequence candidates

Figure 7.24: Statistics for the initial potential guiding experiment.

99

7. Experiments

0 2 4 6 8 10 12 14
x

0
3

6
9

12
15

y
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0
1 3 3 1 2 1 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
2 1 1 1 1 1 1 1 2 1 1 1 1 0 0 1

Automaton with
M/F, AF,

& no limit pot.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 2 4 6 8 10 12 14
x

0
3

6
9

12
15

y

1 2 1 1 1 1 1 1 1 1 1 2 2 1 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 2 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1

Automaton with
M/F, AF,

& 8k limit pot.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 2 4 6 8 10 12 14
x

0
3

6
9

12
15

y

1 1 1 1 1 1 1 2 0 0 1 1 1 2 2 1
0 0 0 0 0 0 0 2 1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1 1 1 0 1 2 2 0 0
0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1

Automaton with
M/F, AF

& pot. limit 4k eps.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 2 4 6 8 10 12 14
x

0
3

6
9

12
15

y

1 1 1 0 1 2 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0 0 1 1 1 2 2 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 2 1 1 1 1 1 1 1 1 1

Automaton with
M/F, AF

& pot. limit 25 eps.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Policy candidates

Figure 7.25: Representative state sequences derived using the Q-tables of the
initial potential guiding experiment.

purpose of the exploration, as there may exist better state sequences that imply a
greater reward, but this also requires that some alternative paths are derived by
the use of potential before turning it off. If the algorithm diverges from one of the
trajectories, it can regain foothold again and complete the sequence.

Secondly, the same problem arises in probabilistic MDPs, such as this one. It
is not certain that the agent will follow one single path each time, even without
exploration, as there is a 15% chance that the agent ends up in an unintended state.
Therefore, the second part of the hypothesis seems to be correct, in that several
correct paths needed to be discovered before turning off the potential.

By inspection of the representative state sequences in Fig 7.25 derived from the
converged Q-tables, it can be seen that all algorithms found the correct path. The
lowest stable limit that can be achieved is turning off potential after 25 episodes,
which is very few in relation to that 20000 were needed for the Q-tables to con-
verge. There is no difference in quality between the traces in Fig 7.25, which is very
interesting as a trade off between little work and quality results is usually expected.

The average Q-function element plot in Fig 7.24 shows very clearly how the
potential is turned off at the different limits of 25, 4000 and 8000 episodes. The
curves first follow the trajectory of the algorithm that does not turn the potential

100

7. Experiments

off, and then they converge to other equilibrium that are formed by receiving the
sparse rewards from the accepting frontier and the automaton.

In the plot describing the reward distribution, it is clear that the first algorithm
receives much more rewards from the potential, and some from the accepting fron-
tier and the automaton. When the potential is turned off after 8000 episodes, the
distribution is more equal between the potential and the accepting frontier while the
rewards collected from the automaton are more or less equal. When using a limit
of 4000 episodes, there is actually more reward collected from the accepting frontier
than from the potential function.

The results show that all algorithms reach the goal state after having completed
the correct sequence approximately the same number of times. Furthermore, it can
also be seen that the reward coming from the potential is extremely low in the
case where it is turned off after 25 of 20000 episodes. Without the potential, the
algorithm would not converge (as demonstrated in the previous experiment), but
not much is needed to get the agent on the right path. In Fig 7.24, the reward from
the potential is not even high enough to display a column, on average.

Moreover, as the potential is independent on exploration, a very low amount
of exploration is needed. This exploration is needed only when the other reward
mechanisms take over, as there is still a chance that the potential only guides the
algorithm to approximately the right region. Regarding time, it still follows the
exploration, which is constant, but it becomes apparent that there are other factors
that weigh in on this as well. One of these are when the potential is switched off, and
it appears that having no potential takes longer on average, but turning it off after
a while makes the episode faster compared to always having it on. Finally, in the
chronological plot it can be seen how all derived policies find the correct sequence
states in order, and they take approximately 75 to 80 steps from start to finish.

7.9 Summary
This chapter covers the experiments conducted in the first part of this project,
starting with a description of the basic structure and the fundamental parameters
that are consistent throughout all experiments. Furthermore, a note on the grid
world sizes is provided, along with a small guide on how to interpret the visualisation
of the results.

After this, seven experiments are described using the same structure. Firstly, an
MDP and an LTL specification automaton are provided to set the scene. These fig-
ures are followed by setup, purpose, hypothesis, result and analysis sections. In each
result section, two figures are provided; statistics and representative state sequence.
The seven experiments are Safe Navigation to Destination, Sequential State Visits
Experiment 1 and 2, Liveness and Fairness Experiment 1 and 2 and finally the two
experiments conducted on 16×16 grids, namely Sequential State Visits Experiment
3 and Potential for Guiding Experiment.

101

7. Experiments

102

8
Conclusions of Part I

In the final chapter of Part I, an evaluation of the first half of the project is conducted
in terms of the chosen methods, the results and the overall procedure. Some ideas
for future research are provided, along with a set of final remarks regarding the
algorithms for temporal logic constrained reinforcement learning that have been
evaluated.

8.1 Research Platform Evaluation

The first part of this project includes the construction of a platform on which tem-
poral logic expressions can be implemented in the form of automata. Furthermore,
Markov decision process models of so-called grid worlds can be created, with differ-
ent options regarding state space size, goal state, intermediate states and transition
probabilities. There is also the option to create a completely deterministic grid
world to evaluate algorithms on if necessary. Moreover, standardised ways of con-
ducting temporal logic constrained tabular Q-learning are implemented, in which
it is possible to run several experiments sequentially and derive statistics that are
averaged over all runs. Methods for plotting and saving experiment data along with
an MDP visualisation function are also implemented.

The decision to build the platform with the OpenAI environment as a base proves
to be a successful concept, and is crucial in order to be able to focus on designing
experiments. However, there are large quantities of the OpenAI framework that are
not used. These include methods for creating other types of MDP environments
of different complexity, and there are even functions designed to render three di-
mensional environments. It should be noted that initially, an attempt was made
to create a minimal environment from the ground up, but this attempt was unsuc-
cessful. Several problems related to the implementation arose in later stages, and
the decision was made to move over to an implementation that was known to work.
With that being said, by careful analysis of the currently used parts of the OpenAI
framework, these parts can be lifted out to construct a minimal implementation
which is still partly based on OpenAI. An effort can then be made to generalize
the experimentation files even further, and an attempt could be made to make the
environment structures even more effective.

The implementation of automata models focuses on creating a system that can
update a state variable depending on a list of arguments (atomic propositions) that
can be either true or false. This implementation is independent on the length of
the list of variables to make it more versatile, but there may be ways to both create

103

8. Conclusions of Part I

a more user friendly way of defining the automata, and creating a more efficient
implementation. For example, the current use of lambda statements to formulate the
transition conditions is considered the most readable solution, but it is not the most
efficient method, and it still requires that a Büchi automaton is already designed.
The ideal case would be to prompt the user for the LTL formula, and design an
automaton based on that, but that is considered an extensive task and also outside
the scope of this project. Moreover, this would probably be even less efficient,
which could be a problem. Lastly, implementing non-deterministic automaton is
impossible in the current version of the platform. This is a drawback if maximum
versatility is to be obtained, but for the most realistic scenarios non-deterministic
automata are avoidable.

The way the experiments are conducted in Part I is by manually creating a file
for each experiment, with individual plotting functions to accommodate differences
between the information that is to be highlighted in the plots of every experiment.
There is a need for a more coherent experiment structure in which the user can more
easily define new experiments and change the necessary parameters without having
to write a whole new Python file.

Over all, the current structure still fits the first half of the project well, and
the ability to construct the necessary experiments is not hindered by the way the
research platform is implemented. However, the efficiency of the implementation
can be improved upon, both in the technical sense and in the way the experiments
are implemented.

8.2 Conducted Experiments
There are three categories of experiments in Part I of this project; safe navigation
to a destination, sequential state visits and finally liveness and fairness.

8.2.1 Safe navigation to destination
One experiment of this category is conducted, which is is due to the simple structure
of the problem. Many of these problems do not require the use of temporal logic
and the idea is to show that a simple problem that a standard Q-learning algorithm
can solve with environment rewards could just as easily be solved with a temporal
logic specification. In such a case, all rewards come from the automaton, or the
accepting frontier and the potential function if they are used.

The first conducted experiment is a good starting point, as it establishes a type of
ground truth for the rest of the experiments. It can be confirmed that the automata
models work as expected and all the mechanisms, ranging from defining a model to
deriving and visualizing an optimal state sequence, are working properly.

8.2.2 Sequential state visits
This category of problems is more interesting from a temporal logic perspective.
While it can be said that some sequences can be solved with ordinary Q-learning
and a strategic placement of environment rewards, the ability to do this quickly

104

8. Conclusions of Part I

becomes unrealistic for more complex sequences, such as sequential state visits.
The sequential problem category is very well suited for showcasing the potential of
temporal logic, as it often requires the agent to revisit a state and from there go in
a completely new direction because some other state has been visited before.

Different problems from the sequential state visits category are solved in Part I of
this project. When it comes to realising a single sequential behavior in an 8×8 grid
world, either an accepting frontier function or the additional inclusion of a potential
function is recommended. Even for such a small grid world, it is not recommended
to use only an automaton if it is suspected that the total number of rewards will
be sparsely handed out. However, when selecting between two different sequences,
the rewards have been seen to be plentiful enough due to that the agent sees more
punishment and is taught to develop a correct sequence by the principle of exclusion.
In this case, the accepting frontier function is not necessarily needed, but it may
still be implemented to ensure that convergence will occur. It is moreover advised
to not use the potential function since it may disagree with the reward sources that
have the ability to steer the agent away from bad states. In cases where the state
space is large, however, the potential function is absolutely crucial.

The choice to include experiments of this nature is all in all a good one, and some
interesting results can be observed, such as the ability of specifying a temporal logic
specification that describes two alternative sequential paths to a goal state.

In theory, even more complex sequential problems could be formulated and
solved, and the possibilities of this category of problems has definitively not been
exhausted by the experiments conducted in this work.

8.2.3 Liveness and fairness
The liveness and fairness experiments serve two purposes. Firstly, they show an
example in which two different kinds of automata can be used to solve the same
problem in practice. Secondly, they point to an interesting practical problem that
is visible only in the context of tabular Q-learning; some automata models may
be correct in theory, but are not suited in the application that is TL constrained
tabular Q-learning.

The experiments show that it is important that there are a sufficient number
of states in the specification automaton, and that the transitions are designed in a
correct manner to ensure that the Q-table mapping can be done to avoid overwriting
elements. This is a problem that emerges in practical applications, which is why
it is not enough to have a correct theory in terms of automata language and the
fulfillment of the LTL property.

When it comes to recommending which of the proposed algorithms to use, the
advice is similar to the one given for the sequential problems; if the state space is
large, use the potential function. In cases where it is not needed, it may actually
introduce lingering behavior that can be seen in the chronological state sequence
plot in Fig 7.18, which is undesired.

The ability to conduct more complex experiments on liveness and fairness opens
up for more experiments, such as liveness and fairness for large scale systems, with
more than two states or overlapping paths between intermediate states. This cate-

105

8. Conclusions of Part I

gory of experiments also has many practical applications, which increase the value
of deriving methods that solve this type of problems.

8.3 Answers to Research Questions

The different methods that are evaluated in the first part of this project are based
on temporal logic constrained Q-learning, with additional support from a detached
accepting frontier function and a potential based reward function. In light of the
advantages and disadvantages of these methods, the main conclusions are formulated
by answering the research questions. The detailed questions can be found in Section
1.4, and if possible, the answer to these are answered in the following section.

8.3.1 Conflicts and how they are handled

The first question concerns imposing temporal logic constraints on ordinary Q-
learning problems, and what type of conflicts arise when doing so. Furthermore,
the question asks what the solution to these dilemmas would be if they exist.

In the experiments, it is shown that the additional mechanisms such as the
accepting frontier and the potential function must be designed to only focus on one
state at a time in complex problems, as there is a risk of getting stuck in intermediate
states. The behavior of the agent can in many situations be affected by placing
environment rewards in certain states. For example, placing environment rewards
in intermediate states would undoubtedly disrupt a sequential problem as the agent
would get stuck. However, if negative environment rewards were to be placed in
dangerous states, this would probably not induce a behavior that is unfavorable to
the specification. The same goes for placing additional rewards in a goal state; the
agent would probably be able to go there as long as the environment reward does
not cancel the constraint reward.

These situations can be summarised by saying that in some cases, if a stan-
dard reinforcement learning problem coincides with the specified behavior, there are
normally no problems except that an agent can get stuck in intermediate states.
However, if a contradictory behavior is specified, the constraint can easily be vio-
lated.

The solution to problems in which temporal logic constraints are formulated on
top of a classic reinforcement learning problem is simply to disregard the original
problem in terms of environment rewards, and instead reformulate the specification
to incorporate any desired behavior that was formulated before. An example of
this is the sequential state visit experiments, where the classic RL path planning
problem is to go from an initial state to a goal state, and the specified behavior
concerns the desired state sequence. Temporal logic has the ability to formulate
both safety specifications and the maximising of other value functions, and express
them as one complete automaton. If it is impossible to formulate the total problem
as one specification, it is very likely that there is no solution to the problem, and
that may even become apparent before an attempt is made to solve it.

106

8. Conclusions of Part I

8.3.2 Methods to improve solutions
The question of what ways knowledge of a model can be incorporated into the
solution is investigated in terms of the additional extensions that are made to the
standard temporal logic constrained reinforcement learning algorithm.

For example, if it is known that a certain sequence shall be fulfilled, the first
step is to implement a Büchi automaton that realises the corresponding LTL spec-
ification formula. It is then very straight forward to define a set of colored states
for the frontier function, making it possible to realise complex behaviors more or
less implicitly from a quite vague formulation. If it is known that a certain type of
state shall be visited first, and then another before going to the goal, this informa-
tion can now be taken into account through the specification. A detailed model or
prediction of the MDP is not the only way that information about a system can be
taken advantage of.

Furthermore, for certain systems, a basic structure of the MDP may be known,
for example that it is a grid world. If a specific location, or approximate region
of some states is known and it is desired to visit these states, the potential based
function can be used to perform a type of guided learning until an approximate
trajectory through the MDP has been found. Then, a temporal logic specification
can be used to reinforce a detailed behavior and find an optimal policy that satisfies
the specified behavior.

To conclude the answer to the second research question, the extensions to the
basic temporal logic constrained reinforcement learning algorithm discussed in this
work make it possible to incorporate different kinds of information to produce a
solution to a reinforcement learning problem.

8.3.3 Performance of temporal logic constrained reinforce-
ment learning

The final research question regards the performance of the proposed algorithms, and
if there are certain situations in which one method is recommended over another.
Furthermore, the computational efficiency is of interest, and specifically, the question
asks if there are any undesirable trade offs between computational inefficiency and
the quality of the solutions produced.

The experiments in Part I of this work do not point towards there being a case
where the temporal logic methods take an unreasonable amount of time to converge,
at least not to such a degree where the solution cannot be obtained realistically; the
algorithms seem fast enough. Furthermore, if a specification is to be implemented
in a reinforcement learning problem, the methods described in this work are quite
minimal, even though some suggestions have been made that could improve the
efficiency.

Regarding recommended methods for specific problems, there is much to be said.
When it comes to problems concerning safe navigation to a destination, there are few
cases in which a temporal logic solution is recommended. Many of these problems
are simple enough to be solved with classical Q-learning, but it is certainly possible
to instead formulate an automaton that specifies the behavior if another additional

107

8. Conclusions of Part I

behavior is needed that is hard or inconvenient to formulate by placing environment
rewards strategically. For more complex problems than safe navigation to destina-
tion, standard Q-learning is never recommended, as indicated in the experiments. If
possible, the effort to strategically place environment rewards manually far exceeds
the work to implement an automaton that specifies the corresponding LTL formula.

Sequential problems are very much more convenient to solve with a temporal
logic specification, and for most sequences it is recommended to define an accepting
frontier to divide the problem into sub sequences, as sequential problems do not
scale well at all in terms of the number of states in the sequence and chance of
receiving a reward only from marked states.

Liveness and fairness problems may also be solved easily by defining an accepting
frontier and formulating the specification as a GBA. However, as the experiments
show, there are several ways of solving these problems and care should be taken
to make sure that the automaton is compatible with the tabular structure of the
Q-function, if such an underlying reinforcement learning algorithm is used.

Finally, the potential function is recommended only if the state space is very
large. In some cases it can be shown to disrupt the procedure of the accepting
frontier, and it is in many cases not entirely necessary, but crucial when the scale of
the problem exceeds the abilities of the accepting frontier.

8.4 Additional Conclusions and Suggestions for
Future Work

One of the most interesting conclusions that can be made in the first half of this
project is actually the ability to perform guided learning up to an episode limit
that is much lower than the limit at which an algorithm converges, and then let a
temporal logic specification take over to find the final policy.

As the potential function can be formulated differently to incorporate both exact
and approximate knowledge of the location of desired state, this method is very
versatile and can thus increase the probability of finding the solution to a temporal
logic specified reinforcement learning problem, in situations where the problem is
considered to be too large or otherwise unfeasible. This result is determined to
be quite general and useful for implementing temporal logic specifications in large
scale systems, which is more or less a criterion for the method to gain recognition
in industry. In short, potential is a good way to get the most out of the limited
knowledge of a system.

Part I of this project can be summarised as exploring some different ways to
incorporate temporal logic into reinforcement learning. Certain situations are inves-
tigated through experimentation, and the work highlights a few of the issues that
may arise when trying to solve these types of problems. In some cases, suggestions
and ideas that solve these issues are successfully implemented.

108

8. Conclusions of Part I

8.4.1 Future work
As mentioned before, the platform itself can be minimised and shaped more towards
the type of problems that are of interest in this work. Following in the style of the
experiments that are already conducted, more complex problems such as intricate
sequential and liveness problems would be interesting to experiment with.

Additional to this, experimenting with multiple specifications would be interest-
ing. This implies that the Q-table has multiple dimensions, one for each automaton
that is used simultaneously. This might be an alternative solution to the sparsity
problem, as multiple automata could in theory specify different parts of the total
specification, and thereby give out rewards more frequently.

Another interesting area of experimentation would be to introduce timed au-
tomata as specifications, to formulate another way of ensuring that a specification
is completed. This would introduce another way of incorporating information about
the model into the algorithm. As an example, it might be known that the agent
should reach a specific part of the specification in a maximum number of time steps.
This method would then be a property of the automaton, and not the MDP.

The scope of this project is restricted to a basic model free tabular Q-learning
setting, but there are many other reinforcement learning algorithms using for ex-
ample function approximation and neural networks that would be interesting to
integrate into the temporal logic specification framework. As the temporal logic
functions used in this work are designed to be modular, they are somewhat agnostic
towards the underlying reinforcement learning method, and trying different types of
RL methods would open up a whole new dimension to the work conducted here.

109

8. Conclusions of Part I

110

Part II

Modular Analysis

111

9
Introduction to Part II

9.1 Background
In the first part of this project, focus lies on evaluating different methods of enforcing
constraints formulated in linear temporal logic and realised as Büchi automata.
While the technique is shown to be a good way of inducing specified behaviors in
how a learning agent navigates through discrete time grid world Markov decision
processes, there are situations where additional methods are necessary to ensure
that the agent behaves according to the specification.

One of the issues investigated in Part I is formulating specifications for large
state space Markov decision processes. More specifically, the problem lies in the
agent not being rewarded at the frequency required for fast convergence to a policy.
In certain situations, the processes are such that the occurrence of necessary state
labels is so sparse that the agent has no incentive to proceed further in a large state
space, and gets stuck in a state without finding a policy that meets the specification.

In the first part of this project, methods are formulated to help solve this problem.
One of the most efficient methods is the detached accepting frontier, which allows
for bread crumb style rewards to be handed out to the agent for fulfilling parts of the
specifications. These are generally smaller than the reward of completing the entire
specified behavior, and are designed to lead the agent to fulfill the specification
rather than settle in an intermediate state.

Another method is the Manhattan potential function, where knowledge of a
Markov decision process is utilised to implement a guiding algorithm that leads the
agent to complete the specification. The strength of this method is that additional
information is integrated into the temporal logic reinforcement learning algorithm,
such that large scale problems can be solved efficiently.

Part II of the project addresses yet another way of making the temporal logic
constrained reinforcement learning more efficient in certain scenarios, by introducing
modular analysis.

9.2 Problem Formulation
The focus of the second project part is thus a new improvement method that also
utilises additional process information. In [1], the concept is formulated by consid-
ering situations in which a Markov decision process can be seen as the synchronous
composition of multiple local or modular processes.

In a process composed by multiple sub-processes, [1] suggests that safety can be

113

9. Introduction to Part II

guaranteed by drawing conclusions concerning each of these individually, a strategy
which is in this work referred to as modular analysis. In a Markov decision process,
modular analysis therefore implies making decisions that affect the optimal policy
of operation for the complete system by dividing it into smaller systems. As an ex-
ample, large disadvantageous regions in a path planning problem can be disregarded
early, if action sequences that will undoubtedly lead to these regions can be identi-
fied long before the region is entered. The problem that is investigated in Part II of
this work is thus the control of modular Markov processes, but more specifically, an
example of a modular process that consists of a grid world and a queueing process
is investigated.

In [12], admission control is described as a type of queueing systems control,
where the objective is to decide an optimal policy for admitting arriving customers
into a queue. Once admitted, customers are serviced, after which they leave the
queue. The queue can be seen as a Markov chain, and the admission control prob-
lem is thus a Markov decision process. In many situations, as pointed out in [1],
admission control problems have threshold type solutions, and such is the case in the
control problem discussed in [12]. Threshold type solutions in queueing systems are
optimal control policies that switch between two values, depending on the length of
the queue. The problem is then reduced to identifying the threshold, after which
the optimal control policy can be applied.

The idea that the second part of this project focuses on is thus the temporal
logic constrained reinforcement learning of a Markov decision process that can be
divided into two different parts, one of which is a queueing system for which ad-
mission control should be implemented. The core issue with this problem is that
the queueing subsystem has an infinitely large state space, which makes it hard to
solve the complete MDP problem using temporal logic constrained reinforcement
learning. First of all, this is because the exploration of an infinite state space might
be endless. Secondly, the reinforcement learning algorithm considered in this work
is a tabular method, and with an infinite state space, this table runs the practical
risk of exceeding memory capacity.

The idea is then to find a way to analyse the queueing sub-process locally, and
to motivate that it has a threshold type solution. If admissions are only allowed
up to a specific queue length, this can be seen as making the state space of the
infinite length queueing sub-process finite. By this, the state space of the total
process is also reduced. So, by solving the admission control problem for a part of
the modular process, the rest of the Markov decision process problem can be solved
by using temporal logic constrained reinforcement learning.

Finally, the research questions that are investigated here are mainly the second
and third questions already formulated in Section 1.4 of Part I. The second question
focuses on how additional information can be used in the learning to make it more
efficient, while the third research question deals with the efficiency of temporal logic
constrained reinforcement learning. As the problem investigated in this part is
motivated by performance improvement due to the usage of additional information,
the selected questions are well suited for this part of the thesis.

114

9. Introduction to Part II

9.3 Limitations
There are many ways to formulate a Markov decision process that consists of two
sub-processes, but in Part II of this project, the focus lies on a process that is already
explored in Part I. The main limitation of the second part of this work is therefore
that the total Markov process that is considered is a combination of a slippery grid
world environment such as the ones investigated in the first part, and a queueing
system. The queueing system is a single server infinite capacity queue, known as an
M/M/1 queue, the details of which are described in later sections.

Another limitation is that as focus lies on modular analysis of the queue, the
specifications formulated for the joint process should be simple enough to expect
that a behavior can be successfully enforced. However, given that the modular
analysis is successful in reducing the state space to a similar size as the processes
discussed in Part I, it is reasonable to assume that more complicated specifications
could be enforced for the problem considered in Part II, too.

The third and last limitation is similar to the second, but regards additional
methods. In the problem considered here, no additional methods other than the
modular analysis are considered. This is to isolate modular analysis as the single
method under evaluation.

9.4 Changes to Implementation
In Part I, experiments are conducted on a research platform that is constructed
based on the OpenAI Frozen Lake MDP implementation in Python. Some of the
suggestions for changes formulated in this part include scaling down the method
with the hopes of producing a faster algorithm. A change in implementation can
also be motivated with the fact that the purpose of the second part of the project
is to evaluate a highly specific problem formulated as a grid world in combination
with a queueing system.

Therefore, the experiments conducted in Part II of this work are implemented
entirely in Matlab. Furthermore, as the goal of producing a very user friendly
research platform has proven to be quite redundant, focus now lies on finding ways
of representing the problem as effectively as possible. This includes formulating
Markov processes using transition and probability lookup tables, and using basic
numerical structures to represent the Büchi automata. In total, this should produce
a new temporal logic constrained reinforcement learning algorithm that is more
efficient than what is implemented in Python.

The final reason for switching to Matlab is that the syntax is not tailored to final
product implementations, but to experimentation. Furthermore, producing efficient
implementations are done efficiently by using the Matlab Profiler environment to
analyse functions and expose bottlenecks.

115

9. Introduction to Part II

116

10
Generalised Semi Markov

Processes and the
Poisson Distribution

The starting point of Part II of this thesis is to consider the fundamental properties
that outline the foundation for the type of modelling that is used here. While
discrete time Markov processes make up a cornerstone of Part I, the goal here is
to understand how to use continuous time Markov processes as models in temporal
logic constrained reinforcement learning. The ultimate purpose of this is to use
modular analysis on these models to reduce the computational burden of the learning
problem by finding solutions to the individual problems using other methods than
reinforcement learning.

This chapter starts out by formulating the important Markov property, known
from Part I, in continuous time. This property is then applied on stochastic se-
quences called renewal processes, that are generated by specific stochastically timed
automata structers that are known as Generalised semi Markov processes (GSMPs).
An important class of renewal processes, the Poisson process, is then formulated
which leads to the definition of the Poisson distribution and some of its properties.
The first chapter finishes with some practical applications of the Poisson distribution,
and a description of what happens when multiple processes are superpositioned.

10.1 Stochastic Timed Automata and GSMP
In this work, focus lies on the modelling of subsystems that behave as Markovian
queueing networks, and as with any other modelling framework, there is a need to
understand the underlying mechanisms in order to apply it. Therefore, the next
sections regard developing a way of modelling stochastic queueing processes.

10.1.1 The Markov property and renewal processes
The starting point is, as in [12], to define a stochastic process {X(t)} as

X(t) = {X(t0), X(t1), . . . X(tn)} (10.1)

consisting of all the random variables for which a joint cumulative probability dis-
tribution can be formed. Finding a distribution that describes all random variables

117

10. Generalised Semi Markov Processes and the
Poisson Distribution

in a stochastic sequence is generally difficult, but in the cases when it is possible,
the stochastic process {X(t)} is valuable for modelling purposes.

As initially mentioned in Section 2.2.1 of Part I but here described as in [12], the
Markov property (also called the memoryless property) describes that if a stochas-
tic sequence {X(t)} is observed to take values from {x0, x1, . . . , xk+1} through the
history defined by time points t0 ≤ t1 ≤ · · · ≤ tk+1, and

Pr{X(tk+1) ≤ xk+1|X(tk) = xk, . . . X(t0) = x0} =
= Pr{X(tk+1) ≤ xk+1|X(tk) = xk}

(10.2)

then X(t) possesses the Markov or memoryless property and is said to be a Markov
process. In this expression, Pr denotes general probability, just like in Section 2.2.1
of Part I.

A specific type of Markov process is the renewal process, defined according to
[12] as

N(t0 = 0) ≤ N(t1) ≤ · · · ≤ N(tk) (10.3)
for the times t0 = 0 ≤ t1 ≤ · · · ≤ tk. N(t) can assume values 0, 1, . . . and is thus
often used to count occurrences of events on the time interval (0, t] = 0 < t ≤ tk.

To summarise as in [12], the Markov property has in both the continuous and
discrete case two properties. Firstly, measurements of the state earlier than the last
measurement are irrelevant as the stochastic history of the process is encapsulated
in the previous state measurement. Secondly, the time that the process has been in a
state is also irrelevant. If the process is in a certain state at time t1, any predictions
that can be made will not be different at time t2 which is why the second property
must hold.

10.1.2 Clock structures and timed automata
To describe the stochastic renewal or counting processes, the focus lies on finding
a probability distribution that gives the probability to observe some number in the
count. To do this, it might be important to describe when in time the process
changes. Here, an intuitive interpretation of the stochastic clock structure formally
defined in [12] is given as another fundamental element of this modelling framework.

A clock structure is a set V = {vi : i ∈ E} of clock sequences vi = {vi,1, vi,2 . . . }
that maps an event i to time points in vi. The clock structure can then describe when
events occur in time. A stochastic clock structure also consists of clock sequences
{Vi,k} = {Vi,1, Vi,2 . . . } for each event i, but these clock sequences are determined
from a set of probability distributions G = (Gi : i ∈ E), where Gi = Pr{Vi ≤ t}.
So, although somewhat intricately described, an intuitive view of this is that events
i occur at randomly selected points in time according to probability distributions
Gi. As opposed to discrete events occurring at equidistant time indices, events that
happen according to this procedure can be regarded as discrete events taking place
in continuous time.

Using the concept of stochastic clock structures, the stochastic timed automaton
can be defined. It is, as in [12], an automaton defined by the tuple

〈ε,X ,Γ, P, p0, G〉 (10.4)

118

10. Generalised Semi Markov Processes and the
Poisson Distribution

This type of automaton is not used in the same sense as other automata classes
described in this work, but rather as a stepping stone to motivate future modelling
concepts and assumptions. In (10.4), ε is a set of events, X is a state space, and
Γ(x) is a set of feasible events in the state x. Note that this type of state notation
is different from that of the MDP structure in Part I; this is to avoid confusion with
the type of states considered in Markov processes.

Furthermore, P (x, e, x′) is a transition probability mapping, describing the prob-
ability of transitioning to state x′ by the feasible event e from state x, and p0(x)
describes the probability of the initial state being x. Finally, G = {Gi : i ∈ ε} is the
previously defined stochastic clock structure.

This automaton thus has a timing structure G that will trigger events at random
points in time. This will naturally result in stochastic state sequences over time.

At this point, the Generalized Semi Markov Process (GSMP) can be defined
as in [12] as a stochastic sequence {X(t)}, defined as in Section 10.1.1, generated
from the stochastically timed automaton given by (10.4). The name of this process
stems from that although the time sequences are random, the state probabilities
in the GSMP obey the Markov property. Furthermore, in a semi-Markov process,
the distributions Gi describing the clock structure are defined externally while the
generalised form uses G directly to describe the time sequences.

Next, the relationship between certain stochastic processes and the clock struc-
ture of the underlying GSMPs are exemplified by the Poisson counting process.

10.2 Poisson Counting Process

As is described in Section 10.1.1, a renewal process can be used to count events.
Here, this method is used to count the events of a very simple system, and the point
is to expose some valuable results regarding certain types of systems. These results
can then be used when modelling stochastic discrete event systems.

10.2.1 Derivation of the Poisson distribution

In this section, the Poisson distribution is derived from a basic definition of a Poisson
counting process. Although the definition and derivation of a Poisson process is
given in [31], the procedure is described in the style of the derivation given in
[12]. This procedure is included because it gives an intuitive understanding of the
detailed mechanisms that make up a Poisson process. The described way of thinking
about counting processes can be used to determine if any stochastic counting process
is possible to model using the Poisson distribution in order to be able to use its
associated results.

Start with a discrete event system that has only one event, which can occur at
times 0 ≤ t1 ≤ · · · ≤ tk. The interval length between each time point is arbitrary,
as long as the aforementioned order of magnitude holds for the time instances. Now
let a renewal process {N(t)}, first mentioned in Section 10.1.1, describe the number
of events that has occurred on the interval (0, t]. The count N(t) can only be

119

10. Generalised Semi Markov Processes and the
Poisson Distribution

incremented at times {tk : 0 ≤ t1 . . . tk ≤ t}, such that

N(0) ≤ N(1) ≤ · · · ≤ N(tk) ≤ · · · ≤ N(t) (10.5)

where N(0) = 0. Furthermore, the number of events that occur on the interval
(tk−1, tk] is denoted N(tk−1, tk) = N(tk)−N(tk−1).

As the occurrences of the events are stochastic, it follows that the counting of
them, N(t), is a stochastic variable, and the aim here is to derive the probability
distribution Pn(t) = Pr{N(t) = n} for n = 0, 1, 2 This notation describes the
probability of having a count of exactly n occurrences on the interval (0, t] in general
probability terms, and is thus technically a probability mass function.

To obtain the probability distribution, the counting procedure needs to follow
three rules, which are often the starting point when describing Poisson processes,
such as in both [12] and [31]:

1. Multiple events cannot trigger simultaneously. At time tk, either one or zero
events occur.

2. The event counts during multiple non overlapping time intervals are mutually
independent. Having observed some count in the past does not affect the
possibility of observing any future count.

3. The probability Pr{N(tk−1, tk) = n} can not depend on a specific time in-
stance tk−1 or tk, but may depend on the length of the time interval. In this
sense, the probability is stationary.

The procedure from here is outlined in three steps. Firstly, Pr{N(t) = 0} is
determined. Secondly, the probability Pr{N(∆t) = 0} where ∆t is a small interval
is determined. Then, Pr{N(∆t) = n} is obtained for n = 1, 2, . . . , followed by
the expression for Pr{N(t + ∆t) = n}. Lastly, letting ∆t → 0 will reveal the
equation Pn(t) = Pr{N(t) = n}, n = 0, 1, 2 . . . , which is solved in the seventh step
to conclude the derivation.

Step 1: Pr{N(t) = 0}

Continuing on with the derivation from [12], the third rule, which says that the
distribution of N(tk−1, tk) is only dependent on the interval length s = tk− tk−1 and
not on specific time instances tk−1, tk, implies that the expression
Pr{N(tk−1, tk) = n} = Pr{N(s) = n} can be rewritten as

Pr{N(t, t+ s) = n} = Pr{N(s) = n} (10.6)

For time points 0 ≤ t ≤ t + s, the count being zero at t + s implies that it was
also zero at t, since there can only be positive increments. Therefore,

Pr{N(t+ s) = 0} = Pr{N(t) = 0 ∧N(t, t+ s) = 0}

Since a rule is that N(t) and N(t+ s) are independent,

Pr{N(t+ s) = 0} = Pr{N(t) = 0} · Pr{N(t, t+ s) = 0}

120

10. Generalised Semi Markov Processes and the
Poisson Distribution

Using the fact that Pr{N(t, t + s) = 0} = Pr{N(s) = 0}, the previous expression
becomes

Pr{N(t+ s) = 0} = Pr{N(t) = 0} · Pr{N(s) = 0}

For the resulting equation, rewritten as

P0(t+ s) = P0(t) · P0(s) (10.7)

some notes can be made. Firstly, P0(0) = 1 since it is known that the count starts
at zero. Secondly, P0(t) ≤ 1 for all t ≥ 0. Then, by assuming that P0(t + s) and
P0(s) are differentiable, differentiating (10.7) with respect to s yields

d

ds
P0(t+ s) = P0(t) · d

ds
P0(s)

By then setting g′(s) = d
ds
g(s) and s = 0, the previous equation becomes

d

ds
P0(t) = P0(t) · P ′0(0) (10.8)

Since P0(0) = 1, a candidate solution of the differential equation (10.8) is

P0(t) = eP
′
0(0)t (10.9)

Next, P0(t) ≤ 1 for all t ≥ 0 is satisfied if the candidate solution (10.9) is updated
to

P0(t) = e−P
′
0(0)t (10.10)

If λ = P ′0(0), the final expression for P0(t) is

P0(t) = Pr{N(t) = 0} = e−λt (10.11)

where λ > 0. It can also be verified that P0(t + s) = P0(t) · P0(s) as it holds that
e−λ(t+s) = e−λt ·e−λs. Again, what is derived here is an expression for the probability
that no event occurs in the interval (0, t].

Step 2: Pr{N(∆t) = 0}

An interval ∆t is defined so that (10.11) for the interval ∆t has the Taylor series

Pr{N(∆t) = 0} = e−λ∆t = 1− λ∆t+ λ2 ∆t2
2! − λ

3 ∆t3
3! + . . .

As the higher order terms becomes negligible as ∆t → 0, they are collected in the
function o(∆t) which has the property o(∆t)/∆t → 0 as ∆t → 0, and the Taylor
expansion becomes

Pr{N(∆t) = 0} = 1− λ∆t+ o(∆t) (10.12)

which concludes the second step.

121

10. Generalised Semi Markov Processes and the
Poisson Distribution

Step 3: Pr{N(∆t) = n}

The first rule of the Poisson counting process is that two events cannot occur at
the same time instance, but what about a time interval? The key step is to let the
∆t approach zero such that the probability of having two or more events occurring
during ∆t becomes so small that Pr{N(∆t) = n} = o(∆t) for n = 2, 3

The probability of the count being equal to any non negative integer is always
one, expressed mathematically as ∑∞n=0 Pr{N(∆t) = n} = 1, and this combined
with the probability of having multiple events in ∆t being negligible results in

Pr{N(∆t) = 0} = 1− λ∆t+ o(∆t)
Pr{N(∆t) = 1} = λ∆t+ o(∆t)

(10.13)

if combined with (10.12). Thus, the only nonzero probabilities of events occurring
during ∆t are those of N(∆t) = 1 and N(∆t) = 0.

Step 4: Pr{N(t + ∆t) = n}

For two intervals (0, t] and (t, t + ∆t], consider the possible, mutually exclusive,
situations leading up to N(t+ ∆t) = n, namely

N(t) = n and N(t, t+ ∆t) = 0
or

N(t) = n− 1 and N(t, t+ ∆t) = 1
or
...

N(t) = 0 and N(t, t+ ∆t) = n

The probability of n events occurring in ∆t can then be expressed as

Pr{N(t+ ∆t) = n} =
n∑
j=0

Pr{N(t, t+ ∆t) = n− j and N(t) = j} (10.14)

The second rule of the Poisson counting process is that the counts of two non
overlapping intervals are independent, so

Pr{N(t, t+ ∆t) = n− j and N(t) = j} = Pr{N(t, t+ ∆t) = n− j} ·Pr{N(t) = j}

As Pr{N(t, t+ ∆t) = n− j} = Pr{N(∆t) = n− j}, (10.14) can be rewritten as

Pr{N(t+ ∆t) = n} =
n∑
j=0

Pr{N(∆t) = n− j} · Pr{N(t) = j} (10.15)

In this expression, events N(∆t) = n− j have probability zero except in two cases,
either [N(∆t) = 0 and N(t) = n] or [N(∆t) = n− 1 and N(t) = 0]. Hence, (10.15)
reduces to

Pr{N(t+ ∆t) = n} =Pr{N(∆t) = 0} · Pr{N(t) = n}+
+Pr{N(∆t) = 1} · Pr{N(t) = n− 1}+ o(∆t)

122

10. Generalised Semi Markov Processes and the
Poisson Distribution

Using the derived probabilities in (10.13) with the definition Pn(t) = Pr{N(t) = n}
in this expression

Pn(t+ ∆t) = (1− λ∆t)Pn(t) + λ∆tPn−1(t) + o(∆t) (10.16)

is obtained for integers n > 0.

Step 5: Derive equation for Pn(t) = Pr{N(t) = n}

Subtracting Pn(t) from both sides of (10.16) and then dividing by ∆t where
∆t→ 0 while remembering that o(∆t)/∆t→ 0 as ∆t→ 0 results in the difference-
differential equation

lim
∆t→0

Pn(t+ ∆t)− Pn(t)
∆t = −λPn(t) + λPn−1(t) + o(δt)

∆t

⇐⇒ dPn(t)
dt

= −λPn(t) + λPn−1(t)
(10.17)

for integers n > 0.

Step 6: Solve the equation for P[N(t) = n]

Using the already derived result P0(t) = e−λt in (10.17) for n = 1, 2 . . . results in

P1(t)
dt

= −λP1(t) + λe−λt =⇒ P1(t) = (λt)e−λt

P2(t)
dt

= −λP2(t) + λe−λtP1(t) =⇒ P2(t) = (λt)2

2 e−λt

...

which leads to the expression

Pn(t) = (λt)n
n! e−λt (10.18)

This is the expression for the Poisson distribution, which gives the stationary prob-
ability that a Poisson counting process has reached n during the time interval of
length t.

10.3 The Poisson Distribution
As is shown in Section 10.2.1, the Poisson counting process describes the counting
of discrete events during a period of time denoted by the interval (0, t]. Given that
the count denoted N(tk) is a random variable incremented at times {tk|0 < tk ≤ t},
it turns out that the probability of observing the count when it is exactly n is given
by

Pn(t) = (λt)n
n! e−λt (10.19)

123

10. Generalised Semi Markov Processes and the
Poisson Distribution

Processes that behave as Poisson counting processes are commonly referred to
as Poisson processes, and the probability of observing a count is determined by the
discrete Poisson probability distribution written as (10.19).

It is important to emphasise that t denotes the number of unit intervals of time,
and not a specific time instant. The unit time interval can describe any time period,
for example c minutes or c hours where c is a positive, not necessarily integer, scalar.
In this setting, t can denote multiples, but also fractions, of the given unit interval.

The rate parameter λ denotes the average count per unit time interval, and can
as in (10.21) be viewed as the expected count during one unit time interval. Note
here that as the Poisson distribution characterises a random variable, the meaning
of λ being the expected count is that observing the count n = λ has the highest
probability, just as the expected value of other probability distributions. In one unit
time interval the probabilities to observe higher or lower exact counts than λ are
still significant, albeit decreasingly so.

In many cases, only one unit time interval is interesting, and (10.19) is evaluated
at t = 1. The probability of the count N(t) being exactly equal to n, given that
N(t) = λ is expected after one unit time interval, (10.19) writes as

Pn = Pr{N(t) = n} = (λ)n
n! e

−λ (10.20)

which is how the Poisson distribution is often described in literature.

10.3.1 Properties of the Poisson distribution
Two properties of the Poisson distribution that are also obtained from [12] are the
expressions for the expected value and the variance of the random variable N(t),
given as

E[N(t)] =
∞∑
n=0

nPn(t) = · · · = λt

V ar[N(t)] =
∞∑
n=0

n2Pn(t) = · · · = E[N(t)] = λt

(10.21)

The complete, although short, derivations of the expressions in (10.21) are omitted
here but can be found in [12].

Another important feature of the Poisson distribution is the question of how the
inter-arrival times, the time between each count increment, are distributed. Since
it is known how the probabilities of the count variable N(t) in a Poisson process are
distributed, the time intervals between arrivals are also random variables for which
a probability distribution can be derived.

This derivation, also formulated in its entirety in [12] but omitted here, results
in that the probability of the interarrival time variable v taking a value in relation
to the time interval length t is described as

G(t) = Pr{v ≤ t} = 1− e−λt (10.22)

124

10. Generalised Semi Markov Processes and the
Poisson Distribution

for t ≥ 0. This is the cumulative density function (CDF) of the exponential proba-
bility distribution and its probability density function (PDF) is obtained by differ-
entiating the CDF with respect to time, which gives

g(t) = λe−λt (10.23)

Lastly, if a counting process is a Poisson process, it is implied that the interarrival
times are exponentially distributed, and vice versa.

10.3.2 Practical uses of the Poisson distribution
To get an intuitive view of how the Poisson distribution can be used practically,
an example is in order. Assume that during the unit time interval t = 1 day at a
hospital emergency room, patients arrive according to a Poisson process with rate
parameter λ = 20. In simplified terms, the patients are expected to arrive one by
one, and during one day the most probable exact total patient count is 20. What are
then the probabilities that exactly 17, 20 and 23 patients have arrived? According
to (10.20),

Pr{No. patients = 17} = 2017

17! e
−20 = 0.076

Pr{No. patients = 20} = 2020

20! e
−20 = 0.088

Pr{No. patients = 23} = 2023

23! e
−20 = 0.067

As can be seen, the probabilities for exact patient counts are quite low by their
own; while the probability to find λ patients is the highest, it is only at around nine
percent.

What, then, is the probability that at most 20 patients have arrived? This
probability is obtained by summing over the probabilities of individual exact counts
up to 20, which gives

Pr{No. patients ≤ 20} =
20∑
n=0

(20)n
n! e−20 = 0.560

This total probability is larger. Intuitively, the probability of observing any number
of patients is the probability of observing a exactly one, plus that of exactly two,
and so on up to the infinite integer limit, giving the total probability one.

Lastly, what is the probability to observe at most 30 patients arriving during
the course of two days? And what is the probability that between four and eight
patients arrive after lunch, a time period corresponding to half a day? To answer
the first question, (10.19) is used with two unit time intervals and the same value
for λ as before to obtain

Pr{No. patients ≤ 30|t = 2 days} =
30∑
n=0

(20× 2)n
n! e−20×2 = 0.062

During two time periods, 40 patients are expected. Given that the computation
above will result in a total probability of 0.542 if 40 is set as the upper patient

125

10. Generalised Semi Markov Processes and the
Poisson Distribution

Figure 10.1: The Poisson distribution for different λ and t.

limit, it is implied that changing the parameters may yield seemingly unintuitive re-
sults, which further underlines the importance of technically evaluating stochastical
models instead of guessing.

The second question is answered in the same manner, but the time interval is now
halved. The Poisson distribution is stationary, which means that it is independent
of specific time instances, and only depends on the length of the unit time interval.
Thus, it does not matter if the interval is before or after lunch, and the probability
that between four and eight patients are waiting is given by

Pr{4 ≤ No. patients waiting ≤ 8|t = 0.5 days} =
8∑

n=4

(20× 0.5)n
n! e−20×0.5 = 0.323

The Poisson distribution can be visualised for different parameters to help gain
an understanding of how they affect the distribution. In Fig 10.1, it is shown how
the Poisson probability distribution changes when different values for λ and t are
selected.

10.4 Superposition of Multiple Poisson Processes
In the fundamental definition of a Poisson process, recall that the inter-arrival (some-
times called intervenent) times between events are by definition exponentially dis-
tributed. But it might also be interesting to see what happens if multiple Poisson
processes are observed together.

Now, as explained in [12], consider m mutually independent Poisson processes.
These can be seen as renewal or counting processes with rates λ1 . . . λi . . . λm, each
with a random variable Ni(t) denoting the count of each independent process. The
intervenent times are then stochastic variables Y1 . . . Ym.

126

10. Generalised Semi Markov Processes and the
Poisson Distribution

With all m processes acting together at some point in time (the superposition
of the m processes), the time until any next event is the smallest intervenent time
being Y ∗. Each of the intervenent times is exponentially distributed as

Yi ∼ 1− eλit (10.24)

Then, Y ∗ is distributed as

Pr{Y ∗ ≤ t} = 1− Pr{Y ∗ > t} = 1− [min
i
{Yi} > t] (10.25)

where Pr{·} denotes probability in general terms. The minimisation term is an
event, equivalent to the event Y1 > t ∧ Y2 > t ∧ · · · ∧ Ym > t, according to [12].
These processes are independent, and according to the fundamental definition of
stochastical independence, m processes Y1 . . . Ym are independent iff

Pr{Y1 = y1 ∧ Y2 = y2 ∧ · · · ∧ Ym = ym} =
= Pr{Y1 = y1} · Pr{Y2 = y2} . . . P r{Ym = ym}

(10.26)

Then, (10.25) can be expressed as

Pr{Y ∗ ≤ t} = 1−
m∏
i=1

Pr{Yi > t}

= 1−
m∏
i=1

eλit

(10.27)

where the last step can be made by using (10.24).
If the sum of all Poisson parameters is expressed as Λ = ∑m

i=1 λi, the exponential
term in the product sum can be expressed in terms of Λ, and then the distribution
of the intervenent times of all the m Poisson processes together making up the joint
system is expressed as

Pr{Y ∗ ≤ t} = 1− e−Λt (10.28)
So, a process that is a superposition of m independent Poisson processes has

exponentially distributed intervenent times with parameter Λ. This implies that
the superimposed m Poisson processes is also a Poisson process, with parameter Λ.

Lastly, the above derivation of the distribution of the intervenent times of the
superposition is based on that events from all m Poisson processes are occuring at
any time. Thus, the count of all the independent events, which summed together
form the count of the superimposed Poisson processes is

N(t) = N1(t) +N2(t) + · · ·+Nm(t) (10.29)

The conclusion is that the intervenent times are exponentially distributed with
parameter Λ, which implies that the superimposed Poisson process is also a Poisson
process with rate Λ. Therefore, another way of viewing the superposition is that the
sum of all the counts from m independent Poisson processes is distributed according
to the Poisson distribution

Pr{N(t) = N1(t) + · · ·+Nm(t) = n} = (Λt)n
(n!) e

−Λt (10.30)

where Λ = ∑m
i=1 λi.

127

10. Generalised Semi Markov Processes and the
Poisson Distribution

10.5 Summary
The theory behind the models used for modular analysis in Part II of this work
starts with the definition of the Markov, or memoryless, property in continuous
time. This property is used to describe how discrete events can occur at any point
in continuous time, and a stochastically timed automaton class called the GSMP is
used to generate such events.

Next, an example of how events generated from the GSMP can be counted is the
Poisson counting, or renewal, process. Based on three fundamental assumptions, the
discrete probability mass function called the Poisson distribution is derived. This
function gives the probability of the count assuming a specific integer value, given
that the rate of event occurrences per unit time interval is known.

For a variable distributed according to the Poisson distribution, the two basic
stochastical measurements of expected value and variance are mentioned. After this,
some practical examples of how the Poisson distribution can be used are given in
the form of patients arriving to a doctors office.

Lastly, superposition of mutually independent Poisson processes is shown to also
be a Poisson process with a rate parameter that is the sum of all the individual
process rates.

128

11
Modelling with Discrete and
Continuous Markov Chains

The key take-away from the previous discussions of GSMP and Poisson processes
is that a Poisson process, such as the one derived in Section 10.2.1 and the one
illustrated in the waiting room example of Section 10.3.2, can be viewed as a
Generalised Semi-Markov Process. This process is called generalised since the prob-
ability distributions with which event occurrences are described can be chosen. In
this chapter, focus lies on how the relationship between the Poisson process and
the GSMP with exponentially distributed intervenent times makes it possible to
describe continuous time Markov chains.

The goal is to find how a Poisson process can be modelled as a continuous
time Markov chain by determining a set of states, transition rates and initial state
probability distribution. As an illustrative example, if the states in the Poisson
counting process described in Section 10.2.1 are defined as the count, and the count
increases by a Poisson process with rate λ, an equivalent continuous time Markov
chain model exists given that the probability distribution for the initial count is
known. In practice, this count is often deterministically set to zero.

As is known from Part I of this thesis, specifically in Section 2.2.1, the Markov
property is a concept that says that although the state of a Markov process is
conditioned on the history of the process, this history is always encapsulated in the
probability of being in the previous state. This is not only a property of discrete
systems but, as described in Section 10.1.1, the Markov (or memoryless) property
can also be defined for random variables that changes in continuous time. Therefore,
there are both discrete and continuous Markov chains.

To connect the continuous time Markov property to GSMPs with Poisson clock
structures and the Poisson counting process, the natural next step is to describe the
continuous Markov chain, and this is the starting point of this chapter. Properties
of this type of chain such as rates, homogeneity and state probabilities in transient
and stationary state are then discussed.

After this, the discrete time Markov chain is described in light of the differences
to the newly formulated continuous Markov chain. The same properties that are
described for the continuous process are described for the discrete one. With this
knowledge, a procedure called uniformisation designed for constructing a discrete
time equivalent Markov process from a continuous one is described.

The chapter ends with a proposed way of describing the joining of two indepen-
dent continuous Markov processes, and how to uniformise the joint process.

129

11. Modelling with Discrete and
Continuous Markov Chains

11.1 Continuous Time Markov Chains
Markov decision processes are used in the first part of this project, and are first
described in Section 2.2. MDPs are, broadly speaking, discrete transition systems
that describe controlled but probabilistic transitions between states which obey the
Markov property in discrete time.

The continuous time Markov chain can intuitively be seen as a more general form
of MDPs. In its basic form, the continuous time uncontrolled Markov chain also
describes probabilistic, discrete transitions between states. However, the transitions
do not occur at discrete time steps as in the MDP, but at times points in continuous
time, and the transitions are in the basic definition uncontrolled. In this section,
the continuous time Markov chain is described in detail.

To define a continuous time Markov chain, the GSMP concept is used. Consider
a GSMP that is defined to have one discrete event that triggers in continuous time
such that if it is counted, the count increases as a Poisson process with rate λ. This
count is defined as the state of the Markov chain, and it can be incremented by the
single event. The state space is then

S = {s0 = 0, s1 = 1, s2 = 2, . . . } (11.1)

In this example, there is only one process that changes the state. However, by the
principle of Poisson process superposition from Section 10.4, states in a continuous
time Markov chain can also be defined as the sum of multiple Poisson event count
processes. This is equivalent to saying that the state of a Markov chain can be
changed by multiple events. This is discussed in more detail further on, when some
important properties of the continuous time Markov chain are described.

A very important property of the continuous Markov chain class is, according to
[12], that the transitions between states has exponentially distributed intervenent
times by definition, since the event count is a Poisson process. If there is only one
event, the time interval between two events is then distributed according to the
exponential distribution, such that

Pr{v ≤ t} = 1− e−λt (11.2)

A way of interpreting this expression is that it gives the probability of an event
occurring during the time interval (0, t] given that the intervenent time v is ex-
ponentially distributed with rate parameter λ. This comes from the fundamental
mechanism of how the events occur according to the Poisson clock structure, which
is described in Section 10.2.1 but described in detail in [12]. This also implies that
the time that the Markov process spends in each state, called state holding times,
are equivalent to the intervenent times in this particular one event system.

Another defining feature of the continuous time Markov chain is the memoryless
property in continuous time, first described in (10.2). If the event count is the state
in a Markov chain, the continuous time Markov property is defined for those states
as

Pr{s(tk+1)|s(tk), . . . s(t0)} = Pr{s(tk+1)|s(tk)}
where s(t) is the state of the continuous time Markov process at time t and assumes
values from the state set S.

130

11. Modelling with Discrete and
Continuous Markov Chains

As stated in [12], the first difference between the discrete and continuous time
versions of Markov chains is that in the continuous case, one step probabilities which
in the discrete case are collected in the probability matrix P , cannot be used. Now,
the transition probabilities depend on a time interval, and since there are infinitely
many time values, describing the probability matrix in the continuous case is not
convenient. In the discrete case, the underlying clock structure is synchronised in
discrete steps between the different transitions, making the one step probabilities
possible to describe in a simple way.

The solution to this problem is to instead consider a matrix Q(t) of transition
rates, which is in [12] a bi product of defining the Chapman-Kolmogorov equation.

11.1.1 The Chapman-Kolmogorov equation and
rate matrices

In the discrete time case, the Chapman-Kolmogorov equation is described in [12] as
an expression that describes the probability that the state of a discrete time Markov
process is j at discrete time k+ n given that the state is i at time k. Specifically, it
describes the total probability of this with respect to an intermediate time u where
the process has the probability to be in r different states. If there is a probability
function P such that

Pij(k, k + n) = Pr{s(k + n) = sj|s(k) = si} (11.3)

then the Chapman-Kolmogorov equation says that

Pij(k, k + n) =
∑
all r

Pir(k, u)Prj(u, k + n) (11.4)

where k < u ≤ k + n. Furthermore, Pij(k, k + n) can be defined for all states si, sj
and collected in the matrix H(k, k + n).

In the continuous time case, the probability to transition between two states is
now dependent on time, such that

Pij = Pr{s(t) = sj|s(v) = si]

for two consequtive time points v ≤ t. To be clear, here v is used to represent a point
in time in the derivation of the Chapman-Kolmogorov equation, and has nothing to
do with interarrival time, also denoted v in other sections. As is done in detail in
[12], the matrix form of the Chapman-Kolmogorov equation thus also changes to

H(v, t) = [Pij(v, t)] (11.5)

for all si, sj = 0, 1, 2 From this, the relationship

H(v, t) = H(v, u)H(u, t) (11.6)

can be obtained for times v ≤ u ≤ t. The rate of H can according to [12] be defined
by introducing a time interval ∆t and letting it approach zero. What is obtained is
then

Q(t) = lim
∆t→0

H(t, t+ ∆t)− I
∆t (11.7)

131

11. Modelling with Discrete and
Continuous Markov Chains

where I is the identity matrix. Q(t) thus describes the rate of change in the transition
probabilities between each state of the continuous Markov Chain with respect to
time. Using Q(t), the forward Chapman-Kolmogorov in continuous time can be
defined as

∂H(v, t)
∂v

= −Q(v)H(v, t) (11.8)

However, in this work, the most important entity in the continuous Markov chain
definition is the rate matrix Q(t). Next, some key concepts of the continuous Markov
chain are described.

11.1.2 Homogeneity, holding times and probabilities
When analysing Markov processes, there are some common and useful concepts that
are necessary to explain.

Homogeneity

With the details omitted here, a homogenic continuous Markov chain is defined by
that the transition probabilities are not dependent on absolute time, but only on time
intervals. Due to the changes this implies for the Chapman-Kolmogorov matrix, this
results in a constant transition rate matrix Q(t) = Q and a τ dependent transition
probability matrix P (τ), while the forward Chapman-Kolmogorov equation (11.8)
changes into

dP (τ)
dτ

= P (τ)Q (11.9)

In this work, all Markov processes that are considered for modelling purposes are
homogeneous.

State holding times

The time that a discrete Markov chain spends in each state is called the state holding
times in [12]. The state holding time h(s) for a state s in the continuous Markov
chain case is according to [12] necessarily exponentially distributed by definition.
Again, the probability of a state holding time being less than or equal to t reads as

Pr{h(s) ≤ t} = 1− e−Λ(s)t (11.10)
for t ≥ 0, which is said to be equivalent to the probability that an event takes place
on the time interval of length t. Λ(s) denotes the state holding time parameter, and
the fact that state holding times are distributed using Λ(s) and not λ as before is
connected to the distribution of the intervenent times of multiple Poisson processes
merged through superposition, described in Section 10.4.

Therefore, this definition of state holding times is done in the general case where
superpositioned Poisson processes with different rates are seen as one Poisson pro-
cess. An intuitive view of this is that from one state s, multiple events can result in
the same transition, at different rates. This can be related to what is said in Section
10.4, and then it might be intuitive to view the transitions to different states in a
continuous Markov chain as increments affected by multiple superpositioned Poisson
processes.

132

11. Modelling with Discrete and
Continuous Markov Chains

State probabilities

Next, the question of state probabilities in the continuous case is addressed. This is
an important feature as it describes the probability of the continuous time Markov
process being in a specific state at a certain time. For a homogeneous Markov chain,
given that a transition probability matrix P (τ) is defined along with a transition
rate matrix Q, the relationship P (τ) = eQτ holds. Furthermore, if a state probability
is defined as πj = Pr{s(t) = sj}, and a state probability vector is defined as π(t) =
[π0(t), π1(t), . . . , πn(t)] where n denotes the size of the continuous time Markov chain
state space S, two relationships can be obtained.

Firstly, according to [12],
π(t) = π(0)eQt (11.11)

which denotes the probability to be in all states at t, given that the probabilities
are known at t0 = 0.

Secondly,
dπ(t)
dt

= π(t)Q (11.12)

which is a matrix that can be used to express the probability flow into a state at
a certain time. This relationship describes the homogeneous Markov process in its
transient state. According to [12], although (11.11) can be found if Q and π(0) are
provided, the explicit expressions for individual state probabilities are difficult even
for small chains, as a system of differential equations generated by (11.12) must be
solved. Instead, what is often most interesting is how the state probabilities look
after a long time, when the system has had a chance to reach its stationary or steady
state.

Steady state

The stationary or steady state is potentially obtained by investigating the proba-
bilities at the limit defined by t → ∞, but certain types of chains cannot reach a
stationary state. Steady state is defined when (11.12) is set to zero, as

dπ(t)
dt

= π(t)Q = πQ = 0 (11.13)

defines the steady state. When the probability flow between states is zero, the steady
state is reached.

Finally, [12] states that one way to completely define a continuous Markov process
is to specify a finite state space S, a transition rate matrix Q and an initial state
probability distribution π(0). In the case of a Poisson process, the state space is the
count s(t) = N(t), and since the rate λ with which the Poisson process increments
the count, the constant transition rate matrix describes that the rate between each
state in the process is λ. This is known as a pure birth chain, and it is depicted in
Fig 11.1.

The continuous Markov chain is thus a new addition to the theory in this work,
as it is not used in Part I. To highlight the differences that this new way of modelling
processes implies, the previously used discrete time Markov processes are shown in
the new light of what characterises the continuous time version.

133

11. Modelling with Discrete and
Continuous Markov Chains

0 1 2 . . .

λ λ λ

Figure 11.1: Continuous Markov chain describing a pure birth process.

11.2 Discrete Time Markov Chains
In the discrete time case, the discrete Markov property holds, and that is a funda-
mental property used in Part I of this work. This property is quite similar to that
of the continuous case, but several other properties change when discrete time is
replaced with continuous time.

11.2.1 The Chapman-Kolmogorov equation and
probability matrices

The Markov property for discrete chains are defined using the equidistant time
instances 0, 1, . . . k and reads

Pr{s(k + 1)|s(k), s(k − 1), . . . , s(0)} = Pr{s(k + 1)|s(k)} (11.14)

For discrete time Markov chains, [12] states that the starting point is again
to consider the underlying GSMP defined by {ε,X ,Γ, p, p0, G}, and focus on the
probability Pr{x′|x} that a transition between states x and x′. In discrete Markov
chains, events cannot occur at any point in continuous time. The fact that they
can only occur at discrete, equidistant points can be seen as a constraint compared
to the free movement allowed in continuous systems. Between distinguishable time
points, it is therefore possible to determine the stochastic behavior of the system in
simple probability terms.

Using the Markov property, transition probabilities for both one step ahead and
n steps ahead between Markov process states si and sj in this setting can be denoted

Pij(k) = Pr{s(k + 1) = sj|s(k) = si}
Pij(k, k + n) = Pr{s(k + n) = sj|s(k) = si}

Given the familiar rule of total probability, ∑all j Pij(k) = 1, the event
s(k + n) = sj can be conditioned on an intermediate event s(u) = sr for
k < u ≤ k + n, as

Pij(k, k + n) =
∑
all r

Pr{s(k + n) = sj|s(u) = sr, s(k) = si}·

· Pr{s(u) = sr|s(k) = si]
(11.15)

Using the Markov property,

Pr{s(k+n) = sj|s(u) = sr, s(k) = si} = Pr{s(k+n) = sj|s(u) = sr} = Prj(u, k+n)

and by setting Pr{s(u) = sr|s(k) = si] = Pir(k, u) in (11.15),

Pij(k, k + n) =
∑
all r

Pir(k, u)Prj(u, k + n) (11.16)

134

11. Modelling with Discrete and
Continuous Markov Chains

for k < u ≤ k + n. The expression in (11.16) is recognised as the Chapman-
Kolmogorov equation in discrete time, described in (11.3).

11.2.2 Homogeneity, holding times and probabilities

The same concepts that are investigated for continuous time Markov chains in Sec-
tion 11.1.2 are here described for the discrete time Markov chains to highlight the
differences between the two.

Homogeneity

Starting with the definition of a homogenous discrete time Markov chain, [12] states
that if the elements of the transition probability matrix function Pij(k) are inde-
pendent of the time instance k for all states i, j, then the chain is homogenous. In
such a case, the Chapman-Kolmogorov equation in (11.16) and its matrix form are
changed since the n-step probabilities of (11.16) are only dependent on n, and not
on k.

To clarify, the probability that the Markov chain assumes a value after n con-
secutive iterations is a product of one step probabilities, and homogeneity simply
states that the fundamental “one step” probabilities do not change as k evolves. As
stated for continuous Markov processes, the homogeneous version of Markov-style
models are assumed also for discrete processes in this work, but it should be kept
in mind that this assumption can be quite a simplification in many practical cases.

Instead of time interval dependent probability matrices which forces the uses
of rate matrices, in discrete time the homogeneous Markov chain can be defined as
P = [Pij] for all states si, sj with indices i, j = 0, 1, 2, This matrix is of the form
S × S → [0, 1] where S is a state space and P maps any two states to a transition
probability. Note that the rule of total probability must hold, so P must express
that the probability to transfer from one state to any next state is one in total.

State holding times

In the continuous time Markov chain, events are said to occur at any time, and
the intervenent times are therefore exponentially distributed, which is why the state
holding times are also exponentially distributed. When the events are scheduled
to occur at equidistant discrete time points, this property understandably changes.
In [12], the distribution of the state holding times h(i) is shown to be geometric
instead of exponential, such that Pr{h(s) = n} = (1− Pii) · (P n−1

ii) where Pii is the
expression for the one step transition probability of a self loop in a state with index
i, obtained from the function P defined for the discrete chain. Since only discrete
time instances are considered, the state holding time is expressed as the chain of
probabilities of staying in a state for n consecutive discrete steps.

135

11. Modelling with Discrete and
Continuous Markov Chains

State probabilities

The state probabilities in a discrete chain are determined by a different method than
that of the continuous Markov chain. As in [12], the state probability is denoted

πj(k) = Pr{s(k) = sj] (11.17)

Furthermore, it is worth noting that if the state space S, the state probability
matrix P and probability to be in the initial state is given as π(0), the discrete time
Markov chain is completely specified, which is different to the continuous case where
the rate matrix Q is needed for the definition.

As in the continuous case, both transient and stationary state exists for discrete
time Markov processes. By starting at a point k where k can take values 0, 1, 2, . . .
the state probabilities at k + 1 can be expressed by

π(k + 1) = Pπ(k) (11.18)

where the one step probabilities between all states are gathered in P . The transient
phase can now be intuitively defined to begin at the initial time point k = 0, and
then go on until π(k + 1) ≈ π(k).

11.2.3 Steady state
The steady state analysis of a discrete Markov chain stands in contrast to the tran-
sient state analysis, just as in the continuous case. The transient phase is in [12]
described by considering a vector of initial state probabilities
π(0) = [π0(0), π1(0), . . . πn(0)] where n denotes the number of states in the Markov
chain. The one-step probabilities will, as discussed earlier in this section, not change
in a homogeneous discrete Markov chain, but the probability to be in a state for k
consecutive time steps will change during the transient phase.

The steady state is defined for the limit value πj = limk→∞ πj(k). By the previous
definition of the transient state in (11.18), the steady state j is defined when
πj(k+1) ≈ πj(k) for increasing values of k. Note also that this limit might not exist
for all states, which is why the notation here describes only one state.

As an example partly inspired by one in [12], consider the state space
S = {0, 1, 2}, with the initial state probability vector π =

[
0 0 1

]T
and two

different one step probability matrices

P1 =

P00 P01 P02
P10 P11 P12
P20 P21 P22

 =

 0 1 1
0.5 0 0
0.5 0 0

P2 = (·) =

 0 0.25 0.25
0.5 0.25 0.5
0.5 0.5 0.25

(11.19)

Both of these are legitimate one step probabilities as their columns sum to one, but
if P1 is used, the probabilities will not reach a constant steady state as k increases.
In Fig 11.2, the development of the state probabilities are shown. They do not

136

11. Modelling with Discrete and
Continuous Markov Chains

Figure 11.2: Oscillatory versus stationary state probability development.

reach a constant steady state if P1 is used, and the state probabilities oscillate for
increasing k. However, if P2 is used, the steady state is reached for all three state
probabilities.

11.2.4 Continuous or discrete Markov processes?
The conclusion that can be drawn from the two latest sections is that it seems much
easier to handle discrete Markov chains, which are restricted in such a way that
events can only occur in a synchronised manner at discrete points in time. However,
many problems are better formulated by using continuous Markov chains. Recalling
Part I of this thesis, the temporal logic constrained reinforcement learning requires
the use of discrete Markov processes. On the other hand, in modular analysis, the
idea is to use all possible knowledge of a system. As is shown in later chapters
of this thesis, there are continuous Markov chains that have interesting and highly
useable properties when it comes to finding optimal ways of solving problems related
to them.

Fortunately, there is a way to convert continuous Markov chains to discrete ones
while conserving all of the important probabilistic features of the continuous version.
This method is called uniformisation, and it is covered next.

11.3 Uniformisation
Uniformisation is an important strategy, as it is in [12] described as a way to convert
a continuous Markov chain to a discrete one, without losing any vital information
that the continuous chain contained.

The starting point in uniformisation is to focus on the transition rate matrix Q.
In this matrix, it is common that the diagonal elements are negative, so that the
total flow out of a state sums to zero. This is in [12] said to represent the total event
rate characterising each state. The process of uniformisation is to select a new rate
that all existing rates can be normalised with, in such a way that the largest possible

137

11. Modelling with Discrete and
Continuous Markov Chains

rate is converted to a probability that does not exceed one, and the smallest rate is
converted to a relatively low probability.

The uniformisation parameter is denoted γ and is selected as

γ ≥ max
i
{−Qii} (11.20)

Using this, the continuous time transition rates are converted to transition proba-
bilities, so that the one step transition probability function P can be formed for the
uniformised process. The elements of P are

Pij =

Qij

γ
if i 6= j

1 + Qii

γ
if i = j

(11.21)

Only the maximum rate across the entire continuous chain has the chance of
being translated to a probability of one. Fictitious self loops are also introduced, and
this is necessary to assure that if the process is in a state i, then the total probability
of transitioning anywhere should sum to one. By themselves, the transition rates
out of a state cannot be assured to sum to one if normalised by gamma, and the
probability to stay in the state must be manually defined.

11.3.1 Example of uniformisation
In this section, a uniformised version of a continuous Markov chain model of a
population that can only be reduced is made.

Pure death Markov chain

In contrast to the similar pure birth chain that has been covered before, a model of
a so-called pure death process is considered here. In the model, a finite population
of size N is reduced in continuous time by two Poisson processes until it is zero.
The death rates of the two processes are µ1 and µ2, and the second process has
double the efficiency of the first process. This implies that this process decrements
the population by two each time its events occur. The population count is the
state space S = {N,N − 1, N − 2, . . . , 0}, and it can be noted that since the states
represent a count, the notation used to describe them is simply the integer value.
Based on this, the transition rate matrix can be determined as

Q =

−(µ1 + µ2) µ1 µ2 0 0 0 . . .

0 −(µ1 + µ2) µ1 µ2 0 0 . . .
0 0 −(µ1 + µ2) µ1 µ2 0 . . .
...

 (11.22)

In Q, the diagonal elements are selected so that the total probability flow from
a state is zero. To uniformise, the uniformisation rate is selected according to
(11.21) to be grater or equal to the largest negated diagonal element, for example
γ = 2(µ1 + µ2). The probabilities are then set to

Pij =

Qij

2(µ1+µ2) if j = i− 1
1− (µ1+µ2)

2(µ1+µ2) if i = j
(11.23)

138

11. Modelling with Discrete and
Continuous Markov Chains

N N − 1 N − 2 N − 3 . . .

N N − 1 N − 2 N − 3 . . .

µ1 µ1 µ1 µ1

µ2 µ2 µ2 µ2

µ1
γ

µ1
γ

µ1
γ

µ1
γ

µ2
γ

µ2
γ

µ2
γ

µ2
γ

1
2

1
2

1
2

1
2

Figure 11.3: State transition rate and state probability diagrams for the continuous
time pure death Markov chain and its uniformised discrete counterpart.

Note that the probability of a self loop changes depending on how large the
uniformisation rate is, which is set according to the largest diagonal rate matrix
element. If the smallest possible γ is selected, the fictitious self loop probability
is zero. However, as the selected γ is greater than the maximum negated diagonal
element of Q, the self loop probability will be above zero this time. The stochastical
properties of the continuous Markov chain are preserved in both cases, according
to [12], no matter what uniformisation rate is selected. The continuous pure death
Markov chain can be observed along with the uniformised version in Fig 11.3.

Finally, note that in each state, the probability of a self loop is 1/2. The two
other possible transitions have the total probability

µ1

2(µ1 + µ2) + µ2

2(µ1 + µ2) = 1
2

meaning that in each state, the total probability of transitioning anywhere sums to
one.

In the next section, a for this work central model definition is developed. The
section describes a so-called joint Markov chain that can be seen as both a single
Markov process, and as two independent ones.

11.4 Joint Markov Chains
In the form of modular analysis that is considered in the context of the temporal logic
constrained reinforcement learning described in this work, the idea is that certain
parts of a system can be modelled and evaluated to reduce the computational burden
of the reinforcement learning algorithm. It is therefore important to determine how
and in what way a total system can be divided into subsystems.

11.4.1 Joint behaviour of discrete and continuous models
Consider two separate Markov processes M1 and M2. Both processes M1 and
M2 have one set each of possible states, and transitions between these states that

139

11. Modelling with Discrete and
Continuous Markov Chains

occur at some rates. With the previous discussions on continuous and discrete time
Markov chains in mind, there are a few possible scenarios that can be imagined.

Discrete M1 and continuous M2

In the first scenario, M1 is considered a discrete time system while M2 is a con-
tinuous system, or vice versa. In this setting, the discrete system can transition
between events at discrete, equidistant, points in time while the continuous system
can transition at any time. This implies that if the discrete time Markov process
is observed at discrete time points tk and tk+1, it can be expected that it has only
transitioned at most one time in between observations at tk and tk+1. This cannot
generally be said about the continuous process if it is observed during the same
interval; even with very low transition rates it can never be guaranteed that this
system has made at most one transition in between observations. This is natural
because the discrete process does not carry the information of how long the time
interval between discrete observation time points is. Even if the time interval was
known, it would need to approach zero to guarantee that the continuous process
does not transition more than once during that time interval.

This is a problem if it is necessary to synchronise the two processes, which first of
all means scheduling their transitions on a common timeline. For this to be possible,
one of the processes cannot be discrete if the other is continuous.

Continuous M1 and M2

If both M1 and M2 are continuous, there are no discrete time points to consider,
and both systems can be described using transition rate matrices. If it is indeed
possible to isolateM1 and M2 as two subsystems of a joint process, this scenario
allows an observer to view the transitions of both systems at any time when they
occur, and it can be guaranteed that no transitions are missed.

Discrete M1 and M2

In the final case, both systems M1 and M2 are considered discrete. In this way,
both systems have transitions defined by probabilities, and not rates. From a dis-
crete observers viewpoint, it can be guaranteed that all transitions are observed, as
opposed to the case where one process is discrete and the other is continuous.

What can be taken away from this section is that if two Markov processes are to
be observed, they must either both be modelled as continuous or discrete processes;
not one of each. If both systems can be described individually in both the continuous
and discrete case, it is now interesting to imagine what happens if the states and
transitions of both systems are viewed as transition between joint system states.
To find out what happens in the continuous time case, a good starting point is to
consider what happens if multiple Poisson processes are connected.

140

11. Modelling with Discrete and
Continuous Markov Chains

11.4.2 Joint continuous Markov processes
A continuous Markov process is in [12] said to be fully defined if a state space S,
a transition rate matrix Q, and an initial state probability distribution is provided.
Consider the state spaces of two systems that can be modelled as two independent
continuous time Markov processes M1 and M2. For simplicity, each finite state
space may be denoted directly by positive natural numbers as

S1 = {0, 1, . . . , c1}
S2 = {0, 1, . . . , c2}

(11.24)

Note that the state space description is not limited to positive natural numbers,
but can be set to whatever fits the problem that the state space describes. For
notation simplicity, and because it agrees with the problems studied in this work,
positive natural numbers are selected as state identifiers.

These state spaces can be considered as two separate continuous time Markov
processes, that are each generated by a GSMP with exponentially distributed inter-
venent times. Each GSMP has a set of events, and these events are also independent
from each other, meaning that an event in the first GSMP cannot affect transitions
in the other. In that sense, the event set of the joint system can be divided in two,
and the events in one subset causes transitions to a unique state in the joint state
space that cannot be reached by transitions caused by the events in the other event
subset.

In other words, what is considered here are two completely independent con-
tinuous Markov processes. An example of this related to the patient waiting room
scenario of Section 10.3.2 is that these processes represent an emergency room and a
neighboring dentists waiting room. Patients in the emergency room and patients in
the separate dentists office arrive according to two separate Poisson processes with
rates λ1 and λ2, and they are counted separately which forms the two separate and
independent state spaces S1 and S2.

To be clear, this is not a case of superpositioned Poisson arrival processes from
Section 10.4, as the sum of the event counts do not form the state space. Rather,
these are two separate state spaces that are affected independently by two isolated
processes.

Even though the processes are completely separated, it is completely valid to
describe them in relation to each other. For every state in one process, the other
process can be in any of its states independently of the first. This relationship is
similar to a form of synchronous composition, similar to that used in [1] but for
continuous Markov chains and not discrete Markov decision processes. The joint
state space is given by the product

S12 = S1 × S2 = {(i1, i2) : i1, i2 ∈ N0} (11.25)

where S1 and S2 can be finite or infinite sets.
Each system model has independent transitions with equally independent rates

that can be executed at any point in continuous time. In Fig 11.4, two separate
continuous Markov chains each with two events and two states in their respective
state space are considered. The joint behaviour of these are then described as the

141

11. Modelling with Discrete and
Continuous Markov Chains

0 1 ×

0

1

(0, 0) (1, 0)

(0, 1) (1, 1)

M1
M2

M12

a

b

cd

a

b
cd

a

b

cd

Figure 11.4: Two independent continuous Markov processes that form one joint
system.

four state system where the states are denoted by tuples describing the states of
each chain.

Examples of joint continuous Markov processes can also be found in [12], but
the focus here lies on the ability to express the joint behavior has two separate but
synchronised behaviors.

Lastly, consider not two, but n processes that are mutually independent in the
same way as above. By denoting the state space of the joint system as a set of
n-tuples, the principle of the joint process can be extended by adding a new dimen-
sion to the joint process for every independent process. In each state of the joint
process, all possible transitions of the individual process states are available with
their respective individual rates.

11.4.3 Uniformisation of joint continuous Markov Processes
From previous sections, it is well known that individual continuous Markov processes
can be uniformised to form corresponding discrete time Markov chains. It is also
shown that n separate processes can be described either by themselves or as a joint
system under the assumption that both processes are independent in terms of state
spaces and transitions. In the joint systems, the laws of transitional and total
probabilities must hold as in the individual systems.

It it thus interesting to see how the uniformisation of the individual processes
compare to that of the joint process. For nmutually independent continuous Markov
processes generated by n mutually independent GSMPs with exponentially dis-
tributed intervenent times, consider the n individual transition matrices Qk where
1 ≤ k ≤ n. In each of these, there is at least one state that has a maximum flow of
rates out of it. The flow out of such a state is given by

γk = max
i
{−Qk

ii} (11.26)

where Qk
ii is a diagonal element of Qk, i denotes the state in the process with index

k that has the maximum rate flow out of it. It has already been shown that for the
individual and independent process k, the minimum uniformisation rate is given by
(11.26).

Now, for an n process joint system, the state space is the cross product of each
individual state spaces, such that

S× = S1 × S2 × · · · × Sk × · · · × Sn (11.27)

142

11. Modelling with Discrete and
Continuous Markov Chains

As a general rule, each transition of each individual system has a respective
transition in the joint state, with the same rate as in the individual system. Thus,
the uniformisation principle described in (11.21) does not change, although all source
and target states for the joint transitions are described in terms of cross product
states. A cross product state is denoted by the tuple of indices

I = (i1, i2, . . . , ik, . . . , in) (11.28)

representing the individual states of each process where i1, . . . , in are non negative
integers. For example, if process 5 is in its state indexed by 2 then i5 = 2 and so
on. This of course implies that each process has non negative integer indexed states.
Similarly, when a transition is considered between two joint system states, the source
state is denoted by the above formulation I while the target state is denoted by

J = (j1, j2, . . . , jk, . . . , jn) (11.29)

In the individual processes, a self loop is defined for states i and j when i = j for
every diagonal element Qk

ii in the rate matrix Qk. In a joint state, the transitions
of each individual process are represented, and this includes self loops. In the joint
system, multiple self loops can occur in one state, but the easiest way to think of
these are as one self loop where the rate is a sum of the individual self loop rates.

The probabilities resulting from joint uniformisation by rate are described in
the one step transition probability function P in total defined by

PIJ =

Q`

ij

γ
if I 6= J for transition between i and j in subprocess `

1 +∑n
k=1

Qk
ii,

γ
if I = J

(11.30)
As a transition probability between two different joint states is always defined by

an individual process, the transition probability between two joint states is denoted
PI,J but specified with the index ` to highlight the individual process
1 ≤ ` ≤ n that caused the joint state transition.

Now comes the time to select the minimal uniformisation rate γ. In Section 11.3,
it is shown that the minimal uniformisation rate is selected as the largest negated
diagonal element in the rate matrix. This is so that the state with the largest flow
of rates should be the only one without a probability to self loop. If sampled, this
state has the highest possible frequency of transitions out of it compared to other
states, reflecting the higher rate.

In each state of a joint process, the available transitions are those of each in-
dividual system. These are considered to be executable in parallel, meaning that
a transition between any two states in the joint system corresponds to any one of
the possible individual transitions; not two or more in series. As all possible per-
mutations of individual process states are included in the joint system, the joint
state with the maximum total flow is naturally the state that combines all of the
individual states that have the maximum flow in each system, respectively. The flow
of such a joint state is thus

Λ =
n∑
k=1

γk (11.31)

143

11. Modelling with Discrete and
Continuous Markov Chains

To select the lowest possible rate, it is reasonable to assume that for such a rate,
the maximum rate flow state will not have any self loops. From (11.30), set the
probability of self loops to zero and obtain

1 + 1
γ

n∑
k=1

min
i

(Qii)k = 0 ⇐⇒ −
n∑
k=1

min
i

(Qii)k = γ (11.32)

The term in the sum can now be replaced by the maximum outgoing rates Λk

of each process k, defined as the maximum negated element of each rate matrix Qk

since the expression is evaluated in the maximum flow state, and an expression for
the minimal joint uniformisation rate γ is obtained as

γ = Λ (11.33)

This can be verified by setting γ = Λ in the expression for the I 6= J case in
(11.30). The rate of an individual transition ` causing a transition between I and J
can never be larger than Λ which denotes the maximum possible sum of the largest
negated individual rate flows.

Similarly, in the maximum flow state, there is no probability of a self loop.
Therefore, all transitions are to other joint states, with individual max flows. In
that state, ∑

I

PIJ = −1
γ

n∑
k=1

min
i

(Qii)k = Λ
γ

= 1 (11.34)

where ∑I PIJ denotes the sum of uniformised probabilities to transition between I
and all other possible joint states J .

In all states but the maximum flow state, at least one term in the sum in (11.34)
will be lower than the individual maximum sum of outgoing rates in that process.
If the state is not the maximum flow state, the term ∑n

k=1 mini(Qii)k has at least
one element that is not an individual maximum flow, which implies that this sum is
below one, and the difference between this expression the sum in (11.34) will be as
large as that single element that is not a maximum flow. In that way, the fictitious
self loop ensures that each state has a total probability of one, also in the joint case.

Example of joint uniformisation

To clarify the joint uniformisation procedure, a small scale example is given. For
the two individual and independent continuous Markov processes in Fig 11.4, the
two rate matrices are

Q1 =
[
−a a
b −b

]
, Q2 =

[
−c c
d −d

]
(11.35)

It is assumed that a > b and d > c. Furthermore, the relationship between
the elements of Q1 and those of Q2 is unknown. There are only one transition out
of each state in both processes, and the states with maximum transition flow is
thereby state 0 in the first process and state 1 in the second process. Individually,
the minimal uniformisation rates are therefore γ1 = a and γ2 = d, but in the joint
uniformisation the minimal rate is γ = γ1 + γ2 = a+ d.

144

11. Modelling with Discrete and
Continuous Markov Chains

The cross product between the two state spaces is

S1 × S2 = {0, 1} × {0, 1} = {(0, 0), (0, 1), (1, 0), (1, 1)} (11.36)

In Fig 11.4 it can be seen how for every joint state I = (i1, i2), at most one
transition T in either individual system defines the transition to the new joint state
J = (j1, j2). For example, between the joint state I = (0, 1), an individual transition
with rate a in the first process defines the transition to the joint state J = (1, 1).

It becomes apparent from Fig 11.4 that in the joint process, since the relationship
between the largest individual rates a and d is unknown, the only way to assure a
sufficient minimal uniformisation rate is the sum of the largest rates. Not that this
holds under the assumption that the rates are positive. This principle can also be
verified if the rate matrix for the joint system is evaluated, which yields

Q =

−(a+ c) c a 0

d −(a+ d) 0 a
b 0 −(b+ c) c
0 b d −(b+ d)

 (11.37)

The rows and columns of Q regard the joint states (0, 0), (0, 1), 1, 0 and (1, 1).
The largest negated diagonal element of Q is (a+d), the sum of the largest negated
diagonal elements of both individual processes. Thereby, if this is the selected joint
uniformisation rate then this state will have no self loops as all transitions out of
the joint state together have a probability of one. The joint uniformisation formula
then yields the discrete model depicted in Fig 11.5.

It can be verified that in any joint state of the model in Fig 11.5, the sum of
transition probabilities is one.

11.5 Summary
Firstly, this chapter introduces a new topic in the form of continuous time Markov
chains. One of the notable differences between these and the discrete counterpart

(0, 0) (1, 0)

(0, 1) (1, 1)

a
a+d

b
a+d

c
a+d

d
a+d

a
a+d

b
a+d

c
a+d

d
a+d

1− a+c
a+d = 0 1− b+c

a+d = 0

1− a+d
a+d = 0 1− b+d

a+d = 0

Figure 11.5: Example of a uniformised joint system.

145

11. Modelling with Discrete and
Continuous Markov Chains

is that events can now take place in continuous time in contrast to the discrete
equidistant time points of the discrete Markov process. Other memorable properties
of the continuous time Markov chain is that each event occurs according to a Poisson
process with a specific rate parameter λ; this implies that the time interval between
two events of the same type is an exponentially distributed random variable with
the same rate parameter λ.

The rates of the continuous time Markov chain are collected in the transition
rate matrix Q(t), and for homogeneous Markov chains, this matrix is constant with
respect to time. Other important features of the continuous Markov process are that
expressions for the probability that the process is in a specific state can be derived
at any time, but it is much easier to derive these in stationary state. As opposed to
the transient state, the stationary state is defined as the point where the evolving
state probabilities reach constant values after some time.

The benefits of discrete Markov chains are visible in contrast to the properties of
the continuous time Markov chain. Among these are the possibility to easily describe
the probability for the system to transition to another state one step ahead in the
future. However, the properties of homogeneity and stationary state probabilities
exist in the discrete version, too.

An important topic that is introduced in this chapter is uniformisation, which
normalises the transition rates in a continuous Markov process by a uniformisation
rate that is at least as large as the maximum total rate flow out of a state in the
process. Uniformisation thus creates a discrete Markov chain out of a continuous one
without disrupting any of the important stochastic properties. Therefore, modelling
that is done on the continuous model, is still valid for the discretised model, which
can be used in for example reinforcement learning.

Lastly, the basic concepts of joint continuous Markov processes are suggested
from the basic assumption that two or more processes can be measured together
while still being completely independent. For the joint processes, the joint uniformi-
sation procedure is then formulated, which normalises the joint system by a minimal
rate consisting of the sum of the maximal rate flows of each individual process. This
procedure is illustrated using a small scale example.

146

12
Queuing Theory

The more in depth view of Markov chains that is described in the previous chapter
is here put into practice in the specific process of modelling queueing systems. With
knowledge of Poisson processes and how continuous and discrete variations of a
Markov chain behave, it is easier to find, experiment with and verify queueing system
models.

The concept of waiting in line is a very broad application of probability theory.
Given that industrial applications, computer systems and daily life tasks always suf-
fer from operational limitations which result in waiting for service, the fundamental
concepts are easy to relate to.

Continuing with the hospital emergency room analogy from Section 10.3.2, pa-
tients who have arrived in the waiting room require service from a doctor. However,
there are many patients, and they need to get in line as they arrive to the emergency
room. Different configurations of these arrival and service processes together form
the basic concepts of queueing systems.

In Fig 12.1, an example of a queueing system is depicted. In this basic setup,
customers arrive to the queue from the population with rate parameter λ, after
which they are served by a single server with rate parameter µ.

This chapter starts with some basic notations and concepts commonly used in
queueing theory, such as Kendall notation and how arrivals and services are mod-
elled. After this, the class of Markovian queueing systems are introduced, and this
is the only type of queues that are investigated in this thesis. Specifically, the unlim-
ited M/M/1 queue and the capacity limited M/M/1/K are studied, along with the
uniformised versions of these. The next step is to introduce cost functions and the
concept of control into continuous Markov chains, which allows for the analytical
formulation of optimal control policies in the controlled Markov process. Further-
more, a specific type of control policy called a threshold type solution is described,
and a five step guide on how to identify such problems is shown.

λ µ

QueuePopulation

Arrivals Departures

Server

Figure 12.1: A basic single server queueing system.

147

12. Queuing Theory

12.1 Concepts and Notation in Queueing Theory
Before going into specific models, some general comments about the notation fre-
quently used in queueing theory are needed. Here, the most important concepts
and practices in queueing theory, gathered from [31] unless otherwise stated, are
covered.

12.1.1 Population
Starting with the leftmost entity in Fig 12.1, the population describes a source of
customers that can be either finite or infinite. Although a finite source is in many
cases more realistic, infinite sources are often preferred due to the much simpler
mathematical modeling properties of infinite source systems. If a queueing system
has a finite source, the arrival rate will approach zero when the source is emptied.
In that case, customers are either waiting or being served.

12.1.2 Rates, structure and discipline
While it is already touched upon in Sections 10.2.1 and 10.3.1, λ and µ describe the
average rates of customers per unit time for the customer arrival and service pro-
cesses, respectively. In queueing theory, the models used for the arrival and service
are usually stochastic processes. While arrival and service rates are important pa-
rameters for the behavior of the queue, the performance of a queueing system is also
dependent on both the structure and discipline of the queueing system. Common
structural parameters are for example the number of servers and queues active in the
network. The queue or service discipline is the order in which customers enter and
exit the queue, such as FCFS, FIFO or LCFS, meaning “first come, first served”,
“first in, first out” and “last come, first served”, respectively.

12.1.3 Interarrival and service times
Related to the arrival rate is the stochastic interarrival time, here denoted z, de-
scribing the time between the arrival of customer k − 1 and customer k. Similarly,
v denotes the stochastic service time describing the required time for a customer k
to be served. The probability distributions describing interarrival times and service
times are defined as

A(t) = Pr{z ≤ t}
B(t) = Pr{v ≤ t}

(12.1)

The v and z for each customer are independent stochastic variables, and it is as-
sumed that the interarrival and service times are described by the same distributions
for each customer.

The mean of the interarrival time distribution A(t) is the expected value of the
interarrival time, while the mean of the service time distribution B(t) is the expected
service time value. These expected values are related to the average arrival and

148

12. Queuing Theory

service rates in that

E[A(t)] = 1
λ

E[B(t)] = 1
µ

(12.2)

respectively. Furthermore, at this point both the interarrival and service times can
be distributed according to any probability distribution. However, in this work, only
the exponential distribution is of interest in both cases.

12.1.4 Kendall notation
To describe a queueing model, it is customary to use the Kendall notation. In [31],
this notation is of the form A/B/c/K/m/Z, where

• A denotes the distribution of the stochastic interarrival times.

• B denotes the distribution of the stochastic service times.

• c denotes the number of servers.

• K denotes the queue capacity.

• m denotes the number in the population.

• Z denotes the queue discipline.

There are various distributions that A and B can assume, but one of the most
common ones are the exponential distribution, denoted M for “Markovian”. As de-
scribed in Chapter 11, it is implied that the queue can be seen as a GSMP generated
stochastic sequence, which has a corresponding Markov chain description since the
intervenent times are specified as being exponentially distributed. As discussed in
Section 10.3.1, this also implies that the arrival and service processes are Poisson
processes.

The populationm is usually infinite, and the discipline Z is often “first come, first
serve”. When this is the case, m and Z are often omitted in the Kendall notation.
Two examples of common queues that are central to the work done in this thesis have
the notations M/M/1 and M/M/1/K. In both cases, the interarrival and service
times are exponentially distributed, and there is only one server present, while the
populations are infinite and the disciplines are FCFS. For the M/M/1 system the
queue capacity is omitted in the description and therefore assumed infinite, while
the capacity is K elements in the case of M/M/1/K. The properties of both the
M/M/1 and the M/M/1/K systems are described in later sections.

12.1.5 Performance measurements
In queueing systems, both arriving and serviced customers are countable and by
assuming the notation where a count corresponds to a time dependent state, s(t) =
Na(t)−Nd(t) denotes the stochastic difference between the counted arrivals and the

149

12. Queuing Theory

counted departures. The random variable s(t) is central to many of the different
measurements that can be investigated in queueing systems, and many of them can
be found both in [12] and [31]. As not all measurements are needed in this work,
only the most commonly used ones are listed below.

• Stationary (steady state) queue length probability πn = Pr{s(t) = n},
n = 0, 1, 2, . . . , where s(t) denotes the stochastic queue length variable, which
can also be regarded as a time dependent state.

• Intensity with one server ρ = λ/µ and intensity with m servers with equal
service rates ρ = λ/(mµ).

• Average queue length E[s(t)].

When queues are simulated in later sections, the most commonly used measure-
ments are the arrivals, departures and queue state trajectories with respect to time.
When it comes to capacity limited queues, the rejected arrivals are also of interest,
and in all cases, the stationary state probability distributions π are of high interest.

12.1.6 Arrival and service models
As described in Section 12.1, both the interarrival time and the service time take
values according to a probability distribution. In this work, the interarrival and
service times are both modeled according to the exponential distribution, described
in (10.22) and (10.23) of Section 10.3.1.

Having exponentially distributed arrival times implies that the arrival process
is a Poisson process, where arriving customers arrive to the queue according to the
three rules described in the derivation of the Poisson distribution of Section 10.2.
An important parameter of the arrival process is thus λ, the average arrival rate per
unit time interval.

Furthermore, as the service times are also modeled using the exponential distri-
bution, the departing customers can also be counted as a Poisson counting process.
For this process, the important parameter is the departure rate parameter µ, but
as departure times are dependent on when the arrivals, it is easier to view µ as the
parameter regulating the exponentially distributed service time.

12.2 Markovian Queueing Systems
This work is limited to only handle Markovian queueing systems. Depending on the
application, these can be either continuous or discrete, and have different structures
and rate parameter configurations. Here, two basic queueing systems are discussed
to give an idea of how information can be obtained analytically.

12.2.1 M/M/1 system
To summarise the theory behind the M/M/1 Markovian queueing system, the Pois-
son arrival process of this system is such that the probability of n arrivals during a

150

12. Queuing Theory

unit time interval of length t is given by

Pr{A(t) = n} = P a
n (t) = (λt)n

n! e−µt

Each arrival takes time to process by the single server. The service time is
exponentially distributed with rate µ, such that

G(t) = Pr{v ≤ t} = 1− e−µt

However, one of the most useful properties is the probability distribution that
describes how likely the system is to be in a certain state. This state probability
distribution is evaluated in stationary state, a concept that is introduced in Section
11.2.2 for discrete Markov chains and described in Section 11.1.2 for continuous
chains. As in [12] and [31], a state transition rate diagram for the total system can
be formulated.

From the usage of transition rates, it is implied that the M/M/1 queue is a
continuous time Markov chain model. Therefore, the usage of this underlying model
is limited to queueing systems with arrival and departure processes that can occur
in continuous time.

What is interesting to find in this model are the state probabilities. As can be
seen in Fig 12.2, the M/M/1 queue can be seen as a continuous birth-death chain
with homogeneous rate parameters. Thus, the rate matrix is given as

Q =

−λ λ 0 0 0 0 . . .
µ −(λ+ µ) λ 0 0 0 . . .
0 µ (−λ+ µ) λ 0 0 . . .

0 0
... ...

 (12.3)

From this, the relationship in (11.12), which reads as

dπ(t)
dt

= π(t)Q (12.4)

can be used to form the state probability differential equations for each step in the
process. Now note that if this was a homogeneous pure birth chain, the differential
equations would be

dπj(t)
dt

= −λπj(t) + λπj−1(t)

0 1 . . . n n+ 1 . . .

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

Figure 12.2: State transition rate diagram for the M/M/1 queueing system.

151

12. Queuing Theory

for any j. The solution form to these type of differential equations are

πj(t) = (λt)j
j! e−λt

which is the Poisson distribution. While (12.3) still describes a homogeneous chain,
there are service rates present. The differential equations then take a different form,
which can be seen in [12]. These equations are much more difficult to solve, and it is
much easier to use the steady state solution first described in (11.13), which implies
setting the derivative in (12.4) to zero. Then, for the homogeneous chain where all
transition rates are λ and µ, the derived expressions are

π̄1 = λ

µ
π̄0

π̄2 = λ

µ
π̄1 = λ2

µ2 π̄0

...

π̄j =
(
λ

µ

)j
π̄0

...

(12.5)

In a state, all transition probabilities must sum to one. Therefore, the last term
in (12.5) can be used to express the sum over all j terms, summing to one, as

π̄0 + π̄0

∞∑
j=0

(
λ

µ

)j
= 1 (12.6)

Expression (12.5) and (12.6) are used to form

π̄0 = 1
1 +∑∞

j=1

(
λ
µ

)j
π̄j =

(
λ

µ

)j
π̄0

(12.7)

The sum will converge if µ is strictly greater than λ, and then the two expressions
can be combined to obtain the steady state probability distribution of the M/M/1
system, which is

π̄n = (1− λ

µ
)
(
λ

µ

)n
(12.8)

where n = 0, 1, 2, In the style of [31], the expected queue length in steady state
can also be obtained as

E[s(t)] =
∞∑
n=0

nπ̄n = · · · = λ/µ

1− λ/µ (12.9)

With the continuous M/M/1 queue defined it is time to investigate the uni-
formised discrete time version of this system.

152

12. Queuing Theory

0 1 . . . n n+ 1 . . .

1− p

p

1− p

p

1− p

p

1− p

p

1− p

p

p

Figure 12.3: State transition rate diagram for the M/M/1 queueing system.

Uniformisation of the M/M/1 system

An important feature of the uniformised homogeneous M/M/1 queue is that its
steady state probability mass function is stochastically equivalent to the original
non-uniformised M/M/1 queue. This is shown in [12], and is summarised here.

Remembering that a non-uniformised M/M/1 queue with arrival rate λ and
service rate µ where λ < µ has the stationary state probabilities of (12.8), a minimal
uniformisation rate γ = λ + µ is selected for the M/M/1 queue. Uniformisation is
done according to the strategy in Section 11.3, and since the minimal uniformisation
rate is selected, a death gets the probability p = µ/γ while a birth has the probability
1− p in each state. There are no self loops in any state, except for in the first one
where the probability to stay in state is p. Since 1 − p = 1 − µ/γ and γ = λ + µ,
p − 1 = λ/(λ + γ) = λ/γ, so the structure of Fig 12.3 can easily be verified as a
diagram of the correct uniformisation.

In this discrete time process, the stationary state probabilities meet the condition
π(k+1) = Pπ(k). For the discrete timeM/M/1 queue, also known as a birth/death
sequence, the probability to be in a specific state n is given by

πn = (1− (1− p)/p)((1− p)/p)n (12.10)

described exactly as in [12] where p is the probability of a death occurring. In the
uniformised case, the probability of a death, or decrease, is p = µ/γ. Substituting
this into the expression above yields

πn = (1− λ

µ
)(λ
µ

)n (12.11)

which is the stationary state probability distribution of theM/M/1 queue in (12.8).
Thus, the stationary state probabilities of the uniformisedM/M/1 queue is the same
as for the original continuous time M/M/1 queue.

12.2.2 M/M/1/K system
In an M/M/1/K system, the arrival and departure processes are still Markovian
and thereby exponentially distributed. However, the queue can now only be K
elements long. The continuous time Markov chain corresponding to this system has
the transition rate diagram depicted in Fig 12.4.

In [31], this system is described as a queue in which the arrival process is turned
off when the state, or length, of the queue reaches the capacity K. In [12], it is
furthermore pointed out that turning off the Poisson arrival process is possible due

153

12. Queuing Theory

0 1 . . . n . . . K

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

Figure 12.4: State transition diagram for the uniformised M/M/1/K system.

to the fact that the distribution of the interarrival times will not change because the
process is shut off - this is an effect of the memoryless property.

Since this type of queue is only different to the M/M/1 queue in that it has a
limit, focus here lies on the property that is most important for the experiments
conducted in this work, which is the steady state probabilities.

The steady state probability distribution is derived in a similar manner as for
the M/M/1 queue, in that the steady state relationship dπ(t)/dt = π(t)Q = 0 is
used. In the homogeneous M/M/1 queue, the probability of the first state can be
found using the first equation of (12.7). In theM/M/1/K system, the infinite upper
limit of the sum is exchanged for the capacity K, which implies that the now finite
geometric series can be evaluated as a constant, albeit a different constant than in
the infinite case. The entire expression for the probability of being in state zero in
(12.7) is then

π̄0 = 1− λ/µ
1− (λ/µ)K+1 (12.12)

This is then used in the second expression of (12.7), and the steady state prob-
ability distribution for the M/M/1/K system is obtained as

π̄n =

1−(λ/µ)

1−(λ/µ)K+1 (λ/µ)n if 0 ≤ n ≤ K

0 if n > K
(12.13)

Uniformisation of the M/M/1/K system

In [12], where the concept of uniformisation is obtained, no proof is given on that
the uniformised M/M/1/K queue has the same stationary state distribution as
the continuous time version, the stationary state probabilities of which is given
in (12.13). However, the method that is used in the proof of the same property
regarding M/M/1 queues can be adapted to fit M/M/1/K queues.

Using the same uniformisation factor as in the previous uniformisation of the
M/M/1 queue, the minimal rate γ = λ + µ is selected, since this represents the
maximal flow of rates out of a state in theM/M/1/K queue, which can be observed
in Fig 12.4. Then, there are as in the M/M/1 case no self loops in any state, except
for in the first and last state. If p = µ/γ represents the uniformised probability of a
death, then 1− p is the probability of a birth, and the probability of a self loop in
the first and last states are p and p−1, respectively. The diagram of the uniformised
M/M/1/K queue is depicted in Fig 12.5.

From the stationary state relationship in a discrete Markov chain, π = Pπ holds.
From this and the probabilities shown in the state transition diagram of Fig 12.5,

154

12. Queuing Theory

0 1 . . . K

1− p

p

1− p

p

1− p

p

p 1− p

Figure 12.5: State transition diagram for the uniformised M/M/1/K system.

the equations

π0 = π0p+ π1p

π1 = π0(1− p) + π1p

...
πn = πn−1(1− p) + πn+1p

...
πK = πK−1(1− p) + πK(1− p)

(12.14)

are formed. By recursively expressing π1 as a function of π0, π2 as a function of π1
and so on, the general expression is found to be

πn =
(1− p

p

)n
π0 (12.15)

From this expression, the probability of the next to last state can be expressed as

πK−1 =
(1− p

p

)K−1
π0 (12.16)

This is now inserted in the last equation of (12.14), such that

πK =
(1− p

p

)K−1
π0(1− p) + πK(1− p) (12.17)

By reordering this, the probability of the last state reads as

πK =
(1− p

p

)K
π0 (12.18)

This follows the structure of (12.15), so in general

πn =
(1− p

p

)n
π0 for 1 < n ≤ K (12.19)

The law of total probability now states that the sum of state probabilities should
be one. The sum of the probability of state 0, the probabilities of states 1 through
K − 1 expressed in (12.15) and the probability of the last state K obtained from
(12.18) is thus

π0 +
K−1∑
n=1

(1− p
p

)n
π0 +

(1− p
p

)K
π0 = 1 (12.20)

155

12. Queuing Theory

Now, c = 1−p
p

is set, such that

π0 +
K−1∑
n=1

cnπ0 + cKπ0 = 1 (12.21)

As c < 1, a well known result is that
K−1∑
n=1

cn = 1− cK
1− c − 1 (12.22)

which is substituted into (12.21), which with some manipulation now reads as

π0
(
1 + 1− cK

1− c − 1 + cK
)

= 1 (12.23)

From this, π0 is obtained from

π0
(1− cK + cK(1− c)

1− c
)

= 1 =⇒ π0 = 1− c
1− cK+1 (12.24)

By considering the substitution c = 1−p
p

in (12.19), πn = cnπ0 which can be noted
to hold not only for 1 < n ≤ K, but also for n = 0 as π0 = c0π0 = π0. Therefore,
by considering the newly obtained expression for π0,

πn = 1− c
1− cK+1 c

n for 1 ≤ n ≤ K (12.25)

Since p = µ/γ = µ/(λ+ µ)

c = 1− p
p

= 1− µ/(λ+ µ)
µ/(λ+ µ) = λ

µ
(12.26)

If this is inserted into 12.25, then

πn = 1− λ/µ
1− (λ/µ)K+1 (λ/µ)n for 0 ≤ n ≤ K (12.27)

which is exactly the expression for the stationary state probabilities for the contin-
uous M/M/1/K queue, seen in (12.13). Thus, this concludes the proof that the
uniformised version of the M/M/1/K queue has the same stationary state distribu-
tion as the original, continuous time M/M/1/K queue.

With two Markovian queueing systems defined, it is time to start considering
how to develop control policies for them.

12.3 Markov Decision Processes and Analytical
Solutions to the Optimality Equation

Section 2.2 of Part I is where Markov decision processes (MDPs) are first intro-
duced in this work. In short, Markov decision processes are Markov chains in which
transition probabilities can be changed by control actions.

156

12. Queuing Theory

While the early formulation is ideal for the discrete reinforcement learning set-
ting, and particularly Q-learning, this section formulates the decision problem for
continuous Markov chains. Q-learning is one way of using a strategy related to
dynamic programming to find the optimal policy for the MDP, but one of the key
concepts of Part II of this work is to investigate situations where a continuous time
MDP problem can be divided into two sub-problems. The idea is then that for one
of these, the optimal policy can obtained analytically, and then this knowledge can
be used to simplify the combined problem.

While specific control problems are presented in the next chapter, cost functions
in continuous and discrete time are presented here, followed by a description on
how the principle of dynamic programming solution can be used to find solutions to
MDP problems. Lastly, a specific form of solution to MDP problems is described.

12.3.1 Cost functions in continuous time
Recall the discrete time expected cost over a finite horizon expressed in (2.10) of
Section 2.3.2. Here, in the style of [12], the value function is instead defined for a
continuous Markov process.

Let C[s(t), a(t)] be the bounded cost of the process being in state s(t) and se-
lecting the control action a(t) at time t. Then, it is reasonable that the total cost
during a time interval [0, T] in the continuous case is an integration that reads

Vπ = Eπ

[∫ T

0
C[s(t), a(t)]dt

]
(12.28)

where Vπ now denotes the total cost according to a policy π from the given state
s(0) at time t = 0. This function can also be expressed for an infinite horizon by
taking the limit T →∞ in (12.28).

It can from a practical stand point be reasonable to use a discount factor, similar
to the one used in Q-learning in Section 2.3.3. This reflects that expected costs that
are closer in time affects the cost function more. With a cost factor β, the infinite
time cost function is

Vπ = Eπ

[∫ ∞
0

e−βtC[s(t), a(t)]dt
]

(12.29)

Finally, the expected average cost can also be formulated by dividing the function
in (12.28) by T and then letting t→∞.

12.3.2 Cost functions of uniformised continuous models
Strategies for finding the optimal solution to a continuous time MDP are often
much easier to find in discrete time, since Bellman’s principle of optimality can
be used through the concept of dynamic programming to find an optimal policy,
as is described in Section 2.3.2. Therefore, it is of interest to find a way to use
these methods also when finding optimal policies for continuous time problems, and
uniformisarion is the method of choice. In the uniformised model, transition rates

157

12. Queuing Theory

are replaced with transition probabilities through

γ ≥ max
i
{−Qii}

Pij =

Qij

γ
if i 6= j

1 + Qii

γ
if i = j

(12.30)

where Qii and Qij come from the transition rate matrix Q. In [12], is is shown that
for a discount factor β and a unifomisation rate γ

Vπ = Eπ

[∫ ∞
0

e−βtC[s(t), a(t)]dt
]

= 1
β + γ

Eπ

[∞∑
k=0

(γ

β + γ

)k
C(s(k), a(k))

]
(12.31)

where s(k) and a(k) are the state and control actions at discrete time index k. Thus,
the problem of minimising the cost function of a continuous Markov decision process
through a policy can be converted to a corresponding discrete cost minimisation
problem for the uniformised model. Using this conversion, the principles of dynamic
programming can be used also for continuous models.

12.3.3 Optimal solution using the DP algorithm
Now, the most important results regarding the expected cost, obtained from [12],
may be presented. These form the foundation for determining analytical optimal
solutions to specific Markov decision processes.

First, by setting α = γ/(β + γ) and letting the factor 1/(β + γ) be part of the
cost C(s(k), a(k)), the cost of a discrete Markov decision process can be set to

Vπ = Eπ

[∞∑
k=0

αkC(s(k), a(k))
]

(12.32)

If the problem is already discrete, this expression would be obtained from the
start, formulated without the uniformisation factor γ. The cost is determined by
the control policy π, and the goal is to find the optimal policy that minimises the
total expected cost.

For a discrete problem, [12] shows that the expected cost of being in a specific
state s can be divided into two parts; the immediate cost C(s, a) and the potential
cost V at the next step. A key insight is now that the value of a state can be
determined by the values of all the consequent states, multiplied by the probability
to transition to those states. Consider a time horizon of length N , with k being the
number of steps left to get to time N . Then, the expected value of some state s
with k + 1 steps left to the time horizon is given in terms of all the possible states
that the process can be in when there are k steps left to the time horizon as

E[Vk+1(s(k + 1) = s)] =
∑
all s′

P (s, a, s′)Vk(s′) (12.33)

where P (s, a, s′) is an element in the transition probability function P corresponding
to the probability of transitioning from state s to state s′ by the control action a.
Now, as described already in Section 2.3.2, under the condition that Vk(s′) denotes

158

12. Queuing Theory

the optimal value of a state and control pair, the optimal control action that can be
selected in a state must be the one that minimises the sum of the immediate cost at
the current state, C(s, a), and the expected future costs. This is expressed in [12]
as

Vk+1(s) = min
a

[
C(s, a) + α

∑
all s′

P (s, a, s′)Vk(s′)
]

(12.34)

for k = 0, 1 . . . N . This minimisation problem is a formulation of the dynamic
programming algorithm and thus follows the principle of optimality; if a sequence
of optimal actions is extended by another optimal action, the new sequence is also
optimal. As such, this expression can be compared to the other expression for the
dynamic programming recursive expression in Section 2.3.2.

The cost when there are zero steps left to the time horizon is zero, such that
V0(s) = 0 for any state s. Similarly, the optimal total cost for the finite horizon
problem is given by VN(s) for any state s.

The expression (12.34) is the optimality equation for the finite horizon case.
However, the optimal control policy π∗ that minimises the total cost (12.32) is what
is interesting. One intuitive way of finding π∗ is to let the time horizon N approach
infinity. However, [12] states that this procedure does not guarantee a solution unless
certain conditions hold for the available actions in state s. If the set of available
control actions A(s) in state s is finite and the immediate cost is always such that
C(s, a) ≥ 0, then

lim
N→∞

VN(s) = V ∗(s) (12.35)

for some initial state s0.

12.3.4 Threshold type problems
By evaluating the optimality equation given by

V (s) = min
a

[
C(s, a) + α

∑
all s′

P (s, a, s′)V (s′)
]

(12.36)

on an infinite horizon, it can be shown that certain systems have very specific optimal
solutions. One of these solutions is called a threshold type solution in [12]. These
problems are formulated for systems with states indexed by
s0 = 0, s1 = 1 . . . si = i, . . . , and they can be shown to have an optimal policy for
which one control value is assumed if the state index i ≤ i∗ and another is taken
if i > i∗. Note here that these types of problems are highly specific to certain
cost function structures, and it can not be generally stated that certain problems
have threshold type solutions unless explicitly investigating the structure of the cost
function.

If problems can be shown to be of threshold type, obtaining the optimal policy
boils down to obtaining the threshold, which compared to many other methods
of optimization is much less demanding in terms of computation. In this work,
the procedure outlined in [12] is used to analytically investigate if a problem is of
threshold type. It consists of five steps.

159

12. Queuing Theory

Step 0: Uniformise the continuous Markov decision process

This is only necessary if the problem is continuous originally. For a discrete process,
this can be skipped.

Step 1: Determine the optimality equation

For any state with index i, an expression for the optimal control action must be
determined. Already, some restrictions on the Markov decision process can be seen;
a constraint on the set of available control actions A(s) is already that it needs to
be finite, but to keep complexity down it is naturally easier the smaller the set is.
Often, the problem can be difficult enough to solve if there are only two different
control actions to take for each state.

Furthermore, this procedure assumes that a general expression can be obtained
for any state in the process. If there are different regions in the Markov process
that need different functions V , the advice is to divide this problem into one smaller
problem per region.

Step 2: Determine one step optimal control actions

In each step, it must be possible to minimise V (i) by the use of a control action a∗(i).
In this way, identify all cases where each of the possible control signals minimise V (i)
in terms of elements in the optimality equation described in the previous step.

Step 3: Obtain a closed form expression for the optimal policy

Using the cases in which each possible control signal minimises the value function,
determine an expression in terms of the optimal cost function development that
decides when each possible control action should be used. Thus, the goal is to decide
which control signal a to use, depending on the change in cost function between two
states. This change is denoted ∆V (i) = V (i)− V (i− 1).

Step 4: Show that ∆V (i) is monotonically increasing

Since the appropriate control signal is selected based on the value of ∆V (i), the goal
is to find the value for which ∆V (i) = V (i)− V (i− 1) enters the region where the
optimal control signal changes. The i for which this happens is then i∗. However,
for this to hold, the function ∆V must me nondecreasing for all i. On the positive
side, once this property is proven, the remaining issue is finding the threshold i∗.

Step 5: Obtain the threshold i∗

Given that there exists a state index where ∆V crosses over to the region where the
minimising control action changes, the threshold is found. Effectively, based on the
difference in V between consecutive states, regions are identified where each possible
control action is the minimising action. Again, it is possible to have more possible
control values than two, but for each of these, a region must be defined in terms of

160

12. Queuing Theory

∆V , which can be difficult. Furthermore, determining the optimal threshold i∗ thus
requires explicit knowledge of V (i).

There are now multiple ways of determining this threshold value. The first idea
is that since the nature of the control signal is determined up to the threshold i∗, the
problem reduces to a Markov chain where the control is already known for states up
to i∗. For many systems, such as queues, there are well defined methods to express
stationary probability distributions that determine the probability for the system to
be in a certain state. Since the value function is based on the expected state value,
the stationary probability distributions can be used to evaluate the expected state.

If there is not a well defined stationary state probability distribution, the optimal
threshold value can be estimated through simulation. If the problem is simulated
for an appropriate number of times over a horizon, different threshold values can be
experimented with, and an approximate region in which a minimising threshold may
exist can be found. The strength of this method is that it does not rely on accurate
expressions for state probabilities. The weaknesses is that it is computationally
heavy and does not produce an optimal solution due to it being a simulation based
method.

12.4 Summary
The queueing theory chapter starts with the concepts that are interesting to inves-
tigate in queueing systems. These continuous time processes can often be seen as
customers arriving from a population that is in most cases infinite, and they wait
for service from one or several servers that handle customers according to a service
principle. In this work, two types of queueing systems are investigated, namely the
M/M/1 and theM/M/1/K queue. These are Markovian queues, which means that
their interarrival and service times are exponentially distributed with rates λ and
µ, respectively. The notation that these queues are described in is called Kendall
notation, where the M stands for Markovian and the K denotes a queue that has a
limited capacity and rejects arrivals when the length is K.

Different ways of measuring the performance of queues are discussed, and the
most important property of the models are, in both the case of the M/M/1 and
M/M/1/K queues, the stationary state probability mass functions.

The concept of uniformisation is described for M/M/1 and M/M/1/K queues,
and the important property which says that the stationary state distributions are
the same for continuous and uniformised versions of these queues is proven for the
minimal uniformisation rate in both cases.

In the later part of this chapter, the concept of Markov decision processes are
described for continuous Markov processes in general. In a decision problem, the
objective is to minimise a cost function, and these can be formulated in both con-
tinuous and discrete time. An important property is that for a continuous cost
function, an equivalent cost function can be formulated for a uniformised Markov
decision problem.

Lastly, a procedure to identify threshold type control policies for specific cost
functions is given in five steps. In the next chapter, this procedure is used to show
that a specific admission control problem for an M/M/1 queue has a threshold type

161

12. Queuing Theory

solution. In that case, the control problem reduces to finding the threshold i∗, which
can be done analytically or through simulation.

162

13
Control Problems

In this chapter, the problems that are investigated in Part II of this thesis are
presented in detail. Firstly, the admission control problem for M/M/1 queues is
formulated. This problem is motivated by the need to limit the number of customers
admitted to a system. For such a problem, a cost function can be formulated.
This function has two parts, as both keeping a long line of customers and rejecting
customers comes at a cost. The goal is then to find the optimal policy at which
customers are rejected.

In the second and final control problem in this work, a joint continuous Markov
process is studied. The first of the two decision processes that make up the joint
process is a path planning process for a slippery grid world formulated in continuous
time. Although the concept is familiar from Part I of this thesis, the difference is
now that the problem is described using a continuous time Markov process. The
second decision process is the new admission control problem, and based on the
discussions on how to join two independent Markov processes, the total model has
to be expressed in continuous time since the admission control problem is formulated
for a continuous time M/M/1 queue.

Lastly, modular analysis is presented in the form of analytically determining an
optimal admission control policy for the M/M/1 queue part of the joint process.
This can be used to reduce the computational burden that solving the joint MDP
problem entirely using temporal logic constrained reinforcement learning would im-
ply.

13.1 Admission Control for M/M/1 Queues
This problem, described in [12], is defined for a M/M/1 queueing system. As is
shown in the previous chapter, this is a continuous, Markovian, single server queue-
ing system with arrival rate λ and service rate µ.

13.1.1 Problem formulation
The problem consists of deciding if an arrival shall be admitted into the queue or
not. States are in this problem formulation denoted by s(t) = i, which means that
there are i elements in the queue. Thus, the possible control values are dependent
on how many elements there are in the queue and they are denoted

a(i) =

1 if arrival is rejected
0 if arrival is admitted

(13.1)

163

13. Control Problems

when the state is s(t) = i elements in the queue.
Rejecting a customer costs R, but it also costs to have admitted customers in

the queue. The cost of this is B per customer per unit time. In continuous time,
the discounted total expected cost is

Vπ = Eπ
[∫ ∞

0
e−βt ·B · s(t)dt+

∫ ∞
0

e−βtR · A(t) · a(s(t−))dt
]

(13.2)

where A(t) = 1 if there is an arrival at t and A(t) = 0 if there is not. Here, it
is assumed that the initial queue state is zero elements, such that the generally
formulated initial state at time t = 0 is s(0) = 0. The first integral is a measure
of all admission costs over time, and the second is a measure of all rejections over
time. The notation t− implies that the rejection is decided just before it occurs.

Recall the transition rate matrix for the M/M/1 queue from Section 12.2.1 as

Q =

−λ λ 0 0 0 0 . . .
µ −(λ+ µ) λ 0 0 0 . . .
0 µ (−λ+ µ) λ 0 0 . . .

0 0
... ...

 (13.3)

The first step of finding an analytical solution is uniformisation, and the uni-
formisation rate is as usual the largest negated diagonal element in Q. Since this
is a homogeneous Markov chain, the rate is selected as any of the negated diagonal
elements as γ = λ + µ. Following the uniformisation procedure of (12.31), the new
cost parameters are

α = γ/(β + γ)
b = B/(β + γ)
r = R/(β + γ)

(13.4)

For the discrete problem, a discrete time equivalent cost function is then

Vπ = Eπ
[∞∑
k=0
{αkbi+ αkrA(k + 1)a(i)}

]
(13.5)

where the state notation s(k) = i = 0, 1, 2, . . . is used directly.
Now, A(k+ 1) denotes that an arrival occurs at step k+ 1. The discounted cost

of having i elements is always present, but the cost r is only collected if an arrival
occurs at the next step and rejection is selected at the step before, which means
that the action when the state is i is a(i) = 1. Moreover, note that the next step
implies one step further from the horizon.

Since transitions to an incremented state can be avoided by the use of a control
value, the state transition probabilities are dependent on the control value. If ad-
mission is selected, the one step probability of transitioning to the incremented state
is denoted by the constant p = λ/γ, but if rejection is selected, p = λ/γ describes
the probability of staying in the state. In both cases, q = µ/γ, which is the discrete
time probability to decrease the number of elements in the queue. A special case is

164

13. Control Problems

when i = 0; in this case it is not possible for departure to occur and the probabilities
are changed thereafter.

In total, the probabilities found in the action dependent transition probability
function P of the controlled process are

P (i, a, j) =

p[1− a] if j = i+ 1
q if j = i− 1
pa if j = i

0 otherwise

(13.6)

if i > 0. Here, a is the action selected at step k when the state is s(k) = i and the
next state is s(k + 1) = j. For i = 0,

P (0, a, j) =

p[1− a] if j = 1
1− p+ pa if j = 0
0 otherwise

(13.7)

where the action is a is selected at step k when the state is i = 0 and the next state
is j = 1.

13.1.2 Verifying the threshold type solution
Now, the five step solution to the admission control problem is presented, as it is in
[12]. The uniformised model was obtained before, which means that the first step is
to express the optimality equation for the problem. The starting point is to consider
how the one step ahead optimality equation of (12.34) can be minimised by choosing
an optimal control action. Recall that (13.5) is the cost criterion used in the opti-
mality equation. The optimality equation can then express the momentary optimal
cost that, if it is applied at all steps of the horizon, will minimise (13.5). Using
the obtained uniformised probabilities, the optimality equation for the admission
control problem becomes

V (i) =

min
a

[
bi+ α

(
p[1− a]V (i+ 1) + pa[r + V (i)] + qV (i− 1)

)]
if i > 0

min
a

[
α
(
p[1− a]V (i+ 1) + pa[r + V (i)] + (1− p)V (i)

)]
if i = 0

(13.8)
Since this expression must hold for the optimal V , the optimality equation says
that in each step, the control signal that minimises the immediate cost and the
expected future costs must be selected. Either, admission is selected at state i, and
the expected value is dependent on V (i+ 1) and V (i− 1) as i− 1 and i+ 1 are the
states to which the system can transition after admission is selected. If rejection is
selected, the only possible state transitions are to states i− 1 and i. In both cases,
costs r and/or b are collected depending on the control action selected.

The second step is to determine regions where a = 0 and a = 1. This is done in
[12] by combining and simplifying (13.8) to form

V (i) = [bi+α(pV (i+ 1) + qV ([i− 1]+))] + min(αp(r+ V (i)− V (i+ 1)), 0) (13.9)

165

13. Control Problems

Here, [i−1]+ is either 0 if i = 0 or i−1 if i > 0. Note that the minimisation problem
is now expressed as the minimum of the two alternative results of a = 1 and a = 0.
It can now be seen that

a∗ =

0 if V (i+ 1) ≤ r + V (i)
1 otherwise

(13.10)

The third step is to obtain a closed form of the optimal policy. This is done by
setting

∆V (i+ 1) = V (i+ 1)− V (i) (13.11)

for any i. Using this, the optimal control can be expressed as

a∗ =

0 if ∆V (i+ 1) ≤ r

1 otherwise
(13.12)

Now, since the set of available actions A = {0, 1} is finite, (12.35) states that

lim
N→∞

VN(i) = V ∗(i)

The next step is to show that the function ∆V (i) is monotonically increasing.
If ∆V (i) is nondecreasing, there will be a point where ∆V (i + 1) > r which makes
i = i∗. Although there is no expression for V (i), ∆V (i) can fortunately still be
shown to be monotonically increasing, by the process of induction.

For a finite version of the problem, the optimality equation can be expressed as
in (12.34). Remember that k denotes the number of steps left to the horizon N ,
so k = 0 implies that the optimality equation is evaluated at the horizon. At the
horizon, Vk(i) = 0. The finite horizon optimality equation at k = 0 and at any time
index k + 1 is then

V0(i) = 0
Vk+1(i) =

[
bi+ α

(
pVk(i+ 1) + qVk([i− 1]+)

)]
+ min

(
αp(r −∆Vk(i+ 1)), 0

)
where the ∆V (i+1) notation is used. At k = 0, V0(i) = 0 for all i, since the problem
is at the horizon. Therefore, ∆V0(i) = V0(i) − V0([i − 1]+) = 0, which is zero but
still non-decreasing.

For any k, now assume that ∆Vk(i) is non decreasing for all i. This is reasonable
since the cost of increasing state values are made up of strictly increasing imme-
diate costs, added to the previous state values. Nowhere is there a negative cost
development as the state increases, for a specific k. Thereby,

∆Vk(i+ 1) ≥ Vk(i) (13.13)

always holds. From this, ∆Vk+1(i) can now be shown to be monotonically increasing.
If this holds, the principle will by induction also hold for increasing indices up to
N when N approaches infinity, which was shown to converge to the original infinite
horizon solution.

166

13. Control Problems

For k + 1, ∆Vk+1(i) is increasing if ∆Vk+1(i+ 1)−∆Vk+1(i) ≥ 0. The first term
is

∆Vk+1(i+ 1) = Vk+1(i+ 1)− Vk+1(i) =

=[b(i+ 1) + α(pVk(i+ 2) + qVk(i))] + min[
c1︷ ︸︸ ︷

αp(r −∆Vk(i+ 2)), 0]−
−[bi+ α(pVk(i+ 1) + qVk([i− 1]+))]− min[αp(r −∆Vk(i+ 1))︸ ︷︷ ︸

c2

, 0]

As min(c1, 0)−min(c2, 0) ≥ min(c1 − c2, 0) for any c1 and c2, the two minimisation
terms can be combined into

min(c1, 0)−min(c2, 0) ≥ min[αp(∆Vk(i+ 1)−∆Vk(i+ 2)), 0]
Since ∆Vk(i) is assumed to be non-decreasing, the first alternative of the min-

imisation term is smaller than zero. If this inequality is used in the expression for
∆Vk+1(i+ 1), the resulting expression is
∆Vk+1(i+1) ≥ [b+α(p∆Vk(i+2)+q∆Vk(i))]+αp(∆Vk(i+1)−∆Vk(i+2)) (13.14)

For ∆Vk+1(i), the expression is
∆Vk+1(i) = Vk+1(i)− Vk+1([i− 1]+) =

=[bi+ α(pVk(i+ 1) + qVk([i− 1]+))] + min[
d1︷ ︸︸ ︷

αp(r −∆Vk(i+ 1)), 0]−
−[b(i− 1) + α(pVk(i) + qVk([i− 2]+))]− min[αp(r −∆Vk(i))︸ ︷︷ ︸

d2

, 0]

As min(d1, 0)−min(d2, 0) ≤ −min(d2 − d1, 0) for any d1 and d2, these two minimi-
sation terms can be combined into

min(d1, 0)−min(d2, 0) ≤ −min[αp(∆Vk(i+ 1)−∆Vk(i)), 0]
In this case, the minimal term is zero. Therefore,

∆Vk+1(i) ≤ [b+ α(p∆Vk(i+ 1) + q∆Vk([i− 1]+))]− 0 (13.15)
If (13.15) is negated, the inequality is flipped. Then, by summing both sides of this
expression with both sides of (13.14), the expression

∆Vk+1(i+ 1)−∆Vk+1(i) ≥ [b+ α(p∆Vk(i+ 2)+
+ q∆Vk(i))] + αp(∆Vk(i+ 1)−∆Vk(i+ 2))−
− [b+ α(p∆Vk(i+ 1) + q∆Vk([i− 1]+))]
⇐⇒

∆Vk+1(i+ 1)−∆Vk+1(i) ≥ αp(∆Vk(i)−∆Vk([i− 1]+))

(13.16)

The right hand side of the final expression in 13.16 is by assumption always positive.
Therefore, it has been proven that ∆Vk+1(i + 1) −∆Vk+1(i) ≥ 0, and this extends
to the infinite horizon problem as well. Thus, ∆V (i) is a non-decreasing function.

Now that the admission control problem has been shown to be a threshold type
problem, the fifth and last step is to identify the optimal threshold i∗ for which
the optimal policy switches from admission to rejection. This can generally be
done in two ways, according to [12]; either by using a well known state probability
distribution for the Markov chain, or by simulation.

167

13. Control Problems

13.2 Two Methods of Finding the Optimal
Threshold

While the threshold type problem structure is a powerful property, finding the actual
threshold can be easier said than done. In this work, two methods for deriving the
threshold are discussed.

To formulate an admission control problem, a cost function is needed. Given a
specific cost function, the goal is then to find a suitable method that can be used to
compute the actual value of the threshold. Before going further into the two methods
that can be used to do so, an important property from [12] must be highlighted.

In Section 12.3.2, it is said that the cost function of a continuous Markov decision
process has an equivalent description in discrete time. If a process is uniformised, its
cost function can be uniformised, too. As a reminder, the relationship between the
two functions is repeated here. The total expected discounted cost from an initial
state s(0) up to an infinite horizon is

Vπ = Eπ
[∫ ∞

0
e−βtC[s(t), a(t)]dt

]
(13.17)

and uniformisation with rate γ leads to the relationship

Vπ = Eπ
[∫ ∞

0
e−βtC[s(t), a(t)]dt

]
= 1
β + γ

Eπ
[∞∑
k=0

αkC(s(k), a(k))
]

(13.18)

where α = γ/(β + γ). On the right hand side of (13.18) is the uniformised discrete
time cost function, expressed in terms of the uniformised process. Furthermore, as
β = 0 gives the undiscounted infinite horizon cost function, the equivalence also
holds for the undiscounted case. The point here is then that one can equivalently
and arbitrarily select between using either the continuous time cost function or the
uniformised discrete time cost function. In the two methods of deriving i∗ described
in this work, the continuous time cost function is used.

13.2.1 Finding the optimal threshold using the M/M/1/K
distribution and an undiscounted cost function

Firstly, it must be noted that this solution revolves around the well known statistical
relationship

E[s(t)] =
K∑
n=1

nPr{s(t) = n} (13.19)

where Pr{s(t) = n} is obtained as the stationary state probability distribution of
the M/M/1/K queue. This relationship says nothing about the absolute time that
is necessary for expressing the discount in (13.17). Therefore, β is set to zero, and

Vπ = Eπ
[∫ ∞

0
C[s(t), a(t)]dt

]
(13.20)

In the previous section, it is shown that the admission control problem has a
threshold type solution. Since the queue cannot grow larger than i∗, the controlled

168

13. Control Problems

queue can be seen as an M/M/1/K queue, where K = i∗. The idea is now to evalu-
ate the cost function of the M/M/1/K queue for increasing K, and then select i∗ as
the K that produced the lowest cost function. To do so, the cost function must first
be explicitly defined. In [12], the procedure of actually finding the optimal thresh-
old for this type of specific admission control problem is not described, but using
the M/M/1/K stationary state distribution or using simulation are two suggested
directions.

The starting point is to reformulate the continuous time admission control cost
function from [12], previously expressed in (13.2), for a finite horizon of N unit time
intervals, which reads

Vπ = Eπ
[∫ N

0
e−βt ·B · s(t)dt+

∫ N

0
e−βtR · A(t) · a(s(t−))dt

]
(13.21)

where the first integral describes the cost to keep the queue, and the second describes
the cost of rejection. Since the problem is undiscounted, the next step is setting
β = 0, such that

Vπ = Eπ
[∫ N

0
B · s(t)dt+

∫ N

0
R · A(t) · a(s(t−))dt

]
= Eπ

[∫ N

0
B · s(t)dt

]
+ Eπ

[∫ N

0
R · A(t) · a(s(t−))dt

] (13.22)

Focusing on the second integral, this expression describes the control action just
before an arrival takes place, at the time denoted by t−. Note that this is not to
be interpreted as a non-causal system, but rather by the physical analogy that a
sensor reading from a car bumper can warn the driver that a crash event will occur
in the next second. Instantaneously, A(t) · a(s(t−)) = 1 if an arrival occurs, and is
multiplied by R to form the cost of a rejection. Now, set this instantaneous unit
value to be the Dirac unit impulse, defined by

δ(t− ta) =

+∞ t− ta = 0
0 t− ta 6= 0

(13.23)

where t ≤ ta. For each rejection that occurs during the interval [0, N], a Dirac unit
impulse is defined at the time of the rejection, and as they do not overlap due to
the definition of the continuous time Markov process, the integrated sum of these
pulses multiplied by R makes up the total cost of the rejections during the interval
defined by the horizon. Then, the second integral becomes

Eπ
[∫ N

0
R · A(t) · a(s(t−))dt

]
= Eπ

[
R
∫ N

0

Nr∑
j=1

δ(t− rj)dt
]

(13.24)

where rj are the rejection times and Nr is the number of rejections occurring on the
interval.

The integral of a Dirac delta function is well known as∫ ∞
−∞

δ(t− ta)dt = 1 (13.25)

169

13. Control Problems

and as such, integrating all Nr impulses occurring on the interval and multiplying
the result with R is just R · Nr. However, the number of impulses, or the number
of rejections, is a random variable. Nr is then the expected number of rejections
during the time interval between 0 and the horizon N , which can be calculated.

If the horizon spans N unit time intervals, then N ·λ arrivals are expected during
the N unit time intervals by the definition of the Poisson arrival process with rate
λ. If the queue is in the final blocking state, the arrival is rejected. In stationary
state, the probability for the M/M/1/K queue to be in the final state is

PK = Pr{s(t) = K} = 1− (λ/µ)
1− (λ/µ)K+1 (λ/µ)K (13.26)

This means that PK can represent the share of expected arrivals that will be rejected.
Thus, up until the horizon N , the total expected rejection cost is

Eπ
[
R
∫ N

0

Nr∑
j=1

δ(t− rj)dt
]

= R · Eπ
[∫ N

0
δ(t− r1)dt+ · · ·+

∫ N

0
δ(t− rNr)dt

]
= R · Eπ[Nr]
= R · PK ·N · λ

(13.27)

For the first integral of (13.22), which is the expected total cost of keeping the
queue in its states, the starting point is to note that s(t) is a piece-wise constant
signal. As the only other term in the integral, B, is constant, the value of the integral
is just a sum of integrated constants, independent on the order of the constant values.
Moving the expectation notation inside the integral yields

Eπ
[∫ N

0
B · s(t)dt

]
= B

∫ N

0
Eπ[s(t)]dt (13.28)

and this expression allows for the use of (13.19). Then,

B
∫ N

0
Eπ[s(t)]dt = B

∫ N

0

K∑
n=1

nPr{s(t) = n}dt (13.29)

is obtained. This expression can be evaluated as N integrals over a unit length time
interval, in which the stationary state probability distribution of the M/M/1/K
queue can be used to find

Pr{s(t) = n} = Pn =

1−(λ/µ)

1−(λ/µ)K+1 (λ/µ)n if 0 ≤ n ≤ K

0 if n > K
(13.30)

This means that the previous cost expression becomes

B
∫ N

0

K∑
n=1

nPr{s(t) = n}dt = N ·B ·
K∑
n=1

Pn · n (13.31)

Finally, the analytically derived total expected undiscounted finite horizon cost
of the admission controlled queue is given by

Vπ(K) = N
(
B ·

K∑
n=1

Pn · n+R · PK · λ
)

(13.32)

170

13. Control Problems

As hinted in the notation, this expression is evaluated for increasing thresholds K.
The K that gives the lowest cost Vπ(K) is then the optimal threshold i∗.

13.2.2 Finding the optimal threshold using simulation and
a discounted cost function

There are cases when the analytical method of finding i∗ is not applicable. Such
scenarios could for example be not having an explicit description of the stationary
state probability distribution or the need to evaluate the system in transient states,
but it could also be that a discounted cost must be used in the problem. As stated
earlier, the analytical steady state probability distribution of the M/M/1/K queue
does not contain the necessary absolute time information to express the discounted
version of the cost function.

In these cases, simulating the queueing system can be a way of obtaining a
cost approximation. In principle, this procedure consists of simulating traces of the
M/M/1/K queue for each K, and computing exact discounted costs for each trace.
Then, these costs are seen as samples of the actual cost, and an average over many
traces can be obtained. To start off, consider the discounted cost function over the
finite horizon of length N unit time intervals

Vπ(K) = Eπ
[∫ N

0
e−βt ·B · s(t)dt+

∫ N

0
e−βtR · A(t) · a(s(t−))dt

]
(13.33)

For a simulated state trajectory s(t), the exact cost is denoted by simulation index
S such that

V S
π (K) =

∫ N

0
e−βt ·B · s(t)dt+

∫ N

0
e−βtR · A(t) · a(s(t−))dt (13.34)

where the threshold K of the queue indirectly influences the cost, as it affects the
number of rejections Nr. As in the analytical procedure, the rejections in the second
integral is expressed using non-overlapping Dirac delta unit impulses. During a
trace, Nr rejections occur, and

V S
π (K) =

∫ N

0
e−βt ·B · s(t)dt+

∫ N

0
e−βtR

Nr∑
j=1

δ(t− rj))dt (13.35)

Now, as there is an exponential discount term, order is important, but s(t) is still
piece-wise constant. This means that the first integral can be expressed as∫ N

0
e−βt ·B · s(t)dt = B

(
s(t0)

∫ t1

t0
e−βtdt+ s(t1)

∫ t2

t1
e−βtdt+ · · ·+ s(tN−1)

∫ tN

tN−1
e−βtdt

)

= B

β

N−1∑
i=0

s(ti)
[
e−βti+1 − e−βti

]
(13.36)

For the second integral of (13.35), a well known property of the Dirac delta function
can be used. It reads ∫ ∞

−∞
f(t)δ(t− ta)dt = f(ta) (13.37)

171

13. Control Problems

For all Nr rejections described by non-overlapping Dirac delta functions in the sim-
ulation, the second integral then becomes
∫ N

0
e−βtR

Nr∑
j=1

δ(t− rj))dt =

= R
∫ N

0
e−βtδ(t− r1) +R

∫ N

0
e−βtδ(t− r2) + · · ·+R

∫ N

0
e−βtδ(t− rNr)

= R
Nr∑
j=1

e−βrj

(13.38)

since for all rejections, 0 ≤ rj ≤ N holds. For one simulation with index S, the
expression for the total cost is then

V S(K) = B

β

N−1∑
i=0

s(ti)
[
e−βti+1 − e−βti

]
+R

Nr∑
j=1

e−βrj (13.39)

To obtain an average cost over the finite horizon N , NS simulations are made,
where NS is large enough for the sample to statistically represent the actual expected
cost. Finally, an estimate of the discounted cost function for a specific K is then
obtained as

V̂ (K) = 1
NS

NS∑
S=1

V S(K) (13.40)

This simulation is performed for different values ofK ranging from one to some limit,
just as in the analytical derivation of the optimal threshold. The K that produces
the lowest V̂ (K) is then the optimal threshold i∗ with respect to the discounted
total expected cost over the finite horizon.

13.3 Path Planning and Admission Control in Con-
tinuous Markov Processes

So far, Part I handled temporal logic constrained path planning problems in discrete
time. Now, the objective is to solve a joint continuous Markov decision process
problem, where one of the subsystems is a grid world for which path planning actions
should be selected, while the second part of the total system is an M/M/1 queue
for which admission control should be implemented.

The main issue which makes this control problem difficult to solve using temporal
logic constrained reinforcement learning directly is that the state space of the joint
process is infinite, since the M/M/1 queue has no capacity limit. While a policy
may be possible to find eventually given that there is sufficient memory to store
a very large Q-table, the strategy is instead to use modular analysis of the queue
sub-process to limit the joint system state space, while also finding the optimal
admission control action selection policy.

In Section 13.1, the admission control problem for queueing systems is intro-
duced. For the specific cost function, the solution is shown to be of the threshold
type, which implies that the cost of the admission control problem only increases

172

13. Control Problems

above the threshold. As the threshold is a queue length, no lower cost for either the
queue or the joint process is expected above the threshold queue length, and this is
what motivates that solving the admission control problem separately reduces the
number of states in the infinite joint state space that actually needs to be explored.
After this is done, the path planning part of the process can be solved with tem-
poral logic constrained reinforcement learning to follow a specification for the joint
system.

The starting point is to consider a joint continuous Markov process consisting
of a model of a path planning problem and a M/M/1 queue for which admission
control is to be implemented. In addition to this, an LTL formula that specifies the
desired behaviour of the learning agent needs to be expressed.

13.3.1 Problem formulation
Consider an example of a joint system, consisting of a robot that has the task to
navigate through a grid world and operating a machine at the same time. Parts
arrive to the machine, and they depart as they are serviced by it one at a time.
The machine can be modeled as a single server queueing system of infinite capacity,
and the world that the robot navigates through is modelled as a path planning
problem similar to those in Part I of this work. The queue is to be regulated by
the use of admission control, and for simplicity, it is assumed that the robot can
regulate the machine remotely. If the queue is not full, the robot should navigate to
a desired geographical location while avoiding obstacles, and regulating admissions
to the machine at the same time. However, if the queue is full, then the machine
might malfunction, and the robot must physically visit it to make sure it does not
break.

The idea is now to come up with a way for the robot to operate the queueing
system in an optimal way, a way that also satisfies an LTL specification formulated
for the joint process. In contrast to the problems discussed in Part I, the assumption
is now that the models are continuous time Markov processes.

The procedure to solve this problem using modular analysis is outlined in two
steps. Firstly, from Section 13.1, a threshold type admission control solution is
found for the queue sub-process, and the threshold i∗ is explicitly formulated either
through the analytical method of Section 13.2.1 or through simulation from Section
13.2.2. This solution is independent of the path planning part of the joint process
and thereby also unrelated to any control policy that regulates navigation.

Secondly, the temporal logic constrained Q-learning algorithm operates on a
discrete time representation of the problem. Therefore, the joint system must be
uniformised to form an equivalent model in discrete time. This must moreover be
done in the presence of control actions, as these regulate the different transitions
(and by extension the total transition rates) in each joint state.

Lastly, when an optimal threshold for the queue part is found and a discretisa-
tion is made, a temporal logic constrained reinforcement learning problem can be
formulated for the discretised and finite state space joint Markov decision process.
This specification may regulate any part of the process, but not the control actions
regulating the queue part, which are determined through the previously described

173

13. Control Problems

0 1 2

3 4 5

6 7 8

Figure 13.1: Example state space of the continuous time Markov grid world.

analytical solution.
To start off, the joint process needs to be described explicitly, and this is done

by first recalling the gridworld state space structure.

13.3.2 Continuous time path planning
In Section 11.4.1, it is described how both of two Markov processes must either be
discretely or continuously described to make sense of the joint process. If the joint
process is continuous, a continuous time path planning problem must be considered.

The state space of this problem is an indexed finite set of natural numbers.
Graphically, this system can be represented by a grid, shown in Fig 13.1.

GSMP, state space and transitions

In the underlying GSMP, there are eight possible navigation events; four actions
representing north, east, south and west, and four slip events in the same direction.
By counting the occurrences of each event, the counts can represent the number of
steps taken in the four cardinal directions that the events represent. Therefore, this
follows the same principle as how the queue state is really a counting function of
arrival and service events, but in the grid world there are more actions and the state
is a coordinate.

Since this is a continuous Markov process, the main directional events have rates,
denoted λN , λE, λS and λW , respectively. Furthermore, the intervenent times of the
events that trigger the directional transitions are assumed to be exponentially dis-
tributed with the same parameters; this implies that the process of only transitioning
in one direction is a Poisson process with a rate parameter specified by one of the
previously mentioned rates.

In addition, to reflect a slippery grid world such as the one used in Part I of this
thesis, four extra events are considered in the underlying GSMP. For every main
directional event, there is an associated slip event that has the exact same effect
on the state space, but it occurs at a much lower rate than the main directional
event. The rates of these are denoted ωN , ωE, ωS and ωW , and just as in the case of
the main directional events, these events have exponentially distributed intervenent
times with the previously mentioned ω-rates. Counting the occurrences of any of
these events is therefore also a Poisson counting process, defined by the respective
rate.

Just as in the queueing systems, considering all of the above events being possible
in the same system is a way of superpositioning the eight different Poisson processes,

174

13. Control Problems

0 1 2

3 4 5

6 7 8

ωN
ωE

ωS

ωW

λN

λE

λS

λW

Figure 13.2: Intended direction transitions λ and slip transitions ω.

which is also a Poisson process according to the reasoning in Section 10.4.
For the example in Fig 13.1, the transitions available from the non-border state

are depicted with their respective rates, shown in Fig 13.2. In any border state,
the transitions that cannot be completed due to the lack of a northern, eastern,
southern or western state are redirected back to the origin state.

Control

As in the admission control problem, and as [12] points out, an inherent property of
the Poisson process is that it can be “turned off” without changing the probability
distribution. This is because the probability is only dependent on time intervals and
not on specific time instances; the probability to increase a Poisson process at one
time is the same no matter what the absolute time is. By this, the same type of
control used in admission control in which transitions are either made available or
not, transitions between the states of the path planning problem can be controlled.

Consider a four element unit control vector a(t), describing the control action
selected in the joint state I at time t. The elements of this vector can only assume
values of either one or zero, and only one of the elements can be one at any time.
Next, denote a directional four element vector containing one of the direction rates
by D and a slip transition rate vector by Ω. The non-zero element in a(t) denotes
which direction is selected, while the elements in D and Ω are selected to reflect
that for a selected direction, the most frequent transition is to the intended state,
but it is also possible to slip to any of the other states, at a lower rate.

For the non-border state depicted in Fig 13.2, the controlled transition rates are
given as

(DN + ΩN)a(t) =
([
λN 0 0 0

]
+
[
0 ωN ωN ωN

])
a(t)

(DE + ΩE)a(t) =
([

0 λE 0 0
]

+
[
ωE 0 ωE ωE

])
a(t)

(DS + ΩS)a(t) =
([

0 0 λS 0
]

+
[
ωS ωS 0 ωS

])
a(t)

(DW + ΩW)a(t) =
([

0 0 0 λW
]

+
[
ωW ωW ωW 0

])
a(t)

(13.41)

If for example the selected direction is east, then a(t) =
[
0 1 0 0

]
and the above

175

13. Control Problems

0 1 2

3 4 5

6 7 8

ωN

ωS
ωW

λE

Figure 13.3: Possible transitions when a(t) =
[
0 1 0 0

]T

expressions change to form the transitions depicted in Fig 13.3.

Uniformisation rate

Now that the continuous time Markov decision process that describes the path
planning problem is described, the last key step is to identify the path planning state
that has the largest transition flow out of it, which is to be used in uniformisation.
Even though it is entirely possible to have completely unique rates for all events in
the process, a simplification is that

λN = λE = λS = λW = λD

ωN = ωE = ωS = ωW = ωD
(13.42)

Using this, it can be noted that for any control action vector a(t) in the path planning
problem, the maximum possible transition rate out of a state is

γPP = λD + 3ωD (13.43)

since in all states, for all control actions, there is always one main directional tran-
sition with rate λD and three slip transitions with rates ωD.

13.3.3 Jointly controlled queue and path planning in
continuous time

Recall that a continuous time Markov decision process describing the admission
control of an M/M/1 queue has a control signal that is either a = 1 for rejection
or a = 0 for admission. When a = 0 in a state, there is a transition with rate λ
to the incremented state, but when a = 1 this transition is redirected to be a self
loop with rate λ. The maximum flow out of a state is therefore the sum of λ and µ.
Therefore, even in the presence of control actions this process is uniformised with
rate λQ = λ+ µ, which is also the case in the description in [12].

By now, the slippery grid world path planning and theM/M/1 admission control
processes have been formulated with the inclusion of control actions. Before moving
on to defining the jointly controlled MDP consisting of the admission controlled

176

13. Control Problems

λµ

iQ = 0

iQ = 1

iQ = 2

iQ = 3

...

...

Figure 13.4: The joint process ordered as a tower of path planning state sets.

M/M/1 queue and the controllable path planning process, the important structure
of the transitions in the joint continuous system must be described.

The most intuitive way to formulate the joint process is to first consider the
state space of the path planning process, and an empty queue. It is possible for
the path planning process to be in any of its states while an arrival occurs in the
queue with rate λ. By considering the tuples state of the joint system, this implies
the transition between the state I = (iPP , 0) and J = (iPP , 1) where iPP denotes an
integer valued state index in the path planning process. In short, from a state in
the joint process, either queue transitions or path planning transitions can be made.
The joint system can therefore be imagined as a three dimensional tower, where two
of the dimensions correspond to the coordinates of the path planning process and
the third dimension corresponds to the state of the queue. This is depicted in Fig
13.4.

The layout depicted in Fig 13.4 implies that a joint state, where the path planning
state is a non-border state, is simply a path planning state specified by a queue value,
and with two additional transitions that increase and decrease the queue part of the
process. A typical joint state where the queue part is not empty and the path
planning part is not in a border state is depicted in Fig 13.5.

In Fig 13.5, transitions made by the queue between joint states are regulated by
admission control. When the admission control action is a = 0, a transition can be
made to the joint state with an incremented queue index in the joint state tuple,
while a self loop is induced if the admission control action is a = 1. The control
actions for the path planning transitions are also present in the same manner as
explained in Section 13.3.2.

To make the notation in the joint control problem simpler, the control vector
a(t) is augmented to fit the single element queue control signal. The joint control
problem depicted in Fig 13.5 can then be expressed only by the vector a(t) which
contains both the path planning and admission control actions, and the transition
notation in Fig 13.5 is then changed accordingly.

177

13. Control Problems

J = (iPP , iQ + 1)

I = (iPP , iQ)

J = (iPP , iQ − 1)

. . .

.

. . .

µ

λ(1− a)
(DE + ΩE)a(t)

(DS + ΩS)a(t)
(DW + ΩW)a(t)

(DN + ΩN)a(t)
λa

Figure 13.5: Joint state with admission control over the queue transitions and
path planning controlled directional transitions with slip.

13.3.4 Uniformisation of the controlled joint Markov
process

Now that the joint Markov decision process of the queue and the path planning is
described in continuous time with both control over admissions to the queue and
navigation in the path planning part, the goal is to find the path planning control
policy using reinforcement learning. Since the temporal logic constrained Q-learning
is the selected method, the problem must be formulated in discrete time in order to
be solved.

In general, uniformisation is used to obtain a discrete version of any Markov
process formulated in continuous time, as it can be recalled that this process does
not change the important properties related to the probability distributions of the
process according to [12]. Furthermore, as the control actions enter the Markov
process linearly with respect to the transition rates, the uniformisation can be done
before or after control is introduced.

The uniformisation is done according to the process described in Section 11.4.3,
but it requires the identification of the joint state that has the maximum transition
flow in order to find the uniformisation rate γ. From previous sections, it is known
that this rate is the sum of the two individual minimum uniformisation rates, which
are decided from the individual process states with maximum transition rate flow.
In the queue, this is any state that has both the incrementing and decrementing
transitions, which means that the minimal unformisation rate of the queue is γQ =
λ + µ. This is the case in all control cases, since the only thing that changes in
admission control is the target state of the transition with rate λ. In the controlled
path planning process, the minimal individual uniformisation rate is, according to
the derivation and assumptions in Section 13.3.2, γPP = λD + 3ωD. Therefore, the
uniformisation rate of the joint process is

γ = λ+ µ+ λD + 3ωD (13.44)

Next follows a detailed description of the uniformised transition probabilities of
the controlled joint process of the path planning and the queue. The joint state

178

13. Control Problems

categories considered are edge states, corner states and any non-border state of the
path planning problem, combined with the empty queue state and the non-empty
queue state.

Uniformised probabilities

Formulating explicit expressions for uniformised transition probabilities is not fruit-
ful as they are too many to keep track of. A more efficient way of depicting all
scenarios is to formulate the probabilities in a standard situation and then describe
the effect of different deviations from this case.

If the path planning is not in a corner or border state, and the queue is neither
empty nor full, the controlled process is in the same situation as is depicted in Fig
13.5. Since the rates for the main directional transitions are equal, as are the rates
of the slip transitions, the path planning control can be expressed arbitrarily such
that it describes the desire to go in any of the four directions.

Furthermore, it is assumed that threshold type admission control is applied, such
that the queue control action is to admit when the queue is not full. Therefore, the
standard situation is that some arbitrary direction d = 1 is selected, and directions
denoted 2, 3 or 4 symbolise any of the three slip directions. Additionaly, the queue
can either increase or decrease. The control vector for this situation is denoted a1(t),
and the uniformised probabilities in this situation are given as

PIJ |a1(t) =

(1−∑ /γ) if I = J

λD/γ if I 6= J and dir. is 1
ωD/γ if I 6= J and dir. is 2
ωD/γ if I 6= J and dir. is 3
ωD/γ if I 6= J and dir. is 4
µ/γ if I 6= J and jQ = iQ − 1
λ/γ if I 6= J and jQ = iQ + 1

(13.45)

where∑ denotes the sum of transition rates going out of state I. Note that the stan-
dard case is based in a maximum flow state so that ∑ = γ, making the probability
of a self loop zero.

Additional to this situation, there are eight different categories of special cases,
all describing situations in which the queue is either empty, non empty or full, in
combination with whether or not the path planning state is a corner or border state.

• Corner path planning state, empty queue. Two path planning transitions
imply self loops, and a the queue cannot be decreased.

• Corner path planning state, non empty queue. Two path planning transitions
imply self loops.

• Corner path planning state, full queue. Two path planning transitions imply
self loops, and the queue cannot be increased.

• Border path planning state, empty queue. One path planning transition im-
plies a self loop, and the queue cannot be decreased.

179

13. Control Problems

• Border path planning state, non empty queue. One path planning transition
implies a self loop.

• Border path planning state, full queue. One path planning transition implies
a self loop, and the queue cannot be increased.

• Middle path planning state, empty queue. The queue cannot be decreased.

• Middle path planning state, full queue. The queue cannot be increased.

These are all situations in which a self loop is either already defined in the path
planning transitions, or will be induced by the uniformisation process since the state
is not a maximum flow state because one queue related transition is unavailable.
These situations are not explicitly defined, but they all boil down to making the self
loop probability non zero by removing a transition to another joint state from the
standard case. Obviously, since there are four different borders and four different
corners in a square grid world, there are more than eight specific special cases.

13.3.5 LTL specification for the reduced joint process
Thus far, it is decided that part of the control policy is found analytically by
analysing a known part of the joint Markov process. All joint states where the
queue is above the optimal threshold i∗ are disregarded, and the queue control ac-
tions are defined as admitting up to this limit, where they change to rejection. Thus,
queue control tasks are not selected through reinforcement learning, but the path
planning actions are.

The desired behaviour of the rest of the system is determined through rein-
forcement learning constrained by an LTL specification. This part of the solution
has a certain flexibility, in contrast to any analytical solutions, since the policy is
developed iteratively and not defined by a hard constraint from the start.

This context presents some intriguing scenarios where behaviours can be enforced
for the admission control indirectly, by regulating the LTL specification of the joint
system through the soft constraint of rewards. For example, while it is not valid to
state that admission control actions are only available in certain parts of the joint
system, it is valid to formulate an LTL specification that rewards the path planning
process more for going to some specific path planning state when admissions are
made. Furthermore, transitions that are caused by the queue sub-process are seen
as uncontrollable from the perspective of the reinforcement learning algorithm, but
will affect the learning since transitions between all joint states are considered in
the Q-table update.

Lastly, any LTL formula for the joint process is defined as in Part I of this work,
but for joint states. The LTL formula is realised as a Büchi automaton, where the
transitions are dependent on that state labels can be observed in joint states. A
specific LTL formula for a joint system is not formulated here; this is done in the
final experiment of this thesis, found in the next chapter.

180

13. Control Problems

13.4 Summary
In this chapter, two control problems are formulated. The first is an admission
control problem, which has a cost function that is shown to be of the threshold
type. The key take away from this problem formulation is that for a specific cost
function formulation, a threshold type policy exists.

The threshold type solution is not very efficient unless an explicit threshold value
is found. For an M/M/1 queue, this is a specific queue length, and two methods
of finding this value are discussed in this chapter. In both cases, the cost function
is formulated for a finite horizon instead of an infinite one. The cost discount
parameter regulates how much effect future expected state changes have on the cost
function, which is evaluated at the initial state. If the discount parameter is zero,
which yields an undiscounted cost, the optimal threshold can be found analytically
by using the M/M/1/K stationary state probabilities for different limits K. The
limit that produces the lowest total expected cost is i∗.

If the discount parameter is nonzero, explicit time is necessary, which is not pro-
vided by a stationary state distribution. In that scenario, among others, it is better
to simulateM/M/1/K queue trajectories and compute the expected discounted cost
as a sample average over all simulations. This is done for increasing K values, until
the lowest cost estimate is obtained for K = i∗.

The formulation of the joint path planning and admission control problem starts
with defining the path planning problem in continuous time. In this problem, it
is possible to transition to a state either by intention or by slipping, and these
transitions occur at different rates. Path planning control is implemented by the
same principle as admission control, which is to consider control as a function that
pauses some of the Poisson processes that describe the count of events associated
with directional transitions.

Using the fact that part of the problem has a threshold type solution, the joint
state space is reduced from an infinite state space to a finite one, limited at i∗ in the
queue dimension. This is followed by a formulation of all transition probabilities for
the controlled joint process, expressed as deviations from a more general situation.
This is done by joint uniformisation with a rate corresponding to the sum of the
uniformisation rates of the individual path planning and queue process.

To finalise this chapter, LTL specifications concerning the joint process are said
to be formulated in the same way as in Part I of this work, but for joint states.
Using this specification, temporal logic constrained reinforcement learning can be
used to obtain the path planning policy of the reduced state space joint problem.
In this way, all actions in the joint process are selected and the solution is complete.

181

13. Control Problems

182

14
Experiments

In this chapter, the experiments conducted in part II of this project are presented.
The purpose of these are to test the theory in the previous chapter, from the basic
concepts of queues and their properties to the method used to solve the joint path
planning and admission control problem. The chapter is divided into four sections
that formulate and analyse experiments conducted withM/M/1 queues,M/M/1/K
queues, methods to find the optimal admission control threshold i∗ and finally joint
path planning and admission control.

The M/M/1 and M/M/1/K queue experiments focus on simulating the two
queueing processes in both continuous time and in discrete time for their uniformised
versions. By doing so, the property that states that the uniformised and continuous
queue descriptions have the same stationary state probabilities can be verified for
the simulations. If the simulations produce the correct distributions, they can be
used in computing accurate cost functions, such that the optimal admission control
threshold can be found. The ultimate goal is to use the optimal threshold in the
final joint path planning and admission control problem to reduce the state space
of the joint process, and then use temporal logic constrained reinforcement learning
to find the path planning actions in the total policy.

The section that is concerned with solving the joint path planning and admission
control problem thus relies on the experiments in which a specific optimal threshold
i∗ is obtained. After having reduced the joint state space by using this threshold,
the navigation actions are found using temporal logic constrained reinforcement
learning.

14.1 M/M/1 Queues
Since this is the fundamental queueing system model in this work, the dynamics of
the M/M/1 process need to be understood and demonstrated.

In Fig 14.1, the familiar rate diagram for the M/M/1 process is shown. In the
experiments conducted in this section, the arrival rate λ is set to 50, and the service

0 1 . . . n n+ 1 . . .

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

Figure 14.1: State transition rate diagram for the M/M/1 queueing system.

183

14. Experiments

rate µ is set to 60. As has been described before, the stationary state probability
mass function for this queue is

Pn = (1− λ

µ
)
(
λ

µ

)n
(14.1)

The first experiment of Part II seeks to verify visually that the queueing system
dynamics work as expected.

14.1.1 Continuous time M/M/1 queue simulation
The first experiment of the second part of this project is to simulate the M/M/1
queue from the basic definition given in Section 12.2.1.

Setup

Simulating a continuous Markov process is a somewhat more refined process than
simulating a discrete time process. In many simulation settings, common practice is
to divide a stretch of simulation time into smaller equidistant time steps in which one
of several probabilistic outcomes are observed and logged. However, this technique
cannot be used in the case of continuous Markov processes.

In a continuous Markov process, discrete events may occur at any point in con-
tinuous time, and because of this, no (realistic) sampling interval can be defined such
that this is really the case. Furthermore, in the M/M/1 queue case, the interarrival
and service times must be distributed according to the exponential distribution,
with rates λ and µ respectively.

To achieve this, a method that ensures the fundamental property of the inter-
arrival and service times is to use the exponential cumulative distribution function
(CDF) to generate both interarrival and service times, and then schedule queue
events based on these times. By using the CDF of the exponential function, the
distributions that define the processes are assured from the start. An example of an
exponential CDF is shown in Fig 14.2.

Figure 14.2: Relationship between probability and time interval through the ex-
ponential CDF.

184

14. Experiments

The expression Pr{v ≤ t} = 1 − e−λt states the probability of the interarrival
time v being t or less, or alternatively, the probability that an event occurs in the
interval (0, t]. By simulating the outcome of G(t) as a random number u between 0
and 1, which is a probability generated from a distribution where all outcomes are
equally probable, the inverse of the exponential CDF G(t) can be used to find the
corresponding value t according to

u = 1− e−λt

⇔
e−λt = 1− u
⇔

t = − ln u
λ

(14.2)

where the fact that if u ∼ U(0, 1) then u− 1 ∼ U(0, 1) is used. Here, t denotes the
time taken by the random interarrival time variable v, and it represents the stretch
of time between the event occurrence at k − 1 and k.

To simulate the queueing process, a scheduling of queue arrivals and departures
must be done. Firstly, arrivals are independent of services, and taking the cumulative
sum of all generated interarrival times yields the absolute arrival times. For example,
if the interarrival time between customer A and customer B is one tAB = 1 second
and customer A arrives at tA = 0, then customer B arrives at tB = tA + tAB.

Secondly, the departure of a customer is calculated by first determining when
service starts. If the server is idle at the arrival time of a customer, service of the
customer can start right away. If the server is not idle, the new customer must wait
until the previous customer has left until service can begin. The departure time
of a customer is thus dependent on when the previous customer is scheduled for
departure.

For example, if the departure time of the previous customer A is scheduled for
dA, and the arrival time of the new customer B is tB, then the departure of B is
dB = tB +sB where sB is the service time of customer B, if dA < tB. If, on the other
hand, tB < dA (arrival of customer B occurs before customer A has departed), then
the departure time of customer B is dB = dA + sB, i.e. B must wait for service until
customer A has departed until service can begin.

A fixed number of customer arrivals and departures are simulated, and the tra-
jectories of the arrival and departure processes are produced along with a queue
trajectory. The simulation is done for a specified number of unit time intervals, and
t = 1 always specifies one unit time interval. The simulation parameters are then
the rates λ and µ along with the specified number of unit time intervals.

In this specific experiment, the queue is simulated for one unit time interval,
and the time that is spent in each state is recorded in order to produce a state time
distribution, which is compared to the stationary state probability mass function of
the M/M/1 queue, found in (14.1).

185

14. Experiments

Purpose

Modular analysis revolves around finding a useful model for a subdivision of a joint
Markov process. A large portion of the work thus consists of verifying that the model
is accurate, so that an accurate control policy for the subprocess can be found.

In this work, the subprocess under investigation has the structure of a queue, and
the accurate simulation of this queue is necessary for finding the optimal threshold
queue length i∗ for when admission stops and rejection takes place. As the M/M/1
queue is the basic queueing system model, it is important that it can be verified to
work correctly.

Besides simulating the optimal threshold, an accurately simulatedM/M/1 queue
can be used to verify the dynamics of uniformised versions of the queue, which are
central in the solution to the admission control problem. If the dynamics behave
as expected, the simulation of the M/M/1 queue can be used to draw conclusions
about cost functions formulated for it, and the principle used to simulate theM/M/1
queue can be seen as a working basic principle when simulating other queues such
as the M/M/1/K queue.

Hypothesis

The simulated queue is expected to have around λ = 50 arrivals during the simulated
unit time period. The service events are expected to occur after the arrivals, and
the queue must increase at arrivals and decrease at departures. As λ/µ is close to
but still below one, reaching stationary state is possible, but it will not necessarily
happen in one unit time interval. Since the state time distribution should reflect the
time spent in each state during both the transient and steady state of the queue,
the similarity to the analytical stationary state PMF of (14.1) will not be apparent
in the state time distribution if the queue is in its transient state for a long enough
duration of the simulation.

Results

The results of the continuous time M/M/1 queue simulation are shown in Fig 14.3.

Analysis

In Fig 14.3, the arrival process behaves as expected by visual inspection, as no two
events take place at the same time, and around λ = 50 arrivals occur during the
course of one unit time interval. All departures happen after the arrivals, and the
difference between the arrival curve and the departure curve at any height represents
the time in the queue for the customer with the corresponding arrival and departure
time. Long queueing times correspond well to increasing queue value at the same
time.

The state time distribution in the lower part of Fig 14.3 shows that one unit
time interval is not enough to reflect stationary state probabilities in the state time
distribution, and the verification of the analytical state PMF is left to a later experi-
ment. What is shown here is a visual demonstration of the continuous time M/M/1
queue, and the queueing system dynamics behave as expected.

186

14. Experiments

Figure 14.3: M/M/1 queueing system simulation with recorded state time distri-
butions.

14.1.2 Uniformised M/M/1 queue simulation
In the second experiment, an M/M/1 queue is uniformised to form a discrete time
queue representation. In Fig 14.4, the transition diagram of the uniformised queue
can be seen with the computed one step probabilities.

Setup

In this experiment, the uniformisation rate is set to be exactly the largest total
flow of rates out of a state in the continuous M/M/1 queue, which is when both
an increasing and a decreasing transition is possible. Thus, γ = λ + µ, and the
probabilities of self loops are zero in all states but the first state. This is represented
in the diagram of Fig 14.4.

Simulation of the uniformised discrete time queue is different, and less intricate
than that of the original continuous time Markov process version. The queue starts
at zero elements, and from this state the two possible outcomes in each simulation

187

14. Experiments

0 1 . . . n n+ 1 . . .

λ/γ

µ/γ

λ/γ

µ/γ

λ/γ

µ/γ

λ/γ

µ/γ

λ/γ

µ/γ

µ/γ

1− (λ+ µ)/γ

1− (λ+ µ)/γ

1− (λ+ µ)/γ

Figure 14.4: State transition diagram for the uniformised M/M/1 queueing sys-
tem.

step is to either stay in the state or to increase the queue if an arrival occurs. For
all other states, the two possibilities are either transitioning to an increased state or
to a decreased state, since the minimal uniformisation rate is selected which means
that self loops do not occur here.

In both the special case of the first state, and generally for all other states, an
outcome in each discrete simulation step is evaluated by constructing a probability
interval between zero and one. The interval is divided into sub-intervals, and each
sub-interval has a length corresponding to its computed probability. There is one
sub-interval for each possible transition, such as self loops, increases and decreases.

In each simulation step, a random number between zero and one is drawn from
the uniform distribution, and the outcome transition is selected depending on what
sub-division the number falls in on the probability interval. Over time, the distri-
bution of executed actions will match the assigned transition probabilities. This
method is also used in Part I when simulating discrete time MDPs.

As in the previous experiment, the selected rate parameter for arrivals is λ = 50,
while services times has the rate µ. The uniformisation rate is γ = λ + µ = 110,
and the simulation is run for 100 discrete time steps.

Purpose

The goal of this experiment is to gain a visual understanding of the difference be-
tween continuous and discrete queue representations. Ultimately, the most interest-
ing property of the uniformised queues is how their simulated state time (or state
visits) distributions compare to the state time distributions of the original continu-
ous time queue representations.

As uniformisation is used to transform a continuous time Markov chain to a
form that can be used in reinforcement learning, simulating the uniformised queue
behavior is necessary in order to show that modelled properties used in the solution
of the joint path planning and queue control problem are reliable.

Hypothesis

A fundamental property of the uniformised queue is that the steady state proba-
bility mass function is the same as for the original non-uniformised queue, which is

188

14. Experiments

described in Section 12.2.1. The belief is therefore that if the simulation is run for a
sufficient number of iterations, the distribution of time spent in states (which in the
discrete case can be abstracted to state visits of unit time length) will take the shape
of the distribution for the continuous M/M/1 queue. The same uniformisation rate
γ = λ+ µ is selected exactly as in the proof of the equivalence between uniformised
and continuous M/M/1 queues in Section 12.2.1, but as the purpose is firstly to
illustrate the queue state dynamics, the state visits distribution is not expected to
converge to the PMF of the stationary state M/M/1 state probabilities.

Results

The results of the uniformised M/M/1 queue simulation is shown in Fig 14.5.

Analysis

The upper graph of Fig 14.5 shows that events do take place at discrete points in
time, instead of at any point in continuous time, visualised in the graph of Fig 14.3

Figure 14.5: Results for the uniformised M/M/1 simulation experiment.

189

14. Experiments

describing the previous experiment for the continuous time M/M/1 queue. The
count of arriving customers is shown at steps k, along with the count of departing
customers. At any height, the up-flank of the arrival count curve occurs at the arrival
time index of a customer, and the up-flank of the departure count curve at the same
height happens at the departure time index of the same customer. Therefore, the
horizontal distance between the flanks of each customer arrival and departure gives
the customers time in the system, and in periods where many consecutive customers
have long system times, the queue state correlates well, as it increases.

Although the simulation is not run for many steps, such that the majority of
state visits occur in stationary state, the state visits distribution in the lower graph
of 14.5 is showing a trend similar to that of the analytical distribution. However,
the next experiment is completely dedicated to verifying the state time distribu-
tion convergences of both the continuous time M/M/1 queue and its uniformised
counterpart.

14.1.3 Simulated M/M/1 queue state probabilities
In this experiment, the proof of the property that the stationary state probability
distribution of the continuous time M/M/1 queue is equivalent to that of the (with
rate γ = λ+ µ) uniformised discrete time M/M/1, is verified by simulation.

Setup

The proof, found in Section 12.2.1, states that in stationary state the PMF describing
the probability for the system is given by (14.1) for both the continuous timeM/M/1
queue and the γ = λ+ µ uniformised version.

To test this, anM/M/1 queue is run for 500 unit time intervals, with parameters
λ = 50 and µ = 60. The times spent in each state are recorded and normalised
to a probability mass function that can be compared to the analytical PMF of
(14.1). This is done using the exact same simulation implementation as the one
done previously in Section 14.1.1, the only difference is that the simulation time is
increased.

Similarly, a uniformised M/M/1 queue is simulated using λ = 50, µ = 60 and
γ = λ + µ = 110. The implementation used to simulate this is the exact same as
in Section 14.1.2, but here the number of simulated steps is 50000. The number of
visits to each queue state is recorded, and a PMF is produced that can be compared
to that of the continuous queue and (14.1).

Purpose

The purpose of this experiment is to test the theory that if the simulations of the
M/M/1 queue and its uniformised version are run for a long time, the proportion of
time spent in each state out of the total simulation time approaches the analytical
PMF describing the stationary state probabilities of the continuous M/M/1 queue.
This is under the assumption that the majority of the total simulation time is done
when the system is in its stationary state.

190

14. Experiments

If this is achieved, the simulated queue dynamics behave exactly as is analytically
predicted, which verifies that the simulations behave correctly and are reliable. If
so, it is motivated to rely on and draw statistical conclusions based on both the
analytical expressions and the simulated behaviors. For example, the simulations
can be used when calculating the expected costs of queueing system control policies
in subsequent experiments.

Hypothesis

Firstly, both queueing systems are implemented in such a way that the underlying
stochastical processes are clearly correct. For example, the simulated interarrival
and service times are drawn directly from the exponential CDF in the continuous
time case, while one step probabilities are formulated exactly according to the uni-
formisation process using rates in the discrete time case. Secondly, the rates are such
that λ < µ, which is necessary for stationary state to take place. The remaining
factor is then only to run the simulations for a long enough time.

The hypothesis is finally that the recorded proportion of total simulation time
spent in each state in both simulations should be given by (14.1), repeated here as

Pn = (1− λ

µ
)
(
λ

µ

)n
(14.3)

Results

The results of the uniformised and non-uniformised M/M/1 state time distribution
simulations are visualised in Fig 14.6.

Figure 14.6: Stationary state time distributions for the M/M/1 and uniformised
M/M/1/K systems.

191

14. Experiments

Analysis

The results of Fig 14.6 show a clear correlation between the simulated distributions
and the analytical one described in (14.3). As the simulations are conducted with
λ/µ being close to one, relatively long simulation times are necessary. Furthermore,
since the simulations start when the queues are empty, both the transient and sta-
tionary state phases are included in the statistics. Therefore, unless the simulations
are run for a very long time such that the time of the transient phase is completely
insignificant in relation to the time in stationary state, there will be some differences
between the analytical distribution and the simulated ones.

To conclude, λ/µ being close to one and including the transient phase in the sim-
ulated distributions are the most probable reasons for the small differences between
the columns describing the uniformised and non-uniformised simulated distributions.
However, this is small enough to be disregarded, and the distribution equivalence
between M/M/1 queues and uniformised M/M/1 queues is verified, which implies
that the simulations are correctly implemented and reliable.

14.2 M/M/1/K Queues
As is stated in Section 13.2, the optimal threshold of some admission control prob-
lems, especially the one considered in this work, can be found by treating the con-
trolled queue as an M/M/1/K process where K is the threshold. Therefore, correct
simulations of M/M/1/K queues, both uniformised and continuous, are very neces-
sary in the solution of the admission control problem. A continuous time transition
rate diagram of an M/M/1/K queue is shown in Fig 14.7.

The stationary state PMF of the M/M/1/K queue is repeated here as

π̄n =

1−(λ/µ)

1−(λ/µ)K+1 (λ/µ)n if 0 ≤ n ≤ K

0 if n > K
(14.4)

The first experiment on M/M/1/K queues regards visualising the process.

14.2.1 Continuous time M/M/1/K queue simulation
As for M/M/1 queue simulations, the starting point is to simulate the M/M/1/K
queue in the continuous case. However, the implementation of a capacity limited
queueing system requires a specific scheduling process compared to the implemen-
tation of the unlimited M/M/1 queue.

0 1 . . . n . . . K

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

Figure 14.7: State transition rate diagram for the M/M/1/K queueing system.

192

14. Experiments

Setup

As in the implementation of the M/M/1 queue, described in Section 14.1.1, in-
terarrival times and service times are generated using the exponential CDF with
rates λ and µ, respectively. However, each requested arrival is now either accepted
or rejected depending on the current queue state, in contrast to the M/M/1 case
where all arrivals increased the queue state at all times. The difference between
theM/M/1 queue and theM/M/1/K queue implementations is thus the admission
mechanism, which is outlined here.

At each customer arrival time, a check is made to see if the queue is full. This
can be done as the number of elements in the queue is known in real time, and so
is the time of the next scheduled departure from the system. If the queue is full
at the arrival time, a rejection is logged and the queue is unchanged. If the queue
is not full, then the departure time of the newly admitted customer is calculated
in the same way as for the M/M/1 queue by considering if the customer needs to
wait for service or not. Lastly, the arrival and departure are scheduled in the queue
trajectory, such that this information can be used for the next arrival and admission
request.

The arrival rate is in this experiment λ = 50 and the service time rate is µ = 60,
as in previous experiments. The queue is limited to K = 3 customers and the
simulation is run for one unit time interval.

Purpose

Now, the purpose is to show what happens when the queue capacity is limited,
visually. An intuitive understanding of this is necessary, and from visual inspection,
it can be verified that the rejections, admissions and departures in the M/M/1/K
behave as expected and in a reasonable way. In later experiments, the stationary
state PMF of the simulated M/M/1/K queue is verified through simulations just
as the M/M/1 queue, but this is not the purpose here.

Hypothesis

The simulation is expected to behave just as an M/M/1 queue, with the difference
that the queue state never goes over K = 3 elements. Arrivals that are rejected are
still logged, and if the queue is at full capacity, rejected arrivals and rejections are
expected to be logged at the same time. The state distribution is not expected to
approach the analytical one given by (14.4) as the simulation is only run for one
unit time interval.

Results

The results of the continuous time M/M/1/K simulation experiment are visualised
in Fig 14.8.

193

14. Experiments

Figure 14.8: Results for the M/M/1/K simulation experiment.

Analysis

In the upper graph of Fig 14.8, the count of arriving customers is visualised. The
count is incremented as one unique customer arrives. The departure event of each
customer occurs as before at the up-flank at the same height of the departure count
curve for that unique customer. However, note now that if the queue is at full
capacity during the time of an arrival, the rejection count is incremented at that
arrival time. The queue is thus saturated at capacity K = 3, as expected.

Furthermore, note that the number of arrivals during this one unit time interval
is around λ = 50. This can be compared to the M/M/1 simulation in Fig 14.3,
which shows a similar figure. When it comes to the total number of departures, it is
around 39 in Fig 14.8 and about 42 in the M/M/1 case depicted in Fig 14.3. This
is reasonable, since around eight rejections are made in the M/M/1/K queue. In

194

14. Experiments

0 1 . . . K

λ/γ

µ/γ

λ/γ

µ/γ

λ/γ

µ/γ

µ/γ λ/γ

Figure 14.9: State transition diagram for the uniformised M/M/1/K system.

the M/M/1 case, these would be admitted and would therefore eventually depart.
The state time distribution again shows a slight trend in the direction of the

analytical PMF of (14.4). According to the hypothesis, full convergence is not
expected when simulating only one unit time interval. This experiment is concluded
to show that the simulated M/M/1K queue dynamics are reasonable from visual
inspection.

14.2.2 Uniformised M/M/1/K queue simulation

In the fourth experiment of the second part of this project, the limited M/M/1/K
queue is uniformised and simulated.

A uniformised M/M/1/K queue is depicted in Fig 14.9. The rate of uniformi-
sation is again selected as γ = λ + µ, eliminating the self loops except in the first
and last states.

Setup

The procedure to implement a limited queue in discrete time is again much simpler
than doing so in continuous time. The difference between the implementations of the
uniformised M/M/1 and M/M/1/K simulations is just that when the queue state
is at the limit K, the event with probability λ/γ now implies a self loop transition,
and not a transition to an incremented state. Otherwise, the method is the same as
described in Section 14.1.2 under the Setup heading.

The arrival rate is λ = 50 and the service rate is µ = 60, while the uniformisation
rate is as usual the minimally selected γ = λ + µ = 110. The limit K = 3 and the
simulation is run for 100 discrete time steps.

Purpose

The point of this experiment is to verify the uniformised M/M/1/K queue visually
in discrete time, and how the uniformised queue behaves in comparison to the con-
tinuous time representation. It is also interesting to find the number of simulation
steps that are needed to simulate for example λ arrivals in the discrete time case.
Lastly, the purpose of this experiment is as in the uniformised M/M/1 case not to
verify the distributions, which probably has to be done by running the simulation
for much longer than 100 steps.

195

14. Experiments

Hypothesis

For this simulation, the queue is expected to realise the simple capacity limitation
that implies rejecting arrivals at K = 3. It is moreover expected that the queue
trajectory is saturated at this level, and that it is clearly visible that more admissions
would be made if it were not for the limit. As in the continuous case, there should
be at least some rejections due to the relatively high probability of arrivals. It
is reasonable to assume that the number of arrivals, departures and rejections are
similar to the continuous time case, as around 100 simulation steps are sufficient to
ensure this in the uniformised M/M/1 simulation.

The state visits distribution is however not believed to be close to theM/M/1/K
PMF given in 14.4. However, as the simulated distributions have been showing a
trend towards the analytical distributions in previous experiments, it is not unlikely
that this is seen here as well.

Results

The results of the uniformised M/M/1/K queue simulation are shown in Figure
14.10.

Figure 14.10: Results for the uniformised M/M/1/K simulation.

196

14. Experiments

Analysis

As expected, a similar number of arrivals and departures as in the previous uni-
formised queue simulation take place here. Five rejections are made in the uni-
formised case, which is a bit lower than in the continuous time case, but it is pro-
portional to the number of arrivals.

The queue successfully rejects arrivals when it is in state K = 3, and while the
simulated state visits distribution is not equal to the M/M/1/K stationary state
PMF of (14.4), the hypothesised trend is visible as less and less time is spent in
states of increasing index.

This experiment verifies visually that the uniformised M/M/1/K queue simula-
tion behaves as expected.

14.2.3 Simulated M/M/1/K queue state probabilities
In this experiment, it is of interest to verify the property that states that the
analytical stationary state probability mass function of both the continuous time
M/M/1/K and the version uniformised with rate γ = λ + µ is given by (14.4),
through simulation.

Setup

Similarly to the experiment of Section 14.1.3, this is done by simulating the continu-
ous time and the uniformisedM/M/1/K systems until the majority of the simulation
is expected to be done in stationary state. The state times are recorded in both
cases, and two distributions are made. These are then compared to the analytical
expression of the M/M/1/K queue. The simulations are just as in the experiment
of Section 14.1.3 run for 500 unit time intervals and 50000 iterations, respectively.

Purpose

It is proven in Section 12.2.2 that if the minimal uniformisation rate is selected,
the stationary state probability mass functions of the uniformised and continuous
time M/M/1/K queues are the same. If this is verified in the simulations, it can
be assured that the implemented M/M/1/K models used in the simulations are
accurate, and that they can be trusted. Both the analytical PMF and the queue
simulations can then be used when calculating the expected cost of M/M/1/K
queues, which is very central in finding the optimal admission control threshold
queue length.

Hypothesis

Given that the visual inspection of the previous M/M/1/K simulations found no
issues, the simulated distributions are expected to converge to the analytical PMF,
given by

π̄n =

1−(λ/µ)

1−(λ/µ)K+1 (λ/µ)n if 0 ≤ n ≤ K

0 if n > K
(14.5)

197

14. Experiments

Figure 14.11: State time distributions for the M/M/1/K and the uniformised
M/M/1/K systems.

The only difference between this experiment and the successful convergence simula-
tion that is conducted for M/M/1 queues is the admission limit, which is shown to
work as expected in previous sections.

Results

The results of the M/M/1/K state time distribution convergence experiment are
visualised in Fig 14.11.

Analysis

The results in Fig 14.11 show that the simulated state time distributions of the
M/M/1/K queue and the uniformised version are very close to the analytical PMF
of the continuous M/M/1/K queue given in the hypothesis section. The distri-
butions in this experiment are actually closer to the analytical PMF than in the
corresponding experiment regarding unlimited M/M/1 queues. The reason for this
is believed to be that there are fewer alternatives in the limited queue, as the pro-
cess can only be in four different states, and therefore more samples per states are
generated which yields a higher accuracy.

The result of this experiment shows that the implemented queueing models for
both continuous and uniformised discrete time M/M/1/K queues are correctly im-
plemented, and the simulation can be used as an accurate tool to produce other
reliable results if necessary.

14.3 Optimal Admission Control Threshold
This is a core problem of the second part of this work, and it is divided into two
parts that focus on one method each to find the optimal threshold i∗. The first

198

14. Experiments

way of obtaining the threshold is the analytical method described in Section 13.2.1.
It utilises the M/M/1/K distribution, which is efficient, but only works for undis-
counted cost functions. The second method is the simulation procedure described
in Section 13.2.2, and in this way of obtaining the threshold the discounted cost is
calculated for simulated queue trajectories, after which an average cost is derived
for increasing threshold values.

14.3.1 Analytical derivation of i∗

This section covers the experiment in which an optimal admission control threshold
is obtained based on an undiscounted cost queue function.

Setup

The final expression that is derived in Section 13.2.1 is

Vπ(K) = N
(
B ·

K∑
n=1

Pn · n+R · PK · λ
)

(14.6)

where
Pn = 1− (λ/µ)

1− (λ/µ)K+1 (λ/µ)n if 0 ≤ n ≤ K (14.7)

In (14.6), N denotes the number of unit time intervals that make up the finite
cost function horison. For example, if the horizon is evaluated for six unit time
intervals after t0, when x0 occurs, then N = 6. B is the cost per customer per time,
so that for example keeping three customers in the queue for 0.2 unit time intervals
costs B · 3 · 0.2. The cost R denotes the cost per rejected value in the M/M/1/K
queue, and K is the limit of that queue.

In this experiment, the cost function (14.6) is evaluated for 1 ≤ K ≤ 30. The
rates in the underlyingM/M/1/K queue are set to λ = 50 and µ = 60 as in all other
experiments. The horison time is set to T = 5, so that the N = 5 unit intervals are
evaluated in the cost function. Lastly, the cost constants B and R are set to 10.0
and 4.5 respectively.

Purpose

This is one of the most important experiments of the second part of this work.
Finding a K for which a local minimum can be observed in the cost of the admission
control implies finding the optimal threshold queue length i∗. If this value is found,
it is possible to reduce the infinite queue dimension in the joint path planning and
queue process, such that the rest of the problem can be solved with temporal logic
constrained reinforcement learning.

Hypothesis

The cost function derived in Section 13.2.1 is based on the continuous time cost
function described for admission control in [12]. In [12], this cost function is adapted
for the uniformised problem, for which the admission control strategy is motivated,

199

14. Experiments

Figure 14.12: Expected total undiscounted cost of admission controlled queues
with different thresholds.

but it is also said in [12] that the continuous time cost function is equivalent to the
uniformised version. This is described further in Section 12.3.2 of this work, and
this fact makes it possible to find an optimal threshold using the continuous time
cost function and then apply it on the admission control strategy which is motivated
using the discrete verison of the cost function.

Since R < B, it is expected that if the queue is allowed to be very large, i.e for
high K values, the total cost will increase. On the other hand, if K is low, many
rejections will be made while the queue state cost remains low. An equilibrium point
in the total cost function is expected somewhere between these points for some K,
at which the optimal threshold lies such that K = i∗.

Results

The result of the analytically computed undiscounted expected cost is presented in
Fig 14.12.

Analysis

In Fig 14.12, a clear local minimum is present in V (K) when K = 8. Therefore,
with the selected cost parameters, i∗ = 8. If the queue is allowed to be longer or
shorter than this, the cost will only increase. Naturally, if any of the parameters
were to change, such as arrival rate λ or service time rate µ, this numerical result
would likely change.

A final note is an important one, and it regards the derivation of the threshold
type solution in relation to the objective function Vπ. In Section 13.1.2, the threshold
type solution is based on the monotonic increase of ∆V (i) = V (i) − V (i − 1). It
is therefore important to highlight that it is not V (i) that is shown in Fig 14.12,
as V (i) is the expression for queue- and rejection costs without having applied a
control policy, evaluated from any initial state i. The function shown in Fig 14.12 is
the expected total cost over a finite horizon, where the threshold type control policy

200

14. Experiments

is applied for increasing thresholds K. Furthermore, this graph always describes the
cost from the same s0 = 0 to the finite horizon for each K. Thus, it is not at all a
requirement for difference between two consecutive values the graph in Fig 14.12 to
be monotonically increasing, but there is a need for a local minimum to establish
the optimal threshold i∗.

14.3.2 Derivation of i∗ through simulation
As is described in Section 13.2.2, there are times when a discounted cost is necessary.
The discount is an exponential decay function dependent on time that states that
events closer to the end of the horizon are not valued as high as events closer to
the initial state. As described earlier, this makes it impossible to use the analytical
solution from Section 13.2.1, since no information of absolute time required for
the decay is available in the analytical stationary state distribution. In this case,
simulation can be used, since absolute time measurements are available for each
simulated value.

Setup

The discounted cost function for one specific simulated trajectory is derived as

V S(K) = B

β

N−1∑
i=0

s(ti)
[
e−βti+1 − e−βti

]
+R

Nr∑
j=1

e−βrj (14.8)

in Section 13.2.2. As in the undiscounted case, N denotes the number of unit time
intervals that make up the horizon length, while B and R are cost constants for
keeping the state and executing rejections, described in more detail under the Setup
heading of Section 14.3.1.

In (14.8), Nr denotes the number of rejections and β is the exponential decay
parameter for the discount. Furthermore, since S denotes a specific simulation run,
V S(K) must be simulated up to NS times for the estimated cost to be reliable, so

V̂ (K) = 1
NS

NS∑
S=1

V S(K) (14.9)

This is the final estimated cost for a specific queue capacity limit K.
For this experiment, the exact same parameters are used as in the analytical

cost experiment of Section 14.3.1. This means that λ = 50, µ = 60, B = 10.0,
R = 4.5 and the total simulation is T = 5 unit time intervals such that N = T = 5
in the cost function. Furthermore, the discount parameter is 0.2 and Ns = 1000
simulations are evaluated.

Purpose

The reason for conducting this experiment is to investigate if simulation returns a
reasonable suggestion for an optimal queue length i∗. While there are many down-
sides with simulation methods, such that it requires significant time and energy, it

201

14. Experiments

is quite more versatile than analytical methods which might not always be avail-
able. Furthermore, having a decay parameter specifically requires a method where
absolute time is available.

Hypothesis

Due to the discount factor, it is expected that events that occur close to the horizon
will not be valued as much as those events that are closer to t0. For high K values,
it will be more common that state values far from t0 are high since the queue is
allowed to grow. This might cause the expected cost to decrease for high K values.

For low K values, it is in previous M/M/1/K simulations shown that the prob-
ability of being in the final queue state is similar to that of being in any of the other
states. Therefore, rejection costs are expected to be discounted to the same extent
as queue costs.

In total, given that enough simulations are made, it is expected that the cost
function will be flatter towards higher K values. The impact of this might be that
the optimal queue length i∗ is found to be higher than the limit found with the
undiscounted method.

Results

The results of the experiment in which the simulation method to find i∗ is tested
are shown in Fig 14.13.

Figure 14.13: Simulated discounted cost of admission controlled queues for differ-
ent limits K.

202

14. Experiments

Analysis

Fig 14.13 shows that the simulated discounted cost to have a local minimum at
i∗ = 10, which is comparable to the undiscounted analytical cost method that
gave the result i∗ = 8. Although the simulation based cost trajectory shows visible
fluctuations, specifically towards higherK values, there is still a clear local minimum.

The hypothesis of this experiment states that the optimal queue length i∗ could
be higher than the i∗ derived by the use of the analytical method. This is the case
here, but it is not certain that this is due to the discount factor, as fluctuations
can occur between simulations. To ensure if this is the case, NS could be increased,
which should give a more steady cost trajectory.

Given that the same basic costs were used for two very different methods, the
fact that the results are so similar is seen as positive, and both methods are deemed
reliable.

14.4 Temporal Logic Constrained Q-learning of
Joint Path Planning and Admission Control
Process

In this section, the final experiment in Part II of this thesis is conducted. Here, the
main problem formulated in detail in Section 13.3 is solved. The quite extensive
problem is described from a practical standpoint, with the ultimate goal of solving
it using temporal logic constrained reinforcement learning. Due to the extent and
complexity of the problem, this experiment is presented in several stages.

The first stage concerns modular analysis. This means that a sub-process in the
joint Markov process model is first identified and isolated, and a cost function is
defined for it. An optimal control policy is then found for the sub-process using an
offline method. The results of this are then used to reduce the joint Markov process,
so that temporal logic constrained reinforcement learning can be used effectively
to find a policy to select those remaining actions of the joint process that are not
obtained through the offline solution.

As a reminder of the specific problem investigated in this work, the previously
used robot analogy is recalled as a motivation.

14.4.1 Motivation
Consider a robot that performs different tasks on a slippery factory floor. One
arbitrary task is performed at a specific corner location in the factory, which means
that the robot has to travel as often as possible to this corner over the slippery floor.
Furthermore, there are dangerous obstacles on the floor, and the robot must avoid
these. Thus, this part of the process is a path planning problem.

In the factory, there is also a machine located in another corner of the factory.
As parts arrive automatically to the machine, they can be admitted and processed,
after which they leave the system. The robot must remotely control the admissions
of parts to the machine, while at the same time performing its other task. Thus,

203

14. Experiments

the robot can at any time choose to either reject or admit an incoming part in the
machine. The machine can be modelled as anM/M/1 queue, for which an admission
control policy can be formulated.

Moreover, to avoid issues with the machine, the robot must physically travel to
the machine location and inspect it when it is about to perform a rejection.

The robot, or agent, can thus select path planning actions and admission control
actions as it explores the environment. While navigating, slip transitions can be
made to neighboring locations, and the arrival and departure of elements to the
queue can only be regulated through admission control. Note here that the changes
in the queue do not affect the geographical location of the robot, and vice versa; the
processes are considered independent from each other.

14.4.2 Joint process model
As is described in Section 13.3, this problem consists of a joint continuous Markov
process that can also be modeled as two independent sub-processes; a path planning
process and an M/M/1 queueing process. Recall that these are considered indepen-
dent, since the event set of the joint process can be divided into two subsets. In
each of the event sets, the events cause transitions between unique states in the joint
state space, and a few reflections can be made here.

Firstly, since both event sets and joint states are unique, each joint state can be
described as having one part that changes due to the transitions caused by the first
event set, and another part caused by the second. This is the tuple notation used
in the description of Section 13.3.

Secondly, as the joint process is a continuous Markov process, transitions caused
by each event in both sub-processes are Poisson processes. Specifically, this joint
process is such that one sub-process can be modelled as a continuous time path
planning grid world, and the other one can be modelled as an M/M/1 queue. The
structure of this problem is best understood visually, as in Fig 14.14.

In Fig 14.14, the joint state space is infinitely large, since the queue sub-process
is infinitely long. However, the state space of the path planning sub-process is finite.

When path planning control actions are applied in a joint state where the path
planning process state has four unique neighbouring adjacent states and the queue
is neither empty nor full, there are six possible transitions that can occur: queue
arrivals, queue departures, navigation in the selected direction or slipping in any
of the three remaining directions. As this is the maximum rate flow possible in a
controlled joint state, joint uniformisation is performed using the rate parameter
γ = λ + µ + λD + 3ωD. The total and lengthy uniformisation process and the
complete set of expressions for resulting state probabilities in all possible joint state
types are found in Section 13.3.

The arrival and service rates of the queue sub-process are selected in the same
way as in all previous queue experiments such that λ < µ, which is necessary
for stationary state to occur. The queue operates at a lower general rate than
the events causing the main navigation transitions, while each navigational slip
transition occurs at a rate much lower than that of the main directional transitions.

Through the uniformisation process, a discrete time representation of the con-

204

14. Experiments

(i, 0)

(i, 0)

(i, 0)

(i, 0)

(i, 0)

(i, 1)

(i, 1)

(i, 1)

(i, 1)

(i, 1)

(i, 2)

(i, 2)

(i, 2)

(i, 2)

(i, 2)

(i, 2)

(i, 2)

(i, 2)

(i, 2)

i i i

i i i

i i i

...

. . .

. . .

. . .

...

. . .

. . .

. . .

0 1 2 . . .

...

...

...

. . .

. . .

. . .

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

Figure 14.14: Principle sketch of the two ways of viewing a process.

trolled process is obtained, and one step ahead transition probabilities become avail-
able. In this way, the discretised problem can now be solved by temporal logic
constrained reinforcement learning, while valid analysis can still be done on the
continuous process. The numerical values of the rates in this experiment are shown
in Table 14.1.

14.4.3 Joint process state labels
In this experiment, the path planning part of the state space is selected to be a
square grid world with the dimensions 5× 5. Therefore, there are 25 path planning
states for every queue state. The queue is initially zero and goes to infinity. The
joint initial state is when the path planning coordinates are x = 0, y = 0 (north
western corner), and the queue is empty, iQ = 0.

In the joint state space, there are three types of states; dangerous, goal and

Table 14.1: Rate parameters for the joint path planning and admission control
experiment.

Name Value Explanation
λ 50 Queue arrival rate.
µ 60 Queue service rate.
λD 100 Main direction rate.
ωD 10 Slip direction rate.
γ = λ+ µ+ λD + 3ωD 240 Joint uniformisation rate.

205

14. Experiments

regulator states. Dangerous joint states are labeled q, while goal states have the
label p. The regulator states, where the robot needs to inspect the machine in the
practical analogy, have the label r. Specifically, joint states where the path planning
state has the coordinates (x, y) = (3, 2) or (x, y) = (4, 2) are always dangerous. A
goal state is a joint state where the path planning coordinates are (x, y) = (5, 5)
(the south east corner), for all joint states except when the queue is such that it
needs inspection. In that case, the joint state with coordinates (x, y) = (5, 5) is now
forbidden, while a regulator state is found at coordinates (x, y) = (5, 0) (the north
east corner). Note that this last part of the specification can be quite hard to meet
unless the admission control policy is found to have a simple enough structure. In
the experiment conducted here, the admission control policy is of threshold type,
meaning that admission is selected until the queue state is i∗. Thus, in this specific
case, the joint state (5, 5, i∗) is marked forbidden and state (5, 0, i∗) is marked as the
regulator state.

With the joint process specified, the next step is to formulate the specification
in terms of an LTL formula realised by a Büchi automaton.

14.4.4 LTL specification
Consider the LTL formula

ϕ = �♦p ∧�♦r ∧�¬q (14.10)

This specification says that eventually, either a goal state label p or regulator
state label r will be observed, while a dangerous state label q must never be seen.
Observing r is of equal importance as observing p, and therefore the Büchi automa-
ton representation must be of the general type, described in Section 3.6.4 of Part I
of this work. This allows for the use of two marked states, such that the acceptance
condition of the Büchi automaton is, with a level of abstraction, to observe both
labels r and p an infinite number of times. The Büchi automaton that realises the
formula in (14.10) is visualised in Fig 14.15.

In Fig 14.15, the acceptance condition is to visit states q1 and q2 an infinite
number of times, while never visiting the forbidden state q3. The specified behavior

q0

q1

q2

q3

T

r

p

T

qT

T

¬r ∧ ¬p ∧ ¬q

Figure 14.15: Generalised Büchi automaton for the final experiment.

206

14. Experiments

is thus that the agent should go to the goal states as often as possible, but also to
the regulator state when it is possible. Moreover, it is again assumed that at most
one label can be true at the same time.

At this point, enough information is given to start the first part of the solution,
which is the offline modular analysis step. Here, an optimal admission control policy
is found for the M/M/1 sub-process.

14.4.5 Admission control policy through modular analysis
Part of the specification states that the queue shall be regulated by admission con-
trol, based on a separate cost function implying that the solution is of threshold type,
defined as in [12]. As has been shown in Sections 13.2.1 and 13.2.2, the discounted
cost function used in [12] can be solved analytically if the discount parameter is se-
lected to be zero. Although it is also possible to find a solution using the discounted
cost function through simulation, this experiment focuses on the analytical solution
using the undiscounted cost function.

This infinite horizon cost function can be approximated by the finite horizon
undiscounted cost function defined in Section 13.2.1, which reads as

Vπ = Eπ
[∫ N

0
e−βt ·B · s(t)dt+

∫ N

0
e−βtR · A(t) · a(s(t−))dt

]
(14.11)

As is also shown in Section 13.2.1, this reduces to

Vπ(K) = N
(
B ·

K∑
n=1

Pn · n+R · PK · λ
)

(14.12)

The threshold type policy that the cost minimising K produces is well known by
now, and implies that there is a cost optimal queue length at which arrivals are
rejected. Since the cost function is undiscounted, the procedure used to obtain
the optimal threshold is chosen as the analytical method using the distribution for
M/M/1/K queues until K = i∗.

The selected cost parameters needed to solve this problem are presented in Table
14.2. These parameters are identical to those used in the analytical i∗ derivation
experiment of Section 14.3.1. In addition to this, the same arrival and service rates
are used. Because of this, the solution to the admission control problem is already
identified in Section 14.3.1 as i∗ = 8. The queue cost development can thus be
observed in Fig 14.12 of that same section.

Using this information, the exploration of the infinite joint state space is hereby
limited to all joint states where the queue is between 0 and i∗ = 8. This finite
structure contains 225 states, and the queue process is operated by admitting all
arrivals for iQ < i∗.

Table 14.2: Cost parameters for admission control.

Name Value Explanation
B 10.0 Queue cost per state per time.
R 4.5 Cost per rejected arrival.
T 5 Horizon length.

207

14. Experiments

14.4.6 Joint process path planning through temporal logic
constrained reinforcement learning

Navigation-wise, the specified behavior is to go to a path planning goal state as
often as possible, while avoiding dangerous states. Regulating the queue can be
done remotely, but if a rejection might be made, the agent must move towards
another geographical location which is the regulator state.

In its original form, this problem can in theory be solved by temporal logic
constrained reinforcement learning directly, but the exploration is done on an infinite
state space and runs the risk of going on forever. However, by limiting the joint
state space at i∗ = 8, the problem can be solved on the resulting finite state space.

Using the temporal logic constrained reinforcement learning algorithm on the
joint process, where the queue actions are already selected, is thus the last step in
solving the jointly controlled queue and path planning problem. This procedure
is the main part of this experiment, considering that the admission control part is
practically solved in the experiment conducted in Section 14.3.1.

With the specification formulated in (14.10) and shown in Fig 14.15, some final
parameters regarding the temporal logic constrained reinforcement learning algo-
rithm remain to be presented. These are shown in Table 14.3.

As can be seen in Table 14.3, the learning rate α is selected as 0.9 while the
learning rate γl is set to 0.2. The ε-decay that decreases the exploration probability
ε as a function of the episode number is initially maximally set to 1. Although the
exponential decay factor dε seems very low at 0.0001, this causes the exploration
probability ε to approach the order of 10−3 after around two thirds of the total
number of episodes. The total number of episodes is set to 40000 while the number
of transitions per episode is set to 100. However, if a dangerous state is reached,
the episode is terminated. This stands in contrast to the procedure in Part I, where
the decision was made to continue learning and not transitioning to the dangerous
state. In this case, this precaution seems unnecessary, since the queue transitions
can remove the agent from the dangerous state if it ends up there.

The reward for reaching the first marked state in the specification automaton is
ρ1 = 10 while the reward for reaching the second marked state is ρ2 = 1. This is to
enforce that the single regulator state has a large effect on the final policy. There

Table 14.3: Temporal logic constrained RL parameters.

Name Value Explanation
α 0.9 Q-learning learning rate.
γl 0.2 Learning rate.
εmax 1 Initial maximum exploration.
dε 0.0001 Parameter for exponential decay of exploration ε.
No. episodes 40000 Number of RL episodes.
Max step 100 Maximum number of transitions in one episode.
ρ1 10 Reward, Büchi state q1.
ρ2 1 Reward, Büchi state q2.
ρ3 -10 Punishment, Büchi state q3.

208

14. Experiments

is only one joint process state that has the necessary state label r to obtain this
reward, while there are 8 joint state in which the goal state label p can be observed
in order to collect the smaller reward. In total, the rewards that can be obtained
from both states are considered to be balanced between the two.

Negative reward, or punishment, of ρ3 = −10 is assigned to the observation of
state label q. Again, this label is found on joint states where the coordinates of
the path planning problem mark the two dangerous path planning states, but this
label is also used to mark the path planning state that is usually the goal state
when the queue process is at i∗. This is a good example of how the specification
enforces a behavior based on the state of the complete process. While admission
control actions are already selected, navigation can be specified as a function of the
queue state, such as in this case where the agent is required to check up on another
geographical location if the queue is at the limit.

Final policy hypothesis

The hypothesis in this experiment is formulated for how the reinforcement learning
algorithm will recommend path planning actions in the default initial specification
state q0, with respect to the joint process state.

Given that the limited joint state space still has 225 states, a motivated question
is if any helper mechanisms such as those presented in Part I of this thesis are needed.
On the other hand, automatic exploration is enforced through the partly uncontrol-
lable queue transitions, and in that sense the reinforcement learning algorithm only
has to solve a 25 state problem albeit for nine different queue states.

What is interesting is the behavior in the joint states where the queue is at i∗.
If the reinforcement learning is successful, the Q-table is expected to have values
recommending the agent to approach the south eastern goal state corner of the path
planning grid for any queue length, except when the queue is full. In that case, the
recommended path should be to move towards the north eastern state. Using the
robot analogy, this is where the machine is located on the factory floor, and since
rejection might occur the robot needs to be close to the machine to make sure that
there are no errors when the machine is at full capacity (a task which thankfully lies
beyond the scope of this work).

Results

The results of the final joint path planning and admission control problem are vi-
sualised in Fig 14.16, which describes the Q-table development as an average of the
values in all elements. An example of how the path planning policy is expressed
is shown in Fig 14.17, where the recommended path planning action in each joint
state is represented by an arrow pointing in the intended direction of travel.

Analysis

Fig 14.16 shows the average Q-table element value, taken over the MDP state, Büchi
state and navigation action dimensions. While there might be a slight negative
bump in the development during the very first few episodes, the rest of the table

209

14. Experiments

Figure 14.16: Q-table development.

development is positive. After around 20000 episodes, the curve starts to flatten
out, but it never quite converges to a constant value. Provided that the agent does
not terminate an episode by going to a forbidden state, this trend shows that the
total reward per episode can always be increased.

The reason behind this could be that it is possible for the agent to simply stay
very close to a goal or regulator state and collect reward after reward by going back
and forth to that state. However, this behavior would sooner or later lead to the
agent selecting a very specific sequence of actions through the process each time,
and it would no longer be possible to achieve a larger total reward in a new episode
compared to a previous episode. What could be the difference in this experiment
is that there is a strong stochastic element in the joint process, namely the queue
model. Since the queue changes state uncontrollably in the eyes of the path planning
process, any new immediate reward is mapped to different Q-table elements, and
if it is still possible for the Q-table to converge fully under these circumstances, it
would probably require many more episodes of learning.

In Fig 14.17, the recommended directional actions that the Q-table gives in each
path planning state, for each queue state, is shown for all joint states. For example,
in the upper left graph, the arrows indicate which way to go at each coordinate if
the queue state is zero. In this graph, the goal state is marked with a red circle at
coordinate (4, 4) while dangerous states are marked with black x:es at coordinates
(3, 2) and (4, 2). In general, the arrows lead the way from the initial state (0, 0)
to the south eastern corner, just as intended. Even if an action is recommended
out of a dangerous state, no arrows point towards the dangerous states, which is
reassuring. A similar description could be given for the joint states when the queue
state is one through seven, too.

However, something changes when the queue reaches the final state
iQ = i∗ = 8, shown in the lower right graph. Here, the south eastern corner is
marked as dangerous, while the previously unmarked north eastern corner state is
marked with a green triangle. This is the so-called regulator state, in which the
robot inspects the machine since risky rejections can be made here. Upon closer
inspection, it is clear that the arrows now lead away from the south eastern corner
and towards the north eastern regulator state. Still, the recommended path is to

210

14. Experiments

Figure 14.17: Recommended actions, denoted by arrows, for all joint states.

go around the two standard dangerous coordinates. In total, this very much agrees
with the specification formulated for the joint problem in the beginning of this
experiment.

To summarise the final experiment of this thesis, it can be noted that even
though the Q-table does not show a strict convergence to a constant value, the
result shows what could be described as asymptotic convergence towards a linear
function. Whether or not that is desirable, it seems from the Q-table visualisation
in Fig 14.17 that the specified behavior regarding the path planning is enforced. As
a solution for the admission control problem is also provided and used, it can be
concluded that an example of when control policies for joint Markov processes with
infinitely large state spaces is solved by first reducing the problem using modular
analysis, and then solving the rest of the problem using temporal logic constrained

211

14. Experiments

reinforcement learning.

14.5 Summary
The experiment chapter of Part II of this thesis starts with experiments concern-
ing M/M/1 queue simulations. The somewhat intricate simulation method of these
continuous Markov processes is implemented by generating interarrival and service
time from the exponential cumulative distribution function using different rate pa-
rameters.

The first M/M/1 queue experiment is conducted to get a visual understanding
of when arrivals take place in relation to departures, and how the queue grows with
time. The second experiment aims to do the same with the uniformised and thereby
discrete time version of the M/M/1 queue, and the visual difference between the
two is clear. In the last M/M/1 experiment, the simulated and normalised state
time distributions for both the continuous time and the uniformisedM/M/1 queues
are shown to converge to the analytical stationary state probability mass function.
This confirms that both simulations behave according to a previously formulated
analytical proof of that the uniformised and continuous queue version shares the
same stationary state probability distribution, and the simulations are verified as
accurate.

Next, the same experiments are conducted for M/M/1/K queues. This queue
requires the implementation of a more intricate scheduling algorithm since arrivals
are rejected based on the queue state, a type of information that is not needed when
simulating unlimited queues. After having simulated the uniformised M/M/1/K
queue, an experiment is conducted to verify that the stationary state probability
distribution of a uniformisedM/M/1/K queue approaches the analytically described
distribution of the continuous time M/M/1/K queue. The conclusion drawn from
the results of these experiments is that theM/M/1/K simulation is accurate, so that
it can be used in finding the optimal threshold for the admission control problem.

Once the queueing experiments are done, the two methods for finding the optimal
admission control threshold are tested in two separate experiments. The first ex-
periment tests the analytical function, and finds the optimal threshold to be i∗ = 8,
while the second simulation based method finds i∗ = 10.

In the final section, the extensive procedure of formulating a joint path planning
and admission control problem is formulated based on a motivation concerning a
robot that is tasked with navigating and regulating a machine at the same time. The
complete procedure starts with the formulation of a Markov decision process, after
which state labels are placed in the joint process states. Next, an LTL specification
is formulated as a Büchi automaton specifying the learning agents desired navigation
through the joint process. As the admission control problem is formulated with the
same parameters as in a previous experiment, the threshold i∗ = 8 is used to reduce
the joint state space. Finally, the temporal logic constrained reinforcement learning
algorithm is used to train the agent to navigate through the grid world conditioned
on how the queue changes. The final experiment is considered successful, as the agent
performs admission control and path planning as the LTL specification requires.

212

15
Conclusions of Part II

The conclusion of the second part of this thesis discusses the final project part from
four perspectives. Firstly, the method that is used to conduct the project is evaluated
in terms of both technique and technical implementation. Secondly, each experiment
conducted in the second part is discussed, with the purpose of highlighting the results
that it leads to and whether or not it is gainful in completing the bigger picture of
the project.

The third section investigates if conducting the project has led to new insights
in answering the research questions formulated in the beginning of this thesis. The
fourth and last section of this thesis cements the final project conclusions, focusing
on the overall project highlights and take-aways from both Part I and II of this
project.

15.1 Evaluation of Method and Implementation
The second part of this project focuses on how modular analysis can be used to sim-
plify large scale Markov decision processes by isolating sub-processes in the system
and solving some of these analytically. Specifically, a process dubbed the joint path
planning and admission control problem is investigated.

15.1.1 Choice of method
The method chosen to solve the problem of joint path planning and admission control
is very much a divide and conquer strategy, and its steps are outlined here.

The specific joint process is in short a path planning MDP, well known from the
first project path, combined with a continuous time M/M/1 queue that is to be
controlled with admission control. The control policies for these sub-processes are
found using two different methods, and this is the ultimate goal with the form of
modular analysis that is described here.

While the idea is that path planning policies can be found using the same meth-
ods as in Part I, namely temporal logic constrained reinforcement learning, the initial
strategy to find the admission control policy is different, and it requires the use of
additional analytical methods.

First of all, modelling a sub-process as a queue implies to introduce a new type of
Markov process, as queues are defined in continuous time. Due to this, the decision
is taken to also formulate the path planning problem in continuous time, since both
models are intended to operate at the same time.

213

15. Conclusions of Part II

Secondly, with the ability to accurately define and fuse the two models, the
next step is to solve the admission control problem for the queue description, with
the intent to find a threshold type solution that can effectively limit the joint state
space at some queue length. This method not only finds an admission control policy,
but also limits the state space such that the path planning actions can be solved
with temporal logic constrained reinforcement learning. For this to be possible, a
specification needs to be formulated for the joint process, which is the last theoretical
step.

Over all, this method is determined to be a successful one, as the final joint
problem is solved. The main strength is the way that the complete process is
separated, without which the solution to find both path planning and control actions
would not be possible to formulate as two separate stages.

The second strength of the method is the ability of finding a threshold type
solution to the isolated admission control problem. This is the gateway to limiting
the whole infinitely large joint state space, which makes it possible to use temporal
logic constrained reinforcement learning. There are ways of formulating different
cost functions that return different thresholds, and two of them are investigated in
this method.

The method selected to solve the main problem does, however, have its weak-
nesses as well. Firstly, the way that a joint Markov process is formulated is a very
convenient description of two systems working together. The main problem is that
the model lacks the type of cross-correlation that would appear if the events of one
sub-process could affect the states of the other. In this method, the models are
separate while the control policies for path planning are selected as a function of the
states of both processes, formed by the soft constraints of the reinforcement learning
procedure. As such, this problem formulation is not as complex as the challenging
scenarios that can be found in for example industrial applications.

Secondly, the success of the method is completely dependent on the existence
of a threshold type solution to the admission control problem, without which the
state space of the joint process could very well be infinitely large. As is shown, the
threshold type solution exists for a specific, although quite useable, cost function.
Furthermore, the relatively low threshold is defined for specific cost parameter, and if
these were to be chosen arbitrarily, a practically applicable solution to the admission
control problem might not exist.

However, in this specific setting, the selected method is shown to produce an
acceptable solution that solves the initial problem.

15.1.2 Technical implementation
The previously described method requires several ways of simulating queueing sys-
tems, evaluating cost functions and running the temporal logic constrained rein-
forcement learning algorithm. The implimentation used in Part I suffers from being
unnecessarily large and complicated. Formulating a new minimal model is thus a
suggestion for further improvements in the first part.

In addition to increased efficiency of solving reinforcement learning problems, the
implementation requires the possibility to simulate Markovian queues and produce

214

15. Conclusions of Part II

algorithms that finds optimal admission control thresholds. Lastly, a completely
new reinforcement learning problem needs to be solved, which the previous imple-
mentation does not allow due to its structure.

Given the new type of highly specific technical demands of Part II, a new im-
plementation is constructed in Matlab. The benefits of Matlab is that specific ex-
periments can be formulated very quickly, and as the second part focuses on the
solution of a very specific problem, this is determined to be the best solution.

Next, the main functions of the implementation are evaluated concisely.

Queue simulation

There are two different types of queue simulators, one for continuous queues and one
for discrete time queues. In the continuous case, the input parameters are the arrival
and service rate parameters λ and µ, along with parameters that decides the queue
capacity and the simulation time. Thus, the same simulation can be used to for both
M/M/1 andM/M/1/K queues, which is highly efficient in experiment settings. For
the discrete queues, the input parameters are transition rates and uniformisation
rates. This allows the user to experiment with different uniformisation rates, and it
is also possible to provide a queue limit and a simulation length parameter to this
function as well.

In general, the queue simulation functions are highly useable and efficient. The
only change that could be made is to combine them, so that one simulation function
could simulateM/M/1 andM/M/1/K queues in both discrete and continuous time.

Temporal logic constrained Q-learning on joint process

The new way of formulating the main problem of this thesis is modified to fit a
joint state space. In this implementation, focus lies on efficiency, and not on user
experience.

The first step to this is to base the implementation on two mappings. Firstly,
a transition mapping for the joint Markov process is produced offline to store the
connections between each source state, transition and target state. Secondly, as
the path planning problem is uniformised, a transition probability mapping is also
produced. These mappings allow for quick access to information that is requested
in each step of the reinforcement learning loop.

The second step concerns the implementation of the Büchi automaton that is
run in parallel to the MDP model. The few transitions that need to be described
in this system are also collected in a table, and the transitions that are conditioned
on MDP state labels are implemented using minimal boolean operators.

To find less obvious ways of making the implementation run faster, the Matlab
tool called the Matlab Profiler is used to describe how efficient all subroutines in
a function are. In this way, inefficient datastructures can be found and exchanged.
This is considered a very successful method that provides insights into how inefficient
some obscure details can be.

Over all, this way of implementing the temporal logic constrained reinforcement
learning is much more efficient for very specific problems, but this also suffers from
the drawback of not being able to formulate general Markov processes, which would

215

15. Conclusions of Part II

be a good idea if many different types of processes were to be investigated.
To summarise, this specific Matlab implementation is more efficient than the

Python implementation, but the reason for this might be the narrow scope of the
demands on the implementation of Part II.

15.2 Conducted Experiments
In this section, four categories of experiments are conducted with the goal of solving
one specific problem. Here, each of these category of experiments are evaluated.

15.2.1 M/M/1 queue simulations
TheM/M/1 queue simulation experiments start with visualising the process. This is
not only a good starting point for demonstration purposes, but also a quite efficient
way to see if the queue behaves as it should, and it is quite easy to verify that
arrivals and departures occur at correct time points in relation to each other. This
simulation also serves to show that the analytical distribution of the M/M/1 queue
is not at all accurate in the transient phase, and gives a measurement on how long
the simulation time needs to be, to reach the stationary state.

The second experiment visualises the uniformised queue, which is also necessary
to evaluate visually in order to witness the difference to the continuous M/M/1
queue, and this experiment also verifies that stationary state does not happen di-
rectly in the discrete time case either.

The final experiment is valuable, as it verifies that both the uniformised and
continuous queue approach the stationary state probability mass function. This is
a technical verification of that the simulations work correctly, and the simulated
distributions have also been used in the development of the simulations to test for
errors. Furthermore, the M/M/1 simulation is the foundation for the M/M/1/K
simulation implementation, which is a central part of this project.

15.2.2 M/M/1/K queue simulations
When it comes to M/M/1/K simulations, their success is of crucial importance as
they are used to find the optimal threshold for the admission control part of the
main problem.

Designed in the same way as the M/M/1 queue, the M/M/1/K is a limited
version, which is in the first two experiments verified to be working from visual in-
spection. In these experiments, the importance of reaching steady state is illustrated,
and both the continuous and uniformised queue versions are verified to be working
correctly. The last experiment that shows that both queues behave according to the
stationary state distributions in the long run.

The fact that the M/M/1 queues can be correctly simulated is one of the most
important results on the way to solving the main problem, as it allows simulations
to be used with confidence in finding the optimal threshold of the admission control
problem.

216

15. Conclusions of Part II

15.2.3 Optimal admission control threshold
These experiments concern the two methods of evaluating cost functions for limited
queues in order to find the best possible limits. Naturally, the success of these
experiments is a milestone for the project, as two thresholds that are very close to
each other are found, using two completely different methods.

As the threshold that is found through simulation is one step higher than the
one found through the analytical process, this agrees with the hypothesis that a
discounted method would allow higher thresholds. This important experiment must
however be described along with the successful queue simulation experiments, as
they outline the fundamental process that makes the cost function experiment suc-
cessful.

15.2.4 Joint path planning and admission control
This experiment relies directly upon the threshold found in the previous derivation.
Although there are two methods to find the threshold, which comes up with two
different thresholds, this does not make much difference from the perspective of
how the value is used in the main problem. The analytically found threshold is
eight while the simulation based threshold is ten, and choosing the higher threshold
would only result in an additional level of joint states. All in all, the most practical
solution is to set the threshold to one of the previously derived values, especially
since the analytical method is deterministic and would return the same threshold if
it the method were run again.

The state space is selected in such a way that it is not too large, and not too
small. This decision is made based on the difficulties to solve large scale problems
in Part I, as any helper functions would steal attention from the core values of the
selected method, which is using modular analysis. Even with this in mind, the joint
state space becomes quite large as it holds 225 joint states.

In Part II, the focus of the project is shifted from testing different LTL specifi-
cations in a reinforcement learning context, to using modular analysis as a way of
integrating system information into the solution method. Because of this, the spec-
ification can be selected such that it is simple enough to work directly, while still
illustrating the idea of that any specification can be applied. In theory, however,
the assumption is that any of the specifications shown in Part I can be used in the
final problem of Part II, but this is yet to be tested.

Overall, the final experiment is considered successful, but it highlights some
weaknesses in the method, the first of which being the admission control threshold
which must be shown to exist before this solution is attempted. This conclusion can
be applied to all problems that aim to limit an infinite state space, and touches upon
a common optimisation problem; how can it be made sure that a local optimum, if
it exists, is also the global optimum? Of course, the answer to this question might
be apparent in this specific admission control problem, but it can never be assumed.

The second issue with the final experiment regards the implementation, which
now reduces the state space offline, before the reinforcement algorithm is run. A
more general method would be to find a way of automatically detecting sub-processes
and limiting the state space exploration online, as cost ineffective regions are ex-

217

15. Conclusions of Part II

plored. The idea of changing the method in this direction touches upon the second
more philosophical issue with the solution method. Is it really more practical to
isolate sub-process and solve control problems for them analytically if it takes away
the automatic structure of pure reinforcement learning? The answer to this is not
given here, but it can be related to the classic automation paradox where all auto-
mated processes seem to need manual supervision at some level, which raises the
question of whether or not they are truly automatic.

15.3 Answers to Research Questions
Part II focuses mostly on two of the research questions formulated in Section 1.4 of
Part I, and how the second part of this project helps to answer these is presented
here.

15.3.1 Use of additional information
The second research question in Section 1.4 asks how additional information may
be used to improve the solution of the temporal logic constrained reinforcement
learning, or how to find the solution faster.

The form of modular analysis used in the second part of this project can be
summarised as utilising the knowledge that there are specific sub-processes in the
joint problem formulation, and that specific control policies can be formulated for
them under certain circumstances.

Therefore, the conclusion regarding this research question is that there are indeed
situations where reinforcement learning in general can be sped up by simply using a
different method to find certain control policies through parts of a process. However,
the question is if this can be considered as enhancing the reinforcement learning
method, as the solution is to not use it.

In that sense, this part of the project presents situations where temporal logic
constrained reinforcement learning is inefficient, and suggests a method to fuse an
analytical solution procedure with reinforcement learning. This is not necessarily a
negative result, and it shows that using several solutions in one problem is sometimes
a possibility.

15.3.2 Performance
The third research question from Section 1.4 considers how temporal logic con-
strained reinforcement learning compares to other methods in terms of performance,
and if there are other methods that are more effective in certain situations.

This question can be answered in the context of using modular analysis, since
this is in part another method. In the particular situation where one part of a system
is an M/M/1 queue that shall be controlled using admission control, the hypothesis
is that it is easier to find the threshold type solution analytically, and then restrict
the infinite state space, than it is to use reinforcement learning on the complete
problem. However, this hypothesis remains untested, as it is not attempted to solve

218

15. Conclusions of Part II

the joint path planning and admission control problem by the use of temporal logic
constrained reinforcement learning only.

Although the answer here is quite speculative, it is not considered completely
impossible to solve the problem without modular analysis. This is because for every
M/M/1 queue, an expected length can be computed by using the arrival and service
parameters. The expression for this is found in Section 12.2.1, and could in theory
be used as a way of obtaining the probable dimensions of the joint state space.
Admission control policies cannot affect the arrival rates or the service rates, so even
if all arrivals are admitted, the queue is still expected to be finite. In that sense,
a policy obtained directly through pure temporal logic constrained reinforcement
learning is not out of the question, and it would be interesting to see how this
compares to the strategy used in this project.

In short, the performance question is hard to answer given that no alternative
solutions are tested. However, it is probable that the modular analysis method is
still quicker, since it is expected that more exploration is needed on an infinite state
space, even if there exists a local optimum.

15.4 Final Project Conclusions and Suggestions
for Future Work

This section draws some conclusions regarding both Parts I and II of this project.
The total project concerns the enforcement of temporal logic constraints in a

reinforcement learning context, specifically for so-called path planning Markov de-
cision processes. In the first part of the project, the focus firstly lies on evaluating
different existing methods for formulating linear temporal logic specifications, and
then to propose hybrid methods and test them on different learning scenarios.

In the first part, the most important conclusions regard the different additional
methods that are needed to learn policies efficiently. In some scenarios, such as when
dealing with large state spaces, certain specifications are practically impossible to
follow as they require the agent to find a correct policy more or less by chance in
the first iterations, which can be hard even in finite state spaces.

The first part is valuable as it highlights some quite limiting situations that
concern specific experiments, but the results are still quite general. The most usable
result is that it is entirely possible to formulate a specification that not only requires
the learning agent to explore the whole state set, but also multiple states in sequence.
The more intricate these requested sequences become, the longer it takes for the
agent to find the specified policy. In many cases, there is a need to find a way of
finding solutions that make the learning more efficient. With this in mind, the second
part of the project addresses another way to reduce the burden for the reinforcement
learning algorithm.

In the second part of the project, the method of modular analysis is formulated
for the specific problem of a joint path planning and admission control problem.
The strategy is to divide the problem into sub-problems that can be solved by other
methods than reinforcement learning, and the lessons learned from this procedure
are many.

219

15. Conclusions of Part II

Firstly, modular analysis as done in this work requires a lot from the problem
formulation. The main difficulty is not that the problem is difficult to solve, as it
simply relies on showing that certain parts of the state space can be disregarded due
to the existence of a local optimum in parts of the joint problem. The difficulty lies
in obtaining a motivation for why a model can be separated into two parts in the
first place, as this is a somewhat convenient initial assumption. Secondly, even if
the separation is motivated, the existence of a local optimum in a sub-process can
never be assumed, and must be shown to exist analytically.

However, with these assumptions, this project still shows that if the situation
presents itself, it is possible to reduce the exploration necessary for a learning agent
by using modular analysis.

With this basic goal completed, some suggestions for future research are firstly
to implement an online way of determining the limit at which exploration in an
infinite state space should be stopped. This method could use for instance gradient
descent strategies.

Secondly, an interesting research direction is to find a more realistic scenario,
such as an industrial application, on which the algorithms tested in Part I and the
modular analysis of Part II can be tested. This could shed light on unexpected
difficulties and perhaps lead to finding situations where these highly theoretical
methods can be used to solve practical problems.

220

Bibliography

[1] Bengt Lennartson and Qing-Shan Jia. Reinforcement learning with temporal
logic constraints. Submitted for WODES2020.

[2] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The
MIT Press, 2008.

[3] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer,
Scott Niekum, and Ufuk Topcu. Safe reinforcement learning via shielding. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[4] Mohammadhosein Hasanbeig, Yiannis Kantaros, Alessandro Abate, Daniel
Kroening, George J Pappas, and Insup Lee. Reinforcement learning for tem-
poral logic control synthesis with probabilistic satisfaction guarantees. arXiv
preprint arXiv:1909.05304, 2019.

[5] The Institute for Ethical AI and Machine Learning. The responsible machine
learning principles. ethical.institute/principles.html#commitment-8, 2020.
Accessed: 2020-01-24.

[6] Swedish Energy Agency. Sveriges energi- och klimatmål.
energimyndigheten.se/klimat–miljo/sveriges-energi–och-klimatmal, 2020.
Accessed: 2020-01-24.

[7] Swedish Energy Agency. Yearly energy balance.
energimyndigheten.se/statistik/den-officiella-statistiken/statistikprodukter/arlig-
energibalans, 2018.
Accessed: 2020-01-24.

[8] Technical University of Munich, OWL online demo. owl.model.in.tum.de/try.
Accessed: 2020-05-11.

[9] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening.
Logically-constrained reinforcement learning. arXiv preprint arXiv:1801.08099,
2018.

[10] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Anthony Valenzano, and
Sheila A McIlraith. Advice-based exploration in model-based reinforcement
learning. In Canadian Conference on Artificial Intelligence, pages 72–83.
Springer, 2018.

221

https://ethical.institute/principles.html#commitment-8
https://www.energimyndigheten.se/klimat--miljo/sveriges-energi--och-klimatmal/
https://www.energimyndigheten.se/statistik/den-officiella-statistiken/statistikprodukter/arlig-energibalans/
https://www.energimyndigheten.se/statistik/den-officiella-statistiken/statistikprodukter/arlig-energibalans/
https://owl.model.in.tum.de/try/

Bibliography

[11] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under
reward transformations: theory and application to reward shaping. In ICML,
volume 99, pages 278–287, 1999.

[12] Christos G Cassandras and Stephane Lafortune. Introduction to Discrete Event
Systems. Springer Science & Business Media, 2009.

[13] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. The MIT Press, second edition, 2018.

[14] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Rein-
forcement Learning and Dynamic Programming using Function Approximators,
volume 39. CRC press, 2010.

[15] Richard Bellman. Dynamic Programming. Dover Publications, 1957.

[16] D Subbaram Naidu. Optimal Control Systems. CRC press, 2002.

[17] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards.
PhD thesis, King’s College, Cambridge, 1989.

[18] David Silver. Lecture notes in the UCL course reinforcement learning.
davidsilver.uk/teaching, 2015.
Accessed: 2020-03-30.

[19] Zachariah Levine. Lecture notes in the University of Waterloo course learning
2048 with deep reinforcement learning, January 2018.

[20] Arthur Gill. Applied Algebra for the Computer Sciences. Prentice-Hall Personal
Computing Series. Prentice-Hall, 1976.

[21] Bengt Lennartson. Lecture notes in discrete event systems. Unpublished, used
in the course SSY165 Discrete event systems, Department of Electrical Engi-
neering, Chalmers University of Technology, September 2018.

[22] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Reading, MA: Addison-Wesley, 1979.

[23] Stoyan Mihov and Klaus U Schulz. Finite-State Techniques, volume 60. Cam-
bridge University Press, 2019.

[24] Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křetínský. Limit-
deterministic Büchi automata for linear temporal logic. In Swarat Chaud-
huri and Azadeh Farzan, editors, Computer Aided Verification, pages 312–332,
Cham, 2016. Springer International Publishing.

[25] Marek Grześ and Daniel Kudenko. Online learning of shaping rewards in rein-
forcement learning. Neural Networks, 23(4):541–550, 2010.

[26] Mark Allen Weiss. Data Structures and Algorithm Analysis in Java.
Pearson/Addison-Wesley, London, 2. ed. edition, 2006.

222

https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/

Bibliography

[27] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, 1982.

[28] Sham Machandranath Kakade et al. On the sample complexity of reinforcement
learning. PhD thesis, University of London London, England, 2003.

[29] Open AI. Safety gym. openai.com/blog/safety-gym, 2019.
Accessed: 2020-01-30.

[30] OpenAI: Frozen Lake source code github.
github.com/openai/gym/blob/master/gym/envs/toy_text/frozen_lake.py.
Accessed: 2020-04-24.

[31] Arnold O. Allen. Probability, Statistics, and Queueing Theory with Computer
Science Applications. Academic Press, Inc., Orlando, Florida, 1978.

223

https://openai.com/blog/safety-gym/
https://github.com/openai/gym/blob/master/gym/envs/toy_text/frozen_lake.py

Bibliography

224

	List of Figures
	List of Tables
	Introduction
	Background
	Aim
	Limitations
	Research Questions
	Contributions
	Structure

	I Temporal Logic Constrained Reinforcement Learning
	Reinforcement Learning
	Discrete Event Systems
	Markov Decision Processes
	Reinforcement Learning Fundamentals
	Q-learning
	Summary

	Temporal Logic Specifications
	Temporal Logic and Predicate Logic
	Linear Temporal Logic
	Formal Languages
	Automata
	Translating LTL Formulae to Automata
	Büchi Automata
	Summary

	Algorithms and Methods
	Algorithm 1: Temporal Logic Constrained Reinforcement Learning
	Algorithm 2: LDBA Constrained Reinforcement Learning
	Algorithm 3: Shielded Reinforcement Learning
	Reward Shaping
	Advice Based Exploration
	Comparing and Combining Algorithm Features
	Summary

	Problems and Measurement Techniques
	Evaluating LTL Constrained Reinforcement Learning
	Reinforcement Learning Problem Categories
	Measuring Algorithms
	Summary

	Implementation of Research Platform
	Environment
	Automata
	Statistics
	Experiment Implementation
	Summary

	Experiments
	Experiment Structure
	Safe Navigation to Destination
	Sequential State Visits Experiment 1
	Sequential State Visits Experiment 2
	Liveness and Fairness Experiment 1
	Liveness and Fairness Experiment 2
	Sequential State Visits Experiment 3
	Potential for Initial Guiding Experiment
	Summary

	Conclusions of Part I
	Research Platform Evaluation
	Conducted Experiments
	Answers to Research Questions
	Additional Conclusions and Suggestions for Future Work

	II Modular Analysis
	Introduction to Part II
	Background
	Problem Formulation
	Limitations
	Changes to Implementation

	Generalised Semi Markov Processes and the Poisson Distribution
	Stochastic Timed Automata and GSMP
	Poisson Counting Process
	The Poisson Distribution
	Superposition of Multiple Poisson Processes
	Summary

	Modelling with Discrete and Continuous Markov Chains
	Continuous Time Markov Chains
	Discrete Time Markov Chains
	Uniformisation
	Joint Markov Chains
	Summary

	Queuing Theory
	Concepts and Notation in Queueing Theory
	Markovian Queueing Systems
	Markov Decision Processes and Analytical Solutions to the Optimality Equation
	Summary

	Control Problems
	Admission Control for M/M/1 Queues
	Two Methods of Finding the OptimalThreshold
	Path Planning and Admission Control in Continuous Markov Processes
	Summary

	Experiments
	M/M/1 Queues
	M/M/1/K Queues
	Optimal Admission Control Threshold
	Temporal Logic Constrained Q-learning of Joint Path Planning and Admission Control Process
	Summary

	Conclusions of Part II
	Evaluation of Method and Implementation
	Conducted Experiments
	Answers to Research Questions
	Final Project Conclusions and Suggestions for Future Work

	Bibliography

