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Abstract

Plug-in Hybrid Electric Vehicles (PHEV) are increasing in popularity and so is the
research interest for them. One topic of research is how to best handle the flows of
energy in the powertrain, which is done by the energy management system. How-
ever, to find an optimal energy management strategy is not a trivial task. Advanced
techniques have been developed during the last decade, but have not received a
widespread usage in the industry. One reason is the computational power required
for the calculations, which is not present in modern vehicles. However, an increased
connectivity between vehicles and the mobile network gives the possibility to trans-
mit driving statistics and energy management strategies between the vehicle and
a server, on which these calculations could be performed. This thesis aims to in-
vestigate and develop a structure of a server application where an optimal energy
management strategy can be calculated.

To calculate an optimal strategy, a priori information about the upcoming driving
mission is required. One way of obtaining a priori information is if the driver inputs
the expected driving mission. However, this might not be desirable for the driver to
do every day. Instead, the developed system identifies repetitive driving patterns,
such as commuting routes, from raw GPS data. For each of these patterns an optimal
energy management strategy is calculated.

To evaluate the developed system a study is performed on the Volvo V60 PHEV,
which has a set of predefined driving modes. For a driver it is a non-trivial task to
select a fuel optimal sequence of driving modes; a poor mode selection might even
result in a heavily degraded fuel economy. In the study an algorithm that optimises
the mode selection along a commuter route is developed. The algorithm is based
on a sub-optimal Dynamic Programming developed in the thesis since conventional
Dynamic Programming can result in a perceived counterintuitive mode selection
for the driver. Simulation results indicate that an optimised mode selection can
reduce fuel cost and increase the lifetime of the battery, but more detailed studies
are required to estimate the actual savings.

Finally, the developed system is generic and can handle multiple users. The
routines for the energy management optimisation are interchangeable and different
vehicle models are easily treated.

Keywords: Plug-in Hybrid Electric Vehicle, Optimal Control, Dynamic Program-
ming, Route Identification.
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1 Introduction

1 Introduction

This chapter is intended to give the reader a brief background of the hybrid electric
vehicle concept, followed by the purpose and problem framing of this thesis as well
as its limitations. The chapter is finalised with a thesis outline.

1.1 Background

Due to global warming a worldwide reduction in yearly CO2 emissions is a likely
future scenario. Regulations to limit these emissions within the EU, US and China
among others have therefore been stated [6, 7, 5]. These regulations do not only
consider the global warming but also the problem with decreased air quality in
larger urban areas. For the automotive industry these regulations imply that the
development of a vehicle fleet with less CO2 emissions and air polluting substances
than today is crucial for companies to survive. The expected peak in oil production
is also a factor steering the automotive industry from a purely oil based fleet. Major
car companies have introduced Hybrid Electric Vehicles (HEV) and Plug-in HEVs
(PHEV) into their fleets, some examples are; Toyota Prius, Honda Civic Hybrid,
Ford Focus Electric, BMW ActiveE and Volvo V60 Plug-in Hybrid. Figure 1.1
shows the number of sold hybrid vehicles per year in the US between 1999 and 2012,
as well as the corresponding fraction of all cars and trucks sold.

A hybrid electric powertrain has both an Internal Combustion Engine (ICE) and
an Electric Machine (EM). Both the ICE and EM can provide traction power of the
vehicle and therefore, there is a degree of freedom in how to supply this force; only
by using the ICE or only the EM or a combination of both. In addition, the ICE can
be used to simultaneously provide traction force and recharge the battery and the
EM can recuperate the brake energy during braking instead of using friction brakes.

The main difference between a PHEV and a HEV is the battery size; a PHEV
has a much larger battery since it is intended to be recharged with energy from the
electric grid while an HEV only charges the battery by using the EM as a generator
while driving. The focus of this thesis is on PHEVs.

The unit in the vehicle that decides how to use the ICE and the EM is denoted
Energy Management System (EMS). Advanced techniques for optimal control of the
EMS have been developed during the last decade. However, modern vehicles do not
take advantage of these techniques since they require a priori information about the
upcoming driving mission. In this context, a priori information is driving data such
as velocity and altitude trajectories. Instead a simple strategy is used; drive on
electrical energy as long as possible, then switch over to fuel. The strategy is known
as Charge Depletion Charge Sustaining (CDCS) and is the optimal EMS strategy if
future driving conditions are unknown.

If accurate a priori information is available, an optimal EMS strategy can be
calculated. These strategies can lower the fuel consumption and extend the lifetime
of the (in general) single most expansive part, the battery. The resulting behaviour
from these calculations is that the electrical energy is only used when it is most
profitable, e.g. when the electrical losses are small. Note that this is only a good
strategy if the driving mission is longer than the All Electric Range (AER), i.e. the

2



1.2 Purpose and Problem Framing 1 Introduction
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Figure 1.1: Bar diagram showing amount of hybrid vehicles
sold per year in the US, in front is the total market share,
i.e. fraction of all sold passenger cars and trucks, indicated.
(Figures for hybrids: [4], total vehicle sales: [27].)

distance the vehicle can travel using electrical energy only. If the driving mission is
shorter than the AER, there is no point of using the ICE unless the EM alone cannot
meet the requested power. In Sweden, 11% of the labor force commuted longer than
30 km to work in the year of 2000; the median distance within this group was 50 km
[22]. This indicates that a considerable amount of customers could benefit from an
optimised strategy, if they commute by car and drive a PHEV.

There are different ways of obtaining a priori information about the upcoming
driving mission. One way is to have the driver inputting the final destination and
the anticipated driving path. However, this might not be a desirable procedure
to perform every day. Another way of obtaining a priori information about the
upcoming driving mission is to use historical driving data, which has been shown
in [13]. From historical driving data, repetitive driving patterns can be identified
and for each pattern an optimal EMS strategy can be calculated. Calculating an
optimal EMS strategy is non-trivial and requires large computational power. The
limited amount of computational power available in modern vehicles has therefore
been a hold up for implementation of this kind of systems.

However, the introduction of cloud techniques in modern vehicles (such as BMW
ConnectedDrive [3], Volvo On Call [25]) has made it possible to send data between
the vehicle and a server. By taking advantage of this new functionality, a vehicle–
server system for EMS optimisation could be developed.

1.2 Purpose and Problem Framing

Technology for such a vehicle–server system is available as well as the required main
algorithms. Nevertheless, a system of this kind has not been introduced to the
market. This thesis aims at developing a conceptual system architecture for the
server, with the intention of increasing the possibility that this type of system is
presented to the market in the near future.

To evaluate the system, a case study investigating Optimal Mode Selection in

3



1.3 Limitations 1 Introduction

Volvo V60 PHEV along different commuting routes is conducted. The Volvo V60
PHEV, as many other vehicles, has a set of predefined driving modes. Even though
it is common practice to predefine different driving modes in vehicles, typically de-
fined by heuristic1 rules to satisfy perceived driveability constraints, the research
within the academic community has mainly been focused on optimal energy man-
agement. The industry preference for predefined driving modes has therefore often
been neglected, since the usage of heuristic modes is suboptimal in terms of fuel
economy and incorporation of driveability constraints in sophisticated optimisation
techniques is not straightforward.

The purpose of this thesis is to, at least partly, bridge the gap between academia
and industry. This is done with a two-folded focus:

1. Develop a conceptual system architecture that emulates a server on which
historical driving data is used for energy management optimisation of a PHEV.

2. Evaluate the system with a case study on the Volvo V60 PHEV, in which the
system is tested on real driving data and an algorithm for using driving modes
in the energy management optimisation is developed.

1.3 Limitations

This thesis does not aim to develop a full-scale system and therefore some parts are
simplified, mainly data storage and communication. The modes used in the case
study of the V60 PHEV are approximations, made by the author, of the modes
implemented in the vehicle. Furthermore, the thesis is limited to investigate logged
driving data from roads where a repetitive driving behaviour can be identified; roads
where driving conditions change significantly from day to day are therefore consid-
ered outside of the scope.

1.4 Thesis Outline

The thesis is outlined as:

Part I - Thesis and Hybrid Vehicle Introduction

1, Introduction, gives the reader a brief background of the hybrid electric ve-
hicle concept, followed by the purpose and problem framing for this thesis as
well as its limitations.

2, Hybrid Vehicles and Energy Management, introduces the reader to the two
most common hybrid electric vehicle configurations, series and parallel, and
the energy management problem.

1Heuristic (Greek: ”find” or ”discover”) refers to experience-based techniques for problem solv-
ing, learning, and discovery that give a solution which is not guaranteed to be optimal. Where the
exhaustive search is impractical, heuristic methods are used to speed up the process of finding a
satisfactory solution. Examples of this method include using a rule of thumb, an educated guess,
an intuitive judgement, stereotyping, or common sense. [20]

4



1.4 Thesis Outline 1 Introduction

Part II - System Design, Modelling and Optimisation.

3, System Design, presents an overview of a conceptual system followed by the
design of the implemented system and an implementation overview.

4, Vehicle Modelling, presents the components considered in the vehicle model
as well as the quasistatic model of them. A description of the inverse simulation
approach finalises the chapter.

5, EMS Optimisation formulates the EMS as an optimal control problem, after
which three different optimisation techniques are presented.

Part III - Case study: Optimal Mode Selection in Volvo V60 PHEV.

6, Case Introduction presents the case study and introduces the driving modes
in the Volvo V60 PHEV. The chapter is ended with an overview of the system
implementation for the case study.

7, Modelling of Volvo V60 PHEV presents the modelling of the vehicle config-
uration and driving modes of the Volvo V60 PHEV.

8, Optimal Mode Selection, the first part of this chapter introduces the reader
to the concept of decision points. The major part of the chapter is then spent
on developing an algorithm that, identifies the optimal mode selection for each
decision point along a route while considering the predictability of the vehicle.

9, Results presents the identified routes as well as a comparison between the
optimal mode selection and a CDCS strategy along the routes.

Part IV - Discussion, Conclusions and Future Work.

10, Discussion, findings and implications of the thesis are discussed.

11, Concluding Remarks, concluding remarks of the thesis and identified topics
for future work.
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2 Hybrid Vehicles and Energy Management

2 Hybrid Vehicles and Energy Management

This chapter introduces the reader to the two most common hybrid electric vehicle
configurations, series and parallel, as well as the energy management problem.

2.1 Hybrid Vehicle Configurations

Several different hybrid vehicle configurations exist and the two predominant con-
figurations on the market are the series and parallel configurations. The main focus
of this thesis is on the parallel configuration since the vehicle used in the case study
(Volvo V60 PHEV) is a parallel hybrid.

2.1.1 Series Hybrid

In a series hybrid the ICE generates mechanical power, which is transformed by
the generator into electrical power. The EM is then supplied with power from the
generator or power drawn directly from the battery. The combination of the ICE
and the generator is usually denoted Engine Generator Unit (EGU). The battery is
rechargeable by recuperating break energy with the EM or by using power from the
EGU. An illustration of a series hybrid configuration is shown in Figure 2.1a.

A series configuration is desirable if the main usage is city driving, where the
average speed is low and conventional vehicles have a poor performance. This is
because the operating point of the ICE can be chosen freely, since it is mechanically
decoupled from the wheels. This configuration is however not well suited for high-
ways where the average velocity is high and the average power demand is high. The
poor performance on highways is due to the large increase of EGU power losses for
increased power demand. Another drawback with the series configuration is that
the EM needs to be sized to meet the peak power.

2.1.2 Parallel Hybrid

In a parallel hybrid both the ICE and the EM are mechanically connected to the
wheels, where the ICE is mostly placed on the front axle while the placement of
the EM varies. A configuration with the EM placed on the rear axle is depicted
in Figure 2.1b. The main advantage with the parallel configuration compared to

(a) Series (b) Parallel

Figure 2.1: Schematic overview of the two predominant PHEV
configurations. (Figures found in [16].)
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2.2 Energy Management 2 Hybrid Vehicles and Energy Management

the series is that the ICE can deliver power directly to the wheels, giving a better
highway performance. On the other hand, it is not possible to freely choose the ICE
operating point, which gives a low performance for city driving. Another advantage
with the parallel configuration is that neither the EM, nor the ICE is required to
be sized to be able to meet the peak power. Smaller components can therefore be
chosen, resulting in a lower cost and weight of the vehicle.

2.2 Energy Management

Since there are two sources of energy available in a hybrid vehicle, there is a degree
of freedom in how to supply the traction force of the vehicle. A hybrid vehicle con-
figuration therefore offers several ways to decrease the fuel consumption compared
to a conventional vehicle, such as:

� The ICE can be downsized from being able to meet peak power to only meet
the average power.

� The ICE can be turned off during idling.

� Brake energy can be recuperated and stored in the battery.

These are three quite intuitive ways to decrease the fuel consumption and they are
only dependent on the physical properties of the hybrid vehicle configuration.

However, the fuel consumption can be reduced further by optimising the indi-
vidual usage of the power sources. The controller that decides the amount of power
from each source is, as mentioned, denoted Energy Management System (EMS).
The objective when optimising the EMS strategy is to reduce the fuel consumption.
A reduction in fuel consumption is obtained by only using electrical energy when
it is preferable, for example at low speeds where the electrical power losses are low
and the ICE in general has a poor performance. At high speeds or during heavy
accelerations, the electrical losses are much higher and the ICE efficiency is usually
high why a low usage of electrical power, in general, is desired during these driving
conditions.

Another positive effect from using the electrical energy wisely is the reduced
wear and tear of the battery, which is achieved by lowering the Ah throughput and
C-rate2.

2.2.1 Discharge Strategies

In a vehicle energy management context the State of Charge (SoC) is used to denote
the fraction of available energy in the battery [10], where SoC = 1 equals a fully
recharged battery and SoC = 0 a completely depleted battery. The SoC trajectory
for a PHEV along a driving mission can be interpreted as a discharge strategy, i.e.
how fast the EMS should deplete the battery. Since the electrical energy is assumed
to be much cheaper than the fuel energy a low final SoC is desirable.

For a PHEV there are two distinct scenarios for a driving mission; either is the
mission within the All Electric Range (AER) or not. If it is within the AER the

2C-rate: Charge or discharge rate equal to the capacity of a battery in one hour.
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2.2 Energy Management 2 Hybrid Vehicles and Energy Management

BlendedCD
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Figure 2.2: Schematic illustration of CDCS and a blended strat-
egy.

electrical energy is enough for the vehicle to drive purely on electricity, unless the
vehicle is a parallel hybrid and a combination of the ICE and EM power is required
to meet the peak power. A more interesting scenario is therefore when the driving
mission is longer than the AER, which gives a degree of freedom in how to deplete
the battery. How to optimally use this freedom depends on the available a priori
information.

2.2.2 CDCS Strategy

If no a priori information is available the Charge Depletion Charge Sustaining
(CDCS) strategy results in the optimal fuel consumption [10]. This is a very simple
strategy, where the battery is discharged as long as energy is available and the ICE
is turned on once the SoC level reaches a lower limit. An illustration of a SoC trajec-
tory from a CDCS strategy is depicted in Figure 2.2, note that the CDCS trajectory
is coloured different in the CD and the CS phase for illustrative purpose.

The drawback with the CDCS strategy is that for trips longer than the AER the
electrical energy is most likely used in a sub-optimal manner.

2.2.3 Blended Strategy

If there is a priori information about the driving mission the EMS can calculate when
to use the ICE and when to use the EM. This will lower the ohmic losses as well as
decreasing the time where the ICE is operated with bad performance, thus giving a
lower fuel consumption than the CDCS strategy. A schematic SoC trajectory from
a blended strategy is illustrated in Figure 2.2.

Numerous studies have investigated the benefits of blended strategies, see for
example [17, 8, 23]. The results indicate that the fuel cost reduction of a blended
strategy compared to a CDCS strategy varies significantly. Factors affecting the
cost reduction are; powertrain model, drive cycle, trip length in relation to the AER
among others.
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3 System Design

This chapter presents an overview of a conceptual system followed by the design of
the implemented system and an implementation overview.

3.1 Conceptual System

The intention with presenting a full-scale conceptual system is to introduce the
reader to the expected working environment of the implemented system. This gives
a better understanding of the design implementation and simplifications.

The system consists of a unit in the vehicle and a cloud server that communicates
with each other, for example when the vehicle is parked. During driving, the unit
in the vehicle stores the driving data, i.e. GPS coordinates, altitude- and velocity
trajectories. Once the vehicle is parked and turned off, the data is sent to the server
for processing. Note that both the logging of GPS data and uploading of the data
on a server is possible with Volvo On Call [25].

The new driving data is compared to the historical data and if enough new
information has been encountered an update of the stored routes is performed. A
route is considered as being a driving trajectory between two locations which is
frequently occurring. For every route an optimal EMS strategy is calculated and
sent to the vehicle.

Next time the vehicle is to be driven along one of these routes the corresponding
strategy is used and the driver can enjoy a fuel economic drive along the route. A
schematic overview of the system is illustrated in Figure 3.1 and summarised below.

1. Driving data is collected during driving.

2. When the vehicle is parked the data is sent to the server.

3. The new driving data is compared to the stored data and if enough new infor-
mation is obtained the affected route is updated.

4. An optimal EMS strategy is calculated for the updated route.

5. The EMS strategy is sent to the vehicle.

6. Next time the vehicle is driven along a route it uses the corresponding EMS
strategy and the driver can enjoy a fuel economic drive along the route.

3.2 Implemented System

The implemented system has focused on the server features and hence some simpli-
fications are done in the implemented system compared to the conceptual system.

The largest simplification is the communication between the vehicle and the
server. In a real application this is a crucial part that requires a large engineering
effort. However, in this context it is a valid assumption to assume that data is able to
move between different parts of the system. In this thesis the sending and receiving
of data is therefore simplified to function calls in Matlab. Another simplification

10
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Route Identification EMS Optimisation

Driving Data EMS Strategy

Route

Cloud Server

Figure 3.1: Schematic overview of the system.

is that the system does not recognise by itself if an update of available routes should
be done. Instead, the user is required to manually send a route update request to
the server. The system is evaluated with a simulation study in which the automatic
detection of the route that is to be driven, e.g. from home or to work, has not been
implemented.

With these simplifications the implementation represents the conceptual system
proposed in Chapter 3.1, Conceptual System. The implemented system consists of
three major parts where each part consists of multiple Matlab routines.

Vehicle Model: Simplified model of a vehicle, used to compute an optimal
EMS strategy and to simulate the driving of a vehicle along a route for evalu-
ation.

Route Identification: Processing of logged GPS data for identification of
routes.

EMS Optimisation: Calculation of optimal EMS strategy for a vehicle
model on a route.

A flowchart illustrating the major parts and flows of the system is depicted in Fig-
ure 3.2.

3.2.1 Vehicle Model

For every type of vehicle that uses the system a vehicle model is stored in a database
on the server. The models are of as low complexity as possible to keep the compu-
tational time for the EMS optimisation short as well as keeping down the required
amount of data storage. Chapter 4, Vehicle Modelling presents how a vehicle is
modelled for this purpose.

Each vehicle that uses the system is assigned an ID to match the driven trips
with the vehicle model. This means that a vehicle can only access the trips that it
has logged itself, unless access to other trips is manually given.

11
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Figure 3.2: Schematic overview of the system.

3.2.2 Route Identification

The GPS unit in the vehicle is assumed to log the instant velocity of the vehicle,
the longitudinal and latitudinal coordinates as well as the road altitude at every
time sample. However, data from some samples might be missing or incorrect, a
preprocessing is therefore performed where unrealistic values are removed using low
pass filtering. Once the driving data has been preprocessed, all the data required to
create a trip is available. In this thesis a trip is defined as:

Trip Definition: A trip is the driving between two consecutive parking
periods irrespective of the parking period.

The definition is chosen to match the logged GPS data available for this thesis.
Given several trips, routes are identified using the clustering algorithm proposed

in [15] which is appended in Appendix C, Route Clustering. In this thesis a route is
defined as:

Route Definition: A route is a large enough number of trips, starting
and ending within the same geographical area, and going roughly along
the same path.

This is a quite open definition and it is intentionally chosen, so that for example
parking at a different parking spot at work should not lead to the definition of a
new route. The velocity trajectory for the route is found by choosing the most
representative trajectory of all the trips related to the route, as done in [15].

The data used in this thesis is taken from the Swedish Car Movement Database,
see [12]. The database consists of driving data collected from vehicles driven in
the county of Västra Götaland and the Kungsbacka municipality, in the southwest
part of Sweden. Trips created from this data is divided into a set of training data,

12
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optimisation trips, and a set of validation data, simulation trips. There is no prac-
tical difference between these, but the distinction is made so that the system can
be evaluated without gathering more driving data. Optimisation trips are used to
identify routes for which an optimal EMS strategy is calculated. The simulation
trips are used to simulate drives along identified routes. By using different data
for the optimisation and simulation, the system response to every day changes in
driving behaviour is captured.

3.2.3 EMS Optimisation

Given a vehicle model and a route, an optimal EMS strategy can be calculated. The
EMS optimisation routine in the system is an interchangeable part where the choice
depends on the preferences of the system designer. In Chapter 5, EMS Optimisation
different EMS optimisation techniques are presented.

3.3 Implementation

The system design has been influenced by the object oriented way of thinking, since
it defines objects with different properties and how objects interact with each other,
e.g. a vehicle can be driven along a route. Objects in the system have been identified
as Trip, Route, Vehicle Model, and EMS Strategy.

Figure 3.3 illustrates how each object relates to the each other. In the figure
one Vehicle Model is considered along with its Trips. From some of the Trips are a
couple of Routes identified, for readability only one Route is depicted in the figure.
It can be seen that a Vehicle Model owns the Trips created from its driving data and
the Routes that have been identified from the Trips. A Route owns the clustered
Trips and the EMS Strategy that is calculated using the Route and corresponding
Vehicle Model.

The implemented system is divided into different folders and each object is rep-
resented by a Matlab struct stored as a .mat file. Table 3.2 gives an overview of
the folders and a short description of the contents in each of them. In the database
folder sub-folders are used to store Vehicle Models, GPS data, Trips, Routes and
EMS Strategies. Within these sub-folders, an additional layer of sub-folders is used
to keep the data from different users separated.

To keep track of which Trips belong to which Vehicle Model, a Trip is assigned
with the Vehicle ID and the Vehicle Model with a reference to its Trip database.
The Vehicle Model also has a reference to all Routes identified from the Trips. A
Route has the property Representative Trip ID, which is the Trip that given a set of
features, such as time with velocity above 90 km/h, is the Trip that best represents
the Route, see [15] for a detailed presentation of all features. A distance offset is
calculated from each Trip to the Representative Trip, and this offset is stored as a
property in the Route.

All objects and their properties are summarised in Table 3.1.

13



3.3 Implementation 3 System Design

Table 3.1: Objects in the system and their properties.

Objects in System

Object Properties

Vehicle Model Vehicle ID, Trip Database ID, Route list, EM, ICE,
EGU, Generator, Battery, Transmission, Parame-
ters.

Trip Vehicle ID, Trajectories: velocity, altitude, slope,
longitude, latitude.

Route Route ID, Optimisation Trip IDs, Simulation Trip
IDs, Vehicle ID, Representative Trip ID, distance
offset from Representative Trip to all other Trips.

EMS Strategy Route ID, EMS Strategy.

Table 3.2: Description of folders in the implemented system.

Folders in System

Folder Description

Database Individual databases for each user with; GPS data,
Trips, Routes, Vehicle Model and EMS Strategies.

EMS Optimisation Functions to calculate an optimal EMS Strategy.

Route Identification Functions for processing GPS data, creating Trips
and Routes, finding torque trajectories etc.

Vehicle Model Functions modelling the vehicle, such as fuel con-
sumption.

EMS
Strategy

Trip

Trip

Route

Vehicle
Model

Figure 3.3: Illustration of the owner relation between objects
in the system. In the figure one Vehicle Model is considered
along with its Trips and Routes. Trips logged by the vehicle
which are not part of any Route are illustrated in a separeate
heap.
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4 Vehicle Modelling

This chapter presents the components considered in the vehicle model as well as the
quasistatic model of them. A description of the inverse simulation approach finalises
the chapter.

4.1 Quasistatic Model

Modelling all aspects of a vehicle is a complex process and requires large computa-
tional power. However, for fuel consumption modelling, only a few components are
necessary to take into account. To further decrease the complexity of the vehicle
model, a quasistatic model is used for each component. In a quasistatic model the
complexity is reduced by neglecting most of the dynamic aspects and speed depen-
dent characteristics are obtained from stationary relations. Using quasistatic models
reduces computational burden, while describing the system behaviour well [9].

The following chapters describes the quasistatic model of the components con-
sidered in the vehicle model.

4.1.1 Chassis

The longitudinal force on a vehicle can be found by approximating the vehicle as a
point mass and use Newton’s second law of motion

Ftraction = Facceleration + Fdrag + Fgravity + Frolling, (4.1)

which explicitly is

Twheels

rwheels

= mea+
ρair

2
cdAfv

2 +mg sin(θ) +mgcr cos(θ). (4.2)

where m is the mass of the vehicle, me equivalent vehicle mass, i.e. including mo-
ments of inertia of the rotating parts, a is the vehicle acceleration, v is the vehicle
velocity, θ is the road slope, ρair is the density of air, g is the acceleration of gravity,
rwheels is the wheel radius, Af is the vehicle frontal area, cd is the aerodynamic drag
resistance coefficient which is assumed constant, cr is the rolling friction coefficient
and Twheels is the torque applied on the wheels [10].

4.1.2 Electric Machine

The EM is typically a permanent magnet machine. It is often modelled using a
black box approach where the EM torque and speed are the inputs and the electric
power loss is the output. Dynamic effects due to temperature and internal moment of
inertia are neglected. The electrical power losses can be found by linear interpolation
in loss maps based on data from steady state measurements, see Figure 4.1a for an
example. Another approach is to approximate the losses as a polynomial with speed
dependent coefficients. The polynomial coefficients are found by linear least square
fitting of a set of angular speeds in the EM loss map. A good presentation of this
method is found in [21].
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(a) Schematic illustration of a two-
quadrant measured efficiency map for a
typical EM. (Original figure found in [10])
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(b) Schematic illustration of a BSFC for an
ICE. (Original figure found in [16])

Figure 4.1: Illustration of an EM efficiency map and a BFSC
map of an ICE.

4.1.3 Internal Combustion Engine

The ICE is either a spark ignited gasoline engine or a diesel engine. These are often
modelled using a black box approach with crankshaft torque and speed as inputs
and the fuel mass rate as the output. As in the case of the EM the dynamic and tem-
perature effects are neglected, and the maximum ICE torque is assumed to depend
only on the crankshaft speed. The mass fuel rate can be found by linear interpo-
lation in Brake Specific Fuel Consumption (BSFC) maps constructed from steady
state measurements in engine test stands. Another approach is to approximate the
losses as a polynomial where the coefficients are speed dependent and determined
by linear least squares from the BSFC map. This is done in the same manner as for
the EM, an example of a BSFC map is depicted in Figure 4.1b.

4.1.4 Engine Generator Unit

For a series hybrid configuration the ICE is, as mentioned earlier, coupled with
a generator. This combined component, the EGU, can be modelled in the same
manner as the EM since a generator is an EM with a reversed torque.

4.1.5 Battery

The battery in a PHEV consists of several battery cells connected in series and/or
in parallel. Complex chemical models are required to model these accurately, which
requires large computational effort for simulation. They are also more accurate than
required for the purpose of energy management. The battery is instead modelled as
an equivalent circuit with a constant internal resistance, shown in Figure 4.2. The
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i

Pbat

Rin

+
− Voc(SoC)

Figure 4.2: Equivalent circuit.

open circuit is assumed affine in the state x, i.e. SoC,

Voc = a0x+ a1. (4.3)

The battery dynamic is thus given by,

dx

dt
= − i

Q
= −Voc(x)−

√
Voc(x)2 − 4RinPbat
2RinQ

, (4.4)

where Rin is the internal resistance of the battery which is assumed to be constant,
Q is the nominal battery capacity, i is the battery current and Pbat is the power
supplied or drawn from the battery terminals.

A final note is that throughout this thesis Li-Ion batteries are assumed since it
is the cell chemistry predominantly used for PHEVs.

Since the battery is perhaps the single most expensive component of a PHEV,
it is desirable that its lifetime is consistent with the lifetime of the vehicle. There
are several factors affecting the battery lifetime. For example, cell temperature,
Ah throughput, C-rate and the SoC interval in which the battery is operated [26].
A PHEV is usually limited to only operate within approximately 15 – 85 % of the
battery capacity, since the wear and tear of the battery is significantly larger outside
this interval. Temperature effects are for simplicity not treated in this thesis.

4.1.6 Power Electronics and Auxiliary Systems

Power electronics are either assumed part of the electric machine map or modelled
as a constant efficiency factor. The auxiliary system is assumed to have a constant
request of electrical power.

4.1.7 Transmission, Final Drive and Clutch

The efficiency of a transmission and final drive is assumed constant. The clutch is
modelled lossless and without dynamics.

4.1.8 Friction Brakes

The friction brakes are assumed to be instantaneous and are only used when; the
EM is saturated during regeneration, to avoid violating the upper SoC constraints
or during heavy breaking.
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4.2 Inverse Simulation Approach

To calculate the requested traction torque at the wheels, Twheels, an inverse simula-
tion approach is used. Given the road slope, θ, and velocity, v, the requested torque
can be calculated by solving equation (4.2) for Twheels. This is a non-causal method
since the resulting velocity is used to find the required torque. The main advantage
with this approach is that it only requires a small amount of computational power.

Once Twheels is found for all samples along the route, the EMS is used to decide
how much torque should be applied by the ICE, Tice, and the EM, Tem. The exact
relation between the torques depends on the actual vehicle configuration but the to-
tal torque applied on the wheels from the EM and the ICE must equal the requested
torque.
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This chapter formulates the EMS as an optimal control problem, after which three
different optimisation techniques are presented.

5.1 EMS as an Optimal Control Problem

When formulating the EMS as an optimal control problem the objective is to min-
imise the fuel cost under constraints formed by the vehicle architecture. By using
a quasistatic vehicle model combined with an inverse simulation approach, both
described in Chapter 4, Vehicle Modelling, the input signals to the system are the
velocity trajectory, v, road slope trajectory, θ, and the gear shifting sequence, gear.
The only state, x, is SoC and the control signals are the torques from the EM, Tem,
and the ICE, Tice. For easier notation, the input signals are compiled into an input
signal vector, z, and the control signals into a control vector, u.

If the future driving conditions are fully known (v and θ) the optimal (determin-
istic) control problem is to find a feasible control signal, u, that minimises the cost
criterion J i.e. the fuel cost. In this context, a feasible u is a signal that ensures
that the requested torque at the wheels, Twheels, is met in every sample.

The optimal control problem along a route can then be formulated as

J∗ = min
u∈U

S(x(tf )) + cf

∫ tf

t0

ṁf (t, u(t)) dt

s.t. ẋ(t) = f(x(t),u(t))

= −Voc(x(t))−
√
Voc(x(t))2 − 4RinPbat(u(t))

2RinQ

x(t) ∈ [xmin, xmax]

u(t) ∈ U(z(t),x(t))

where

u(t) = [Tem(t), Tice(t)]

z(t) = [v(t), θ(t), gear(t)].

(5.1)

In the cost criterion, S is the final cost. It penalises low final states and represents the
cost to recharge the battery at the end of the route. The parameter cf translates the
fuel consumption into fuel cost by multiplication with the integral of the fuel mass
rate ṁf . The gear selection is not treated as a control signal but is instead calculated
using a gear shifting strategy based on the vehicle velocity and acceleration. This
approach is used to reduce the complexity of the problem.

The problem formulation is a nonconvex nonlinear and mixed integer optimisa-
tion problem and it can hence, in general, not be solved analytically.

5.2 Optimisation techniques

There exists several different optimisation techniques to solve the EMS control prob-
lem defined by the equation system (5.1). The three predominant techniques are;
convex optimisation, dynamic programming and ECMS.
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5.2.1 Convex Optimisation

For some vehicle configurations it is possible to make a convex approximation of
the equation system (5.1) and solve it using convex optimisation. This method
has been investigated in [18, 14] among others. Defining the problem as a convex
problem can reduce the computational burden significantly. However, rewriting
the minimisation and its constraints as a convex problem is not always obvious
and it might require unwanted approximations. Another drawback with the convex
optimisation approach is that it cannot handle integer decisions meaning that gear
decision and engine on/off must be predecided or found by iterating.

5.2.2 ECMS

The Equivalent Consumption Minimisation Strategy (ECMS) is perhaps the most
common way to solve the EMS problem if future driving conditions are largely
unknown. It is derived from the Pontryagin Principle, see for example [19]. The
main idea in ECMS is to find the control signal u that, in every time sample,
minimises the cost function

J(t,u(t)) = ṁf (t,u(t)) ·HLVH + λ(t) · Pbat(u(t)), (5.2)

where ṁf represents the fuel mass rate of the ICE, HLVH is the lower heating value of
the fuel used and Pbat is the power supplied by the battery. Here λ is the equivalence
factor which translates battery energy into equivalent fuel energy. Hence, at each
time sample, t, the value on λ affects if it is favourable to use the ICE and/or the
EM [10].

Theoretically, for a given vehicle and a drive mission with full a priori informa-
tion, it is possible to find a constant scalar value on λ that ensures that the final SoC
is reached. For the given trip an optimal EMS strategy is then found by the ECMS
with the usage of this scalar value. Unfortunately, a constant λ is only possible to
find if the open circuit voltage of the battery is assumed constant or with a very
small voltage dependence which is not always a valid assumption.

One example of a proposed implementation is that a look-up table with equiva-
lence factors could be calculated and sent to the vehicle, see [13]. The equivalence
factor is then given by the current SoC level and distance travelled. The advantage
with this solution is that the trip does not need to be fully known, good approxima-
tive information is enough for the EMS to be stable for external disturbances.

5.2.3 Dynamic Programming

Dynamic Programming (DP) is a powerful technique used to solve nonlinear, non-
convex and mixed integer optimisation problems. It is based on Bellman’s principle
of optimality :

The Principle of Optimality: An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions
must constitute an optimal policy with regard to the state resulting from
the first decision [1].
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Illustrated by a simple example; if the shortest distance between the points A and
D is defined by the sequence A – B – C – D, the shortest distance between B and D
must be defined by the sequence B – C – D. For the EMS problem defined in this
thesis, DP guarantees finding the global optimal solution [2].

DP is a numerical technique and hence a discretisation is required for the state
(x), time (t), input signal (z) and control signal (u). The running time of DP algo-
rithms increases linearly with the number of time steps but exponentially with the
number of states and control signals. It is therefore preferable to keep the discreti-
sation resolution of the state and control signal low to obtain a short computation
time, however a too sparse grid results in a degraded solution.

Assume that the state is discretised into m points, x1, ..., xm and that the time is
discretised into N samples, t1, ..., tN . The state dynamics are discretised using the
one step Euler method with a sample time ∆t, meaning that the SoC dynamic is
given by,

x(ti+1) = x(ti) + ∆t · f(x(ti),u(ti)) (5.3)

The DP algorithm for the EMS problem can then shortly be described as follows:

1. For the last sample of the driving mission, t = N , assign an end value, S, for
x ∈ [x1, ..., xm]; where S(x ≥ xfinal) corresponds to the cost of recharging the
battery from x back to xinit and S(x < xfinal) = M where M is a large number
to ensure that the final SoC is not below the desired final value, xfinal.

2. At the previous sample, t = N −1, use electric and/or fuel energy to minimise
JN−1 = stage cost + S, where stage cost is the fuel cost from t = N − 1 to
t = N .

3. For the remaining samples, t ∈ [1, N − 2], continue in the same manner to
choose the combination of electrical and fuel energy that minimises Jt.

The decision to use fuel or electric energy at sample t can be expressed as the
following recursive equation,

Jt(x(t)) = min
u(t)∈U

{cfṁf (u(t))∆t+ Jt+1(x(t+ 1)) + Γ(x(t+ 1))} , (5.4)

where Γ is a penalty function to keep the solution within the allowed SoC region, cf
is the fuel cost, ṁf is the mass flow rate of fuel and ∆t is the sample time.

The main advantage with the DP solution is that the cost matrix J ∈ Rm×N

contains the optimal cost for the remaining part of the drive mission for all SoC grid
points. J can therefore be used to implicitly give a state feedback,

u∗(t) = arg min
u(t)∈U

{cfṁf + Jt+1(x(t+ 1))}. (5.5)

Thanks to this feedback, external disturbances are easily treated by DP since
every element in J only considers the future irrespectively of past values; recall the
simple distance example presented earlier. However, the usage of the cost matrix in
a real time implementation requires good a priori information about the trip. If not,
the consequence might be a feedback law that is far from optimal. DP is therefore
mainly used as a reference to evaluate other techniques to solve the EMS problem.
But, there are EMS formulations where the DP algorithm is very useful, which is
seen in the case study.
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Part III

Case study: Optimal Mode
Selection in Volvo V60 PHEV.
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6 Case Introduction

This chapter presents the case study and introduces the driving modes in the Volvo
V60 PHEV. The chapter is ended with an overview of the system implementation
for the case study.

6.1 Driveability and Predictability

Driveability is an important concept for automotive manufacturers, as it is very
noticeable for the customer and the overall driving experience. It is therefore com-
mon practice to predefine different driving modes, e.g. Sport, Eco, Electric Drive,
Charge Sustaining. These are usually defined by heuristic rules to satisfy perceived
driveability constraints defined by the manufacturer. The idea is that the vehicle
should behave consistently within each mode, so that the driver can anticipate the
behaviour reasonably well. Typically, it is up to the driver to decide the driving
mode. However, for a PHEV it is not a trivial task to select a fuel optimal sequence
of driving modes, e.g. when to drive in Electric Drive or in Charge Sustaining mode.
Consequently, a poor selection of driving modes can easily result in an increased fuel
consumption.

The research perspective within the academic community has mainly been fo-
cused on optimal energy management; the industry preference for predefined driv-
ing modes has not been considered since usage of heuristic modes is suboptimal
in terms of fuel economy and incorporation of driveability constraints in sophisti-
cated optimisation techniques such as convex optimisation, DP and ECMS is not
straightforward. Therefore, driveability has often been neglected by academia and
the developed methods have therefore not received widespread usage in industry.
The aim of this case study is to, at least partly, bridge this gap between academia
and industry. The main idea is to consider the Volvo V60 PHEV and its driving
modes that decide torque split and engine state, and identify the most fuel economic
sequence of modes along different routes.

Moreover, to ensure some form of predictability for the driver, the driving mode
is only allowed to change at a limited number of points along the route, denoted
decision points. The decision points are placed at positions along the route where
the driving conditions change, e.g. from urban to highway driving or from uphill to
downhill. With this approach it is possible to obtain the best possible fuel economy
while using the rule-based modes, defined to ensure driveability and predictability.

6.2 Driving Modes in Volvo V60 PHEV

In the Volvo V60 PHEV there are three principal driving modes; Pure, Hybrid and
Power. In addition it is possible to activate Save which is not defined as a mode
by the manufacturer. It can, however, in an energy management context also be
considered as a mode. Power is not treated in this paper since it emphasises per-
formance, e.g. acceleration and vehicle dynamics, rather than fuel economy. The
driving modes considered in this thesis are by Volvo [24] described as follows :
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Pure
“The diesel engine shuts off, letting the electric motor do all the work, (...) so that
you can drive in silence with zero tailpipe emissions.”

Hybrid
“Both the engine and the electric motor work in symbiosis for you. (...) Letting you
appreciate the journey, without unnecessary stops and interruptions.”

Save
“The diesel engine will recharge the battery to a level where you will be able to drive
up to 20 km on pure electricity at a later occasion.”

6.3 System Implementation for Case Study

For this case study, a modified version of the generic system described in Chap-
ter 3, System Design, is used. The implemented system is illustrated in Figure 6.1.
By comparing this system with the generic system, depicted in Figure 3.2, a few
differences can be noted:

� The system is used for optimisation as well as simulation.

� The vehicle model has been assigned three driving modes.

� The EMS strategy is either a version of CDCS or mode selection calculated
with a modified DP presented in Section 8.2.2, A Suboptimal DP Algorithm.

The system treats one Route at a time according to:

1. The Route is loaded from the Route database.

2. If the Route does not exist a processing of the GPS data and clustering of
resulting Trips are performed. If the Route is not found after this, the system
returns an error message.

3. Trips included in the Route are divided into trips for optimisation and simu-
lation.

4. Decision points are identified and an EMS Strategy for the Route is computed
and stored.

5. A simulation using the Vehicle Model, its Modes and the EMS Strategy for
mode selection as well as CDCS is performed on all simulation Trips.

6. Results are stored as .txt files and .png figures in a database.

In Appendix A, MATLAB Guide all Matlab files for the implementation are sum-
marised and described. Note that this appendix is not intended to be a manual but
rather an introduction and overview.
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Figure 6.1: System implementation for case study (c.f. Fig-
ure 3.2).
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6.4 Case Study Data

Logged driving data from six different drivers, in the county of Västra Götaland
and the Kungsbacka municipality in the southwest part of Sweden, are investigated.
The data corresponds to approximately two months of driving and is taken from the
Swedish Car Movement Database, see [12]. However, the data has been preprocessed
and is stored as structs in Matlab where the latitude, longitude, velocity and
altitude data are stored as separate vectors.

These six drivers have been manually selected since they are all commuters with
a distance from home to work within an interval of 47 – 87 km. For the Volvo V60
PHEV this corresponds to routes slightly longer than the AER and up to twice the
AER. The routes investigated in this case study fulfil the following requirements for
both directions, i.e. to work and from work,

� All Trips included in a Route differ less than 1.5 km from the median value of
all Trips in the Route.

� A Route must consist of 5 Trips for optimisation and at least 5 Trips for
simulation.

� For Routes with 15 or more Trips, 40 % of the Trips are used for optimisation.
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7 Modelling of Volvo V60 PHEV

This chapter presents the modelling of the vehicle configuration and driving modes
of the Volvo V60 PHEV.

7.1 Vehicle Configuration

Volvo V60 PHEV is a parallel hybrid, where the electric motor powers the rear
axis while the diesel engine powers the front axis. At high speeds the EM can
be declutched from the powertrain, which decreases the drag losses. The ICE can
also be used to power the generator and thereby recharge the battery. A schematic
illustration of the configuration is depicted in Figure 7.1a, and the key powertrain
components are summarised in Table 7.1.

7.1.1 Engine

At a given angular speed, ωice, the mass fuel rate, ṁf , of the ICE is assumed affine
in torque

ṁf = (c0(ωice)Tice + c1(ωice))eon, (7.1)

where eon is the binary engine state. The coefficients c0:1 are speed dependent and
are determined by linear least squares from the BFSC map.

7.1.2 Electric Motor

The EM is placed at the rear axis and is modelled jointly with the inverter; the
combined electrical power is assumed quadratic in motor torque

Pem = d0(ωem)T 2
em + d1(ωem)Tem + d2(ωem). (7.2)

The coefficients d0:2 are speed dependent and are determined by linear least squares
from the power loss maps of the EM and the inverter. The torque is defined positive
in motoring mode and negative in generator mode.

7.1.3 Integrated Starter Generator

The generator (or Integrated Starter Generator - ISG) is modelled jointly with its
inverter; the combined electrical power is assumed quadratic in generator torque

Pisg = e0(ωisg)T
2
isg + e1(ωisg)Tisg + e2(ωisg). (7.3)

The coefficients e0:2 are speed dependent and are determined by linear least squares
from the power loss maps of the ISG and the inverter. Furthermore, the ISG is
assumed to only operate in generator mode, i.e. Tisg ≤ 0.
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Table 7.1: The main vehicle data.

Chassis

Mass/Air res. 1930kg, 0.74

Gearbox ratios 4.1, 2.4, 1.6, 1.2, 0.9, 0.7

Final gear ratio 1.9 (front), 9.2 (rear)

Aux. load. 325W

Battery Li-Ion

Voltage/Capacity 380V, 11kWh

Engine 5 Cyl. Diesel

Max Power/Torque 158kW, 440Nm

Electric Motor Permanent Magnet

Max Power/Torque 50kW, 200Nm

ISG Permanant Magnet

Max Power/Torque 21kW, 54Nm

7.1.4 Battery

The battery is modelled as an equivalent circuit with a constant internal resistance
in series with a voltage source, c.f Figure 4.2. The open circuit voltage is assumed to
be linear in the state, x. The battery state dynamic is thus given by equation (4.4),
revisited here for simplicity,

dx

dt
= − I

Q
= −Voc(x)−

√
Voc(x)2 − 4RinPbat
2RinQ

. (4.4 revisited)

The battery power is given by

Pbat = Pem + Pisg + Paux, (7.4)

and the battery power limits are imposed as speed dependent torque constraints on
the EM and ISG.

7.1.5 Transmission

1. Front Axis: The final drive has a gear with fixed ratio rfw and a constant
efficiency ηfw. The gearbox has fixed gear ratios rgb,i, i = 1, ..., 6, with torque
losses that are given by a look-up-table, Tgb,loss(ωwh,rgb.i,eon). The vehicle is
assumed to follow the predefined gear shifting strategy depicted in Figure B.1.

2. Rear Axis: The final drive has a fixed gear ratio rrw and a constant efficiency
ηrw. The mechanical drag losses are given by a look-up table, Tdrag,rear(ωwh,crw),
where crw represents the clutch state at the rear axis.

3. ICE – ISG: The coupling has a fixed gear ratio risg and a constant efficiency
ηisg.
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7.1.6 Main Powertrain Equations

The forces acting on the powertrain are calculated using an inverse simulation ap-
proach, as described in Chapter 4.2, Inverse Simulation Approach. This means that
the torque demanded at the wheels, Twheels, is to follow a given velocity and road
slope trajectory determined by equation (4.2), revisited here for simplicity,

Twheels

rwheels

= mea+
ρair

2
cdAfv

2 +mg sin(θ) +mgcr cos(θ), (4.2 revisited)

where rwheels represents wheel radius, v velocity, a acceleration, θ road slope, m
vehicle mass and me equivalent vehicle mass, i.e. including moments of inertia of
the rotating parts. Hence, the main torque equation is

Ttot = Twheels + Tgb,loss,i + Tdrag,rear =

ηrwrrwTem + ηfwrfwrgb,i(Tice +
risg
ηisg

Tisg).
(7.5)

It is assumed that if the ICE is on, the input torque to the transmission is positive,
i.e. Tice +

risg
ηisg

Tisg ≥ 0.

7.2 Driving Modes

The modelling of the modes are based on assumptions made by the author and
is intended to imitate the behaviour of the modes described in Chapter 6, Case
Introduction. Note that the modelled modes do not reflect the exact behaviour of
the actual modes in the Volvo V60 PHEV.

7.2.1 Pure

Both the engine and the generator are declutched and the electrical motor delivers
all traction torque,

eon = 0 =⇒ Tice = 0, Tisg = 0

Tem =


Ttot

rrw
· 1

ηrw
if Ttot ≥ 0

Ttot

rrw
· ηrw if Ttot < 0.

(7.6)

If the EM cannot meet the torque request the mode switches to Hybrid.

7.2.2 Hybrid

The engine is started when the power request exceeds a higher threshold value; the
engine is then kept on until the power request drops below a lower threshold value.
Note that the hybrid behaviour is imitated by turning the engine on and off for
different power requests and not by calculating a torque split. The engine state
eon(t), at a time sample t, is thus given by,

eon(t) =


1 if Pd ≥ Pon(x)

1 if eon(t− 1) = 1 andPd ≥ Poff (x)

0 if Pd ≤ Poff (x)

0 if eon(t− 1) = 0 andPd ≤ Pon(x)

(7.7)
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Figure 7.1: Illustration of the Volvo V60 PHEV configuration
and demanded power thresholds for engine on/off in Hybrid.

where Pd is the current power demand. Pon and Poff are the power thresholds
for turning the engine on and off; the values are SoC dependent and illustrated in
Figure 7.1b.

When the engine is on, eon(t) = 1, the operating points are:

Tisg =
0.2−min(max(x,0.1), 0.2)

0.1
Tmin
isg

Tice =
Ttot − risg

ηisg
Tisg

ηfwrfwrgb,i

Tem = 0

(7.8)

where Tmin
isg is the ISG lower torque constraint. Note that the ISG will recharge the

battery if the SoC drops below 20 %, thus ensuring a charge sustaining behaviour
around the lower SoC limit. The EM is declutched for speeds above 120 km/h.

When the engine is off, eon(t) = 0, the operating points are:

Tisg = 0, Tice = 0

Tem =


Ttot

rrw
· 1

ηrw
if Ttot ≥ 0

Ttot

rrw
· ηrw if Ttot < 0.

(7.9)

7.2.3 Save

The EM is declutched at all times which decreases drag losses at the rear axis but
instead prohibits regeneration from braking and downhill driving. The torques are
given by,

eon = 1 =⇒ Tem = 0

Tice =
Ttot − risg

ηisg
Tisg

ηfwrfwrgb,i

Tisg =
0.4−min(max(x,0.1), 0.4)

0.3
Tmin
isg .

(7.10)

Note that the ISG will recharge the battery if the SoC drops below 40 %, this to
ensure that up to 20 km of electrical driving is possible once Save is de-activated.
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8 Optimal Mode Selection

The first part of this chapter introduces the reader to the concept of decision points.
The major part of the chapter is then spent on developing an algorithm that identifies
the optimal mode selection for each decision point along a route, while considering
the predictability of the vehicle.

8.1 Decision Points along a Route

Consider a commuter that drives along the same route to work every day. One could
argue that it would be intuitive for the driver, if the driving mode changes only at
points along the route where the driving conditions tend to change. For example, it
would make sense to stop electric driving and start the engine when entering a steep
uphill segment or when leaving a sub-urban area to enter a highway. In this thesis,
positions along the route where either the speed profile or the road slope changes
are denoted decision points. More specifically, three velocity and three road slope
classifications are defined, as indicated in Table 8.1. If the vehicle is only allowed to
change driving mode at the decision points a repetitive behaviour from day to day
is obtained, giving the vehicle a good predictability along the route.

Identifying decision points is roughly done in five steps, where all trips along a
route is considered.

1. Resample each trip from a second basis to a 100 m basis to keep the compu-
tation time down.

2. Assign a velocity and road slope classification according to Table 8.1, for each
sample in every trip.

3. Identify the most frequently occurring velocity and road slope classification for
each sample, this is the route classification.

4. Samples where the route classification changes are identified as decision points.

5. If two decision points are within 500 m, the decision point identified with the
road slope classification is prioritised.

An illustration of the velocity and road slope classification as well as identified
decision points along a route is given in Figure 8.1.

Table 8.1: Classification values for velocity and road slope.

Property Decision Point Classification Unit

Urban Highway Motorway

Velocity < 50 50 – 90 > 90 km/h

Downhill Flat Uphill

Road Slope < -1 -1 – 1 > 1 %
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Figure 8.1: Illustration of identified decision points along a
route.

8.2 Optimal Driving Mode Selection

Given a route with N decision points, the optimal mode selection problem can be
formulated as the following optimisation problem

J∗ = min
u1:N

S(x(tN+1)) +
N∑
k=1

L(t,uk)

s.t. x(tk+1) = x(tk) +

∫ tk+1

tk

f(x(t),uk) dt, ∀ k ∈ [1,N ]

x(t1) = xinit

x(t) ∈ [xmin, xmax]

uk ∈
{
Save,Hybrid,Pure

}
where

L(t,uk) = cf

∫ tk+1

tk

ṁf (t,uk) dt

f(x(t),uk) = −Voc(x(t))−
√
Voc(x(t))2 − 4RinPbat(uk)

2RinQ
.

(8.1)

L represents the fuel cost incurred over the route segment between two consecutive
decision points and cf denotes fuel price. Note that L is completely defined by
the driving mode as the operating points of the ICE, EM and ISG are decided by
heuristic rules within each mode. The final cost is given by S, which penalises low
final states and represents the cost to recharge the battery at the end of the route.

By comparing this equation system with equation system (5.1) two main dif-
ferences can be noted. In equation system (5.1) the minimisation is done in every
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time sample, while it is done over a segment in equation system (8.1). Further, the
control signal is the active mode over a segment instead of the torques Tice and Tem
in every sample. This decreases the computational burden significantly compared
to the EMS problem presented in Section 5.1, EMS as an Optimal Control Problem.

8.2.1 Solution with Dynamic Programming

The optimal control problem defined above is a sequential problem with N steps,
representing the decision points along the route where it is allowed to change driving
mode. Furthermore, it is an integer decision problem, as the control signal u is the
choice of driving mode. The optimisation technique Dynamic Programming (DP),
introduced in Chapter 5.2.3, Dynamic Programming, is well suited to solve this type
of sequential problem formulation. To solve the problem with DP the SoC state,
x, is gridded into m points, x1,...,xm, and the time intervals between the decision
points are time discretised with a sampling time of one second.

Starting at the end position of the route, k = N + 1, the cost-to-go matrix J
is initialised with the final cost S; the DP equation is thereafter solved recursively
backwards over the decision points and the gridded values of the state,

Jk(xi) =

S(xi), k = N + 1

min
uk,i

{
L(uk,i) + Jk+1

(
xi + f̃k(xi,uk,i)

)}
, k ∈ [1, N ]

(8.2)

where i = 1,...,m and f̃k(xi,uk,i) represents the change in the state between two con-
secutive decision points. Thus, at each decision point k the cost-to-go is represented
by a vector Jk, which is defined over the gridded values of the SoC state, x1:m.

Figure 8.2 depicts the optimal driving mode, as obtained by

u∗k,i = arg min
uk,i

{
L(uk,i) + Jk+1

(
xi + f̃k(xi,uk,i)

)}
, (8.3)

at the different decision points along the route. The results show that a specific
mode is not necessarily optimal over a connected set with respect to the SoC state.
This behaviour can be explained mainly by the final penalty function S and the
limited freedom in terms of control decisions; i.e. the torque split decision is given
by heuristic rules and the number of decision points along the route is limited. Thus,
to avoid a too low final state and a high final cost, the optimal mode selection might
be quite intricate.

For a driver the optimal driving mode, as given by equation (8.3), might be expe-
rienced as counterintuitive. For example, consider a vehicle that is driven regularly
along a commuter route. Assume that, at some day, the vehicle reaches a decision
point at 50% SoC and Pure is selected as the optimal mode, i.e. electric driving.
The following day the vehicle could reach the same decision point at a higher SoC
value and Save might be selected as the optimal mode; thus meaning that the engine
will be turned on at a higher SoC than the previous day when electric driving was
selected. This is not a predictable driving behaviour, as most drivers would expect
the engine to be turned on, only if the SoC is lower than at the previous day.
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Figure 8.2: The optimal driving modes at the different decision
points along the route illustrated in Figure 8.1 for one of the
trips. The result is obtained with Dynamic Programming.

8.2.2 A Suboptimal DP Algorithm

To ensure some form of predictability for the driver, a slightly suboptimal mode
selection algorithm is proposed. The algorithm ensures that a driving mode is “opti-
mal” over a connected set with respect to SoC, at each decision point. Furthermore,
the mode sequence with respect to the state is fixed: Save at low SoC values, Hy-
brid at intermediate values and Pure at high values; i.e. use of the engine should
be favoured as SoC decreases. The optimisation variables in the proposed algorithm
are the SoC threshold values, i.e. the SoC values where the driving mode changes
for all given decision point.

The algorithm is described by the following steps:

1. At the end of the route initialise the cost-to-go with the final cost S

ĴN+1(xi) = S(xi) i = 1,...,m (8.4)

2. For all decision points k = N, N − 1,...,1 compute

J̄ jk(xi) = L(uj) + Ĵk+1(xi + f̃k(xi,u
j)), (8.5)

i.e. equation (8.2) but without minimisation with respect to u; thus forming
three intermediate cost-to-go vectors, one for each mode j ∈ {Save,Hybrid,Pure}.

3. The new cost-to-go vector, at a decision point k, is obtained by concatenating
three segments of the J̄ jk ’s. The concatenation points are given by

(â, b̂) = arg min
(a,b)

{ a∑
i=1

J̄Savek (xi) +
b∑

i=a+1

J̄Hybridk (xi) +
m∑
b+1

J̄Purek (xi)
}
. (8.6)

This gives the cost-to-go vector as

Ĵ∗k (xi) =


J̄Savek (xi), if xi ∈ [x1,xâ]

J̄Hybridk (xi), if xi ∈ [xâ+1,xb̂]

J̄Purek (xi), if xi ∈ [xb̂+1,xm].

(8.7)
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The optimal driving mode at decision point k is thus given by

û∗k(x) =


Save, if x ∈ [x1,xâ)

Hybrid, if x ∈ [xâ,xb̂)

Pure, if x ∈ [xb̂,xm].

(8.8)

Step 3, i.e. equation (8.6), can be interpreted as minimising the area below a curve
defined by three separate segments; each corresponding to an interval in one of the
three intermediate cost-to-go vectors, J̄ jk . This is illustrated in Figure 8.3, where
the three intermediate cost-to-go vectors are depicted at a specific decision point.
The conventional DP algorithm, given by equation (8.2), is in this case equivalent to
minimising the same area, but without any restriction on the number of segments,
as is seen in Figure 8.2. However, despite the restrictions imposed on the cost-
to-go, the suboptimal DP algorithm only increases the cost marginally, as seen in
Figure 8.4. This implies that overall fuel cost should not be affected very much by
the suboptimal DP algorithm.

The final EMS strategy for mode selection along the route illustrated in Figure 8.1
is obtained by computing the optimal mode selection (c.f. Figure 8.2) for each trip.
At each decision point k; the optimal mode selection is determined by averaging
over the results obtained for the individual trips. Figure 8.5 illustrates the final
EMS strategy. In the figure it can be seen that the majority of the SoC values
gives either Save or Pure. Exceptions are for some intermediate values and at a few
decision points where Pure cannot meet the requested power demand and it is not
desirable to keep a constant SoC with Save. This implies that the heuristic rule used
for engine on/off in Hybrid is not optimal in terms of fuel economy.
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route shown in Figure 8.1, given by the suboptimal DP.
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9 Results

This chapter presents the identified routes as well as a comparison between the
optimal mode selection and a CDCS strategy along the routes.

9.1 Identified Routes

The system identified five of the six commuting routes in the investigated data. The
identified routes are illustrated in Figure 9.2 and summarised in Table 9.2.

9.2 Simulation Results

To investigate the benefits with a route optimised mode selection, a comparison
is made with CDCS. The CDCS is here implemented by Pure followed by Hybrid,
when SoC drops below 20 % for the first time.

Since the Volvo V60 PHEV can be charged at home and work, an initial SoC
corresponding to a fully charged battery, xinit = 0.8, is investigated. Figure 9.1
shows SoC trajectories for each route, either to or from work, when using the mode
selection EMS strategy. Note that even though the velocity is close to constant
during long segments for some of the routes, several decision points are identified on
those segments. These are identified from the road slope, which is not shown in the
figures due to space limitations. Table 9.3 summarises the average fuel consumption,
final SoC, Ah-throughput and C-rate along each route for the mode selection and
CDCS.

Route A – From Work is depicted in Figure 9.1a. It can be seen that the mode
selection is quite predictable, in the sense that a similar sequence of modes is chosen
along the route. At 25 of the 35 decision points the same mode is selected for all
simulations. Pure is the predominant mode, since the fuel cost is minimised if the
battery is depleted at the end of the route. However, Save is favoured during high
power demands, clearly seen around 27 – 35 km, where there is uphill driving at high
speed. The altitude profile for this route can be seen in Figure 8.1. In the figure
it can be seen that the mode sometimes changes from Pure to Hybrid between two
decision points; this occurs if the power demanded at the wheels cannot be satisfied
in Pure, i.e. the driving is more aggressive than anticipated. Except for these
instances, around 5 km for example, Hybrid is almost never selected. This further
motivates the reasoning in Section 8.2.2, A Suboptimal DP Algorithm, in which it is
concluded that the heuristic rule used for engine on/off in Hybrid is not optimal in
terms of fuel economy.

Route C – To Work, depicted in Figure 9.1c, further illustrates that Hybrid is
not fuel optimal. This can be seen by the rather high final SoC, around 27 % in mean
value with an extreme value of 40 %. Notable is that when driving from work, the
numbers are clearly in favour for the mode selection. Mode selection is better from
work since the power request is considerable smaller in the end of that direction and
Pure can be used to empty the battery. CDCS is a better strategy when driving
to work since it is allowed to switch between Pure and Hybrid without regard to
decision points. When the vehicle is in the CD phase: Hybrid is activated during
segments where Pure cannot meet the power request and Pure is then switched back,
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Table 9.1: Economic impact over a year per route.

Route kg/route litre/year kWh/route kWh/year SEK/year

A 0.17 31.64 0.33 74.75 474 + 67 = 541

B 0.04 7.86 0.30 67.57 118 + 61 = 179

C -0.13 -23.59 1.19 267.05 −353 + 240 = −113

D 0.02 0.41 0.14 32.42 6 + 29 = 36

E 0.03 4.92 0.43 97.02 74 + 87 = 161

thus ensuring that the battery is depleted at the end of the route while meeting the
power request throughout the route. Note that the distribution of decision points
are not worse for Route C than any other route. It is therefore reasonable to believe
that a more sophisticated algorithm for identifying decision points would not (or
only marginally) change the outcome for Route C.

That Hybrid is not fuel optimal can also be seen by inspecting Route B. The
benefits for this route arises from the combination of Pure and Save over smaller
segments at the end of the route when driving from work.

Table 9.1 presents the potential economic gain over a year for each route, if the
driver works 225 days, the fuel price is 15 SEK/l, the weight of diesel is 0.832 kg/l

and the electricity price is 0.9 SEK/kWh. Route A and B are the routes that have
SoC trajectories closest to the blended trajectory depicted in Figure 2.2 and their
economic gains are also the largest, in accordance with the theory presented in
Section 2.2, Energy Management. Meanwhile, the SoC trajectories for Route E are
very similar to a CDCS solution, c.f. Figure 2.2, and the economic gain is mainly
due to the benefits of using a combination of Save and Pure instead of using Hybrid,
which the CDCS is restricted to.

As mentioned in Section 2.2.3, Blended Strategy, the length of the route in re-
lation to the AER (all electric range) affects the benefits of a blended strategy
compared to CDCS. This is indicated by Route D, which has a length close to the
AER and thus a low fuel consumption and thereby a small economic gain. Route E,
on the other hand, is a quite long route and would therefore be assumed to have a
large potential. However, the number of identified decision points are relatively low
and there are two long segments without decision points, which limits the possibility
for the mode selection to affect the fuel consumption. A more sophisticated algo-
rithm for identifying decision points is therefore believed to increase the performance
along Route E.

It can be seen in Table 9.1 that the economic gain from using the mode selection
is small for all routes, and even negative for Route C. However, the results do not take
the economic impact of the changed lifetime of the battery package into account.
Table 9.3 indicates that the lifetime is increased when using the mode selection
instead of CDCS, thanks to a lowered Ah-throughput and C-rate.
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(b) Route B – To Work
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(c) Route C – From Work
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(d) Route D – To Work
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Figure 9.1: SoC trajectories for simulations along different
routes with the distribution of the mode selections at every
decision point illustrated by the bar diagrams. Note that the
legends and labels are identical for all subfigures but only shown
in subfigure (a) due to space limitations.
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Figure 9.2: Routes identified in the case study.

Table 9.2: Summary of identified routes.

Route Optimisation Simulation D-points

Trips Dist. [km] Trips Dist. [km]

A
To Work 11 59.0 16 58.8 38

From Work 9 59.2 13 58.8 35

B
To Work 6 87.1 8 86.3 44

From Work 5 87.2 5 86.7 46

C
To Work 11 66.9 13 66.6 32

From Work 6 67.2 7 68.1 38

D
To Work 8 47.0 10 47.8 31

From Work 6 47.2 7 48.1 30

E
To Work 11 79.5 16 80.0 30

From Work 6 77.5 8 77.4 28
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Table 9.3: Summary of simulation results along the identified
routes.

Route Strategy Fuel Cons. Final SoC Ah-Through. C-rate

[kg] [%] [Ah] [-]

A

To Work
CDCS 1.145 17.33 25.92 1.181

Mode 1.191 20.54 24.18 1.103

+4.0% -6.7% -6.6%

From Work
CDCS 0.980 20.71 26.03 1.163

Mode 0.765 20.52 25.93 1.160

-21.9% -0.4% -0.3%

B

To Work
CDCS 2.670 15.37 26.85 1.053

Mode 2.715 17.91 23.71 0.929

+1.7% -11.7% -11.8%

From Work
CDCS 2.797 18.90 24.91 0.970

Mode 2.710 19.09 23.69 0.923

-3.1% -4.9% -4.8%

C

To Work
CDCS 1.208 18.77 26.59 0.982

Mode 1.114 22.33 24.52 0.907

-7.8% -7.8% -7.6%

From Work
CDCS 2.055 19.80 25.76 1.119

Mode 2.275 27.03 22.97 0.966

+10.7% -10.8% -13.7%

D

To Work
CDCS 0.291 21.18 25.15 1.256

Mode 0.247 20.49 25.83 1.290

-15.1% +2.7% +2.7%

From Work
CDCS 0.285 18.35 25.71 1.258

Mode 0.327 20.35 24.50 1.198

+14.6% -4.7% -4.8%

E

To Work
CDCS 1.265 18.65 30.46 0.953

Mode 1.285 20.98 26.59 0.832

+1.6% -12.7% -12.7%

From Work
CDCS 1.642 18.54 32.24 0.940

Mode 1.596 20.13 35.25 1.029

-2.8% +9.3% +9.5%
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Part IV

Discussion, Conclusions and
Future Work.
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10 Discussion

10 Discussion

The system developed in this thesis consists of a small set of algorithms, most of
them are found in standard textbooks for optimal control and data mining. Even
though the algorithms are considered as well known within their respective field
their combined potential is large. This thesis has shown that for four out of five
investigated driving patterns an energy management optimisation system can lower
the fuel consumption. It also indicates that the lifetime of the battery can be extend.
However, a more detailed study with more sophisticated models of the driving modes
are required to estimate the actual savings.

The implemented system can handle several different users, which was shown in
the case study, where six users with individual logged driving data where treated.
Given historical driving data as raw GPS data, the system has proven to be able
to create trips and identify commuting routes without the need of digital maps.
However, the system only detected commuting routes for five of the six drivers.

One downside with the relative simplicity of the implemented route identification
routine is that routes, on which minor detours are common, are not identified.
This is due to the inability to combine trips into longer trips in combination with
the trip definition, a trip is the driving between two consecutive parking periods
irrespective of the parking period. This downside was illustrated in the case study
for one of the drivers, where a route From Work could not be identified; the driver
sometimes stopped to do errands, for example shopping at the local grocery store,
before parking at home.

Furthermore, the system is generic and different EMS optimisation routines can
be used without modifying the overall structure of the system. This in combination
with the possibility to use different vehicle models should make the system inter-
esting for a car manufacturer, since it can be developed for one model and easily
extended to cover the whole vehicle fleet. It is here worth stressing that the case
study in this thesis only illustrates one example.

Finally, the techniques left out of this thesis such as gathering GPS data and
server communication is today possible to do with systems such as Volvo On Call and
BMW ConnectedDrive. Therefore, developing a commercial system with the same
architecture as the system developed in this thesis should not be too expansive.
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11 Concluding Remarks

The case study performed in this thesis has shown that the developed system is able
to identify commuting routes from GPS data and calculate an optimal EMS strategy
for each identified route.

The main conclusions of this thesis are:

� The developed system is generic and can handle multiple users and EMS strate-
gies.

� The route identification is good enough for this thesis but needs to be improved
for a full scale system.

� Historical driving data is well suited as a priori information.

� The developed mode selection system has a potential to improve the fuel econ-
omy and increase the lifetime of the battery package.

� The modified DP presented in the thesis considers driveabilty and predictabil-
ity and is only slightly sub-optimal compared to conventional DP.

11.1 Future Work

Two major improvements on the route identification are believed to give a better
overall system performance, namely:

� The possibility to combine trips, e.g. identifying a stop at the local grocery
store as a minor detour from the route.

� A more sophisticated method for identifying decision points.

Interesting topics for further system development and simulations has been iden-
tified as:

� Modifying the system to handle increasing amount of GPS data, i.e. how are
the routes and EMS strategies affected by new GPS data.

� Use ECMS as EMS optimisation technique.
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Appendix

I



A MATLAB Guide

A MATLAB Guide

This chapter gives an overview of the .m files used in this thesis.

A.1 EMS Optimisation

Function Description

classify route Identify decision points along a Route

DP modes Calculate the optimal EMS Strategy for
mode selection along a Trip for a Vehicle
Model

find optimal mode matrix Calculate the optimal EMS Strategy for
mode selection along a Route for a Vehicle
Model

optimal mode sequence Identify the optimal sequence of modes over
a SoC interval at a decision point

A.2 Route Identification

Function Description

cluster routes Cluster Trips into Routes

divide gps into trips Create Trips from stored GPS data

format trip Format a trip, i.e. resample trajectories and
calculate the Twheels trajectory

load route Load a Route

process device trips Function used in cluster routes, performs the
actual clustering

A.3 Vehicle Model

Script Description

mode hybrid Modelling the behaviour of Hybrid

mode pure Modelling the behaviour of Pure

mode save Modelling the behaviour of Save

prepare data volvo v60 phev Calculation of vehicle property trajectories
such as, coefficients for fuel consumption.
Pre-calculation of gear shifting.
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A.4 Simulation A MATLAB Guide

A.4 Simulation

Function Description

save results Store the simulation results as a .txt file in a
specified folder

simulate modes Simulate a drive along a Trip with a Vehicle
using the mode selection EMS Strategy for
modes

simulate modes CDCS Simulate a drive along a Trip with a Vehicle
Model using CDCS for modes

simulate route Simulate a drive along all simulation Trips in
a Route, using mode selection and CDCS

A.5 Plot Functions

Function Description

crop Crop a specified figure

exportfig Export a Matlab figure to a figure in a spec-
ified format

main script plot Main script for running plot functions and
storing the figures

plot cdcs mode Create a plot comparing CDCS and Mode
Selection for a Trip

plot decision points Create a figure with velocity trajectories and
altitude trajectory of a Route and the iden-
tified decision points along the Route

plot gear strategy Plot the gear strategy used

plot google maps Plot a Trip on an interactive Google map (re-
quires internet connection)

plot hybrid limits Plot the Hybrid power thresholds

plot mode matrix Plot the mode selection matrix when calcu-
lated with the modified DP

plot mode matrix holes Plot the mode selection matrix when calcu-
lated with DP

plot soc trajectories Plot SoC trajectories when simulating sev-
eral Trips along a Route as well as the mode
distribution per decision point

plot sub vs optimal Plot the difference in the Cost function for
mode selection when calculating it with DP
and the modified DP

zoomPlot Create a zoom in an existing Matlab figure

III



B Gear Shifting Strategy

B Gear Shifting Strategy
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Figure B.1: Illustration of the gear shifting strategy used in
this thesis.
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C Route Clustering

C Route Clustering

Given several trips, routes are identified using the algorithm proposed in [15] which
shortly can be described as,

1. For each of the k logged trips create a vector with q features where a feature
might be; total part of trip with high acceleration, GPS coordinates after a
certain fraction of the trip, max velocity etc.

2. Combine the vectors into a feature matrix Θ ∈ Rk×q.

3. Create a trip distance matrix D ∈ Rk×k
+ with the standard euclidean distance

between every trips features and all other trips features.

4. Perform a hierarchical agglomerative clustering3 to find trips similar enough
to create a route. Routes are defined by clusters containing at least ρ∗ number
of trips where the clusters are found using a distance criterion.

5. Find the trip that is most similar to the trips (i.e. the trip with a feature
vector in the middle of the room spanned by all trip’s feature vector) in the
cluster. This trip is denoted the representative trip and is used as benchmark
for the route.

3See [11] for a detailed presentation of the clustering algorithm.
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