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Abstract

Einstein’s equations in general relativity are a set of highly non-linear differential equa-
tions. During the 1980’s, Breitenlohner and Maison developed techniques to study sta-
tionary solutions to them by exploiting hidden symmetries revealed after dimensional re-
duction. These methods are applicable in general when seeking solutions allowing for one
or more Killing vectors. When reducing a gravity theory down to three dimensions the
field content can be dualized into a gravity theory coupled to a non-linear sigma model
on a symmetric space G/H. This formulation is manifestly invariant under the Lie groups
G and H of global, respectively local, transformations which can be used to generate new
solutions from known seed solutions. More recent developments, motivated by supersym-
metric string theory, has focused on solution classification through the nilpotent orbits of
G as these correspond to certain black hole solutions (so called BPS solutions).

This has so far been done for symmetry groups of finite dimensions. This thesis provides
a background to the current attempts to generalize this classification in terms of nilpotent
orbits to the infinite dimensional affine Kac-Moody algebras, where it is physically ex-
pected but not yet understood. These algebras arise from the hidden infinite dimensional
symmetries revealed when reducing down to two dimensions and are thus relevant for black
hole solutions with two commuting Killing vectors.

The thesis covers the basics of dimensional reduction with the solution-generating tech-
niques, nilpotent orbits and their classification, affine Kac-Moody Algebras and includes
a Mathematica-package developed to study conjugation in the affine Lie algebras s[! and
g5. It aims at providing a pedagogical introduction and thus bridging the gap between
master students and current research.
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1

Introduction

We begin with an introduction and motivation to this thesis aimed to be ac-
cessible also to a reader outside the field. We then provide an outline for the
following chapters before the actual presentation of the material.

Ever since Einstein published his theory about general relativity in 1915 physicists have
looked upon gravity in a completely new manner. In a history relying on Newtonian
mechanics the developments were truly groundbreaking and still today, after an entire
century of research and experimental evidence, the ideas are so dazzling that many find
them hard to believe at first encounter.

The most revolutionary insight of Einstein is that gravity is not to be considered as a
force, like those we consider in mechanics, but rather as a consequence of the geometry we
live in. We speak about this geometry in terms of a spacetime, the composite object of
space and time, and gravity is a manifestation of its curvature.

A first understanding of what a curved geometry is can be gained by imagining an
ant on a ball. The ant wandering around on the surface experiences the world as a two
dimensional space which, on first sight, does not differ so much from the flat surface of
a table. Should the ant draw a circle and measure the ratio between the radius and the
circumference, however, it would become evident to the ant that this space differs from the
flat table. From this it is clear that the curvature is an intrinsic property of a space and that
it is related to the notion of distance. In differential geometry, the language of relativity,
distances are described in terms of a metric g, a symmetric matrix, and the curvature by
the related Riemann tensor R. The geometry of spacetime and thereby gravity is thus
described by the metric g.

The equations which govern the laws for g are the famous Einstein equations

1
Rul/ - §ngj = 87TT#V

and they relate the left hand side, which describes the geometry, with the right hand side,
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which describes matter. We call a metric g which satisfies these equations for a solution
and the set of all such metrics is known as the solution space.

Although extremely beautiful in their simple presentation, the Einstein equations in
four spacetime dimensions are a set of ten highly non-linear differential equations and are
thus extremely hard to solve. Circumventing this problem by exploiting symmetries to
generate new solutions from known ditto is the underlaying task of which this thesis is a
part.

Shortly after the birth of general relativity curious solutions to the Einstein equations were
found which possessed curvature singularities. These were given the well-known name
black holes after the fact that they have what is called an event horizon surrounding the
singularity. From beyond this horizon nothing can return, not even light, whence the black
hole appears as black. Though argued in the beginning to be a quirk of the theory there is
now empirical evidence of existing black holes in the universe, the closest one in the center
of our galaxy.

Among the rather few analytical black hole solutions that have been found so far, the
simplest ones are the Schwarzschild solution which describes a non-rotating, spherically
symmetric black hole, the Reissner-Nordstrom solution describing a non-rotating, spheri-
cally symmetric black hole with electric and magnetic!charge, the Kerr solution describing
a rotating, axially symmetric black hole without charge and the Kerr-Newman solution
which is like a Kerr black hole with electromagnetic charge.

The Schwarzschild and Reissner-Nordstrom solutions are especially interesting for this
thesis. The former because it will turn out to be a good starting point for finding new
solutions and the latter because it is the simplest example of a black hole that may be
extremal. Charged black holes actually have two event horizons and in the special case
when these coincide the black hole is defined as extremal.

Symmetries

The bearing idea for this thesis and the long-going project of which it is a part is to exploit
symmetries to avoid dealing with the Einstein equations directly. Symmetries is the guiding
principle in most theoretical physics of today and it is in this context used in much wider
sense than in common language. What in physics is meant by a symmetry is nicely put
by Hermann Weyl: “a thing is symmetrical if there is something we can do to it so that
after we have done it, it looks the same as it did before”. A butterfly is symmetric under a
mirror reflection, a square is symmetric under a rotation of 90° and a sphere is symmetric
under any rotation, which is called a continuous symmetry. In this sense also equations can
possess symmetries if there is some mathematical operation we can do on them after which
they look the same as they did before. What we refer to when using the word symmetry
in this thesis is mainly either i) geometrical symmetries of the spacetimes described by the
solutions or i7) symmetries of the governing equations. The latter means that there is one

'Magnetic charges have so far never been found in nature but are still interesting from a theoretical
point of view.



Introduction 3

or more of these mathematical operations, called symmetry transformations, which leaves
the equations unchanged. Such a transformation of the Einstein equations may change the
metric g but only in such a way that the equation still holds, i.e. looks the same. We say
that the equation is invariant under the transformation. The new metric, let us denote it
¢', must therefore also be a solution. Schematically,

. symmetry transformation .
(equation true for g) > (equation true for ¢')

If we know a solution (which we call a seed solution) we can thus generate a new one if
only we know some apt symmetry transformation. This is the beauty of the idea as we
hence can find new solutions to the Einstein equations without actually having to solve
them.

The Einstein equations possess symmetries already as they are, the whole relativity
theory is invariant under general coordinate transformations, but this thesis focuses on
a method to enhance these symmetries further. Through a concept called dimensional
reduction one can reveal what is referred to as hidden symmetries which provide the trans-
formations to find new solutions. We will come back to this shortly.

In a wide range of theories in physics there is an important symmetry called supersymmetry.
This means that all governing equations are symmetric under a transformation between the
two particle types that have been found in nature, bosons and fermions. Different theories
allow for a different number of supersymmetry transformations which usually is labeled
with the letter A (typically N’ = 1,2,4,8). Experimental evidence for this symmetry has
however not yet been found but there are many reasons to believe that a fundamental
theory of the four forces in nature, the electromagnetic force, the weak and strong nuclear
forces and gravitation, should possess this supersymmetry.

The most promising candidate for such a unifying theory is supersymmetric string
theory, although much research remains to answer this big question. In string theory,
mathematics conspires to demand a ten dimensional spacetime to ensure a consistent the-
ory, instead of the four dimensions described in the original general relativity. In order
to explain these extra dimensions, which have so far never been observed, it is assumed
that these are compact and very small. This means that they only become relevant at
extremely high energies, way beyond the reach of mankind in the foreseeable future. By
taking the low energy limit of string theory, meaning neglecting different aspects which
become irrelevant at lower energies, one can find a wide range of supersymmetric gravity
theories depending on how the limit is taken. These theories live in different numbers
of dimensions and by studying them one can gain a lot of insights, both about the more
complex string theory but also about relativity theory in general. It is thus of great inter-
est to investigate gravity in many different numbers of spacetime dimensions although our
everyday appreciation of reality truly is four dimensional.

There is in supergravity a special kind of black hole solutions which are called BPS
solutions. They play an important role for understanding these theories as they preserve
some of the supersymmetry. Furthermore, the condition which defines the BPS property
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is also a condition of extremality which bring an extra motivation to study specifically
extremal black holes.

Dimensional reduction and the relevance of nilpotent orbits

The method of dimensional reduction considers solutions which have some sort of geomet-
rical symmetry. This can be utilized in an appropriate coordinate system such that one
or more coordinates become redundant. It is then possible to employ the mathematical
trick of making this coordinate into a compact dimension and neglect it. In such a way
the number of spacetime dimensions is reduced. This process involves a splitting of all the
objects in the original theory and after all this has been consistently done one ends up with
a theory in a spacetime with one dimension less. This theory may look a bit different due
to the made splits and, with some additional mathematical reformulations, it can in a very
obvious way be shown that it possesses extra symmetries which were not apparent in the
original theory. In technical jargon, one preforms a Kaluza-Klein compactification down to
three dimensions in which all vector content can be dualized into scalars which describes
a non-linear sigma model on a coset space G/H symmetric under the global action of G.
These hidden symmetries now provide transformations and can be used to generate new
solutions.

A special case of these hidden symmetries occur when the dimensional reduction is
carried out all the way down to two dimensions. The symmetries in this setting are vastly
enhanced to involve what is called infinite dimensional symmetries. These are described
in terms of affine Kac-Moody algebras.

It was Geroch who first observed these infinite dimensional symmetries during the 1970’s
and his work was then brought into a more group theoretical? description by Julia. This
approach was carried on by the pioneering work of Breitenlohner and Maison during the
1980’s. More recent developments have been lead by researchers as Bossard, Nicolai and
Pioline among many others. Their study of how the symmetry transformations structure
the solution space has revolved a lot around the concept of nilpotent® orbits.

The set of all solutions that can be reached by transformations from a given seed solution
are called an orbit. To understand the structure of the solution space it therefore comes
down to understand orbits. Specifically for extremal black holes, this amounts to study
the subset of nilpotent orbits as the mathematical property of nilpotency in a certain way
corresponds to the property of being extremal. These orbits have been extensively studied
by mathematicians, especially due to their prominent role in what is called representation
theory, and a lot on this subject has already be done for extremal black holes. In particular
[1], [15] and [18] have provided a foundation for this thesis. However, these studies have
limited their scope to finite dimensional symmetries and there is now ongoing research
on the attempts to generalize the present results to the infinite dimensional Kac-Moody
algebras in two dimensional theories. Not much on this has yet been published and it is in
precisely this gap where this thesis attempts to provide a pedagogical introduction. This

2Group theory is the mathematical framework for handling the symmetry transformations.
3An operator X is nilpotent if there exists an integer n such that X™ = 0.
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work has additionally led to the development of two Mathematica-packages for calculation
of adjoint actions in some Kac-Moody algebras intended to be used as a tool for future
work in this direction.

1.1 Outline and Prerequisites

The purpose of this thesis is to provide an overall introduction to the research on nilpotent
orbits of infinite dimensional algebras in dimensionally reduced gravity theory. Accordingly
it is roughly divided into two halves where the first four chapters are concerned with the
concepts in the context of finite dimensional symmetries. The second half then takes the
step into the setting of infinite dimensional symmetries and their algebras.

The outline of the thesis is as follows. The second chapter on sigma models on symmet-
ric spaces gives a description of the mathematical setting of dimensionally reduced gravity
theories. The intention is to give an understanding of the structures involved without any
specific reference to gravity and without going into too much detail. It is then followed
by chapter three on the dimensional reduction of gravity theories and the use of hidden
symmetries. The chapter is repeatedly exemplified by calculations in pure gravity reduced
from four to three dimensions and alternates between example and general comments. The
chapter ends with the important charge matrix which leads to the motivation on the study
of nilpotent orbits. This is the subject of chapter four which once again focuses on giving a
mathematical background without so much specific references to the gravity context. The
second half of the chapter is however more concerned with the applications in physics and
also contains examples of the use in minimal supergravity in five dimensions.

Chapter five is the first to introduce the infinite dimensional symmetries which is done
through the compactification of four dimensional pure gravity to two dimensions. With
this motivation the basics of affine Kac-Moody algebras are covered in chapter six and ends
with a short introduction to affine orbits and the current state of research. The seventh
and final chapter contains documentation for the two developed Mathematica-packages. A
few appendices follow the thesis to clarify some concepts and calculations and contain a
presentation of some group elements which conjugate between the simple and highest root
vectors in the algebras sls, sly, sl and gs as potentially interesting information for future
work.

Prerequisites

This thesis is intended to be as accessible as possible to a master student in theoretical
physics. This means that a basic knowledge of group theory, differential geometry, gauge
theory and general relativity from now on is assumed but that many calculations are done
explicitly and most concept are introduced in way to also catch readers less acquainted
with these subjects.
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2

Sigma Models on Symmetric Spaces

This chapter will provide the necessary mathematical background and notation
for the description of dimensionally reduced gravity theories reformulated to
sigma models. We begin with the definition of symmetric spaces, which is the
structure of the target manifolds in all the relevant sigma models, and describe
their geometry. Most importantly we construct a metric which will be the central
object in the Lagrangians of the compactified gravity theories. From this we
move on to discuss the sigma models themselves and illustrate them through
the examples of models on SL(2,R)/SO(2) and SL(2,R)/SO(1,1). These will
reoccur in the examples through out the following chapters.

The presentation is focused on the mathematical aspects and the connection
to physics will be done first in the next chapter.

2.1 Symmetric Spaces

A symmetric space G/H for a Lie group G is a space where there exists an involution o on
G, i.e. an automorphism on the group squaring to the identity, where H is a subgroup of the
o-invariant subset of G. The involution has the identity as a fixed point and induces thereby
an involution! ¢ on the Lie algebra g of G. The invariant subset h = {Z € g | 0(Z) = Z}
forms a subalgebra and is the Lie algebra to the subgroup H. Being an involution, ¢ has
the eigenvalues +1 with eigenspaces h, m respectively and g splits into g = h b m, as a
direct sum of vector spaces. Moreover, for o to generate a symmetric space it has to fulfill
three criteria regarding f and its complement m:

[b.,b] C b
[h,m] Cm (2.1)
[m,m] C b,

"'We denote the induced involution with the same symbol.

7
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i.e. h must be a subalgebra, G/H must be reductive and the complement must bracket into
the subalgebra. Furthermore, the two subspaces fh and m are orthogonal in g with respect
to the Killing form, following from that the Killing form respects any automorphism. Note
that since b is not an ideal in g the subgroup H is not normal in G and, accordingly, the
symmetric space G/H does not form a group. In the following G/H will be referred to as
both a symmetric space, coset space and sometimes quotient space.

A special case of symmetric spaces is when the subgroup H is the maximally compact
subgroup K of G. There is a unique (up to conjugation by #) involution ¢ on g which
yields this construction called the Cartan involution [15]. It splits the algebra into

g=tdop

where 0(£) = ¢ is the corresponding Lie algebra to K and where, of course, ¢ and p satisfy
the corresponding relations to (2.1). This is called a Cartan decomposition. Expressed
in the Chevalley basis, the action of 6 is

0(H;) = —H;, 0(E;)=—F;, 0(F)=-E.

Ezxample 1. One of the simplest examples of a symmetric space is SL(2,R)/SO(1,1) for
which the involution on the Lie algebra is o(E) = F,0(H) = —H. The invariant subspace
h = span{E + F'} is indeed the Lie algebra for the subgroup SO(1,1) and with m =
R(E — F) ® RH the relations (2.1) are readily checked.

Example 2. Changing the involutive automorphisms in the example above to the Cartan
involution we have the action §(F) = —F,0(H) = —H and get the symmetric space
SL(2,R)/SO(2) with £ = span{F — F'}, the generator of the maximal compact subgroup
SO(2),andp=R(E+ F) @& RH.

The involution ¢ can be used to construct a generalized transpose on the group
elements which will turn out very useful in the following. For a group element? g = exp[Z]
in G with Z in g, the generalized transpose is defined as

g" = exp[Z]" = exp[—0a(2)]. (2.2)

For the special case of the Cartan involution and the matrix groups SL(n), this construction
yields the ordinary matrix transpose. A general involution o generalizes in this way the
defining property of SO(n), the maximal compact subgroup of SL(n), to the subgroup H
defined by o. Thus, for an element h in H we have

RT =h! (2.3)

and it is this property which will be exploited below.

2For the definition(s) of and associated discussion about the exponential map between Lie algebras and
Lie groups, see appendix A.
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Additionally, the generalized transpose satisfies

(717 = (exp[-2])T = explo(2)] = (¢7) "

(gh)T =TT 20

where the second property can be proven by use of the Baker-Campbell-Hausdorff formula.
On the Lie algebra level the generalized transpose acts as

7T = —0(2). (2.5)

2.1.1 Geometrical structure

The symmetric space G/H is a manifold which can be endowed with a metric. In fact,
the common use of the Killing form as a metric on a Lie group G can be transferred to
the symmetric space G/H and the corresponding unique Levi-Civita connection has the
property that its geodesics and the one-parameter subgroups coincide. Let us look more
closely into how these concepts are defined.

A metric on G

As the metric on the coset space is deduced from the metric on G we begin with reviewing
that construction and introducing the notation.

A Lie group G defines a diffeomorphism on itself through the left-action® L. : G x G — G
as in
Lyf=9f 9.f€g (2.6)

which induces the pushforward Ly, : TyG — T,¢G on the tangent bundle. We define a
left-invariant vector field V' to be a vector field on G which satisfies

v\gf = Lg*v’f Vg.f €G. (2.7)
There is a one-to-one correspondence between left-invariant vector fields on G and the Lie
algebra g of G and any left-invariant vector field V' is defined through equation (2.7) by its

value at the identity V " As the Lie bracket satisfies *
1

o ([V,W]) = [0V, W]

3and also analogously through the right-action.
4 Proof: Let ¢ : M — N be a diffeomorphism and f € F(N) be a function on A/. Then

(VW f = [V,W](fop) =V [W[fog]] =W z[f oyl
=V[(eW)[flog] = W[(e.V)[f]o¢]

= 0.V [(W)[f]] = 0«W [(:V)[f]]
= [‘P*M W*W] O
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for any diffeomorphism ¢ we have in particular that

L. ([v, W]]f) = [LaV], LW | | = VW (2.8)

9f
By use of the induced left-action we can construct the Maurer-Cartan form w as a
Lie algebra valued 1-form on the Lie group, i.e.

we: TG — g
Vi~ Lg71*V

where the isomorphy TiqG = g is silently taken as an identification. A common way to
denote the Maurer-Cartan form is w, = g~ 'dg and should be interpreted as dg being the
identity operator on the tangent space and ¢! the pushforward induced by left translation,
that is

g‘ldg\g = Lg—l*[&- ® dcﬂ 1 T,G — TiaG

where g € G and ¢’ are coordinates on the group. The notation originates from the study
of matrix groups in which dg denotes taking the exterior derivative of each matrix element
in g.

We can use the Maurer-Cartan form to use any non-degenerate symmetric bilinear form
B, :g x g — R on g to define a metric v on G through

YV, W) =B, (wy(V),w,(W)) VW € T,G. (2.9)

Defining the bilinear form B, as the trace of the product of its two arguments calculated in
the representation p, the cyclic property of the trace furthermore makes the metric invariant
under the adjoint action of GG. In particular, for p being the adjoint representation of g we
get the Killing form

Baa(X,Y) =K(X,Y) :=Tr(adx oady) X,Y €g.
As proven in appendix A, the Killing form is invariant under any automorphisms on g and

thus in particular the induced left-action. This makes the G-left-action an isometry of the
metric 7.

Induced metric on G/H

With the metric (2.9) on G we now turn to the coset space G/H. As the Maurer-Cartan
form takes its values in g we can split it into two parts

W = Wy + W, (2.10)
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where wy, and wy, are the projections onto h and m respectively®. This can be written by
the use of the involution o

1
)
1 (2.11)
W 1= (w—0o(w)).
As m contains the generators for G/H it is natural to try to define the metric as something

in the direction of the sketch
Vg (V,W) = B, (wng(V),wng(W)), V. W € T,G. (sketch)

This loosely denoted expression could be interpreted as a metric on G/H but where its
action is defined at any, but a single, representative g of gH which also is an element of G.
For this to make any sense there cannot be any dependence on the particular representative
such that the metric must be invariant under the right-action of H. That this is indeed
the case will be motivated below.

A more refined way of defining the metric on the coset space is to view G as a principal
fiber bundle with H-fibers,

H—>G5G/H.

The base manifold is then G/H and choosing particular representatives for elements in
G/H amounts to choosing a section s : G/H — G (also called choosing a gauge). The
pullback of the Maurer-Cartan form by this section, s*w, also splits as in equation (2.10)
and it can be shown [27] that the m-projected part transforms as

(s5wm) — Adp-1(8]wn) (2.12)

when moving between two sections s; = soh with transition map h € H. This transforma-
tion rule makes s*wy, appropriate to use in B, as the latter is invariant under the adjoint
action of G and thereby of H. Hence, the more precise definition of the metric

You(V,W) =B, (S*Wm,g(v>a S*Wm,g(W>)a VW e TG /M (2.13)

is independent on the particular section and can be used as a metric on G/H.

A way of justifying the proposed sketch of the metric on G/H is to restrict the attention
to matrix groups® and study the right-action of an h in H by employing the notation
wy = g 'dg:

g 'dg — (gh)~td(gh) = h'dh + h'g " dgh.

From this we find

1 1
g = 5(97dg = o(g7'dg)) = 5 (h'dh +h7'g " dgh — o(h™'dh + K~ g dgh))

5The part wy, is often denoted with a P in the literature and when we switch focus to the applications
in gravity we will also adopt this convention.
6 As these will be the groups of relevance through out this thesis this restriction causes no problem.
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and since h™*dh € h and o(h~'wh) = h™'o(w)h, which straightforwardly can be proven by
the use of the Baker-Hausdorff-Campbell formula and the o-invariance of , we get

W — B wh,

under the right-action of H. This conjugating transformation corresponds to equation
(2.12) which ensures that the metric in the equation marked (sketch) is independent of the
particular coset representative.

What we more or less have done here is to define a connection on the principal fiber
bundle G. As wy is parallel to the fibers H it takes its values in the vertical tangent space,
to adopt the general nomenclature, and its kernel is the horizontal tangent space in which
wm lives. Although we gloss over a lot of the details here, we can use wy as a connection
1-form and define an exterior covariant derivative acting on a Lie algebra-valued 1-form”)
as

1
Dy :=dy + 5[% AP (2.14)
Here [wy A ] denotes® the commutator of Lie algebra-valued forms defined through
AN :=EAn— (=1 nE

for p-form ¢ and g¢-form 7. For the special case of of 1-forms in the exterior covariant
derivative we can also write equation (2.14) as

DUV W) = dp(V, W) + 5 (ley(V), 600)] = o (), $(V)])

In this context we also note that the so called structure equation for the Maurer-Cartan
form reads

dv+wAw=0

which yields similar conditions for wy and wy, where in particular
dwm + [wy A we] =0, (2.15)
that is
Dwy, = 0.

Analogous expressions hold also for the forms pulled back by a section s: G/H — G.

"The form must actually be horizontal for this expression to hold, which means that it has to vanish
when acting on a vector within the vertical tangent space. This holds however in all occasions this derivative
occurs in this thesis.

8This commutation operator is also often notated as [¢,7] but to minimize the potential confusion with
the Lie bracket we stick to [ A n].
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Geodesics on the coset space

As will be shown in section 3.3.2, black hole solutions depending on one variable correspond
to geodesics in the coset space why we devote a few words to the topic.

As familiar, geodesics are curves along which their corresponding tangent vector is
parallel transported and are hence defined in terms of a connection V. Through out this
thesis we will use the Levi-Civita connection corresponding to the metric on G (or G/H), i.e.
the unique connection defined by demanding metric compatibility and vanishing torsion

Vxg(V.W)=g(VxV,W) + g(V,VxW)
VW — ViV —[V,W] =0,

for vector fields V, W and X on G. A part from ensuring integral curves of one-parameter
subgroups to be geodesics, as proved in appendix A, this choice also provides a link be-
tween geodesics in G and geodesics in G/H as all geodesics with respect to the Levi-Civita
connection in G/H is given by the projection onto G/H of a geodesic in G with a tangent
vector in m at some point [15, p. 41]. When studying geodesics in G/H further on, we thus
can use the standard exponential map in G on vectors in m.

2.2 Sigma Models on Symmetric Spaces

A sigma model is based on scalar maps ¢* from a D-dimensional manifold X equipped with
a metric g, called the base manifold, to a target manifold M with metric 7. The ¢'(x):s
are functions on X with its coordinates xz*, and constitute in turn the coordinates on M.
We will always denote the base manifold indices with Greek letters, also in less than four
dimensions, and the target manifold indices with Latin letters. The model is described by
the action [22, p. 132]

S = [P /59" (@)0,6" (@)0,6 () (9()). (2.16)

We see that the Lagrangian is in fact the pullback of the target metric to the base manifold.
The name sigma model originates from when the type of models first was introduced in
particle physics but carries no longer any meaning beyond the mere name.

In the relevant sigma models arising in dimensionally reduced gravity theories, the
base manifold X will be a more or less dimensionally reduced version of spacetime and the
target manifold M will be some coset space G/H of the form discussed in section 2.1. The
particular coset space will depend on both the theory and the reduction procedure as will
be discussed further below.

In order to connect the action (2.16) to the coset space objects defined above we must
work out the coordinate mappings ¢‘. Depending on the topology of G/H there might or
might not exist global coordinates and might or might not exist a global decomposition of
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G suitable for the description of G/H. In the special case of H being the maximal compact
subgroup C there is a general result stating that

G — Kexply] (2.17)

where G/IC is homoemorphic to p through the exponential mapping. Additionally, each
connected semisimple Lie group G with maximal compact subgroup K can be decomposed
as

G =KAN or equivalently G = NAK,

where A is an abelian subgroup generated by the non-compact elements of a Cartan sub-
algebra® | i.e. the maximal abelian subalgebra a of p, and A is a nilpotent subgroup
generated by the positive root vectors (alternatively the negative root vectors). This is
called the Iwasawa decomposition. As the parameters of p provide global coordinates
for G/K through the decomposition (2.17), so does a parametrization of G/K = N A in the
Iwasawa decomposition [15, p. 47][22, p. 41].

2.2.1 Parametrization

Let us illustrate these more general comments more concretely and parametrize the coset
space. We exemplify each step with the two simple but physically relevant spaces
SL(2,R)/SO(2) and SL(2,R)/SO(1,1) and through them develop some general tactics. In
the former case we have K = SO(2) and we can employ the unique Iwasawa decomposition
for each group element g in G,

g=nak, neN,aec A keck.
Explicitly, in the defining matrix representation we have

01 1 0
n-span{E}-]R(O 0), a-span{H}-]R(O _1),

0 1
t = span{FE — F'} :]R<_1 O)
such that we can write an arbitrary element V' of G who is also representative of G/K as
V =nak € [na] € G/K = SL(2,R)/SO(2)

with
V = explyE] explo H]k

1 ¥ (e?2 0 /2 o9/2y (2.18)
—lo 1 0 eo2)f=1 o oer |k

9A Cartan subalgebra is a maximal set of commuting generators.
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The two dimensional space SL(2,R)/SO(2) is thus parametrized by the two coordinates
¢" = (¢, x), which in the sigma model are spacetime dependent functions ¢'(z). Bigger
coset spaces naturally require more scalar fields as coordinates. As any choice of k£ changes
the representative but preserves the particular coset, it can be chosen freely and the most
convenient choice is k = id. This fixes a section in the fiber bundle picture or, equivalently,
the choice of gauge. The form (2.18) is particularly simple when trying to read off the
fields ¢*. However, when transforming V with a group element g, this property is lost
if we do not make sure that we stay within the gauge. To respect the gauge choice we
let a compensating gauge transformation k(g, V(x)) accompany ¢, depending on both ¢
and V. Acting from the right k ensures that the form (2.18) is restored even after the
transformation:

V = gVEk(g, ), ge g kelk. (2.19)

We from now on abbreviate the dependence of k on V to directly depend on .

In practise, however, it is very difficult to find the correct compensating transformation
k and in order to circumvent it we can make use of the generalized transpose (2.2) and
construct

M=vVT, (2.20)

Under the transformation (2.19) this group element M has the desirable transformation
law

M — gVEETVT g7 & gvvTgT = gMg”, (2.21)

which eliminates any question about k. Furthermore, the Maurer-Cartan form wy, at M
turns out to be related in a very preferable way to the Maurer-Cartan form wy as

wy = MdM = (VVT)TLawvT)
= (Vv avvT + (v

(2.22)

This is especially neat as the coset metric v appears in the action (2.16) and we have

2.22 S
B(war, wr) (2.22) 4 B(Wa,y, Wi v) = 47;;d¢o'dg’ (2.23)

where we used the conjugation invariance and bilinearity of B. Acting on a base manifold
vector push-forwarded by the coordinate maps ¢ this yields

08 0\ _ -10M (09" 0\, 10MO¢"
“’M<axua¢i>_M R <8$“8¢i>_M o5t o~ M OM
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and evaluated in some representation p we can now rewrite the action (2.16) as

g — / de\/ﬁg””%p Tr [M~10,M M~'9,M), (2.24)
X

where ¢, is a representation dependent constant appearing in the formulation of B as
the trace. Thus we can work with M directly and do not have to bother finding any
compensating transformation.

Explicitly for SL(2,R)/SO(2) and V as in (2.18) we have
pu} —1 -1 _ 1 2 —2¢ 2
g (M'9,M M~'0,M| = : ((99)? + e (ax)?) , (2.25)

where (9¢)* = 0,004 ¢.

This sigma model adapted way of parametrizing the coset space carries over also for cases
where H is not the maximal compact subgroup K with only minor complications. II-
lustrated by the coset space SL(2,R)/SO(1,1), we can still write a coset representative
as

V=nah, neN,ae A heH=S5S0(,1),
e¢/2 e_¢/2X

but this decomposition is no longer unique and global, as is the Iwasawa decomposition
above. We recall the involution o from example 1 with its invariant subspace span{ E+F'} =

b.

We still can make sure to stay within this parametrization with the transformation law
(2.19) (but with a h(g, x) instead of k(g, z) of course) and once again this calls for a way of
avoiding the explicit h(x). We construct an M but in the case of non-compact subgroups
‘H we may alter the definition slightly:

M=vVTy.

Here we have included n which is the metric preserved by the subgroup H = SO(1,1), i.e.
(1 0
=10 -1

hnh™ =7, Vh e SO(1,1).

defined from

T denotes ordinary matrix transpose and employing it further on we limit our scope to
matrix groups. Including 7 in the definition of M does not alter the relation (2.22) in the
metric as any constant matrix to the right and left of VV7 cancel in that construction.
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However, its inclusion actually throws M out of G as 7 is not an element there of. This
might appear worrying but as equation (2.22) holds and stripping down to VV7 is simple
in calculations there is no actual problem. The point is to make M symmetric in the matrix
sense:

M =VnVT
since
VT — annfl,

which follows from the defining property of the general transpose.
Using the parametrization of equation (2.26) we find the metric on the coset model
SL(2,R)/SO(1,1) to be

g’“ji Te [M~10,M M~'0,M| = 5 ((9¢)* — e *(9x)?). (2.27)

1

2
We note that it is identical to the metric of SL(2,R)/SO(2) in equation (2.25) apart from
the sign between the two terms.

Summary
The general work flow learned from these two examples are

o parametrize a big enough part of the coset space by a coset representative V/

o construct an M = AVVT B, where A and B are suitable constant matrices, satisfying
the relation (2.22)

» write Lagrangian in terms of the Maurer-Cartan form of M in the coset metric.
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3

Gravity Theories and Dimensional Reduction

In this section the concept of dimensional reduction will be given a rather de-

tailed explanation and the relevant Lagrangians with corresponding equations
of motion will be presented. The resulting Lagrangians will be cast into the
forms of the non-linear sigma models presented in the previous chapter and the
former hidden but now manifest symmetries will be discussed and exemplified.
The dependence on the compactification details of precisely which symmetry is
found will be discussed, in particular the compact/non-compactness dependence
on timelike or spacelike compactification and the general procedure of finding
a suitable representative in the coset space. We then discuss the transforma-
tions between solutions more generally and end the chapter with an account on
the important charge matriz which will motivate the further study of nilpotent
orbits.

3.1 General Concept

Gravity theories based on general relativity exhibit invariance under general coordinate
transformations and possess no a priori preferred coordinate system. These symmetries
are manifestly built into the theories but as special solutions to the Einstein equations were
studied, first by Ehlers in [10], additional symmetries were revealed which are not explicitly
seen in the original formulations of the theories. Because of this, these symmetries are said
to be “hidden” and in order to find them and make them explicit a reformulation of the
original theory is needed, based on some symmetry restrictions imposed on the solutions.
More concretely, one assumes the existence of one or more Killing vectors, as is the case for
e.g. stationary and axially symmetric solutions. These isometries allow for the method of
Kaluza-Klein compactification. As the isometries ensure independence of the coordinates
along the Killing vectors there is no loss of information in making these directions compact,
i.e. imposing an equivalence relation for the compactified coordinates z# ~ % + [ where

19



20 Chapter 3  Gravity Theories and Dimensional Reduction

I# is the length of the dimension expressed in the particular coordinate system and a ~
over the index denotes that the dimension is compact!. In theories which assume existing
extra compact dimensions, such as string theory and quantum gravity, the non-apparent
dependence on them are explained through their smallness which in a Fourier expansion
excludes all but the zero-mode at accessible energies. In our case though, there is no need
of such motivations as the independence on the compact dimensions is already assumed
through the initial symmetry criteria. We thus have reduced the number of dimensions in
our problem, whence the name dimensional reduction.

Starting from D dimensions and having compactified n dimensions, the original D
dimensional objects split up into smaller ones; there is not room for a D dimensional
object in a (D — n) dimensional spacetime. As we still demand invariance under general
coordinate transformations this put narrow frames around how to carry out these splits.
The new (D — n) dimensional objects should have tensorial behaviours and the resulting
(D—n) dimensional theory should respect the original symmetries. With a suitable splitting
of the metric a D dimensional gravity theory reduces into a (D — n) dimensional gravity
theory coupled to additional fields resulting from the splits of the metric and the original
matter fields. The precise field content naturally depends on the number of dimensions
and the original theory.

When reducing down to the special case of three dimensions the very useful opportunity
arises to dualize vectors into scalars. Although not true in general for arbitrary fields in
three dimension, the field content arising from dimensionally reduced gravity theories can
entirely be expressed by a set of scalars and the resulting action can be identified as a
non-linear sigma model. Suddenly with this rewritten action, the “hidden” symmetries
become apparent; the sigma model explicitly exhibit some model dependent invariance
which previously could not be seen.

Once these symmetries are established the field is open to exploit them. Starting from a
known seed solution formulated into this sigma model we can transform it with any element
of the symmetry group. As the Lagrangian is completely invariant under this operation the
solution property is left untouched and we can thus generate new solutions to the Einstein
equations without actually having to solve them. This is a remarkable possibility and the
true strength and gain with the method!

3.1.1 Infinite dimensional hidden symmetries

The existence of hidden symmetries goes even further. If one is reducing all the way down
to two dimensions there are usually more than one way of getting there. Depending on the
route and in what steps the dualizations are made, one can arrive at slightly different two
dimensional versions of the theory, each with its own symmetry. The full symmetry of the
theory is thus exposed first when the cross-action of these transformations are studied, i.e.
letting the symmetry transformations of one version act on another, and it turns out that

IThis equivalence relation simply makes the dimension to a circle but there are of course less trivial
ways of making dimensions compact.
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the resulting symmetries are infinite dimensional, realizing affine Kac-Moody algebras. We
will however save this for a later chapter and stay in three dimensions for the time being.

Let us now illustrate the general description through the simplest example.

3.2 Dimensional Reduction of Pure 4D Gravity

Let us start with the Einstein-Hilbert action of pure gravity in four dimensions

S = / dz /g RY, (3.1)

where g = |detg,,| and R is the Ricci scalar. The index * denotes the dimension in
order to differentiate between the compactified versions of an object. We now assume the
existence of a Killing vector and with this isometry we can compactify along its dimension
without loosing any information in the theory. The resulting theory will depend on whether
the Killing vector is space- or timelike but the calculations are almost identical. We thus
wait to specify this until it actually makes a difference.

We begin with an ansatz for how the dimensional reduction splits up the four dimen-
sional metric. The choice of how to do this while preserving the symmetries for the new
objects is not obvious on first sight. It has, however, been done before and learning from
that we make the following choice and will motivate it in a moment:

-1
g((;lﬁ) - (933 Juv +is3v4w4u 933J4u> ’ (3.2)
933 Ay g33
where
g33 = e?

is called the dilaton and g,, will turn out to be the three dimensional metric. A, is the

(4
n3

we drop the indices ¥ indicating the three dimensional quantities to avoid clutter. Hence
p=0,1,2 and all objects without a “dimensional index” are three dimensional. Note that
since we have not yet specified whether the compactified direction is space- or timelike but
chosen its coordinate to be 2%, we have not yet chosen the convention of which coordinate
is timelike. For a spacelike Killing vector and thus a spacelike 23-coordinate we choose the
signature (—, +, +, +) with the zero coordinate for time while for a timelike Killing vector,
we switch the convention around and choose signature (—, —, —, +) as we compactify along
2%. The important difference between these cases is the resulting signature of the three
dimensional metric g, ; spacelike compactification gives Lorentzian signature while timelike
compactification yields Riemannian.

There are two reasons to why this ansatz is the preferable choice. Firstly, the listed
objects resulting from it transform properly under general coordinate transformations:

obtained vector field from the four dimensional metric’s g,5 components. In this example
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e g, is independent of the coordinate in the compactified dimension and transforms
as a 2-tensor under coordinate transformations in the uncompactified dimensions.
Under coordinate transformations in the compactified dimension which depends on
the compactified dimension, g,, scales with a constant factor.

« A, is also independent of the compactified coordinate. It transforms as a Maxwell
field, i.e. as a vector under uncompactified coordinate transformations and with a
U(1) gauge under compactified coordinate transformations.

e ¢33 behaves as a scalar under uncompactified coordinate transformations and scales
with a constant factor under compactified coordinate transformations.

Secondly, this choice of ansatz takes the four dimensional action (3.1) into the compactified
three dimensional action

S = / &’z <\/§R - \ég(acp)? — fe%f,,,yf“”), (3:3)

where F,, = 0,A, — 0,A,. Le. the compactified action is a three dimensional Einstein-
Hilbert action with an additional scalar field and a Maxwell field. That this is indeed true
is not easily seen but requires a rather lengthy calculation. We do not present it here but
it can be found in [26, p. 24] in full detail.

3.2.1 Dualization

Having found the expression for the three dimensional action we can now exploit the
special feature of three dimensions that 2-forms dualize to 1-forms. This means that we
can express the field strength F,,, in terms of a scalar. We do this through thinking of F,,
as an independent variable, i.e. forgetting that it is the exterior derivative of A,,. Instead
we encode this information into the Lagrangian by the use of a Lagrangian multiplier y
with the constraint that F,,, should satisfy the Bianchi identity

O0ipFu) = 0. (3.4)
As this is normally a consequence of F,,, being exact, such a constraint captures the same

information about F,, even if we now make F,, an arbitrary 2-form. Adding the constraint
with a suitable factor we can write the Lagrangian as

£ = ViR - Yoo - Yr, ey Yo, 7., (35)

where e denotes the Levi-Civita tensor?. This Lagrangian carries precisely the same in-
formation as the one used in the action (3.3); it is just reformulated. The equation of

2We will use € for the Levi-Civita tensor and ¢ for the Levi-Civita symbol.
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motion for the scalar multiplier x gives obviously back the constraint (3.4). The equation
of motion for F,,, is as usual found from the Euler-Lagrange equations

oL oL N 1
— = _9NVI 2 PRV —
F 50, ) 1 ¢ 5% axe) =0

and since ,/ge’"” = e is spacetime independent we get
FH = —e 2P X (3.6)

Note that this expresses the dual relationship F = —e2?xdy. Substituting® equation (3.6)
back into the Lagrangian (3.5) the second last term becomes

_\{lge2¢‘f:ﬂufuy = _\2562456;2#1/6)\“”8[»(8)\)( = (_1)S+1\é§e2¢(aX)2

where we in the last step have used
ey = (—1)°20%
and s depends on the signature of g,,:

{ 0 g, Riemannian (Killing vector timelike)
S =

1 g, Lorentzian (Killing vector spacelike)

The last term becomes
g v g 1% -
\é_XGM paufyp - \é_XE'u pau(—e 2¢€)\Vpa>\X)

= ﬁu(\égxe“”p)e_%e,\w@’\x) + total divergence
— (-1)° Ve (0x)?
and thus our final Lagrangian is

£ = va(R =5 (067 - (-1 (00)?) ). (3.7

The scalar part is familiar and for s = 1 we recognize it as the sigma model for
SL(2,R)/SO(2) as written in equation (2.25) and its action (2.24) (¢, = 1) while s = 0
provides precisely the sign flip which turns the sigma model into SL(2,R)/SO(1,1), as in
equation (2.27). Thus we have found that the action in both cases can be written as

S = / de\/g(R - g“”i Tr [M~9,M M‘layMD.
X

3This is perfectly allowed since the equation of motion (3.6) for F is algebraic, i.e. not a differential
equation [23, p. 37].
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3.3 Reduced Gravity Theory

The example of dimensional reduction from four to three dimensions in pure gravity ex-
hibits many of the general features of the method, although the starting theory may have
more fields than just the metric and D may be larger than four.

The general picture is a starting theory in D dimensions containing the metric, a
number of vector fields and additional scalars. This theory is normally the bosonic part of
a supersymmetric gravity theory, e.g. such which may be obtained from low energy limits
of different string theory compactifications. With the existence of n commuting Killing
vectors, for which their action on the matter fields also is zero, the compactification on a
n-torus? down to (D — n) dimensions can be made. This naturally now includes similar
splits of the vector fields as we did with the metric in the preceding example. Reformulating
the vector fields into form language, each p-form existing in a D dimensional theory will
give rise to one p-form and one (p — 1)-form in the (D — 1) dimensional theory®. For each
step in the reduction we thus get a rapidly growing set of objects in addition to the total
n new vector fields and @ new scalars which originate from the metric.

The set of scalar fields in the (D — n) dimensional theory is now in general invariant
under some global transformation under which the resulting vector content transforms
linearly.

In this manner one may obtain a great number of four dimensional theories as one
sooner or later arrives at (D —n) = 4. Among these we only study those theories in
which the scalars in this four dimensional version already constitute a sigma model on
some symmetric space G;/H, with the semisimple Lie group G;. We further more demand
the vector fields to transform under a representation [4 of the same group [1, 15].

When continuing down to the special case of D —n = 3 all these vector fields can be
dualized to scalars, just as done in the example above, and the resulting full set of scalars
exhibit a global invariance under a Lie group G of which the “original” symmetry group
G, is a subgroup. The field content originating from different parts of the four dimensional
Lagrangian may here interplay and enlarge the symmetry to a much bigger group than G,.
All in all the Lie algebra g consists of [1]

g=sl2,R) D g @ (2® 1) (3.8)

where sl(2,R) corresponds to the Ehlers group we have seen explicitly in the example
above.

The dimensionally reduced Lagrangian does now contain gravity coupled to a non-linear
sigma model on the coset space G/H where H is a real-form, compact or non-compact, of
the maximally compact subgroup K of G. The Lagrangian can be written precisely on the
form

L=./g (R - iTr (MM Mla“MD (3.9)

4This is the simplest way of compactifying n dimensions and while there are many other possible
compact manifolds, this is what we exclusively deal with in this thesis.
SWe will not show the calculations here but a good example is provided in [23, p. 8].
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where now M is an element of G/H constructed just as in section 2.2. Some examples of
these coset spaces are given in table 3.1 together with their corresponding theories.

Table 3.1: Some examples given by Breitenlohner and Maison in [21] of the resulting coset
spaces in compactification to four and three dimensions for some gravitation theories.

Coset space Theory
D —4 D —3
GL(n)/SO(n) SLin+2) gravity in D = n + 4 dimensions
SO(2,n)
U(1)/U(1) SUR,1) Einstein-Maxwell N 2 super
- X — _
SOML2 X UM) | rnmetry W P
SO(6,6) x SO(2,1) SO(8,2) ,
N =4 t
SO(6) x SO(6) x SO(2)  SO(6,2) x SO(2) SHUPCTETAVILY
50(6,6) x SO(2,1) S0338) N = 4 supergravity + supersym
SO(6) x 50(6) x SO(2)  50(6,2) x SO(2,6) metric Maxwell, D = 10 super-
gravity
Er47/SU(8) FEg(48)/S0O*(16) N = 8 supergravity, D = 11 su-
pergravity

At this point we introduce some new notation to align somewhat with leading literature.
Recalling the split of the Maurer-Cartan form in equations (2.11), we rename the split of
the coset representative form V-1dV as

1 1
Q= (V7'dV + o(V V) Qu=3 (V7'9,V +a(V'0.V))
1 1
P = §<V’1dV —o(V1dV)) P, = i(V*18#V —o(V19,V)),
such that
VAV =Q+ P.

() thus corresponds to wy and P corresponds to wy, in our former notation. Remembering
also how we rewrote the metric in equation (2.23), the Lagrangian in (3.9) can equally well
be written as

L=.\g(R—-g"Tr[P,P)).

For future reference we also write the Lagrangian as a differential form expressed in terms
of P. With d = (D — n) dimensions in the reduced spacetime we get®

L =R+l —Tr(PA+P), (3.10)

6Recall that x1 = ¢ = \/gddm
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which follows from the small calculation

1
P AP = m Ppe/\,uln'lld_lP)\ dx? A - - Adatd-t A dat
0 1 ppl dz? A - -« A dzhat A dgh
T (d—-1)! A g Company CEA T AGE !
= PPy /gd'z,

where we in () have used that the anti-symmetry of € and the wedge products forces A = p
in each term, and then compensated the overcounting in the following expression with the

factor é.

3.3.1 Equations of motion

The equations of motion derived from the gravity and sigma model Lagrangian (3.9) are

Ry, = iTr (M'9,M M~'0,M| (3.11)
vH (MT9,M) =0 (3.12)

where the first line is obtained through varying the metric and is thus the Einstein equations
in the reduced theory and the second line comes from the variation of M. Equation (3.12)
actually expresses a conserved current which we will come back to in the section 3.5 about
the charge matrix.

In the new notation and starting from the form Lagrangian these equations read

R, =Tr(P,P,) (3.13)
dP +[Q,P] =0. (3.14)

The latter can also be expressed as
dx (V) PVT) =0 (3.15)

which also follows from equation (3.12), since for any 1-form 1 we have dx) = Vi*e and
equation (2.22) gives M~*dM = 2(VT)~1pVy7.

3.3.2 Pure 4D gravity and the Schwarzschild representative

After these general statements we now illustrate the work of finding a coset representative
for a certain solution. We here follow [21, p. 27] closely, preforming the explicit calcula-
tions to find the representative for Schwarzschild solution in four dimensional pure gravity
reduced to D = 3. We thus continue the path of the example in section 3.2. We found the
reduced theory to express three dimensional gravity coupled to an SL(2, R)-sigma model,
either SL(2,R)/SO(2) or SL(2,IR)/SO(1,1), as described by the Lagrangian (3.7). We
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choose now to have compactified the timelike dimension giving a Riemannian three di-
mensional metric (s = 0) and the sigma model target space SL(2,R)/SO(1,1). With this
observation we make use of the coset parametrization presented in section 2.2.1 and write
the action on the form as equation (2.24):

S = /de\@(R - g’“’i Tr [M~19,M MlayMD. (3.16)

As we seek a coset representative of the Schwarzschild solution we do a spherical sym-
metric ansatz’

— dsiyy = dr? + f*(r)dQ? (3.17)

where d? = d#? + sin? dy? is the standard metric on S? and f is a scalar function
depending on the radial coordinate r. The field equations (3.11) and (3.12) derived from
the Lagrangian in (3.16) reads with the ansatz (3.17)

1 (d,/ df B
fzﬁnﬁmj‘l>—0 (3.18)
1 1AM 5| B 2df

d [ o, 1dMY

dr(fM dr>_0. (3.20)

The first two are components of the Einstein equations Ry, = $Tr[M~'0,M M~'0,M]
and the third is the r-component of equation (3.12). The Ricci component R, is directly
computed from

1 0 0
I =10 f2 0 ) Rpa/u/ = 8HF1€U - aVFZO’ + FZUF;/ - Fﬁ)\ré,u
0 0 f?sin%0
RTT = aﬂpﬁr - aTFZT + Fﬁ/\r;\r - Fﬁ)\rzr
where
=9 09 Orgrr) = 0
rr 7 ( rdir — )\grr) -
Fﬂ_g“’\a oy 24020 (£24in? g
e = "5 0 = 5 LA + £ s 720 (2 sin 0)' )
= ()
A QM Lo/ pav/c0 A © s
Fm" = 787“95N = §f (f ) (5;169 + 5p,5gp)

"Remember the signature (—, —, —, +)
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where a prime denotes d% and 6, ¢ as indices denotes the coordinates. We find that

DTS, = (0003 + 80N a8y + 650 [ 2] = 5 [

such that

Ree= = [£207) =5 [£200] = = [21 200 + 277 = 5570
— 2f—2(f/)2 _ 2f—1f// _ df—Q(f/)Q — —Qf_lf”-
We can find an expression for f by solving equation (3.18):

fff=r+¢ = fdf = (r+ac)dr
= fP=(r—ro)’+c (3.21)

with the two integration constants rq and c¢. This plugged back into the expression for the
Ricci component yields

R,, = —QF , (3.22)

To recast equation (3.20) we define the parameter

71
. 2
/ G (3.23)
and substitute into (3.20) with £ = 44 — f2( . We get
d [~ d ~
— | M'—M) =0 3.24
dr ( dr ) (3:24)

where M(T(T)) = M(r), such that dM(T ) — 2y )dM(r This is a geodesic equation for

M in G/K?® as concluded in the followmg.

7 is a parameter describing a curve in G/K and M *%M is the Lie algebra element
corresponding to the tangent vector T to the curve, related through the pushforward of
the left-action

dM .
M7= =1L, (T‘ ) =T(r) e T.(G/K) V1.
dr M (7)
For the tangent vector dlrectly, 2~ is not defined as there is nothing said how to compare

the different tangent spaces. Here though, we have

d [~ dM d -
— (M == ) = —=T(r) =
dr < dr > dr (1) =0

80r rather M n~t= VVT but we leave out this trivial conversion in the notation
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where 7" always stays in 7,(G/K) such that the comparison in the derivative can be made.
The fact that T'(7) = 7" is constant for all 7 implies conversely that T'(7) is defined as the
left-invariant vector field constructed from 7', i.e.

T(r)=T o = Ly T -
There is a one-to-one relation between left-invariant vector fields and one-parameter sub-
groups in a Lie group and, as mentioned in section A, the one-parameter subgroups form
geodesics with respect to the Levi-Civita connection of the Killing form metric. Hence
equation (3.24) states directly that its solution M (7) is a geodesic.

Another approach to see that this is a geodesic equation is to vary the Lagrangian in
equation (3.16) with respect to ¢'. This calculation can be found in appendix B.

This last step in spelling the equation of motion (3.20) as a geodesic equation relies
on the fact that our metric only has dependence on one coordinate. In such a case this
dependence can always be recast by a suitable choice of parameter. The picture changes
if we would be interested of only axially symmetric solutions whereby we would have a
dependence on two parameters.

The explicit geodesic equations

To solve the geodesic equations we need the Christoffel symbols of the coset space. We

find the metric components from equation
o 1 dM
dotde?y,; = = Tr (M1 ——)?]| .

We find
¢/2  o=¢/2 /2 0 1 0 b _e=by2 _e@
. T e e X e (€ € "X SER
M=VVin= ( 0 e¢/2> —e~?2y e¢/2> (O —1) N < —e %y —e_¢>

M — <d¢e¢ + (dox* — 2xdx)e™®  (dox — dx)e‘¢>

(dpx — dx)e™® dge™?
JM-! —dge=? —(dx — dgx)e?
—(dx — dox)e ™ —dpe’ + (2xdyx — dpx*)e
such that
1 dM L] L .
. [(M ) ] = 4Tr[dM dM|
—dg? + e 2% d > 0
= Z TI'
0 —dp? + e72%y?

= —; [algzﬁ2 — e_wdxz} .
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Now, direct calculations from the definition of the Christoffel symbols®

kl

= Y
Iy = 5 (O + 95y — Orvig)

and the coset metric

gives

f‘il :fb = f% :ng =0

R 1
Iy, = 7(0 +0—01yp) = —e 2

f‘2_L22(a 0+ 0) = 2 —2 20 _ _q
2= 5 1722 +0+0) =e 5 ¢ = .

Denoting % with dots, the geodesic equations become

2 —2¢ (N2
{¢ —e =0 (3.25)
X—2¢0X =0
which for the Schwarzschild solution, where x = 0, we find the solution QAS(T) = At + B,
for constants A and B. Asymptotically flat boundary conditions as r tends to infinity
translates into 45 — 0 as 7 — 0, whence B = 0.
Writing out the geodesic equation (3.24) in components we find

which upon substitution of the upper right corner component equation into the others
boils down to precisely the explicit geodesic equations (3.25). That only two equations are
independent are to be expected as M is symmetric and based on an element of the Lie
group and thus has fixed determinant.

9We denote the Christoffel symbols belonging to the coset space connection with a tilde.
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Geodesic implications

Knowing that qB’(T) forms a geodesic we recall that the norm of the tangent vector along
any geodesic is constant. This can be used in the equation of motion (3.19) as

dot d¢ do' dg 1 _ !

= )y = ) T (MU0, M)P] = SRy =20 (3.26)
for some constant v2. Recalling equation (3.22) see that ¢ = —v? and thus that f?(r) =
(r —rg)? —v?. In general, v* can have any sign due to the possibility of an indefinite coset

metric. Here, however, we have v? > 0.
The parameter 7 can thus be calculated as

71 1
T(r):—r/fQ(S)ds:Qvln

r—7To—v

r—1"T0+v

Finding the coset representative

The coset representative V' can be found either by solving the geodesic equation for ¢ and
X, as done above for y = 0, or through an ansatz. Since the Schwarzschild solution is so
simple the latter is quick and easy. We know that M (7)n~! forms a geodesic in G/K and
can thus be written as an exponential of some tangent vector T'| o starting at some Mo at
7 = 0. Since 7 = 0 corresponds to the asymptotically flat Minkowski space where ¢ = 0,
it is immediately seen that Mo is the identity. Thus

A

M(r)n~" = exp {TT

e %y e

from which the tangent vector for Schwarzschild must be

N 1 0
Ms(T) = exp [TT’id} n=-exp[pH|n, H= (0 _1> )
Now we can directly see that ¢ o« 7 and with proportionality constant A

AT}. (3.27)

Vs =exp [ZSH] = exp [2H

A can be determined from equation (3.19) as

AN~ dN

45 ]:A%}wﬂ:42&

HleMﬂ:—ﬂl

dr dr dr
—

A = (,)27} .
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Finally, we conclude

1 r—1T9— v
= —In|——— | H 2
Vs = exp [2 n<r—ro+v> } (3.28)

r—ro—uv 0
= roroty (3.29)
r—ro+v
( 0 V T—Tg—v)
for r > rg + v. As the last step we can identify v = m by just writing out the four
dimensional metric, in which we recall g33 = e® and B, = 0,

dstyy = —gas dsfyy + gssdt®
N AN I 5 (r—ro—v) s | r=r—ro—vw
_<> (—dr® = FA(r)d?) + (= = ¢ T

r—17ro+v r—7r9+v

:_<1—2U>1(df2+[(f2—v2)—v2}d92)+(1—2”>dt2

7 7

2 20\ !
:<1—~U>dt2—<1—~v> i — 2402 .

T T

-1

£(1—27L>dt2—(1—2f”) i — 7240 |

T T

The last step can equally be done with the boundary conditions for V' which in this case is

This is the route one has to take when seeking new solutions.

We have now found the coset representative of the Schwarzschild solution in our chosen
gauge and we have seen that it indeed gives the right four dimensional metric. This can
now be used as a seed solution.

3.3.3 Example: 4D Einstein-Maxwell theory and the Reissner-
Nordstrom solution

Before moving on with the solution generating transformations we can apply what we have
learned also to the spherically symmetric Reissner-Nordstrom solution in Einstein-Maxwell
theory, i.e. gravity coupled to electromagnetism. This special solution turns out to involve
very similar calculations as done above but will not preform them entirely. Instead we only
present the minimal amount to illustrate some later observations.

The starting Lagrangian is

1 1
Lo = g<4>(Z RY — ZFWJ«L,,) ,
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where, of course, F' is the electromagnetic field strength. We reuse the metric ansatz
(3.2) from the Schwarzschild example but incorporate the spherical symmetry from the
beginning, hence no cross-terms,

—¢
4 - (€ "Guv
gaﬁ - ( 0 g e¢> :

As also the Reissner-Nordstrom solution is static we following the paved road all along to
the three dimensional metric and take

—dsé) = dr® + f*(r)dQ?

from above as well. Thus the Einstein-Hilbert part of the reduced Lagrangian looks exactly
as before with the scalar x set to zero.

The Maxwell potential A in F' = dA does also split but as we are looking for a static
solution, only the component A%(r) where a@ = 4 is non-vanishing!®. We denote this
component simply as A := A*(r) as we will make no further reference to the potential. For
F this translates to only one non-zero component F,; = 0,A. All in all we get the three
dimensional Lagrangian

6 _ \f (- ;(&gb@r(b — 470,40 1)) (3.30)

where the factor e2? in front of the A-term comes from /g¥ = e*2¢\/§. We have once
again found the sigma model SL(2)/SO(1,1).

We have just covered in detail how to find the equations of motion in this model and
restated in this context we are to solve

¢ —2e"2(A)2 =0
A-bi—o
where the dots once again denote derivatives with respect to 7, the parameter introduced

in equation (3.23), and we made the identification 24 = x compared to prior equations.
These equations are subjected to the boundary conditions

r—00 r
Ay — — 1 ¢
T—00 r

where m denotes the mass and ¢ the electric charge of the black hole. These equations are
solvable although it requires quite some algebra not so relevant for our purposes'!. What

10Remember that we have chosen the fourth component to represent time in the four dimensional theory
and let the indices o, =1,--- ,4 and p,v =1,2,3.
1A full derivation can be found in chapter 4 in [26].
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matters most to us here is the equation (3.26) for the constant v? which was introduced as
a consequence of the geodesic and its constant tangent vector norm. With the coset metric
in the Lagrangian (3.30) we have

d¢tde? 1., 9 9 9
- C = 2% — 20729 A2 = 92, 31
Y9 g dr Z(b ¢ ! (3:31)

In order to simplify the calculations we write
A=¢?

and use £ = f*(r)4 to rewrite the boundary conditions in 7. Recalling that f*(r) =
(r —ro)* + ¢ we find

such that

Equation (3.31) thus goes to

Lo 4 9 2 2 2

EA_EA = 4v — m” —q° =v°. (3.32)
We see here that v? is directly linked to the mass and electrical charge; a fact we will come
back to in section 3.5 about the charge matrix.

3.3.4 Example: Five dimensional minimal supergravity

To motivate the interest of g, in later chapters and the Mathematica-packages we include a
glimpse also on the dimensional reduction of five dimensional minimal supergravity. This
additionally gives a flavor of the procedures in more complicated theories and serves as
an example with vector content without the simplifying assumptions we made for the
Reissner-Nordstrom solution.

We start from the Lagrangian for D = 5 minimal supergravity

L0 = RO — L0 A pO — _L_p6 A ) A 49 (3.33)
2 3v/3
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where F'©® = dA®. We assume a spacelike Killing field and compactify and reduce along
its direction through the five dimensional ansétze [18]

1
d8%5) = e\/§¢1 d8%4) -+ e_%d)l (dz + A)2
A = AW 4 yidz.

This yields the four dimensional Lagrangian [6]

1 1 =2 1
LY = RW1 — Sxdor A dn — §e¢2§¢1*dxl Ady, — ie-ﬁmﬂ“) AFW
1
V3
where F = dA. Continuing the process under the assumption of the existence of a timelike

Killing vector commuting with the one already exploited, we reach a three dimensional
theory by the ansatz

1 1
- 5e BRI A FY 4y dAD A dAWD,

dsé) = e‘z’?ds%j) —e 2 (dt + ws3)?,
AW = AV 4 ¢at,
AW = AL 4 yodt.

We can also go directly from five to three dimension through the ansétze [11]

d8%5) = e%¢l+¢2ds%3) + e%‘ﬁl*(ﬁ (dw + A2)2 o e%¢l (dt + dew + AI)Z (334)
A(5) =A+ X3dZ4 + X2dZ5. (335)

Continuing with this latter expression we can write the three dimensional field strengths
as

f:dXI FldeQ
.Flszl+A2/\dX1 F2:dX3—X1dX2
F?=dA4? F =dA —dyy A (A" — x1A?) — dys A A?

which can be dualized to the 1-forms
1
G, = V3192, —. + — — yad
4 X4 \/§<X2 x3dxz)

Gy = —e V392 Pl —: dy; — yad +£ — Xad
5 X5 — X24X4 3\/3()(3 X2 Xs)

1
Ge := e 2% F? = dxs — x1dxs + (x1x2 — x3)dxa + ﬁ(—)a)@ + x3) (x3dx2 — x2dxs)-
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In terms of this scalar content we find the three dimensional Lagrangian to be

1 1
£ = Rxl = (xdgy Adey + xddy A dgy) + §e—ﬁ¢1+¢2*d><1 A dey

1 =2 é1 | G1+P2
+ Ee\/?? *xdxa A dxa — ¢ vs *(dxs — x1dxe) A (dxs — x2dxz) (3.36)
3.36
1 1
+ ie\}g¢1+¢2*G4 NGy — ie‘/g¢l+¢2*G5 A Gs

1
+ §QZ¢Q*G6 VAN G6.

Once again we find gravity coupled to a sigma model, this time parametrized by the
eight scalars ¢1, @2, x1,- -, 6. The coset space describing this model is the mentioned
Ga(2)/50(2,2) and one can actually write the exponents in this expressions as the six
positive roots «a; of gy dotted with the dilatons (¢1, ¢o) [11].

We will return to this model when discussing the physical relevance of the orbit structure
in chapter 4.

3.4 Solution-generating Transformations and Orbits

We have now reach the point where we can actually discuss the use of the method of
dimensional reduction. We begin with the types of solutions we are concerned with.

The solutions considered are in general asymptotically flat which in this context refers
to the criteria of Misner. These require that the there is a function r on the four dimensional
spacetime which tends to infinity at spatial infinity and that d,r0"r — 1 in the same limit.
Moreover, each component of the Riemann tensor in any vierbein frame must tend to zero
as O(r=3) as r — oo and the components of any Maxwell field strength must likewise go
as O(r=2). The coset representative in G,, consisting of the scalars in the four dimensional
theory, should go as 1 + O(r~!) which all together forces V' in the compactified theory to
also go as

V=1+00r") r— oo (3.37)

Additionally, in order to have well defined charges when compactifying along the time
coordinate, the Killing vector x must leave the function r invariant and satisfy the two
conditions €77k, 0,k, ~ O(r~? and —k, " =14+ O(r71).

The focus on asymptotically flat solutions restricts the set of relevant transformations
to only involve such elements that preserves the boundary conditions. From the coset
condition (3.37) we see specifically that these constitute the group H as these act as the
identity element on the coset space.

Transformation of the fields

We will not explicitly preform any transformation between different solutions in this thesis.
It is however nice to see how the transformations in principle are carried out. We thus look
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at an example transformation in the sigma model SL(2,R)/SO(1,1)

AL/2 A—I/Z
V= ( : XA_1/2> — gVh

where again A = e? and ¢ and h are elements of G and H respectively. To preserve the
boundary conditions we choose g to actually lie in H and study now the infinitesimal action
on the fields. With E + F' as the generator of fh and the parameter ¢ to parameterize the
compensating gauge transformation we get

0 A—1/2 A—1/2 A1/4
5V:(E+F)¢+CV(E+F):<A1/2 XA_1/4>+C<XA_1/2 0 >

We see immediately that ¢ = —A and have

_ A1/2 A—l/Q_A?,/Q
5v:< Xo A2 ) (3.38)

We now do the same small calculation but apply the infinitesimal transformations directly
on the fields in V:

sy (BATVROA AT — Iy A5
- 0 —1IA=S26A '

Comparing this to equation (3.38) we can get the transformation laws of the fields

0A = —2xA
Sy =1—A% — %

It is now clearer than ever that this is a non-linear sigma model.

In this way it is possible to find the transformation laws of the fields also in more
complicated theories and thus the transformation of the spacetime metric, although the
calculations might be a lot more involved. In order to recover the metric in the full theory
the compactification procedure must be reversed, a process sometimes called “oxidizing”.

The question of orbit structure and the BMG theorem

The next question to address is which solutions are good as seeds and which parts of the
solution space can be reached from each one of these, i.e. what is the orbit structure of the
solution space? Our first observation is that empty Minkowski space cannot be used as a
seed solution as its coset representative Vi, = 1 is a fixed point. This is however neither
trivial nor true in the infinite dimensional symmetry situation below. Here, however, we
must use other seed solutions.

A very important answer to this question is provided by a theorem due to Breitenlohner,
Maison and Gibbons (BMG) [3, 15].
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Theorem 3.4.1 (BMG Theorem). Any static single black hole solution in four dimensions
with non-degenerate horizon can be reached through some transformation in H applied on
the Schwarzschild solution.

It follows from this theorem that all static single black hole solutions are spherically
symmetric which in turn makes all these solutions dependent only on one coordinate. Such
solutions are also called cohomogeneity-one solutions and we will pay specific attention
to these later. In the same paper BMG also present a corresponding theorem for stationary,
axisymmetric single black holes where instead the Kerr solution of a rotating black hole
suffices as seed solution.

The next step in answering the question about how the solution space splits up leads us
directly in to the subject of orbits. However, we postpone the mathematical background
just a moment to devote a section to what is called the charge matrix, which also will
provide a motivation to why we are particularly interested in nilpotent orbits.

3.5 The Charge Matrix and Motivation to Nilpotency

We mentioned in section 3.3.1 about the equations of motion that there is a conserved
charge corresponding to the global symmetry of the sigma model. It was expressed in the
equivalent equations

VAMT'9,M) =0 — dx (VT)7'PVT) = 0.

We now turn our attention to this charge for the rest of this section and will see that it is
a crucial object. To a large extent it defines the solution, above all for cohomogeneity-one
solutions, it contains most of the scalar charges as observed from infinity and its norm
defines the extremality of the solution. This last property will lead to a nilpotency criteria
which in the motivates the study of nilpotent orbits in this context. We mainly follow [1],
[15] and [21] in this section.

We begin by defining the conserved current as the Lie algebra-valued 1-form

1
J = QM—laude# = (VNP7

and the corresponding charge, the charge matrix %, as
1
@ = —/*J e g. (3.39)
A
o9

In the compactified theory there might be no time but the integral in (3.39) is nevertheless
independent of the particular hypersurface €2, (as long as the volume ©Q C X contains all
singularities and topological non-trivialities). We can thus talk about a conserved charge
in some sense, independent of any spacetime coordinates [1, p. 9].
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As we have imposed asymptotic flatness which implied that V' — 1 in spatial infinity,
% can easily be computed from the values of P. As a general assumption we have that

1 _
P = (ﬁﬁ +0O(r™?). (3.40)
It can equally well be obtained through an expansion of M = M, + %Ml + O(r—?) where
1
€ = 51\40—1J\41.

From the relation to P it is thus clear that € must be an element of m.

Recalling the general comments on dimensionally reduced gravity theories in section
3.3 we stated the composition of the Lie algebra g to the full symmetry group G in equation
3.8. The m-part decomposes as [1]

m = (sl(2R) ©50(2)) & L & (g4 © ba)

and this allows for a split of the charge matrix into the conserved charges of the four
dimensional theory. The Komar mass and the Komar NUT charge (see appendix C)
correspond to the sl(2,R) © so(2)-part while the electromagnetic charges fall into the [,
part. The scalar charges lie in [y © h4. It is notable, however, that the potential angular
momentum is missing here and that it in fact lies in the next order in the expansion of P
in equation 3.40. The charge matrix is thus completely unaffected by any change of the
angular momentum.

The charge matrix for cohomogeneity-one solutions

Let us for a moment focus on cohomogeneity-one solutions. In these cases

A~

M = exp[r2%],
as we saw in the Schwarzschild-example above, and with the tangent vector T'(1) = a% to
M (7) we have
xtanrl - Ly [ai ® ¢ <8> } = Ly 1,|0i @ ¢'(T°0;)]
or * or *
= Ly [T'0)] =T| = 2%
since T is left-invariant. The factor of 2 is there in order to have ﬁ J*xJ = €. We thus

see that the charge matrix is in fact the tangent vector which defines the geodesic which
the solution constitutes. In the example we exploited the constant norm of such a tangent
vectors and set

1 R o
which for M = exp[r2%] implies
Tr [%2} =207,

This is really explicitly the squared norm of & with respect to the Killing form metric, or
in some sense the speed of the geodesic.



40 Chapter 3  Gravity Theories and Dimensional Reduction

3.5.1 Transformations and the relevance of nilpotent orbits

It is an important observation that the left hand side of equation (3.41) is invariant under G-
transformations. This makes the value of v? into a constant of the entire orbit of solutions.
Since the metric on m is indefinite the constant v? can take any sign. It turns out, however,
that solutions with negative values of v? describe spacetimes with naked singularities and
are not considered. Recalling the result m? — ¢*> = v of equation (3.32) in the Reissner-
Nordstréom example, section 3.3.3, we see that the vanishing of v? exactly corresponds to
the extremality condition for the Reissner-Nordstrom metric. This is in fact a general
result and v? is therefore called the extremality parameter, or sometimes the BPS!?
parameter. Non-rotating extremal black holes are thus described by charge matrices with
vanishing norm and, equivalently, null geodesics in the case of cohomogeneity-one solutions
1, 15].

This has important implications when paired together with the theorem of BMG and
central role of the Schwarzschild metric as a seed solution. To see this we first need the
explicit form of the Schwarzschild charge matrix.

Explicit calculation of the Schwarzschild charge matrix

The current for the Schwarzschild solution is calculated by use of the coset representative
in equation (3.28). We have from equation (3.27)

1
VAV = e yHdr ™" = mH dr = mH Pdr.
Since o(H) = —H we have for this particular case
1 1
J=VPV =V (V7'V —o(VaV)) VT = V(V V)V = mH Fdr
and
1 1 mH " o
C = E /*J = E ?\/ﬁdﬂe“pgdx” & dzx (342)
B 59
1 1
= — / mH sinfdf Adp = — /mH sin 6dfdyp (3.43)
4 4
1) 1)
= mH (3.44)

where the last step assumes 0f2 to be a sphere at infinity. This also matches the equation

Tr[¢?] = 20v° with v =m.

12 The name BPS originates from a bound in supersymmetric field theories found by Bogomol'nyi,
Prasad and Sommerfeld where the mass of a state saturates an inequality with the central charges of the
supersymmetric algebra. In the context of supergravity this amounts to a saturation of a similar inequality
between the mass and the conserved charges of the theory. These solutions are of special interest as they
allow for the existence of a covariantly constant Killing spinor through which they preserve some of the
supersymmetry in the theory.
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The characteristic equation for ¥
With the explicit charge matrix of the Schwarzschild solution, Bossard, Nicolai and Stelle

observe in [1] that the fundamental representation of the Lie algebra g admits a 3-grading'?

0=91D g0 Dm

with respect to the Lie algebra element H, the Cartan element of the sly-part of the g-
decomposition (3.8). In this, the element H takes the form diag(1,0, —1) whence it in this
representation satisfies

H?=H. (3.45)

If we normalize the extremality parameter according to

o, Tr[%7]
YT mHY

2

which for the Schwarzschild solution corresponds to v? = m? as we just noted that € =

mH , equation (3.45) can be written as
€ —v*€ = 0. (3.46)

This is what is referred to as the characteristic equation for the charge matrix.
We learned above that extremal black holes share the property of v? = 0 and, as such,
they must all have a charge matrix obeying the nilpotency criteria

€% =0.

We hence can state the important fact that all non-rotating extremal black holes, such as
BPS solutions, have a nilpotent charge matriz. From this we are led directly into the study
of nilpotent orbits as the adjoint action by G on % gives the set

Oy ={g¢g "' | g€ g}

Thus, we now delve into the mathematical descriptions of these objects.

Bor a 5-grading in case of supergravity theories based on real forms of Eg for which similar results as

the presented follow.
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Nilpotent Orbits

In this section a brief mathematical background on nilpotent orbits is provided.

After the necessary definitions, the classification concepts of nilpotent orbits in
complex and real semisimple Lie algebras are presented, followed by a discussion
about the relevant orbits for the physical models. The material here is mostly a
condensate of the relevant parts of [5] but, instead of only being strictly stream-
lined for the context of dimensionally reduced gravity, it also is intended to
provide a bit more general insights to the structures of nilpotent orbits.

4.1 Definition

Let G be a Lie group with corresponding Lie algebra g.

In general, an operator O is called nilpotent if there exists a natural number n such
that O™ = 0. In the case of Lie algebra elements the definition of nilpotency is based on the
adjoint action on the algebra itself. This is also the case for the notion of semisimplicity
of operators.

Definition 4.1.1. An element X in a Lie algebra g is called nilpotent if it, regarded as
an endomorphism on g through the adjoint action, is nilpotent. I.e. X is nilpotent in g if
there exists a natural number n such that

ady = 0.

Similarly, an element H in g is called semisimple if it, regarded as an endomorphism
on g through the adjoint action, is semisimple®.

'Recall that an operator H is semisimple if each subspace invariant under H has an H-invariant
complement.
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A group element g of G acts on g through the adjoint representation, denoted Adg,
and an adjoint orbit Oy of an element Z in g is defined as the set {Ad, Z|g € G}. For a
nilpotent element we have the definition:

Definition 4.1.2. A nilpotent orbit Ox in g is the adjoint orbit of some nilpotent
element X € g, i.e. Ox = {Ad, X|g € G} = Gaa(X) 2. A corresponding construction Oy
for a semisimple element H is called a semisimple orbit.

It follows from the conjugating adjoint action that any element of Ox is nilpotent, which
is why the name is adequate. Furthermore, any adjoint orbit O is a homogeneous complex
space isomorphic to Gaq/G%y, where GZ, is the stabilizer of Z in Gaq. As a manifold it
has the dimension dim O, = dim g — dim g#, where gZ denotes the centralizer of Z in g.
Although an adjoint orbit is a subset of g it is not a subspace as it, in general, is not closed
under vector addition. However, if a nilpotent orbit contains X it also contains all scalar
multiples of X.

4.2 Classification in Complex Lie Algebras

It has been shown that the nilpotent orbits in a semisimple Lie algebra g are finitely many
and there are developed methods to classify them in both the complex semisimple Lie
algebras and in their split real forms. We will now briefly review these methods in the
mentioned order.

4.2.1 Complex semisimple case

The real work horse in the classification of nilpotent orbits is the following theorem of
Jacobson and Morozov.

Theorem 4.2.1 (Jacobson-Morozov). Any non-zero nilpotent element X of a complex
semisimple Lie algebra g is part of a s((2,C) subalgebra {H, X,Y'} of g, where H is the
semisimple generator and X,Y are the positive and negative root generators, respectively.

Such a subalgebra is called a standard triple and its elements are also referred to as
the neutral, nilpositive and nilnegative element. Any two standard triples with the same
nilpositive element are conjugate, by a theorem of Kostant, and there is a one-to-one map
between conjugacy classes of nilpotent elements and conjugacy classes of standard triples.
Furthermore, there is a natural one-to-one mapping from nilpotent orbits to a certain subset
of the set of semisimple orbits established through these triples, (Ox — {H, X, Y} — Op).
These semisimple orbits are called distinguished. In this relation, we can always choose
H to be an element of a Cartan subalgebra in such a way that the action of the simple
roots only yields the values a(H) € {0,1,2}. This provides a labeling of each node in

2The adjoint group Gaq is simply the center-free version of G as the center always acts trivially in the
adjoint action.
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the Dynkin diagram with the corresponding value o(H) and such a diagram is called a
weighted Dynkin diagram. It is proven that each nilpotent orbit corresponds to a
unique weighted Dynkin diagram and there is thus at most 3""%? nilpotent orbits in a Lie
algebra g. However, not all labels of the nodes with the numbers 0, 1,2 give a weighted
Dynkin diagram so the number of nilpotent orbits in g is in general less.

4.2.2 Bala-Carter and general simple Lie algebras

Even though the weighted Dynkin diagrams provide a neat way of classifying the nilpotent
orbits there is still the problem of finding which labels actually constitute such a diagram.
For the classical algebras there are rather simple algorithms based on partitions of n, the
dimension of the defining representatino, with only minor complications in some cases.
These rely on the existence of Jordan forms and are not applicable to all semisimple Lie
algebras. There is, however, a more general method devised by Bala and Carter. To
present it we need some notation for the decomposable structure of a Lie algebra.

Let ® denote the set of roots corresponding to a semisimple Lie algebra g with some
choice of a Cartan subalgebra € and let the subsets ®* C ® and A C ®* denote the set
of positive roots and the set of simple roots, respectively. With a fixed € there is always a
root space decomposition of g,

QIQ:EB@gaa (4.1)

acd

where the subspaces g, are the eigenspaces of the elements in H, i.e.
g.={Z€g|[H,Z] =a(H)Z, H € €}.

The root space decomposition will now be used to define three types of subalgebras which
are the basic pieces in the Bala-Carter method.

A Borel subalgebra b of a semisimple Lie algebra g is a maximal solvable subalgebra
and it has the following property [5, p. 32]

Lemma 4.2.2. A Borel subalgebra b of gcan always be decomposed as b = € & n where €
is a Cartan subalgebra of g and n = [b, b] is the nilradicalP of b, consisting of exactly the
nilpotent elements of b. There is, furthermore, always a possible choice of ®t such that

n= EBaefI)+ Ha-

We call a subalgebra p containing a Borel subalgebra for a parabolic subalgebra. We
can clarify the structure of the different parabolic subalgebras in g by choosing a subset
© C A and construct a parabolic subalgebra pg spanned by the generators corresponding
to the roots a € ®* and —a € O, together with € and all their commutators. This will
always give a parabolic subalgebra. We denote the full root system generated by © as (©).

Now, any parabolic subalgebra is G-conjugate to some other on the form pg and two
such algebras pe and pe are conjugate if and only if © = ©’. This gives 27°kl#:8 conjugacy

3The nilradical is the maximal nilpotent ideal.
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classes of parabolic subalgebras from the possible choices of ©. Moreover, for any pe there
is a Levi decomposition which splits pg into

po = lo ® ne,

where

lo = EDga

ac(O)

Neo = @ Ya-

ac(dt\0)

lo is called a Levi subalgebra of g while ng is the nilradical of pg. Two Levi subalgebras
lo and lg are G-conjugate if and only if the corresponding root systems (©) and (©’) are
Weyl-conjugate [5, p. 51].

The Bala-Carter procedure goes one step deeper in the decompositions and look at
parabolic subalgebras of the semisimple part of Levi subalgebras, i.e. p; C [lg, lg], and their
corresponding Levi splitting into p; = [ @ n;. Some of these parabolic (sub)subalgebras p;
has a particular property and are called distinguished in [lg, lg] if and only if

dim [[ = dim(n[/[n[, ﬂ[]).

This is the same as saying that py is distinguished if and only if dim [; equals the number
of indecomposable root generators in ny. It is these pairs of (lg,p;) which are the central
objects for the main result of Bala and Carter.

Theorem 4.2.3 (Bala-Carter). There is a natural one-to-one correspondence between
nilpotent orbits of g and G-conjugacy classes of pairs (lg,py) where lg is a Levi subalgebra
of g and p is a distinguished parabolic subalgebra of [lg, lo].

The full decomposition procedure in the Bala-Carter method can be summarized as
follows.

g 2 Po
!
pe = [ia@ne
[[@a[G] Q p[
1
p=Lodn
1

p distinguished iff
dim [y = dim(ny/ [y, n))

To exhibit its workings we now apply it to two simple examples.
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Ezxample 3 (Bala-Carter method on sl3). sl3 has four conjugacy classes of parabolic subalge-
bras for a fixed Borel algebra b, corresponding to the choices © = {}, {1}, {aa}, {1, a0} =
A of the simple roots a; and ay. Any parabolic subalgebra p is conjugate to pe for one and
only one of these choices and there are thus 4 = 2'2"klsls:5ls] conjugacy classes of parabolic
subalgebras. For the choices of © there are however only three Weyl conjugacy classes of
(0), since ({a;}),1 = 1,2, are W-conjugate, and correspondingly there are three conjugacy
classes of Levi subalgebras lg. The possible choices are illustrated in figure 4.1. We now
need to find all the distinguished parabolic (sub)subalgebras of these Levi subalgebras and
we do it systematically for each choice of ©.

1. © = {}: The minimal Levi subalgebra [g = € has only one parabolic subalgebra p;
which is always distinguished. This is immediate from the trivial calculation

lo,lo] =0 = p =0 = dim[, = dim(n;/[n;, n;]) = 0.

2. © = {«;}: As mentioned the two choices of i = 1,2 yields the same lg with [lg, lo] = sly
and the possible choices of p; = span{ E,,, H;}, span{ E,,, H;, F,,}. The correspond-
ing Levi (sub)subalgebras are

o [ =span{H,} with complement n; = span{E,.} which satisfies

dim [[ =1= dim(n[/[n[, 1’1[])

e [ = sly, and n; = 0, thus not distinguished.
3. © = A: The maximal Levi subalgebra lg = g gives [lg, l[o] = sl3 with the possible
parabolic (sub)subalgebras p; = pe for all choices of ©. We denote the subsets of

simple roots which labels the subsubalgebras p; as ©;. The Levi decompositions are

e Or={}: 41 =¢; ny=span{E,,, Fu,, Fa,+a,} implying

dim [, = 2 and dim(n;/[n,n)) =3 —1=2.

e O = {as}: | = €@ span{E,,, F,,}; w = span{E,,, Eq 1o, } with i,j € {1,2}
and ¢ # j. This yields

dim [[ =4 7é dim(n[/[n[,n[]) =2-0= 2,

which is not distinguished.

e O;=A: [[=sl3; ny =0, i.e. not distinguished.

In total we find three pairs (lg, p;) with distinguished p;:s and thus three nilpotent orbits.
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() ©={} (b) © = {a} (c) © = {a1, s}

Figure 4.1: Root diagrams of sl3 with the four decompositions made in example 3. The choice
© = {as} is just a reflection of © = {a;}. The subset © of simple roots is marked with green
dots, the Levi subalgebra pg with blue dots and the nilradical ng with red dots.

Ezxample 4 (Bala-Carter method on go). Carrying out the same procedure for g, we also
find four conjugacy classes pg corresponding to © = {},{a1},{a2}, {a1, e} = A where
ay () is the short (long) simple root, as can be seen in figure 4.2. In this case we also
have four conjugacy classes of Levi subalgebras as no (©) is Weyl conjugate to another and
they are represented with a subfigure each in figure 4.2. We list the Levi decompositions
of their parabolic (sub)subalgebras, as done for sl;.

1. © = {}: The minimal Levi subalgebra has one distinguished parabolic subalgebra, as
seen above.

2. © = {«;}: Although the two values of i = 1,2 now give distinct conjugacy classes of
le = € @ span{FE,,, F,,}, the calculations are the same and completely analogous
to the corresponding case 2 in the example 3 for sl3 above. Hence we find two

distinguished parabolic (sub)subalgebras, one for each 7.

3. © = A: As for the slz-example we find the maximal Levi subalgebra g = g with
[lo,le] = g2 and parabolic (sub)subalgebras p; = pg, for all O, with the corre-
sponding Levi decompositions

e ©={}: [ =¢Cand ny=span{FE, | a« € T} implying
diml =2 and dim(n/[n,n]) =6 —4 =2,

e Or={}: | = €D span{E,,, F,,} and ny = span{ E.,, Fa,tiar, F2ag+30, | 1 =
1,2,3}. This yields

diml =4 and dim(n/[n,n))=5—1=4,

. @[ = {ag}: [[ =COd Span{Ea27 Faz} and n = Span{EauEaﬁ-iap E2042+3a1 ’ 1=
1,2,3} giving

dim [[ =4 and dim(n[/[n[,n[}) =5-—-3=2

and no distinguished parabolic (sub)subalgebra.
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e O;=A: [[=g, and n, =0, i.e. not distinguished.

In short:
@[ [[ n dim [[ dlm( [“?i‘d ) dist.
0 ¢ s{E, |acdt) 2 2 .
S{EOZQ’ Ea2+ioc17 E2a2+3a1 o
{al} Q@S{Eal,Fal} | Z: 1’273} 4 5_1_4
. S{qua Ea2+ioc17 E2a2+3a1 -
{az}: | € B s{En,, Fu,} ey 4 5-3 =2

*where s{-} denotes span{-}

Thus, in total we find five nilpotent orbits in gs and their corresponding Dynkin labels are

(e (H), az(H)) = (0,0), (1,0), (0,1), (2,0) and (2,2). (4.2)

(a) ©={} (b) © ={a} (c) © = {az} (d) © = {1, a2}

Figure 4.2: Root diagrams of go with the four decompositions made in example 4. The subset
O of simple roots is marked with green dots, the Levi subalgebra pg with blue dots and the
nilradical ng with red dots.

4.3 Classification in Real Algebras

So far the classification methods have been concerned with complex Lie algebras g¢. Our
interest lies primarily in the split real forms ggr of these and to classify the nilpotent orbits
in them it requires a bit more theory. It turns out that the Jacobson-Morozov theorem
4.2.1 carries over to the real case. Moreover, given a Cartan involution 6 this standard
triple is conjugate to one for which the conditions (2.1)

(bR, tr] C tr, (g, Pr] C PR, [pr, Pr] C tr ,
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holds. Here R denotes the Lie algebra of the maximally compact subgroup Kr of Ggr on
which the Cartan involution acts as the identity and pr = gr © tr. Such a triple is called
a Cayley triple. The key point in the classification is to use the Cartan decomposition
gr = tr @ pr and the corresponding complexifications ge = €¢ @ pe as there is a bijection
between the nilpotent orbits in gr and the nilpotent orbits of ¥ in pe. However, in order
to take advantage of that one needs the neutral element to be part of £ and all vectors in
the triple to be f-eigenvectors. This is accomplished through the Cayley transform of a
Cayley triple {H, X, Y }:

{H X' YV}={i(X-Y),3(X+Y +iH),;(X +Y —iH)}

This triple lives in g¢ with H' € €¢ and the other two in pge. This last property makes a
standard triple to what is called normal in [5].

As stated is every standard triple in gr conjugate to a Cayley triple and it can now be
shown that the Cayley transformations of two Cayley triples in gr with the same nilpotent
element Xi are ¢ conjugate. Moreover, any two standard triples in g¢ with the same
nilpositive element X¢ € pg are related by a Kg-conjugation and if they are conjugated
to be the Cayley transformations of two Cayley triples, these latter two are related by a
Gr conjugation. Schematically,

Cayley transf.
{Hg, Xz, Vi} Lo, {He, Xe, Yo}
Or{ Kel
{H, X, Y} e, {H, Xg, YE)
and
inv. Cayley transf.
{HRr, Xr, YR} < ret {He, Xe, Yo}
Or $ Ke i
{HI/R, )(],R7 YIé} /inv. Cayley transf. {H(,D, X@, Yé}

This provide the foundation to the proof of the following theorem.

Theorem 4.3.1 (Sekiguchi). There is a natural one-to-one correspondence between nilpo-
tent Gr-orbits in gr and nilpotent K-orbits in pe. This correspondence sends the zero
orbit to the zero orbit and the orbit through the nilpositive element of a Cayley triple to the
one through the nilpositive element of its Cayley transform.

To study nilpotent orbits we can thus go back to the methods developed for complex
algebras and study of the structure of ¢ orbits in pg.

An additional remark to this theorem is that it has been proved that this bijection
preserves the partial ordering of orbits, which will be discussed further in section 4.5, in all
classical algebras gr. It is however not known whether this holds also in the exceptional
cases.
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Ezample 5 (G2)-orbits). We have seen the orbit structure of Ga-orbits in g, by employing
the Bala-Carter method and it is instructive to see how this splits up when considering
the orbits of the real form Gy(s). As we have seen that Ga)/SO(2,2) is the relevant coset
space for five dimensional minimal supergravity this is particularly interesting. This study
has been carried out in detail in [18].

Let us denote the maximal compact subgroup of Gy as K and its Lie algebra with
£. According to theorem 4.3.1 above we can thus study the orbits of K¢ on pe where
g2 = poc @ €. To track these we introduce an additional labeling which [18] call the S-
label, in addition to the weighted Dynkin labels (al(H ), ao(H )) of the orbits in Gy we
presented in equation (4.2). These (-labels corresponds to the weighted Dynkin labels of
pe obtained through a choice of a Cartan subalgebra and simple roots for pp. These can
be found in the math literature (e.g. [7]) and with them the orbit structure of Gy is
displayed in table 4.1 as presented by [18]. We note that the Gy-orbit with labels (2,0)
splits up into two distinct orbits in Ga(g).

Table 4.1: The five nonzero G(,)-orbits. Note the split of the G2-orbit corresponding to a-labels
(2,0) [18].

Gay-orbit a-labels [-labels dim(Ga) - )
o, (1,0)  (1,1) 6
O, (0,1) (1,3) 8
0, (2,00 (2,2) 10
O, (2,0)  (0,4) 10
O (2,2)  (4,8) 12

4.3.1 H-orbits in m

Although nilpotent orbits in complex and real Lie algebras can and have been classified,
this is not exactly what arose when we studied the transformation of the charge matrix. As
we are primarily interested in those transformations that preserves the boundary condition
of an asymptotically flat spacetime we are limited to the transformations of the subgroup
H. What thus really matters in the context of extremal black holes are the orbits of H
in m. This is not a trivial restriction as there might be elements in G which connect two
elements in m while they are missing in H. G-orbits may thus split into two or more
‘H-orbits.

The problem is unfortunately also non-trivial and it is in fact not yet solved in full
generality. There are however different techniques developed to tackle this, as e.g. in
2, 28, 12], and [15] supplies a summary. In short one considers a decomposition of g into
representations of sly corresponding to a normal standard triple with semisimple element
H. These are further decomposed according to the H-grading of these. Now, any standard
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triple for a given nilpositive element can be chosen such that H lies in hNp, the intersection
of the Lie algebra to H and the Cartan involution invariant subspace p. By noting that
two semisimple elements H, H' € hNp in two standard triples are H-conjugate if and only
if the simple roots ay; of H satisfies ay(H) = ag(H), the problem is reduced to study the
nilpotent orbits in my, the part of m with eigenvalue 2 in the mentioned H-grading.

In spite of all these efforts a full classification is missing and one often has to resort to
case-by-case studies.

As an example of these splits we can continue example 5 and look at the orbits of the
subgroup H which in this case is SO(2,2).

Example 6 (SO(2,2)-orbits in Ga(2)). When we restrict the adjoint action on gs9) to the
denominator group H = SO(2,2) in Ga(2)/50(2,2) some of the Gyz)-orbits split. Adapting
the notation to table 4.1, it is in [18] found that O3 splits into two orbits which we denote
O3y and Oy, respectively and the same thing happens to O, which splits into O,y and

4. Choosing standard triples {H, X, Y} with X as representative for each one of these
orbits it is possible to define a third label, called the v‘-label in [18], by applying the same
simple roots as in the S-labels to the semisimple elements H. With these labels the table
of the Gy)-orbits can be extended as in table 4.2.

Table 4.2: The splittings of the Go-orbits when going to the real form G(3) and then restricting
the adjoint action to H = SO(2,2) [18].

Gy-orbit a-label  Gygy-orbit  f-label H = SO(2,2)-orbit ~-label

O, (1,0) O, (1,1) O
O, (0,1) O, (1,3) O,

0, (22 o o)

03G2 (2’0) O37—t ( ) )

0,4

O 0,4 aH ’
Co oY » 22)

4.4 Nilpotent Orbits as Black Hole Solutions

Nilpotent orbits have been classified in complex and real Lie algebras but the setting that
matters the most for the solution space of extremal black holes is not fully solved. The
orbits of subgroup H, which preserves the asymptotic flatness of the solutions, lack a
full classification, but we have just seen that they nevertheless alter the orbit structure.
This means that there is as of today no complete description of the extremal solution
orbits. Furthermore, not all H-orbits correspond to physically relevant solutions. This is
also the case in our example of five dimensional minimal supergravity and the H-orbits
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in Gy(2) presented above. In [18], each orbit in H-column of table 4.2 is systematically
investigated. It is shown that only Oy, Oq, 0%, and O4y correspond to physical solutions.
O3y and Oy, are ruled out by studying a well-known quartic polynomial of the charges
in V' = 8 supergravity which is invariant under the group Er(7). This polynomial can be
written also in the dimensionally reduced theory as long it is a consistent truncation of
the mentioned theory. The study of the asymptotic values of the polynomial divulges O3y
and O}, to have naked curvature singularities. The exclusion of Oj is simpler as it turns
out that the nilpotency degree of its representatives is seven which is too high to satisfy
the characteristic equation for the charge matrix (3.46). There are believes ([2]) that it is
a general fact that the 8- and v-labels coincide for physical orbits and the findings of [18]
support this idea. Another notable result in [18] is that the biggest of the physical orbits,
Oy, contains non-supersymmetric solutions. This is in accordance with the subject of the
next section.

From this we learn that the orbit structure in the Lie algebras cannot be applied as
is onto the solution space of extremal black holes. Care must be taken when each orbit
is analyzed in the specific gravity theory. Additionally we may remark that the H-orbits
may split further when opposing conditions, as the requirement of no NUT-charge [15].

4.5 Partial Ordering and the Minimal Orbit

An important property with a physical realisation is that the set of nilpotent orbits pos-
sesses a partial ordering @ < (. It is based on the Zariski closure* operation O such
that

0<0 < 0CO.

A smaller orbit is therefore always contained in the closure of a bigger one and is thus
smaller in dimension. Conversely, the closure of an orbit contains all of the smaller ones.
There always exists a principal orbit which is the largest orbit in the partial ordering,
hence containing all other orbits in its closure. Moreover, there are two more canonical
orbits labeled as the subregular orbit and the minimal orbit. They are the second
largest and second smallest orbits, respectively.

The physical relevance of the partial ordering is what follows. Every real orbit O maps
to a family of black holes as do all other orbits that are contained in its closure. These orbits
describe special cases of the black hole solutions coming from O. In particular, [1] states
that the partial ordering in fact corresponds to an ordering of the black holes according to
there BPS-degree. The amount of symmetry of the black hole family increases the smaller
its corresponding orbit is and this gives the minimal orbit a special role physically. It
corresponds to the black hole family with the highest BPS-degree and is thus particularly
interesting [15].

An example of this is e.g. found in D = 4, N' = 8 supergravity deduced from eleven
dimensional supergravity compactified on a 7 torus. The symmetry group of this theory

4For a minimal comment on Zariski topology, see appendix D.
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is F7 and the number of supercharges is 32. The compactified theory contains 28 Maxwell
fields Alﬂ which gives a 56 dimensional lattice I' & Z5% of electric and magnetic charges.
The lattice I' is preserved by the symplectic group Sp(56,7Z) and the actual symmetry
group is

Enq)(Z) = {9 € Exn(R) | gI' =T'} = Erry(R) N Sp(56, Z).

Solutions to the field equations include black hole solutions with charge v = (pf,q;) € T
but not all of these solutions preserves the supersymmetry. It turns out that the E7(7)-orbit
of half BPS solutions 71, preserving %32 of the supercharges, corresponds precisely to the
minimal orbit.

Because of its prominent role we now devote some special attention to the minimal orbit.

4.5.1 The minimal orbit

As stated above, there is in any simple Lie algebra g a non-zero minimal nilpotent orbit
Omin Which is contained in the closure of all other non-zero nilpotent orbits. It is the orbit
of the nilpotent element corresponding to the highest root ¢ and is also denoted Op,. The
proof can e.g. be found in [5, pp. 61-62] and shows that any non-zero nilpotent orbit Ox is
arbitrary close to Ey by conjugating X in steps until its component along Fjy is arbitrary
large compared to X — Fy and then rescaling it to Ey. By the partial ordering, the property
of laying in the closure of all other nilpotent orbits is enough to conclude that Ope is the
minimal nilpotent orbit.

This distinguished property is, as we will see in chapter 6, not generalizable to affine Lie
algebras where there is no highest root. We have not yet seen these algebras nor how they
arise in the compactification down to two dimensions but if we are to study a corresponding
concept in these settings we ought to understand the minimal orbits in other terms here.
In fact, very little is known about a minimal orbit in the affine Kac-Moody algebras but
as a similar concept is expected from a physical perspective this is an important question
in current research and calls for a better understanding of the minimal orbit also in finite
dimensional algebras.

One approach in these efforts is to focus on the simple roots since, although the notion
of a highest root is missing in affine algebras, these are still present. If one thus can
understand the minimal orbit in terms of the simple roots that would be a good starting
point to generalize the ideas to the infinite dimensional case. For this future project some
work has been prepared in appendix F where conjugating elements between the highest
root vector and the simple root vectors are found and presented for sls, sly, sl5 and gs.
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Infinite Dimensional Symmetries Revealed

We will now take step into the world of infinite dimensional symmetry. Our
first encounter is the same as the historical discovery of their relevance to di-
mensionally reduced gravity. By displaying the results of Geroch’s work we will
see how the algebra of s, the infinite dimensional affine extension of sly, arise
in four dimensional pure gravity reduced down to two dimensions. We then
conclude with some remarks on the generality of these findings.

If there is two commuting Killing vectors in the four dimensional theory it is possible
to dimensionally reduce down to two dimensions. This is e.g. the case of axially symmetric
solutions. The reduction from four dimensions can be done in two ways, either in steps
via the three dimensional theory or directly to two dimensions. Both ways result in a
Lagrangian of the same form. However, they do not contain the same fields but are related
to each other by a duality transformation, known under the name Kramer-Neugebauer
mappings'. The first example of this was discovered by Geroch when he studied pure
gravity in four dimensions and we will now look closer at this.

5.1 Dimensional Reduction of Pure 4D Gravity to Two
Dimensions

We continue earlier examples by making a similar ansatz of the three dimensional metric
as we did for the four dimensional metric in (3.2) in section 3.2. However, there is a crucial
difference between the ansatze as the expected Kaluza-Klein vectors arising in such a split
would carry D — 2 degrees of freedom which now when D = 2 implies their vanishing.

I'These mappings are in fact a wider concept out of which this is a special case.
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Thus we are left with the simpler remains [16]

o) = g 0
af 0 p2 :

Here f denotes the so called conformal factor which cannot be avoided in two dimensions.
It is not related to the former function f(7)? in earlier sections.
The Lagrangian resulting from this split looks like [16, 8]

1
£ = p\/g(fz(z) -5 (0,60"6 + e 9, x0"x) + 2f‘16’ufp‘18“p>- (5.1)

5.1.1 Dualization and the Kramer-Neugebauer mappings

The Lagrangian (5.1) allows for a dualization much like the one we preformed in three
dimensions. First, however, we use the fact that any two dimensional metric is conformally
flat which enables us to absorb what is needed in the conformal factor f such that g, = d,..
Thereby we also get /g = 1. The relevant part of the Lagrangian is now

£E, rel. part — P7 (au¢aV¢ +e a,uxal/X) (52)

and we call this the Ehlers version of the Lagrangian. Starting the dualization we let
C,, = 0,x and incorporate this information in the Lagrangian multiplier xd,(e"*C,) such
that

uv

5 B i )
£ = p=5 (0u00,6 +¢C,C, ) +X0,(C.).
Varying with respect to x gives the algebraical equation

e%?
Cﬂ == 75W6p”3,,)~(

which can be substituted back into the Lagrangian to yield

5 o e2¢ o
L= p? <au¢au¢ - pzauXaVX> .

This expression is almost in the form of the Ehlers Lagrangian in (5.2) and we can in fact
recreate it fully with the redefined fields

Ly € _ x 1/4_¢/4
e =— p=p f=1rfp " e
p
These are the Kramer-Neugebauer mappings in this theory and with them we get the full
Lagrangian
3 W2
Ly = P(

7 (auéaué - eizd;auf(aufd + zflaufﬁlauﬁ>
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which is called the Matzner-Misner Lagrangian. If we would have dimensionally reduced
directly down to two dimensions, this is the Lagrangian we would have found.

Both of the Ehlers and the Matzner-Misner versions of the Lagrangian exhibit an
SL(2,R)-invariance. These are, however, two different SL-groups and the duality induces
an action of the Ehlers SL(2,R) on the Matzner-Misner fields and vice versa. Let us work
out these transformations more in detail.

5.1.2 Transformations of the fields

We denote the Ehlers SL(2,R) with Chevalley-Serre generators as is and the Matzner-
Misner group as SL(2,R) with the generators E,H,F accordingly. We now study the
infinitesimal transformations by these groups on the fields A = e?,y, A = ¢? and Y as
induced by the action on the corresponding coset representatives V.2 This includes the
compensating gauge transformation on V' whenever it is needed.

A small calculation gives that the Ehlers field representation transforms under the

Ehlers SL(2,R) as

0pA =0 op = —1
5FA:2XA (SF:XQ—AQ

and the Matzner-Minser fields naturally satisfy exactly the same transformations under
their SL(2,R). So far it is just a repetition of the statement that these fields form SL(2)-
representations and if one checks the commutation relations of these transformations one
finds that £, H and F indeed form a Chevalley-Serre basis in this representation.

It becomes more interesting when looking at the commutators in between the sly- and
sly-generators. Consider

p
0ia.mA = 0505 — 6pdgA = =6y (A) — 95.A

Sy = 60 — 5502 = —050n (Z) — 25A.
Repeating the same calculations for F' and F yields [H, F] = 2F and [H, H] = 2F. We
can thus see that these commutation relations gives the (generalized) Cartan matrix

Agy = <_22 _22) - (5.3)

This is precisely the Cartan matrix for the affine extension slj of sl,. This is an infinite
dimensional affine Kac-Moody algebra which will be the subject of the next chapter.

To really see the infinite dimension of this algebra we would need to look at the Matzner-
Misner transformations on x. Analogously to what we did above one can rewrite the

2Recall V in equation (2.18)



58 Chapter 5 Infinite Dimensional Symmetries Revealed

Ehlers field through the Kramer-Neugebauer mappings and calculate each transformation.
However, acting repeatedly with the Matzner-Misner generators creates non-repeating ex-
pressions all dependent on A and x. This never ends and by denoting the expressions
as new field one gets an endless chain. In [21], Breitenlohner and Maison collect these in
a generating function, a coset representative expanded in a power series of a parameter,
which links this formulation of the sigma model to what is known as loop algebras. These
will also be introduced in the next chapter.

The intertwining of the two sly-algebras we have just seen above is an example of a general
property of the dimensional reduction down to two dimensions. All the theories relevant for
the method have duality transformations which extend their symmetry groups to infinite
dimensional versions.
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Affine Kac-Moody Algebras

This chapter contains a basic introduction to affine Kac-Moody algebras and
their construction from loop algebras. The central and double extensions are
discussed followed by a short presentation of the root space. We then move
on to some important formulas central to the orbit structure of these algebras.
We conclude that section with some remarks on the implications on black hole
solutions and the search for a corresponding concept to the minimal orbit in
finite dimensional algebras.

Kac-Moody algebras are a generalization of the finite-dimensional semisimple Lie alge-
bras and even though they usually are infinite-dimensional, they share a lot of properties.
The generalization is done through the Cartan matrix which for the simple Lie algebras,
we recall, is a (r x r)-matrix fulfilling

A =2 (6.1a)
AT =0 <= A" =0 (6.1b)
AV e 7 fori#j (6.1c)
and
det A >0, (6.1d)

where the last condition ensures A to be of rank r. It is also the requirement (6.1d) which
is relaxed for Kac-Moody algebras such that the generalized Cartan matrix satisfies
(6.1a)-(6.1c) and is allowed to be singular with rank A < r, and thus to have one or more
zero eigenvalues. We will further on refer to both generalized and ordinary Cartan matrices
as simply Cartan matrices.

Based on the definiteness of the Cartan matrix, it is possible to divide the Kac-Moody
algebras into three main classes where the class of positive definite A:s contains all the

29
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finite simple Lie algebras, the class of positive semidefinite A:s are called the affine Kac-
Moody algebras and the class of indefinite Cartan matrices goes under the natural name
indefinite Kac-Moody algebras.

The affine Kac-Moody algebras thus have positive semidefinite Cartan matrices and, ac-
cordingly, they have precisely one zero eigenvalue. Hence, rank A = r — 1 and from
now on we choose the more convenient labeling where A is a rank r matrix of dimension
(r4+1) x (r+1). The requirement on A can equivalently be described as

det Ay >0 fori=0,...,r

where det Ay;, are the principal minors of A, i.e. the determinants of the matrices obtained
by deleting the ith row and column from A.

6.1 Construction from Loop Algebras

Affine Kac-Moody algebras are often realized through extended loop algebras and it is
also this construction which arise when dealing with the physics we just encountered the
previous chapter.

A loop algebra Lg = Map(S'; g) is the set of smooth maps from the unit circle to a
finite-dimensional Lie algebra g with a pointwisely defined bracket. The smooth maps can
be expressed as (infinite) Laurent polynomials in the coordinate z = !, or equivalently in
trigonometric polynomials of 6, such that a basis for Lg can be written

{T% =T® 2" ‘ {T%|a=1,---,dimg} forms a basis for g and z = " € Sl}.
The Lie bracket is defined on the basis as

[T, T g = [T, Ty @ 2™ 2"

m?’—Tn

and thereby on general loop algebra elements as
(X ®P(2),Y®Q(2)|, =[X,Y]® P(2)Q(2),

where X, Y € g and P and @) are (Laurent) polynomials of z.

6.1.1 Central extension and double extension

The loop algebra construction allows for a non-trivial central extension [//E;, i.e. the addition
of an element C' to Lg which commutes with the entire algebra without just being a simple
sum of algebras, even in the cases where g might be simple.
By definition, the central extension C' has a vanishing commutator with all elements
in Lg but it is added non-trivially by appearing at the right hand side in
[T T) £y = [T Tl g + 11000 B(T, T°) C, (6.2)

m?r—n m?r—n
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where B is a symmetric invariant bilinear form on g. The central extensions of a loop
algebra correspond precisely to such forms on g. Another way of expressing this is to
define w: Lg x Lg — R

W(X,Y) = ;ﬁ /B (x(0). ;;Y(O)) dg.

Viewing Lg as the vector space sum Lg®RC the commutator of two elements (X, x), (Y, A)
€ Lgis
(X, 5), (V)] = ([X, Y], w(X,Y)). (6.3)

The equivalence between the commutators (6.2) and (6.3) is straight-forwardly checked. It
is also common to express the commutation relation in terms of the residue of P(z)Q’(z)
at z = 0, where the prime denotes derivation with respect to z, which of course is just the
integral in the definition of w.

For the bracket (6.3) to define a Lie algebra, w must satisfy the condition

w([X, V], Z2) +w([Y, 2], X) + w([Z,X],Y) =0
which in fact makes w into a 2-cocycle! on Z/E, the corresponding loop group to E\g

The central extension is, however, not enough to make a loop algebra into an affine Kac-
Moody algebra. That demands the existence of a non-degenerate bilinear form cf. [22,
p. 53] and [14, p. 103] which is impossible if we do not lift a degeneracy of the roots in
the current setting, which soon will be explained more below in section 6.1.2 on the root
system. It is done by introducing by hand an additional generator D together with the
commutators

[C,D] =0 (6.4)
(D, T = —[T2, D] =nTy.

D is often called the derivation and D acts as ;l—iéi, or equivalently zd%, on the polynomial

part of 7). The resulting algebra, Evg, is called the double extension of Lg and since D
does not occur on the right hand side of any bracket, the derived algebra of Lg is

[Lg,Lg] = Lg .
The full doubly extended loop algebra can thus be written as the vector space sum
Lg=RD®g®P(z) ® RC,

where P(z) is the set of all Laurent polynomials on S!. It realizes the properties of an
affine Kac-Moody algebra, which will be made a bit more explicit in the following section.
It should be mentioned that there are more ways of doing these extensions. What we
have obtained here is the untwisted algebra. It is possible to define the maps from S*
to g involving automorphisms on g upon a winding around the circle which give what is
called twisted algebras. We will however not deal with these in the scope of this thesis.

LA p-cocycle is a closed p-form and in order for the central extension to be non-trivial it must not be
a coboundary, that is it cannot be exact.
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6.1.2 The root system

To construct the root system for [E; we first find the analogue of the Chevalley-Serre basis
and, particularly, the Cartan subalgebra in this basis. The latter consists of

¢ = {H;,C, D}

where the H{ denotes the Cartan elements of g paired with the constant polynomial. By
equations (6.2) and (6.4), their brackets are checked as

[CuH(Z)] = [D’H(l)] =[C, D] =0

and from the commutation relations with the rest of the generators

[Hi E% = &'E2, [C,E%] =0, (D, EY] = nE®
[Hy, H;) =0, [C, H]] =0, (D, H]) = nH}]
we find the roots
a; = (a;,0,n) corresponding to E%i
ag = (0,0,n) corresponding to H
where i = 1,2, ...,r and @; are the roots of g, and thus a basis for €*. We see here that the

a;:s are non-degenerate while ay is r-degenerate and that the number of roots is infinite.
We denote the set of roots as ® and divide it into positive roots

ot = {a; = (a,0,n) |i=1,...,mn >0 U{a=(a,0,0) | ac d*},

where ®* is the set of positive roots of g, and the set of negative roots &~ = ®\d*. By
writing

6 =1(0,0,1)

and denoting the highest root of g as , we pick the subset of simple roots A C ®* to be
A= {a; = (@,0,0)|i=1,....,r}U{ag=0—0=(-0,0,1)}

as all positive roots can be obtained as a sum of these with only positive coefficients.

Non-degenerate form

The finite case definition of the Killing form cannot be used for affine Kac-Moody algebras
as the trace now runs over the infinite adjoint representation. Instead, one can impose the
invariance requirement

K([X, Y], Z) = K(X, [V, Z]) (6.5)
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on a symmetric bilinear form K on LNg which is enough to actually find a non-degenerate
form. Choosing the various basis elements of Lg as X,Y and Z in equation (6.5), one finds

K(T% T?) = §pmynoK(T, T?)
K(T%, C) = K(T%, D) = 0 (6.6)
K(C,D)=1
where K is the Killing form of g.

Analogously to the finite-dimensional case, the restriction of K to € defines a metric
on the root space but in contrast to the Euclidean metrics of simple algebras, it is now
of Lorentzian signature. By (6.6) we see that the scalar product in the root space of
a=(a,k,n)and o = (&/, k', n') is

(a, ') = (a,a') + kn' + k'n
which, due to the crossing of C' and D, no longer is definite. However, as k = k' = 0 for

all roots in @, the metric on the roots is actually semidefinite with only one direction with
vanishing norm, namely

(6,8) = 0.

Accordingly 0 is called the null root. This splits ® in two non-intersecting subsets, the so
called real roots

Ppe i={ae€®|(v,a) >0} ={a=(a,0,n) |necZ}
and the imaginary roots
Oy i ={a €| (a,a) =0} ={nd | ncZ}.

These sets are also referred to as the spacelike roots and lightlike roots, respectively,
and these more self-explanatory nomenclature will be used further on (still keeping the
notation ®ge, Pr,, however to stick to praxis in the literature).

The explicit Cartan matrix

The elements of the Cartan matrix of ITg can now be expressed in terms of the scalar
product on the root space above:

AZ] — 2 (Oéi? a])
(aia az)
which in particular gives
Ajj = Ay for i,j #0
AOJ _ _2( ,Oé])
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The Cartan matrix for our most relevant algebras are

Afst) = (_22 ‘22) ,

2 -1 -1
A =-1 2 -1/,
~1 -1 2
2 -1 -1
Algs)=|-3 2 0
-1 0 2

6.2 Nilpotent Orbits in Affine Algebras

We now generalize some of the concepts of orbits in chapter 4 to the case of affine Kac-
Moody algebras.

6.2.1 The loop group and affine orbits

In order to speak about orbits we must first define the groups corresponding to the loop
and affine algebras.

Starting with the loop algebras and their corresponding groups we say that a loop
group LG = Map(S';G) is the set of smooth maps from the unit circle to the Lie group
G with a pointwise composition law. The Lie algebra is as usual the tangent space at the
identity with the Lie bracket defined from the identification of the tangent vectors with
left-invariant vector fields. This is precisely the loop algebras we have described in section
6.1. The exponential map is defined through the one-parameter subgroups vz : R — LG
where 7,(0) = Z € Lg.?

The adjoint action of LG on Lg is immediately given by ¢Z¢~! for g in LG and Z in
Lg.

The central extension

We denote the group corresponding to the centrally extended loop algebra [//\g as LG. When
then considering the adjoint action of LG on LAg it is naturally enough to only work with
the adjoint action of LG on Lg, as the central extension commutes with everything by
definition. On the element Z = Z + aC in Lg, in which Z € Lg and « is a scalar, this
action is given by [25, p. 44]

Ady(Z) = gZg™' + (a — (g7, Z}) C (6.7)

2 Although this definition is perfectly fine to generalize to loop groups, it should be noted that potential
properties of G, such that surjectivity of the exponential map, does not need to hold for LG. See e.g. [25,
p. 27-28].
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where the prime denotes derivation with respect to # and
1 2m
(X,Y) = 27/13 (X(6).Y(6))d6, XY € Lg,
T
0

with the symmetric invariant bilinear form B from equation (6.2).

The double extension

The adjoint action of an element g in the loop group LG on Z = Z +aC + BD in the
doubly extended algebra Lg is given by [19]

p

Ady(Z) = gZg7" = BY + (a + (2,Y) - (. Y))C + D (6.8)

where Y = ¢’g~! is an element of Lg.

6.2.2 Affine orbits and black hole solutions

There is yet a lot of research to be done when it comes to both the actual solution generating
and the resulting solution orbits of the affine algebras. However, an important fact that has
been known over thirty years (e.g. [13]) is that the full Geroch group we found in chapter 5
acts transitively on the set of axially symmetric solutions to the Einstein vacuum equations.
This implies in turn that the Minkowski solution in fact can be used as a seed solution
within this context, in contrast to what we found in the finite dimensional case [9]. The
power of the solution generating technique is thus enhanced and similar properties are
expected to hold also for more complicated settings. This provides extra motivation to try
to generalize the methods of nilpotent orbits.

A more recent result is presented in [17] where the two-charge single-rotation JMaRT
fuzzball in STU gravity® was proved to be smoothly connected to the Myers-Perry instanton
by a transformation in the Geroch group.

There are more results but the picture calls for a more general understanding of the
affine nilpotent orbits.

6.2.3 The search for a minimal orbit

As pointed out in section 4.5.1, the minimal orbit plays a significant role by corresponding
to solutions with the highest BPS-degree, as e.g. the 1/2 BPS solutions in the mentioned
D = 4, N' = 8 supergravity theory. It is well understood in finite dimensional Lie algebras
but little is known about a corresponding structure in the affine Kac-Moody algebras. As
there from a physical point of view are families of black holes with maximal BPS-degree

3The STU model is a consistent truncation of maximally supersymmetric supergravity with four types
of electromagnetic fields.
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also when the description is reduced to two dimensions there is however reason to expect
the existence of such a structure. An understanding of what this could be and what
implications it has is an important step to generalize the use of nilpotent orbits to gravity
theories reduced to two dimensions.

As proposed in section 4.5.1 an entrance to this research is to study the relation between
the minimal orbit and the simple roots in finite dimensional algebras from which hopefully
some observations can be generalized to the affine cases. To provide a tool for such a work,
this thesis provides two Mathematica-packages designed to easily calculate the adjoint
actions in the affine algebras sl and g5 . The following chapter includes the documentation
of these.
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Mathematica-packages

To facilitate the proposed future work of examining the conjugation between
different simple root vectors in semisimple and affine Kac-Moody algebras, two
Mathematica-packages have been developed to calculate the adjoint actions in
the algebras sUt and g3 and their semisimple counterparts. The names of
the packages are affineS1Conjugation and affineG2Conjugation and their
corresponding documentations now follow.

In case of interest in the packages, please contact the author.

7.1 Documentation of affineS1Conjugation

The Mathematica-package affineS1Conjugation is a package with functions and symbol
definitions to calculate the adjoint action and conjugation in sl algebras. It features

automatic definitions of the Chevalley-Serre basis for the horizontal algebra sl, as
matrices

a tensor product representation of the corresponding loop algebra of the form X & s™
with X as a Chevalley-Serre basis matrix in sl,, and z as the complex loop parameter

a basis for the affine extension with the symbols for the central extension and the
“derivation” element

functions to calculate commutators in the horizontal, loop and affine algebras
matrix exponentiation from the loop algebra to the loop group

functions to calculate the adjoint action of a group element on the corresponding
algebra element for the horizontal and loop algebras
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« functions to calculate the adjoint action of the exponentiation of an algebra element
on another algebra element, in both the horizontal, loop and affine algebras

« some utility functions to manipulate Mathematica’s representation and visualization
of the various objects.

7.1.1 Basic usage

A session with the affineS1Conjugation-package begins with calling the initialization
function initializeS1Algebral[n] which defines all the package’s objects for s, its loop
algebra and the affine extension. The horizontal algebra basis is defined and accessed
mainly! by the lists Es[i], Hs[i] and Fs[i], the loop algebra basis as 1E[i,m] (= Es[i| ®z")
etc. and the affine basis consists of the loop algebra basis elements together with the
symbols Cen and Der which represent the central extension and the “derivation” element,
respectively.

The general? rules for function names which exist in different versions are that functions
which apply to the horizontal algebra are marked with an h or H, if at all, while the loop
algebra objects are marked with 1 or L, and an a or A mark the names for the functions on
the affine algebra. ct is often used as acronym for CircleTimes and for some of the utility
functions a v is prepended to denote that the function is used for the visual representation.
A few functions also have their functionality defined as rules and in these cases an F and
an R are appended, respectively.

Commutators are calculated by the functions com, 1Com and aCom and the adjoint
actions by adg, 1Adg and aAdg which take algebra generators as arguments and by adG
and 1AdG which take group element as arguments. This is documented more in detail
in the function list below. To exponentiate a loop algebra element there is the function
1MatrixExp and the Killing form exists for all three algebras as kill, 1Kill and aKill.
The invariant bilinear form used to define the affine extension has the name w (or wRes).
A full list of the defined functions and objects follows below.

Example 7 (Basic usage).

In[1] := initializeS1Algebral3]
In[2] := $currentAlgebra
Out[2]= The currently initialized algebra is s1(3).

Horizontal algebra
In[3]:= hBasis

Tt is also gathered in the list basis.
2There are however a few exceptions to these rules among the most notable are com, adg and adG.
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Out [3]=
010 0 0 O 0 0
{ 0 0 0|, 0 o0 1], 0 O
0 0 O 0 0 O 0 O
0O 0 O 0 0 O
o1 0 |,|10 0],
0 0 -1 0 0 O
In[4]:= com[Es[1], Fs[1]]
Out [4]=
1 0 O
0 -1 0
0O 0 O
In[5]:= adglEs[l], Fs[1]]
Out [5]=
1 -1 0
1 -1 0
0O 0 O
In([6] := vDecompInHBasis [%]
Out[6]= {e[1] — —1, h[1] — 1, £[1] — 1}
Loop algebra
In[7]:= X =1E[1,3]
Out [7]=
010
000 |®2z°
0 0 O
In[8]:= Y =1F[1,-3] + 1H[2,2]
Out [8]=
0 0 O 1 0 0 O
100|®5+|01 0 |®2
000 z 00 —1
In[9] := 1Com[X,Y]
Out [9]=
010 1 0 O
000 |®z°+|0 -1 0 |®1
0 0 O 0O 0 O

oo o © O

= O O
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In[10]:= 1Adg[X,Y]

Out[10]=
010 0 00 )
000®z5+100®—3
0 0 0 0 0 0 z
010 00 0 1 0 0
-l o0 o0 |®z2+l 01 0 |®z°+]0 -1 0 |®1
0 00 0 0 —1 0 0 O

Affine algebra

In[11]:= X = 1E[1,3]
Out[11]=
010
0 00 |®z®
0 00
In[12]:= Y = 3 Cen + Der + 1F[1,-3] + 1H[2,2]
Out[12]=
0 00 ) 0 0
3Cen+Der+ | 1 0 0 |®@ <+ |0 1 O ® z2
0 0 0 z 0 1
In[13]:= aCom[X,Y]
Out[13]=
010 010 1 0 0
—30Cen+| 0 0 0 |®2z°-3] 0 0 0 |®z22+]0 -1 0 |®1
0 00 000 0 0 0
In[14]:= aAdgl[X,Y]
Out[14]=
010 0 00 .
—27Cen+Der+| 0 0 0 |®2°+| 1 0 © ® =
0 0 0 0 0 0 o
010 00 O 0 0
—4]1 000 |®22+l01 0 |®22+]0 -1 0 |®1
0 00 0 0 —1 0 0 O
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Some particularly useful utility functions

A few functions are provided to facilitate the work flow and are here referred to as utility
functions. Among these the following might be of particular interest. A summarizing
example follows the list.

o To decompose a general algebra element in the used bases, there are the functions
decompIn*Basis, where * is either H, L or A. These give the decompositions as
rules for the parameters in the variable list params. They are followed by sister
functions with a v prepended in the function name (stands for ’visual’) which drops
rules which map to zero. In addition, there are decompIn*BasisMatForm (* = L, A)
which decompose elements into the sum of matrix expressions.

o To split a matrix containing functions of z into the tensor product between constant
matrices and these functions, use collapsedToCt.

o If there is a wish to treat user defined symbols as scalars in the linear combinations of
algebra elements, define these as being numeric with makeSymbolCountAsNumeric.

o To smash a linear combination into as few terms as possible, use smashLinF.

o The affineS1Conjugation-package prints two-dimensional lists as matrices by de-
fault. Disable this through alwaysPrintInMatrixForm[False].

Example 8 (Usage of some utility functions).

In[1]:= initializeS1Algebral[3]

In[2] := makeSymbolCountAsNumeric[a,b]
In[3]:= loopElem = a 1E[1,3]+b 1F[2,3]
Out [3]=

0 1 0 00
al 0 0O ®Rz+b|l 0 0 0 |23
0 0 010

o O O

In[4] := smashedLoopElem = smashLinF[loopElem]
Out [4]=

O O O
o O p

0
0 | @23
0

In[5]:= ctToTimesF [smashedLoopElem]
collapsedToCt [%]
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Out [6]=

0 az®* 0

0 0 O

0 bz*> 0
Out [6]=

0 a O

000 |®z

0O b O
In[7] := vDecompInLBasis[smashedLoopElem]
Out[7]= {e[l] — a, f[2] > b} ® Z*
In[8]:= decompInlBasisMatForm[smashedLoopElem]
Out [8]=

®Rz>+Db ® z3

V]
O O O
O O =
O O O
O O O
=~ O O
O O O

Additional g, algebra
To initialize a parallel g, algebra duplicating all algebra elements, run the function
initializeG20bjects. The object names are identical to the sl, related names but
with the text g2 prepended, e.g. 1E gets the g, duplicate g21E. The matrix representation
used for g, is listed in appendix E.

It is also possible to use the initializeS1Algebra function to define the g, algebra
as the standard algebra. It is done by passing the string argument "g20verride" to
initializeSlAlgebra.

7.1.2 List of user-available objects

Here follows a list of all user-available objects in affineS1Conjugation ordered in sub-
sections of intended use together with a short description.

Initialization
» §currentAlgebra contains the info of the current initialized algebra as a string.

»initializeS1Algebral[n] initializes a sl,-algebra, the corresponding loop algebra and
its affine extension. Needs to be run to start using the package properly. It calls both
initializeHBasis and initializeLBasis. An additional feature exists which
makes go the standard horizontal algebra. This is done by evoking
initializeS1Algebra with the string argument "g20verride".



7.1 Documentation of affineS1Conjugation 73

Horizontal algebra

» Es is a list with the F element matrices of the Chevalley-Serre basis. E.g. if the initialized
algebra is sls,
01
Es[1] = (00> .

*Fs is a list with the F' element matrices of the Chevalley-Serre basis.

» genericHAlgElem is a generic sl, element as a linear combination of the matrices in
2
hBasis with the coefficients of params. I.e. >/ ' hBasis[i] params[i], which for

sly is
(f A hl[]l]> |

»hBasis as a list with all Chevalley-Serre basis elements ordered like {Es, Hs, Fs}.
»Hs is a list with the H element matrices of the Chevalley-Serre basis.

»initializeHBasis[n] defines the following objects of the defining representation of sl,,
as a horizontal algebra:
o Es, Hs, Fs as lists with the Chevalley-Serre basis element matrices

« hBasis as a list with all Chevalley-Serre basis elements ordered like {Es, Hs,
Fs}

e params as a list of parameters to be used together with the generators of the
algebra

o genericHAlgElem as a generic sl, element as a linear combination of the ma-

trices in hBasis with the coefficients of params.

»params is a list of parameters {e[1],..., e[(n*-n)/2)1, hl1l,..., hln-11, £[11,...,
f[(n*-n)/2)1} to be used together with the generators of the algebra.

» randHElem generates a random basis element of the current sl,-algebra with basis coef-
ficients between 0 and 1.

» randIHElem generates a random basis element of the current sl,-algebra with basis co-
efficients as integers between and including —10 and 10.

Functions for the horizontal algebra

» adg[X,Y] requires two arguments, both sl, elements, and returns the adjoint action of
the SL(n) element equal to the exponentiation of argl on the s, element arg2. ILe.
adg[X,Y]= exp(X)Yexp(—Y).
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»adG[g,X] requires a SL(n) group element as first argument and a sl,, algebra element
as second. Returns the adjoint action of the group element on the algebra element.

» com[A,B] is the commutator of the sl,-algebra and takes two arguments as in com[A,B]
= AB — BA.

*kill[X,Y] is the sl, Killing form and takes two arguments and returns 2n Tr(XY). Nor-
malization of 2n can be altered by setKillingFormNormalization.

» setKillingFormNormalization has two forms: setKillingFormNormalization[val]
sets the Killing form normalization for the horizontal algebra to kill[X,Y] = val-
Tr(X Y). setKillingFormNormalization[X,Y,val] sets the Killing form normal-
ization such that kill[X,Y]= val.

Loop algebra and affine algebra

» Cen represents the central extension of the loop algebra and is only defined through its
UpValues in the different functions which have the affine algebra as domain.

» Der represents the “derivation” element which extends the loop algebra and is only
defined through its UpValues in the different functions which have the affine algebra
as domain.

»initializeLBasis uses objects defined by initializeHBasis[n] to define a loop al-
gebra basis of the form X ® z® with X in the sl,-algebra and z (= ¢) as the loop
parameter. The objects are defined as functions 1E[i,m], 1H[i, m], 1F[i,m] re-
turning the i:th element of the Es (or Hs and Fs) tensor product with 2. The ®
(\[CircleTimes]) operator is not set to KroneckerProduct by default but gets its
own defined rules by initializeLBasis.

»1E[i,m] takes two arguments and returns the element of the loop algebra basis F; ® 2™
»1H[i,m] takes two arguments and returns the element of the loop algebra basis H; ® 2™
»1F[i,m] takes two arguments and returns the element of the loop algebra basis F; ® 2™

» randAElem generates a random affine algebra element with sl,, coefficients between 0 and
1 and an integer exponent of z in between —10 and 10. The coefficient for extensions
are in between 0 and 1.

»randIAElem generates a random affine algebra element with integers as sl,, coefficients
between —10 and 10 and an integer exponent of z in between —10 and 10. The
coefficient for extensions are also in between -10 and 10. The coefficient for extensions
are in between 0 and 1.
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»randILElem generates a random loop algebra element with integers as sl,, coefficients
between —10 and 10 and an integer exponent of z in between —10 and 10.

» randLElem generates a random loop algebra element with sl,, coefficients between 0 and
1 and an integer exponent of z in between —10 and 10.

= z is the loop parameter also represented as z = exp(if).

Functions for the loop and affine algebras

*wI[X,Y] (\[Omegal [X,Y]) is the invariant bilinear form on the loop algebra. It takes
two loop algebra elements and returns % (XY de .

* wRes[X,Y] (\[OmegalRes[X,Y]) is like the invariant bilinear form w but calculated by
use of the residue formula.

» aAdg[X,Y] takes two arguments, both in the affine algebra. X is projected on the loop al-
gebra and aAdg returns the adjoint action of the loop group element exp (proj100p (X))
on Y. aAdg is written according to the formula (6.8).

»aCom[X,Y] is the commutator of the affine algebra and takes two arguments, both in
the affine algebra, and returns their commutator.

» aElemToLElemF [X] takes an affine algebra element and projects onto the loop algebra
by setting Cen and Der to zero.

»aKill[X,Y] is the Killing form on the affine algebra. It takes two arguments, both in
the affine algebra.

»1Adg[X,Y] takes two arguments, both in the loop algebra, and returns the adjoint action
of the loop group element exp(X) on Y. 1Adg is written according to the formula (6.7).

»1AdG[g,Y] takes a loop group element g as first argument and a loop algebra element Y
as second argument and returns the adjoint action of g on Y.

*1Com[X,Y] is the commutator of the loop algebra and takes two arguments, both in the
loop algebra, and returns their commutator.

»1Kill[X,Y] is the Killing form on the loop algebra. It takes two arguments, both in the
loop algebra.

» IMatrixExp[X] takes a loop algebra element and returns its matrix exponential. NB:
1MatrixExp smashes CircleTimes to Times and returns the resulting group element
as a plain matrix with z-dependent components.
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7.1.3 affineG2Conjugation

The Mathematica-package affineG2Conjugation works exactly as the package
affineS1Conjugation and is thus covered by the same documentation except for these
listed differences:

o there is no need of any initialization functions to be run and all such functions
(beginning with initialize...) in the affineS1Conjugation-package have no
correspondence here

o there is naturally no g, “expansion pack”

« there is no string constant with the name $currentAlgebra.
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On the Exponential Maps in Lie Groups

There are two different definitions of the exponential map on a Lie group G which often
but not necessarily coincide. They are constructed from either the curves corresponding
to the one-parameter subgroups or from the geodesics with respect to some metric on G.

Definition I: based on one-parameter subgroups As proved in [20, p. 213-214] the
integral curves of the left-invariant vector fields are precisely the one-parameter subgroups
¢(7) in G. This establishes the possibility to define an exponential map exp : 7,6 — G
locally for some point g in G. We take g = id as any other starting point can be reached
by group multiplication:

exp[X] := ¢x (1) where d¢§(7) =XecTqG=g. (A.1)
T 7=0
This naturally generalizes to
d
exp[TX] = ¢x(7) where (b;( () =Xeg. (A.2)
T =0

and thus the exponential map traces out the one-parameter subgroup corresponding to the
integral curve of X.

Definition II: based on geodesics For a smooth manifold M with an affine connection
V the notion of a geodesic s(7) is defined as a curve along which its tangent vector is parallel
transported, i.e. VxX|y ;) = 0 for X = %S(T). The exponential map Exp, : T,M — M
at a point p in such a manifold can then be defined as

ds(7)

dT =0

Exp,(X) := s(1) where =Xel,M (A.3)

7
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which implies

Exp,(1X) = s(7) where

=XeT,M. (A.4)

Hence, in a Lie group with an affine connection a tangent vector X at g defines two curves
to which it is the tangent at g, the one-parameter subgroup ¢x(7) and the geodesic s(7)
and the two different exponential mappings exp and Exp are defined accordingly.

A.1 Equality between the Exponential Maps

Here we state the requirements for the two exponential maps to coincide and finish by
proving that the Levi-Civita connection corresponding to the Killing form metric satisfies
these. First we need a few definitions.

Definition A.1.1. A connection V on a Lie group G is a left-invariant connection if
it for any left-invariant vector fields X andY satisfies

Lo(VxY) = Vy, xLy.Y (A.5)

forany g € G.

Definition A.1.2. A left-invariant connection on a Lie group for which the one-parameter
subgroup curves x (1) and the geodesics s(1) (X = “£5(7)|,—0) coincide is called a Cartan
connection.

Thus, for any Cartan connection on a Lie group the two exponential mappings map to
the same curves and we have
exp = Exp . (A.6)

Any left-invariant connection is defined by its values at the identity and defines a R-bilinear
multiplication in the Lie algebra « : g x g — g through

a(X,)Y):=VxY . (A.7)
This is in fact a one-to-one correspondence as any such multiplication also defines a unique
connection [24, p. 71]. The requirement for a connection to be a Cartan connection trans-
lates to the requirement on the multiplication to be anti-symmetric. Any one-parameter
subgroup is defined through the integral curve of some left-invariant vector field X. For
this curve to simultaneously be a geodesic we must have

VXX. :a(X,X) =0.

id
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From this we can see that there exist a unique Cartan connection which is torsion-free,

found by setting

VxY :a(X,Y)zl[X,Y] . (A.8)
id 2

There are of course other choices of the Cartan connection but as we here ultimately aim for
a Levi-Civita connection of some metric we restrict our interest to this one. The question
then is which metrics can give rise to such a connection and, in particular, whether the
standard metric of the Killing form does so.

Definition A.1.3. A metric g on a Lie group G is said to be a left-invariant metric
if it satisfies
9r(X,Y) = gg5(Lg X, LgsY)

for any vectors X,Y € T¢G.

For a left-invariant metric to be covariantly conserved under a torsion-free Cartan
connection it must also satisfy an additional invariance property. For any left-invariant
vector fields X,Y and Z metric compatibility of the Cartan connection means

Xg(Y.Z) = (VY. 2) + 0¥,V Z) = 241X, V1. Z) + 2q(V.[X., Z)

and the left-invariance of the metric implies

gg(Y

9’ Z‘g) - gid(Y’id’ Z’id) = const.

such that
9([X. Y], Z2) = g(X,[Y, Z]) . (A.9)

Restated, this equation is a requirement on all metrics of which the Levi-Civita connection
is supposed to be a Cartan connection.

Lastly, we also state and prove the fact that the Levi-Civita connection deduced from
a left-invariant metric is also left-invariant.

Proof: Let V be the Levi-Civita connection of a left-invariant metric g on a Lie
group G. To clarify the logic we think of the left-translation L, : G — L,G as
an isometry between the spaces G and ‘H := L,G and temporarily simplify the
notation by writing X = L. X for any X € g. We want to prove the equation
(A.5) which in this notation is

ViY LV (A.10)

where V is the Levi-Civita connection of the metric § (= Ltg = g) on H.
Define a connection V on ‘H which does satisfies this, i.e. set

~ A

ViV =VyY . (A.11)
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A

VgV, 2)=X3(Y,2) = g(VxY, Z) + g(Y,Vx Z) (A.12)
— (VY. 2)+ (V. Vx2) = 4(VV, 2) +§(V,VZ) (A.13)
such that V is metric compatible. Moreover, V is also torsion-free since

VxY — Vy X = [X,Y]

=
(VxY — VyX) =[X,Y]
_—
VxY - VyX = [X,7]
N

ViV - VX = [X,Y],
where (long expression) denotes a hat over the entire parenthesis. Hence V
fulfills all the properties of the Levi-Civita connection of § and by uniqueness
we must have V = V, such that equation (A.10) is proven. The Levi-Civita
connection of a left-invariant metric is left-invariant. O

A.1.1 The Killing form metric

For a semisimple Lie group G, the Killing form is non-degenerate and defines a metric on
G as in section 2.1.1. From the definition

K(X,Y) = Tr(adx ocady) X, Yeg (A.14)

it can be seen that the Killing form is invariant under all automorphisms ¢ on the Lie
algebra as
[0 X, Y] = ¢([X,¢7'Y]) = adpx = poadyop™

and the fact that the trace is cyclic. In particular, L, is an automorphism whence the
Killing form as a metric is left-invariant.

The Levi-Civita connection deduced from the Killing form is thus also left-invariant
and since it is torsion-free it satisfies VxY = %[X ,Y]. By uniqueness of the torsion-free
Cartan connection we have for a semisimple Lie group that

exp = Exp

with respect to the Levi-Civita connection.
As a last check we note that the well-known invariance property of the Killing form

K([X,Y],Z) = K(X,[Y, Z])

is precisely equation (A.9).
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Geodesic from ¢-variation in the Derivation of
the Schwarzschild Coset Representative

The relevant part of Lagrangian
£a - \/Eglwauqsi l/gbj’%’j

gives the variation with respect to ¢*

5[’0 v 7 ) v 7 ) 6 ij
50 00" = 239" 0010610, + /59" 00D, 00"
= { — 20, <\/§g“” ngSj%j) + \/Eg"”ﬁugbi@,,w gz;]z }5¢k + total derivative .

We drop the total derivative and rewrite the last term with help of the identity*

Ovig = VisL 5 + visL ik (B.1)
derived from

L AM

T = 50 + 05y — 0vig) (B.2)

= 20y; = foﬂkl + 205y -
Hence, the variation calculation continues as

5L,
Sk

56" = { =20, (V39" 0,6) + V39" 000,00 (T + T30 boot (B3

271'5 ij

'We denote the Christoffel symbols belonging to the coset space connection with a tilde.

81
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For arbitrary variation we get
0. (V39" 00 7i5) = /99" 00’00 7is T, = 0
The first term can be split in two by Leibniz
Oy (\/ggwauﬁbj%‘j> =0y <\/§9W uﬁbj) Yij + (\/gg‘waucbj> i
where the second term can be rewritten once again by use of equation (B.1)
O vjk = 0,0 v = 0, (Y T + Y5
(B.1 j s rs \ = i i~ TS i j s
L /50" 60,0 (v T + kD) "2 V0,80 1l + /G0, 8 0 L
We plug this back into equation (B.3) and find the equation of motion
_au(\/gauﬁbj)%‘k - \/§8u¢iau¢j78kffj =0
<~
0u(v/90"9") + \/90,6'0" T = 0. (B.4)

In our ansatz we have dependencies only on r such that all spacetime indices p goes to
downstairs r (r-component of metric is 1). Switching once again to the parameter 7 we get

0, (\/90" ) + \/90,8' 0" T, = 0

—
O, (f20,¢") + f20r¢i3r¢jfﬁj =0
—

d? ., ddde -,
d72¢ + dr dr ¥ 0

which is the well-known coordinate form of a geodesic in the coset with parameter 7.
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Short on the Komar mass and Komar NUT
charge

This appendix provides a short definition of the Komar mass and Komar NUT charge
based mainly on [4].

The Komar mass is a definition of the total mass in a stationary, asymptotically flat
four dimensional spacetime as a surface integral at spatial infinity. It can only be defined
for stationary cases and coincides with the mass definition obtained from a Hamiltonian
formulation based on time translational invariance. Hence it is the corresponding Noether
charge. Denote the timelike Killing vector as x and the Ricci tensor as R*, then define
the vector

P v
JH = r, R*
which is a conserved current since

V" = (Vuk, )R + 5,V B 2 2k, V"R = 0

1
—— 2
anti.sym

where we used VR = %V”R in (%) and the fact that the derivative of the Ricci scalar
along any Killing vector vanish. So J is conserved and writing

wo_ 2
Kk, R" =V, V"kH,

which is true for any Killing vector, we see that the charge defined by the integral

Q= /nﬂJ“ﬁdn_lx
)

83
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is constant for any spacelike hypersurface ¥ with normal vector n* and induced metric ;.
It admits the employment of Stoke’s theorem on ¥ by

/nuJ“ﬁd”_la: = /nuvy \Yals ﬁd“‘la:
S

P anti.sym

Stoke’s nual,V“/@”\/'@ A2y

[)))

With proper normalisation we find the Komar mass

1
m= - /nHUVV“n”\/v(az) A2y .

ox

This is naturally also the total energy of the spacetime.

Actually, the stationary requirement can be relaxed to an asymptotic stationarity as
r — 00.

When considering a compactified four dimensional spacetime as a fibration over the
three dimensional spatial space as base space, the Komar mass can also be expressed as [1]

1
m:—/s**K

47
B>

where s is a section in the fiber bundle and K = 0,x,dz" A dz” is the Komar 2-form. In
this context the Komar NUT charge is defined as

1
n= —/S*K.
8
ox
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Short Comment on the Closure Operation

Zariski topology is defined on affine spaces by the use of polynomial roots. If k is a(n
algebraically closed) field and k[xy,...,x,| denotes the set of all polynomials over k with
n variables, then the following defines the Zariski closed subsets of £™:

V(S)={ze€k": f(x) =0 VfeS, where S C k[xy,...,x,]}.

The closure of an arbitrary set X can be defined in two different ways. First, it is the
smallest closed set containing X. I interpret this as

X={zck": flx)=0 VfeS}

where S C k[zy,...,z,] is that set of polynomials which yields the smallest set X and
fulfills f(z) =0Vz € X, f € S. Second definition of Zariski closure is

X={zxeck": f(x) =0 Vf€k[zx,...,x,] vanishing on X}

which involves all polynomials which vanish on X while the above can include any subset
of these.

For the orbits, these closures define a partial ordering and the closure of an orbit
contains the orbit together with all other orbits with smaller dimensions.
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Representation of go

Here follows the representation used for all explicit calculations with the Chevalley-Serre
basis in the gy algebra. It is also the one used for the packages affineS1Conjugation

and affineG2Conjugation.
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Some Elements Between Simple Root Vectors
in the Minimal Orbit

As mentioned in the sections about the minimal orbit, a good starting point to generalize
this concept to affine Kac-Moody algebras may be to describe the minimal orbit in terms
of the simple roots. For the potential relevance in such a work, we present here some group
elements which conjugate the highest root vector into the simple root vectors, together
with their generators. We do this by solving the conjugations explicitly for the algebras
sls, sly, sl5 and exemplify with solutions also for g,.

F.1 Explicit Conjugation from E, to Simple Root Vectors
in sl Algebras

More or less general solutions for sl3 : £y — E

First, look at the conjugation of Fy = Ej5 into E; in the defining representation. l.e. we
seek group elements g; in SL(3) which satisfies g1 Eyg; ' = Fy. There are infinitely many
of those as all matrices of the form

g gi2  di3
a=10 0 g | € SL(3)
0 —-L
e g33

do the job. All' of the choices of g; seem to have single generators and the general logarithm

has the form of

log g11 *
log g1 = 0 x k|,
ko ok

0

For SL(3,R), the exponential map is not surjective, while it is for SL(3,C).
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where * marks rather involved expressions of the non-zero components of g;. We can thus
see that neither F| nor Fj are ever part of the generators and that log g;; always is the
coefficient in front of H;.

A few explicit examples of gi:s with generators are listed here to reveal or exclude
certain structures.

A “minimal” choice of ¢, in sl3

The simplest choice for g;, let us denote it g1 min, is to set all elements but g;; to zero. The
general generator for this group element looks like

1Og 91,min =
log(g11) 0 0
1 i i 1.3/2 . i .
0 3 <l<()g (m)<+ log)(— ﬁ))) 1911 (21 log (_\/ﬁ) +ilog(g11) + 7r>
i —ir+2log 7\/9i171 +log(g11) 1 ; ;
0 - 5 5 (log (=) +1log (- 747))
which for the first three integer values of g;; evaluates to
s s
g =1: 10g g1, min = §E2 — §F2
log(2) 7T
=2: 1 min = V27 Ey +1og(2)H, + ——Hy — —=1F- F.1
g11 0g g1, V2r > +log(2) Hy B 2 2 2 (F.1)
3V/3m log(3) T
=3: lo min = ——F5 +1log(3)H; + Hy, — F.
d11 g 4g1, 5 2 g(3)H, 2 6v/3 2

Thus, for the minimal choice of g, the generators do not contain any components in the
directions of Ey, E3, F} or Fj.

A “non-minimal” numerical example

For the sake of explicitness, we provide also a numerical example where all possible compo-
nents of the generator are included. Namely, set (g11, 912, 913, 933) = (2,2,1,1) in g; above.
Then the generator is given by

1 1
log g1 = 4—0(197r +42log(2))Ey + By + 1—0(36 log(2) — 137) Ej3

1
+ log(2) Hy + 5 (log(4) — m)H, - gFQ.
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More or less general solutions for sl3 : £y — E5

We redo what we have done above also for the conjugation to the other simple root vector
E5. The general group element g in g2 Eyg5 ' = E» now looks like

0 —g% 913
21
92 =1 921 G222 G23
0 0 ga
with a generator of the form
* % *
logge = | * * * ,
0 0 logga

where the components in the directions of Fy and F3 are missing. In this case it is the
coefficient of H, that is easily given, namely log go;.

A “minimal” choice of ¢ in sl(3

Setting all elements in g, but go1 to zero we get the generator

log 92, min =
%Oog (Jéi) +log (_\/ﬁ)) _i(—iﬂ+2log(;g\g/§?)+log(ggl)>
Loal* (2110g (——=) +ilog(ga) +7) & (log (o) +log (——=)) 0

0 0 log(ga1)

This is very similar to the generator of the minimal choice ¢; min above and we can go
between the matrices by interchanging the positions of the two block matrices, transpose
and do the swap g11 <> go1.

Some numerical examples yield

T T
g21 = 1: 10g g2, min = —§E1 + §F1
s log(2)
=2: 108 o min = ———=E1 — —2H; —log(2)Hy + V271 F
ga1 g 92, e 5 Hh g(2)H, i
T log(3) 3v/37
=3 10€ g2 min = ————F1 — H, — log(3)H. F,
go1 0g 92, 63 1 9 1 — log(3)Hy + 1

which is identical to examples (F.1) of g1 i, under the swaps X; <> — X5, where X denotes
E, H and F.
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More or less general solution for sl : Fy — F;

We move on with a similar analysis for the algebra sl, and study the conjugations from the
highest root vector into the simple ones. The general group element for the conjugation
g1 Egg7 ! = Fy reads

g1 G912 913 J14
0 0 0 gn

0 932 933 g
0 gao Qa3 Gua

g1 = S SL(4)

where the determinant condition from SL(4) translates to

911 (92943 — gs3gaz) = 1. (F.2)

The general generator has the form

loggi1 * *

0 % ok %

log g1 = 0 %k %
0 % ok %

which excludes generator components in the directions of Fi, Fy and Fg.

Two “minimal” choices of g; in sl

When setting as much as possible to zero in g;, we have two choices due to the two terms
in the determinant condition (F.2). Choosing both g3, and g43 to be zero gives the general
generator

loggi1 O 0 0

0 * * *

log g1,min1 = 0 « loggss *
0 * * *

and choosing ¢33 and g4 to be zero instead, we find

logg;; 0 0 O
0 * ok %k
0 * ok ok



F.1 Explicit Conjugation from FEy to Simple Root Vectors in sl Algebras 93

Two numerical examples of these “minimal” choices are

1 0 00
0O 0 01 T
91,min1 = o o0 10l 10ggl,min1 = 5 (E5 - F5)
0 -1 0 0
1 000
0 0 01 2
J1,min2 = 0100l log g1 min2 = 37\/5 (—Ez — FEs+ BEs+ Fy + F5 — F5) .
0010

More or less general solution for sl : Fy — E»

When conjugating to the next simple root vector, we find the general group element in
92E9g5" = B to be
0 912 G13 Y1

| 921 g22 Gg23 G24

0 ga2 943 Gaa
where the determinant condition reads

951 (912943 — g13942) = 1.
The general generator is not immediately found by Mathematica but is given in terms of
roots of very long expressions. We thus omit the form here.
Two “minimal” choices of g, in sl

As above, we have two choices when setting as much as possible to zero in gs. Choosing
both g1 and g43 to be zero gives the general generator

s Tg13 1
LR e 7 S L
-
lo = g% 0 —%7@113921 7‘[121\3/%21
2 §2,minl = T T 0 Tgo1
2v/2g13 4913921 2v2
s o s _m 0
4913921 2\/59135]31 Qﬂgzl

with no components along H;, i = 1,2,3. Choosing g;3 and g42 to be zero instead, we find
0

log 92,min2 =

S O % %
S O ¥ ¥
* * O O

0
*
*

without components along F; and F;, 1 = 2,4,5,6.
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Two numerical examples of these “minimal” choices are

00 10 0 % g
a 0 T T
92 minl = (1) 8 8 1| logQQ,minlz 27% T 04 2\7{5
T2 4 22
0 —1 0 0 z —5ts — 0
™ 1 1
= —=(—-F1——FzE+Es+ E;+ Es — —=E
2\/5( ! \/§ 2 3 4 5 \/5 6
1 1
+ I+ —=F, — I3 — Fy — F5 + —(=F,
1 5 2 3 4 5 \/56)
0 -1 0 0 0 - 0 o0
o |vo oo} L[5 0 0 0
g2,m1n2 - 0 0 0 1 9 ggQ,mmZ - 0 0 0 %
0 0 —10 0 0 -1 0
e
25(_E1+E3+F1—F3)

More or less general solution for sl : Fy — FEj3

When conjugating g3 Fpgs ' = Es we find the group element
0 G2 G13 Gua

0 922 G238 g
= e SL(4
93 g31 0932 033 034 ( )
0 0 0 g

with the determinant condition

|
(93912923 — 913922)932,1 = 1.

The general generator has the form

% % % *

* ok ok S
log 93 = * ok ok *

0 0 0 loggs:

which excludes generator components in the directions of F3, F5 and Fg.

Two “minimal” choices of g3 in sl

The two “minimal” choices are obtained either through setting ¢, » and g2 3 to zero where
upon

* 0 * 0
0 lo 0 0
0 0 0 IOg gsi
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or through the vanishing of g3 and ¢, 5, giving

* % % 0
* ok ¥ 0
logg3,min2: x k% 0
0 0 0 lOgg31
Simple numerical examples of these are
00 —10 00 -5 0
101 0 0 o 160 0 0
g3min1 = 10 0 0 ) g 93,min1 = g 0 0 0
00 0 1 00 0 O
= (- Ei+ Fy)
2 21
0100 0 55 T35 0
g3min2 = ) lOg g3,min2 = 23%/3 27 3v3
1 0 00 353 T3 0 0
0 001 0 0 0 0
2

= 2 (E\+Ey—E —F—F+F).
3\/§<1 2 4 1 2 4)

More or less general solution for sl; : Fy — F;

We end the sl-series with sl although the increasing possibilities make us only provide one
example per conjugation. Following the order we first look at g, Egg; ' = E; where

gr O 0 0 O
0 0 0 0 gi1
Gi=1 0 g g3 gsa 0O | €SL(5)
0 gao 943 gaa O
0 952 953 gsa O

and
!
9%1 <934(943952 - 942953) + 933(942954 - 944952) + 932(944953 - g43954)) =1,

with a generator of the form

loggir * * * x

0 * ok k%

log g1 = 0 ST S
0 * % % %

0 * ok k%
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A “minimal” choice of ¢; in sl;

As there are six choices of a “minimal” g1, we only provide the choice of non-zero g1, ¢34, g3
and gso here. It yields a generator of the form

logg;; 0 0 0 O

0 * 0 0 =

log g1 min = 0 0 x % 0
0 0 x % 0

0 * 0 0 =

and a numerical example of ones looks like

1 0 0O 0 0 0 0 0 0 0
0 0 0 01 [ 0 0 0 0 g
Jimn=|0 0 0 1 0], loggimin=1_ 0 0 0 3 0
0O 0 -1 0 O 0O O —g 0 0
0O -1 0 00 0 —% 0 0 0

- ;T(Eg By — Fy— F9>.

Also a sign flip for F5 and F3 generates the conjugating element.

More or less general solution for sl; : £y — F»

Continuing with g, Epgy ' = F, we find that

0 912 913 914 915
921 G22 G23 G24 Y925
go = 0 0 0 0 gou | €SL(5
0 ga2 943 Gaa 95
0 952 953 Gsa Y55

and , !
91 (914(943952 — §42953) + 913(9a2954 — GaaG52) + g12(gaags3 — 943954)) =1.

A “minimal” choice of g5 in sl;

The presented “minimal” choice is non-zero ¢o1, g12, ga4 and gs3 which yields a generator of
the form

x *x 0 0 0
* *x 0 0 0
log gamin = |0 0 * 0 *
0 0 0 loggs O
0 0 = 0 *
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A numerical example is

0 -1 0 00 0 -2 0 00

1 0 0 00 T 0 0 00

Gomin=]0 0 0 0 1|, 108 Gomin=| 0 0 0 0

00 0 10 00 0 00

00 —-100 0 0 -2 00
:72T<—E1+E7+F1—F7>.

A sign flip of the entire generator yields the same conjugating element.

More or less general solution for sl; : £y — Fjs
Moving on, we turn to gsEgg; * = Es where

0 g2 13 s O
0 922 923 goa O

gs = gs1 0 0 0 0 e SL (5)
0 0 0 0 gs1

0 952 gs3 gsa O

and
!
9:?1 <914(923g52 — 922053) + 913(9220954 — 924G52) + g12(g24G53 — 923954)) = 1.

A “minimal” choice of ¢, in sl;

The single “minimal” choice presented is that with non-zero g¢si, g22, 913 and gs4. The
corresponding generator has the form

* 0 * 0 0

0 logge 0 0 O

log g3 min = | * 0 * 0 0

0 0 0 * =«

0 0 0 * =

and as a numerical example we show

0O 010 O 0 03 0 0
0O 1.0 0 O 0O 0 0 0 O
93 min -1 0 0 0 O , log gzmin=1_ —5 0 0 0 O
0O 000 -1 0 00 0 -3
0O 001 O 0 00 35 O

:72T<—E4+E5+F4—F5>.

Swapping the sign for the entire generator still gives the same conjugating element.
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More or less general solution for sl; : £y — F,
The final simple root vector in sl is £y and for g, Fpg; ' = E, the group element is given
by

0 g2 913 G1a 915
0 922 G23 G2a Gos
0 g2 g3 g1 g3 | € SL(5)

941 Ga2 943 Gaa G4a5
0O 0 0 0 gu

and

!
<g14(923932 - 922933) + 913(922934 - 924932) + 912(924933 - 923934))94%1 =1,

with a generator of the form

log g, =

O ¥ Xk X X
O ¥ X X X
O ¥ X X X
O ¥ X X X

* X X X

log g1

A “minimal” choice of ¢, in sl;

We choose the “minimal” group element by keeping ¢41, 933, g23 and ¢4 non-zero. It yields
a generator of the form

* 0 0 = 0

0 = % 0 0

log gamin =10 * * 0 0

* 0 0 = 0

00 0O IOgg41
where a numerical example of ones can look like

0O 0 0 -1 0 0 0 0 =35 0
0O 0 1 0 O 0O 0 5 0 0
94, min = 0O -10 0 O ) 10gg4,min: 0 _% 0 0 0
1 0 0 0 O 5 0 0 0 O
0O 0 0 0 1 0O 0 0 0 0

= ;T(Ez—Es—F2+F8>-

A sign flip of both F5 and F5 gives the same conjugating element.
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F.1.1 Summaries of numerical examples

Summary of numerical examples in sl

These are the conjugating elements g; in g;Eyg; '= B, and gF,g~' = E1:

i=1 =2

1 0 0 0 -1 0 010
0 0 1], 1 0 0f, 0 01
0 -1 0 0 0 1 1 00

which have the generators

T
log(go—1) = 2<E2 — F2>

m
log(go—s2) = 2( — B+ Fl)

2T
lo = —— (B +Ey—E3—F, — Fy+ I3).
g(g2%1) 3\/5 ( 1 2 3 1 2 3)
Summary of numerical examples in sl
These are the conjugating elements g; in ¢;Eqg; * = E;:

i=1 i=...

1 0 00 0 -1 0 0 00 -1 0
0 0 01 1 0 0 O 01 0 O
o 0 101 (0 0 0 1} 10 0 0
0 -1 00 0 0 —-10 00 0 1
and their corresponding generators are
T
log(go—1) = 5 (E5 — F5)
T
log(go—s2) = 5 (=B + B3+ I — F3)
7
log(go—3) = 5( —E,+ F4)-
Summary of numerical examples in sl
These are the conjugating elements g; in g;Fysg; * = Ej:
i=1 i=...
1 0 0 00 0 -1 0 0 0 0 010 O 0
0 0 0 01 1 0 0 00 0 100 O 0
0o 0 0 1 0f,]0 O O O T1|,(-1 000 O, ]|O
0 0 -1 00 0O 0 0 10 0 000 —1 1
0O -1 0 00 0 0 -1 00 0 001 O 0

S OO = O

o O OO

_ o O O O
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and the generators are

log(go 1) = ;T(Eg + By— Fy— F9>
log(go—2) = 72T< — b+ By + Fy — F7>
log(g0-20) = 5 = Eu+ s + Fyi— )
log(gg—4) = ;T(Ez — Fg — Fy + F8>-

F.2 Explicit Conjugation from E, to Simple Root Vectors
in gy

As concluded in section 4.2.2 about the nilpotent orbits of go, all the long root vectors
are in the same orbit and thus in the minimal orbit as the highest root vector Ey = Eg of
g2 is long. With the labels chosen in the representation used (see appendix E), the other
two correspond to Fy and FEs. This representation yields too big expressions for using the
brute force method from above but as these root vectors, together with Fi, F5, H; and a
suitable choice in H, can be rescaled to form a sl3 algebra we let us be inspired by the sl;
examples.

An example of the conjugation £y — F;

Rescaling the generators in go and copying the result from the sl3 calculation, we find that
with

- (3~ )

we get
G1Eegi ' = 12E.
We can normalize this by an additional adjoint action based on one of the generators H;

or Hs, thus making the conjugating element g, = exp(c;H;)g1, where «; is a coefficient to
be determined and j is either 1 or 2. Both choices of 7 work but the generator for 7 = 2 is
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slightly cleaner and looks like

log g1 = log (exp (10g(121/3)H2) §1>

log(12)

—osit2) 0 0 —V3r 0 0
I N 0 0
3
0 0o & g 9 0 V37
- 0 0 0 0 0 0 0
T 0 0 o0 -k 0
0 0 0o 0 o (B
e lo, (12)
0 0 -2 0 0 0 ol
_ 7 B log(12) " - log(12) S A )
44/3 2 6 1237

An example of the conjugation £y — Ej

We proceed with the same method but in the case of gsEygs ' = Fs there is no need of
additional normalization. We have that

gs = exp (;T( — Fy + Fl))

does the trick, which explicitly reads

log g5 =
00 0 OO0 0 O
00 -200 0 0
03 0 00 0 O
00 0 OO0 0 O
00 0 00 -2 0
00 0 02 0 0
00 0 OO0 0 O
m
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