5§ UNIVERSITY OF GOTHENBURG

:) CHALMERS |

UNIVERSITY OF TECHNOLOGY

Theory Exploration on Infinite Structures

Master’s thesis in Computer Science — Algorithms, Languages, and Logic

SOLRUN HALLA EINARSDOTTIR

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2017

MASTER’S THESIS 2017

Theory Exploration on Infinite Structures

SOLRUN HALLA EINARSDOTTIR

Department of Computer Science and Engineering
Formal Methods Division
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Theory Exploration on Infinite Structures
SOLRUN HALLA EINARSDOTTIR

© SOLRUN HALLA EINARSDOTTIR, 2017.

Supervisors: Moa Johansson, Department of Computer Science and Engineering
Johannes Aman Pohjola, Department of Computer Science and Engineering
Examiner: Wolfgang Ahrendt, Department of Computer Science and Engineering

Master’s Thesis 2017

Department of Computer Science and Engineering

Formal Methods Division

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in KTEX
Gothenburg, Sweden 2017

v

Theory Exploration on Infinite Structures

SOLRUN HALLA EINARSDOTTIR

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

Hipster is a theory exploration system for the interactive theorem prover Isabelle/HOL
which has previously been used to discover and prove inductive properties. In this
thesis we present our extension to Hipster which adds the capability to discover
and prove coinductive properties, allowing the exploration of infinite structures that
Hipster could not handle before.

We have extended Hipster with a coinductive proof tactic, allowing it to discover
and prove coinductive lemmas. As Hipster’s theory exploration relies on generating
terms and testing their equality, exploring infinite types whose equality cannot be
determined presents a challenge. To solve this we have added support for observa-
tional equivalence to test the equivalence of infinite terms.

We have evaluated our extension on a number of examples and found that it is ca-
pable of proving a variety of coinductive theorems and discovering useful coinductive
lemmas. To the best of our knowledge, Hipster is the first theory exploration system
to be capable of handling infinite structures and discovering coinductive properties
about them.

Keywords: Theory exploration, coinduction, automatic theorem proving, infinite
structures, Hipster, Isabelle/HOL, QuickSpec, formal methods, functional program-
ming

Acknowledgements

I would like to thank my supervisor Moa Johansson for suggesting this project
and getting it off the ground, my co-supervisor Johannes Aman Pohjola for taking
over my supervision and guiding me to the finish line, and my examiner Wolfgang
Ahrendt for his patience and understanding in face of my continued procrastination.

I am grateful to those who gave their time to discuss the project with me and help
me along when I was stuck, in particular Nick Smallbone and Koen Claessen.

I would like to express my great appreciation to Oskar Abrahamsson for his op-
position, advice, and patience. I would also like to thank my officemate Maximilian
Algehed.

Finally, I wish to thank my family and friends for their continuous support and en-
couragement throughout my studies these past two decades, especially my wonderful
boyfriend Matthias P&ll Gissurarson.

Solrun Halla Einarsdéttir, Gothenburg, October 2017

vii

Contents

1 Introduction
2 Background
2.1 Hipster e e
2.1.1 Architecture
2.1.2 QuickSpec
213 TIP ..o
2.2 Isabelle.
221 Layers
2.2.2 Syntaxnotes
2.2.3 Tactics, goals and proving
2.3 Coinduction
2.4 Codatatypes and coinduction in Isabelle/HOL
2.4.1 Isabelle/HOL’s coinduction tactic
3 A tactic for coinduction
3.1 Automatically determining parameters
3.1.1 Arbitrary variableso
3.1.2 Choice of coinductionrule
3.2 Proving subgoals
3.3 Outcome
4 Theory exploration
4.1 Testing infinite structures
4.1.1 Observational equivalence in QuickSpec
4.1.2 Observational equivalence in tip-spec and Hipster
4.2 Exploring a theory
4.2.1 Examples
4.2.2 Proofloop
5 Evaluation
5.1 Ewvaluationdata o
5.2 Ewvaluation procedure L
5.3 Results
5.3.1 Discussion of results L.
5.4 Limitations
5.4.1 Limitations of our proof tactic

11
11
11
12
13
13

15
15
15
16
16
16
19

21
21
21
22
23
23
23

ix

Contents

5.4.2 Limitations of observer method

6 Conclusion
6.1 Related Worko
6.1.1 (Co)programming in Isabelle/HOL
6.1.2 Automated coinductive proofso
6.1.3 Other theory exploration systems
6.2 Discussion and future worko
6.2.1 Defining corecursive functions in Isabelle
6.2.2 Combining inductive and coinductive tactics
6.2.3 Improving observation method
6.3 Final remarkso

Bibliography

A Evaluation theorem list

25
25
25
25
26
26
26
26
27
28

29

Chapter 1

Introduction

Theory exploration is an automated technique for discovering new interesting math-
ematical properties for some given set of datatypes and functions. An interactive
theorem prover or proof assistant is a software tool that assists users in the formu-
lation of formal proofs, by a collaboration between the human user and automated
techniques provided by the software.

Combining these two concepts, Hipster [1] is a theory exploration system for the
interactive theorem prover Isabelle/HOL. It takes a set of functions and datatypes
as input, automatically discovers equational properties about this input, and proves
that the properties hold. These proofs are handled by an automatic proof procedure
called a tactic.

The proof tactics previously implemented for Hipster use induction, simplification,
and first-order reasoning, so it has only been used for exploration of theories for
which those methods are sufficient. Until now, Hipster has mainly been used to
discover and prove conjectures about recursive structures and functions, as they
require induction to prove. This is useful in reasoning about functional programs as
recursion is one of the elementary components of their construction.

However, functional programs may also contain (co)recursively defined “lazy”
structures, where some instances of the structure may be infinitely large so that
they can not be built from a base instance in a finite number of inductive steps.
Examples of such structures are streams (infinite lists) and lazy lists (lists that may
or may not be infinite). Induction does not suffice to prove conjectures about such
types, but such proofs can be achieved by using a different proof technique, called
coinduction [2, 3].

Induction relies on the assumption that the structure in question can be con-
structed from a base instance in a finite number of steps, and an inductive proof of
a property shows that the property holds for all instances that can be constructed
in the specified manner. Conversely, coinduction relies on the structure being “de-
structed” into simpler substructures in a specified way, and a coinductive proof of a
property shows how that property holds for all instances that can be destructed in
the specified manner.

Coinduction is not only useful to reason about lazy types in functional programs
but has been used in various application areas to reason about structures that are
cyclic or infinite. It has for instance been used to reason about concurrent pro-

1. Introduction

cesses, prove the soundness of type systems, formalize and reason about invariance
properties of programs, and formulate database queries for nonstructured data [2].

We have developed a method of automatically discovering and proving coinductive
properties about lazy types, using a notion of observational equivalence to perform
theory exploration on infinite structures. We have implemented an extension to
Hipster using this method, and our extension’s performance and capabilities have
been evaluated using a variety of examples.

To the best of our knowledge, Hipster is the first theory exploration system that is
capable of handling infinite structures and discovering coinductive properties about
them. The work presented in this thesis is a novel contribution to the intersection
of theory exploration and functional programming in lazy languages. Coinductive
reasoning is used in many application areas, as is mentioned above, and our work
towards automating the discovery and proofs of coinductive properties may also
prove useful there in the future.

Chapter 2

Background

In this chapter we give a brief description of the Hipster theory exploration system,
the Isabelle proof assistant, the coinductive proof method and how coinduction
works in Isabelle.

2.1 Hipster

Hipster [1] is a theory exploration system for Isabelle. It aims to automatically
discover missing lemmas in a given theory. This facilitates theory development as
it expands the collection of lemmas that can be used in automated and interactive
proofs within the theory.

Hipster’s lemma discovery procedure is parametrized by two proof tactics set by
the user, one for routine reasoning and the other for difficult reasoning. Lemmas
that can be proven by the routine tactic are assumed to be trivial and of little
interest to the user, while those that require the difficult tactic are considered to be
more interesting.

2.1.1 Architecture

The current implementation of Hipster is broadly as follows [1]:

(i) Starting from an Isabelle/HOL theory, Hipster calls Isabelle/HOL’s code gen-
erator to translate the given functions into a Haskell program. The Haskell file
is translated to the TIP [4] format by the TIP tools tip-ghc translator. The
TIP format and tools are introduced in section 2.1.3.

(ii) Theory exploration is performed by the QuickSpec system [5], introduced in
section 2.1.2 which is called via the TIP tool tip-spec.

(iii) The conjectures found in (ii) are imported back to Isabelle, using the trans-
lation functionality from TIP tools. Then attempts are made to prove the
conjectures, first using the selected routine tactic and then the selected hard
tactic if the routine one doesn’t suffice. Conjectures that can be proved by
the routine tactic are discarded as trivial, while those that require the hard
tactic can be copied into the Isabelle theory file as lemmas. Conjectures that
cannot be proved by either of the two tactics are presented to the user without
a proof, and the user can then attempt to prove them manually.

2. Background

Figure 2.1: An overview of Hipster’s architecture (reprinted from [1])

Isabelle ‘ Haskell

theory » Code » Program
generator

Theorems
Proved
Difficult Routine ; Theory
reasoning reasoning ~—Conjectures exploration
Failed | 7

Trivially proved?
Discard

The Hipster software consists mainly of ML code files, which are imported into a
common Isabelle theory file. This theory is then imported into Isabelle theory files
where the user wishes to make calls to Hipster. The current implementation can be
found on github .

2.1.2 QuickSpec

QuickSpec [5] is a theory exploration system that discovers equational properties
of Haskell programs. It takes a set of functions as input and generates all type-
correct terms up to a given size limit, and then attempts to divide the terms into
equivalence classes. Random ground values are found for the variables in the terms
using QuickCheck [6] and splits terms that evaluate to different values into different
classes. This is repeated until the equivalence classes stabilize.

Then equations are formed from each equivalence class by equating each term
in the class to a chosen representative term. These generated conjectures are not
necessarily true but likely to be so, having been tested on several hundred different
random variables. In the case of Hipster these conjectures are then imported into
Isabelle and not presented as lemmas unless they can be proven, so if an untrue
conjecture is found the attempt to prove it will simply fail.

2.1.3 TIP

The TIP (Tons of Inductive Problems) suite of benchmarks for inductive theo-
rem provers [4] aims to provide a standard benchmark suite for inductive theorem
provers. Its benchmark problems are expressed in the TIP format [7], which is

https://github.com/moajohansson/IsaHipster/tree/TIP-Isabelle2016

https://github.com/moajohansson/IsaHipster/tree/TIP-Isabelle2016

2. Background

an extended variant of SMT-LIB [8], the details of which are unimportant for the
purposes of this thesis.

The TIP tools are tools for working with the TIP suite. They currently include the
tip-ghc tool, which translates Haskell files to the TIP format, the tip tool, which
translates TIP files to various other formats, including Isabelle, and the tip-spec
tool which performs QuickSpec exploration to invent conjectures about a TIP file.
Hipster makes use of the tip-ghc tool to translate the theory being explored to
the TIP format after it has been translated from Isabelle to Haskell by Isabelle’s
code generator. It then uses the tip-spec tool to perform theory exploration, after
which the discovered conjectures are translated to Isabelle by the tip tool.

2.2 Isabelle

Isabelle [9] is a generic proof assistant that assists users in the formalization of
mathematical proofs. It has a central meta-logical framework, Isabelle/Pure [10],
which can be instantiated to a broad range of object-logics, such as set theory or
sequent calculi, following the idea of natural deduction [11].

Isabelle/HOL [12], the instance of Isabelle that Hipster is built around, is the
most mature and widely used instance of Isabelle. It provides a higher-order logic
theorem proving environment and includes powerful specification tools and a large
library of built-in theories.

2.2.1 Layers

The regular Isabelle user interacts with the upper layer of Isabelle theories, or mod-
ules, which contain types, functions and theorems written in a notation similar
to conventional mathematical notation. The proofs of theorems are written in the
structured proof language Isar [13], (Intelligible Semi-Automated Reasoning), which
is designed to read like traditional mathematical proof texts.

Underlying this top layer is the lower layer, which is implemented in Isabelle/ML,
a dialect of Standard ML. New proof procedures and extensions can be written in
ML and accessed from the top layer. Hipster is mainly implemented in Isabelle/ML
but meant to be used when developing Isabelle theories at the top layer.

2.2.2 Syntax notes

The Isabelle/HOL syntax consists of an outer syntaz, the Isabelle theory language,
and an inner syntar, the HOL syntax. Types and formulas written in the inner
syntax are embedded in the outer syntax; in some cases they must be enclosed in
quotation marks.

Shorter arrows = are used to denote function types in the inner syntax, while
longer arrows = represent implication in the outer syntax.

2. Background

2.2.3 Tactics, goals and proving

Tactics in Isabelle are theorem proving functions written in ML that can be used
for automated proving of theorems in an Isabelle theory.

A tactic is a function that transforms a goal to zero or more subgoals, where a
goal represents the conjecture that is to be proved based on the currently known
facts and assumptions. Further tactics can then be applied to refine these subgoals,
and when all the subgoals have been solved a proof of the original theorem can be
constructed by going backwards through the steps that have been taken [11].

The following example is taken from section 2.2.2 in [14]. Suppose we have the
following definitions of natural numbers and addition:

datatype nat = 0 | Suc nat

fun add :: "nat => nat => nat" where
"add O n = n"|
"add (Suc m) n = Suc (add m n)"

Now suppose we want to prove that add m 0 = m (Note that the definition above
is right associative so this does not follow trivially from the definition). In Isabelle
we can use the lemma command to state a conjecture and start a proof of it:

lemma add_O_right: "add m 0 = m"

At this point the goal of the proof is simply add m 0 = m. Now suppose
we apply a tactic for induction over m, which can be done with the command
apply(induction m) in Isabelle/HOL. Then the goal will be refined to the follow-
ing subgoals:

1.add00=0
2. Ym.add m 0 = m = add (Sucm) 0 = Sucm

These subgoals are simple enough to be solved by simplification based on the defi-
nition of addition shown above and the induction hypothesis.

Isabelle/HOL includes various pre-written tactics that users can make use of,
including tactics for induction, as shown in the example above, and coinduction,
as shown in section 2.4.1. In our coinduction tactic, discussed in Chapter 3, we
make use of the built-in coinduction tactic, the simplification tactic simp, and the
automated proof construction tool Sledgehammer.

The simp tactic simplifies the assumptions and conclusion of the current goal. It
replaces expressions that occur on the left hand side of the available simplification
rules with the corresponding right hand side expressions, continuing with these
replacements for as long as possible. The user can add theorems to the pool of
available simplification rules, otherwise they are implicitly declared by type and
function definitions.

Sledgehammer [15] is invoked from within Isabelle/HOL and calls on several ex-
ternal automatic theorem provers (ATPs) that run for up to 30 seconds searching
for a proof. It automatically makes use of relevant lemmas from all those available,
and if it is successful in finding a proof, it tries to generate a proof command that
can be inserted into the theory.

6

2. Background

2.3 Coinduction

Consider lists with elements of type a, defined by:
List a = Nil | Cons a (List a)
We can reason about such lists using structural induction. For instance, if we want
to prove that two list functions F and G are equivalent, that is, F xs = G xs for all
lists xs of type List a, we do the following:
1. Prove that
F Nil = G Nil
2. Prove that it F ys = G ys for some list ys, then
F (Cons y ys) = G (Cons y ys) for any y of type a.
We can then prove, by structural induction, that F and G are equivalent.

Induction relies on the assumption that every instance of this list type can be
constructed from the empty list Nil in a finite number of steps, by using the Cons
constructor to add elements. But what if the Cons is applied an infinite number of
times? Such a list is no longer reachable from Nil and the inductive reasoning is no
longer valid.

We must use another approach to prove properties of such potentially infinite lists.
Instead of the inductive approach, which is based on each data element being formed
recursively by “constructor” operations (in this case Nil and Cons), we can use a
coinductive approach, which uses so-called “destructor” operations that tell us what
can be observed about data elements. An example of such destructors for lists are
the head and tail operations. We can then prove by coinduction that an equation
holds for all lists, finite or infinite, by showing that it is satisfied for a list with any
possible head and tail values.

We can prove that two list functions F and G are equivalent using coinduction in
the following manner:

1. Prove that F xs = Nil <=> G xs = Nil
2. Otherwise, prove that head (F xs) = head (G xs)
and there exists a list ys of type List a such that
tail (F xs) = F ys and tail (G xs) = G ys
An example of such a proof is shown in section 2.4.1, where we prove coinductively
that lappend xs Nil = xs

Coinduction is the mathematical dual of structural induction, relying on decon-
structing structures from the top down instead of constructing them from the bottom
up as induction does. Interested readers can find a more detailed introduction to
coinduction in [2] or [3].

2.4 Codatatypes and coinduction in Isabelle/HOL

Isabelle/HOL has separate definitional commands for datatypes and codatatypes [16].
The keyword datatype implies that the defined type only contains finite values,
while the keyword codatatype implies that the type contains infinite values as well
as finite ones. There is built-in support for reasoning about codatatypes using core-
cursion and coinduction.

2. Background

Isabelle/HOL generates a number of characteristic theorems for every type that
is defined using one of these keywords. These theorems describe various properties
that hold for the type in question, which can then be used in reasoning involving that
type. Both datatypes and codatatypes generate similarly defined free constructor
theorems and functorial theorems, but while datatypes generate inductive theorems
which state properties relating to their inductive nature, codatatypes generate coin-
ductive theorems which state properties relating to their coinductive nature. A
further overview of these characteristic theorems can be found in [17].

2.4.1 [Isabelle/HOL’s coinduction tactic

We will present Isabelle/HOL’s built-in coinduction tactic by showing an example
of its use. Consider the following Isabelle/HOL definition of a lazy list:
codatatype (lset:’a) Llist =

Inull: LNil
| LCons (1lhd:’a) (1tl: "’a Llist ")
where

"1tl LNil = LNil"
The theorem Llist.coinduct is automatically generated based on the above defi-
nition and has the following form:

Rlsls =

(v 11 12.

RI112 = Inull I1 = Inull [2
A (= lnull 11 — = lnull 12 — [hd 11 = lhd 12
A R (It111) (1t 12)))
== ls=1s

Here R is an unknown witness relation and [s and [s" are unknown lazy lists. The
theorem above states that if R holds for [s and [s’, and if for an arbitrary but fixed
pair [1 and [2 we have that if R holds for [1 and [2 then:

1. If I1 is empty then so is (2, and vice versa.
2. If neither [1 nor [2 is empty then their respective heads are equal and R holds
for their respective tails.
then s and [s" must be equal.

Note that this rule states that two lazy lists must be equal to each other if they
satisfy certain requirements. We can therefore use it to prove the equality of two
lazy lists by coinduction, namely by proving that the lists satisfy those requirements.

We define the function lappend to append one lazy list to another:

primcorec lappend :: "’a Llist = ’a Llist = ’a Llist" where

"lnull xs = lnull ys = 1lnull (lappend xs ys)"
| "lhd (lappend xs ys) = 1lhd (if 1lnull xs then ys else xs)"

| "1tl (lappend xs ys) = (if 1lnull xs then 1tl ys else lappend (1tl xs) ys)"

8

2. Background

We would like to prove that appending an empty list to the lazy list xs results in
xs itself, stated in the following lemma:
lemma lappend LNil: "lappend xs LNil = xs"

The starting goal of the proof state is then simply

lappend xs LNil = xs.

We then apply Isabelle/HOL’s coinduction tactic by writing:
apply(coinduction arbitrary: xs)

We set xs as arbitrary which causes xs to be universally quantified in the coinduc-
tion hypothesis, so the hypothesis is stated to hold for any arbitrary (but fixed) value
of xs, rather than for a known value of xs. The coinduction tactic has an optional
parameter to specify which variables should be set as arbitrary. The coinduction
tactic has another optional parameter to specify the coinduction rule on which the
proof should be based. If no rule is specified it uses the generated coinduction rule
t.coinduct for some codatatype t that is used in the statement of the goal.

After this application the goal of the proof state has become the following:

Vas. Inull (lappend xs LNil) = Inull zs
A (= Inull (lappend xs LNil) — —lnull xs
— Lhd (lappend xs LNil) = lhd xs
A (Fzsa.ltl (lappend xs LNil) = lappend xsa LNil A ltl xs = xsa))

If we look back at the coinduction theorem L1ist.coinduct shown on the previous
page, we see that this goal corresponds to the requirements which that rule says are
sufficient to prove that two lazy lists are equal. Here the witness relation R could
be defined as

R(xs,ys) = (zs = lappend ys LNil)

This goal is easy enough to be proved by simplification based on the definition
of lappend. After a call to simp the goal of the proof state is empty, meaning the
lemma has been fully proved.

2. Background

10

Chapter 3

A tactic for coinduction

In this chapter we describe an automated tactic for coinductive proofs and the
implementation of such a tactic which we have added to Hipster.

As is described in section 2.4.1, Isabelle/HOL already contains a coinduction tactic
that performs coinduction when applied by the user. After applying this tactic the
user must decide how to proceed to complete the proof after the coinductive step.

The ability to automatically prove lemmas in one step without user involvement
is crucial in lemma discovery by theory exploration, as then the process of attempt-
ing to prove the discovered conjectures, and adding those that have appropriately
difficult proofs to the theory being explored, can be automated. We would therefore
like to extend Hipster with an automated tactic for proving coinductive lemmas.
This tactic must perform coinduction automatically and then complete the proof by
proving all remaining subgoals. In order to do this we must automatically determine
the parameters for our call to Isabelle/HOL’s coinduction tactic, and then automate
the subgoal proofs.

3.1 Automatically determining parameters

As shown in section 2.4.1, Isabelle/HOL’s coinduction tactic has parameters to set
which variables are arbitrary, meaning that they are universally quantified in the
goal statement. It also has an optional parameter to specify which coinduction rule

to apply.

3.1.1 Arbitrary variables

In many cases, such as the proof shown in section 2.4.1, universally quantifying
the correct variables in the coinduction hypothesis can make it possible to prove
a formerly unprovable goal. In order to automatically prove our goal we must
automatically determine which variables should be universally quantified. We can
solve this by simply finding all free variables in the current proof state, which is fairly
simple to do with the help of built-in functions in Isabelle/HOL, and declaring them
all as arbitrary. This makes the proof goal statement more complicated and verbose
than may be necessary, but less or equally difficult to prove than the same goal with
less of the variables universally quantified. A goal that can be proved to based on a

11

3. A tactic for coinduction

hypothesis that holds for some fixed value of variable v must also be provable when
the hypothesis holds for all possible values of v.

3.1.2 Choice of coinduction rule

The built-in coinduction tactic also has an optional parameter to specify what coin-
duction rule should be used for the proof. We also let the user specify what rule
they would like to use, as an optional parameter to our tactic which is then passed
along as a parameter to the coinduction tactic.

If the user does not specify what rule to use, we would like to have a default rule
that can be applied prove as wide a range of lemmas as possible. As was discussed
in section 2.4, every codatatype t has a characteristic coinduction rule t.coinduct.
In addition to this, every codatatype t also has a characteristic strong coinduction
rule, t.coinduct_strong.

For example, here is the theorem Llist.coinduct_strong for the lazy list type
Llist defined in in section 2.4.1:

Rlsls =
(V11 12.
RI112 = lnull 11 = Inull 12
A (= lnull 11 — = inull 12 — lhd 11 = lhd (2
A (R (It 1) (It 12)
VIt Il =1t 12))
= ls =1

If we compare this to the theorem Llist.coinduct, which is shown in sec-
tion 2.4.1, we see that they are the same except for the second-to last line, V Itl [1 =
[tl 12', which is not included in Llist.coinduct. Since using Llist.coinduct for
a proof requires a proof of

R (Itl11) (It 12)

while [list.coinduct__strong requires a proof of
(R (It 11) (It 12) v It 11 = 1t 12",

we see that L1ist.coinduct_strong is more general than L1ist.coinduct.

Some theorems that cannot be proved with the default t.coinduct rule can be
proved by instead using the stronger rule t.coinduct_strong, for instance strong
coinduction is needed to prove the associativity of the lazy list append lapp,

lapp (lapp zs ys) zs = lapp xs (lapp ys zs)

Since t.coinduct__strong is more general than t.coinduct, but includes the re-
quirements from t.coinduct in disjunction with others, t.coinduct_strong can be
used to prove any lemma where t.coinduct is sufficient. Therefore, we choose the
rule t.coinduct_strong, for the first codatatype t found in the proof context, as

12

3. A tactic for coinduction

our default coinduction rule. In an equational conjecture, such as those discovered
by QuickSpec, the first codatatype in the proof context is the outermost codatatype
in the equation. This is the type of the terms we want to prove are equal and is
therefore the appropriate type to perform coinduction over.

3.2 Proving subgoals

After applying coinduction, Hipster’s simp_or_sledgehammer tactic is applied to
the current proof state in an attempt to prove the remaining subgoals and conclude
the proof of the lemma.

This tactic first attempts to complete the proof using Isabelle’s automatic simpli-
fication procedure simp, as described in section 2.2.3. If this does not suffice it uses
Isabelle’s automated proof construction tool Sledgehammer, also described in sec-
tion 2.2.3, to attempt to construct a proof. Since Sledgehammer is quite powerful,
this tactic is sufficient to conclude the proofs of a wide range of lemmas.

3.3 Outcome

We have designed and implemented an automated coinductive proof tactic for equa-
tional lemmas in Isabelle/HOL. Our tactic performs coinduction, automatically de-
termining the appropriate parameters, and then continues to attempt to prove the
remaining subgoals of the conjecture in question. Our tactic can be used to prove
a variety of coinductive lemmas, as is further demonstrated and discussed in Chap-
ter 5. We can now, for instance, prove the lemma from section 2.4.1 automatically
with a call to our tactic.

13

3. A tactic for coinduction

14

Chapter 4

Theory exploration

In this chapter we describe how we can use the notion of observational equivalence,
along with the take lemma, to perform theory exploration on codatatypes with
no finite instances. We then show how a user can explore an Isabelle theory using
Hipster, discovering lemmas that are proved using the tactic described in Chapter 3.

4.1 Testing infinite structures

As is described in chapter 2.1, Hipster calls on QuickSpec, via tip-spec, to come up
with conjectures using QuickCheck-based testing. Since QuickSpec can only check
the equality of finite terms, we cannot test truly infinite structures to generate
conjectures, only finite instances of the types being considered.

When the codatatype being considered has no finite instances, as in the case of
streams, QuickSpec cannot check the equality of any of the generated terms, since
that would take an infinite amount of time due to their infinite size. When we first
attempted to use Hipster for theory exploration on streams it timed out and resulted
in an error.

Since we cannot directly test the equality of streams by comparing them element
for element as we can do for finite lists, we must use some other way to determine
whether two streams are equal. The take lemma [18] states that two streams xs
and ys are equal if take,(xs) = take,(ys) for all natural numbers n, where take, is
a function that returns a list containing the n first elements of a stream. We make
use of this idea to come up with conjectures about the equality of streams, using
observation functions as described in section 4.1.1.

4.1.1 Observational equivalence in QuickSpec

QuickSpec has support for observational equivalences to deal with types, such as
those that have no finite instances, that cannot be directly compared [5]. The user
can define a method of observing such a type and state that two values of the type
are equivalent if all such observations make them equal.

More specifically: For any type T the user can supply an observation function of
type Obs — T' — Res, where Obs can be any type that QuickSpec can generate
random data for, and Res any type that can be compared for equality. QuickSpec

15

4. Theory exploration

will then include a random value of type Obs as part of each test case, and will
compare values of type T by applying this observation function using the random
Obs and comparing the resulting values of type Res.

For instance, we can define an observation function for streams

obsStream :: Int — Stream — List,

where obsStream n s returns a list containing the first n elements of the stream
s. If we supply this observation function to QuickSpec it will generate a random
integer n for each test case where streams are to be observed, and assume that two
streams are equal if their first n elements are equal in every case.

4.1.2 Observational equivalence in tip-spec and Hipster

Support for observational equivalence had not previously been added to tip-spec, so
we implemented changes to the tip-spec code base to allow Hipster to make use of
observation functions. We added optional parameters to tip-spec calls representing
the type, T', that needs an observation function, the observable type, Res, we use
to represent it, and an observation function with type Int — T — Res. We use
integers in place of the Obs type from section 4.1.1, since when observing an infinite
structure we can use a positive integer to determine how large of a finite substructure
to observe. Looking this function and types up in the scope of the code being
explored, tip-spec can now define an observation function accepted by QuickSpec
and pass that function as a parameter to its QuickSpec call.

We have also added support for observation functions in Hipster. The user can
now define an observation function in their Isabelle theory file. The names of this
function, the type that needs an observation function and the type that can be used
to observe it are then specified by the user in their Hipster call. This information is
passed along to tip-spec and QuickSpec and handled there as is described above.
An example of an observation function definition and corresponding Hipster call is
shown in section 4.2.1

4.2 Exploring a theory

To perform theory exploration without observer functions, the user calls the com-
mand hipster followed by the names of the functions the user wishes to discover
properties about. When several function names are given they are explored jointly
which can lead to the discovery of properties that describe relations between different
functions in addition to properties of individual functions.

4.2.1 Examples

For instance, suppose we have the lazy list type L1ist as seen in section 2.4, along
the append function lappend, also shown in section 2.4 and the map function 1map
as shown below:

16

4. Theory exploration

primcorec lmap :: "(’a => ’b) => ’a Llist => ’b Llist" where
"lmap f xs = (case xs of LNil => LNil
| LCons x xs => LCons (f x) (lmap f xs))"

We can then invoke theory exploration on these functions with Hipster by typing

hipster lappend lmap

This produces a set of lemmas involving either or both of these functions:

lemma lemma_a [thy_expl]: "lmap y (LCons z LNil) = LCons (y z) LNil"
apply (coinduction arbitrary: y z
rule: ExploreExample.Llist.coinduct_strong)
by simp

lemma lemma_aa [thy_expl]: "LCons (y z) (lmap y x) = lmap y (LCons z x)"
apply (coinduction arbitrary: x y z
rule: ExploreExample.Llist.coinduct_strong)
by simp

lemma lemma_ab [thy_expl]: "lappend y LNil = y"
apply (coinduction arbitrary: y
rule: ExploreExample.Llist.coinduct_strong)
by simp

lemma lemma_ac [thy_expl]: "lappend LNil y = y"
apply (coinduction arbitrary: y
rule: ExploreExample.Llist.coinduct_strong)
by simp

lemma lemma_ad [thy_expl]: "1tl (lappend y y) = lappend (1tl y) y"
apply (coinduction arbitrary: y
rule: ExploreExample.Llist.coinduct_strong)
apply simp
by (smt Llist.collapse(l) Llist.sel(2) lappend.disc_iff(2)
lappend.simps(3) lappend.simps(4))

lemma lemma_ae [thy_expl]:
"lappend (LCons y z) x2 = LCons y (lappend z x2)"
apply (coinduction arbitrary: x2 y z
rule: ExploreExample.Llist.coinduct_strong)
by simp

lemma lemma_af [thy_expl]: "lappend (lappend y z) x = lappend y (lappend z x)"
apply (coinduction arbitrary: x y z
rule: ExploreExample.Llist.coinduct_strong)
apply simp
by auto

17

4. Theory exploration

lemma lemma_ag [thy_expl]: "1tl (lappend y (1tl y)) = lappend (1tl y) (1tl y)"
apply (coinduction arbitrary: y
rule: ExploreExample.Llist.coinduct_strong)
apply simp
by (metis ExploreExample.lemma_ab Llist.collapse(l) Llist.sel(2))

lemma lemma_ah [thy_expl]: "1tl (Imap y z) = lmap y (1tl z)"
apply (coinduction arbitrary: y z
rule: ExploreExample.Llist.coinduct_strong)
apply simp
by (smt Llist.case_eq_if Llist.disc(1) Llist.disc_eq_case(1) Llist.sel(1)
Llist.simps(5) lmap.code 1tl_def)

lemma lemma_ai [thy_expl]:
"1tl (lappend z (lmap y z)) = lappend (1tl z) (Imap y z)"
apply (coinduction arbitrary: y z
rule: ExploreExample.Llist.coinduct_strong)
apply simp
by (smt ExploreExample.lemma_ab lappend.disc_iff(2) lappend.simps(3)
lappend.simps(4) lmap.ctr(1l) lmap.disc(2))

lemma lemma_aj [thy_expl]:
"lappend (lmap y z) (lmap y x2) = lmap y (lappend z x2)"
apply (coinduction arbitrary: x2 y z
rule: ExploreExample.Llist.coinduct_strong)
apply simp
by (smt Llist.case_eq_if lappend.disc_iff(2) lappend.simps(3)
lappend.simps(4))

lemma lemma_ak [thy_expl]:

"1tl (lappend (Imap y z) (1tl z)) = lappend (lmap y (1tl z)) (1tl =)"

apply (coinduction arbitrary: y z rule: ExploreExample.Llist.coinduct_strong)

apply simp

by (smt ExploreExample.lemma_aa ExploreExample.lemma_ab Llist.case_eq_if
Llist.collapse(2) Llist.sel(1) Llist.sel(2) lemma_ah lmap.ctr(1l)
lmap.disc(2) lnull_def)

lemma unknown [thy_expl]:
"1tl (lappend (lmap y z) z) = lappend (lmap y (1tl z)) z"
oops

The construction of the proofs to these lemmas is based on the coinduction tactic
described in Chapter 3 and is further described in section 4.2.2.

If an observer function is to be used to explore the command hipster_obs is used
instead, followed by, in order:

1. The name of the type, T', requiring an observer function.

2. The name of the type, Res, that can be used to observed.

3. The name of the observer function with type Int — T — Res.
4. The names of the functions the user wishes to explore.

For instance, suppose we have the following definition for streams:

codatatype (sset: ’a) Stream =
SCons (shd: ’a) (stl: "’a Stream")

18

4. Theory exploration

Along with the following definition of a list and an observer function that extracts
a list of a given length from the end of a stream.
datatype ’a Lst =

Emp
| COI].S n)au n;a LSt"
fun obsStream :: "int => ’a Stream => ’a Lst" where

"obsStream n s = (if (n <= 0) then Emp
else Cons (shd s) (obsStream (n - 1) (stl s)))"
Suppose we want to discover lemmas involving the following map and iterate
functions:

primcorec smap :: "(’a => ’b) => ’a Stream => ’b Stream" where
"smap f xs = SCons (f (shd xs)) (smap f (stl xs))"

primcorec siterate :: "(’a => ’a) => ’a => ’a Stream" where
"shd (siterate f x) = x"
| "stl (siterate f x) = siterate f (f x)"

We can then invoke Hipster with the hipster_obs command as follows, note the
order of arguments which is in accordance with the list above.

hipster_obs Stream Lst obsStream smap siterate

Hipster then provides the following lemmas:

lemma lemma_al [thy_expl]: "smap y (siterate y z) = siterate y (y z)"
apply (coinduction arbitrary: y z
rule: ExploreExample.Stream.coinduct_strong)
apply simp
by auto

lemma lemma_am [thy_expl]:
"smap z (SCons y (siterate z x2)) = SCons (z y) (siterate z (z x2))"
apply (coinduction arbitrary: x2 y z
rule: ExploreExample.Stream.coinduct_strong)
by (simp_all add: lemma_al)

4.2.2 Proof loop

During the theory exploration for the examples in the previous section, we had the
routine tactic set to use Isabelle/HOL’s simplifier followed by first-order reasoning
by Metis [19], while the hard tactic was the coinduction tactic with Sledgehammer
for subgoals as described in Chapter 3.

Those of the discovered conjectures that could be proven by the routine tactic
were discarded as trivial and therefore uninteresting to the user. Examples of such
conjectures for the examples in section 4.2.1 are

19

4. Theory exploration

lappend y LNil = LNil

which follows trivially from the definition of lappend, and
shd (smap z (siterate y x2)) = z x2

which follows trivially from lemma_al.

Previously discovered lemmas are made available to the tactics used in the proof
attempts of following conjectures by the use of the label thy_expl. For instance,
note that the proof of lemma_ae makes use of lemma_ad. Hipster attempts to prove
each of the conjectures found by QuickSpec using first the routine tactic and then
the hard one. QuickSpec attempts to order the conjectures it outputs such that
the most general ones are listed first with more specific instances listed later [5].
This way, if a more general conjecture is provable without considering more spe-
cific instances, we avoid performing redundant proofs and presenting the user with
redundant properties.

Further attempts are made to prove conjectures that could not be proven on
the first attempt once attempts have been made to prove all the others, in case
a conjecture can be proved by using the proof of another. Hipster cycles through
making proof attempts for all unproved conjectures until no new proofs are found.
At the end of this process Hipster outputs the found lemmas and their proofs for the
user to paste into their theory. Lemmas that could not be proven are also output
so that the user can inspect them and make further proof attempts, an example of
this is the last listed lemma, unknown, from the exploration of lappend and lmap in
section 4.2.1.

20

Chapter 5

Evaluation

We have gathered a collection of codatatypes along with corecursive functions and
coinductive theorems to evaluate our tactic as well as our theory exploration method.

5.1 Evaluation data

Most of our evaluation problems were found in the Coinductive library [20] in the
archive of formal proofs !. We have chosen lemmas from the Coinductive Stream
and Coinductive_List theories that are equational and whose proofs use coin-
duction. These theories contain various definitions and proofs concerning streams
and lazy lists respectively. We have also considered some theorems from examples
shown in the Certified Functional (Co)programming with Isabelle/HOL Tutorial
which was colocated with CADE-26 in August 2017. These theorems described
some properties of addition on extended natural numbers, pointwise addition and
multiplication on streams of naturals, and transforming infinite trees to lazy lists
and vice versa.

5.2 Evaluation procedure

For each of the theorems we follow the following procedure:

1. We make up a file containing definitions of the types and functions involved.
We try to avoid using types and functions from theories in Isabelle/HOL (such
as the Main theory) and instead use our own definitions. In this way Isabelle’s
predefined properties do not affect our outcome and we can better see Hipster’s
capacity in dealing with newly defined theories. For instance, we have defined
our own map functions instead of using Isabelle’s built-in method for declaring
a map function after a type definition, as that method automatically provides
certain properties.

2. We put forth the given theorem and attempt to prove it using our automated
tactic as described in Chapter 3.

"https://www.isa-afp.org/
2http://matryoshka.gforge.inria.fr/cade26-tutorial/

21

https://www.isa-afp.org/
http://matryoshka.gforge.inria.fr/cade26-tutorial/

5. Evaluation

3. We attempt to perform exploration with Hipster on all the functions involved
in the theorem statement to see if the theorem is found during exploration.

4. If the exploration in the previous step is successful but the desired theorem is
not found we again attempt to prove it, to see if it can now be proved using a
lemma found during exploration.

5. If the exploration in step 3 fails for some reason and we still have not proved the
theorem, we perform exploration on smaller subsets of the involved functions
to check if that produces lemmas sufficient to prove the theorem.

5.3 Results

The results of our evaluation are shown below. CoList denotes our collection of
theorems from the Coinductive List theory, CoStream the theorems from the
Coinductive_Stream theory, and CoTut the theorems from the (Co)programming
tutorial. Further information on which theorems gave rise to which results can be
found in Appendix A.

CoList CoStream CoTut | Total
Total # of theorems 18 16 15 49
Directly provable 12 13 5 30
Provable after exploration 4 0 4 8
Discovered in exploration 6 0 3 9
Fully explorable 11 4 11 25
Requires observer 3 16 9 28

Table 5.1: Hipster’s performance on the evaluation problems.

The meanings of

labels are explained below.

Directly provable A theorem is directly provable by our automated tactic if it
can be proved right away without any lemmas having been found first.

Provable after exploration A theorem is provable after exploration if it was not
directly provable but is provable by our automated tactic after lemmas have been
discovered by theory exploration hit Hipster.

Discovered in exploration Some of the theorems we considered were discovered
as lemmas when we performed theory exploration on the functions involved.

Fully explorable A theorem is fully explorable if we can run simultaneous theory
exploration on all of the functions involved without running into any issues. Some
of the theorems we considered were not fully explorable, for reasons discussed in
section 5.4.

22

5. Evaluation

Requires observer A theorem requires an observer to perform exploration if one
of the functions involved always returns an infinite structure. For instance, any
function that returns a stream requires an observer for exploration.

5.3.1 Discussion of results

Out of the 49 theorems we considered, 30 could be proven directly with our auto-
mated coinduction tactic, and 7 of the 19 that couldn’t be proven directly could be
proved using lemmas discovered in theory exploration. We therefore managed to
prove 38 out of the 49 theorems. Among those 11 theorems that we still could not
prove after exploration there were 7 which were not fully explorable, which may have
prevented us from discovering lemmas that could aid us in proving the theorems.

Out of the remaining four theorems, two are taken from the Coinductive List
theory from [20] and state that take and takeWhile distribute over map on lazy
lists. The original theory file also contains various non-coinductive lemmas that the
proofs of the coinductive lemmas may depend on, which are missing from our theory.
The proofs of the two theorems in question in the Coinductive List theory both
depend on such non-coinductive lemmas.

The other two are from the (Co)programming tutorial, and state that converting
a lazy list to a right- or left-leaning tree and then converting this tree back to a lazy
list returns the original list. In the proofs shown for these theorems in the tutorial,
one uses a non-coinductive lemma in its proof and the other uses a lemma with a
conditional formulation, both of which are beyond our current ability to discover
with exploration.

5.4 Limitations

During the evaluation some limitations of our method and its implementation were
exposed, as is described in this section.

5.4.1 Limitations of our proof tactic

When performing theory exploration as part of our evaluation, we had, as in sec-
tion 4.2.2, the routine tactic set to use simplification and Metis, while the hard tactic
was our coinduction tactic as described in Chapter 3.

When a discovered conjecture cannot be proved using the routine tactic, our
method then attempts to prove it using coinduction. However, if there is no coin-
duction rule corresponding to the type being considered, the proof loop will crash.

This means that if we attempt to run theory exploration on a non-corecursive
function using this method, it will probably crash during the proof loop. However,
some of the theorems we considered in our evaluation involved a combination of
corecursive and non-corecursive functions, so we could not perform theory explo-
ration on all of the functions involved in those cases. Possible solutions to this are
discussed in section 6.2.

23

5. Evaluation

5.4.2 Limitations of observer method

Currently, our support for observational equivalence, as discussed in section 4.1, is
limited in that it only allows the user to specify one observer function to observe one
type in each call to Hipster. However, in some cases we may be considering more
than one type that requires an observer.

For instance, we attempted exploration on functions that connect streams and

lazy lists,

primcorec llist_of :: "’a Stream => ’a Llist"

where "llist of s = LCons (shd s) (1list_of (stl s))"
primcorec stream_of :: "’a Llist => ’a Stream"

where "stream of xs = SCons (1lhd xs) (stream_of (1tl xs))"

In this case, although there are finite instances of lazy lists, the function 11ist_of
will always return an infinite list when applied to a stream. Therefore we would need
an observer for lazy lists in addition to one for streams in order to perform joint
exploration on the functions and perhaps discover lemmas such as
stream_of (1list_of s) = s

24

Chapter 6

Conclusion

6.1 Related Work

6.1.1 (Co)programming in Isabelle/HOL

There is substantial recent work on making Isabelle/HOL more expressive for work-
ing with codatatypes and corecursive functions. In 2014, Blanchette et al. [16] intro-
duced a new package for defining types in Isabelle/HOL, including the codatatype
command and the primcorec command for defining primitively corecursive func-
tions. In [21] they present the notion of friends, which allow users to define more
kinds of corecursive functions with greater ease than was previously possible.

Our extension to Hipster can help Isabelle/HOL users who want to program with
these new methods discover and prove new properties about their theories. The
recent developments in this area also suggest directions for future extensions and
improvements of our work, as discussed in section 6.2.

6.1.2 Automated coinductive proofs

There has been prior work on automating coinductive proofs and reasoning, although
the techniques are nowhere near as sophisticated or widely used as those available
for induction.

In [22] Leino and Moskal present a method for automated reasoning about coin-
ductive properties in the Dafny verifier. CIRC [23] is a tool for automated inductive
and coinductive theorem proving which uses circular coinductive reasoning. It has
been successfully used to prove many properties of infinite structures such as streams
and infinite binary trees.

The CoVeCe (Coinduction for Verification and Certification) project * is currently
working towards using coinduction to improve upon the state of the art in verification
and certification. In [24] Pous presents a new theory encompassing parameterized
coinduction [25], which he claims is well suited for automated proofs, and second-
order reasoning.

We have not made a proper comparison of our automated coinductive tactic with
those available in other systems, but this could make for interesting future work.

'https://perso.ens-1lyon.fr/damien.pous/covece/

25

https://perso.ens-lyon.fr/damien.pous/covece/

6. Conclusion

However, none of the other systems has the theory exploration capabilities that are
the focus of our work.

6.1.3 Other theory exploration systems

IsaCoSy [26] and IsaScheme [27] are other theory exploration systems for Isabelle/HOL,
both of which focus on the discovery and proof of inductive properties. MATH-
sAiD [28] is a tool for automated theorem discovery, aimed at aiding mathemati-
cians in exploring mathematical theories. It can discover and prove theorems whose
proofs consist of logical and transitive reasoning as well as induction.

None of these tools is capable of discovering and proving coinductive properties,
and to the best of our knowledge Hipster is the first theory exploration system
to have such capabilities. Hipster is well suited to coinductive lemma discovery
because it uses QuickSpec for theory exploration. Since Quickspec is implemented
in Haskell, a lazy language, and has support for observational equivalence, it allows
the generation and checking of infinite structures as test data, making it possible to
discover properties for such structures.

6.2 Discussion and future work

While developing and evaluating our extension to Hipster we ran into various issues
worth discussing, which also provide interesting ideas for possible directions of future
work.

6.2.1 Defining corecursive functions in Isabelle

When gathering the examples used for evaluation in Chapter 5 our selection was
mostly limited to primitively corecursive functions, which can be defined using the
primcorec keyword in Isabelle/HOL. A primitive corecursive function is limited in
that its definition must have exactly one constructor around a corecursive call. Our
reasons for limiting ourselves to such functions were mainly the simplicity and ease
of defining functions using the primcorec keyword and the fact that our examples
from the Coinductive library were all primitively corecursive.

More complex corecursive functions can be defined using the methods introduced
in [21], and it would be interesting to see how Hipster handles such functions. More
evaluation on examples of examples that are not primitively corecursive would give
us a better idea of Hipster’s effectiveness in coinductive lemma discovery, and likely
expose flaws that we could work towards eliminating.

6.2.2 Combining inductive and coinductive tactics

One limitation of our implementation is its lack of ability to handle functions that
aren’t corecursive, as is discussed in 5.4.1. The ability to explore structures that
mix inductive and coinductive types and discover properties that relate recursive and
corecursive functions would greatly improve Hipster’s versatility and applicability.

26

6. Conclusion

In some cases, inductive lemmas are required to prove coinductive properties. As
a simple example, when exploring streams of natural numbers, we must have a proof
of the associativity of addition on the naturals in order to prove the associativity
of element-wise addition of two streams. Currently, Hipster’s proof loop will crash
if it is set to use a coinductive proof tactic and it can’t find a coinduction rule
corresponding to the types being considered. Our attempts at exploration involving
zipping of both lazy lists and streams ran into problems due to the underlying type
of pairs, which is not coinductive.

As Hipster’s previous development has been focused on induction it already con-
tains effective inductive tactics for exploration and proofs, which could be combined
with our coinductive tactic to create a more powerful combined tactic. For this we
would need to automatically determine whether induction or coinduction is appro-
priate in each case by checking whether the types involved are codatatypes or finite
datatypes.

6.2.3 Improving observation method

Another limitation we have noticed in our implementation is the fact that we cur-
rently only allow one observer function, to observe one type, in each call to Hipster,
as is discussed in section 5.4.2. Since we may need more than one observer to explore
certain theories, the ability to send more than one observer to hipster would be ben-
eficial. Support for multiple observers already exists in QuickSpec and tip-spec.
Extending Hipster to do so as well would mainly entail making modifications to how
the parameters denoting the observer function and relevant types are passed from
Hipster to tip-spec.

Another extension that would make Hipster more user friendly for coinductive
exploration is automatically generating appropriate observer functions and types
where needed rather than having the user define them and including them in their
hipster_obs call. One solution to this is the automation of the following general
technique to define an observer function and observer type, an example of which is
the obsStream observer function for streams as shown in section 4.2.1.

1. We determine that a codatatype T requires an observer if one of the two
following properties is true:

e T has no nullary constructor in its definition.
e T is the return type of a corecursive function with no base case.

2. If a codatatype, T, needs an observer, we begin by defining an observer
datatype, Res that has constructors corresponding to 71"s constructors, along
with an additional nullary constructor if 7" does not have one.

3. We then define an observation function obsFun with type Int — T — Res
which uses the integer parameter as fuel. obsF'un n x then returns the nullary
constructor of Obs if n < 0, and otherwise recursively constructs a structure
of type Obs using the destructors of T, decrementing the integer parameter in
the recursive call. For instance, consider the function obsStream as shown in
section 4.2.1:

27

6. Conclusion

fun obsStream :: "int => ’a Stream => ’a Lst" where
"obsStream n s = (if (n <= 0) then Emp

else Cons (shd s) (obsStream (n - 1) (stl s)))"
Here, obsStream returns the empty list Emp if it runs out of fuel, and otherwise
recursively constructs a list using the destructors shd and stl.

As can be seen, this technique is fairly generic, which leads us to believe it is
possible to automate. A worthwhile step towards such automation could be to
alert the user when an observer is needed. In the current implementation a missing
observer will simply cause Hipster to time out and display a confusing error message.
A simple first step might be to catch timeout errors and inform the user that a
missing observer may be the cause of the timeout, along with displaying relevant
information about how to use observers. A more advanced solution would check the
user’s code for codatatypes with no nullary constructors and warn the user that this
type requires an observer. A codatatype with a nullary constructor may also need
an observer if it is the output type of a corecursive function with no base case, so
ideally we would also identify such functions and warn the user that observers are
needed to explore them.

6.3 Final remarks

In this thesis we introduced our extension to Hipster, an interactive theory explo-
ration system for Isabelle/HOL, which gives it new capabilities of discovering prop-
erties of infinite structures and proving them using coinduction. To the best of our
knowledge, Hipster is the first theory exploration system to have such capabilites.
Our main contributions were firstly extending Hipster with a coinductive proof
tactic, allowing it to discover and prove coinductive lemmas, and secondly extending
Hipster and the underlying tool tip-spec to support observation functions to allow
for exploration of types that have no finite instances. The use of such observation
functions allows us much more versatility in the exploration of infinite structures.
We have evaluated our work on a number of examples and seen that our proof
tactic is powerful in its ability to prove a variety of theorems, and that our theory
exploration method can discover useful and interesting lemmas. Our results con-
firm that Hipster is well suited for theory exploration on infinite structures. Its
lazy Haskell back-end with support for observational equivalence facilitates the dis-
covery of properties of such structures, while the support for reasoning about such
structures in its Isabelle/HOL front-end facilitates the proof of those properties.

28

Bibliography

1]

[10]
[11]

[12]

[13]

[14]

M. Johansson, D. Rosén, N. Smallbone, and K. Claessen, “Hipster: Integrating
theory exploration in a proof assistant,” in Proceedings of the Conference on
Intelligent Computer Mathematics (CICM) 2014, pp. 108122, Springer, 2014.
D. Sangiorgi, Introduction to Bisimulation and Coinduction. New York, NY,
USA: Cambridge University Press, 2011.

B. Jacobs and J. Rutten, “A tutorial on (co)algebras and (co)induction,”
EATCS Bulletin, vol. 62, pp. 222-259, 1997.

K. Claessen, M. Johansson, D. Rosén, and N. Smallbone, “Tip: Tons of in-
ductive problems,” in Proceedings of the Conference on Intelligent Computer
Mathematics (CICM) 2015, pp. 333-337, Springer, 2015.

N. Smallbone, M. Johansson, K. Claesson, and M. Algehed, “Quick specifica-
tions for the busy programmer,” Journal of Functional Programming, vol. 27,
2017.

K. Claesson and J. Hughes, “Quickcheck: a lightweight tool for random testing
of haskell programs,” in Proceedings of ICFP, pp. 268-279, 2000.

K. Claessen, M. Johansson, D. Rosén, and N. Smallbone, “The tip format.”
http://tip-org.github.io/format.html.

C. B. an Aaron Stump and C. Tinelli, “The smt-lib standard — version 2.0,”
in In Proceedings of the 8th International Workshop on Satisfiability Modulo
Theories (SMT ’10), 2010.

M. Wenzel, L. Paulson, and T. Nipkow, “The isabelle framework (invited tuto-
rial),” in Theorem Proving in Higher Order Logics (TPHOLs 2008), pp. 33-38,
2008.

L. C. Paulson, “The foundation of a generic theorem prover,” Journal of Auto-
mated Reasoning, vol. 5, no. 3, pp. 363-397, 1989.

L. C. Paulson, “Isabelle: The next 700 theorem provers,” CoRR,
vol. ¢s.1.O/9301106, 1993.

T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL. Springer, 2002.
Latest online version December 12 2016. http://isabelle.in.tum.de/dist/
Isabelle2016-1/doc/tutorial.pdf.

M. Wengzel, Isar — A Generic Interpretative Approach to Readable Formal
Proof Documents, pp. 167-183. Berlin, Heidelberg: Springer Berlin Heidelberg,
1999.

T. Nipkow, “Programming and proving in isabelle/hol.” http://isabelle.in.
tum.de/dist/Isabelle2016-1/doc/prog-prove.pdf, 2016. Updated with
every new version of Isabelle/HOL.

29

http://tip-org.github.io/format.html
http://isabelle.in.tum.de/dist/Isabelle2016-1/doc/tutorial.pdf
http://isabelle.in.tum.de/dist/Isabelle2016-1/doc/tutorial.pdf
http://isabelle.in.tum.de/dist/Isabelle2016-1/doc/prog-prove.pdf
http://isabelle.in.tum.de/dist/Isabelle2016-1/doc/prog-prove.pdf

Bibliography

[15]

[16]

[17]

[22]

23]

[24]

[28]

30

L. C. Paulson and J. C. Blanchette, “Three years of experience with sledgeham-
mer, a practical link between automatic and interactive theorem provers.,” in
Proceedings of the 8th International Workshop on the Implementation of Logics
(IWIL-2010), 2010.

J. C. Blanchette, J. Holzl, A. Lochbihler, L. Panny, A. Popescu, and D. Traytel,
Truly Modular (Co)datatypes for Isabelle/HOL, pp. 93-110. Springer Interna-
tional Publishing, 2014.

J. Biendarra, J. C. Blanchette, M. Desharnais, L. Panny, A. Popescu,
and D. Traytel, “Defining (co)datatypes and primitively (co)recursive func-
tions in isabelle/hol.” http://isabelle.in.tum.de/dist/Isabelle2016-1/
doc/datatypes.pdf, 2016. Updated with every new version of Isabelle/HOL.
R. Bird and P. Wadler, An Introduction to Functional Programming. Hertford-
shire, UK, UK: Prentice Hall International (UK) Ltd., 1988.

J. Hurd, “First-order proof tactics in higher-order logic theorem provers,” in
Design and Application of Strategies/Tactics in Higher Order Logics, number
NASA/CP-2003-212448 in NASA Technical Reports, pp. 56-68, 2003.

A. Lochbihler, “Coinductive,” Archive of Formal Proofs, Feb. 2010. http:
//isa-afp.org/entries/Coinductive.html, Formal proof development.

J. C. Blanchette, A. Bouzy, A. Lochbihler, A. Popescu, and D. Traytel, Friends
with Benefits, pp. 111-140. Berlin, Heidelberg: Springer Berlin Heidelberg,
2017.

R. Leino and M. Moskal, “Co-induction simply: Automatic co-inductive proofs
in a program verifier,” tech. rep., July 2013.

D. Lucanu, E.-I. Goriac, G. Caltais, and G. Rosu, CIRC: A Behavioral Veri-
fication Tool Based on Circular Coinduction, pp. 433-442. Berlin, Heidelberg:
Springer Berlin Heidelberg, 20009.

D. Pous, “Coinduction all the way up,” in Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, (New York,
NY, USA), pp. 307-316, ACM, 2016.

C.-K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis, “The power of parameteriza-
tion in coinductive proof,” SIGPLAN Not., vol. 48, pp. 193-206, Jan. 2013.
M. Johansson, L. Dixon, and A. Bundy, “Conjecture synthesis for inductive
theories,” Journal of Automated Reasoning, vol. 47, pp. 251-289, Oct 2011.

O. Montano-Rivas, R. McCasland, L. Dixon, and A. Bundy, “Scheme-based
theorem discovery and concept invention,” Expert systems with applications,
vol. 39, no. 2, pp. 1637-1646, 2012.

R. L. McCasland, A. Bundy, and P. F. Smith, “Mathsaid: Automated mathe-
matical theory exploration,” Applied Intelligence, Jun 2017.

http://isabelle.in.tum.de/dist/Isabelle2016-1/doc/datatypes.pdf
http://isabelle.in.tum.de/dist/Isabelle2016-1/doc/datatypes.pdf
http://isa-afp.org/entries/Coinductive.html
http://isa-afp.org/entries/Coinductive.html

Appendix A

Evaluation theorem list

Here the theorems we used to perform evaluation on are listed by name along with
information about the evaluation results. Further information about the evaluation
can be found in Chapter 5. Dir. prove stands for directly provable, Prov. expl.
stands for provable after exploration, Disc stands for discovered in exploration, Fully
expl. stands for fully explorable and Obs. stands for requires observer. Explanations
of these concepts can be found in section 5.3. The source code for these theorems
can be found on github !, where each theorem is contained in a file with a name
matching the theorem name.

https://github.com/moajohansson/IsaHipster/tree/master/benchmark/she

https://github.com/moajohansson/IsaHipster/tree/master/benchmark/she

A. Evaluation theorem list

Name Source Dir. prov. Prov. expl. Disc Fully expl. Obs.
lappend_LNil2 CoList X - X X
lappend_assoc CoList X - X X
lmap_lappend_distrib CoList X - X X
lappend_inf CoList X -

lprefix_antisym CoList X -

llength_lmap CoList X X X
llength_lappend CoList X - X
ltake_lmap CoList X
lmap_literates CoList X X X
lappend_literates CoList X - X X X
ltake_lzip CoList X - X
lzip_literates CoList X -

lzip_lmap CoList X

ltakeWhile_lmap CoList X
ltakeWhile K_True ColList X -

lzip_ltakeWhile_fst CoList X -

lzip_ltakeWhile_snd ColList X —

ltakeWhile_repeat CoList X - X X
smap_unfold_stream CoStream X — X X
unfold_stream_ltl_unroll CoStream X - X X
unfold_stream_id CoStream X — X X
szip_iterates CoStream X - X
szip_smapl CoStream X - X
szip_smap2 CoStream X - X
szip_smap CoStream X - X
smap_fst_szip CoStream X - X
smap_snd_szip CoStream X - X
szip_sconstl CoStream X - X
szip_sconst2 CoStream X
stream_of _1list_llist_of_stream2 | CoStream X — X
1llist_of_stream_unfold_stream?2 CoStream X
lmap_llist_of_stream?2 CoStream X
llist_of_stream_siterates2 CoStream X - X
lzip_llist_of_stream2 CoStream X - X
Eplus_zero CoTut X - X X
Eplus_assoc CoTut X - X X
Eplus_commut CoTut X X X
Pls_assoc CoTut X - X X
Pls_ac CoTut X — X X
Pls_comm CoTut X - X X
Pls_assoc_enat CoTut X X X
Pls_ac_enat CoTut X X X
Pls_comm_enat CoTut X X X
Prd_distribR CoTut X
Prd_comm CoTut X
Prd_assoc CoTut X
llist_of_tree_of CoTut X
1llist_of_tree_of2 CoTut X
chop_tmap CoTut

IT

	Introduction
	Background
	Hipster
	Architecture
	QuickSpec
	TIP

	Isabelle
	Layers
	Syntax notes
	Tactics, goals and proving

	Coinduction
	Codatatypes and coinduction in Isabelle/HOL
	Isabelle/HOL's coinduction tactic

	A tactic for coinduction
	Automatically determining parameters
	Arbitrary variables
	Choice of coinduction rule

	Proving subgoals
	Outcome

	Theory exploration
	Testing infinite structures
	Observational equivalence in QuickSpec
	Observational equivalence in tip-spec and Hipster

	Exploring a theory
	Examples
	Proof loop

	Evaluation
	Evaluation data
	Evaluation procedure
	Results
	Discussion of results

	Limitations
	Limitations of our proof tactic
	Limitations of observer method

	Conclusion
	Related Work
	(Co)programming in Isabelle/HOL
	Automated coinductive proofs
	Other theory exploration systems

	Discussion and future work
	Defining corecursive functions in Isabelle
	Combining inductive and coinductive tactics
	Improving observation method

	Final remarks

	Bibliography
	Evaluation theorem list

