
Predicting Exploit Likelihood for Cyber
Vulnerabilities with Machine Learning
Master’s thesis in Complex Adaptive Systems

MICHEL EDKRANTZ

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2015

Master’s thesis 2015

Predicting Exploit Likelihood for Cyber
Vulnerabilities with Machine Learning

MICHEL EDKRANTZ

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2015

Predicting Exploit Likelihood for Cyber Vulnerabilities with Machine Learning
MICHEL EDKRANTZ

© MICHEL EDKRANTZ, 2015.

Supervisors
Alan Said, PhD, Recorded Future
Christos Dimitrakakis, O. Docent, Department of Computer Science

Examiner
Devdatt Dubhashi, Prof., Department of Computer Science

Master’s Thesis 2015
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Cyber Bug. Thanks to Icons8 for the icon icons8.com/web-app/416/Bug. Free for commercial
use.

Typeset in LATEX
Printed by Reproservice (Chalmers printing services)
Gothenburg, Sweden 2015

iv

http://www.icons8.com/web-app/416/Bug

Predicting Exploit Likelihood for Cyber Vulnerabilities with Machine Learning
MICHEL EDKRANTZ
m.edkrantz@gmail.com
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

Every day there are some 20 new cyber vulnerabilities released, each exposing some software weakness.
For an information security manager it can be a daunting task to keep up and assess which vulnerabilities
to prioritize to patch. In this thesis we use historic vulnerability data from the National Vulnerability
Database (NVD) and the Exploit Database (EDB) to predict exploit likelihood and time frame for unseen
vulnerabilities using common machine learning algorithms. This work shows that the most important
features are common words from the vulnerability descriptions, external references, and vendor products.
NVD categorical data, Common Vulnerability Scoring System (CVSS) scores, and Common Weakness
Enumeration (CWE) numbers are redundant when a large number of common words are used, since
this information is often contained within the vulnerability description. Using several different machine
learning algorithms, it is possible to get a prediction accuracy of 83% for binary classification. The
relative performance of multiple of the algorithms is marginal with respect to metrics such as accuracy,
precision, and recall. The best classifier with respect to both performance metrics and execution time is
a linear time Support Vector Machine (SVM) algorithm. The exploit time frame prediction shows that
using only public or publish dates of vulnerabilities or exploits is not enough for a good classification.
We conclude that in order to get better predictions the data quality must be enhanced. This thesis was
conducted at Recorded Future AB.

Keywords: Machine Learning, SVM, cyber security, exploits, vulnerability prediction, data mining

v

Acknowledgements

I would first of all like to thank Staffan Truvé, for giving me the opportunity to do my thesis at Recorded
Future. Secondly I would like to thank my supervisor Alan Said, at Recorded Future, for supporting me
with hands on experience and guidance in machine learning. Moreover, I would like to thank my other
co-workers at Recorded Future, especially Daniel Langkilde and Erik Hansbo from the Linguistics team.

At Chalmers I would like to thank my academic supervisor Christos Dimitrakakis, who introduced me to
some of the algorithms, workflows, and methods. I would also like to thank my examiner Prof. Devdatt
Dubhashi, whose lectures in Machine Learning provided me with a good foundation in the algorithms
used in this thesis.

Michel Edkrantz
Göteborg, May 4th 2015

vii

Contents

Abbreviations xi

1 Introduction 1
1.1 Goals . 2
1.2 Outline . 2
1.3 The cyber vulnerability landscape . 2
1.4 Vulnerability databases . 4
1.5 Related work . 6

2 Background 9
2.1 Classification algorithms . 10

2.1.1 Naive Bayes . 10
2.1.2 SVM - Support Vector Machines . 10

2.1.2.1 Primal and dual form . 11
2.1.2.2 The kernel trick . 11
2.1.2.3 Usage of SVMs . 12

2.1.3 kNN - k-Nearest-Neighbors . 12
2.1.4 Decision trees and random forests . 13
2.1.5 Ensemble learning . 13

2.2 Dimensionality reduction . 14
2.2.1 Principal component analysis . 14
2.2.2 Random projections . 15

2.3 Performance metrics . 16
2.4 Cross-validation . 16
2.5 Unequal datasets . 17

3 Method 19
3.1 Information Retrieval . 19

3.1.1 Open vulnerability data . 19
3.1.2 Recorded Future’s data . 19

3.2 Programming tools . 21
3.3 Assigning the binary labels . 21
3.4 Building the feature space . 22

3.4.1 CVE, CWE, CAPEC, and base features . 23
3.4.2 Common words and n-grams . 23
3.4.3 Vendor product information . 23
3.4.4 External references . 24

3.5 Predict exploit time-frame . 24

4 Results 27
4.1 Algorithm benchmark . 27
4.2 Selecting a good feature space . 29

4.2.1 CWE- and CAPEC-numbers . 29
4.2.2 Selecting amount of common n-grams . 30

ix

Contents

4.2.3 Selecting amount of vendor products . 31
4.2.4 Selecting amount of references . 32

4.3 Final binary classification . 33
4.3.1 Optimal hyper parameters . 34
4.3.2 Final classification . 34
4.3.3 Probabilistic classification . 35

4.4 Dimensionality reduction . 36
4.5 Benchmark Recorded Future’s data . 37
4.6 Predicting exploit time frame . 37

5 Discussion & Conclusion 41
5.1 Discussion . 41
5.2 Conclusion . 41
5.3 Future work . 42

Bibliography 43

x

Contents

Abbreviations

Cyber-related

CAPEC Common Attack Patterns Enumeration and Classification
CERT Computer Emergency Response Team
CPE Common Platform Enumeration
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration
EDB Exploits Database
NIST National Institute of Standards and Technology
NVD National Vulnerability Database
RF Recorded Future
WINE Worldwide Intelligence Network Environment

Machine learning-related

FN False Negative
FP False Positive
kNN k-Nearest-Neighbors
ML Machine Learning
NB Naive Bayes
NLP Natural Language Processing
PCA Principal Component Analysis
PR Precision Recall
RBF Radial Basis Function
ROC Receiver Operating Characteristic
SVC Support Vector Classifier
SVD Singular Value Decomposition
SVM Support Vector Machines
SVR Support Vector Regressor
TN True Negative
TP True Positive

xi

Contents

xii

1
Introduction

Figure 1.1: Recorded Future Cyber Exploits events for the cyber vulnerability Heartbleed.

Every day there are some 20 new cyber vulnerabilities released and reported on open media, e.g. Twitter,
blogs, and news feeds. For an information security manager it can be a daunting task to keep up and
assess which vulnerabilities to prioritize to patch (Gordon, 2015).

Recoded Future1 is a company focusing on automatically collecting and organizing news from 650,000
open Web sources to identify actors, new vulnerabilities and emerging threat indicators. With Recorded
Future’s vast open source intelligence repository, users can gain deep visibility into the threat landscape
by analyzing and visualizing cyber threats.

Recorded Future’s Web Intelligence Engine harvests events of many types, including new cyber vulnera-
bilities and cyber exploits. Just last year, 2014, the world witnessed two major vulnerabilities, ShellShock2

and Heartbleed3 (see Figure 1.1), which both received plenty of media attention. Recorded Future’s Web
Intelligence Engine picked up more than 250,000 references for these vulnerabilities alone. There are also
vulnerabilities that are being openly reported; yet hackers show little or no interest to exploit them.

In this thesis the goal is to use machine learning to examine correlations in vulnerability data from
multiple sources, and see if some vulnerability types are more likely to be exploited.

1recordedfuture.com
2cvedetails.com/cve/CVE-2014-6271. Retrieved: May 2015
3cvedetails.com/cve/CVE-2014-0160. Retrieved: May 2015

1

http://www.recordedfuture.com/
http://www.cvedetails.com/cve/CVE-2014-6271
http://www.cvedetails.com/cve/CVE-2014-0160

1. Introduction

1.1 Goals

The goals for this thesis are the following:

• Predict which types of cyber vulnerabilities that are turned into exploits and with what probability.

• Find interesting subgroups that are more likely to become exploited.

• Build a binary classifier to predict whether a vulnerability will get exploited or not.

• Give an estimate for a time frame, from a vulnerability being reported until exploited.

• If a good model can be trained, examine how it might be taken into production at Recorded Future.

1.2 Outline

To make the reader acquainted with some of the terms used in the field, this thesis starts with a general
description of the cyber vulnerability landscape in Section 1.3. Section 1.4 introduces common data
sources for vulnerability data.

Section 2 introduces the reader to machine learning concepts used throughout this thesis. This includes
algorithms such as Naive Bayes, Support Vector Machines, k-Nearest-Neighbors, Random Forests, and
dimensionality reduction. It also includes information on performance metrics, e.g. precision, recall, and
accuracy, and common machine learning workflows such as cross-validation and how to handle unbalanced
data.

In Section 3, the methodology is explained. Starting in Section 3.1.1, the information retrieval process
from the many vulnerability data sources is explained. Thereafter, there is a short description of some
of the programming tools and technologies used. We then present how the vulnerability data can be
represented in a mathematical model needed for the machine learning algorithms. The chapter ends with
Section 3.5, where we present the data needed for time frame prediction.

Section 4 presents the results. The first part benchmarks different algorithms. In the second part, we
explore which features of the vulnerability data that contribute best in classification performance. Third,
a final classification analysis is done on the full dataset for an optimized choice of features and parameters.
This part includes both binary and probabilistic classification versions. In the fourth part, the results for
the exploit time frame prediction are presented.

Finally, Section 5 summarizes the work, and presents conclusions and possible future work.

1.3 The cyber vulnerability landscape

The amount of available information on software vulnerabilities can be described as massive. There is a
huge volume of information online about different known vulnerabilities, exploits, proof-of-concept code,
etc. A key aspect to keep in mind for this field of cyber vulnerabilities is that open information is not in
everyone’s best interest. Cyber criminals that can benefit from an exploit will not report it. Whether a
vulnerability has been exploited or not may thus be very doubtful. Furthermore, there are vulnerabilities
hackers exploit today that the companies do not know exist. If the hacker leaves no or little trace, it may
be very hard to see that something is being exploited.

There are mainly two kinds of hackers, the white hat and the black hat. White hat hackers, such as security
experts and researches, will often report vulnerabilities back to the responsible developers. Many major
information technology companies, such as Google, Microsoft, and Facebook, award hackers for notifying

2

1. Introduction

them about vulnerabilities in so called bug bounty programs4. Black hat hackers instead choose to exploit
the vulnerability, or sell the information to third parties.

The attack vector is the term for the method that a malware or virus is using, typically protocols, services,
and interfaces. The attack surface of a software environment is the combination of points where different
attack vectors can be used. There are several important dates in the vulnerability life cycle:

1. The creation date is when the vulnerability is introduced in the software code.

2. The discovery date is when a vulnerability is found, either by vendor developers or hackers. The
true discovery date is generally not known if a vulnerability is discovered by a black hat hacker.

3. The disclosure date is when information about a vulnerability is publicly made available.

4. The patch date is when a vendor patch is publicly released.

5. The exploit date is when an exploit is created.

Note that the relative order of the three last dates is not fixed; the exploit date may be before or after
the patch date and disclosure date. A zeroday or 0-day is an exploit that is using a previously unknown
vulnerability. The developers of the code have, when the exploit is reported, had 0 days to fix it, meaning
there is no patch available yet. The amount of time it takes for software developers to roll out a fix to
the problem varies greatly. Recently, a security researcher discovered a serious flaw in Facebook’s image
API, allowing him to potentially delete billions of uploaded images (Stockley, 2015). This was reported
and fixed by Facebook within 2 hours.

An important aspect of this example is that Facebook could patch this because it controlled and had direct
access to update all the instances of the vulnerable software. Contrary, there a many vulnerabilities that
have been known for long, have been fixed, but are still being actively exploited. There are cases where
the vendor does not have access to patch all the running instances of its software directly, for example
Microsoft Internet Explorer (and other Microsoft software). Microsoft (and numerous other vendors) has
for long had problems with this, since its software is installed on consumer computers. This relies on the
customer actively installing the new security updates and service packs. Many companies are however
stuck with old systems which they cannot update for various reasons. Other users with little computer
experience are simply unaware of the need to update their software, and left open to an attack when an
exploit is found. Using vulnerabilities in Internet Explorer has for long been popular with hackers, both
because of the large number of users, but also because there are large amounts of vulnerable users, long
after a patch is released.

Microsoft has since 2003 been using Patch Tuesdays to roll out packages of security updates to Windows on
specific Tuesdays every month (Oliveria, 2005). The following Wednesday is known as Exploit Wednesday,
since it often takes less than 24 hours for these patches to be exploited by hackers.

Exploits are often used in exploit kits, packages automatically targeting a large number of vulnerabilities
(Cannell, 2013). Cannell explains that exploit kits are often delivered by an exploit server. For example,
a user comes to a web page that has been hacked, but is then immediately forwarded to a malicious
server that will figure out the user’s browser and OS environment and automatically deliver an exploit
kit with a maximum chance of infecting the client with malware. Common targets over the past years
have been major browsers, Java, Adobe Reader, and Adobe Flash Player5. A whole cyber crime industry
has grown around exploit kits, especially in Russia and China (Cannell, 2013). Pre-configured exploit
kits are sold as a service for $500 - $10,000 per month. Even if many of the non-premium exploit kits do
not use zero-days, they are still very effective since many users are running outdated software.

4facebook.com/whitehat. Retrieved: May 2015
5cvedetails.com/top-50-products.php. Retrieved: May 2015

3

http://www.facebook.com/whitehat
http://www.cvedetails.com/top-50-products.php

1. Introduction

1.4 Vulnerability databases

The data used in this work comes from many different sources. The main reference source is the Na-
tional Vulnerability Database6 (NVD), which includes information for all Common Vulnerabilities and
Exposures (CVEs). As of May 2015, there are close to 69,000 CVEs in the database. Connected to each
CVE is also a list of external references to exploits, bug trackers, vendor pages, etc. Each CVE comes
with some Common Vulnerability Scoring System (CVSS) metrics and parameters, which can be found
in the Table 1.1. A CVE-number is of the format CVE-Y-N, with a four number year Y, and a 4-6
number identifier N per year. Major vendors are preassigned ranges of CVE-numbers to be registered in
the oncoming year, which means that CVE-numbers are not guaranteed to be used or to be registered in
consecutive order.

Table 1.1: CVSS Base Metrics, with definitions from Mell et al. (2007).

Parameter Values Description
CVSS Score 0-10 This value is calculated based on the next 6 values, with a formula

(Mell et al., 2007).
Access Vector Local

Adjacent
network
Network

The access vector (AV) shows how a vulnerability may be exploited.
A local attack requires physical access to the computer or a shell ac-
count. A vulnerability with Network access is also called remotely
exploitable.

Access
Complexity

Low
Medium
High

The access complexity (AC) categorizes the difficulty to exploit the
vulnerability.

Authentication None
Single
Multiple

The authentication (Au) categorizes the number of times that an at-
tacker must authenticate to a target to exploit it, but does not measure
the difficulty of the authentication process itself.

Confidentiality None
Partial
Complete

The confidentiality (C) metric categorizes the impact of the confiden-
tiality, and amount of information access and disclosure. This may
include partial or full access to file systems and/or database tables.

Integrity None
Partial
Complete

The integrity (I) metric categorizes the impact on the integrity of the
exploited system. For example, if the remote attack is able to partially
or fully modify information in the exploited system.

Availability None
Partial
Complete

The availability (A) metric categorizes the impact on the availability of
the target system. Attacks that consume network bandwidth, processor
cycles, memory or any other resources affect the availability of a system.

Security
Protected

User
Admin
Other

Allowed privileges

Summary A free-text description of the vulnerability.

The data from NVD only includes the base CVSS Metric parameters seen in Table 1.1. An example for
the vulnerability ShellShock7 is seen in Figure 1.2. In the official guide for CVSS metrics, Mell et al.
(2007) describe that there are similar categories for Temporal Metrics and Environmental Metrics. The
first one includes categories for Exploitability, Remediation Level, and Report Confidence. The latter
includes Collateral Damage Potential, Target Distribution, and Security Requirements. Part of this data
is sensitive and cannot be publicly disclosed.

All major vendors, keep their own vulnerability identifiers as well; Microsoft uses the MS prefix, Red Hat
uses RHSA, etc. For this thesis, the work has been limited to study those with CVE-numbers from the
NVD.

Linked to the CVEs in the NVD are 1.9M Common Platform Enumeration (CPE) strings, which define
different affected software combinations, and contain a software type, vendor, product, and version infor-
mation. A typical CPE-string could be cpe:/o:linux: linux_kernel:2.4.1. A single CVE can affect several

6nvd.nist.gov. Retrieved: May 2015
7cvedetails.com/cve/CVE-2014-6271. Retrieved: Mars 2015

4

http://www.nvd.nist.gov
http://www.cvedetails.com/cve/CVE-2014-6271

1. Introduction

Figure 1.2: An example showing the NVD CVE details parameters for ShellShock.

products, from several different vendors. A bug in the web rendering engine Webkit may affect both of
the browsers Google Chrome and Apple Safari, and moreover a range of version numbers.

The NVD also includes 400,000 links to external pages for those CVEs with different types of sources
with more information. There are many links to exploit databases such as exploit-db.com (EDB),
milw0rm.com, rapid7.com/db/modules, and 1337day.com. Many links also go to bug trackers, forums,
security companies and actors, and other databases. The EDB holds information and proof-of-concept
code to 32,000 common exploits, including exploits that do not have official CVE-numbers.

In addition, the NVD includes Common Weakness Enumeration (CWE) numbers8, which categorizes
vulnerabilities into categories such as a cross-site-scripting or OS command injection. In total there are
around 1,000 different CWE-numbers.

Similar to the CWE-numbers there are also Common Attack Patterns Enumeration and Classification
numbers (CAPEC). These are not found in the NVD, but can be found in other sources as described in
Section 3.1.1.

The general problem within this field is that there is no centralized open source database that keeps all
information about vulnerabilities and exploits. The data from the NVD is only partial; for example,
within the 400,000 links from NVD, 2,200 are references to the EDB. However, the EDB holds CVE-
numbers for every exploit entry, and keeps 16,400 references back to CVE-numbers. This relation is
asymmetric since there is a big number of links missing in the NVD. Different actors do their best to
cross-reference back to CVE-numbers, and external references. Thousands of these links have over the

8The full list of CWE-numbers can be found at cwe.mitre.org.

5

http://www.exploit-db.com
http://www.milw0rm.com
http://www.rapid7.com/db/modules
http://www.1337day.com
http://cwe.mitre.org

1. Introduction

years become dead, since content has been either moved or the actor has disappeared.

The Open Sourced Vulnerability Database9 (OSVDB) includes far more information than the NVD, for
example 7 levels of exploitation (Proof-of-Concept Public, Exploit Public, Exploit Private, Exploit Com-
mercial, Exploit Unknown, Virus / Malware10, Wormified10). There is also information about exploit,
disclosure and discovery dates, vendor and third party solutions, and a few other fields. However, this is
a commercial database and do not allow open exports for analysis.

In addition, there is a database at CERT (Computer Emergency Response Team) at the Carnegie Mel-
lon University. CERT’s database11 includes vulnerability data, which partially overlaps with the NVD
information. CERT Coordination Center is a research center focusing on software bugs and how those
impact software and Internet security.

Symantec’s Worldwide Intelligence Network Environment (WINE) is more comprehensive and includes
data from attack signatures Symantec has acquired through its security products. This data is not openly
available. Symantec writes on their webpage12:

"WINE is a platform for repeatable experimental research, which provides NSF-supported researchers ac-
cess to sampled security-related data feeds that are used internally at Symantec Research Labs. Often,
today’s datasets are insufficient for computer security research. WINE was created to fill this gap by
enabling external research on field data collected at Symantec and by promoting rigorous experimental
methods. WINE allows researchers to define reference datasets, for validating new algorithms or for con-
ducting empirical studies, and to establish whether the dataset is representative for the current landscape
of cyber threats."

1.5 Related work

Plenty of work is being put into research about cyber vulnerabilities by big software vendors, computer
security companies, threat intelligence software companies, and independent security researchers. Pre-
sented below are some of the findings relevant for this work.

Frei et al. (2006) do a large-scale study of the life-cycle of vulnerabilities, from discovery to patch. Using
extensive data mining on commit logs, bug trackers, and mailing lists, they manage to determine the
discovery, disclosure, exploit, and patch dates of 14,000 vulnerabilities between 1996 and 2006. This data
is then used to plot different dates against each other, for example discovery date vs. disclosure date,
exploit date vs. disclosure date, and patch date vs. disclosure date. They also state that black hats
create exploits for new vulnerabilities quickly and that the amount of zerodays is increasing rapidly. 90%
of the exploits are generally available within a week from disclosure, a great majority within days.

Frei et al. (2009) continue this line of work, and give a more detailed definition of the important dates
and describe the main processes of the security ecosystem. They also illustrate the different paths a
vulnerability can take from discovery to public, depending on if the discoverer is a black or white hat
hacker. The authors provide updated analysis for their plots from Frei et al. (2006). Moreover, they
argue that the true discovery dates will never be publicly known for some vulnerabilities since it may
be bad publicity for vendors to actually state how long they have been aware of some problem before
releasing a patch. Likewise, for a zeroday it is hard or impossible to state how long it has been in use since
its discovery. The authors conclude that on average exploit availability has exceeded patch availability
since 2000. This gap stresses the need for third party security solutions and need for constantly updated
security information of the latest vulnerabilities in order to make patch priority assessments.

Ozment (2007) explains the Vulnerability Cycle, with definitions of the important events of a vulnerability.
Those are Injection Date, Release Date, Discovery Date, Disclosure Date, Public Date, Patch Date,

9osvdb.com. Retrieved: May 2015
10Meaning that the exploit has been found in the wild.
11cert.org/download/vul_data_archive. Retrieved: May 2015
12symantec.com/about/profile/universityresearch/sharing.jsp. Retrieved: May 2015

6

http://www.osvdb.com
http://www.cert.org/download/vul_data_archive
http://www.symantec.com/about/profile/universityresearch/sharing.jsp

1. Introduction

Scripting Date. Ozment further argues that the work so far on vulnerability discovery models is using
unsound metrics, especially researchers need to consider data dependency.

Massacci and Nguyen (2010) perform a comparative study on public vulnerability databases and compile
them into a joint database for their analysis. They also compile a table of recent authors usage of
vulnerability databases in similar studies, and categorize these studies as prediction, modeling, or fact
finding. Their study focusing on bugs for Mozilla Firefox shows that using different sources can lead to
opposite conclusions.

Bozorgi et al. (2010) do an extensive study to predict exploit likelihood using machine learning. The
authors use data from several sources such as the NVD, the OSVDB, and the dataset from Frei et al.
(2009) to construct a dataset of 93,600 feature dimensions for 14,000 CVEs. The results show a mean
prediction accuracy of 90%, both for offline and online learning. Furthermore, the authors predict a
possible time frame that an exploit would be exploited within.

Zhang et al. (2011) use several machine learning algorithms to predict time to next vulnerability (TTNV)
for various software applications. The authors argue that the quality of the NVD is poor, and are only
content with their predictions for a few vendors. Moreover, they suggest multiple explanations of why the
algorithms are unsatisfactory. Apart from the missing data, there is also the case that different vendors
have different practices for reporting the vulnerability release time. The release time (disclosure or public
date) does not always correspond well with the discovery date.

Allodi and Massacci (2012, 2013) study which exploits are actually being used in the wild. They show
that only a small subset of vulnerabilities in the NVD, and exploits in the EDB, are found in exploit
kits in the wild. The authors use data from Symantec’s list of Attack Signatures and Threat Explorer
Databases13. Many vulnerabilities may have proof-of-concept code in the EDB, but are worthless or
impractical to use in an exploit kit. Also, the EDB does not cover all exploits being used in the wild,
and there is no perfect overlap between any of the authors’ datasets. Just a small percentage of the
vulnerabilities are in fact interesting to black hat hackers. The work of Allodi and Massacci is discussed
in greater detail in Section 3.3.

Shim et al. (2012) use a game theory model to conclude that "Crime Pays If You Are Just an Average
Hacker". In this study they also discuss black markets and reasons why cyber related crime is growing.

Dumitras and Shou (2011) present Symantec’s WINE dataset, and hope that this data will be of use for
security researchers in the future. As described previously in Section 1.4, this data is far more extensive
than the NVD, and includes meta data as well as key parameters about attack patterns, malwares, and
actors.

Allodi and Massacci (2015) use the WINE data to perform studies on security economics. They find that
most attackers use one exploited vulnerability per software version. Attackers deploy new exploits slowly,
and after 3 years about 20% of the exploits are still used.

13symantec.com/security_response/. Retrieved: May 2015

7

http://www.symantec.com/security_response/

1. Introduction

8

2
Background

Machine Learning (ML) is a field in computer science focusing on teaching machines to see patterns in
data. It is often used to build predictive models, for classification, clustering, ranking, or recommender
systems in e-commerce. In supervised machine learning, there is generally some datasetX of observations,
with known truth labels y that an algorithm should be trained to predict. Xn×d is called a feature matrix,
having n samples and d feature dimensions. y, the target data, or label or class vector, is a vector with n
elements. yi denotes the ith observation’s label, the truth value that a classifier should learn to predict.
This is all visualized in figure 2.1. The feature space is the mathematical space spanned by the feature
dimensions. The label space is the space of all possible values to predict.

Figure 2.1: A representationof the data setup, with a feature matrix X and a label vector y.

The simplest case of classification is binary classification. For example, based on some weather data for
a location, will it rain tomorrow? Based on previously known data X with a boolean label vector y
(yi ∈ {0, 1}), a classification algorithm can be taught to see common patterns that lead to rain. This
example also shows that each feature dimension may be a completely different space. For example, there
is a location in R3 and maybe 10 binary or categorical features describing some other states, like current
temperature, or humidity. It is up to the data scientist to decide which features that are suitable for
classification. Feature engineering is a big field of research in itself, and commonly takes up a large
fraction of the time spent solving real world machine learning problems.

Binary classification can also be generalized to multi-class classification, where y holds categorical values.
The classifier is trained to predict the most likely of several categories. A probabilistic classifier does not
give each prediction as the most probable class, but returns a probability distribution over all possible
classes in the label space. For binary classification this corresponds to predicting the probability of getting
rain tomorrow, instead of just answering yes or no.

Classifiers can further be extended to estimators (or regressors), which will train to predict a value in

9

2. Background

continuous space. Coming back to the rain example, it would be possible to make predictions on how
much it will rain tomorrow.

In this section the methods used in this thesis are presented briefly. For an in-depth explanation we refer
to the comprehensive works of for example Barber (2012) and Murphy (2012).

2.1 Classification algorithms

2.1.1 Naive Bayes

An example of a simple and fast linear time classifier is the Naive Bayes (NB) classifier. It is rooted in
Bayes’ theorem, which calculates the probability of seeing the label y given a feature vector x (one row
of X). It is a common classifier used in for example spam filtering (Sahami et al., 1998) and document
classification, and can often be used as a baseline in classifications.

P (y | x1, . . . , xd) = P (y)P (x1, . . . xd | y)
P (x1, . . . , xd)

(2.1)

or in plain English
probability = prior · likelihood

evidence (2.2)

The problem is that it is often infeasible to calculate such dependencies, and can require a lot of resources.
By using the naive assumption that all xi are independent,

P (xi|y, x1, . . . , xi−1, xi+1, . . . , xd) = P (xi|y). (2.3)

the probability is simplified to a product of independent probabilities

P (y | x1, . . . , xd) =
P (y)

∏d
i=1 P (xi | y)

P (x1, . . . , xd)
. (2.4)

The evidence in the denominator is constant with respect to the input x,

P (y | x1, . . . , xd) ∝ P (y)
d∏
i=1

P (xi | y) (2.5)

and is just a scaling factor. To get a classification algorithm, the optimal predicted label ŷ should be
taken as

ŷ = arg max
y

P (y)
d∏
i=1

P (xi | y) (2.6)

2.1.2 SVM - Support Vector Machines

Support Vector Machines (SVM) is a set of supervised algorithms for classification and regression. Given
data points xi ∈ Rd, and labels yi ∈ {−1, 1}, for i = 1, . . . , n, a (d−1)-dimensional hyperplane wTx−b =
0 is sought to separate two classes. A simple example can be seen in Figure 2.2, where a line (the 1-
dimensional hyperplane) is found to separate clusters in R2. If every hyperplane is forced to go through
the origin (b = 0), the SVM is said to be unbiased.

However, an infinite amount of separating hyperplanes can often be found. More formally, the goal is
to find the hyperplane that maximizes the margin between the two classes. This is equivalent to the
following optimization problem

min
w,b

1
2w

Tw s.t. ∀i : yi(wTxi + b) ≥ 1 (2.7)

10

2. Background

Figure 2.2: For an example dataset an SVM classifier can be used to find a hyperplane, that separates the two
classes. The support vectors are the double rounded dots. A lower penalty C in this case (the right image) makes
the classifier include more points as support vectors.

2.1.2.1 Primal and dual form

In an easy case, the two classes are linearly separable. It is then possible to find a hard margin and
a perfect classification. In a real world example, there are often noise and outliers. Forcing a hard
margin may overfit the data, and skew the overall results. Instead the constraints can be relaxed using
Lagrangian multipliers and the penalty method into a soft margin version. Noise and outliers will often
make it impossible to satisfy all constraints.

Finding an optimal hyperplane can be formulated as an optimization problem. It is possible to attack
this optimization problem from two different angles, the primal and the dual. The primal form is

min
w,b,ζ

{
1
2w

Tw + C

n∑
i=1

ζi

}
s.t. ∀i : yi(wTxi + b) ≥ 1− ζi ∧ ζi ≥ 0 (2.8)

By solving the primal problem the optimal weights, w, and bias, b, are found. To classify a point, wTx
needs to be calculated. When d is large, the primal problem becomes computationally expensive. Using
the duality, the problem can be transformed into a computationally cheaper problem. Since αi = 0 unless
xi is a support vector, the α tends to be a very sparse vector.

The dual problem is

max
α

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj

 s.t. ∀i : 0 ≤ αi ≤ C ∧
n∑
i=1

yiαi = 0 (2.9)

2.1.2.2 The kernel trick

Since xTi xj in the expressions above is just scalar, it can be replaced by a kernel function K(xi, xj) =
φ(xi)Tφ(xj), which becomes a distance measure between two points. The expressions from above, are
called a linear kernel, with

K(xi,xj) = xTi xj . (2.10)
Specific kernels may be custom tailored to solve specific domain problems. Only standard kernels will
be used in this thesis. They are visualized for a toy dataset in Figure 2.3. The Gaussian Radial Basis
Function (RBF) is

K(xi,xj) = exp(−γ‖xi − xj‖2), for γ > 0. (2.11)

11

2. Background

Figure 2.3: This toy example shows a binary classification between red and green points using SVMs with different
kernels. An RBF kernel will work much better than a linear kernel by allowing curved boundaries. The test data
is drawn in double rounded dots.

2.1.2.3 Usage of SVMs

SVMs can both be used for regression (SVR) and for classification (SVC). SVMs were originally discovered
in 1963, and the soft margin version was published 20 years ago (Cortes and Vapnik, 1995).

In the original formulation the goal is to do a binary classification between two classes. SVMs can be
generalized to a multi-class version by doing several one-vs-rest classifications, and selecting the class
that gets the best separation.

There are many common SVM libraries; two are LibSVM and Liblinear (Fan et al., 2008). Liblinear is a
linear time approximation algorithm for linear kernels, which runs much faster than LibSVM. Liblinear
runs in O(nd), while LibSVM takes at least O(n2d).

2.1.3 kNN - k-Nearest-Neighbors

kNN is an algorithm that classifies a new sample x, based on the k nearest neighbors in the feature
matrix X. When the k nearest neighbors have been found, it is possible to make several versions of the
algorithm. In the standard version, the prediction ŷ of the new sample x is taken as the most common
class of the k neighbors. In a probabilistic version, the ŷ is drawn from a multinomial distribution with
class weights equal to the share of the different classes from the k nearest neighbors.

A simple example for kNN can be seen in Figure 2.4, where kNN is used for the Iris dataset1 using
scikit-learn (see Section 3.2).

In the above formulation, uniform weights are applied, meaning that all k neighbors are weighted equally.
It is also possible to use different distance weighting, namely to let the distance from x to the k nearest
neighbors weight there relative importance. The distance from a sample x1 to another sample x2 is often
the Euclidean distance

s =

√√√√ d∑
i=1

(x1i − x2i)2, (2.12)

but other distance measures are also commonly used. Those include for example the cosine distance,
Jaccard similarity, Hamming distance, and the Manhattan distance, which are out of the scope of this
thesis. The Euclidean distance measure is not always very helpful for high dimensional data, since all
points will lie approximately at the same distance.

1archive.ics.uci.edu/ml/datasets/Iris. Retrieved: Mars 2015

12

http://archive.ics.uci.edu/ml/datasets/Iris

2. Background

Figure 2.4: In the Iris dataset there are three different flower species, that can be clustered based on same basic
measurement. The kNN classifier creates areas in blue, green, and red, for the three species. Any point will be
classified to the color of the region. Note that outliers are likely to be misclassified. There is a slight difference
between uniform and distance weights as can be seen in the figure, especially how regions around outliers are
formed.

kNN differs from SVM (and other model based algorithms) in the sense that all training data is needed for
prediction. This makes the algorithm inconvenient for truly big data. The choice of k is problem specific,
and needs to be learned and cross-validated. A large k serves as noise-reductions and the algorithm will
learn to see larger regions in the data. By using a smaller k the regions get more sensitive, but the
algorithm will also learn more noise and overfit.

2.1.4 Decision trees and random forests

A decision tree is an algorithm that builds up a tree of boolean decision rules. A simple example is shown
in Figure 2.52. In every node of the tree a boolean decision is made, and the algorithm will then branch
until a leaf is reached and a final classification can be made. Decision trees can be used both as classifiers
and regressors (as in the figure) to predict some metric.

A decision tree algorithm will build a decision tree from a data matrix X and labels y. It will partition
the data, and optimize the boundaries to make the tree as shallow as possible, and make sure that the
decisions are made from the most distinct features. A common method for constructing decision trees
is the ID3 algorithm (Iterative Dichotomizer 3). How to train a Random Forest classifier will not be
covered in this thesis.

Because of the simplicity of the decision trees, they easily overfit to noise and should be used with care.
Random Forests is a powerful concept to boost the performance by using an array of decision trees. In
the random forest algorithm, the training data is split into random subsets, to make every decision tree
in the forest learn differently. In this way, much like raising k in the kNN algorithm, noise is canceled
out by learning the same overall structures in many different trees.

2.1.5 Ensemble learning

To get better and more stable results ensemble methods can be used, to aggregate and vote the classifi-
cation of several independent algorithms. Random Forests is an ensemble learning algorithm, combining
many decision trees.

2commons.wikimedia.org/wiki/File:CART_tree_titanic_survivors.png. Courtesy of Stephen Milborrow. This image
is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

13

http://commons.wikimedia.org/wiki/File:CART_tree_titanic_survivors.png

2. Background

Figure 2.5: A decision tree showing Titanic survivors. The decimal notation shows the probability of survival.
The percentage shows the number of cases from the whole dataset. “sibsp” is the number of spouses or siblings
aboard for the passenger.

Voting with n algorithms can be applied using

ŷ =
∑n
i=1 wiyi∑n
i=1 wi

, (2.13)

where ŷ is the final prediction, yi and wi are the prediction and weight of voter i. With uniform weights
wi = 1, all voters are equally important. This is for a regression case, but can be transformed to a
classifier using

ŷ = arg max
k

∑n
i=1 wiI(yi = k)∑n

i=1 wi
, (2.14)

taking the prediction to be the class k with the highest support. I(x) is the indicator function, which
return 1 if x is true, else 0.

2.2 Dimensionality reduction

Dimensionally reduction can be a powerful way to reduce a problem from a high dimensional domain
to a more simplistic feature set. Given a feature matrix Xn×d, find the k < d most prominent axes
to project the data onto. This will reduce the size of the data, both noise and information will be lost.
Some standard tools for dimensionality reduction include Principal Component Analysis (PCA) (Pearson,
1901) and Fischer Linear Discriminant Analysis (LDA).

For large datasets dimensionality reduction techniques are computationally expensive. As a rescue, it
is possible to use approximative and randomized algorithms such as Randomized PCA, and Random
Projections, which we present briefly below. We refer to a book in machine learning or statistics for a
more comprehensive overview. Dimensionality reduction is not of vital importance for the results of this
thesis.

2.2.1 Principal component analysis

For a more comprehensive version of PCA we refer the reader to for example Shlens (2014) or Barber
(2012). We assume that the feature matrix X has been centered to have zero mean per column. PCA
applies orthogonal transformations to X to find its principal components. The first principal component
is computed such that the data has largest possible variance in that dimension. The next coming principal

14

2. Background

components are sequentially computed to be orthogonal to the previous dimensions and have decreasing
variance. This can be done be computing the eigenvalues and eigenvectors of the covariance matrix

S = 1
n− 1XX

T . (2.15)

The principal components correspond to the orthonormal eigenvectors sorted by the largest eigenvalues.
With S symmetric, it is possible to diagonalize it and write it on the form

XXT = WDWT (2.16)

with W being the matrix formed by columns of orthonormal eigenvectors and D being a diagonal matrix
with the eigenvalues on the diagonal. It is also possible to use Singular Value Decomposition (SVD) to
calculate the principal components. This is often preferred for numerical stability. Let

Xn×d = Un×nΣn×dV Td×d. (2.17)

U and V are unitary, meaning UUT = UTU = I, with I being the identity matrix. Σ is a rectangular
diagonal matrix with singular values σii ∈ R+

0 on the diagonal. S can then be written as

S = 1
n− 1XX

T = 1
n− 1(UΣV T)(UΣV T)T = 1

n− 1(UΣV T)(V ΣUT) = 1
n− 1UΣ2UT (2.18)

Computing the dimensionality reduction for a large dataset is intractable; for example for PCA the
covariance matrix computation is O(d2n), and eigenvalue decomposition is O(d3), meaning that a total
complexity of O(d2n+ d3).

To make the algorithms faster, randomized approximate versions can be used. Randomized PCA uses
Randomized SVD, and several versions are explained by for example Martinsson et al. (2011). This will
not be covered further in this thesis.

2.2.2 Random projections

The random projections approach is for the case when d > n. Using a random projection matrix R ∈
R
k×d, a new feature matrix X ′ ∈ Rn×k can be constructed by computing

X ′n×k = 1√
k
Xn×dRd×k. (2.19)

The theory behind random projections builds on the Johnson-Lindenstrauss lemma (Johnson and Lin-
denstrauss, 1984). The lemma states that there is a projection matrix R such that a high dimensional
space can be projected onto a lower dimensional space while almost keeping all pairwise distances between
any two observations. Using the lemma it is possible to calculate a minimum dimension k to guarantee
the overall distortion error.

In a Gaussian random projection the elements of R are drawn from N(0, 1). Achlioptas (2003) shows that
it is possible to use a sparse random projection, to speed up the calculations. Li et al. (2006) generalize
this and further show that it is possible to achieve an even higher speedup selecting the elements of R as

√
s ·

 −1 1/2s
0 with probability 1− 1/s

+1 1/2s
(2.20)

Achlioptas (2003) uses s = 1 or s = 3, but Li et al. (2006) show that s can be taken much larger, and
recommend using s =

√
d.

15

2. Background

2.3 Performance metrics

There are some common performance metrics to evaluate classifiers. For a binary classification there are
four cases according to Table 2.1.

Table 2.1: Test case outcomes and definitions. The number of positive and negatives are denoted P = TP +FP ,
and N = FN + TN respectively.

Condition Positive Condition Negative
Test Outcome Positive True Positive (TP) False Positive (FP)
Test Outcome Negative False Negative (FN) True Negative (TN)

Accuracy, precision, and recall are common metrics for performance evaluation.

accuracy = TP + TN

P +N
precision = TP

TP + FP
recall = TP

TP + FN
(2.21)

Accuracy is the share of samples correctly identified. Precision is the share of samples correctly classified
as positive. Recall is the share of positive samples classified as positive. Precision and recall and often
plotted in so called Precision Recall or Receiver Operating Characteristic (ROC) curves (Davis and
Goadrich, 2006). For most real world examples, there are errors and it is hard to achieve a perfect
classification. These metrics are used in different environments, and there is always a trade-off. For
example, in a hospital, the sensitivity for detecting patients with cancer should be high. It can be
considered acceptable to get a large number of false positives, which can be examined more carefully.
However, for a doctor to tell a patient that s/he has cancer, the precision should be high.

A probabilistic binary classifier will give a probability estimate p ∈ [0, 1] for each predicted sample. Using
a threshold θ, it is possible to classify the observations. All predictions with p > θ, will be set as class
1, and all other will be class 0. By varying θ, we can achieve an expected performance for precision and
recall (Bengio et al., 2005).

Furthermore, to combine both of these measures, the Fβ-score is defined as below, often with β = 1, the
F1-score, or just simply F-score.

Fβ = (1 + β2) precision · recall
(β2 · precision) + recall F1 = 2 precision · recall

precision + recall (2.22)

For probabilistic classification a common performance measure is average logistic loss, cross-entropy loss,
or often logloss defined as

logloss = − 1
n

n∑
i=1

logP (yi | ŷi) = − 1
n

n∑
i=1

(
yi log ŷi + (yi − 1) log (1− ŷi)

)
. (2.23)

yi ∈ {0, 1} are binary labels, and ŷi = P (yi = 1) is the predicted probability ŷi that yi = 1.

2.4 Cross-validation

Cross-validation is way to better ensure the performance of a classifier (or an estimator), by performing
several data fits and see that a model performs well on unseen data. The available dataset is first shuffled,
and then split into two or three parts, for training, testing, and sometimes also validation. The model is
for example trained on 80% of the data, and tested on the remaining 20%.

KFold cross-validation is common for evaluating a classifier, and ensure that the model does not overfit.
KFold means that the data is split into subgroups Xj for j = 1, . . . , k. Over k runs, the classifier is
trained on X\Xj and tested on Xj . Commonly k = 5 or k = 10 are used.

16

2. Background

Stratified KFold ensures that the class frequency of y is preserved in every fold yj . This breaks the
randomness to some extent. Stratification can be good for smaller datasets, where truly random selection
tend to make the class proportions skew.

2.5 Unequal datasets

In most real world problems the number of observations that can be used to build a machine learning
model is not equal between the classes. To continue with the cancer prediction example, there might
be lots of examples of patients not having cancer (yi = 0), but only a few patients with positive label
(yi = 1). If 10% of the patients have cancer, it is possible to use a naive algorithm that always predicts
no cancer, and get 90% accuracy. The recall and F-score would however be zero as described in equation
(2.22).

Depending on algorithm, it may be important to use an equal amount of training labels in order not
to skew the results (Ganganwar, 2012). One way to handle this is to subsample or undersample the
dataset, to contain an equal amount of each class. This can be done both at random, or with intelli-
gent algorithms trying to remove redundant samples in the majority class. A contrary approach is to
oversample the minority class(es), simply by duplicating minority observations. Oversampling can also
be done in variations, for example by mutating some of the sample points to create artificial samples.
The problem with undersampling is that important data is lost, while on the contrary algorithms tend
to overfit when oversampling. Additionally, there are hybrid methods trying to mitigate this by mixing
under- and oversampling.

Yet another approach is to introduce a more advanced cost function, called cost sensitive learning. For
example, Akbani et al. (2004) explain how to weight the classifier, and adjust the weights inversely
proportional to the class frequencies. This will make the classifier penalize harder if samples from small
classes are incorrectly classified.

17

2. Background

18

3
Method

In this chapter, we present the general workflow of the thesis. First, the information retrieval process
is described, with a presentation of the data used. Then, we describe how this data was analyzed and
pre-processed. Third, we build the feature matrix with corresponding labels needed to run the machine
learning algorithms. At last, the data needed for predicting exploit time frame is analyzed and discussed.

3.1 Information Retrieval

A large part of this thesis consisted of mining data to build the feature matrix for the ML algorithms.
Vulnerability databases were covered in Section 1.4. In this section we first present the open Web data
that was mined, and secondly the data from Recorded Future.

3.1.1 Open vulnerability data

To extract the data from the NVD, the GitHub project cve-search1 was used. cve-search is a tool to
import CVE, CPE, and CWE data into a MongoDB to facilitate search and processing of CVEs. The
main objective of the software is to avoid doing direct and public lookups into the public CVE databases.
The project was forked and modified to extract more information from the NVD files.

As mentioned in Section 1.4, the relation between the EDB and the NVD is asymmetrical; the NVD is
missing many links to exploits in the EDB. By running a Web scraper script, 16,400 connections between
the EDB and CVE-numbers could be extracted from the EDB.

The CAPEC to CVE mappings was scraped of a database using cve-portal2, a tool using the cve-search
project. In total, 421,000 CAPEC mappings were extracted, with 112 unique CAPEC-numbers. CAPEC
definitions were extracted from an XML file found at capec.mitre.org.

The CERT database has many more fields than the NVD, and for some of the vulnerabilities provides more
information about fixes and patches, authors, etc. For some vulnerabilities it also includes exploitability
and other CVSS assessments not found in the NVD. The extra data is however very incomplete, actually
missing for many CVEs. This database also includes date fields (creation, public, first published) that
will be examined further when predicting the exploit time frame.

3.1.2 Recorded Future’s data

The data presented in Section 3.1.1 was combined with the information found with Recorded Future’s
Web Intelligence Engine. The engine actively analyses and processes 650,000 open Web sources for

1github.com/wimremes/cve-search. Retrieved: Jan 2015
2github.com/CIRCL/cve-portal. Retrieved: April 2015

19

http://capec.mitre.org
https://github.com/wimremes/cve-search
https://github.com/CIRCL/cve-portal

3. Method

Figure 3.1: Recorded Future Cyber Exploits. Number of cyber exploit events per year. The data was
retrieved on Mars 23rd, 2015.

information about different types of events. Every day 20M new events are harvested from data sources
such as Twitter, Facebook, blogs, news articles, and RSS feeds. This information is made available to
customers through an API, and can also be queried and graphically visualized in a Web application. In
this work, we use the data of type CyberExploit. Every CyberExploit links to a CyberVulnerability entity,
which is usually a CVE-number, or a vendor number.

The data from Recorded Future is limited since the harvester has mainly been looking at data published
in last few years. The distribution in Figure 3.1 shows the increase in activity. There are 7,500 distinct
CyberExploit event clusters from open media. These are linked to 33,000 event instances. Recorded
Future’s engine clusters instances of the same event into clusters with the main event. For example, a
tweet with retweets will form multiple event instances, but belong to the same event cluster. These 7,500
main events connect to 700 different vulnerabilities. There is a clear power law distribution, with the most
common vulnerabilities having a huge share of the total amount of instances. For example, out of the
33,000 instances 4,700 are for ShellShock (CVE-2014-6271) and 4,200 for Sandworm (CVE-2014-4114).
These vulnerabilities are very critical with a huge attack surface, and hence have received large media
coverage.

An example of a CyberExploit instance found by Recorded Future can be seen in the JSON blob in
Listing 3.1. This is a simplified version; the original data contains much more information. This data
comes from a Microsoft blog and contains information about 2 CVEs being exploited in the wild.

Listing 3.1: A simplified JSON Blob example for a detected CyberExploit instance. This shows the detection of
a sentence (fragment) containing references to 2 CVE-numbers that are said to have exploits in the wild.

1 {
2 "type": " CyberExploit ",
3 "start": "2014-10-14T17:05:47.000Z",
4 " fragment ": " Exploitation of CVE -2014-4148 and CVE -2014-4113 detected in the

wild .",
5 " document ": {
6 "title": " Accessing risk for the october 2014 security updates ",
7 "url": "http:// blogs. technet .com/b/srd/ archive /2014/10/14/accessing -risk -

for -the -october -2014-security - updates .aspx",
8 " language ": "eng",
9 " published ": "2014-10-14T17:05:47.000Z"

10 }
11 }

20

3. Method

3.2 Programming tools

This section is technical, and is not needed to understand the rest of the thesis. For the machine learning
part, the Python project scikit-learn (Pedregosa et al., 2011) was used. scikit-learn is a package of simple
and efficient tools for data mining, data analysis, and machine learning. scikit-learn builds upon popular
Python packages such as numpy, scipy, and matplotlib3. A good introduction to machine learning with
Python can be found in (Richert, 2013).

To be able to handle the information in a fast and flexible way, a MySQL4 database was set up. Python
and Scala scripts were used to fetch and process vulnerability data from the various sources. Structuring
the data in a relational database also provided a good way to query, pre-process, and aggregate data with
simple SQL commands. The data sources could be combined into an aggregated joint table used when
building the feature matrix (see Section 3.4). By heavily indexing the tables, data could be queried and
grouped much faster.

3.3 Assigning the binary labels

A non trivial part was constructing the label vector y with truth values. There is no parameter to be
found in the information from the NVD about whether a vulnerability has been exploited or not. What
is to be found are the 400,000 links of which some links to exploit information.

A vulnerability was considered to have an exploit (yi = 1) if it had a link to some known exploit from
the CVE-numbers scraped from the EDB. In order not to build the answer y into the feature matrix
X, links containing information about exploits were not included. There are three such databases;
exploit-db.com, milw0rm.com, and rapid7.com/db/modules (aka metasploit).

As mentioned in several works of Allodi and Massacci (2012, 2013), it is sometimes hard to say whether
a vulnerability has been exploited. In one point of view, every vulnerability can be said to be exploiting
something. A more sophisticated concept is using different levels of vulnerability exploitation, ranging
from simple proof-of-concept code, to a scripted version, to a fully automated version included in some
exploit kit. Information like this is available in the OSVDB. According to the work of Allodi and Massacci
(2012), the amount of vulnerabilities found in the wild is rather small compared to the total number of
vulnerabilities. The EDB also includes many exploits without corresponding CVE-numbers. The authors
compile a list of Symantec Attack Signatures into a database called SYM. Moreover, they collect further
evidence of exploits used in exploit kits into a database called EKITS. Allodi and Massacci (2013) then
write:

1. The greatest majority of vulnerabilities in the NVD are not included nor in EDB nor in SYM.

2. EDB covers SYM for about 25% of its surface, meaning that 75% of vulnerabilities exploited by
attackers are never reported in EDB by security researchers. Moreover, 95% of exploits in EDB are
not reported as exploited in the wild in SYM.

3. Our EKITS dataset overlaps with SYM about 80% of the time.

A date distribution of vulnerabilities and exploits can be seen in Figure 3.2. This shows that the number
of exploits added to the EDB is decreasing. In the same time, the amount of total vulnerabilities added
to the NVD is increasing. The blue curve shows the total number of exploits registered in the EDB. The
peak for EDB in 2010 can possibly be explained by the fact that the EDB was launched in November
20095, after the fall of its predecessor milw0rm.com.

Note that an exploit publish date from the EDB often does not represent the true exploit date, but the

3scipy.org/getting-started.html. Retrieved: May 2015
4mysql.com. Retrieved: May 2015
5secpedia.net/wiki/Exploit-DB. Retrieved: May 2015

21

http:://www.exploit-db.com
http:://www.milw0rm.com
http://www.rapid7.com/db/modules
http:://www.milw0rm.com
http://www.scipy.org/getting-started.html
https://www.mysql.com
http://secpedia.net/wiki/Exploit-DB

3. Method

Figure 3.2: Number of vulnerabilities or exploits per year. The red curve shows the total number of vulnerabilities
registered in the NVD. The green curve shows the subset of those which have exploit dates from the EDB. The
blue curve shows the number of exploits registered in the EDB.

day when an exploit was published to the EDB. However, for most vulnerabilities exploits are reported
to the EDB quickly. Likewise, a publish date in the NVD CVE database does not always represent the
actual disclosure date.

Looking at the decrease in the number of exploits in the EDB, we ask two questions. 1) Is the number
of exploits really decreasing? 2) Or are fewer exploits actually reported to the EDB? No matter which is
true, there does not seem to be any better open vulnerability sources of whether exploits exist.

The labels extracting from the EDB do not add up in proportions reported the study by Bozorgi et al.
(2010), where the dataset consisting of 13,700 CVEs had 70% positive examples.

The result of this thesis would have benefited from gold standard data. The definition for exploited in
this thesis for the following pages will be if there exists some exploit in the EDB. The exploit date will
be taken as the exploit publish date in the EDB.

3.4 Building the feature space

Feature engineering is often considered hard, and a lot of time can be spent just on selecting a proper
set of features. The data downloaded needs to be converted into a feature matrix, to be used with the
ML algorithms. In this matrix, each row is a vulnerability and each column is a feature dimension. A
common theorem in the field of machine learning is the No Free Lunch theorem (Wolpert and Macready,
1997), which says that there is no universal algorithm or method that will always work. Thus, to get the
proper behavior and results, a lot of different approaches might have to be tried. The feature space is
presented in Table 3.1. In the following subsections those features will be explained.

Table 3.1: Feature space. Categorical features are denoted Cat, and converted into one binary dimension per
feature. R denotes real valued dimensions, and in this case all scale in the range 0-10.

Feature group Type No. of features Source
CVSS Score R 1 NVD
CVSS Parameters Cat 21 NVD
CWE Cat 29 NVD
CAPEC Cat 112 cve-portal
Length of Summary R 1 NVD
N-grams Cat 0-20000 NVD
Vendors Cat 0-20000 NVD
References Cat 0-1649 NVD
No. of RF CyberExploits R 1 RF

22

3. Method

3.4.1 CVE, CWE, CAPEC, and base features

From Table 1.1 with CVE parameters, categorical features can be constructed. In addition boolean
parameters were used for all of the CWE categories. In total 29 distinct CWE-numbers out of 1,000 pos-
sible values were found to actually be in use. CAPEC-numbers were also included as boolean parameters,
resulting in 112 features.

As suggested by Bozorgi et al. (2010), the length of some fields can be a parameter. The natural logarithm
of the length of the NVD summary was used as a base parameter. The natural logarithm of the number
of CyberExploit events found by Recorded Future was also used as a feature.

3.4.2 Common words and n-grams

Apart from the structured data, there is unstructured information in the summaries. Using the CountVec-
torizer module from scikit-learn, common words and n-grams can be extracted. An n-gram is a tuple
of words that occur together in some document. Each CVE summary make up a document, and all the
documents make up a corpus. Some examples of common n-grams are presented in Table 3.2. Each
CVE summary can be vectorized, and converted into a set of occurrence count features, based on which
n-grams that summary contains. Note that this is a bag-of-words model on a document level. This is one
of the simplest ways to utilize the information found in the documents. There exists far more advanced
methods using Natural Language Processing (NLP) algorithms, entity extraction and resolution, etc.

Table 3.2: Common (3,6)-grams found in 28,509 CVEs
between 2010-01-01 and 2014-12-31.

n-gram Count
allows remote attackers 14120
cause denial service 6893
attackers execute arbitrary 5539
execute arbitrary code 4971
remote attackers execute 4763
remote attackers execute arbitrary 4748
attackers cause denial 3983
attackers cause denial service 3982
allows remote attackers execute 3969
allows remote attackers execute arbitrary 3957
attackers execute arbitrary code 3790
remote attackers cause 3646

Table 3.3: Common vendor products from the NVD,
using the full dataset.

Vendor Product Count
linux linux kernel 1795
apple mac os x 1786
microsoft windows xp 1312
mozilla firefox 1162
google chrome 1057
microsoft windows vista 977
microsoft windows 964
apple mac os x server 783
microsoft windows 7 757
mozilla seamonkey 695
microsoft windows server 2008 694
mozilla thunderbird 662

3.4.3 Vendor product information

In addition to the common words, there is also CPE (Common Platform Enumeration) information
available about linked vendor products for each CVE, with version numbers. It is easy to come to the
conclusion that some products are more likely to be exploited than others. By adding vendor features, it
will be possible to see if some vendors are more likely to have exploited vulnerabilities. In the NVD there
are 1.9M vendor products, which means that there are roughly 28 products per vulnerability. However,
for some products, specific versions are listed very carefully. For example, CVE-2003-00016 lists 20
different Linux Kernels with versions between 2.4.1-2.4.20, 15 versions of Windows 2000, and 5 versions
of NetBSD. To make more sense of this data, the 1.9M entries were queried for distinct combinations of
vendor products per CVE, ignoring version numbers. This led to the result in Table 3.3. Note that the
product names and versions are inconsistent (especially for Windows) and depend on who reported the
CVE. No effort was put into fixing this.

6cvedetails.com/cve/CVE-2003-0001. Retrieved: May 2015

23

http://www.cvedetails.com/cve/CVE-2003-0001

3. Method

In total, the 1.9M rows were reduced to 30,000 different combinations of CVE-number, vendor, and
product. About 20,000 of those were unique vendor products that only exist for a single CVE. Some
1,000 of those has vendor products with 10 or more CVEs.

When building the feature matrix, boolean features were formed for a large number of common ven-
dor products. For CVE-2003-0001, that led to three different features being activated, namely "mi-
crosoft:windows_2000", "netbsd:netbsd", and "linux:linux_kernel".

3.4.4 External references

The 400,000 external links, were also used as features using extracted domain names. In Table 3.4 the
most common references are shown. To filter out noise, only domains occurring 5 or more times were
used as features.

Table 3.4: Common references from the NVD. These are for CVEs for the years of 2005-2014.

Domain Count Domain Count
securityfocus.com 32913 debian.org 4334
secunia.com 28734 lists.opensuse.org 4200
xforce.iss.net 25578 openwall.com 3781
vupen.com 15957 mandriva.com 3779
osvdb.org 14317 kb.cert.org 3617
securitytracker.com 11679 us-cert.gov 3375
securityreason.com 6149 redhat.com 3299
milw0rm.com 6056 ubuntu.com 3114

3.5 Predict exploit time-frame

A security manager is not only interested in a binary classification on whether an exploit is likely to
occur at some point in the future. Prioritizing which software to patch first is vital, meaning the security
manager is also likely to wonder about how soon an exploit is likely to happen if at all.

Figure 3.3: Scatter plot of vulnerability publish date vs. exploit date. This plot confirms the hypothesis that
there is something misleading about the exploit date. Points below 0 on the y-axis are to be considered zerodays.

A first look at the date distribution of vulnerabilities and exploits was seen in Figure 3.2 and discussed
in Section 3.3. As mentioned the dates in the data do not necessarily represent the true dates. In Figure
3.3 exploit publish dates from the EDB are plotted against CVE publish dates. There is a large number
of zeroday vulnerabilities (at least they have exploit dates before the CVE publish date). Since these are
the only dates available, they will be used as truth values for the machine learning algorithms to follow,

24

3. Method

even though their correctness cannot be guaranteed. In several studies (Bozorgi et al., 2010, Frei et al.,
2006, 2009) the disclosure dates and exploit dates were known to much better extent.

There are certain CVE publish dates that are very frequent. Those form vertical lines of dots. A more
detailed analysis shows that there are for example 1098 CVEs published on 2014-12-31. These might
be dates when major vendors are given ranges of CVE-numbers to be filled in later. Apart from the
NVD publish dates there are also dates to be found the in CERT database. In Figure 3.4 the correlation
between NVD publish dates and CVE public dates are shown. This shows that there is a big difference
for some dates. Note that all CVEs do not have public date in the CERT database. Therefore, CERT
public dates will also be used as a separate case.

Figure 3.4: NVD published date vs. CERT public date.

Figure 3.5: NVD publish date vs. exploit date.

Looking at the data in Figure 3.3, it is possible to get more evidence for the hypothesis that there is
something misleading with the exploit dates from 2010. There is a line of scattered points with exploit
dates in 2010, but with CVE publish dates before. The exploit dates are likely to be invalid, and those
CVEs will be discarded. In Figures 3.5 and 3.6, vulnerabilities with exploit dates in 2010, and publish
dates more than a 100 days prior were filtered out to remove points on this line. These plots scatter NVD
publish dates vs. exploit dates, and CERT public dates vs. exploit dates respectively. We see that most
vulnerabilities have exploit dates very close to the public or publish dates, and there are more zerodays.
The time to exploit closely resembles the findings of Frei et al. (2006, 2009), where the authors show that
90% of the exploits are available within a week after disclosure.

25

3. Method

Figure 3.6: CERT public date vs. exploit date.

26

4
Results

For the binary classification the challenge is to find some algorithm and feature space that give an optimal
classification performance. A number of different methods described in Chapter 2 were tried for different
feature spaces. The number of possible combinations to construct feature spaces is enormous. Combine
that with all possible combinations of algorithms with different parameters and the number of test cases
is even more infeasible. The approach to solve this problem was first to fix a feature matrix to run the
different algorithms on and benchmark the performance. Each algorithm has a set of hyper parameters
that need to be tuned for the dataset; for example the penalty factor, C, for SVM, or the number of
neighbors, k, for kNN. The number of vendor products used will be denoted nv, the number of words or
n-grams nw, and the number of references nr.

Secondly, some methods performing well on average were selected to be tried out on different kinds of
feature spaces, to see what kind of features that give the best classification. After that, a feature set was
fixed for final benchmark runs where a final classification result could be determined.

The results for the date prediction are presented in Section 4.6. Here, we use the same dataset as in the
final binary classification, but with multi-class labels to predict whether an exploit is likely to happen
within a day, a week, a month, or a year.

All calculations were carried out on a 2014 MacBook Pro, using 16GB RAM and a dual core 2.6 GHz Intel
Core i5 with 4 logical cores. In Table 4.1 all the algorithms used are listed, including their implementation
in scikit-learn.

Table 4.1: Algorithm Implementation. The following algorithms are used with their default settings, if nothing
else is stated.

Algorithm Implementation
Naive Bayes sklearn.naive_bayes.MultinomialNB()
SVC, Liblinear sklearn.svm.LinearSVC()
SVC, linear LibSVM sklearn.svm.SVC(kernel=’linear’)
SVC, RBF LibSVM sklearn.svm.SVC(kernel=’rbf’)
Random Forest sklearn.ensemble.RandomForestClassifier()
kNN sklearn.neighbors.KNeighborsClassifier()
Dummy sklearn.dummy.DummyClassifier()
Randomized PCA sklearn.decomposition.RandomizedPCA()
Random Projections sklearn.random_projection.SparseRandomProjection()

4.1 Algorithm benchmark

As a first benchmark, the different algorithms described in Chapter 2 were tuned on a dataset consisting
of data from 2010-01-01 - 2014-12-31 containing 7,528 samples, with an equal amount of exploited and
unexploited CVEs. A basic feature matrix was constructed with the base CVSS parameters, CWE-
numbers, nv = 1000, nw = 1000 ((1,1)-grams), and nr = 1000. The results are presented in Figure 4.1

27

4. Results

with the best instances summarized in Table 4.2. Each data point in the figures is the average of a 5-Fold
cross-validation.

In Figure 4.1a there are two linear SVM kernels. LinearSVC in scikit-learn uses Liblinear and runs in
O(nd), while SVC with linear kernel uses LibSVM and takes at least O(n2d).

(a) SVC with linear kernel (b) SVC with RBF kernel

(c) kNN (d) Random Forest

Figure 4.1: Benchmark: Algorithms. Choosing the correct hyper parameters is important; the performance of
different algorithm vary greatly when their parameters are tuned. SVC with linear (4.1a) or RBF kernels (4.1b),
and Random Forests (4.1d) yield a similar performance, although LibSVM is much faster. kNN (4.1c) is not
competitive on this dataset, since the algorithm will overfit if a small k is chosen.

Table 4.2: Summary of Benchmark: Algorithms. Summary of the best scores in Figure 4.1.

Algorithm Parameters Accuracy
Liblinear C = 0.023 0.8231
LibSVM linear C = 0.1 0.8247
LibSVM RBF γ = 0.015, C = 4 0.8368
kNN k = 8 0.7894
Random Forest nt = 99 0.8261

A set of algorithms was then constructed using these parameters and cross-validated on the entire dataset
again. This comparison, seen in Table 4.3 also included the Naive Bayes Multinomial algorithm, which
does not have any tunable parameters. The LibSVM and Liblinear linear kernel algorithms were taken

28

4. Results

with their best values. Random forest was taken with nt = 80, since average results do not improve
much after that. Trying nt = 1000 would be computationally expensive, and better methods exist. kNN
does not improve at all with more neighbors, and overfits with too few. For the oncoming tests, some
of the algorithms will be discarded. In general, Liblinear seems to perform best based on speed and
classification accuracy.

Table 4.3: Benchmark: Algorithms. Comparison of the different algorithms with optimized hyper parameters.
The results are the mean of 5-Fold cross-validation. Standard deviations are all below 0.01 and are omitted.

Algorithm Parameters Accuracy Precision Recall F1 Time
Naive Bayes 0.8096 0.8082 0.8118 0.8099 0.15s
Liblinear C = 0.02 0.8466 0.8486 0.8440 0.8462 0.45s
LibSVM linear C = 0.1 0.8466 0.8461 0.8474 0.8467 16.76s
LibSVM RBF C = 2, γ = 0.015 0.8547 0.8590 0.8488 0.8539 22.77s
kNN, distance k = 80 0.7667 0.7267 0.8546 0.7855 2.75s
Random Forest nt = 80 0.8366 0.8464 0.8228 0.8344 31.02s

4.2 Selecting a good feature space

By fixing a subset of algorithms it is possible to further investigate the importance of different features.
To do this some of the features were removed to better see how different features contribute and scale.
For this the algorithms SVM Liblinear and Naive Bayes were used. Liblinear performed well in the initial
benchmark, both in terms of accuracy and speed. Naive Bayes is even faster, and will be used as a
baseline in some of the following benchmarks. For all the plots and tables to follow in this section, each
data point is the result of a 5-Fold cross-validation for that dataset and algorithm instance.

In this section we will also list a number of tables (Table 4.4, Table 4.5, Table 4.7, Table 4.8, and Table
4.9) with naive probabilities for exploit likelihood for different features. Unexploited and Exploited
denote the count of vulnerabilities, strictly |{yi ∈ y | yi = c}| for the two labels, c ∈ {0, 1}. The tables
were constructed from 55,914 vulnerabilities from 2005-01-01 to 2014-12-31. Out of those 40,833 have
no known exploits, while 15,081 do. The column Prob. in the tables denotes the naive probability for
that feature to lead to an exploit. These numbers should serve as general markers to features with high
exploit probability, but not be used as an absolute truth. In the Naive Bayes algorithm, these numbers are
combined to infer exploit likelihood. The tables only shown features that are good indicators for exploits,
but there exists many other features that will be indicators for when no exploit is to be predicted. For
the other benchmark tables in this section, precision, recall, and F-score will be taken for the positive
class.

4.2.1 CWE- and CAPEC-numbers

CWE-numbers can be used as features, with naive probabilities shown in Table 4.4. This shows that there
are some CWE-numbers that are very likely to be exploited. For example CWE id 89, SQL injection, has
3855 instances, and 2819 of those are associated with exploited CVEs. This makes the total probability
of exploit:

P =
2819

15081
2819

15081 + 1036
40833

≈ 0.8805 (4.1)

Like above a probability table is shown for the different CAPEC-numbers in Table 4.5. There are just
a few CAPEC-numbers that have high probability. A benchmark was setup and the results are shown
in Table 4.6. The results show that CAPEC information is marginally useful even if the amount of
information is extremely poor. The overlap with the CWE-numbers is big since both of these represent
the same category of information. Each CAPEC-number has a list of corresponding CWE-numbers.

29

4. Results

Table 4.4: Probabilities for different CWE-numbers being associated with an exploited vulnerability.
The table is limited to references with 10 or more observations in support.

CWE Prob. Cnt Unexp. Expl. Description
89 0.8805 3855 1036 2819 Improper Sanitization of Special Elements used in an SQL

Command (’SQL Injection’)
22 0.8245 1622 593 1029 Improper Limitation of a Pathname to a Restricted Direc-

tory (’Path Traversal’)
94 0.7149 1955 1015 940 Failure to Control Generation of Code (’Code Injection’)
77 0.6592 12 7 5 Improper Sanitization of Special Elements used in a Com-

mand (’Command Injection’)
78 0.5527 150 103 47 Improper Sanitization of Special Elements used in an OS

Command (’OS Command Injection’)
134 0.5456 153 106 47 Uncontrolled Format String
79 0.5115 5340 3851 1489 Failure to Preserve Web Page Structure (’Cross-site Script-

ing’)
287 0.4860 904 670 234 Improper Authentication
352 0.4514 828 635 193 Cross-Site Request Forgery (CSRF)
119 0.4469 5139 3958 1181 Failure to Constrain Operations within the Bounds of a

Memory Buffer
19 0.3845 16 13 3 Data Handling
20 0.3777 3064 2503 561 Improper Input Validation
264 0.3325 3623 3060 563 Permissions, Privileges, and Access Controls
189 0.3062 1163 1000 163 Numeric Errors
255 0.2870 479 417 62 Credentials Management
399 0.2776 2205 1931 274 Resource Management Errors
16 0.2487 257 229 28 Configuration
200 0.2261 1704 1538 166 Information Exposure
17 0.2218 21 19 2 Code
362 0.2068 296 270 26 Race Condition
59 0.1667 378 352 26 Improper Link Resolution Before File Access (’Link Follow-

ing’)
310 0.0503 2085 2045 40 Cryptographic Issues
284 0.0000 18 18 0 Access Control (Authorization) Issues

Table 4.5: Probabilities for different CAPEC-numbers being associated with an exploited vulnera-
bility. The table is limited to CAPEC-numbers with 10 or more observations in support.

CAPEC Prob. Cnt Unexp. Expl. Description
470 0.8805 3855 1036 2819 Expanding Control over the Operating System from the

Database
213 0.8245 1622 593 1029 Directory Traversal
23 0.8235 1634 600 1034 File System Function Injection, Content Based
66 0.7211 6921 3540 3381 SQL Injection
7 0.7211 6921 3540 3381 Blind SQL Injection
109 0.7211 6919 3539 3380 Object Relational Mapping Injection
110 0.7211 6919 3539 3380 SQL Injection through SOAP Parameter Tampering
108 0.7181 7071 3643 3428 Command Line Execution through SQL Injection
77 0.7149 1955 1015 940 Manipulating User-Controlled Variables
139 0.5817 4686 3096 1590 Relative Path Traversal

4.2.2 Selecting amount of common n-grams

By adding common words and n-grams as features it is possible to discover patterns that are not captured
by the simple CVSS and CWE parameters from the NVD. A comparison benchmark was setup and the
results are shown in Figure 4.2. As more common n-grams are added as features, the classification gets
better. Note that (1,1)-grams are words. Calculating the most common n-grams is an expensive part
when building the feature matrix. In total, the 20,000 most common n-grams were calculated and used

30

4. Results

Table 4.6: Benchmark: CWE and CAPEC. Using SVM Liblinear linear kernel with C = 0.02, nv = 0,
nw = 0, nr = 0. Precision, Recall, and F-score are for detecting the exploited label.

CAPEC CWE Accuracy Precision Recall F1

No No 0.6272 0.6387 0.5891 0.6127
No Yes 0.6745 0.6874 0.6420 0.6639
Yes No 0.6693 0.6793 0.6433 0.6608
Yes Yes 0.6748 0.6883 0.6409 0.6637

as features, like those seen in Table 3.2. Figure 4.2 also show that the CVSS and CWE parameters are
redundant if there are many n-grams.

(a) N-gram sweep for multiple versions of n-grams,
with base information disabled.

(b) N-gram sweep, with and without the base CVSS
features and CWE-numbers.

Figure 4.2: Benchmark: N-grams (words). Parameter sweep for n-gram dependency.

In Figure 4.2a it is shown that increasing k in the (1, k)-grams, give small differences, but does not yield
better performance. This is due to the fact that for all more complicated n-grams, the words they are
combined from are already represented as standalone features. As an example, the frequency of the
2-gram (remote, attack) is never more frequent than its base words. However, (j, k)-grams with j > 1
get much lower accuracy. Frequent single words are thus important for the classification.

In Figure 4.2b the classification with just the base information performs poorly. By using just a few
common words from the summaries it is possible to boost the accuracy significantly. Also for the case
when there is no base information, the accuracy gets better with just a few common n-grams. However,
using many common words requires a huge document corpus to be efficient. The risk of overfitting the
classifier gets higher as n-grams with less statistical support are used. As a comparison the Naive Bayes
classifier is used. There are clearly some words that occur more frequently in exploited vulnerabilities.
In Table 4.7 some probabilities of the most distinguishable common words are shown.

4.2.3 Selecting amount of vendor products

A benchmark was setup to investigate how the amount of available vendor information matters. In this
case, each vendor product is added as a feature. The vendor products are added in the order of Table
3.3, with most significant first. The naive probabilities are presented in Table 4.8 and are very different
from the words. In general there are just a few vendor products, like the CMS system Joomla, that are
very significant. Results are shown in Figure 4.3a. Adding more vendors gives a better classification, but
the best results are some 10%-points worse than when n-grams are used in Figure 4.2. When no CWE
or base CVSS parameters are used the classification is based solely on vendor products. When a lot of

31

4. Results

Table 4.7: Probabilities for different words being associated with an exploited vulnerability. The
table is limited to words with more 20 observations in support.

Word Prob. Count Unexploited Exploited
aj 0.9878 31 1 30
softbiz 0.9713 27 2 25
classified 0.9619 31 3 28
m3u 0.9499 88 11 77
arcade 0.9442 29 4 25
root_path 0.9438 36 5 31
phpbb_root_path 0.9355 89 14 75
cat_id 0.9321 91 15 76
viewcat 0.9312 36 6 30
cid 0.9296 141 24 117
playlist 0.9257 112 20 92
forumid 0.9257 28 5 23
catid 0.9232 136 25 111
register_globals 0.9202 410 78 332
magic_quotes_gpc 0.9191 369 71 298
auction 0.9133 44 9 35
yourfreeworld 0.9121 29 6 23
estate 0.9108 62 13 49
itemid 0.9103 57 12 45
category_id 0.9096 33 7 26

(a) Benchmark: Vendors Products. (b) Benchmark: External References.

Figure 4.3: Hyper parameter sweep for vendor products and external references. See Sections 4.2.3 and 4.2.4 for
full explanations.

vendor information is used, the other parameters matter less, and the classification gets better. But the
classifiers also risk overfitting and getting discriminative since many smaller vendor products only have
a single vulnerability. Again, Naive Bayes is run against the Liblinear SVC classifier.

4.2.4 Selecting amount of references

A benchmark was also setup to test how common references can be used as features. The references
are added in the order of Table 3.4, with most frequent added first. There are in total 1649 references
used, with 5 or more occurrences in the NVD. The results for the references sweep is shown in Figure
4.3b. Naive probabilities are presented in Table 4.9. As described in Section 3.3, all references linking

32

4. Results

Table 4.8: Probabilities for different vendor products being associated with an exploited vulnera-
bility. The table is limited to vendor products with 20 or more observations in support. Note that these features
are not as descriptive as the words above. The product names have not been cleaned from the CPE descriptions,
and contain many strange names such as joomla%21.

Vendor Product Prob. Count Unexploited Exploited
joomla%21 0.8931 384 94 290
bitweaver 0.8713 21 6 15
php-fusion 0.8680 24 7 17
mambo 0.8590 39 12 27
hosting_controller 0.8575 29 9 20
webspell 0.8442 21 7 14
joomla 0.8380 227 78 149
deluxebb 0.8159 29 11 18
cpanel 0.7933 29 12 17
runcms 0.7895 31 13 18

Table 4.9: Probabilities for different references being associated with an exploited vulnerability. The
table is limited to references with 20 or more observations in support.

References Prob. Count Unexploited Exploited
downloads.securityfocus.com 1.0000 123 0 123
exploitlabs.com 1.0000 22 0 22
packetstorm.linuxsecurity.com 0.9870 87 3 84
shinnai.altervista.org 0.9770 50 3 47
moaxb.blogspot.com 0.9632 32 3 29
advisories.echo.or.id 0.9510 49 6 43
packetstormsecurity.org 0.9370 1298 200 1098
zeroscience.mk 0.9197 68 13 55
browserfun.blogspot.com 0.8855 27 7 20
sitewat.ch 0.8713 21 6 15
bugreport.ir 0.8713 77 22 55
retrogod.altervista.org 0.8687 155 45 110
nukedx.com 0.8599 49 15 34
coresecurity.com 0.8441 180 60 120
security-assessment.com 0.8186 24 9 15
securenetwork.it 0.8148 21 8 13
dsecrg.com 0.8059 38 15 23
digitalmunition.com 0.8059 38 15 23
digitrustgroup.com 0.8024 20 8 12
s-a-p.ca 0.7932 29 12 17

to exploit databases were removed. Some references are clear indicators that an exploit exists, and by
using only references it is possible to get a classification accuracy above 80%. The results for this section
show the same pattern as when adding more vendor products, or words; when more features are added
the classification accuracy quickly gets better over the first hundreds of features and is then gradually
saturated.

4.3 Final binary classification

A final run was done with a larger dataset, using 55,914 CVEs between 2005-01-01 - 2014-12-31. For this
round the feature matrix was fixed to nv = 6000, nw = 10000, nr = 1649. No RF or CAPEC data was
used. CWE and CVSS base parameters were used. The dataset was split into two parts (see Table 4.10);
one SMALL set consisting of 30% of the exploited CVEs and an equal amount of unexploited; and the
rest of the data in the LARGE set.

33

4. Results

Table 4.10: Final Dataset. Two different datasets were used for the final round. SMALL was used to search for
optimal hyper parameters. LARGE was used for the final classification benchmark.

Dataset Rows Unexploited Exploited
SMALL 9048 4524 4524
LARGE 46866 36309 10557
Total 55914 40833 15081

4.3.1 Optimal hyper parameters

The SMALL set was used to learn the optimal hyper parameters for the algorithms on isolated data,
like in Section 4.1. Data that will be used for validation later should not be used when searching for
optimized hyper parameters. The optimal hyper parameters were then tested on the LARGE dataset.
Sweeps for optimal hyper parameters are shown in Figure 4.4.

(a) SVC with linear kernel (b) SVC with RBF kernel (c) Random Forest

Figure 4.4: Benchmark: Algorithms Final. The results here are very similar to the results found in the initial
discovery run in shown in Figure 4.1. Each point is a calculation based on 5-Fold cross-validation.

A summary of the parameter sweep benchmark with the best results can be seen in Table 4.11. The
optimal parameters are slightly changed from the initial data in Section 4.1, but show the overall same
behaviors. Accuracy should not be compared directly since the datasets are from different time spans and
with different feature spaces. The initial benchmark primarily served to explore what hyper parameters
should be used for the feature space exploration.

Table 4.11: Summary of Benchmark: Algorithms Final. Best scores for the different sweeps in Figure 4.4.
This was done for the SMALL dataset.

Algorithm Parameters Accuracy
Liblinear C = 0.0133 0.8154
LibSVM linear C = 0.0237 0.8128
LibSVM RBF γ = 0.02, C = 4 0.8248
Random Forest nt = 95 0.8124

4.3.2 Final classification

To give a final classification the optimal hyper parameters were used to benchmark the LARGE dataset.
Since this dataset has imbalanced classes a cross-validation was set up with 10 runs. In each run, all
exploited CVEs were selected together with an equal amount of randomly selected unexploited CVEs, to
form an undersampled subset. The final result is shown in Table 4.12. In this benchmark, the models
were trained on 80% of the data, and tested on the remaining 20%. Performance metrics are reported for
both the training and test set. It is expected that the results are better for the training data, and some
models like RBF and Random Forest get excellent results on classifying data already seen.

34

4. Results

Table 4.12: Benchmark: Algorithms Final. Comparison of the different algorithms on the LARGE dataset
split into training and testing data.

Algorithm Parameters Dataset Accuracy Precision Recall F1 Time
Naive Bayes train 0.8134 0.8009 0.8349 0.8175 0.02s

test 0.7897 0.7759 0.8118 0.7934
Liblinear C = 0.0133 train 0.8723 0.8654 0.8822 0.8737 0.36s

test 0.8237 0.8177 0.8309 0.8242
LibSVM, linear C = 0.0237 train 0.8528 0.8467 0.8621 0.8543 112.21s

test 0.8222 0.8158 0.8302 0.8229
LibSVM, RBF C = 4, γ = 0.02 train 0.9676 0.9537 0.9830 0.9681 295.74s

test 0.8327 0.8246 0.8431 0.8337
Random Forest nt = 80 train 0.9996 0.9999 0.9993 0.9996 177.57s

test 0.8175 0.8203 0.8109 0.8155

4.3.3 Probabilistic classification

By using a probabilistic approach, it is possible to get class probabilities instead of a binary classification.
The previous benchmarks in this thesis use a binary classification, and use a probability threshold of 50%.
By changing this, it is possible to achieve better precision or recall. For example, by requiring the classifier
to be 80% certain that there is an exploit, precision can increase, but recall will degrade. Precision recall
curves were calculated and can be seen in Figure 4.5a. The optimal hyper parameters were found for
the threshold 50%. This does not guarantee that they are optimal for any other threshold. If a specific
recall or precision is needed for an application, the hyper parameters should be optimized with respect
to that. The precision recall curve in Figure 4.5a for LibSVM is for a specific C value. In Figure 4.5b
the precision recall curves are very similar for other values of C. The means that only small differences
are to be expected.

We also compare the precision recall curves for the SMALL and LARGE datasets in Figure 4.6. We see
that the characteristics are very similar, which means that the optimal hyper parameters found for the
SMALL set also give good results on the LARGE set. In Table 4.13 the results are summarized and
reported with log loss, best F1-score, and the threshold where the maximum F1-score is found. We see
that the log loss is similar for the SVCs, but higher for Naive Bayes. The F1-scores are also similar, but
achieved at different thresholds for the Naive Bayes classifier.

Liblinear and Random Forest were not used for this part; Liblinear is not a probabilistic classifier, and
the scikit-learn implementation RandomForestClassifier was unable to train a probabilistic version for
these datasets.

(a) Algorithm comparison. (b) Comparing different penalties C for LibSVM linear.

Figure 4.5: Precision recall curves for the final round for some of the probabilistic algorithms. In Figure 4.5a
SVCs perform better than the Naive Bayes classifier, with RBF being marginally better than the linear kernel.
In Figure 4.5b curves are shown for different values of C.

35

4. Results

(a) Naive Bayes (b) SVC with linear kernel (c) SVC with RBF kernel

Figure 4.6: Precision recall curves comparing the precision recall performance on the SMALL and LARGE
dataset. The characteristics are very similar for the SVCs.

Table 4.13: Summary of the probabilistic classification. Best threshold is reported as the threshold where
the maximum F1-score is achieved.

Algorithm Parameters Dataset Log loss F1 Best threshold
Naive Bayes LARGE 2.0119 0.7954 0.1239

SMALL 1.9782 0.7888 0.2155
LibSVM, linear C = 0.0237 LARGE 0.4101 0.8291 0.3940

SMALL 0.4370 0.8072 0.3728
LibSVM, RBF C = 4, γ = 0.02 LARGE 0.3836 0.8377 0.4146

SMALL 0.4105 0.8180 0.4431

4.4 Dimensionality reduction

A dataset was constructed with nv = 20000, nw = 10000, nr = 1649, and the base CWE and CVSS
features, making d = 31704. The Random Projections algorithm in scikit-learn then reduced this to
d = 8840 dimensions. For the Randomized PCA the number of components to keep was set to nc = 500.
Since this dataset has imbalanced classes a cross-validation was set up with 10 runs. In each run, all
exploited CVEs were selected together with an equal amount of randomly selected unexploited CVEs, to
form an undersampled subset.

Random Projections and Randomized PCA were then run on this dataset, together with a Liblinear
(C = 0.02) classifier. The results, shown in Table 4.14, are somewhat at the same level as classifiers
without any data reduction, but required much more calculations. Since the results are not better than
using the standard datasets without any reduction, no more effort was put into investigating this.

36

4. Results

Table 4.14: Dimensionality reduction. The time includes dimensionally reduction plus the time for classifi-
cation. The performance metrics are reported as the mean over 10 iterations. All standard deviations are below
0.001.

Algorithm Accuracy Precision Recall F1 Time (s)
None 0.8275 0.8245 0.8357 0.8301 0.00+0.82
Rand. Proj. 0.8221 0.8201 0.8288 0.8244 146.09+10.65
Rand. PCA 0.8187 0.8200 0.8203 0.8201 380.29+1.29

4.5 Benchmark Recorded Future’s data

By using Recorded Future’s CyberExploit events as features for the vulnerabilities, it is possible to further
increase the accuracy. Since Recorded Future’s data, with a distribution in Figure 3.1, primarily spans
over the last few years, the analysis cannot be done for the period 2005-2014. No parameters optimization
was done for this set, since the main goal is to show that the results get slightly better if the RF data is
used as features. An SVM Liblinear classifier was used with C = 0.02.

For this benchmark a feature set was chosen with CVSS and CWE parameters, nv = 6000, nw = 10000,
and nr = 1649. Two different date periods are explored; 2013-2014, and 2014 only. Since these datasets
have imbalanced classes a cross-validation was set up with 10 runs like in Section 4.4. The test results
can be seen in Table 4.15. The results get a little better if only data from 2014 are used. The scoring
metrics become better when the extra CyberExploit events are used. However, this cannot be used in
a real production system. When making an assessment on new vulnerabilities, this information will
not be available. Generally, this also to some extent builds the answer into the feature matrix, since
vulnerabilities with exploits are more interesting to tweet, blog, or write about.

Table 4.15: Benchmark: Recorded Future’s CyberExploits. Precision, Recall, and F-score are for detecting
the exploited label, and reported as the mean ± 1 standard deviation.

CyberExploits Year Accuracy Precision Recall F1

No 2013-2014 0.8146 ± 0.0178 0.8080 ± 0.0287 0.8240 ± 0.0205 0.8154 ± 0.0159
Yes 2013-2014 0.8468 ± 0.0211 0.8423 ± 0.0288 0.8521 ± 0.0187 0.8469 ± 0.0190
No 2014 0.8117 ± 0.0257 0.8125 ± 0.0326 0.8094 ± 0.0406 0.8103 ± 0.0288
Yes 2014 0.8553 ± 0.0179 0.8544 ± 0.0245 0.8559 ± 0.0261 0.8548 ± 0.0185

4.6 Predicting exploit time frame

For the exploit time frame prediction the filtered datasets seen in Figures 3.5 and 3.6 were used; with
respective dates between 2005-01-01 - 2014-12-31. For this round the feature matrix was limited to
nv = 6000, nw = 10000, nr = 1649, similar to the final binary classification benchmark in Section 4.3.2.
CWE and CVSS base parameters were also used. The dataset was queried for vulnerabilities with exploit
publish dates between 0 and 365 days after the CVE publish/public date. Four labels were used configured
as seen in Table 4.16. For these benchmarks three different classifiers were used; Liblinear with C = 0.01;
Naive Bayes; and a dummy classifier making a class weighted (stratified) guess. A classifier can be deemed
useless if it behaves worse than random. Two different setups were used for the benchmarks to follow;
subsampling and weighting.

For the first test, an equal amount of samples were picked from each class at random. The classifiers
were then trained and cross-validated using stratified 5-Fold. The results are shown in Figure 4.7. The
classifiers perform marginally better than the dummy classifier, and gives a poor overall performance.
Without subsampling the whole dataset is used for classification, both with weighted and unweighted
SVMs. The results are shown in Figure 4.8. The CERT data generally performs better for class 0-1,
since it is very biased to that class. The other classes perform poorly. Naive Bayes fails completely for
several of the classes, but will learn to recognize class 0-1 and 31-365 much better.

37

4. Results

Table 4.16: Label observation counts in the different data sources used for the date prediction. Date difference
from publish or public date to exploit date.

Date difference Occurrences NVD Occurrences CERT
0 - 1 583 1031
2 - 7 246 146
8 - 30 291 116
31 - 365 480 139

Figure 4.7: Benchmark: Subsampling. Precision, Recall, and F-score for the four different classes, with 1
standard deviation in the orange bars.

The general finding for this result section is that both the amount of data, and the data quality is
insufficient in order to make any good predictions. In order to use date prediction in a production
system, the predictive powers must be much more reliable. Different values for C were also tried briefly,
but did not give any noteworthy differences. No more effort was put into investigating different techniques
to improve these results.

38

4. Results

Figure 4.8: Benchmark: No subsampling. Precision, Recall, and F-score for the four different classes, with 1
standard deviation in the orange bars. The SVM algorithm is run with a weighted and an unweighted case.

39

4. Results

40

5
Discussion & Conclusion

5.1 Discussion

As a result comparison, Bozorgi et al. (2010) achieved a performance of roughly 90% using Liblinear,
but also used a considerable amount of more features. This result was both for binary classification and
date prediction. In this work the authors used additional OSVDB data, which was not available in this
thesis. The authors achieved a much better performance for time frame prediction, mostly due to the
better data quality and amount of observations.

As discussed in Section 3.3, the quality of the labels is also doubtful. Is it really the case that the number
of vulnerabilities with exploits is decreasing? Or are just fewer exploits reported to the EDB?

The use of open media data harvested by Recorded Future (CyberExploit events) shows potential for
binary classifying older data, but will not be available for making predictions on new vulnerabilities. A
key aspect to keep in mind is the information availability window. More information about vulnerabilities
is often added to the NVD CVE entries as time goes by. To make a prediction about a completely new
vulnerability the game will change, since not all information will be immediately available. The features
that will be instantly available are base CVSS parameters, vendors, and words. It would also be possible
to make a classification based on information about a fictive description, added vendors, and CVSS
parameters.

References are often added later, when there is already information about the vulnerability being exploited
or not. The important business case is to be able to make an early assessment based on what is known
at an early stage, and update the prediction as more data is known.

5.2 Conclusion

The goal of this thesis was to use machine learning to examine correlations in the vulnerability data from
the NVD and the EDB, and see if some vulnerability types are more likely to be exploited. The first part
explains how binary classifiers can be built to predict exploits for vulnerabilities. Using several different
ML algorithms, it is possible to get a prediction accuracy of 83% for the binary classification. This shows
that to use the NVD alone is not ideal for this kind of benchmark. Predictions on data were made using
ML algorithms such as SVMs, kNN, Naive Bayes, and Random Forests. The relative performance of
several of those classifiers is marginal with respect to metrics such as accuracy, precision, and recall. The
best classifier with respect to both performance metrics and execution time is SVM Liblinear.

This work shows that the most important features are common words, references, and vendors. CVSS
parameters, especially CVSS scores, and CWE-numbers are redundant when a large number of common
words are used. The information in the CVSS parameters and CWE-number is often contained within
the vulnerability description. CAPEC-numbers were also tried, and yielded similar performance as the
CWE-numbers.

41

5. Discussion & Conclusion

In the second part, the same data was used to predict an exploit time frame as a multi-label classification
problem. To predict an exploit time frame for vulnerabilities proved hard using only unreliable data from
the NVD and the EDB. The analysis showed that using only public or publish dates of CVEs or EDB
exploits were not enough, and the amount of training data was limited.

5.3 Future work

Several others (Allodi and Massacci, 2013, Frei et al., 2009, Zhang et al., 2011) also concluded that the
NVD is of poor quality for statistical analysis (and machine learning). To be able to improve research
in this area, we recommend the construction of a modern open source vulnerability database, where
security experts can collaborate, report exploits, and update vulnerability information easily. We further
recommend that old data should be cleaned up and dates should be verified.

From a business perspective it could be interesting to build an adaptive classifier, or estimator, for
assessing new vulnerabilities based on what data that can be made available. For example, to design a
web form where users can input data for a vulnerability and see how the prediction changes based on the
current information. This could be used in a production system for evaluating new vulnerabilities. For
this to work, we would also need to see how the classifiers trained in this thesis would perform on new
and information-sparse observations and see how predictions change when new evidence is presented. As
has been mentioned previously, the amount of available information for a vulnerability can be limited
when the CVE is created, and information is often updated later.

Different commercial actors such as Symantec (The WINE database) and the OSVDB have data that
could be used for more extensive machine learning analysis. It is also possible to used more sophisticated
NLP algorithms to extract more distinct features. We are currently using a bag-of-words model, but it
would be possible to use the semantics and word relations to get better knowledge of what is being said
in the summaries.

The author is unaware of any studies on predicting which vulnerabilities and exploits that will be used
in exploit kits in the wild. As shown by Allodi and Massacci (2012), this is only a small subset of all
vulnerabilities, but are those vulnerabilities that are going to be most important to foresee.

42

Bibliography

Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins. J.
Comput. Syst. Sci., 66(4):671–687, June 2003.

Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz. Applying support vector machines to imbalanced
datasets. In Machine Learning: ECML 2004, volume 3201 of Lecture Notes in Computer Science, pages
39–50. Springer Berlin Heidelberg, 2004.

Luca Allodi and Fabio Massacci. A preliminary analysis of vulnerability scores for attacks in wild: The
ekits and sym datasets. In Proceedings of the 2012 ACM Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security, BADGERS ’12, pages 17–24, New York, NY, USA, 2012.
ACM.

Luca Allodi and Fabio Massacci. Analysis of exploits in the wild. or: Do cybersecurity standards make
sense?, 2013. Poster at IEEE Symposium on Security & Privacy.

Luca Allodi and Fabio Massacci. The work-averse attacker model. In Proceedings of the 2015 European
Conference on Information Systems (ECIS 2015), 2015.

D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.

Samy Bengio, Johnny Mariéthoz, and Mikaela Keller. The expected performance curve. In International
Conference on Machine Learning, ICML, Workshop on ROC Analysis in Machine Learning, 0 2005.

Mehran Bozorgi, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Beyond heuristics: Learning
to classify vulnerabilities and predict exploits. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 105–114, New York, NY, USA,
2010. ACM.

Joshua Cannell. Tools of the trade: Exploit kits, 2013. URL https://blog.malwarebytes.org/
intelligence/2013/02/tools-of-the-trade-exploit-kits/. Last visited: 2015-03-20.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297, sep 1995.

Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In Proceedings
of the 23rd International Conference on Machine Learning, ICML ’06, pages 233–240, New York, NY,
USA, 2006. ACM.

Tudor Dumitras and Darren Shou. Toward a standard benchmark for computer security research: The
worldwide intelligence network environment (wine). In Proceedings of the First Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security, BADGERS ’11, pages 89–96, New
York, NY, USA, 2011. ACM.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A
library for large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard Plattner. Large-scale vulnerability analysis. In
Proceedings of the 2006 SIGCOMM Workshop on Large-scale Attack Defense, LSAD ’06, pages 131–138,

43

https://blog.malwarebytes.org/intelligence/2013/02/tools-of-the-trade-exploit-kits/
https://blog.malwarebytes.org/intelligence/2013/02/tools-of-the-trade-exploit-kits/

Bibliography

New York, NY, USA, 2006. ACM.

Stefan Frei, Dominik Schatzmann, Bernhard Plattner, and Brian Trammell. Modelling the security
ecosystem- the dynamics of (in)security. In WEIS, 2009.

Vaishali Ganganwar. An overview of classification algorithms for imbalanced datasets. International
Journal of Emerging Technology and Advanced Engineering, 2, 2012.

Rick Gordon. Note to vendors: Cisos don’t want your analytical tools,
2015. URL http://www.darkreading.com/vulnerabilities---threats/
note-to-vendors-cisos-dont-want-your-analytical-tools/a/d-id/1320185. Last visited:
2015-04-29.

William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz maps into a Hilbert space. Con-
temporary Mathematics, 26:189–206, 1984.

Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random projections. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’06, pages 287–296. ACM, 2006.

Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. A randomized algorithm for the decom-
position of matrices. Applied and Computational Harmonic Analysis, 30(1):47 – 68, 2011.

Fabio Massacci and Viet Hung Nguyen. Which is the right source for vulnerability studies?: An empirical
analysis on mozilla firefox. In Proceedings of the 6th International Workshop on Security Measurements
and Metrics, MetriSec ’10, pages 4:1–4:8, New York, NY, USA, 2010. ACM.

Peter Mell, Karen Scarfone, and Sasha Romanosky. A Complete Guide to the Common Vulnerability
Scoring System Version 2.0. NIST and Carnegie Mellon University, 2007. URL http://www.first.
org/cvss/cvss-guide.html. Last visited: 2015-05-01.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

Paul Oliveria. Patch tuesday - exploit wednesday, 2005. URL http://blog.trendmicro.com/
trendlabs-security-intelligence/patch-tuesday-exploit-wednesday/. Last visited: 2015-03-
20.

Andy Ozment. Improving vulnerability discovery models. In Proceedings of the 2007 ACM Workshop on
Quality of Protection, QoP ’07, pages 6–11, New York, NY, USA, 2007. ACM.

K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2
(6):559–572, 1901.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:
2825–2830, 2011.

W. Richert. Building Machine Learning Systems with Python. Packt Publishing, 2013.

Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A bayesian approach to filtering
junk E-mail. In Learning for Text Categorization: Papers from the 1998 Workshop, Madison, Wisconsin,
1998. AAAI Technical Report WS-98-05. URL citeseer.ist.psu.edu/sahami98bayesian.html.

Woohyun Shim, Luca Allodi, and Fabio Massacci. Crime pays if you are just an average hacker. pages
62–68. IEEE Computer Society, 2012.

Jonathon Shlens. A tutorial on principal component analysis. CoRR, 2014.

Mark Stockley. How one man could have deleted every photo on face-
book, 2015. URL https://nakedsecurity.sophos.com/2015/02/12/

44

http://www.darkreading.com/vulnerabilities---threats/note-to-vendors-cisos-dont-want-your-analytical-tools/a/d-id/1320185
http://www.darkreading.com/vulnerabilities---threats/note-to-vendors-cisos-dont-want-your-analytical-tools/a/d-id/1320185
http://www.first.org/cvss/cvss-guide.html
http://www.first.org/cvss/cvss-guide.html
http://blog.trendmicro.com/trendlabs-security-intelligence/patch-tuesday-exploit-wednesday/
http://blog.trendmicro.com/trendlabs-security-intelligence/patch-tuesday-exploit-wednesday/
citeseer.ist.psu.edu/sahami98bayesian.html
https://nakedsecurity.sophos.com/2015/02/12/how-one-man-could-have-deleted-every-photo-on-facebook/
https://nakedsecurity.sophos.com/2015/02/12/how-one-man-could-have-deleted-every-photo-on-facebook/
https://nakedsecurity.sophos.com/2015/02/12/how-one-man-could-have-deleted-every-photo-on-facebook/

Bibliography

how-one-man-could-have-deleted-every-photo-on-facebook/. Last visited: 2015-03-20.

David H. Wolpert and William G. Macready. No free lunch theorems for optimization. IEEE TRANS-
ACTIONS ON EVOLUTIONARY COMPUTATION, 1(1):67–82, 1997.

Su Zhang, Doina Caragea, and Xinming Ou. An empirical study on using the national vulnerability
database to predict software vulnerabilities. In Proceedings of the 22nd International Conference on
Database and Expert Systems Applications - Volume Part I, DEXA’11, pages 217–231, Berlin, Heidel-
berg, 2011. Springer-Verlag.

45

https://nakedsecurity.sophos.com/2015/02/12/how-one-man-could-have-deleted-every-photo-on-facebook/
https://nakedsecurity.sophos.com/2015/02/12/how-one-man-could-have-deleted-every-photo-on-facebook/
https://nakedsecurity.sophos.com/2015/02/12/how-one-man-could-have-deleted-every-photo-on-facebook/

	Abbreviations
	Introduction
	Goals
	Outline
	The cyber vulnerability landscape
	Vulnerability databases
	Related work

	Background
	Classification algorithms
	Naive Bayes
	SVM - Support Vector Machines
	Primal and dual form
	The kernel trick
	Usage of SVMs

	kNN - k-Nearest-Neighbors
	Decision trees and random forests
	Ensemble learning

	Dimensionality reduction
	Principal component analysis
	Random projections

	Performance metrics
	Cross-validation
	Unequal datasets

	Method
	Information Retrieval
	Open vulnerability data
	Recorded Future's data

	Programming tools
	Assigning the binary labels
	Building the feature space
	CVE, CWE, CAPEC, and base features
	Common words and n-grams
	Vendor product information
	External references

	Predict exploit time-frame

	Results
	Algorithm benchmark
	Selecting a good feature space
	CWE- and CAPEC-numbers
	Selecting amount of common n-grams
	Selecting amount of vendor products
	Selecting amount of references

	Final binary classification
	Optimal hyper parameters
	Final classification
	Probabilistic classification

	Dimensionality reduction
	Benchmark Recorded Future's data
	Predicting exploit time frame

	Discussion & Conclusion
	Discussion
	Conclusion
	Future work

	Bibliography

