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Abstract

A method for automated pain-assessment in horses through facial-expression analysis is proposed. The method
is based on supervised linear classification of a feature stack of Gabor filters and has the desirable quality of
not requiring expert knowledge or specialized equipment to make an assessment. The method is evaluated by
applying it to images of horses from two clinical trials where the horses were (ethically) subjected to pain.
The resulting accuracy of 78% compares favorably to an alternate method of pain assessment based on facial
expression cues that requires expertise to administer.
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1 Introduction

Pain symptomizes many medical conditions and its presence can have a powerful negative influence on an
animal’s wellbeing and quality of life. Unless they are prevented from doing so due to factors like disability,
adults are able to communicate the presence of pain and the qualities associated with it—such as duration,
location and intensity—with clarity and specificity. The challenge of identifying pain in human infants is
significantly greater, but even there, humans are able to detect the presence of distress through an innate
understanding of vocalizations, facial expressions and other associated indicators of pain.

Detecting pain in animals presents a much larger challenge. Without training and experience, it is not possible
to reliably detect the presence of pain in animals. This thesis proposes an approach to detecting pain in large
farm animals, applies it to horses and evaluates its performance compared to trained humans.

1.1 Background

The ability to quickly and inexpensively detect pain in large animals has implications for ethics, animal welfare
and veterinary medicine. The means of detecting pain in farm animals found in the scientific literature tend
to focus on physiological and behavioral changes. Training and experience of the individual carrying out the
assessment can influence the results of the evaluation as can his/her knowledge of the species, breed and
individual animal. Human empathy and emotions can also effect the results of the evaluation [1]. Methods of
pain detection that are automated and do not suffer from the aforementioned drawbacks can be of value.

Facial expressions of pain are commonly used indicators of acute procedural pain in clinical and research
environments [2]. Similarities exist between detecting pain in animals and in human infants as both may not
be able to communicate feelings of pain and both may display behavioral and psychological changes due to
a variety of reasons besides pain. These could include, illness, dejection, general distress etc. Pal, Pritam et
al. [3], and others, have been successful in devising systems that can identify pain in infants using images and
this motivates an exploration of image-based approaches for animals.

Veterinary literature exists that catalogs and correlates the presence of equine facial expressions with pain.
Gleerup et al., [4] have documented behavioral and physiological expressions of pain in six adult horses exposed
to to two noxious stimuli; E Dalla Costa et al. [5] have developed a three-step Horse Grimace Scale based on
clinical study of forty-six adult horses (of which six formed the control group).

1.2 Goals

The thesis aims to develop and evaluate the performance of an image-based automated system for detecting
pain based on observations made by and empirical data collected by Gleerup et al., E Dalla Costa et al. and
similar trials.

Recommendations will be made on future work in this direction, and improvements will be suggested to clinical
trial procedures and cataloging efforts to facilitate future research efforts.
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2 Theory

2.1 Facial Expression Coding

The universality of facial expression in animals has been demonstrated by Darwin in 1872. One of his claims
was that there are specific inborn emotions which originated in serviceable associated habits [6]. These are
inherited behaviors that are useful responses to certain mental states, such as the furrowing of the eyes to
prevent too much light from entering or raising of eye-brows when accessing memory, which is associated with
searching ones surroundings where raised eye-brows are useful in increasing one’s field of view.

Before attracting broader attention, research interest in human face identification and facial expression detec-
tion existed primarily amongst psychologists. Ekman and Friesen conducted seminal research on human facial
expression analysis, postulating, in 1971 [7] six prototypic emotional displays consisting of happiness, sadness,
fear, disgust, surprise and anger that are universal across human ethnicities and cultures (as cited in [8]).

Ekman and Friesen went on to develop a comprehensive Facial Action Coding System (FACS) that
encodes and classifies all human facial expressions and associates them with the six prototypic emotional
displays [9]. Expressions are broken down into groups of facial muscle actions that produce a feature on the
face, such as raised inner eye-brow or tightened lips. These components are called Action Units (AUs).
FACS is heavily used in detecting and analysing human facial expressions, both manually and automatically;
and in recreating them—such as through computer animations.

Facial expression in non-human animals have been studied to a markedly lesser extent. The pain face of
mice [10], horses [11, 5] and primates [12] have been investigated. No universal coding system for any non-
human animal has so far been developed.

Dalla Costa et al. have developed a Horse Grimace Scale [5] consisting of 6 AUs for pain assessment. Each
AU is scored with three levels of intensity from ”not present”, through ”moderately present” to ”obviously
present” (intensity scores 0-3). This may be contrasted against the five scale intensity scoring used in human
FACS.

2.2 Automation in Facial Expression Analysis

The availability of inexpensive and easy access to large amounts of computational power has spurred interest in
automatic human face detection and to a lesser degree facial expression analysis. Most systems today attempt
to classify facial expressions into FACS AUs. So far only marker based systems are able to reliably detect all
FACS AUs (citation), although image and video based approaches such as Ref. [13] are able to detect a subset
of AUs with high reliability.

Very little research effort has been directed towards automation in detecting animal facial expressions. One
such instance is the Rodent Face Finder® developed by Susana G Sotocinal et. al. [10] which automatically
detects mice eyes and ears in still-images using boosted cascades of Haar classifiers and estimates the bounds
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Figure 2.1: A generic framework for facial feature analysis (reproduced with permission from Ref. [8])

of their face using this information. This automates only the Face Segmentation stage (see Chapter 2.3) of
the process and the remaining stages in the analysis are performed manually.

2.3 An Overview of Automated Facial Expression Analysis

Facial expression analysis is a multi-staged process. Researches work in this area have, over time, developed a
variety of tools and techniques for each of these stages. For completeness, and because these concepts serve as a
basis for this work, a brief summary of these stages is presented below. Fasel and Luettin [8] have systematized
facial expression analysis in the form of a generic framework (see Figure 2.1).

2.3.1 Face Acquisition

The first step in an automated facial expression analysis framework is inevitably the acquisition of a digital
representation of a face. The two obvious and commonly used vision based choices are image and video. Other
forms are also possible such as displacement data, 3D models, heat maps, marker offsets and so on. This thesis
focuses on images of horse faces as input data. This choice is motivated primarily by practical considerations.
It has the added advantage of facilitating direct comparison of results with expert human observers, since
studies assessing the accuracy of human experts make use of image data.

2.3.2 Normalization

The complexity of detecting facial expression require that as many extraneous variables as possible be elimi-
nated from the analysis. Input data is normalized by making them invariant to, for example, rotation, scale,
pose, illumination and/or color.

2.3.3 Segmentation

Before proceeding to feature extraction, some solutions separate the face from the background or isolate
transient facial features (facial features that result from an active facial expression such as wrinkles caused by
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Holistic methods Local methods

Deformation extraction
Image-based Neural Network Intensity profiles

Gabor wavelets High gradient components
PCA + Neural Networks

Model-based Active appearance model Geometric face model
Point distribution model Two view point-based models
Labeled graphs

Motion extraction
Dense optical flow Dense flow fields Region-based flows

Motion models 3D motion models Parametric motion models
3D deformable models 3D motion models

Feature point tracking Feature tracking
Difference-images Holistic diff.-imgs Region-based difference-images
Marker-based Highlighted facial features

Dot markers

Table 2.1: An overview of prominent facial feature extraction methods (reproduced with permission from Ref.
[8])

a smile or a blink) and in-transient facial features (facial features that are always present on an individual’s
face, such as shape of nose or wrinkles due to age). This optional stage is particularly common in rule-based
approaches.

2.3.4 Feature Extraction

This step involves distilling, through a variety of techniques, a large amount of raw data into a set of values that
are appropriate as an input to a machine learning algorithm. Table 2.1 lists some common feature extraction
methods found in the literature.

2.3.5 Facial Expression Classification

In this stage, a classifier is employed to reveal AUs, or facial expression cues encoded through other means,
associated with the feature set of each face. Neural networks, support vector machine and hidden Markov
models are examples of classifiers commonly used during this phase. In addition, before classification is
attempted, dimensionality reduction techniques, most commonly principal component analysis (PCA) and
Fisher’s linear discriminant analysis (LDA), are applied on the feature vector to reduce its size and in some
cases improve the classifier’s performance.

2.4 Feature Extraction Techniques

2.4.1 Active Appearance Models

Active Appearance Models (AAMs) are generative statistical models of the shape and grey-level appearance
of objects and associated fitting algorithms that were first introduced by Cootes et al. [14] and later refined

4



(a) In a training set, labeling is typically done
manually

(b) Fitting results for a test image

Figure 2.2: Examples of AAM applied to human face. (Adapted from “A Two Step Face Alignment Approach
Using Statistical Models” [16] and licensed under CC BY 3.0)

by Matthews et al. [15] and others. This technique has applications in visually detecting and classifying
topologically invariant objects such as human faces and biological organs.

In its original manifestation, an AAM model is generated by fitting shape and appearance aspects of a face
(or other visual entity of interest) to training data using Principal Component Analysis (PCA). Faces that
converge to the model are representative of the modeled class. Parameters from the convergent model instance
may be used for other purposes such as input to a classifier for facial recognition.

Modeling shape

Consider an x ˆ w matrix of grey-scale values, A, representing an image of a face. The shape aspect of an
AAM for the image is modeled by a mesh of v vertices s.

s “ rx1,y1, x2,y2, . . . , xv,yvsT (2.1)

Typically this mesh is generated by manually marking an identical number of salients points on every image
that the model will be trained on or applied to. Each mesh can be expressed as a linear combination of a base
shape s0, the average of all meshes in the training images, and n shape vectors s˚

i .

s0 “
1

t

t
ÿ

i“1

si (2.2)

s “ s0 `

n
ÿ

i“1

pis
˚
i (2.3)

PCA of Shape Mesh

Cootes et al. apply PCA on the training data to find a pair-wise uncorrelated basis set ts˚
1
, s˚

2
, . . . , s˚

nu to use
in the AAM model.
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First the covariance matrix C P R2vˆ2v is computed using ∆si “ si ´ s0.

Cij “ Erpsi ´ s0qpsj ´ s0qs (2.4)

C “
1

t

t
ÿ

i“1

∆si∆s
T
i (2.5)

A linearly independent basis for C may now be determined through eigenvalue decomposition by computing
Q such that C “ PΛP´1. Here the i-th column in P is pi and Λ is a diagonal matrix of eigenvalues λi. It is
known that for symmetric matrices of real values, the eigenvectors are orthogonal, therefore since Cij “ Cji,
C “ PΛPT . The vectors with the largest values in this orthogonal basis constitutes the principal components
of the shape mesh.

Modeling Appearance

A similar approach is used to model the appearance of faces i.e. the grey-level textural information embedded
in each image.

First all pixels that lie outside of the boundaries of the facial mesh are discarded from A and the resulting
matrix vectorized, yielding �A. This may also be represented as a linear combination of a base shape and m
appearance vectors �A

˚

i

�A “ �A0 `

m
ÿ

i“0

λi �A
˚ (2.6)

Similarly, �A
˚ may be computed through PCA on the training texture data.

Fitting algorithms

A test image may be described by an AAM by locating the closes model instance in its parameter space (pi
and λi). The search for this instance is an optimization problem is solved using gradient descent like methods.

2.4.2 2D Gabor Filters

A Gabor filter can be expressed as a complex sinusoidal, referred to as the carrier modulated by a Gaussian
shaped function, called the envelope.

gpx,yq “ spx,yq
loomoon

carrier

wpx,yq
loomoon

envelope

(2.7)

The following parametric form is used when implementing the solution.

gpx,yq “ exp

ˆ

´
x 12 ` γ2y 12

2σ2

˙

exp

ˆ

i

ˆ

2π
x 1

λ
`ψ

˙˙

x 1 “ x cos θ` y sin θ

y 1 “ ´x sin θ` y cos θ

(2.8)

where λ is the wavelength of the sinusoidal factor, θ is the orientation of the normal to the parallel stripes of
a Gabor function, γ is the spatial aspect ratio, σ is the standard deviation of the Gaussian envelop, and ψ is
the phase offset.

Gabor filters work in the same was as the vision system in humans and animals (improve this text and add
a reference) [17]. Unlike some classic approaches such as eigenfaces, Gabor filters can also be made image
illumination invariant.
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(a) Original (b) Gabor filter

Figure 2.3: Gabor convolution applied to a sample image
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3 Method

3.1 Challenges

Human Focus of Existing Research

Research in the area of animal facial expression detection is limited as reviewed in Section 2.2. While inspiration
may be drawn from the more active field of human facial expression detection, care must be taken to address
the anatomical idiosyncrasies of horses: ears that can point in different direction, fur, patches of colors, lack
of a well defined frontal view and so on.

Cataloged Experimental Data

Researchers interested in automation of human facial detection and facial expression analysis have at their
disposal various large, high-quality, open-access, labeled data-sets such as the Japanese Female Facial Ex-
pression Database (JAFFE) [18], the AR database [19], and the Cohn-Kanade AU-Coded facial expression
database [20]. The availability of these databases relieve researchers from the time-consuming, administration-
heavy task of collecting and cataloging data. Open-access also eases verification of results and performance
comparisons.

As no comparable database for horses is available, a labeled catalog must first be prepared based on input
from the two studies discussed in the next section (Section 3.2).

Universal Vocabulary for Equine Facial-Expressions

Pioneering work by Ekman and Friesen (see Section 2.1) has let to a well-developed and widely adapted
vocabulary of human AUs. No such comprehensive vocabulary exists for any non-human animal and these
AUs cannot be translated to them. Limited AU vocabularies, in the form of grimace scales, for pain have
recently been developed for rodents, rabbits and horses (see Section 2.1), however their adaption so far is
limited.

3.2 Experimental design of clinical trials and image acquisition

The image data for this study has been collected during two clinical trials on horses. The experimental design
of these trials is briefly summarized in Table 3.1, accompanied by details of the facial expression data collected
and the conditions under which they were collected.

8



Equine pain face Horse Grimace Scale
Gleerup et al. Dalla Costa et al.

Number of horses 5 40 (+6 control)

Horse gender distri-
bution

Unknown All stallions (2 mare, 4 gelding in
control group)

Pose Profile Profile + frontal
Number of pictures Unknown (6 available) 126 (115 available)

Means of pain in-
duction

Mechanical pressure and cap-
saicin cream Castration

Ethical control
Experimental protocol approved
by Danish Animal Experiments
Inspectorate

Statement of compliance with
European directive on protection
of animals used for experimental
purposes (86/609/EEC). Regis-
tered with Brandenburg State
Veterinary Authority

Table 3.1: Overview of clinical trials

3.2.1 An equine pain face

Gleerup et al. [11] have conducted a clinical trial on five healthy adult horses (a sixth horse was injured on
pasture and excluded). Pain was induced externally using two different noxious stimuli: mechanical pres-
sure through a tourniquet on the antebrachium, and neurogenic inflammation through topical application of
capsaicin cream.

In total, six trials were conducted on each horse. Pain was applied through mechanical means for two trials,
pain was applied through topical application of capsaicin cream for two trials, and for control, no noxious
stimulus was applied for two trials. One trial in each pair of trials was conducted with a human observer
present (and visible to the horse) for the duration of the trial and one without.

Pictures and videos of the horses, with particular focus of their faces, were recorded during the trials.

3.2.2 Development of the Horse Grimace Scale (HGS)

Emanuela Dalla Costa et al. [5] have developed 6 facial expression AUs (see Figure 3.1) that are associated
with pain in horses and conducted trials to assess and validate their effectiveness. The trial consists of forty
six horses divided into groups A, B and C consisting of 19, 21 and 6 horses respectively. Groups A and B
underwent surgical castration, while Group C was subjected to non-invasive procedures associated with little
or no pain induction (x-ray, hoof corrections and teeth rasping) and served as a control group. While group
A and B were obviously entirely male, group C consisted of two meres (adult female horses) and four geldings
(castrated males) for practical reasons. The average age of the control group was 5.5 years, while the average
age of the test groups was 2.3 years. The researchers have attempted to minimize the influence of behavioral
difference between genders and ages by providing an acclimatization period of two days to all horses before
the trial.

Group A received an analgesic 5 minutes before being anesthetized, group B received an additional dose of
analgesic 6 hours post-op, and group C received only the pre-op analgesic for control. All three groups were
anesthetized under the standard protocol for general anesthesia in horses. Video recording were made before
the procedure and 8 hours post-op. Favorable stills were extracted from these videos and cropped retaining
only the head and these were scored on the HGS by a blind group of evaluators who were experts either in
horses or facial expression scoring.

9



Figure 3.1: AUs comprising the Horse Grimace Scale as developed by Dalla Costa et al. (Reproduced from Ref.
[5] and licensed under CC BY 4.0)

Group A 19 stallions Castration General anesthesia
Analgesic 5 minutes prior to procedure

Group A 21 stallions Castration General anesthesia
Analgesic 5 minutes prior to procedure
Analgesic 6 hours after procedure

Group A 2 mares, 4
geldings Castration General anesthesia

Analgesic 5 minutes prior to procedure

Table 3.2: Horses involved in the Horse Grimace Scale study were divided into three groups as shown.

10
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3.3 System design

This thesis focuses on deformation based facial feature extraction of available image data and its interpretation.
This corresponds to stages (4) and (8) in Fasel and Luettin’s generic framework (Figure 2.1).

3.3.1 Choice of pose

A good choice of pose for automated facial expression analysis will facilitate capturing of as much facial
expression information as possible. In humans this choice is obvious and indeed a common characteristic of
all (non-pose invariant) human facial recognition studies is that they rely on the frontal face view.

Due to the anatomy of a horse’s head, a frontal projection has a smaller area than a side projection. The
narrow, elongated profile obscures details around the mouth, cheeks and eyes. This frontal view is dominated
by a large forehead that runs down to the muzzle and, unlike humans, offer no expressiveness. These factors
make a frontal view less than ideal for capturing facial expression details.

A profile view may be a superior choice as it captures more expressive facial features in plane. Not all
facial expressions are symmetric, however, and the asymmetry of the facial expressions will contain valuable
information which is lost if only one profile view is used. This may be addressed by taking multiple profile
views or combining a profile views with a frontal view.

The same pictures were used for the purpose of evaluating the automated system proposed by this thesis
and used by human evaluators to assess pain in both clinical trials. In both trials this is a slightly rotated
profile view. This captures details in and around the jaw-line, cheek, nostrils and eyes, and even captures any
asymmetry in ear positions that may be missed or obscured in a purely profile view. This choice has the added
advantage of leveling the playing field so that meaningful comparisons can be made between the performance
of the proposed automated system and that of human experts. Of course information on asymmetry of facial
features besides those already mentioned is not captured. Figure 3.2 illustrates this pose.

3.3.2 Preprocessing

Before feature generation and training can be carried out, several manual and automated steps are performed to
prepare the images for use. The goal is to prepare data for use by feature extraction algorithm and circumvent
the need for implementing an automated system for face detection, location, scaling and orientation, which is
not the focus of this study.

Screening

Training images are screened and those images that are determined to be too poor in quality are removed
from the training-set. Images with obvious image-quality defects such as poor focus or over-exposed images
are excluded at this stage. Other factors that may affect the classification algorithm or feature computation
may also result in exclusion, such as obstruction of important facial features, incorrect head pose etc.

Landmark labeling

Three salient facial key-points or landmarks are labeled on each image. The location of these points were
chosen carefully to allow reliable labeling even on low-quality images. They are located at the base of nostril,
the center of eye, and at the apex of the crease formed by the chewing muscles (see Figure 3.2).

11



Figure 3.2: Profile view of horse with anchor-points market

Normalization

Images are mirrored if necessary and a three-point affine transformation, based on the three manually labeled
landmarks, is applied to canonicalize each image.

3.3.3 System design

Face and
Landmark

Localization

Face nor-
malization

Feature
extraction

Facial
expression
detection

Statistical/ML
classifier

Image
Face with
landmarks

Aligned
face

Feature
vector

Training
Classification

Pain/
no-pain

Figure 3.3: Flow chart for facial expression detection. Modeled on generalized work-flow presented in Ref. [21].

Based on factors discussed above and in the preceding theory section, a proposed high-level design for a system
to detect Equine facial-expressions is presented in Figure 3.3.

3.4 Feature extraction

There are a number of options available for featurizing facial expression information from static images.
Table 2.1 lists some common approaches and Section 2.4 describes two of them. For reasons that follow,
Gabor Filters were selected as the method of choice for this study.

Since it is known that human observers are able to detect facial expressions of pain in horse faces, a feature
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that approximates human vision systems is a safe choice. Gabor filters are also more robust against occlusion
by hair or harness (AAMs are known to be susceptible to performance issues when parts of human faces are
occluded with, for example, thick-rimmed glasses [22]). They are known to perform well with low resolution
images, and imprecisely located key-points [23]. These advantages are important since most images used in
this study are low-resolution stills extracted from video and are hand-labeled. A deciding factor in eliminating
AAMs from consideration is that the construction of a face-model requires a large number of training instances
and no model for the horse-face is available (precomputed human face models are widely available).

A distinguishing feature of Gabor Filters and similar techniques is that they allow for direct interpretation of
results into emotions. This is viewed as an advantage due to the absence of a broadly accepted and validated1

coding-system for horse-face AUs associated with pain. It also avoid the problem of facial AUs mapping to
multiple emotional states.

The feature vector is based on a stack of Gabor convolutions of a local patch of pixel around a set of predeter-
mined key-points. Key points were generated by a uniform grid over the entire image, including background
and occluded regions. Each patch is convoluted with 8 orientations π{8,π{4, 3π{8 . . . 2π and 5 spatial frequen-
cies in the range 0.4 and 2.5 for a total of 40 filters per image (Figure 3.4). This approach is adapted from
Ou [25] and Rose [23].

θ in (2.8) corresponds to the orientation and the spatial frequency, b can be related to the wavelength λ and
the standard deviation σ.

σ

λ
“

c

log 2

2

2b ` 1

πp2b ´ 1q
(3.1)

The real part of Equation 2.8 (2.8)

gRpx,yq “ exp

ˆ

´
x 12 ` γ2y 12

2σ2

˙

exp

ˆ

i

ˆ

2π
x 1

λ
`ψ

˙˙

(3.2)

can then be convolved with the image patch Inpx,yq to yield the filter.

O1...40px,yq “ Inpx,yq ˚ gR
1...40

px,yq (3.3)

3.5 Classification

A support vector machine (SVM) is used for classification, due to its robustness when dealing with data of
high dimensionality and its performance. The feature vector is classified directly to pain state, without using
an intermediate classification to AUs as is common with human facial expression analysis. This is motivated
by a lack of well developed FACS for non-human animals and uncertainty around their mapping to emotional
classes.

1Performing such validation is in itself a challenging task, since emotional states are not uniquely defined by AUs, or through
any other means, and their (including Ekman’s) descriptions in terms of the aforementioned are ambiguous [24].

13



(a) θ “ 0, f “ 0.16 (b) θ “ 0, f “ 0.18 (c) θ “ 0, f “ 0.20 (d) θ “ 0, f “ 0.22

(e) θ “ π{8, f “ 0.16 (f) θ “ π{8, f “ 0.18 (g) θ “ π{8, f “ 0.20 (h) θ “ π{8, f “ 0.22

(i) θ “ π{4, f “ 0.16 (j) θ “ π{4, f “ 0.18 (k) θ “ π{4, f “ 0.20 (l) θ “ π{4, f “ 0.22

(m) θ “ 3π{8, f “ 0.16 (n) θ “ 3π{8, f “ 0.18 (o) θ “ 3π{8, f “ 0.20 (p) θ “ 3π{8, f “ 0.22
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(q) θ “ π{2, f “ 0.16 (r) θ “ π{2, f “ 0.18 (s) θ “ π{2, f “ 0.20 (t) θ “ π{2, f “ 0.22

(u) θ “ 5π{8, f “ 0.16 (v) θ “ 5π{8, f “ 0.18 (w) θ “ 5π{8, f “ 0.20 (x) θ “ 5π{8, f “ 0.22

(a) θ “ 3π{4, f “ 0.16 (b) θ “ 3π{4, f “ 0.18 (c) θ “ 3π{4, f “ 0.20 (d) θ “ 3π{4, f “ 0.22

(e) θ “ 7π{8, f “ 0.16 (f) θ “ 7π{8, f “ 0.18 (g) θ “ 7π{8, f “ 0.20 (h) θ “ 7π{8, f “ 0.22

Figure 3.4: Gabor stack for one of the horse faces generated with σ “ 31, θ “ π{2, λ “ 0.2, γ “ 0.5,
ψ “ π{2, λ “ 1{f for θ “ 0 . . .π. The black strips at the top left and bottom right corners are artificats of the
affine-transform.
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4 Results and discussion

The procedure has been applied on a combined set of 64 images from both clinical trials. Using 95% of the
images as a test-set, an average prediction accuracy of 78% has been achieved with a small bias towards false
positive results (12.5% versus 9.5% for false negatives).

The effect of test-set size on prediction accuracy has been investigated and the results summarize in Figure 4.1.
Prediction accuracy is expected to increases with increasing test-set size until it asymptotically approaches a
peak value. Since the increase in accuracy is approximately linear for the entire range of test-set sizes tested, we
conclude that the classifier has not been adequately trained. An increase in performance is therefore expected
with a larger training-set size.

4.1 Comparison to human based trials

Dalla Costa et al. have carried out assessment of the prediction accuracy of the HGS (see Section 3.2.2).
Five individuals with expertise in either horses or facial-expression assess and assign intensity scores to AUs
described as stiffly backwards ears, orbital tightening, tension above the ear area, prominent strained chewing
muscles, mouth strained and pronounced chin, and strained nostrils and flattening of the profile. Figure 3.1
presents examples of these AUs. The values are then used by the experts to make an overall pain assessment.
The study reports a prediction accuracy ranging from 67.5 to 77.8%, with an average of 73.3%. 17.0%
of incorrect evaluations were false positives and 9.8% false negatives. We observe that raw score (sum of
intensity values for all AUs) have poor discrimination power for values between 2 and 5 which corresponds to
approximately 33% of the spectrum of values (see Figure 4.3).

While the results of the proposed automated approach compare well with those reported in the study, it is
worth noting that there are systematic differences in both performance analyses. Dalla Costa’s evaluation
includes both front and lateral pictures of horses, while those used in the automated evaluation employed only
lateral views; and their pictures were not screened for image-quality, orientation or obstruction, while those
used in the automated evaluation were (see Section 3.3.2). The effect of screening is not expected to have a
large impact on the performance of human evaluators since human vision is more tolerant to obstruction and
out of plane rotation compared a computer algorithm.
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Figure 4.1: Prediction accuracy plotted against test-set size as a percentage of the maximum possible test-set
size (of 64 images) where σ “ 3, γ “ 0.5, ψ “ 3π{4, fmean “ 0.2, ∆f “ 0.02. Key-points are spaced at 50
pixels in a grid formation. All plotted values are the average of 1000 runs and the images are partitioned into
training- and test-sets randomly for each run.
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Figure 4.2: For a grid size of 50 pixels an approximate sinusoidal relation ship between accuracy and ψ is
observed. Here σ “ 3, γ “ 0.5, fmean “ 0.2, ∆f “ 0.02, and 90% of images are used as a training data.
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Figure 4.3: Cumulative AU intensity scores from expert HGS evaluation. Observe that the cumulative score
does not discriminate well for values between 2 and 5.
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Figure 4.4: Investigating the effects of grid-size on prediction accuracy. Here σ “ 3, γ “ 0.5, fmean “ 0.2,
∆f “ 0.02, ψ “ 3{4π, and all but one available image is used as training-set. The average accuracy of all 64
possible partitioning combinations is plotted for each grid size. The low sample size results in volatile results
but a general trend of lower accuracy with increasing grid size for grid size values higher than 100 pixels is
noticeable.
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5 Conclusions and recommendations

Based on the preceding findings, detecting pain through automated facial expression analysis in horses is viable.
It has potential as an addition to the toolbox of non-invasive equine pain assessment and can compliment expert
physiological, behavioral and facial-expression based assessments. The findings of this limited study suggest
that it may even offer a superior alternative to an expert evaluated grimace scale, in accuracy, speed and
convenience.

The method proposed has the advantage of not requiring specialized equipment (besides cameras which are
ubiquitous in this age) or training. Once a classifier has been trained, pain evaluation can be made in a matter
of minutes.

Since the proposed automation approach is agnostic to the emotion under assessment, it may have applications
for other emotional states. The challenge will be in constructing experiments where images can be captured
with the with the emotion under test can be reliably captured. This is easy to achieve with humans, but
require careful design and domain specific knowledge.

5.1 Proposals for future work

5.1.1 Animal facial expression database

A key challenge in this thesis has been the lack of a high-quality, expertly labeled image database. Researchers
working with human face detection and recognition and human facial expression detection have access to
several databases for research purposes (see Section 3.1). There are strong arguments for creating such a
database for horses (and indeed other mammals).

Compared to collecting humans facial expression data, compiling labeled data on equine facial recognition is a
vastly more complex endeavor, requiring expertise in veterinary sciences, animal behaviorally, clinical research,
anesthesiology as well as data and computer sciences.

Such database can allow researchers in the ”analysis” aspect of facial expression analysis—such as codification
of facial expressions (into AUs or similar), performing comparative studies between animals, modeling exercises
or investigations into automation—to avoid diverting time and resources into this necessary preparatory step.
Researchers and practitioners may easily compare results of various techniques by using these databases as
benchmarks (this is common with human face and facial expression databases). They also ease verification of
results which may be challenging to do otherwise.

For these reasons, we recommend that an image database modeled on the aforementioned databases be devel-
oped for animal facial expressions to spur and facilitate research in this area.
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5.1.2 Comparative study of automated facial expression approaches

This approach for automated facial expression analysis has been developed around the constraints of available
data. It is by no means is the only possible approach. A study evaluating the suitability for automated equine
facial-expression analysis of other approaches, such as those mentioned in Table 2.1 and their comparative
performance may be a natural next step. The database of animal facial expressions proposed in the preceding
section will certainly help.
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