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Redistribution of force concentrations in reinforced concrete cantilever slab using 3D 
non-linear FE analyses 
 

Master of Science Thesis in the Master’s Programme Structural Engineering and 

Building Technology  
SONGLY LIM 
Department of Civil and Environmental Engineering 
Division of Structural Engineering 
Concrete Structures 
Chalmers University of Technology 

 

ABSTRACT 

Finite element analyses (FE analyses) methods are nowadays commonly used for the 
analysis and design of civil engineering structures. When modeling reinforced 
concrete slabs, local force concentration arises when using 3D linear elastic FE 
analyses. These force concentrations will in reality be distributed due to concrete 
cracking and yielding of tensile reinforcement. This master thesis uses 3D non-linear 
FE analyses and simplified methods to describe the structural response of a reinforced 
concrete cantilever slab subjected to a single point load. The cantilever slab studied 
was modeled as a homogeneous material with different material models such as linear 
elastic isotropic and orthotropic material, and bilinear and multi-linear elasto-plastic 
model in order to investigate the structural response of the slab in different states. 

For linear elastic isotropic and orthotropic analysis of the studied slab, a shell element 
model was used to validate the beam grillage model later used in the main 
investigation. The comparison of FE results shows that shell element is the most 
appropriate element to use and there is a divergence upon mesh refinement when 
using beam elements due to torsional effects. Nevertheless, the beam grillage model 
can be used in case that appropriate beam element mesh size is used.  

For non-linear analysis, the studied cantilever slab was analyzed using the beam 
grillage model with non-linear moment-curvature relationship since shell element 
models previously have proven to give incorrect results when used with elasto-plastic 
material response, due to unwanted biaxial effects. Concerning non-linear analysis in 
service limit state (SLS), the orthotropic analysis is shown to provide a good 
approximation of maximum moment. In the ultimate limit state (ULS), there is a small 
need for plastic rotation of the slab before the slab fails in non-linear analysis. Hence, 
there is a possibility to redistribute the moment along the entire length of the studied 
slab due to yielding of tensile reinforcement. The comparison between a present 
guideline and the FE analyses shows that the recommendation provided in the former 
is conservative in terms of distribution width for moment in cantilever slabs. 
However, the user should be cautious with this conclusion since it is based on one 
particular load case. In order to provide a better understanding of the behaviour of the 
reinforced concrete cantilever slab and examine the recommendation further, further 
studies should be carried out. 

Key words: Non-linear 3D FE analyses, redistribution of forces, reinforced 
concrete, cantilever slab, material model, moment-curvature, beam 
element, shell element 
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1 Introduction 

1.1 Background 

Finite element analyses based on linear elastic material response is often used to 
determine the force distribution in design of civil engineering structures. In the design 
of reinforced concrete slabs, different types and positions of loads may result in 
various force concentrations. The knowledge of how these linearly determined forces 
can be redistributed from one point to another is very crucial. The real force 
distribution of a structure may be difficult to explain and therefore simplified approaches 
are often used in design of the structure. Recently guidelines have been presented of 
how to design reinforced concrete slabs based on linear elastic analysis, including 
Pacoste et al. (2012). In the past, structural engineers used traditional design tools 
such as tables and 2D analyses to design concrete slabs. In this case the distribution of 
forces in the structure will be given by the choice of the structural model. However 
with the development of computer analysis capacity, there has been large increase in 
the use of three-dimensional (3D) finite element analyses (FE analyses) in analyses 
and design. For design of bridges, there has been a shift from traditional methods to 
3D analyses in the last few years in Sweden. 

3D FE analyses provide the possibility for a more accurate study of the structure than 
what is possible by using more traditional design tools. In liaison with the increased 
usage of such analyses, however, there have also appeared some problems that have 
not been known of when using simplified 2D analyses. One such problem is how to 
interpret local force concentrations that arise in linear elastic analysis, but that may be 
not so critical in reality. 

Normally in concrete structure, such force concentrations lead to cracking and 
yielding of the reinforcement which result in the redistribution of forces. Hence, in a 
real structure, there will be a considerably more favourable force distribution than 
what is usually the case in a finite element analysis assuming linear elastic response. It 
would also be advantageous from an economic perspective to be able to distribute 
such force concentrations over a larger region of the structure in the design process in 
order to optimise material. 

 

1.2 Purpose 

The overall aim of this master’s thesis was to provide a more comprehensive 
understanding about how concentrated forces in linear elastic FE analyses can be 
distributed over a larger region in the design of reinforced concrete slabs and to 
investigate technical and practical recommendations for such redistributions. The goal 
in this report was to determine a strip width in which concentrations of moments and 
shear forces acquired in a linear FE analysis may be distributed. Another objective of 
the study was to evaluate the recommendations given by Pacoste et al. (2012). 

 

1.3 Method 

A theoretical part was carried out through a literature study of both text books and 
research papers in order to get a good overall picture of how the distribution of 
moments and shear forces can be handled.  
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Investigations were carried out by performing linear and non-linear FE analyses of a 
cantilever slab in the student version of the finite element software ADINA, Adina 
(2011). To begin with, simplified 3D linear elastic isotropic and orthotropic analyses were 
performed. The orthotropic analyses were conducted to simulate different stiffness in two 
directions; this is what will happen in reality when concrete cracks. At a later stage, more 
complex 3D non-linear elastoplastic FE analyses, used to simulate the effect of cracking 
and yielding, were carried out with the same structure as the one used in the linear elastic 
analyses. 

The result of the FE analyses were verified by checking the procedure, assumptions and 
modelling made. Several analyses were made in order to get reliable results and to check 
the influence of different parameters.  

Finally, the results in term of moment and shear force distribution in the structure from 
3D FE analyses were compared to those from the present guidelines found, Pacoste et al. 
(2012). 

 

1.4 Limitations 

The FE analyses carried out only treat reinforced concrete cantilever slabs subjected 
to point loads. As there is a limited time for the master thesis study, this project 
mainly focuses on bending response of a slab but also briefly treats the distribution of 
shear forces. 

The thesis investigates the behaviour of the slabs in different states from cracking 
until the collapse of the structure. The studied slabs were subjected to out of plane 
load only. Other effects such as prestressing force, normal force, shrinkage, creep and 
thermal effects can be important, but were not taken into account in this master thesis 
study and these effects were not discussed in this report. Due to the complex material 
behaviour of reinforced concrete structures, the slabs studied were not modelled in 
detail with separate materials for concrete and reinforcement. Instead, the idealized 
behaviour of the slabs were modelled to be linear elastic isotropic, linear elastic 
orthotropic and to have a non-linear moment curvature response. As simplified 
properties of the slabs were used, there will be a difference between the response of 
the slabs obtained from FE analysis and the response of the real concrete slabs. 

 

1.5 Outline of the report 

Chapter 2 covers material response, structural response of reinforced concrete 
structures and design approaches for beams and slabs. This chapter also explains some 
recommendations on moment and shear force distribution in slabs based on Eurocode 
2, CEN (2004), and other literature studied, including Pacoste et al. (2012). 

Chapter 3 examines the behaviour of a reinforced concrete cantilever beam under a 
point load in elasto-plastic response. It also describes different approaches that are 
used to imitate the response of the beam in the elasto-plastic case including bilinear 
plastic material and elasto-plastic moment-curvature relationship. Comparisons 
between 2D beam and 3D beam using different material models were performed. This 
chapter also treats the plastic rotation of the cantilever beam studied. 

Chapter 4 describes the responses of the cantilever slabs studied loaded by one point 
load in different states from cracked state until the collapse of the structure is formed. 
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Different types of modelling of the slab were investigated. The results in term of 
support reaction, moment distribution, shear force distribution and displacement 
received from FE analyses using beam grillage with beam elements and slab with 
shell elements were compared in order to see which is the most appropriate modelling 
in the design and in order to evaluate the accuracy of the modelling. This chapter also 
cover a method on how to determine the plastic rotation of the slab.studied. The 
recommendation on the distribution width of moments and shear forces from present 
guidelines were compared with the distribution width obtained from the FE analyses. 

Chapter 5 summarises the discussion and conclusion of results of the projects. The 
suggestions to further studies and investigation are presented. 
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2 Theory 

2.1 Finite element 

The usage of finite element procedures has increased significantly over the last 
decades and these methods are nowadays commonly used for the analysis and design 
of engineering structures. In order to be able to rely on the solutions obtained from a 
FE analysis, it is necessary to choose an appropriate and effective model that will 
predict the response of the structures which are being analysed and to be able to assess 
the level of accuracy of the analysis. Some issues related to this method need to be 
mentioned and the combination of the knowledge of the structural behaviour of the 
structures studied and of FE method is needed. 

For reinforced concrete slabs, linear finite analysis is normally used in the design in 
order to simplify its non-linear response. Using this method, we can superimpose 
different actions that act on the slab. This method is suitable as the design is based on 
moment and forces that fulfil equilibrium, i.e. and linear finite analysis is one of many 
possible solutions that fulfil equilibrium. 

 

2.2 Structural response of reinforced concrete structures 

2.2.1 Material response 

2.2.1.1 Concrete 

Concrete is a very variable material which has a wide range of strengths and stress-
strain curve. Figure 2.1 shows a typical stress-strain for concrete in compression 
according to Molsey et al.(2007). 

 

εc 

σc 

εc1 εcu1 

fcm 

 

Figure 2.1. Typical stress-strain relationship for concrete in compression 

According to Engström (2011a), for normal strength concrete, C12/16- C50/60, the 
ultimate strain is the same, i.e. εcu1 = 0.0035, while the strain at the maximum stress 
εc1 has different values for different concrete strength classes. For strength and 
deformation characteristics for concrete, reader can refer to Eurocode 2, CEN (2004). 

The stress-strain relationship for concrete is in fact non-linear from the beginning, but 
this non-linearity is approximated to be linear when the compressive stress in concrete 
is smaller than the tensile strength of concrete, i.e. σc < fct. This means that the 
material response of reinforced concrete structure is non-linear even if the small load 
is applied. The behaviour of concrete is weak in tension. As a rule of thumb, the 
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tensile strength of concrete is 10 times smaller than its compressive strength, but the 
actual proportion depends on the strength of fc though. If σc > fct, stress-strain 
relationship is no longer linear and the concrete behaves as a plastic material. A 
permanent deformation remains when the applied load is removed.  

 

2.2.1.2 Reinforcing steel 

Figure 2.2 shows a typical stress-strain relationship for hot rolled reinforcing steel and 
cold worked reinforcing steel. 

(a)

εsu 

σs 
 

ft 
 
fy 
 

εy 

(b)

εsu 

ft 
 

εs 

0.2ft 
 

0.002 

σs 
 

εs 

 

Figure 2.2. Typical stress-strain curve for reinforcing steel (a) hot rolled steel 

(Class B and Class C steel) (b) cold worked steel (Class A steel). 

From Figure 2.2a, it is seen that hot rolled steel (Class B and Class C steel) has a 
pronounced yield stress, followed by a plastic plateau before strain hardening starts. 
After yield point, this becomes a plastic material and the strain increases rapidly up to 
the ultimate value. For cold worked steel (Class A steel) has no distinct yield stress 
and no plastic plateau, see Figure 2.2b. 

Since the ductility of reinforcing steel depends mainly on its elongation at maximum 
stress, Eurocode 2, CEN (2004) defines the ductility classes with regard to both the 
ultimate strain and the ratio between tensile strength and yield strength. 

Table 2.1.  Properties of reinforcement from Eurocode 2, CEN (2004). 

Product form Bars and de-coiled rods 

Class A B C 

Characteristic yield strength 
fyk or f0.2k (MPa) 

400 to 600 

Minimum value of 

k = (ft/ fy)k 

≥1.05 ≥1.08 
≥1.15 

<1.35 

Characteristic strain at 
maximum force, εuk (%) 

≥2.5 ≥5.0 ≥7.5 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:100 6

From Table 2.1 and Figure 2.2, it is seen that Class B and Class C steel are more 
ductile than Class A steel since the ductility is characterized by the shape of σ(ε), 
value of ε and εsu. 

Eurocode 2, CEN (2004), provides the possibility to analyse reinforced concrete 
structure with or without taking into account the strain hardening of reinforcement as 
depicted in Figure 2.3. 

D 

D= idealized 

E= idealized without strain hardening 

εsu 

σs 
 

kfy

 
fy

 

εs 

εy 

E 

kfy 
 

 

Figure 2.3. Idealised stress-strain diagrams for reinforcing steel (for tension and 

compression). 

 

2.2.2 Structural response of reinforced concrete members 

In concrete structures, the structural response depends on many parameters; e.g. the 
non-linear nature of the included materials, cracking of concrete and yielding of 
reinforcement. 

When discussing the structural response of reinforced concrete beams it is very 
essential to understand two terms that are often used: local response and global 
response. The local response is the structural response of the cross-section determined 
by the relationship between the moment and the average curvature of the beam cross-
section of a small region while the global response is the sum of all regional 
responses. The curvature χ of the cross-section corresponds to the inclination of 
deformation ε as shown in Figure 2.4. The relationship between the curvature χ and 
deformation ε is determined in equation (2-1): 

b 

d h 

x 

εs 

εc 

κ = (1/r) = (εs-εc)/d  

Figure 2.4. Curvature deformation relationship. 

 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:100 
7 

dr

cs εε
χ

−
==

1
 (2-1) 

Where =χ  curvature 
=r  radius of curvature 
=cε  concrete strain 

=sε  reinforcement strain 

=d  effective depth of the cross-section 
 

The behaviour of a reinforced concrete beam can be described by moment-curvature 
relationship in three different states: state I (or uncracked state), state II (or cracked 
state) and state III as shown in Figure 2.5 and as described in Eurocode 2, CEN 
(2004). 

State I 

State II (with tension stiffening) 

κ  

M 

Mcr - 

(a) 
 

State III 

 

Figure 2.5. Different states of reinforced concrete structure with taking into account 

tension stiffening effect. 

Stresses that varies over the cross-section of reinforced concrete develops when load 
is applied on the structure. As the load increases, the stress also increases. 
Theoretically, concrete will not crack when the stress is smaller than the tensile 
strength of concrete, but in reality there are micro cracks which are formed at local 
weak points in the material before the tensile strength of concrete is reached and these 
micro cracks are usually ignored in the design process. 

In State I or uncraked state, the response of reinforced concrete beams is assumed to 
be linear elastic and the response increases linearly with the applied load. The 
deformed shape and curvature of the beam remain unchanged while only the 
magnitude increases proportional to the magnitude of the applied load. The influence 
of reinforcement is not so important in this state and can often be ignored in most 
cases, even though a large reinforcement ratio ρ will have non-negligible effect on the 
uncracked stiffness. The material stress-strain relations follows by the Hooke’s law as 
shown in Figure 2.6 and in equation (2-2) in this state. 

εσ ⋅= E  (2-2) 

Where =σ  stress 
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=E  Young’s modulus 
=ε  strain. 

 

ε 

E 

σ 

1 

 

Figure 2.6. Linear stress-strain relationship. 

In state I, the flexural behaviour of the beam is defined by a moment-curvature 
relationship shown in Figure 2.7 and in case of pure bending, the moment and 
curvature relationship is expressed in equation (2-3). 

EI

M

r
==

1
χ  (2-3) 

Where =EI  flexural rigidity which is the product of the Young’s modulus E and  
the area moment of inertia I 

=χ  curvature 
=r  radius of curvature 

EI 

M 

χ
 

Figure 2.7. Linear moment-curvature relationship. 

The behaviour of cracked concrete section is denoted by state II or cracked state. 
The load keeps increasing until the stress passes the tensile strength fct of the concrete. 
Then the concrete will crack, which will occur in a very early state as its behaviour is 
weak in tension. There is an abrupt change in stiffness when reinforced concrete 
section cracks due to bending. As the cracks develop, the stiffness in that region 
decreases dramatically comparing to the nearby region where the concrete remains 
uncracked. The uncracked parts in between the cracks will contribute to the stiffness 
of the reinforced concrete structure. This phenomenon is called the ‘tension stiffening 
effect’ When the concrete cracks, the tensile stresses start to develop in the 
reinforcement bar in the cracked region and are transferred to the surrounding 
concrete by bond stresses in the bar’s interface. This means that the tension stiffening 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:100 
9 

effect greatly influence the stiffness of reinforced concrete when the concrete first 
cracks and this influence decreases gradually with regard to the cracks of concrete as 
shown in Figure 2.5. The stiffer region attracts more forces, which leads to a 
redistribution of forces and moment due to cracking. This redistribution will be 
discussed in more details in Chapter 4. In State II, the response of reinforced concrete 
structures is also assumed to be linear elastic when neglecting the effect of tension 
stiffening and Hooke’s law relation in equation (2-2) still holds true in this state. The 
constant rigidity introduced in state I can be used for the moment which is lower than 
the cracking moment and constant rigidity introduced in state II can be used for the 
moment which is in between the cracking moment and the yielding moment where II 

and III is the moment of inertia of uncracked and cracked section, respectively. 
Further, EcIII corresponds to the flexural stiffness of a fully-cracked reinforced 
concrete section. 

Based on Engström (2011a), this calculation model is just fairly true for the steel 
stress up to the yield point and the compressive strength of concrete is less than about 
0.5 fc. If the compressive stress is higher than this value, it is preferable to analyse the 
response of a reinforced concrete beam by using a state III model that allows non-
linear material response of concrete even if the steel has a linear elastic response. 

State III starts when the reinforcement start to yield or the concrete becomes 
nonlinear in compression in a section where the tensile stresses is larger than the yield 
stress when the beam is continued to be loaded. However the steel reaches yielding, 
there is also a possibility to increase the capacity of the section due to either the 
decreased compression zone as shown in Figure 2.8 or strain hardening of tensile 
reinforcement. The flexural capacity of the section is assumed to be reached when the 
reinforcement torn off or the concrete is crushed. 

 
 
 
 
 
 
 
 
 

sys AfF =

 

x 
βRx Fs’ 

bxfF cRc α=  

ccR fα

sss AF σ=

 

)( scs zασσ =  

z
I

M
z

II
c =)(σ  

Fs’ 

 

Figure 2.8.  Moment capacity increases after the steel reaches yielding due to the 

decrease of the compression zone. 

To summarize, the stress-strain relation and calculation procedures of reinforced 
concrete beam that correspond to each state mentioned above are described in 
Figure 2.9. 
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Figure 2.9. The different statges of a concrete section and internal forces. 

 

2.2.3 Theory of plasticity and plastic hinges 

After the reinforcement reach yielding, the cross-section is in plastic state and the 
maximum moment capacity is reached when the concrete crushes or reinforcement 
torn off. When the ultimate moment capacity is reached, the deformation increases 
rapidly in the most stressed region. Since this region is small, elements in this region 
yield and a plastic hinge is formed. For statically determinate structure as shown in 
Figure 2.10a, a formation of a plastic hinge will lead to collapse of the structure. If a 
structure is statically indeterminate as illustrated in Figure 2.10b, the yielding of the 
reinforcement can lead to a local failure if there is insufficient rotation capacity in that 
plastic region or lead to global failure which means the collapse of the whole 
structures if many plastic hinges are formed that transforms the structure into 
mechanism. This means that although the moment capacity of the section is reached 
in one part of the structure, more loads can be applied: This is due to a plastic 
redistribution which is the main study for this master thesis report. The number of 
plastic hinges in a structure can be determined as: 

1+= µhingesn  (2-4) 

Where =hingesn  number of plastic hinges of the structure 

=µ   number of statically indeterminacy of the structure 
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Plastic hinge  Plastic hinge  

Plastic hinge  

(a)  (b)   

Figure 2.10.  A collapse mechanism for (a) statically determinate structure (b) 

statically indeterminate structure. 

 

2.2.4 Plastic rotation capacity 

As described in Section 2.2.3, reinforced concrete members may fail due to local 
failure or global failure. In order to reach the intended global failure or mechanism, a 
structure needs to have sufficient plastic rotation capacity otherwise local failure due 
to the reinforcement being ripped off or the crushing of concrete will take place. 

Plastic hinge is assumed to be formed in a section when its moment capacity is 
reached. Plastic deformation of the structures develop at a constant or higher plastic 
moment Mpl if sufficient rotation capacity of the section is allowed. This is illustrated 
in Figure 2.11. Such plastic deformation leads to redistribution in the structures, 
which leads to increased loading until a full mechanism is developed. 

 

χ

Mpl 

M 

plχ
 

Figure 2.11.  Development of plastic deformation after the formation of plastic hinge. 

According to Engström (2011a) plastic hinges are assumed to be concentrated in a 
certain section with no extension along the members in the global structural analysis. 
In reality, those hinges develop along a certain length lpl in the plastic region where 
the strain of tensile steel is greater than the yield strain as shown in Figure 2.12. The 
development of this length lpl depends on reinforcement amount, reinforcement type 
and concrete strength. The plastic rotation can be found by integrating the plastic 
curvature over the length lpl. Hence, the plastic rotation is the area below the plastic 
curvature over the length of plastic hinge. The plastic rotation can be determined 
using equation (2-5). 
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∫=
2

1

x

x

plpl dxχθ  (2-5) 

21 xxlpl −=  (2-6) 

ypl χχχ −=  (2-7) 

Where =plθ  plastic rotation  

=plχ  plastic curvature 

=χ  curvature 
=yχ  yield curvature 

=pll  development length of a plastic region 

=1x  section x1 

=2x  section x2 

 M 

χ

(a) 

My 

yχ
uχ

plχ

M 

θ

(b) 

My 

uθ

plθ

pll

elχ
 

Figure 2.12. (a) moment-curvature relationship (b) plastic rotation develop over 

length lpl. 

Eurocode 2 provides a method to determine the plastic rotation capacity of a section 
by taking into account certain important parameters including concrete strength, 
reinforcement class and the ratio between the compressed zone xu and the effective 
depth d. The diagram which determines allowable plastic rotation is shown in 
Figure 2.13 and provides a conservative plastic rotation value. 
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xu / d 

θpl,d  [10 -3 rad] 

Steel  
Ripped off 

Concrete 
crushes 

 

Figure 2.13. Diagram demonstrating the allowable rotation, θpl,d,of reinforced 

concrete sections for Class B and C reinforcement from Eurocode 2, 

CEN (2004). The values apply for the shear slenderness λ = 3. 

The diagram in Figure 2.13 show only the rotation capacity θpl for reinforcement steel 
Class B and Class C. Class A steel is not recommended for plastic analysis since it 
does not provide yielding possibility as shown in Figure 2.2 and Table 2.1 in 
Section 2.2.1.2. For concrete C55/67 to C90/105, the plastic rotation capacity may be 
interpolated accordingly. The value of plastic rotation capacity provided in 
Figure 2.13 is valid only for shear slenderness λ = 3. For other slenderness values, the 
plastic rotation capacity needs to modify by a modification factor that depends on the 
shear slenderness. According to Eurocode 2, CEN (2004), the plastic rotation capacity 
can be expressed as in equation (2-8). 

dplrd k ,θθ λ=  (2-8) 

3

λ
λ =k  (2-9) 

d

l0=λ  (2-10) 

Where =rdθ  rotation capacity  

=dpl ,θ  rotation capacity according to Figure 2.13 

=λk  modification factor for rotation capacity 

=λ  shear slenderness 
=0l  the distance between point of zero and maximum moment after  

        redistribution. 
=d   effective depth of cross-section 

 
As a simplification, Eurocode 2 provides an estimate L0 values which is calculated 
based on design values of the bending moment and shear. 
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dV

M
L

Ed

Ed=0  (2-11) 

Where =EdM  design value of bending moment 

=EdV  design value of shear 

 
For the left part of the diagram shown in Figure 2.13, the plastic rotation capacity 
increase when xu/d increases. It is governed by the ultimate steel strain and the failure 
of the structures is due to the rip off of the tensile reinforcement. For the right part of 
the same diagram, it is seen that the plastic rotation capacity decreases with increasing 
xu/d value. The failure is due to the crushing of the concrete. 

 

2.2.5 Non-linear response in service limit state, SLS 

As mentioned in Section 2.2.1.1, the nature of reinforced concrete structures is non-
linear. The structural response in the service limit state can be divided into state I and 
state II and described by moment-curvature relationship as depicted in Figure 2.14. 

 

With tension 
stiffening 

State I, uncracke stage 

State II, fully cracked stage 

χ  

M 

Mcr - 

(a) 

Without  tension stiffening 

State I 

State II 

χ  

M 

(b) 

EcIII 

EcII 

 

Figure 2.14. Non-linear response of concrete members under pure bending described 

using moment curvature diagram with the assumption of linear stress-

strain relationship: (a) with tension stiffening (b) without tension 

stiffening. 

When the design moment is smaller than the cracking moment, state I model can be 
used to predict the uncracked behaviour of reinforced concrete structure and state I 
stiffness is used. 

When the cracks start to develop, a state II model can be used to simulate the response 
of a cracked section. As a simplification, this model uses stiffness of state II, fully 
cracked section, without taking into account the tension stiffening effect. This model 
describes the response of the cracked section well, but not the surrounding region as 
concrete between the cracks contributes to the stiffness of the structure. This means 
that the curvatures of the cracked section are larger than the curvature of the 
surrounding region. Hence, this model overestimates the overall deformation of 
reinforced concrete structure. 
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When the concrete cracks, the stiffness at those point changes rapidly, see 
Figure 2.14. The flexural stiffnesses of uncracked and cracked sections are denoted 
EcII and EcIII respectively where Ec is the secant modulus of elasticity of concrete, and 
II and III are moment of inertia of uncracked section and cracked section, respectively. 

 

2.2.6 Non-linear response in ultimate limit state ULS 

The moment-curvature relationship described in this section is aimed for non-linear 
analysis in the ultimate state. As described in Section 2.2.2, in plastic state, the 
moment capacity has the possibility to slightly increase either due to the decreased 
compression zone or due to the ultimate strain in the tensile reinforcement until the 
failure of the Section takes place either by the crush of the concrete or the rip off of 
the reinforcement. 

As non-linear analysis in ultimate limit state is performed in order to check the 
rotation capacity of the section, it is possible to simplify the non-linear moment-
curvature relationship to a bilinear or multilinear moment curvature relationship with 
or without taking into account the tension stiffening effect as depicted in Figure 2.15. 
Since the tension stiffening effect help decrease the plastic rotation of the section, it is 
on the safe-side to ignore this effect. 
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Figure 2.15.  Moment-curvature relationship in ultimate limit state (a) true response 

(b) simplified bilinear without tension stiffening (c)simplified multilinear 

without tension stiffening (d) simplified multilinear with tension 

stiffening. 
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In Figure 2.15, the non-linear behaviour of the reinforced concrete structure before the 
reinforcement reaches yielding is modelled by a straight line. This straight line ends at 
a breakpoint where the yielding of the tensile reinforcement starts and its slope 
represent a simplified flexural rigidity of the cross-section in ultimate limit state 
before yielding. The yielding part of the tensile reinforcement is also modelled by a 
straight line. The slope of the latter indicates the flexural stiffness of the structures 
after yielding. There is a sharp loss of stiffness when the tensile reinforcement reaches 
yielding and the breakpoint between state II and state III can be seen clearly, see 
Figure 2.15. Concerning how to determine the values of specific points A, B and C in 
Figure 2.15, readers can refer to Chapter 4. 

The simplified moment-curvature relationship of reinforced concrete structure 
subjected to pure bending is calculated from idealized stress-strain relation with the 
basis of design values of material properties, but with mean values of moduli of 
elasticity. In case of the design with regard to second order effect like slender column, 
the response of the structures is determined by using not only the design values of 
material strength but also the design values of moduli of elasticity according to 
Engström (2011a). 

 

2.3 Beams 

2.3.1 Introduction 

A structural members is defined according to Eurocode 2, CEN (2004), as a beam if 
the span to depth ratio is greater than 3 and the width is less than 5 times the depth of 
the member. If the span is less, the member is considered as a ‘deep beam’. According 
to Engström (2011a), beams are linear structural members that are predominantly 
loaded in flexure. Although the responses of the beams is mainly governed by flexural 
behaviour and the shear deformation can be ignored, the design of the reinforced 
concrete beam against both bending and shear is very essential and cannot be 
overlooked. 

 

2.3.2 Global methods for the response of a reinforced concrete 

beam 

There are four methods to design the reinforced concrete structures according to 
Eurocode 2, CEN (2004): 

1) Linear elastic analysis which is based on the theory of elasticity and can be 
used for both service limit state (SLS) and ultimate limit state (ULS). 

2) Linear elastic analysis with limited redistribution which is used to analyse the 
structural members for the verification of ULS. It is recommended to 
redistribute the elastic bending moment in such a way that the rotation 
capacity fulfils the condition as stated in Section 2.3.4. 

3) Plastic analysis is aimed for ULS. It is based either on lower bound (static) 
method or on upper bound (kinematic) approach described in Section 2.3.5. 

4) Non-linear analysis can be used for both ULS and SLS provided that 
equilibrium and compatibility condition are satisfied and appropriate non-
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linear material is assumed. An effective modelling is to use non-linear moment 
curvature relationship that capture cracking of concrete, tension stiffening 
effect, yielding of reinforcement and strain hardening of steel. An even more 
detail and advanced approach is to use finite element method by considering 
the three dimensional behaviour of concrete in compression and fracture 
mechanics. 

 

2.3.3 Simplified linear elastic analysis 

Simplified linear elastic analysis is very common to be used for the design of 
reinforced concrete structures. In this method, the flexural rigidities of the Section are 
determined based on the gross concrete sections. This method predicts the behaviour 
of uncracked concrete neglecting the influence of reinforcement. Hence, it is not 
possible to describe the behaviour of reinforced concrete due to cracking and yielding. 
The response is linear elastic and the stress-strain relationship follows the Hooke’s 
law as shown in Figure 2.6 and in equation (2-2). In case of pure bending, the flexural 
behaviour of the beam is defined by “moment-curvature relationship’ depicted in 
Figure 2.7 and in equation (2-3). 

Although the simplified linear elastic analysis assumes the linear elastic response of 
reinforced concrete structures, the nature of reinforced concrete structure is non-linear 
in reality. Hence, it is very important to be able to judge if the model used to describe 
the non-linear response of the structure is good enough to imitate its real behaviour. 
When the reinforcement reaches yielding and the load increases further, plastic hinges 
are formed and therefore, a plastic redistribution may form in the structures if enough 
rotation capacity is provided. Although there is a rotation of the section, there is no 
need to check the rotation capacity at that Section as the deformation will be small in 
this simplified linear elastic model. In a real structure even though the design is based 
on simplified linear elastic, plastic hinges will be formed under certain load level. 
However, in order to meet the requirement of the ductility needed, Eurocode 2, CEN 
(2004), provided the following conditions stated in equation (2-12) and (2-13) for the 
verification of the rotation capacity of the continuous reinforced concrete beams or 
slabs where plastic hinges are expected to be formed. It should be noted that the 
conditions in equation (2-12) and (2-13) do not apply for the cantilever slab studied in 
Chapter 4. According to Engström (2011a), the limitations in equation (2-12) and 
(2-13) should be given in the linear elastic analysis Section as a certain amount of 
plastic redistribution will take place in real structures even though the design is based 
on linear elastic analysis. 

45.0≤
d

xu            for concrete grades C12/15 to C50/60 (2-12) 

35.0≤
d

xu            for concrete grades C55/67 or greater (2-13) 

Where =ux  height of the compressive zone in ultimate limit state 

=d  effective depth of the section 
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2.3.4 Simplified linear elastic analysis with limited redistribution 

In reality, there are various load combinations on the structures that will result in 
different moment distribution, which means that critical sections of the structures will 
vary depending on the different load combinations. This results in different needs of 
reinforcement along the structure. Moreover, linear elastic analysis produces peak 
moment values. In order to reduce the peak moment and simplify the reinforcement 
arrangement for practical use, it is possible to determine the amount of moment that 
can be reduced from linear elastic analysis in an efficient way and still meet the 
ductility requirement of the structure. This method is used for ultimate limit state 
(ULS) as it is based on the redistribution from a certain amount of moment computed 
from linear elastic analysis. This analysis is able to simulate the moment distribution 
due to yielding. Based on theory of plasticity in Section 2.2.3, it is possible to choose 
a moment distribution that fulfils the equilibrium as there is a plastic redistribution in 
the real reinforced concrete structures when the reinforcement yields. Although the 
chosen reduced moment distribution causes a certain plastic rotation of the cross-
section of the structure, it is not necessary to check the plastic deformation of the 
structure if the requirements mentioned in Eurocode 2, CEN (2004), for this type of 
analysis are fulfilled. According to Eurocode 2, for continuous beams or slabs that are 
predominantly subjected to bending and have the ratio of the lengths of adjacent spans 
in the range 0.5 to 2, the redistribution of bending moments may be carried out 
without the check of the rotation capacity if the following conditions are fulfilled  

d

x
kk u

21 +≥δ            for concrete grades C12/15 to C50/60 (2-14) 

d

x
kk u

43 +≥δ            for concrete grades C55/67 and greater (2-15) 

5k≥δ                         for Class B and Class C reinforcement (2-16) 

6k≥δ                         for Class A reinforcement (2-17) 

The recommended value for 54321 ,,,, kkkkk and 6k are: 

44.01 =k  (2-18) 

)
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CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:100 
19 

7.05 =k  (2-22) 

8.06 =k  (2-23) 

Where =δ  ratio of the redistributed chosen moment to the elastic bending moment 
=ux  height of the compressive zone in ultimate limit state after 

redistribution 
=2cuε  the ultimate strain according to Table 3.1 Eurocode 2, CEN (2004) 
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Figure 2.16. Ratio of the redistributed chosen moment to the linear elastic bending 

moment. 

 

2.3.5 Plastic analysis 

Plastic analysis can be used for the design in ultimate limit state and it is convenient 
for the preliminary design. This method is based on theory of plasticity as described in 
2.2.3 with the assumption that the behaviour of a reinforced concrete beam is ideally 
plastic when the yield capacity is reached and there is no deformation limit as shown 
in Figure 2.17. 

 

ε 

σ M 

χ

(a) (b) 

fy My 

 

Figure 2.17. Idealized-plastic (a) material response, stress-strain relationship (b) 

structural response, moment-curvature relationship. 

This method is either based on static method (lower bound approach) so-called strut-
and-tie method or kinematic method (upper bound approach) so-called yield line 
method. 
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The static method provides a solution with a lower bound value. In this analysis, 
many possible moment redistributions that fulfil the equilibrium condition can be 
chosen. In the real structures though, there may be moment redistribution that is 
redistributed in a more efficient way than the one assumed in the design, but the latter 
at least made sure that it is possible to carry the load in one way. It means that the 
moment capacity of the structures is equal to or greater than the calculated values 
obtained from the assumption of the designers. Accordingly, the structures can 
probably resist higher loads than expected. That’s also why the lower bound approach 
is on the safe-side and is preferred in the design.  

The kinematic method gives an upper bound solution. It is necessary to assume many 
possible collapse mechanisms of the structures in order to find the most dangerous 
one. It means that expected plastic hinges are chosen in such a way that the selected 
plastic hinges are close to those that are formed in real structure and this will lead to 
the solution that converges to the real solution. In reality, it is not always easy to find 
the most critical mechanism; the calculated moment capacity based on the chosen 
plastic hinges will not be able to fully resist the design loads. That is why upper 
approach is a method in the unsafe-side that is not recommended in the design. The 
boundary between the static method and kinematic method is the real plastic solution. 

The plastic analysis is used for very ductile members as it simulates the behaviour of 
reinforced concrete structures just before the collapse mechanisms are formed. This 
can be achieved if there is enough ductility of the critical sections. Based on Eurocode 
2, CEN (2004), for continuous beams or slabs, the required ductility are satisfied 
without rotation capacity check if all the following conditions are fulfilled. It should 
be noted that the following conditions do not apply for the studied cantilever slab in 
Chapter 4. 

1. The area of tensile reinforcement in critical section is limited so that 

        15.0≤
d

xu                     for concrete grades C12/15 to C50/60 (2-24) 

        15.0≤
d

xu                     for concrete grades C55/67 and greater (2-25) 

2. Reinforcing steel is either Class B or C 
3. The ratio between moments at intermediate supports and spans should be 

        25.0
sup

≤≤
span

port

M

M
 (2-26) 

 

2.3.6 Shear 

Concrete structures subjected to loads will produce both bending moment and shear 
forces. The combination between bending moment and shear forces causes cracks in a 
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reinforced concrete beam if stresses resulting from these forces exceed the tensile 
strength of concrete at any points in the beam. Figure 2.18 shows a crack pattern of a 
simply supported beam subjected to uniformly distributed load. The crack at the mid-
span of the beam is due to bending while the cracks at the support are due to shear and 
cracks which are located in between the mid-span and support are due to the 
combination between bending and shear forces. The shear failure is due to the shear 
sliding in the crack or the crushing of concrete and is often brittle 

 

 

Figure 2.18. Cracking pattern of a simply supported reinforced concrete beam under 

uniformly distributed load. 

 

The concrete can resist shear by a combination of the uncracked concrete in the 
compression zone, the dowelling action of the bending reinforcement and aggregate 
interlock across tension cracks according to Molsey et al.(2007). Reader can refer to 
Eurocode 2, CEN (2004) for the strength of sections without shear reinforcement. 

If the shear capacity provided by the members without shear reinforcement is not 
sufficient to carry the design shear load, it is necessary to use shear reinforcement so 
called stirrups or transverse reinforcement. The shear reinforcement contributes 
significantly to the shear capacity as the stirrups need to yield before the shear sliding 
failure take places. In this case, the requirement of concrete strength to avoid the 
crushing of concrete needs to be fulfilled as the increase in shear capacity due to 
stirrups results in the risk of the crushing of concrete. The concrete is subjected to 
higher compression force in order to keep the equilibrium due to the vertical forces 
from the stirrups. 

The most common type of shear reinforcement is stirrups that are normally placed 
vertically perpendicular to the main tensile reinforcement as illustrated in 
Figure 2.19a. The cracks due to the shear are inclined cracks. The most efficient way 
to deal with those cracks is to place shear reinforcement perpendicular to those cracks. 
This means that inclined shear reinforcement like in Figure 2.19b will be mounted. 
For practical reason, it is difficult to install the inclined reinforcement even though it 
contributes better to the shear capacity and vertical stirrups are normally used instead 
in reality. 
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(a)              (b)   
 

Figure 2.19. Alternative arrangements of shear reinforcement in reinforced concrete 

beam (a) vertical shear reinforcement mounted perpendicular to the 

main tensile reinforcement (b) inclined shear reinforcement placed 

perpendicular to the cracks. 

Reader can refer to Eurocode 2, CEN (2004) for the shear resistance for members 
with vertical shear reinforcement and inclined shear reinforcement. 

 

2.4 Slabs 

2.4.1 Introduction 

The slab is the main study of this thesis report. Slabs are different from beams since 
the transverse action is needed to be considered due to the larger width compare to the 
height. 

Eurocode 2, CEN (2004), defines a slab as a structural member for which the 
minimum panel dimension is not less than 5 times the overall thickness. Slabs are 
classified into different categories by consideration of their functions and support 
conditions. Reinforced concrete slabs are in Eurocode 2 classified as either slabs or 
flat slabs. According to Engström (2011b) the slab is defined as flat slab if one of the 
supports is a column; otherwise it is classified as just a slab. Slabs are only supported 
by line supports or along its edges including beam-supported slab and wall-supported 
slab. It is not necessary for slab to be supported all along its edges. Figure 2.20 
demonstrates flat slabs and slabs with various support conditions. 

 

(a) (b) (c) 

 

Figure 2.20. Slabs with various support conditions: (a) flat slabs supported by 

columns, wall and beam (b) slab supported along three edges (c) 

cantilever slab. 

Slabs can carry the load in one or two directions. If the slab carries the load in one 
direction, it is called one way slab; otherwise it is called a two way slab, 
Engström (2011b). Eurocode 2, CEN (2004), distinguishes between one-way and two-
way spanning slabs as following: 
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“A slab subjected to dominantly uniformly distributed loads may be considered to be 

one-way spanning if either: 

- It possesses two free (unsupported) and sensibly parallele edges or 

- It is the cntral part of a sensibly rectangular slab supported on four edges with 

a ration of the longer to shorter span greater than 2”. 

According to Pacoste et al. (2012), the definitions provided by Eurocode 2, CEN 
(2004), are not always directly applicable, especially for the case of slabs in bridges. 
Bridge slabs are normally supported by both line and point supports or by point 
supports that are arranged in rows that provide much larger spans in one direction 
compared to the other. Based on this, Pacoste et al. (2012), instead chose to classify 
slabs in three categories two-way, one-way and predominantly one-way spanning 
slabs as depicted in Figure 2.13. Figure 2.21a shows a slab supported by two rows of 
columns at support lines S4 and S5 and by bearings at support lines S1, S2 and S3. As 
the distances between different supports in different directions have approximately the 
same magnitude, this slab is considered as a two-way spanning slab.  

The slab in Figure 2.21b has line supports in lines S1, S2 and S3 in the y-direction and 
two free edges E1 and E2 along the x-direction. This slab is treated as a one-way 
spanning slab. The geometry of the slab shown in Figure 2.21c is typical for many 
bridge slabs. It possesses point supports with a short distance (S1, S2, S3) along the y-
direction and point supports with a long distance (Edge E1, E2, E3) along the x-
direction. The geometry of this type of slab is in between the extreme cases shown in 
Figure 2.21a and Figure 2.21b. For example, if a load is applied in between the 
columns along lines S1, S2 and S3, the load will transfer to the nearest columns in the 
y-direction. However, if the load is applied in the field, the load will distribute in both 
in the x-direction and y-direction, but mainly in the x-direction. That’s also why the 
slab illustrated in Figure 2.21c is denoted as a predominantly one-way spanning slab. 
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Figure 2.21. Different types of slabs due to load distribution: (a) two-way spanning 

slab (b) one-way spanning slab (c) predominantly one-way spanning 

slab. From Pacoste et al. (2012). 

The analysis of a slab is normally a statically indeterminate problem. In some cases 
though, as illustrated in Figure 2.22, the problem is statically determinate. The 
structural response of one-way slabs shown in Figure 2.22 is similar to that of a beam 
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and can be conceptually designed as a beam per unit width. This argument is verified 
by the FE analysis using FE program ADINA. 

However there are tables and diagrams that can be used for the design for typical two 
way slabs, a more complex two way slab require 3-D analysis in order to capture the 
load distribution in different direction and get a more accurate result. 

y 

x 

A 

B 

 
 
 
 
 

(b) 

Surface load 

(a) 

Surface load 

(c) 

distributed load 

L L 

L L 

L L 

 

Figure 2.22. One-way slab action: (a) one-way simply supported slab under surface 

load (b) cantilever slab surface loads. (b) cantilever slab under 

distributed line loads. 

Eventhough the slabs shown in Figure 2.22 can be designed as a beam per unit width, 
this approach cannot be applied if the same slab is subjected to a point load located in 
different positions of the slab. This means that various load types located in different 
positions on this cantilever slab will result in different load distributions. For instance, 
the point load applied in the middle of the one-way simply supported slab, as shown 
in Figure 2.23a, and the point load applied in the middle of free edge of the slab in 
Figure 2.23b is carried mainly in the transversal direction, but this load also 
distributes in the longitudinal direction. The response of the load distribution in 
different directions is very essential. The recommendation of cantilever slabs will be 
given separately from one-way and two-way spanning slabs and will be discussed in 
more detail in Section 2.4.10.1 and in Section 2.4.10.2, respectively. 
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F (point load) 

F (point load) 

 

Figure 2.23. Load distribution of a slab (a) cantilever slab subjected to point load (b) 

one-way simply supported slab cantilever. 

 

2.4.2 Definition 

In a slab, the sectional forces are normally expressed per unit width of 1.0 m. In this 
report, a capital letter is used for concentrated forces while a small letter is used for 
forces per unit width. For example, the notation M [Nm] is used for concentrated 
moment whereas the notation m [Nm/m] is used for moment per unit width. When 
talking about slabs, it is very important to introduce coordinate system x,y and the 
moment per unit width of the slab in different directions. In this report, the bending 
moment that deflects strips in x-direction is denoted mx and the bending moment that 
deflects strips in y-direction is denoted my. Figure 2.24 shows the notation of moment 
per unit width of a slab. 

x 

y 

mx 

my 

 

Figure 2.24. Definition of the bending moments mx and my in a slab. 

 

2.4.3 Alternative methods for slab analysis 

The four methods described in Section 2.3.2 can be used to analyses a slab. 

In linear elastic analysis, the slab is assumed to have a homogenous material which 
has a linear behaviour in sectional response and moment-curvature. In linear elastic 
analysis, the deformation shape and moment shape are constant and only their 
magnitudes are increased proportional to the increased load. It means that there is 
only one unique combination of mx and my and torsional moment mxy and myx that is 
found to resist a small element of load.  

For linear elastic analysis with limited distribution, the moment is first calculated 
from linear elastic analysis and then the reduced moment is chosen due to the plastic 
redistribution capacity. The conditions provided by Eurocode 2, CEN (2004), about 
the check of rotation capacity of continuous beams or slabs in the longitudinal 
direction in equation (2-14) to equation (2-17) in Section 2.3.4 apply in this case also. 
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Concerning plastic analysis of a slab, two methods are usually adopted. The ‘strip 
method’, which assumes a moment distribution, is a lower bound approach and the 
‘yield line’ method assuming a collapse mechanism of the structure provides an upper 
bound solution. The strip method and yield line method will be discussed in detail in 
Section 2.4.5 and Section 2.4.6 respectively. 

Non-linear analysis can capture the non-linear response of reinforced concrete slabs 
from uncracked state to the failure of the structures. The non-linear response can be 
described by moment-curvature relationship depicted in Figure 2.14 and in 
Figure 2.15 in Section 2.2.5 by changing notation M (concentrated moment) to 
notation m (moment per unit width) in the diagram. This is valid for a slab with beam 
grillage model in Figure 4.7 but not necessarily for a slab with shell model in which 
mxy will also be present. 

 

2.4.4 Design based on linear elastic analysis 

Linear elastic analysis of slabs can be based on Mindlin plate theory or Kirchhoff’s 
plate theory. Kirchhoff’s plate theory is often used and the assumptions used are that 
the material has a linear stress-strain relation and the middle plane of the slab remains 
plane; i.e. no stress develops perpendicular to the slab when loaded and the shear 
deformation is ignored. The stress-strain relationship and the moment and deflection 
relationship of a small slab element are expressed in equation (2-27) and (2-28) 
respectively. 
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Where 
)1(12 2

3

υ−
=

Eh
D  slab stiffness  

=υ    Poisson’s ratio 
=u    deflection 
=h    slab thickness 

 

The slab equation that relates the vertical displacement uz to the applied distributed 
load q is given in equation (2-29). 
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Although the linear elastic analysis assumed linear material response, the nature of the 
reinforced concrete slab is non-linear and it possesses plastic parts in ultimate limit 
state. Based on the theory of plasticity, it is possible to find a different combination of 
mx and my and torsional moment mxy and myx and shear force vx and vy that can keep 
equilibrium in a small element of the slab subjected to the same applied load.  

In the reinforced concrete slab, it is difficult to design and arrange reinforcement 
exactly according to the linear elastic solution and the torsional moments cannot be 
resisted effectively by reinforcement bars. Therefore, for a practical reason, the bars 
are instead arranged in two perpendicular directions x and y. In order to do so, it is 
necessary to transform the linear elastic solution to resisting bending moments mrx and 
mry in these two perpendicular directions. 

The reinforcement moment mrx and mry for design of reinforcement in two 
perpendicular directions x and y are expressed in equation (2-30) and (2-31) 
respectively. 

xyxnegposrx mmm µ±=)(,  (2-30) 

xyynegposry mmm µ±=)(,  (2-31) 

Where rxm  reinforcement moment for design of reinforcement in perpendicular 

direction x 

rym  reinforcement moment for design of reinforcement in perpendicular 

direction y 

xm  linear bending moment in x-direction 

ym  linear bending moment in y-direction 

xym  linear torsional moment 

µ  factor that can be chosen with respect to practical considerations, 
usually close to 1.0 or equal to 1.0 

 

2.4.5 Strip method 

Based on Engström (2011b), the strip method is a static method that provides lower 
bound solutions when performing plastic analysis of reinforced concrete slabs. A moment 
distribution is chosen so that the equilibrium condition in ultimate limit state (ULS) is 
fulfilled. According to Engström (2011b), the following steps are performed in the strip 
method: 

• Torsional moment are chosen mxy = - myx = 0 
• Slab is divided in strips in the main x-and y-direction 
• The load on an element is distributed between the two strips in x- and y-

direction 
• Each strip is designed for one-way action 
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It is important to note that the sum of the loads carried in two strips in x- and y-

direction must be equal to the total load acting on the considered element. 

As mentioned in Section 2.4.4, theory of plasticity provides the possibility for the 
designer to choose a set of mx and my and torsional moment mxy and myx that fulfil 
equilibrium in ultimate limit state. It means that strips can be chosen in various ways 
which will result in various load distribution. This can be examined by studying a 
rectangular slab supported along four edges with a uniformly distributed load q as shown 
in Figure 2.25. 
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Figure 2.25. Load distribution: (a) half the load in each direction (b) load is carried 

shorter way to support (c) load distribution at corner region is improved 

(c) load distribution follows the natural load dividing lines. From 

Engström (2011b). 
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In Figure 2.25a, half of the load is taken in each direction. This load distribution is 
strange since the long direction carries much of the load. In Figure 2.25b, some loads are 
carried by support nearby while much of the load is carried in short direction. It is still 
strange since the load is carried only in x-direction at the corner. The solution is improved 
as the load is distributed into equal amount in both x-and y-direction at the corner region, 
see Figure 2.25c. From Figure 2.25d, it is seen that the load is distributed due to the load 
dividing lines which intersect the corner region. These load dividing lines separate parts 
of the slab and there is no shear forces acting along this cut. Since various load 
distribution can be chosen, this will result in different reinforcement arrangement as 
illustrated in Figure 2.26. 

1 
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Figure 2.26. Load distribution follows load diving line: (a) longitudinal 

reinforcement increased (b) longitudinal reinforcement decreased. 

In Figure 2.26a and Figure 2.26b, the total number of bars are the same. Figure 2.26a 
shows a more distributed bar in x-and y-direction while Figure 2.26b provides more 
bars in the centre regions (y-direction) and less bars along the edges (x-direction). 

The more the chosen load distribution of the slab close to the real load distribution of 
the slab, the better the solution converge to the true plastic solution. Assuming that 
there is no limitation in the plastic redistribution capacity, the failure load obtained 
from strip method is always larger than the actual failure load. That is why this 
method is always on the safe side and preferred in the design. 

 

2.4.6 Yield line method 

A slab is assumed to collapse at a certain load in the pattern of fracture which is 
determined by a system of yield lines or fracture lines. The yield line method is a 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:100 
31 

kinematic method providing upper bounds to the ultimate load capacity so-called true 
collapse load of reinforced concrete slab. Therefore, it always provides a solution on 
the unsafe side since the slab will fail at the load that requires least energy. There are 
two possible methods in the yield line theory. The first approach is the study of 
equilibrium of the various parts of the slab which are divided by yield lines assuming 
the pattern of the collapse mechanism of the slab. The second method is an energy 
method in which the external work done by the applied loads are equal to the internal 
work. The development of the yield can be described by examining the collapse 
behaviour of a slab simply supported along four edges under surface load as shown in 
Figure 2.27. 

 

(a) (b) (c) 
 

Figure 2.27. Yield line development: (a) hinge takes place in the middle of the slab 

(b) hinges develop along yield line (c) the collapse mechanism is formed 

when yield line spreads to the corner. 

In Figure 2.27a a hinge is first formed in the middle of the slab which is the most 
stressed point of the slab when the yield limit is reached. Then the hinge spreads 
along a yield line as shown in Figure 2.27b. Eventually, the hinge spreads to the 
corner as illustrated in Figure 2.27c and the collapse mechanism is formed and then 
the slab fail. In the collapse mechanism behaviour, the portions of the slab rotate more 
or less as rigid bodies and the slab will deflect under constant load. The collapse 
mechanism must fulfil kinematic requirement which means the slab portions 
determined by yield line must fit together when the slab deflects in the failure 
mechanism as shown in Figure 2.28a. This requirement is fulfilled if the yield line 
between the two slab portions or it extensions passes through the intersection of the 
rotation axes of the two slab portions. From Figure 2.28b, it is seen that the yield 
between slab portion 1 and slab portion 2 passes through the intersection between the 
rotation axe AB and AC. The rotation axes AC and BD of the slab portion 2 and slab 
portion 3 respectively never intersects as the rotation axe AC parallel to the rotation 
axe BD. The kinematic requirement is fulfilled by extending the rotation axes AC and 
BD to infinity which creates the illusion that these two axes intersect in the infinity as 
shown in Figure 2.28c. By extending the centre intersection yield line between slab 
portion 2 and slab portion 3 to infinity, it also creates an imaginary intersection in the 
infinity as illustrated in Figure 2.28c. 
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Figure 2.28.  Kinematic requirement (a) fractures pattern in a slab (b) yield line 

passes through intersection of rotation axes at the corner (c) the illusion 

of the intersection of yield in the infinity. 

 

2.4.7 Distribution width for moment in ultimate limit states 

Pacoste et al. (2012), provides recommendation on how the moments and forces from 
linear elastic analysis can be redistributed. The recommendations are based on the 
assumption that the reinforced concrete slab has enough rotation capacity, but 
reinforcement need to be concentrated in support regions in order to provide good 
response in service limit state. The recommendations are applicable for slabs 
supported by concentrated supports such as columns or bearings and these 
recommendations should also be applicable for the field moment at a point load in a 
slab with line supports as shown in Figure 2.29. 

(a) (b) 

F 

 

Figure 2.29. (a) slab supported by concentrated supports (b) slab with line supports 

subjected to point load F. 

Wider distributed widths than the limitation of distributed width givens in the 
following recommendation can be used for slabs with distributed load and line 
supports. These recommendations are believed to be conservative and need a better 
knowledge to be improved according to Pacoste et al. (2012). 

The following recommendation for a support like column and bearing are based on 
Pacoste et al. (2012): 

)
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,3min( cL
hw =

 
for 45.0=

d

xu  (0.35 for concrete grades ≥ C55/67) (2-32) 
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,5min( cL
hw =  for 3.0=

d

xu  (0.23 for concrete grades ≥ C55/67) (2-33) 
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w =  for 25.0=
d

xu  (0.15 for concrete grades ≥ C55/67) (2-34) 

2
cL

w =  for 15.0=
d

xu  (0.1 for concrete grades ≥ C55/67) (2-35) 









=

5
,5min cL

hw  for 0.0=
d

xu
 (2-36) 

Where =h  height of the cross-section 
=ux  depth of the neutral axis at the ultimate limit state after redistribution 

=d  effective depth 
=cL  characteristic span width 

 
The value of xu/d in between the value of xu/d given in equation (2-32) to 
equation (2-36) can be determined by linear interpolation. For the details of how to 
determine the value of Lc for the distribution width for moment in longitudinal and 
transversal direction, the reader can refer to Section 4.2.1.1 to Section 4.2.1.3 in 
Pacoste et al. (2012). For comments concerning the above limits and plastic rotation 
capacity requirements, the reader can also consult Appendix B in Pacoste et al. 
(2012). 

According to Pacoste et al. (2012), the value of the distribution width should not be 
taken less than 

ahww +=≥ 2min  (2-37) 

Where =a dimension of the support or load width if it is a point load in the considered  
      section. 
 

In case of columns without drop panel, the ratio of the averaged and maximum 
reinforcement moments should be restricted to: 

6.0
max,

,
≥=

rx

avrx

m

m
δ  (2-38) 

Where mrx,av and mrx,max can be determined based on Figure 2.30a and equation (2-39) 
for distribution width exceeds w0 (the distance between points of zero moment) and 
Figure 2.30b and equation (2-40) for distribution width less than w0. 
The above moment distribution limitation applies for the distribution width calculated 
based on equation (2-32) to equation (2-36): 
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Figure 2.30. Definition of the average value of moment distribution (a) distribution 

width exceeds the distance between points of zero moment (b) 

distribution width is less than the distance between points of zero 

moment. From Pacoste et al. (2012). 

The mrx,av in Figure 2.30a and Figure 2.30b can be calculated using equation (2-39) 
and equation (2-40) respectively. 
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Where =max,rxm maximum moment from linear elastic analysis 

=avrxm , average moment chosen to redistribute the maximum moment from  

linear elastic analysis 
 
This principle is also applied for the reinforcement moment in the y-direction, i.e mry. 
For the distribution width in case of the columns has a capital or drop panel and in 
case of supports placed near the edge of the plate, reader can refer to Section 4.2.1 of 
Pacoste et al. (2012). 

 

2.4.8 Distribution width for moment in serviceability limit states 

In serviceability limit states, it is more complicated to choose an appropriate 
distribution width as it is difficult to determine the degree to which the force 
redistribution will take place. When a slab starts to crack, the moment will distribute 
from cracked regions to uncracked region. But when the whole slab is cracked, the 
region which contains high amount of reinforcement will be stiffer than the region 
that contains less reinforcement. According to Eurocode 2 (SS-EN 1992-1-1:2005), 
the reinforcement distribution should take into account the behaviour of slab in 
working condition where there is a concentration moment over the column. Unless 
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rigorous checks are made for serviceability, half of the total top reinforcement should 
be concentrated into a column strip with the width determined in equation (2-41). 

88
21 LL

w +=  (2-41) 

Where =21,LL distances from the columns of the strip to the adjacent columns in the  
direction perpendicular to the reinforcement 

 

Pacoste et al. (2012) stated that the large concentration of reinforcement over the 
column width results in moment that is larger than the moment from linear elastic 
analysis.)  Based on this reason, Pacoste et al. (2012) provides a limitation for the 
distribution width for serviceability limit state as stated in equation (2-42) which is 
more conservative than in the ultimate limit state. 

)
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,5min()
10

,3min( cc L
hw

L
h ≤≤  (2-42) 

 

2.4.9 Distribution width for shear forces 

There is a very limited knowledge on redistribution of shear forces from linear elastic 
analysis. There is no specific guideline concerning redistribution of shear forces 
provided in Eurocode 2, CEN (2004). Pacoste et al. (2012), though, provides the 
following recommendations on redistribution of shear forces. Like the 
recommendations given for moment distribution, these recommendations are based on 
the assumption that the reinforced concrete structures have sufficient plastic 
redistribution in the ultimate state. This recommendation is also believed to be 
conservative and needs further improvement based on increased knowledge on the 
response and distribution of shear forces on reinforced concrete slab and based on 
how the slabs behave with regard to linear elastic analysis. The recommendation is 
valid for the redistribution of the resultant shear force determined in equation (2-43) 
and the direction of this principal shear force is determined by an angle α in 
equation (2-44). The shear redistribution is made along the direction perpendicular to 
the direction of the principal shear as illustrated in Figure 2.31. 

22
0 yx vvv +=  (2-43) 

)arctan(
y

x

v

v
=α  (2-44) 

Where =0v the principal (or resultant) shear force  

=α angle that determine the direction of the vector 0v  
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Figure 2.31. Redistribution of the resultant shear force in the direction perpendicular 

to the principal shear. From Pacoste et al. (2012). 

The distribution width for shear forces can be chosen as equal to the distribution 
width for the reinforcement moments in equation (2-32) to equation (2-36). Apart 
from this, two more conditions need to be taken into account: 

1. The distribution width for the shear force should not exceed 5h where h is the 
thickness of the slab at the considered section. 

2. The distribution width for the shear force should be chosen in such a way that 
a variation of the angle α in Figure 2.32 is less than 45o. It is mathematically 
expressed as |αi-α0| ≤ 450. The distribution width in Figure 2.32 is restricted to 
weff as |α5-α0| ≥ 450and |α6-α0| ≥ 450. 

Along the direction n, perpendicular to v0 at the chosen critical section shown in 
Figure 2.32a, it is possible to determine the distribution of principal shear force v0 
illustrated in Figure 2.32b along line n from the points that are situated along that line 
based on equation (2-43). Then it is possible to distribute the average value of v0,av avv ,0

within the effective weff. 
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Figure 2.32. Variation of the direction of the resultant shear force within a 

distribution width. From Pacoste et al. (2012). 
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From a FE analysis it may be cumbersome to determine the shear force along a line 
perpendicular to an arbitrary section as the points situated along that line do not 
coincide with nodes of structures in the FE program. As a result, an alternative 
method to use the direction of resultant shear v0 based on the global coordinate is also 
proposed in Pacoste et al. (2012). The principal shear force v0,i and angle αi at each 
Section in the global x-and y-coordinate can be computed as: 

2
,

2
,,0 iyixi vvv +=  (2-45) 

)arctan(
,

,

iy

ix

i
v

v
=α  (2-46) 

The design shear force is made in the global x- and y-coordinate system. Design shear 
force vdx and vdy at each section point i in Figure 2.33a are determined based on 
Table 2.2. If the angle αi is less than 450, the design shear force vd is assumed to act in 
the x-direction and if αi is greater than 450, vd is assumed to act in the y-direction. 
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Different load positions result in the envelope of the resultant shear force v0,i. 
Therefore, two resultant shear forces v01,i and v02,i are used for a certain section point. 
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Here, the index max indicates the maximum value while index cor indicates it 
corresponding values in the global coordinate system. 

Table 2.2 summaries the design shear values at a certain section point based on the 
limitation of the angle αi and the shear envelope from different load positions and load 
combinations. 

Table 2.2 Determination of design shear forces vdx,i and vdy,i in Section point i as a 

function of the resultant angles α1,i and α2,i. 
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Case i,1α                          i,2α  idxv ,                           idyv ,  

1 045≤                    045≤  ),max( ,02,01 ii vv                  0  

2 045≤                    045f  iv ,01                           iv ,02  

3 045f                    045≤  iv ,02                           iv ,01  

4 045f                    045f             0                    ),max( ,02,01 ii vv  

 

The design shear force vdx is distributed in the y-direction while vdy is distributed in 
the x-direction as the distribution needs to be done in the direction perpendicular to 
the acting shear force. This is schematically illustrated in Figure 2.33, the distribution 
width in the y-direction for design shear force vdx is limited by a section point where 
vdx = 0. 

 

  

  

y 

x 

section point i 

vx,i

vy,i vo,i

αi 

chosen critical sectoin 

  

  

wmax 

vdx,av vdx = 0 

wmax 

vdx 

(a) 

(b) 

wmax= allowable distributed  width for vdx along y-direction due to vdx = 0 

  

Figure 2.33. (a) variation of the direction of the resultant shear force within a 

distribution width.(b) distribution width limitation for vdx along y-

direction due to vdx = 0. From Pacoste et al. (2012). 
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2.4.10 Cantilever slabs 

Cantilever slabs can be found in different types of structures. For example, the most 
common reinforced concrete cantilever slab of a building is the balcony. The balcony 
is supported at the clamped edge and free at the other and is subjected to evenly 
distributed loads over the whole surface as shown in Figure 2.34. The cantilever slabs 
carry the load in the transversal direction, i.e. y-direction to the fixed support depicted 
in Figure 2.34b. This cantilever slab can be considered as a one way slab and can be 
designed like a beam per meter width. Such a cantilever slab under the distributed 
load is not so critical for the design and it is not of interest in this thesis report. 
However, if the same cantilever slab is subjected to a point load of high magnitude in 
different positions, it would be of more interest. 

y 

x 

 

(a) (b) 

Surface load 

Balcony (or console) 

 

Figure 2.34. Cantilever slab in the building: (a) balcony supported by a clamped 

support and free at the other in 3D view (b) balcony subjected to 

distributed load on the whole surface in 2D view. 

The knowledge on how to redistribute the moment and shear forces on the cantilever 
slab is limited. Further studies on the response of moment and shear forces on these 
cantilever slabs are being continued. Cantilever slabs which are found in the bridge 
design community such as composite bridges or concrete beam bridges are more or 
less the same as the balcony in Figure 2.34a, but the loads on a bridge is more 
complex. These cantilever slabs are subjected to concentrated traffic loads, like traffic 
point loads which are the movable loads. As a result, the redistribution of moments 
and shear forces are rather complex and difficult to determine. The traffic load acting 
on the cantilever slab of the reinforced concrete bridge deck can be modelled either as 
a concentrated load or distributed load as shown in Figure 2.35a. These two models of 
axle loads provide similar structural response, but it is recommended to use surface 
load in order to avoid numerical problem, i.e. singularity problem when analysing a 
slab under point load using shell element. The surface load gives somewhat lower 
sectional forces. These loads will transfer transversally along y-direction to the 
clamped support. If the cantilever slab includes the edge beam, the loads will be 
transfer to both the clamped edge and the edge beam, then the loads will be 
transferred to support of the clamped edge as shown in Figure 2.35b. 
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z 

y 

x 

 
Traffic load (F point load) 

(a) 

Traffic load (surface load) 

Cantilever slab 
Clamped edge 

L0 
Edge beam 

Edge beam 

(b)

F (point load) 

 

Figure 2.35. Cantilever slab of a reinforced concrete bridge: (a) axle loads modeled 

as concentrated loads (b) axle loads modeled as distributed loads 

 

2.4.10.1 Distribution width for moment 

The recommendations given in this Section are based on the work of Pacoste et al. 
(2012), and it applies only for the load transfer in the transversal y-direction of the 
cantilever slab These recommendations are believed to be less conservative than the 
recommendations on the distribution width for moment and shear forces for one-way 
spanning and two-way spanning slabs described in the Section 2.4.7 to Section 2.4.9. 

The distribution width given below is for the reinforcement moment mry in the 
transversal direction as defined in equation (2-31) Section 2.4.4. 

For a single load F modelled as a surface load in Figure 2.36a or a concentrated point 
load in Figure 2.36b, the distribution width wx for the ultimate limit states is given by: 





+

++
=

cs

x
yd

tbd
w

10

7
min  (2-53) 

Where d =   effective depth at the critical cross section 
b =  width of the load in case of surface load 
t =  thickness of the surfacing 
ycs =  distance from the centre of the load (resultant force) to the critical  

cross section 
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wx 

t 

Surface load F 

c 

b 

ycs 

F 

Critical section 

Center of the load 

wx 

t 

Point load F 

ycs 

F 

Critical section 

(a) (b) 

h 

 

Figure 2.36. Distribution width wx for the reinforcement moment mry in the transverse 

direction: (a) a single force modelled as surface load F (b) a single 

force modelled as concentrated load F. Based on Pacoste et al. (2012). 

The distribution width in equation (2-53) is valid to use if the ratio between the height 
of the compression zone xu and the effective depth d at the critical section fulfil: 

25.015.0 ≤≤
d

xu                     for concrete classes  C12/15 to C50/60 (2-54) 

15.010.0 ≤≤
d

xu                     for concrete classes C55/67 and greater (2-55) 

If xu/d does not fulfil these requirements, the distribution width wx can instead be 
determined as: 

tbhw ++= 2min  (2-56) 

Where h =   height of the cantilever slab at the critical cross section. 
 
The distribution width for serviceability limit states is also given by equation (2-56). 
In case of many forces that are located close to each other so that the distribution 
width of each force overlaps each other, a distribution width can be computed based 
on Figure 2.37 and equation (2-57). 
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wxR 

c1 

b1 

ycs 

F1 

Critical section 

R 

Surface load F1 

c2 

b2 Surface load F2 

F2 F3 

Resultant force R 

wxR=2xR+wx 

xR 

 

Figure 2.37. Distribution width xRw  for the reinforcement moment 
rym  in the 

transverse direction for two or several forces located close to each 

other. Based on Pacoste et al. (2012). 

xRxR wxw += 2  (2-57) 

Where wx =  distribution width in case of a single force 
 

2.4.10.2 Distribution width for shear force 

The distribution of shear force in the cantilever slab in Figure 2.36 is performed based 
on the principal shear in equation (2-43). The distribution width is conducted along 
the longitudinal x-direction. The limitation of the distribution width, point 2 in 
Section 2.4.9, still applies in this case. The limitation of the distribution width for 
shear forces in case of the cantilever slab that consists of load and geometrical 
symmetry can be found in Figure 2.38. For a cantilever slab that provides 
unsymmetrical response, the principle illustrated in Figure 2.32a is applied.  
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v0(1) v0(2) v0(1) v0(2) 

v0(3) v0(3) 

weff 

α≥450 

α≤450 

symmetry line 

)( 0vxw
 

Figure 2.38. Limitation for the distribution width )( 0vxw  in case of load and geometry 

symmetry. From Pacoste et al. (2012). 

The critical cross-section for shear forces in case of a single force or a group of forces 
placed in the same row is the same and is always placed at a distance of ycs = (c+d)/2 
from the centre of the load as shown in Figure 2.39. 

t 

Surface load F 

c 

b 

F 

Critical section 

Center of the load 

(a) 

(b) 
h 

2

dc
ycs

+
=

)( 0vx
w

y

Critical section 

2

dc
ycs

+
=

)( 0vx
w

1F

2F

Rx

d≥

y

 

Figure 2.39. Critical cross Section for shear forces located at a distance y from 

console: (a) a single force modelled as surface load F (b) a group of 

forces in the same row modelled as surface load F. From Pacoste et al. 

(2012). 
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The rule for ycs in Figure 2.39 is also applied for axle load modeled as concentrated 
force if the position of the center of that concentrated force is coincide with the center 
of the surface load shown in Figure 2.36. 

Pacoste et al. (2012), provided a recommendation on the distribution width for the 
case shown in Figure 2.39 as following: 
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csyd

tbd
w

10

7
minmin          for maxyy =  (2-58) 





+
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=
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w

10

7
maxmax         for 0=y  (2-59) 

Where ymax is defined in Figure 2.40 for single load. For the position of critical cross 
section y located in between y = 0 and y = ymax, linear interpolation can be used to 
determine the distribution width wx(v0). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

43 FF +

2

dc
ycs

+
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maxy

y

maxw for y=0 

minw for maxyy =
)( 0vxw ] [max, yyy∈for 

 

Figure 2.40. Distribution widths for shear forces -single load. From Pacoste et al. 

(2012). 

For the loading situations in which several forces are situated in such a way that the 
distribution width from each force overlaps each other, the distribution width for the 
whole group of forces can be computed by equation (2-57) from Figure 2.37. 
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3 Reinforced concrete cantilever beam 

3.1 Introduction 

The understanding of the structural response of the cantilever beam in elastoplastic 
case is very essential since the slab in elastoplastic case in Chapter 4 was analysed 
using beam grillage of beam elements. In order to give a better understanding of the 
behaviour of the reinforced cantilever beam in elastoplastic case, examples were 
carried out. FE analysis of the cantilever beam was carried out using the student 
version of FE software ADINA, ADINA (2011) with a maximum of 900 nodes. For 
the analysis of the cantilever beam in elastoplastic case, the beam was modelled using 
beam elements and some modelling simplifications including equivalent Young’s 
Modulus were made. 

 

3.2 Equivalent Young’s modulus 

For beam elements, ADINA allows an elasto-plastic analysis of a structure using 
either a cross-section with rectangular shape and a plastic material model, or an 
elasto-plastic moment-curvature model. For bilinear plastic material model and 
moment-curvature model with multilinear plasticity, the reader can refer to 
APPENDIX A. 

With bilinear plastic material response, it is not possible to capture the tension 
stiffening effect of reinforcement concrete structures. Hence, it is difficult to choose a 
correct Young’s Modulus. ADINA does not recognize that the section is cracked as it 
assumes that the first part of the curve represent linear elastic response. It means that 
the behaviour of the structure is in uncracked state. ADINA considers the stiffness 
given by the user as stiffness of uncracked section. In a simplified bilinear model in 
state II, it is reasonable to model the section as a fully cracked section without taking 
into account the tension stiffening effect, which means that the state II stiffness (fully 
cracked section) is used. ADINA uses Young’s modulus to capture the stiffness of 
cross-section for beam elements. In order to perform state II analysis and model a 
fully cracked section it is necessary to find an equivalent Young’s modulus. This 
equivalent Young’s modulus is determined based on the relationship between 
Young’s modulus of uncracked concrete section, the moment of inertia in state I and 
the moment of inertia of cracked section in state II. Thereby, the equivalent Young’s 
modulus can be expressed as following: 

I

II

III
I

I
EE =  (3-1) 

Where =IE  Young’s modulus of uncracked state, i.e. EI = Ec 

=IIE  Equivalent Young’s modulus in order to get the correct stiffness of fully  
          cracked section state II. 

=II  moment inertia of uncracked state 

=III  moment inertia of cracked state 
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It should be noted that the equivalent Young’s modulus is used in order to give an 
input in ADINA FE program so that it is possible to get the correct stiffness in 
cracked state. Accordingly, it is important to note that the equivalent Young’s 
modulus has no physical meaning as the Young’s modulus is constant in a real 
structure. 

 

3.3 FE-elements 

In ADINA FE program, beam elements can be modelled by a 2D beam element or a 
3D beam element. The description of 2D beam action and 3D beam action is given in 
APPENDIX A. 

In order to provide a better understanding of the response of the beam elements in 
elasto-plastic case, the analyses of 2D beam and 3D beam elements with different 
mesh sizes were carried out. Convergence study of 2D beam and 3D beam elements in 
elasto-plastic was also performed. The results received from FE analyses were 
compared with the analytical solutions. 

 

3.4 Geometry and loading 

A 1.6 m long, 0.2 m width and 0.2 m thickness cantilever beam subjected to a point 
load of 100 kN shown in Figure 3.1was examined. 

x 

y 

L = 1.6 m
m

b = 0.2 m 

t = 0.2 m 

F = 100 kN 

 

Figure 3.1. Cantilever beam subjected to a point load of 100 kN. 

 

3.5 Elasto-plastic case 

3.5.1 2D beam element-bilinear plastic material model 

When analysing a cantilever beam in elasto-plastic case using 2D beam elements, 
ADINA provides the possibility to use 3-7 integration points over the cross-section, 
but the default value for this 2D action is 3. If 3 integration points over the cross-
section height is chosen, the stress over the cross-section will vary linearly. The 
analysis of a cantilever beam using displacement control in Figure 3.2a was carried 
out so that the analysis can be performed until the moment capacity provided by 
ADINA reaches its maximum value, creating a plateau in the load-displacement 
relation. The stress distribution in Figure 3.2b is used to determine the input of 
fictitious yield stress depicted in Figure 3.3. 
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L = 1.6 m
m

u = 0.3 m 

fyd b = 0.2 m 

t = 0.2 m 

fyd 

(a) (b) 
 

Figure 3.2. (a) Geometry of the cantilever beam studied under displacement control 

(b) stress distribution using 3 integration points over the cross-section 

height for 2D beam in ADINA. 

The moment capacity of the cross section in elastic state can be computed in 
equation (3-2). 

elydRd WfM ⋅=  (3-2) 

The moment capacity is chosen not be less than the exterior moment from the applied 
load in Figure 3.1. Therefore, the moment resistance of the cross-section can be 
expressed as: 

kNm1606.1100 =⋅=⋅== LFMM analyRd
 (3-3) 

The elastic bending resistance wel is computed in equation (3-4). 

6

2
bh

Wel =  (3-4) 

Therefore, the fictitious yield stress can be derived in equation (3-5).  

MPa120
2.02.0

1016066
2

3

2
=

⋅

⋅⋅
==

bh

M
f Rd

yd
 (3-5) 

The stiffness Ec,II = 6 GPa is chosen for this analysis. The material data input for the 
analysis is illustrated in Figure 3.3. 

 

 

ε 

EII = 6 GPa 
ν = 0 

σ 

1 

fy = 120 MPa Mexpected = 160 kNm 

 

Figure 3.3. Material data used in ADINA for elasto-plastic analysis using 2D beam. 
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Three element mesh sizes including 0.2 m element size, 0.1 m element size and 
0.025 m element size were computed in order to investigate the convergence problem. 
The results of the analysis are summarized in Table 3.1. The difference in percentage 
between analytical solution and those obtained from the FE analysis can be 
determined in equation (3-6) and (3-7). 

analytic

Adinaanalytic

DMelsto
M

MM −
⋅=− 1002,γ  (3-6) 

analytic

Adinaanalytic

DRelsto
R

RR −
⋅=− 1002,γ  (3-7) 

Where =analyticM  moment obtained from analytical solution 

=AdinaM  moment obtained from finite element program ADINA 

=analyticR  reaction force obtained from analytical solution 

=AdinaR  reaction force obtained from finite element program ADINA 

=− DMelsto 2,γ  difference in percentage between analyticM  and AdinaM  

=− DRelsto 2,γ  difference in percentage between analyticR  and AdinaR  

Table 3.1.  Bilinear plastic material model-2D beam elements 

Element 

size (m) )(kNm

M analy
 

)(kN

Ranaly
 

)(kNm

M Adina  
)(kN

RAdina  
[ ]%

2, DMelasto −γ
 

[ ]%
2, DRelasto −γ

 

0.2 -160 -100 -166.9 -104.3 -4.3 -4.3 

0.1 -160 -100 -163.4 -102.1 -2.1 -2.1 

0.025 -160 -100 -160.8 -100.5 -0.5 -0.5 

From Table 3.1, it is seen that the solution converge to the analytical solutions if finer 
mesh is chosen. As a result, a conclusion can be drawn that for elasto-plastic analysis 
using 2D beam elements, a more accurate result can be achieved if sufficient fine 
mesh is provided. 

 

3.5.2 3D beam element-bilinear plastic material model 

Unlike the elasto-plastic case with 2D beam element in Section 3.5.1, ADINA 
provides no possibility to choose the number of integration points over the cross-
section height when using 3D beam elements. Instead, ADINA uses 7 integrations 
points over the height by default regardless of input data for this problem. In this case, 
Newton-Cotes integration is used in all coordinate directions. Since 7 integration 
points are used, the analytical stress distribution in Figure 3.4a is expected. According 
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to Augustsson and HÄRENSTAM (2010), ADINA uses a polynomial equation of 
order six to compute the stress distribution over the cross-section height as shown in 
Figure 3.4b. Based on Figure 3.4b, it is seen that the expected stress distribution 
provided by ADINA is expected at the integration point. However, the stress 
distribution in between the integration points is determine by polynomial equation of 
order six and it generates a bending resistance that is about 4 % smaller than that 
expected, see Figure 3.4a. In order to get the expected moment capacity of the section 
by using the stress distribution provided by ADINA, a fictitious yield stress fy

mod need 
to be used in bilinear plastic material input in ADINA instead of fy

expected. The 
fictitious yield stress fy

mod can be computed using equation (3-8). For the derivation of 
equation (3-8) and α factor, the reader can refer to APPENDIX B. 

2
mod 1

hb

M
f Rd

y
⋅

=
α

 (3-8) 

Where fy
mod =  modified fictitious yield stress when using 7 integration points 
α =  0.231 = factor to transform fy to fy

mod when using 7 integration points 
 

(a) 

fyd 

fyd 

(b) 

fyd 

fyd 

 

Figure 3.4. Stress distribution over the cross-Section height (a) analytical expected 

stress distribution (b) stress distribution in ADINA. 

The same cantilever beam in Figure 3.2a was analysed with bilinear plastic material 
input in Figure 3.5. The modified fictitious yield stress of bilinear plastic material 
input in Figure 3.5 is calculated in equation (3-9). 

MPa6.86
2.02.0

10160

23094.0

11
2

3

2
mod =

⋅

⋅
⋅=

⋅
⋅=

hb

M
f Rd

y
α

 (3-9) 

 

MPa6.86mod =yf
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ν = 0 
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Mexpected = 160 kNm 

 

Figure 3.5. Material data used in ADINA for elasto-plastic analysis using 3D beam. 
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Six element mesh shown in Table 3.2 were chosen in order to perform the 
convergence study. The result of the analysis is summarized in Table 3.2 and 
Figure 3.6. The difference in percentage between analytical solutions and those 
obtained from FE analysis are computed using equation (3-10) and (3-11). 

analytic

Adinaanalytic

DMelsto
M

MM −
⋅=− 1003,γ  (3-10) 

analytic

Adinaanalytic

DRelsto
R

RR −
⋅=− 1003,γ  (3-11) 

Table 3.2.  Bilinear plastic material model-3D beam elements. Difference in 

percentage between expected moment capacity and the moment capacity 

provided by ADINA. 

Element 

size (m) )(kNm

M analy
 

)(kN

Ranaly
 

)(kNm

M Adina  
)(kN

RAdina  
[ ]%

3, DMelasto −γ
 

[ ]%
3, DRelasto −γ

 

0.2 -160 -100 -166.9 -104.3 -4.3 -4.3 

0.1 -160 -100 -163.4 -102.1 -2.1 -2.1 

0.05 -160 -100 -161.6 -101.1 -1.1 -1.1 

0.025 -160 -100 -160.8 -100.5 -0.5 -0.5 

0.01 -160 -100 -160.3 -100.2 -0.2 -0.2 

0.005 -160 -100 -160.1 -100.1 -0.1 -0.1 

 

 

Figure 3.6. Moment capacity for 3D beam in term of element sizes. 
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From Figure 3.6, it is seen that the moment capacity provided by FE analysis ADINA 
is not exactly equal to the expected moment capacity, but it converges to the 
analytical solution when a very fine mesh is given. It is known that only the first 
element of the entire beam yield. Therefore, it is possible to determine a lever arm that 
is based on the moment capacity received from FE analysis. This lever arm is shown 
in Figure 3.7b. The equation (3-12) to equation (3-15) gives this modified lever arm. 

L = 1.6 m
m

uz = 0.3 m 

(a) 
Ranalytic 

Manalytic 

L’ 

uz = 0.3 m 

(b) 

RAdina 

MAdina 

 

Figure 3.7. (a) Lever arm determined from Manalytic (b) Lever arm computed from 

MAdina. 

The analytical moment from the load kN100=F in Figure 3.1 is determined in 
equation (3-12). 

kNm1606.1100 =⋅=⋅= LRM analyticanalytic
 (3-12) 

The moment received from the FE analysis for the same load is determined in 
equation (3-13). 

'
LRM AdinaAdina ⋅=  (3-13) 

Since the analytical moment is expected to be equal to the moment from the FE 
analysis, the equation (3-14) can be derived. 

'
LRM Adinaanalytic ⋅=  (3-14) 

Therefore, the lever arm shown in Figure 3.7b can be computed using equation (3-15). 

Adina

analytic

R

M
L ='  (3-15) 

As the first element yields, it is possible to find factor α that relates the lever arm 
computed from moment received from FE analysis to the element sizes used in the 
analysis. This factor α  can be determined as: 

elL

LL
'−

=α  (3-16) 
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Table 3.3.  Bilinear plastic material model-3D beam elements. Lever arm computed 

from moment capacity received from ADINA. 

Element 

size (m) )(kNm

M analy
 

)(kN

Ranaly
 

)(m

Lanaly
 

)(kNm

M Adina  
)(kN

RAdina  
)(

'

m

LAdina
 [ ]−

α
 

0.2 -160 -100 1.6 -166.9 -104.3 1.533 0.334 

0.1 -160 -100 1.6 -163.4 -102.1 1.567 0.334 

0.05 -160 -100 1.6 -161.6 -101.1 1.583 0.335 

0.025 -160 -100 1.6 -160.8 -100.5 1.592 0.336 

0.01 -160 -100 1.6 -160.3 -100.2 1.597 0.340 

0.005 -160 -100 1.6 -160.1 -100.1 1.598 0.348 

From Table 3.3, it is observed that the lever arm computed from moment capacity 
received from ADINA is located about one third of the element length from the fixed 
support Lα = Lele/3 where Lα is this defined. 

 

3.5.3 3D beam element-moment curvature model 

As mentioned earlier, ADINA provides the possibility to compute the moment 
capacity using moment-curvature relationship. The input is based on the moment and 
corresponding curvature and it is not based on the yield stress any longer. The 
moment capacity is expected to be equal to maximum moment in the moment-
curvature relationship in Figure 3.8. The same cantilever beam in Figure 3.2a is 
examined. The moment curvature input is calculated using equation (3-17) and (3-18) 
and are shown in Figure 3.8. 

Since the influence of the element size on the ultimate moment capacity is interested 
in this case, the stiffness in state I and state II is not so important. The curvature of the 
first branch of the moment-curvature diagram in Figure 3.8 χI is determined from 
equation (3-17). Here, Mplastic = 3 Manaly/4 is chosen. 
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The curvature of the second branch of the same moment-curvature diagram χII is 
determined from equation (3-18). 
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The curvature of the third branch χIII is set to 10 so that FE analysis will not stop under 
certain load application. It means that under the applied vertical displacement-uz, the 
curvature received from FE analysis will never pass χIII = 10. 

)m( -1χ  

M (kNm) 

EI 

EII 

Manaly = 160 

0125.0=Iχ  2.0=IIχ  

Mplastic = 50 

10=IIIχ  

EI = 30 GPa 

EII = EI /5= 6 GPa 

 

Figure 3.8. Moment curvature relationship input for 3-D beam in elastic-plastic 

case. 

The same element mesh sizes as in Table 3.2 were chosen in order to perform the 
convergence study and compare with the results obtained from the analysis of 3D 
beam using bilinear plastic material. The results of the analysis are summarized in 
Table 3.4 and Figure 3.6. The difference in percentage between analytical solutions 
and those obtained from FE analysis can also be computed using equation (3-10) and 
equation (3-11) in Section 3.5.2. 

Table 3.4.  Moment-curvature model-3D beam elements. Difference in percentage 

between expected moment capacity and the moment capacity provided 

by ADINA. 

Element 

size (m) )(kNm

M analy
 

)(kN

Ranaly
 

)(kNm

M Adina  
)(kN

RAdina  
[ ]%

3, DMelasto −γ
 

[ ]%
3, DRelasto −γ

 

0.2 -160 -100 -166.957 -104.348 -4.35 -4.35 

0.1 -160 -100 -163.404 -102.128 -2.13 -2.13 

0.05 -160 -100 -161.684 -101.053 -1.05 -1.05 

0.025 -160 -100 -160.838 -100.524 -0.52 -0.52 

0.01 -160 -100 -160.334 -100.209 -0.21 -0.21 
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0.005 -160 -100 -160.167 -100.104 -0.10 -0.10 

 

 

Figure 3.9. Moment capacity for 3D beam in term of element sizes-moment 

curvature input. 

Figure 3.9 is similar to Figure 3.6. From Figure 3.9, it is seen that the moment 
capacity provided by FE analysis ADINA converges to the analytical solution when a 
very fine mesh is given. 

The lever arm that is based on the moment capacity received from FE analysis in case 
of moment-curvature relationship in Figure 3.8 can also be determined using 
equation (3-15) and equation (3-16). 

Table 3.5.  Moment curvature model-3D beam elements. Lever arm computed from 

moment capacity received from ADINA. 

Element 

size (m) )(kNm

M analy
 

)(kN

Ranaly
 

)(m

Lanaly
 

)(kNm

M Adina  
)(kN

RAdina  
)(

'

m

LAdina
 [ ]−

α
 

0.2 -160 -100 1.6 -166.957 -104.348 1.533 0.333 

0.1 -160 -100 1.6 -163.404 -102.128 1.567 0.333 

0.05 -160 -100 1.6 -161.684 -101.053 1.583 0.333 

0.025 -160 -100 1.6 -160.838 -100.524 1.592 0.334 
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0.01 -160 -100 1.6 -160.334 -100.209 1.597 0.334 

0.005 -160 -100 1.6 -160.167 -100.104 1.598 0.332 

From Table 3.5, it is observed that the lever arm computed from moment capacity 
obtained from FE analysis ADINA is also situated at about one third of the element 
length from the fixed support, i.e. Lα = Lele/3. 

The comparison between plastic material and moment-curvature model using 3D 
beam has been made. The comparison showed that the same response was obtained. 

 

3.5.4 Alternative methods for plastic rotation of cantilever beam 

Since the main purpose of this thesis work is to determine the distribution width, it is 
also essential to determine the plastic rotation of the structure studied. Due to this, the 
plastic rotation of the cantilever beam in Figure 3.10 was examined. When subjected 
to an increasing deformation, a plastic rotation developed in the element next to the 
fixed support. However, since this cantilever beam is fixed at the support, it is not 
possible to determine the plastic rotation at that fixed point directly from the FE 
program ADINA. The reason is that when modeling the structure, the node at the 
fixed support of the beam was fixed. Therefore, the rotation at that point is zero. 
Although it is not possible to determine the plastic rotation of the cantilever beam 
studied directly from the FE program ADINA, there are three alternative methods that 
can be used to determine the plastic rotation of this cantilever beam. The first and the 
second method are based on plastic curvature while the third method depends on 
displacement and rotation relationship. For the description of these methods, see 
APPENDIX E. 

L = 1.6 m
m

uz = 0.3 m 

(a) 
Ranalytic 

Manalytic 0.05 m 

0.2 m 

L = 1.6 m
m

0.2 m 0.2 m 

(b)  

Figure 3.10. (a) Geometry of the cantilever beam (b) two different meshes. 

The difference in percentage between method 1, method 2 and method 3 are 
calculated from equation (3-19), equation ((3-20) and equation (3-21), respectively. 

1,

2,1,

12 100
methodpl

methodplmethodpl

θ

θθ
γ

−
⋅=  (3-19) 
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1,

3,1,

13 100
methodpl

methodplmethodpl

θ

θθ
γ

−
⋅=  (3-20) 

2,

3,2,

23 100
methodpl

methodplmethodpl

θ

θθ
γ

−
⋅=  (3-21) 

In this Section, only the cantilever beam with two different meshes, as shown in 
Figure 3.10, was examined. For the cantilever beam with single mesh, see 
APPENDIX E. 

Table 3.6 and Table 3.7 summarise the results of the plastic rotation of the studied 
cantilever beam in Figure 3.10 with bilinear moment curvature input in Figure E.5 and 
trilinear moment curvature input in Figure E.8 of APPENDIX E. The results in 
Table 3.6 and Table 3.7 are taken from the results in Table E.2 and Table E.3 of 
APPENDIX E. 

Table 3.6.  Comparisons of plastic rotation of the cantilever beam studied between 

the three methods using bilinear moment curvature relationship model. 

Prescribed 

displacement upre 

(mm) 
120 150 180 195 210 300 

Reaction force R 

(kN) 
70.3 87.9 101 101 101 101 

∑ ∆⋅=
i

iiplpl x
0

,1, χθ

)rad10( 3−  

0 0 4.79 14.3 23.7 80.6 

2
1,1,

2,
elpl

pl

l⋅
=

χ
θ

)rad10( 3−  

0 0 5.04 14.5 24 80.8 

33,

L

L

u ela

pl

⋅
−=

χ
θ

)rad10( 3−  
0 0 5.83 15.2 24.6 80.8 

[ ]%12γ  - - -5.3 -1.7 -1.1 -0.3 

[ ]%13γ  - - -21.7 -6.6 -3.5 -0.3 

[ ]%23γ  - - -15.6 -4.7 -2.4 0 

 

From Table 3.6 it is seen that method 2 provides a larger plastic rotation than method 
1 and method 3. The difference in percentage between method 1, method 2 and 
method 3 for plastic rotation of the cantilever beam converges when the prescribed 
displacement becomes larger and larger. As a result, it is concluded that method 2 is 
conservative method that is suitable to approximately determine the plastic rotation of 
the studied cantilever beam. Therefore method 2 will be used to determine a plastic 
rotation of the cantilever slab in Chapter 4. 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:100 
57 

Table 3.7.  Comparisons of plastic rotation of the cantilever beam studied between 

the three methods using trilinear moment curvature relationship model. 

Prescribed 

displacement upre 

(mm) 
120 150 180 195 210 300 

Reaction force R 

(kN) 
90 101 101 101 101 101 

∑ ∆⋅=
i

iiplpl x
0

,1, χθ

)rad10( 3−  

0 3.12 22.1 31.5 41 97.9 

2
1,1,

2,
elpl

pl

l⋅
=

χ
θ

)rad10( 3−  

0 3.29 22.2 31.7 41.2 98 

[ ]%12γ  - -5.38 -0.76 -0.53 -0.41 -0.17 

 

Like bilinear moment-curvature results in Table 3.6, it is seen that difference for 
plastic rotation between method 1 and method 2 converges for large prescribed 
vertical displacement although method 2 still gives larger plastic rotation compared to 
method 1. Therefore method 2 will be used to determine a plastic rotation of the 
cantilever slab in Chapter 4. 

It is also noted that method 3 is only valid for bilinear moment-curvature input. This 
method cannot be used with multi-linear moment curvature input for elasto-plastic 
case since it assumes a linear response prior to yielding. 
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4 Cantilever slab 

4.1 Introduction 

Since there is no analytical solution for cantilever slabs under point loads like in 
Figure 2.23, various analysis of cantilever slabs are performed using FE program 
ADINA in order to better understand its behaviour. The slab studied is first analysed 
with shell elements since the shell element is the most appropriate element type that 
are used for slab analysis. The reader can refer to APPENDIX A for further 
description of shell element. Since the aim of this thesis is to study the distribution of 
moments and shear forces, it is necessary to perform an analysis that can capture the 
behaviour of the slabs both in service limit state (load which is lower than the load 
that will cause yielding of the reinforcement) and in ultimate limit state (load that 
cause the yielding of reinforcement), i.e. to capture its response from uncracked state 
until the failure of the structure. In order to do so, different material models such as 
linear elastic isotropic and orthotropic material, and bilinear and multi-linear elasto-
plastic models are used so that it is possible to investigate the response of the slab in 
different states. 

 

4.2 Geometry and loading 

An 8 m long and 1.6 m wide cantilever slab supported along one of the long edges 
and free at the other is subjected to a point load 200 kN, illustrated in Figure 4.1. In 
this report, the analysis was carried out using the student version of the FE software 
ADINA with a maximum of 900 nodes. As there is a restriction of the number of 
nodes used in the analysis, the symmetric cantilever slab with the dimensions shown 
in Figure 4.1c was studied instead. 
 

L=8 m 

b=1.6 m 

L=4 m 

b=1.6 m 

symmetry line 

(b) 

x 

F=200 kN 

F=100 kN 

L=8 m 

t=0.2 m 

(a) 

F=200 kN 

b=1.6 m 

(c) 

y 

z 

x 

y 

 

Figure 4.1. The dimension of the studied cantilever slab: (a) perspective view (b) 2D 

view (c) symmetrical geometry 2D view. 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:100 
59 

Five different result lines, L1, L2, L3, L4 and L5, in plan as shown in Figure 4.2 were 
chosen in order to provide a better understanding of how different parts of the slab 
respond due to point load. 

Where =1L  result line along symmetry line. 

=2L  result line located 0.8 m away from symmetry line. 

=3L  result line along long free edge. 

=4L  result line 0.8 m away from fixed edge. 

=5L  result line along fixed edge. 

 

L=4 m 

b=1.6 m 

L1 L2 

L5 

L4 

L3 

symmetry line 

0.8 m 

0.8 m 

0.8 m 

F=100 kN 

y 

x 

x 

y 

z 

 

Figure 4.2. Result lines for moment and shear force distribution. 

It is also noted that these five result lines were chosen as the interested lines from the 
very beginning of the study in order to understand structural response of the studied 
slab, but only L1, L2, L4 and L5 were used. 

 

4.3 Isotropic case 

4.3.1 Slab with shell elements 

In this report, 4-nodes shell elements were used to analyses the slab in Figure 4.2. 
Since there is no analytical solution available for this type of slab, two different 
element sizes of shell elements, 0.1 m and 0.2 m element sizes for both x- and y-
direction, were chosen to model the slab so that it was possible to perform a 
convergence study. 

For an isotropic material model, Hooke’s law in equation (2-2) applies. This model 
assumes linear elastic response of the slab. A Young’s modulus Ec,I = 30 GPa, 
corresponding to the stiffness of state I and a Poisson’s ratio ν = 0 shown in 
Figure 4.3 were used for this analysis. 

ε 

E = 30 GPa 
ν = 0 

σ 

1 

 

Figure 4.3. Material data used in ADINA for the isotropic case. 
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4.3.1.1 Moment 

The moment distribution my along lines L1 and L5 for 0.1 m and 0.2 m element sizes of 
shell element are plotted in Figure 4.4a and Figure 4.4b, respectively. As can be seen, 
the moment distribution my along both lines L1 and L5 of 0.1 m shell element sizes 
coincided well with those of 0.2 m shell element sizes; the deviation of my were 
almost negligible. 
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(a) 

(b)  

Figure 4.4. Moment distribution my from FE-linear elastic analysis, 0.1 m shell 

elements and 0.2 m shell elements with Poisson’s ratio ν = 0: (a) my 

along L1 (b) my along L5. 
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The sum of the reaction moments along the fixed supports for both cases was equal to 
the expected results as shown in equation (4-1). 
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kNm 160
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analyy

L

i

FEy  (4-1) 

Therefore, the analysis of the cantilever slab using shell elements with linear elastic 
material model is believed to be correct. From Figure 4.4b, it is seen that the 
maximum moment my,max obtained from the FE analysis is located next to the 
symmetry line as large portions of the applied load are transferred along the symmetry 
line toward the closet point of the fixed boundary along L5. The remaining parts of the 
load will be distributed along their load paths to the fixed support and the magnitude 
of the moment my therefore gradually decreases as shown in Figure 4.4b. In 
Figure 4.4a, there is a jump at about x = 1.4 m to x = 1.6 m  and x = 1.5 m to x = 1.6 m 
for 0.1 m and 0.2 m element sizes of shell element, respectively. 

 

4.3.1.2 Shear 

The distribution of shear force transferred in y direction, vy, along lines L5 for 0.1 m 
and 0.2 m element sizes of shell element is compared in Figure 4.5 and from this it 
can be concluded that the difference between the two models were small. 

 

Figure 4.5. Shear force distribution vy along L5 from FE-linear elastic analysis, 

0.1 m shell elements and 0.2 m shell elements with Poisson’s ratio ν = 0. 

The areas below both curves of the shear force distribution in Figure 4.5 were equal to 
the expected results as shown in equation (4-2). 
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=

=∑
kN 100

kN 100,, 5

F

v FELy  (4-2) 

From Figure 4.5, it is seen that the part of the slab closet to the point load was 
subjected to the maximum shear vy,max and the magnitude of the shear force vy 

gradually decreased along L5 from the symmetry line to the free edge. In Figure 4.5, 
vy < 0 at about x = 3.6 m to x = 4 m for both 0.1 m and 0.2 m element sizes of shell 
element. The reason for this disturbance is due to the torsional effect at the free edge 
of the slab. It might also indicate uplifting of the part of the slab in that region. In 
order to investigate this disturbance, a parametric study in term of the change of the 
length of the studied slab was performed. Two more analyses of slab using shell 
elements as shown in APPENDIX D were conducted for the shear forces distribution 
along L5. 

 

4.3.1.3 Vertical displacement 

Like the moment distribution my and the shear forces distribution vy illustrated in 
Figure 4.4 and Figure 4.5, respectively, the difference between the vertical 
displacement uz along L1 and L2 in the two models studied is very small, see 
Figure 4.6. There is a large vertical displacement under the applied load. The vertical 
displacement gradually decreases toward the fixed support where uz = 0. 

 

Figure 4.6. Vertical displacement uz along L1 from FE-linear elastic analysis, 0.1 m 

shell elements and 0.2 m shell elements with Poisson’s ratio ν = 0 

Based on the results received from linear FE analysis in Figure 4.4, to Figure 4.6, it is 
concluded that shell elements are the most appropriate elements for the analysis of the 
cantilever slab studied in linear elastic analysis. As the 0.1 m shell elements and 0.2 m 
shell elements sizes provide almost identical results, it is reasonable to consider these 
results comparable with analytical solutions. It is concluded that it is sufficient to use 
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only 0.2 m shell elements, and that these results can be used as a reference for 
comparison with beam grillage of beam elements in Section 4.3.2. For the moment 
distributions, shear forces and displacement of other result lines, reader can refer to 
APPENDIX C. 

 

4.3.2 Slab with beam grillage model 

A beam grillage model is composed of beam elements in both x- and y-direction 
which intersect each other at common intersection points, see Figure 4.7. The beam 
grillage model can be used to simulate the behaviour of a slab with the beams in x- 
and y-direction representing the strips in x- and y-direction of the slab, respectively. 

Intersection point 

L=4 m 

b=1.6 m 

Beam element along y-direction 

Beam element along x-direction 

symmetry line 

F=100 kN 

x 

y 

 

Figure 4.7. Arrangement of beam grillage elements in slab model 

In order to make a comparison between the result from FE linear elastic analysis for 
shell elements and beam elements, the same cantilever slab in Figure 4.2 with the 
same material data as in Figure 4.3 are examined using beam grillage model. Three 
different element sizes of beam elements, 0.1 m, 0.2 m and 0.4 m element sizes for 
both x- and y-direction, are chosen to model the slab so that it is possible to perform a 
convergence study. 

In ADINA FE program, beams can be modelled by 2D beam elements or 3D beam 
elements as described in Chapter 3 and APPENDIX A. Since the slab studied also will 
obtain torsional effects, torsional response needs to be included for the beam elements 
and, consequently, 3D beam element is the appropriate choice in this case. 

 

4.3.2.1 Moment 

Based on the results shown in Figure 4.8, it can be seen that moment distribution my 

along both L1 and L5 depends on the element sizes. It is seen that there is a large 
difference in my along both L1 and L5 when using beam grillage model with different 
element mesh sizes. 
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(a) 

(b)  

Figure 4.8. Moment distribution my from FE-linear elastic analysis, 0.1 m beam 

grids, 0.2 m beam grids and 0.4 m beam grids elements with Poisson’s 

ratio ν = 0: (a) my along L1 (b) my along L5. 

Since the beams are connected to each other, there is an additional stiffness added to 
the loaded beam from the crossing beams at the intersection points due to the torsional 
effect. A coarse mesh means that the beams will have a larger width, which will affect 
the size of their torsional difference. Thus, the torsional stiffness is mesh dependence. 
This can be further described by using equation (4-3) for the torsional stiffness of 
rectangular a cross section. 
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3
1tbcK v =  (4-3) 

Where =vK torsional stiffness of a rectangular cross-section. 

=1c  factor depending on the height and width of the rectangular cross-section 
          determined from Table 4.1. 

=t    height of a rectangular cross-section 
=b    width of a rectangular cross-section 

Table 4.1.  The factor c1 depends on the ratio between the height, t, and width, b, of 

the rectangular cross-section. 

t/b 1 2 4 ∞

 
1c  0.141 0.229 0.281 0.333 

     

For instance, if the width of the cross-section decreases with a factor of two, the 
torsional stiffness vK decreases with a factor of eight. 

82

3
1

3

1

tbcb
tcKv =








=  (4-4) 

From Figure 4.8, it can be concluded that a decrease in grid mesh size does not lead to 
convergence with respect to the analysis results. Instead, it was found that when the 
mesh was made more dense, the deflection of the slab increased; this is a consequence 
of the reduced torsional stiffness of the narrower beam elements It is also observed 
that the load distribution on the studied slab, when using beam elements, is similar to 
those of the slab when using shell elements. 

 

4.3.2.2 Shear 

The shear distribution vy along lines L5 for 0.2 m and 0.4 m beam element sizes, see 
Figure 4.9 is close to each other. Along this line, the shear distribution vy of 0.2 m and 
0.4 m beam element deviate a lot from shear distribution vy of 0.1 m beam element. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:100 66

 

Figure 4.9. Shear force distribution vy along L5 from FE-linear elastic analysis 

0.1 m beam elements,  0.2 m beam elements and 0.4 m beam elements 

with Poisson’s ratio ν = 0. 

Similarly to the shear distribution with shell elements in Figure 4.5, it can be seen 
from Figure 4.9 that vy < 0 at about x = 3.6 m to x = 4 m for 0.2 m and 0.4 m element 
sizes of beam element and vy < 0 at about x = 2.8 m to x = 4 m for 0.1 m beam 
element. The reason for this disturbance is believed to be the same as the one stated in 
Section 4.3.1.2. 

 

4.3.2.3 Vertical displacement 

Similar to the moment distribution my in Figure 4.8, vertical displacement uz along L1 

in Figure 4.10 varies due to the change of element sizes. The maximum vertical 
displacement uz occurs under the applied load. The vertical displacement-uz decreases 
gradually toward the fixed support where uz = 0. 

-40

-20

0

20

40

60

80

100

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

S
h

ea
r 

fo
rc

e,
 v

y
[k

N
m

/m
] 

Coordinate, x [m]

L5_0.1_beam

L5_0.2_beam

L5_0.4_beam



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:100 
67 

 

Figure 4.10. Vertical displacement uz along L1 from FE-linear elastic analysis, 0.1 m 

beam element, 0.2 m beam element and 0.4 m beam element with 

Poisson’s ratio ν = 0. 

Since the results received from beam grids model analyses greatly depend on the 
mesh sizes used, it is not possible to use the beam grids model directly for the analysis 
of the cantilever slab studied. One way to deal with such a problem is to compare the 
results of beam elements with different mesh sizes with the results from FE-analysis 
of the same slab with shell elements. The beam grillage model with a certain mesh 
size that provides the results most similar to those of the shell elements will be used 
for further analysis, i.e. orthotropic and elasto-plastic analysis. 

To sum up, it is recommended to use shell elements for the analysis of the studied 
cantilever slab in linear elastic analysis. It is also possible to analyses the cantilever 
slab studied in linear elastic case using beam grid models if the appropriate element 
meshes size is chosen in such a way that the torsional stiffness provided by that beam 
element sizes is close to the torsion of the slab using the shell elements.  

 

4.3.3 Comparisons between shell elements and beam elements 

As mentioned in Section 4.3.2, beam elements cannot be used directly for the linear 
elastic analysis of the cantilever slab studied as the results obtained from FE analysis 
greatly depends on the element mesh sizes. From Figure 4.11a and Figure 4.12a, it 
can be seen that 0.2 m beam element sizes provides the results most similar to that of 
0.2 m shell element. The different in percentage of moment distribution my between 
0.2 m shell elements and 0.2 m beam elements are computed as: 
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The difference in percentage between these two models along L1 and L5 is generally  
|γ| < 10 %, see Figure 4.11b and Figure 4.12b, respectively. These differences are 
believed to be acceptable. Therefore, the conclusion can be drawn that 0.2 m beam 
element sizes can be used for the analysis of the previous studied cantilever slab in 
orthotropic case and elasto-plastic case. It should be remarked that γ increases with 
increasing x and y due to the decrease of my along those lines. Therefore, a large value 
of γ is obtained when my is small. For instance, γ = -8.1014 in Figure 4.11b at 
x = 1.6 m since my,shell = 0 in Figure 4.11a at x = 1.6 m. 
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(a) 

(b)  

Figure 4.11. Moment distribution my from linear elastic FE-analysis with Poisson’s 

ratio ν = 0: (a) comparisons between 0.1 m, 0.2 m, 0.4 m beam elements 

and 0.2 m shell elements along L1 (b) difference in percentage between 

0.2 m beam elements and 0.2 m shell element along L1. 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:100 
69 

 
-120

-100

-80

-60

-40

-20

0

20
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

M
o
m

e
n

t,
 m

y
[k

N
m

/m
] 

Coordinate, x [m]

L5_0.1_beam

L5_0.2_beam

L5_0.2_shell

L5_0.4_beam

 
 
 

-5

0

5

10

15

20
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

R
a

to
i 

o
f 

m
o

m
e
n

t 
d

is
tr

ib
u

ti
o

n
, 
γ

[%
] 

Coordinate, x [m]

L5_0.2_shell

  
 

(a) 

(b)  

Figure 4.12. Moment distribution my from linear elastic FE-analysis with Poisson’s 

ratio ν = 0: (a) comparisons between 0.1 m, 0.2 m, 0.4 m beam elements 

and 0.2 m shell elements along L5 (b) difference in percentage between 

0.2 m beam elements and 0.2 m shell element along L5. 

 

4.4 Orthotropic case 

4.4.1 Slab with shell elements 

4.4.1.1 Convergence study 

The aim of this thesis is also to examine the response of the slab due to the change of 
stiffness in different directions. Therefore, it is necessary to perform an orthropic 
analysis of the same slab studied in Figure 4.2, but using an orthotropic material input 
given, in Table 4.2. In order to be sure that reinforced concrete slab modelled with 
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orthotropic material using shell elements still provides a reliable result, 0.1 m and 
0.2 m element sizes of shell element are examined. This way it is possible to compare 
the result of the slab with beam elements with those of shell elements received from 
the FE analysis. 

For the analysis of orthotropic slab using shell elements, three stiffness values in x-
direction is chosen while the stiffness in y-direction is kept constant, i.e. Ex = 0.2, 1, 
5Ey. 

In order to be able to run the analysis of shell element with orthotropic material in FE 
program ADINA, shear modulus, Young’s modulus and Poisson’s ratio in different 
directions are need. The shear modulus can be determined as: 

zxyyx

yx

xy
EEE

EE
G

ν2++
=  (4-6) 
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EE
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EE
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(4-8) 

The material data input when analyzing the studied elastic orthotropic slab with shell 
element in FE program ADINA is summarized in Table 4.2. 

Table 4.2 Material data for orthotropic analysis with shell elements 

 1 (Ex = Ey) 2 (Ex = 0.2Ey) 3 (Ex = 5Ey) 

)GPa(,xE  30 6 150 

)GPa(,yE  30 30 30 

)GPa(,zE  30 30 30 

xyν , xzν ,
yzν  0 0 0 

)GPa(,
2 zxyyx

yx

xy
EEE

EE
G

ν++
=  15 5 25 

)GPa(,
2 yxzzx

zx
xz

EEE

EE
G

ν++
=  15 5 25 

)GPa(,
2 zyzzy

zy

yz
EEE

EE
G

ν++
=  15 15 15 

The parameter Ez is not important in this case as the effect of this parameter is very 
small. 
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The results of vertical displacement uz in Figure 4.13 and moment distribution my in 
Figure 4.14 show that there are almost no differences in value between these two 
element sizes when using shell elements. The difference between the maximum 
vertical displacement uz,max for Ex = 0.2, 1, 5Ey are 1.1 %, 1.2 % and 1.2 % and the 
difference between the maximum value of my,max for Ex = 0.2, 1, 5Ey are 1.1 %, 0.6 % 
and 0.3 %, respectively. It is believed that shell element is an appropriate choice for 
the elastic orthotropic analysis of slab. As deviation between 0.1 m and 0.2 m shell 
element are considered negligible in this case, it is sufficient to use 0.2 m shell 
element in order to compare with the results obtained from orthotropic analysis of the 
same slab with beam element. 

 

Figure 4.13. Comparisons of vertical displacement uz from FE-elastic orthotropic 

with Poisson’s ratio ν = 0 between 0.1 m and 0.2 m shell along L1. 
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Figure 4.14. Comparisons of moment distribution my from FE-elastic orthotropic 

with Poisson’s ratio ν = 0 between 0.1 m and 0.2 m shell: (a) my along 

L1 (b) my along L5. 
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4.4.2 Structural response of orthotropic slab 

4.4.2.1 Moment 

In order to investigate a structural response due to the change of stiffness of the 
studied cantilever slab with orthotropic material input in Table 4.2, the orthotropic 
slab with Ex = 0.1, 0.2, 0.5, 1,2, 5, 10Ey are chosen to analyse with 0.2 m shell 
element. 
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Figure 4.15. Moment distribution my from FE-elastic orthotropic with Poisson’s ratio 

ν = 0 using 0.2 m shell: (a) my along L1 (b) my along L5. 
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From Figure 4.15a, it can be seen that when Ey is greater than Ex, i.e. the elements 
along the y-direction are stiffer than the elements along x-direction, the my distribution 

along L1 increases. Since the elements in y-direction become stiffer, a larger load 
portion tries to transfer through the stiff direction. The load distribution in the y-
direction is stronger than the load distribution in the x-direction. From Figure 4.15b, it 
is clearly seen that in case of the elements in the y-direction is stiffer than the 
elements in the x-direction, a large portion of the load is carried by the elements close 
to the middle of the slab. Only a small part of the load is resisted by the elements 
located further away from the load as there is less load distribution in the x-direction. 
It can also be noticed that the moment distribution my decreases sharply and is not 
well distributed along the fixed boundary. 

In case of the elements in the x-direction are stiffer than the elements along the y-
direction, Figure 4.15a shows that the my distribution along L1 decreases gradually. 
Further, Figure 4.15b illustrates that moment my along L5 is more distributed along the 
fixed support. This smooth distribution is less severe. The elements located close to 
the middle of the slab still resist larger loads than the elements located further away, 
but the difference is much smaller than the case when the y-direction is stiffer than the 
x-direction. 

The ratio of moment distribution γ in equation (4-9) is compared in Figure 4.16. 
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Figure 4.16. Ratio of moment distribution along L5. 
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direction are much stiffer than the elements in x-direction, i.e. Ex = 0.01Ey, is shown 
in Figure 4.17. 

 

Figure 4.17. Moment distribution my from FE-elastic orthotropic with Poisson’s ratio 

ν = 0 using 0.2 m shellmy along L5 when Ex = 0.01 Ey. 
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Figure 4.5. This negative value of shear vy < 0 is due to the same reasons explained in 
Section 4.3.1.2. 
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Figure 4.18. Shear force distribution vy along L5 from FE-linear elastic orthotropic 

analysis using 0.2 m shell elements with Poisson’s ratio ν = 0. 
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along the longitudinal direction. 

 

Figure 4.19. Vertical displacement uz from FE-elastic orthotropic with Poisson’s 
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4.4.3 Distribution width of orthotropic slab 

Due to the change of stiffness, moment and shear forces will distribute over a certain 
width denoted weff under a certain load level. In order to investigate the effect of the 
effective width in term of change of stiffness depending on factor α = Ex/ Ey, it is 
necessary to determine the effective width for moments weff,m and the effective width 
for shear forces weff,v. 

The effective width for moments weff,m is computed as: 
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Where =meffw ,  effective width for moment 

=ym  moment distribution my along L5 

=max,ym maximum moment my along L5 

 

The effective width for shear forces weff,v is computed as: 
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Where =veffw ,  effective width for shear 

=yv  shear force distribution vy along L5 

=max,yv  maximum shear force vy along L5 

 

The maximum moment and moment distribution in equation (4-10) are determined 
from Figure 4.15 and the maximum shear and shear forces distribution in 
equation (4-12) are determined from Figure 4.18. 

The difference between the effective width in case of α ≠ 1 and in case of α = 1 for 
moment γdiffernce,m and shear forces γdifference,v are computed in equation (4-14) and 
equation (4-15), respectively. 
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The ratio between the effective width in case of α ≠ 1 and in case of α = 1 for moment 
γratio,m and shear forces γratio,v are determined in equation (4-16) and equation (4-17). 
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The results of effective width weff of moments and shear forces are summarized in 
Table 4.3 and Table 4.4. 

Table 4.3.  Effective width weff,m, difference γdifference,m and ratio γratio,m between the 

effective width in case of α ≠ 1 and in case of α = 1 for moment. 

α  ∑
=

5

0

L

i

ym  max,ym  meffw ,  mdifference,γ  mratio,γ  

0.1 -160 -173.5 0.9 46.7 1.8 

0.2 -160 -142.1 1.1 34.9 1.5 

0.5 -160 -110.1 1.4 16.1 1.1 

1 -160 -92.4 1.7 0.0 1.0 

2 -160 -79.2 2.1 -16.6 0.8 

5 -160 -66.5 2.4 -38.9 0.7 

10 -160 -59.3 2.7 -55.8 0.6 

 

Table 4.4.  Effective width weff,v, difference γdifference,v and ratio γratio,v, between the 

effective width in case of α ≠ 1 and in case of α = 1 for shear. 

α  ∑
=

5

0

L

i

yv  max,yv  veffw ,  vdifference,γ  vratio,γ  

0.1 100 138.1 0.7 31.4 1.4 

0.2 100 127.1 0.8 25.5 1.3 

0.5 100 109.9 0.9 13.9 1.1 
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1 100 94.6 1.1 0.0 1.0 

2 100 78.2 1.2 -20.8 0.8 

5 100 58.1 1.7 -62.9 0.6 

10 100 45.9 2.1 -105.8 0.4 

 

 

Figure 4.20. Effective width in term of α = Ex/ Ey from FE-elastic orthotropic with 

Poisson’s ratio ν = 0 using 0.2 m shell element for moment and shear. 
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Figure 4.21. Ratio between effective width orthotropic and isotropic in term of 

α = Ex/ Ey from FE-elastic orthotropic with Poisson’s ratio ν = 0 using 

0.2 m shell elements for moment and shear. 

From Figure 4.20, it is seen that the effective width for moment weff,m increases with 
increasing α factor. Figure 4.20 also shows that when Ey is greater than Ex, i.e. α < 1, 
the effective width for moment weff,m is small since the elements in y-direction are 
stiffer than the elements in x-direction and a large portion of the load is carried by the 
elements close to the middle of the slab. When Ex is greater than Ey, i.e. α > 1, the 
distribution width for moment weff,m in Figure 4.20 is large as the x-direction are stiffer 
than the elements along the y-direction which leads to a more evenly distributed 
moment my along L5 as shown in Figure 4.15b.  

Like the effective width for moment weff,m, the effective width for shear forces weff,y in 
Figure 4.20 also increases with regard to increasing of α factor. Figure 4.20 also 
shows that the distribution width for shear force weff,v is also small when α < 1. 

Based on Figure 4.21, it is observed that the change of effective width for shear γratio,v 

is not linear whereas the variation of the effective width for moment γratio,m increases 
more linearly when α increases comparing to γratio,v. 
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introduce the stiffness Ey for the beam located in y-direction so that it simulates the 
orthotropic behaviour of the slab. 

In order to evaluate this simplified model, four different stiffness in x-direction is 
chosen while the stiffness in y-direction is kept constant, i.e. Ex = 0.2, 0.5, 1, 5Ey.The 
geometry and orthotropic properties of the slab in Figure 4.2 using simplified model is 
depicted in Figure 4.22 and the result lines in Figure 4.2 are still valid in Figure 4.22. 

Intersection point 

L=4 m 

b=1.6 m 

Beam element along y-direction, Ey 

Beam element along x-direction,  
Ex = α Ey (α = 0.2, 0.5, 1, 5.) 

symmetry line 

F=100 kN 

 

Figure 4.22. Simplified orthotropic slab model using beam elements  

From the comparisons between shell elements and beam elements for isotropic case in 
Section 4.3.3, it is clearly shown that 0.2 m beam elements provide the results most 
similar to those of the shell elements. Therefore, it is sufficient to use only 0.2 m 
beam elements to compare with the results of 0.2 m shell elements in orthotropic case. 
The different in percentage of moment distribution my, shear forces distribution vy and 
vertical displacement uz between 0.2 m shell elements and 0.2 m beam elements are 
computed using equation(4-18), equation (4-19) and equation (4-20) respectively. 
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For the comparisons of shear forces distribution vy and vertical displacement uz, 
readers can refer to APPENDIX C. 
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Figure 4.23. Comparisons between 0.2 m beam elements and 0.2 m shell elements 

from linear elastic orthotropic FE-analysis with Poisson’s ratio ν = 0: 

(a) moment distribution my along L1 (b) difference in percentage my  

along L1. 
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Figure 4.24. Comparisons between 0.2 m beam elements and 0.2 m shell elements 

from linear elastic orthotropic FE-analysis with Poisson’s ratio ν = 0: 

(a) moment distribution my along L1 (b) difference in percentage of my 

along L5. 

When observing the convergence and divergence of the 0.2 m beam grillage model 
and 0.2 m shell element model, it can be seen in Figure 4.23 and Figure 4.24 that there 
is the best convergence in case Ex = 0.5Ey while Ex =0.2Ey shows the worst 
convergence among the four different cases that have been made. Ex =Ey and Ex = 5Ey 
cases give a rather good convergence comparing to Ex = 0.5Ey. The reason for the 
fluctuation in these differences due to the change of stiffness is not clearly known and 
explained but it is believed to be due to the simplification that has been made in beam 
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grillage model when analysing of slab in orthotropic case. As can be seen in 
Figure 4.23, the difference in my along L1 is |γ| < 10 % for the elements situated at 
about y < 0.8 m in the transversal direction from the fixed supports. For the elements 
situated at about y > 0.8 m, the difference is larger. These differences are considered 
acceptable in the study since the large moment that is used for the design gives a 
small γ while a small absolute moment value give a large γ. This is not so critical in 
the design process. Similar to the difference in my along L1, the difference in my along 
L5 also shows a large γ where there is a small absolute moment value, i.e. in 
Figure 4.24, there is a huge divergence between 0.2 m beam elements and 0.2 m shell 
elements where the moment is close to zero. For my along L5, there is a small 
difference around |γ| = 10 % for a large moment value that is used for the design in the 
critical section. In actual design, the minimum reinforcement will be able to resist this 
moment value. Moreover for the moment at around x = 2 m, |γ| < 5 %. This difference 
is acceptable since in elasto-plastic analysis, the distribution of moment due to 
yielding will take place only at the location where there is a huge moment which is 
larger than yielding capacity of the section. To sum up, the beam elements can be 
used for elasto-plastic analysis of the previous examined cantilever slab in Figure 4.2. 

Based on the analysis of the cantilever slab both in linear elastic isotropic case in 
Section 4.3.3 and orthotropic case in Section 4.4.4, it is convinced that shell element 
is the most suitable and appropriate finite element choice to examine the cantilever 
slab studied in Figure 4.2. Therefore, it is recommended to use shell elements when 
analysing a cantilever slab under point load in linear elastic isotropic and orthotropic 
case. 

 

4.5 Elastoplastic case-beam grillage model 

4.5.1 Choice of model used for the analysis 

There is a biaxial effect that increases the moment capacity of the slab when analysing 
a slab using shell elements with a combination of plastic material according to 
Augustsson and Härenstam (2010). Augustsson and Härenstam (2010) explained this 
effect by studying a one-way simply supported slab subjected to distributed loads over 
the whole surface as shown in Figure 4.25. The material model used is a bilinear-
plastic material model depicted in Figure 4.26.  

b=1 m 

x 

y 

L=2.7 m 

Surface load 

 

Figure 4.25. One-way simply supported slab subjected to surface loads. 
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fyd 

 

Figure 4.26. Bilinear plastic material data for simply supported slab analysis using 

shell elements. 

The plastic moment capacity of the slab is determine by the yield stress provided in 
the material model. 

 

ε 

σ 

fyd 
Ultimate capacity due to biaxial effect 
Ultimate capacity due to uniaxial effect 

3 
2 

1 

 

Figure 4.27. Ultimate capacity of the simply supported one-way slab: dot line 

represent expected capacity (uniaxial effect), solid line represent 

increased capacity from FE analysis (biaxial effect). 

In Figure 4.27, point 1 corresponds to the elastic state where the Poisson’s ratio υ = 0. 
The stresses are developed only in x-direction and the result obtained from the FE 
analysis is equal to the expected solution. When continuing loading the slab, the stress 
reaches the yield stress which is denoted by point 2 in Figure 4.27. Point 2 
corresponds to the expected capacity of the section with regard to the input in 
Figure 4.26. Continuing loading the slabs further, it is observed that the stress keeps 
increasing and passes the yield stress of the section. According to Augustsson and 
Härenstam (2010), this increase is due to the biaxial effect of plastic material used in 
ADINA. The plastic material used in ADINA is based on the Von Mises yield 
condition described, see Bathe (1996). When the material reaches plasticity, ADINA 
will set Poisson’s ratio υ = 0.5 no matter what Poisson’s ratio input defined by the 
user. Consequently, the stress in the y-direction is developed due to restrain caused by 
the elements next to the element that yields when the stress in the x-direction reaches 
the yield stress defined in the material input. Due to the development of the stresses in 
the y-direction, a biaxial stress state is formed, which increases the yield stress in the 
x-direction. 

In order to avoid this effect, beam elements described in Section 4.3 and 4.4 are used 
instead. Further, since the response of the slab in different states is of interest, it is 
necessary to model the slab in elasto-plastic case using 3D beam elements with 
multilinear moment-curvature relationship model. 
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As shown in Section 4.3 and Section 4.4, when analysing the slab using beam 
elements in isotropic and orthotropic case, 0.2 m beam elements provides a similar 
result to those when using shell elements. Therefore, 0.2 m beam element size was 
used in this case as well. From Section 3.5.3, it is seen that element mesh sizes have a 
large influence on the results when analysing the beam in elasto-plastic case using 3D 
beam elements. It is necessary to have sufficiently fine mesh in order to get acceptable 
results for the analysis of the slab. Hence based on Section 3.5.3, smaller element size 
than 0.2 m beam elements should be used. 

In order to assure the accuracy of the analysis of the slab in elasto-plastic case when 
using beam elements, the torsional stiffness of the slab received from 0.2 m beam 
elements need to be kept constant. It is known that in order to keep the torsional 
stiffness of the slab constant when using beam elements, the element mesh sizes at the 
intersection points need to be unchanged. It means that the element mesh sizes for 
both x and y-direction have to have 0.2 m length at the intersection point.  

One way to deal with such a problem is to subdivide the first element of the 
longitudinal beam (beam in y-direction) into 4 smaller elements. It means that 0.2 m 
element mesh size (first element of the beam in y-direction) is divided into four 
smaller element mesh sizes equal to 0.05 m element size as depicted in Figure 4.28. It 
is enough to just sub-divide the first element and not the other elements along the y-
direction since it is known that only the first element yields and other elements will 
not yield. Therefore, a 0.05 m element mesh size is chosen as it provides an 
acceptable result according to Section 3.5.3. It is also noted that if the element is in 
elastic state, 0.2 m element size provides a good result. 

b=1.6 m 

Beam element along y-direction symmetry line Intersection point 

L=4 m 

Beam element along x-direction 

F=100 kN 

bel=0.2 m 

bel=0.05 m 

Lel=0.2 m 

bel=0.2 m 

Lel=0.2 m 

bel=0.2 m 
Intersection point 

(a) 

(b)  

Figure 4.28. Element mesh sizes for cantilever slab (a) single mesh 0.2 m element 

size (b) 2 different meshes 0.05 m element size for the first element of 

beam in y-direction and 0.2 m element sizes for the rest of the beam 

elements. 
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4.5.2 Influence of mesh-isotropic case 

Since the cantilever slab in Figure 4.2 is now modelled with two different meshes, it is 
important to check if the slab in Figure 4.28b gives the same results as the slab in 
Figure 4.28a in elastic isotropic case. The material input shown in Figure 4.3 that is 
used for the cantilever slab studied with single mesh size 0.2 m is also used for the 
cantilever slab studied with two different mesh sizes so that it is possible to compare 
the results. 
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Figure 4.29. Comparisons between slab with single mesh size and slab with two 

different mesh sizes (a) my along L1 (b) my along L5. 
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Figure 4.30. Comparisons of shear forces distribution vy between slab with single 

mesh size and slab with two different mesh sizes. 

 

 

Figure 4.31. Comparisons of vertical displacement uz between slab with single mesh 

size and slab with two different mesh sizes. 

From Figure 4.29a to Figure 4.31, it is observed that the results of the two models at 
the intersection points between the elements in x and y-direction coincides well. The 
results of the first element of two different meshes model located at y = 0.05 m, 
y = 0.1 m and y = 0.15 m away from the fixed support provides more accurate results 
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as the result of single mesh model is computed based on linear interpolation between 
y = 0 m and y = 2 m. From Figure 4.29b and Figure 4.30, it is seen that the results of 
moment and shear forces along line L5 are identical as the elements along x-direction 
are not subdivided. It is concluded that the cantilever slab in Figure 4.2 can be 
modeled with beam elements using two different meshes for the analysis in elasto-
plastic case. 

 

4.5.3 Quadlinear M(χ) - Mpl = 0.6Mel, EII = EII/5 

4.5.3.1 Moment 

A cantilever slab in Figure 4.32a with the same geometry and boundary condition as 
the cantilever slab in Figure 4.2 is subjected to a point load until failure. Thereby, it is 
possible to see how far plastic hinges along the clamped boundary of the studied slab 
can be formed if the plastic rotation capacity of the slab is sufficient. 

b=1.6 m 

L=4 m 

F (failure load) 

bel=0.2 m 

bel=0.05 m 

Lel=0.2 m 

(a) 

(b) 

L=4 m 

b=1.6 m 

L1 L2 

L5 

L4 

L3 

symmetry line 

0.8 m 

0.8 m 

0.8 m 

F(failure load) 

symmetry line 

t=0.2 m (thickness) 

 

Figure 4.32. (a) Geometry and load of a cantilever slab with two different element 

mesh sizes (b) result lines for moment and shear force distribution. 

The cantilever slab in Figure 4.32b was analyzed using a quadlinear moment 
curvature input illustrated in Figure 4.33. As the analysis does not model the real 
reinforced concrete slab, moment plastic and cracking moment is chosen based on 
practical experience so that they are close to value of a certain type of real reinforced 
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concrete slab, see APPENDIX F. According to Pacoste et al. (2012), moment plastic 
Mplastic can be chosen 0.6Melastic ≤ Mplastic ≤ Melastic to redistribute the reinforcement 
moment. Here Mplastic = 0.6Melastic is chosen where Melastic is taken from the linear 
elastic isotropic analysis of the cantilever slab in Section 4.3.2. Further, the cracked 
moment Mcr1 = Mplastic/3 and Mcr2 = Mplastic/2 is chosen as input for the analysis carried 
out here. The stiffness in state I is kept the same as the stiffness in linear elastic 
isotropic case EI = 30 GPa while the stiffness in state II is chosen equal to 
EII = EI/5 = 6 GPa. These input data are chosen close to a reinforced concrete slab of 
1 m width with B500B 5φ16 and concrete strength C30/37 as shown in Figure F.1 in 
APPENDIX F. 

It is important to note that 0.2 m beam element size is used to model the slab. The 
moment-curvature relationship input for beam element in FE program ADINA is in 
Nm unit. In order to make it easy to compare the result of moment in the slab, the 
moment in Nm is distributed per unit width in order to have intensity in Nm/m. 

The cantilever slab studied in Figure 4.32 was analyzed using the following moment-
curvature input: 
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The curvature χI , χII , χIII and χIV ,of the moment-curvature diagram in Figure 4.33 is 
determined from equation (4-27) to equation (4-30). 
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Figure 4.33. Quadlinear moment-curvature relationship for the analysis of the 

studied cantilever slab in elasto-plastic case, EII = EI/5. 

There are four zones in Figure 4.33 that were used to simulate the behaviour of the 
cantilever slab studied. Zone 1 determined from 0 to point A represents uncracked 
state (state I). Zone 2 from point A to point B and zone 3 from point B to point C were 
used to simulate the tension stiffening effect in cracked state (state II). Zone 4 
represents yielding part of the tensile reinforcement (state III). For more detail of 
structural response of reinforced concrete structure in serviceability limit state and 
ultimate limit state, reader can refer to Section 2.2.5 and 2.2.6. 

The ratio of the maximum moment my,max  received from the FE analysis to moment 
distribution my,(x) along x-direction is determined in equation (4-31). 

xy

y

quad
m

m

,

max,
=δ  (4-31) 

From Figure 4.34a, it is seen that when F = 20 kN, the maximum moment intensity at 
the middle of the slab is my.max = 19.2 kNm/m. The remaining part along the fixed 
boundary is less than 19 kNm/m which means that they are in elastic state. When 
F = 40 kN, there is an abrupt change in stiffness at x = 2 m. This indicates that parts 
of the slab along fixed boundary, 0 ≤ x  ≤ 2 m, are cracked while the remaining parts 
located further away at x  > 2 m is uncracked. For a load F = 60 kN, the cracks spread 
along L5 and there is a change in stiffness at x = 3 m. It means that the slab cracks at 
0 ≤ x ≤ 3 m and is uncracked at x > 3 m. When the load keeps increasing, the cracks 
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develop even further until the slab yields at a length Lyield = 0.6 m from the symmetry 
line when F = 100 kN. This shows that there is a plastic redistribution of moment due 
to yielding where the yielding part is equal to Lyield = 0.6 m. 
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(b) 
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Figure 4.34. Moment distribution my along L5 at different load level up to 100 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5. 

From Figure 4.34b, it is observed that the moment distribution shape after plastic 
redistribution is smoother than the moment distribution shape after redistribution due 
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to the change of stiffness. Compared to the other curves in the same illustration, the 
distribution shape of moment from linear elastic FE analysis is very sharp. 
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Figure 4.35. Moment distribution my along L5 at different load level up to 143.8 kN 

(a) moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5. 
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Figure 4.35a shows that part of the slab that yields along the fixed boundary increases 
with increasing load F. If the load is increased until failure, a failure load of 
F = 143.8 kN is obtained as shown in Figure 4.35a and the whole part of the slab 
along L5 yields. In Figure 4.35b, it is seen that the moment redistribution shape of the 
studied cantilever after yielding becomes more even with increasing applied load F 
and the moment distribution shape for F = 143.8 kN is constant, i.e. full 
redistribution. 

 

4.5.3.2 Curvature contour plot 

In order to investigate the structural response of the whole cantilever slab studied with 
regard to increasing of applied load F, the contour plot of my in Figure 4.36 and 
Figure 4.37 are plotted. In Figure 4.33, there are four different zones that represent the 
structural response of the cantilever slab studied from uncracked state until failure. 
Therefore, the contour plots in Figure 4.36 and Figure 4.37 of the same slab also have 
four different colours in which each colour corresponds to the zones in Figure 4.33. 
Green colour represent zone 1(uncracked state), orange colour represents zone 2 (first 
cracked state), yellow colour represents zone 3 (second cracked state) and red colour 
represents zone 4 (yielding of tensile reinforcement) of the quadlinear moment-
curvature input in Figure 4.33. 

From Figure 4.36, it is seen that when F = 20 kN, only the part of the slab located at 
x = 0.2 m and y = 0.2 m is in zone 2 since the maximum moment intensity at that 
position my.max = 19.2 kNm/m is higher than Mcr1 = 19 kNm/m. However, the 
remaining parts of the slab is in zone 1 as the moment intensity of those parts is less 
than Mcr1 = 19 kNm/m. When F = 40 kN, zone 2 propagates further, but there is a 
disturbance in part of the slab at x = 0.2 m and y = 1.4 m. This disturbance is believed 
to be due to the torsional effect at that position. Similar disturbances can also be seen 
in Figure 4.4a for 0.2 m shell element and Figure 4.8a for 0.2 m beam element. When 
F = 60 kN, cracks develop further until some parts of the studied slab along L5 at 
about 0 ≤ x  ≤ 1 m are in zone 3 and along L1  at about 0 ≤ y  ≤ 1.4 m are in zone 2. 
When F = 80 kN, zone 3 along L5 develops further at about 0 ≤ x  ≤ 1.8 m and it 
extends along L1 until 0 ≤ y  ≤ 0.4 m. When the load increases up to F = 100 kN, some 
parts of the slab along fixed boundary yields at about 0 ≤ x  ≤ 0.8 m and they are in 
zone 4 while the parts located at about 0.8 ≤ x  ≤ 3 m are in zone 3 and at about 
3 ≤ x ≤ 4 m are in zone 2. 
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Figure 4.36. Contour plot at different load level up to 80 kN. 
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Figure 4.37. Contour plot at different load level up to 143.8 kN. 

In Figure 4.37, when F = 120 kN, yielding parts of the slab propagates further at 
about 0 ≤ x ≤ 1.8 m and it is clearly seen that there are disturbances at position 
(x = 0.2 m, y = 1.4 m) and position (x = 4 m, y = 0.2 m) of the slab. The development 
of yielding along L5 and cracking in other parts continues until the collapse 
mechanism is formed when F = 143.8 kN. When F = 143.8 kN, parts of the slab along 
L5 at about 0 ≤ x  ≤ 3.8 m are in zone 4. There are disturbances at position (x = 0.2 m, 
y = 1.4 m) and position (x = 4 m, y = 0.2 m). 
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It is noted that there are always disturbances at position (x = 0.2 m, y = 1.4 m) and 
position (x = 4 m, y = 0.2 m) of the slab in each load level. These disturbances cannot 
be seen when these parts and their surrounding regions are located in the same zone, 
for example when F = 100 kN. However, these disturbances can be seen clearly when 
these positions and the regions next to them situated in different zones, for instance 
when F = 143.8 kN. 

 

4.5.3.3 Plastic rotation 

From APPENDIX F, the cantilever slab studied in Figure 4.32 with input data in 
Figure 4.33 is similar to the real reinforced concrete cantilever slab in Figure F.1. 
Therefore, from APPENDIX F, it is concluded that the studied cantilever slab in 
Figure 4.32 has a plastic rotation capacity of about θrd = 24.5·10-3 rad with 
xu/d = 0.179 and has a minimum plastic rotation capacity of θrd,min = 10.6·10-3 rad. 

As shown in Section 3.5.4, method 2 presented in APPENDIX E is valid to determine 
the plastic rotation of the cantilever slab examined in Figure 4.32 in elastoplastic case. 
Therefore, method 2 was used to calculate the plastic rotation of the studied cantilever 
slab with quadlinear moment curvature relationship input depicted in Figure 4.33. 

 

Figure 4.38. Plastic rotation distribution θpl along L5 at different load level up to 

F = 143.8 kN. 

F = 100 kN results in the maximum plastic rotation θpl,max = 7.0·10-4 rad, see 
Figure 4.38. Since θpl,max = 7.0·10-4 rad is smaller than the minimum plastic rotation 
capacity of the cantilever slab studied θrd,min = 10.6·10-3 rad, it means that it is possible 
to increase the load further. When continue loading the slab until a failure load of 
F = 143.8 kN, all elements along L5 yields and the cantilever slab studied fails due to 
the global failure when the mechanism is formed. A load F = 143.8 kN gives 
θpl,max = 8.0·10-3 rad. It is seen that even when the collapse of the structure takes place, 
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θpl,max  remains smaller than the minimum plastic rotation capacity of the cantilever 
slab studied θpl,max = 8.0·10-3 rad < θrd,min = 10.6·10-3 rad. This indicates that if 
Mplastic = 0.6Melastic, it is possible to redistribute the moment with a distribution width 
wx = 4 m. This also indicates that a larger moment can be reduced from the moment 
received from FE analysis, i.e. Mplastic < 0.6Melastic can be chosen to redistribute the 
reinforcement moment in this case. 

 

4.5.3.4 Comparison with existing guideline 

As mentioned in Section 4.5.3.3 and APPENDIX F, the cantilever slab studied in 
Figure 4.32 has a plastic rotation capacity of around θrd = 24.5·10-3 rad with 
xu/d = 0.179 and has a minimum plastic rotation capacity of θrd,min = 10.6·10-3 rad. 

From Section 2.4.10.1, when 0.15 ≤ xu/d = 0.179 ≤ 0.25, wx can be determined as: 
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For a symmetry case, wx = 1.3 m/2 = 0.65 m. Therefore, a moment that can be 
redistributed from linear elastic FE analysis with w = 0.65 m can be determined as: 
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Ratio between the maximum moment from the FE analysis and the mean moment that 
is distributed within w = 0.65 m is calculated as: 
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Figure 4.39. Redistributed moment from linear elastic FE analysis with w = 0.65 m. 

From Figure 4.39 and equation (4-34), it is seen that it is possible to redistribute 
my,mean = 0.95 my,max within w = 0.65 m. 

From Section 4.5.3.3, it is known that for this particular case, it is possible to reduce 
my,mean = 0.6 my,max within a distribution width wx = 4 m. Therefore, it is concluded that 
the recommendation given by Pacoste et al. (2012) in equation (2-53) is conservative. 

 

4.5.3.5 Shear 

Figure 4.40 and Figure 4.41show that, vy < 0 at about x = 3.6 m to x = 4 m for all load 
level 0 < F ≤ 143.8 kN. The reason is the same as the one explained in 
Section 4.3.1.2. 

It is observed in Figure 4.40 and Figure 4.41 that there is shear force fluctuations 
taking place in certain load levels. For instance, there is a fluctuation of shear forces 
when F = 60 kN at 2.8 m ≤ x  ≤ 3.2 m, but there is no fluctuation when F = 80 kN and 
F = 143.8 kN. The reasons for this have not yet been understood and will not be 
further discussed in this master thesis. 

Figure 4.40b and Figure 4.41b, it is seen that the shear forces redistribution shape of 
the cantilever slab studied after the tensile reinforcement yields looks smoother than 
the shear forces distribution shape in the linear elastic state. Hence, the shear forces 
distribution after the tensile reinforcement yields is not as critical as in the linear 
elastic FE analysis. 
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Figure 4.40. Shear force distribution vy along L5 at different load level up to 100 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5. 
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Figure 4.41. Shear force distribution vy along L5 at different load level up to 143.8 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5. 
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4.5.4 Influence of different state II stiffness in quadlinear M(χ) 

4.5.4.1 Orientation 

In order to investigate a structural response of the cantilever slab studied in 
Figure 4.32 in elasto-plastic case using quadlinear moment curvature relationship, a 
parametric study of the state II stiffness, i.e. EII = EI/2 =15 GPa, and 
EII = EI/10 =3 GPa were performed. This cantilever slab was analyzed using 
quadlinear moment curvature input when EII = EI/2 = 15 GPa and when 
EII = EI/10 = 3 GPa, see APPENDIX C. Reader can refer to APPENDIX C for the 
moment distribution, shear forces distribution and plastic rotation for these two cases. 

 

4.5.4.2 Load-displacement relation 

Figure 4.42 shows a load-displacement relation between the different cases. Before 
the studied slab cracks, the slab has a stiffness EI = 30 GPa for all three cases and 
there is a linear relation between the applied load and vertical displacement uz. The 
vertical displacement uz  for these three cases are identical, see Figure 4.42. After the 
slab cracks, the slab has a stiffness that corresponds to each case. Figure 4.42 shows 
that the slab with EII = EI/10 produces the largest vertical displacement while the slab 
with EII = EI/2 gives the smallest vertical displacement. For instance when 
EII = EI/2 = 15 GPa, the vertical displacement uz = 17.4 mm and the failure load 
F = 143.4 kN while EII = EI/5 = 5 GPa gives uz = 25.3 mm and F = 143.8 kN and 
EII = EI/10 = 3 GPa provides uz = 37.9 mm and F = 144 kN. This gives a very good 
agreement since a stiffer slab produces smaller vertical displacement. 

 

Figure 4.42. Vertical displacement uz at different load level up to collapse load for 

EII = EI/2, EII = EI/5, EII = EI/10. 
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4.5.4.3 Plastic rotation 

For the case EII = EI/2 = 15 GPa, the slab studied is stiffer, the amount of cracks is 
less and the tensile reinforcement starts to yield at a smaller curvature compared to the 
case when with EII = EI/5 = 5 GPa or EII = EI/10 = 3 GPa. 

From Figure 4.43, it is seen that when F = 120 kN, θpl,max,EII = EII/10 = 2.4 10-

3 rad < θpl,max,EII = EII/5 = 2.8 10-3 rad  < θpl,max,EII = EII/2 = 3.2 10-3 rad and F = 130 kN 
gives θpl,max,EII = EII/10 = 4.2 10-3 rad < θpl,max,EII = EII/5 = 4.3 10-3 rad  < θpl,max,EII = EII/2 = 4.5 
10-3 rad. Therefore, F = 120 kN and F = 130 kN gives a larger θpl,max in case 
EII = EI/2 = 15 GPa and smaller θpl,max in case of EII = EI/10 = 3 GPa. However, when 
the load keep increasing until F = 140 kN, θpl,max,EII = EII/10 = 6.7 10-3 rad > θpl,max,EII = 

EII/5 = 6.4 10-3 rad > θpl,max,EII = EII/2 = 6.3 10-3 rad . When the cantilever slab studied 
reaches its collapse load for each cases, it is seen that θpl,max,EII = EII/10 = 8.8 10-3 rad 
> θpl,max,EII = EII/5 = 8.0 10-3 rad > θpl,max,EII = EII/2 = 7.3 10-3 rad . It is noticed that the 
maximum plastic rotation θpl,max of the studied cantilever slab in case 
EII = EI/2 = 15 GPa becomes smaller than θpl,max in both case EII = EI/5 = 5 GPa and 
EII = EI/10 = 3 GPa from F = 130 kN to F = 140 kN. The fluctuation of the maximum 
plastic rotation that took place between F = 130 kN and F = 140 kN has not yet been 
understood. Further investigations are needed so that reasons for this disturbance 
might be provided. 

 

Figure 4.43. Plastic rotation distribution θpl along L5 at different load level up to 

failure load for EII = EI/2, EII = EI/5, EII = EI/10. 

From Figure 4.43, it is seen that for these three cases when the cantilever slab studied 
reached its collapse load, the yielding parts of the slab along L5 is Lyield = 4 m from the 
symmetry line. From Figure 4.43, it is also seen that the maximum plastic rotation for 
each case when the collapse mechanism was formed is less than the minimum plastic 
rotation capacity of the studied cantilever slab θrd,min = 10.6·10-3 rad. This indicates 
that it is possible to redistribute my = 0.6 my,elastic within w = 4 m.  Therefore, it is 
concluded that the recommendation given by Pacoste et al. (2012) in equation (2-53) 
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is conservative with regardless of the changed stiffness from EII = EI/2 < EII < 

EII = EI/10 when analysing the cantilever slab studied in Figure 4.32 with elasto-
plastic moment curvature input in Figure 4.33, Figure C.30 and Figure C.36. 

 

4.5.5 Comparisons between trilinear and quadlinear M(χ) 

In order to investigate of how trilinear moment curvature relationship in Figure 4.44 
affects the structural response of the cantilever slab studied in Figure 4.32, a 
comparison of slab in Figure 4.32 with moment curvature input in Figure 4.44 and in 
Figure 4.33 was made. Mplastic = 0.6Melastic, and Mcr1 = Mplastic/3 in equation (4-21) and 
equation (4-25) in Section 4.5.3.1 were chosen for curvature χI and χII of the moment-
curvature diagram in Figure 4.44 and χI, χII and χIII are determined as: 
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Figure 4.44. Trilinear moment-curvature relationship for the analysis of the slab in 

elasto-plastic case, EII = EI/5. 

Line number 1 in Figure 4.44 represents elastic part (state I). Point A is the boundary 
between the uncracked and cracked part of the section. Line number 2 in Figure 4.44 
is used to simulate the effect of tension stiffening after the concrete cracks. Line 
number 2 ends at a break point B where the yielding of the tensile reinforcement 
starts. Line number 3 is used to simplify a yielding part of the tensile reinforcement. 
The ratio of the maximum moment my,max  received from FE analysis to moment 
distribution my,(x) along x-direction is determined in equation (4-38). 
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For the results of moment distribution, shear forces distribution and plastic rotation of 
the cantilever slab studied with the trilinear moment curvature input in Figure 4.44, 
Reader can refer to APPENDIX C. 

4.5.5.1 Load-displacement relation 

From Figure 4.45, it is seen that when F < 20 kN, the displacement due to trilinear and 
quadlinear moment curvature relationship are identical since the slab studied has the 
same stiffness before the slab starts to crack. When F > 20 kN, the slab studied starts 
to crack for both cases. The trilinear produce a smaller vertical displacement 
uz = 23.7 mm while a quadlinear produce a larger vertical displacement uz = 25.3 mm 
for the same collapsed load F = 143.8 kN. The reason is that the slab with trilinear 
moment curvature relationship in Figure 4.44 simulates a crack development which is 
slower than a crack development assumed by a quadlinear moment curvature input in 
Figure 4.33. The results shown in Figure 4.45 are reasonable as the stiffer slab 
produce a smaller vertical displacement. Since these two modelling gives the same 
failure load F = 143.8 kN, it is concluded that the assumption about the tension 
stiffening effect of the slab does not affect the failure load of the slab. 

 

Figure 4.45. Comparisons of vertical displacement uz at different load level up to 

collapse load between trilinear moment curvature relationship and 

quadlinear moment curvature relationship, EII = EI/5. 
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4.5.5.2 Moment 

The moment my distribution along L5 for both cases for different load level from 
F = 60 kN to F = 143.8 kN are illustrated in Figure 4.46. 

From Figure 4.46a, it is seen that when F = 60 kN the slab with trilinear moment 
curvature input gives larger moment than slab with quadlinear moment curvature 
input, i.e. my,tri, = 38.9 kNm/m > my,quad = 36.8 kNm/m while F = 80 kN gives 
my,tri, = 51.2 kNm/m < my,quad = 52.8 kNm/m and when F = 100 kN, 
my,tri, = 58.3 kNm/m > my,quad = 58.29 kNm/m. 

From Figure 4.46b, it is seen that my,tri, < my,quad  from F = 120 kN to F = 143.8 kN. 
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Figure 4.46. Moment distribution my along L5 at different load level (a) moment 

distribution my up to 100 kN (b). moment distribution my up to 143.8 kN, 

EII = EI/5. 
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4.5.5.3 Plastic rotation 

The comparisons in Figure 4.47 between the cantilever slab studied with trilinear and 
quadlinear moment curvature input shows that plastic rotation due to trilinear moment 
curvature input is smaller than plastic rotation with quadlinear moment curvature 
input,i.e. θpl,max,tri < θpl,max,quad  for F = 120 kN < F < F = 143.8 kN. Based on the 
comparisons of plastic rotation between slab with trilinear moment curvature input 
and slab with quadlinear moment curvature input, it is concluded that the stiffer the 
stiffer the slab is, the smaller the plastic rotation is received. 

For the failure load F = 143.8 kN, θpl,max,tri = 7.99 10-3 rad  and θpl,max,quad = 8.03 10-

3 rad . This collapse load leads to yielding all over fixed boundary condition of the 
slabs, i.e. Lyield = 4 m. Since θpl,max,tri = 7.99 10-3 rad < θpl,max,quad = 8.03 10-3 rad  
< θrd,min = 10.6·10-3 rad, it means that it is possible to redistribute my = 0.6 my,elastic 
within wx = 4 m. Therefore, it is concluded the recommendation given by Pacoste et 

al. (2012) in equation (2-53) is conservative for these particular cases. 

 

Figure 4.47. Comparisons between trilinear and quadlinear moment curvature input 

for plastic rotation distribution θpl along L5 at different load level up to 

failure load for EII = EI/5. 
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kNm6.7196.04.0 =⋅=⋅= elasticplastic MM  (4-39) 

kNm/m38
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==plasticm  (4-40) 

The curvature χI, χII , and χIV in equation (4-27), equation (4-28) and equation (4-30) 
were also kept unchanged while χIII is determined as: 
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Figure 4.48. Quadlinear moment-curvature relationship for the analysis of the slab in 

elasto-plastic case, Mpl = 0.4Mel, EII = EI/5. 

Figure 4.48 consists of four zones that were used to simulate the structural response of 
the slab studied in Figure 4.32. The only difference between quadlinear moment 
curvature input in Figure 4.33 and Figure 4.48 is that Mpl = 0.4Mel was used instead of 
Mpl = 0.6Mel. 

The ratio of the maximum moment my,max  received from FE analysis to moment 
distribution my,(x) along x-direction can also be determined in equation (4-31). 

From Figure 4.49, it is seen that from F = 20 kN to F = 60 kN, the structural response 
of the slab studied in this Section is the same as the behavior of the slab studied 
described in Section 4.5.3.1 since their geometry and moment-curvature input are the 
same for this load level. 

When F = 80 kN, the maximum moment intensity at the middle of the slab is 
my,max = 38.9 kNm/m which is larger than the yielding moment intensity 
my,yield = 38 kNm/m. The slab studied yields at a length Lyield = 1.6 m from the 
symmetry line. When continuing loading the slab until collapse load F = 95.8 kN, it is 
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seen that the yielding occurs all along fixed boundary, Lyield = 4 m and the slab failed 
when the mechanism was formed. 

From Figure 4.49, it is observed that the slab studied yields and collapse earlier 
compared to Figure 4.35. When Mpl = 0.4Mel was chosen, it requires less 
reinforcement and it gives lower moment resistance than the case of Mpl = 0.6Mel. 
Therefore, the slab studied in case of Mpl = 0.4Mel collapsed before the slab with 
Mpl = 0.6Mel. 

The distribution shape of moment in Figure 4.49b after cracking and plastic 
redistribution is smoother than distribution shape of moment from linear elastic FE 
analysis. This indicates that the moment distribution from linear elastic FE analysis is 
critical in the design. 
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Figure 4.49. Moment distribution my along L5 at different load level up to 95.8 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, Mpl = 0.4 Mel, EII = EI/5. 
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4.5.6.2 Contour plot 

In Figure 4.50, there are four different colors that represent the structural response of 
the cantilever slab from uncracked state until failure. These colours have the same 
meaning as those described in Section 4.5.3.2. 

From F = 20 kN to F = 60 kN, the contour plots in Figure 4.50 are identical to the 
contour plots in Figure 4.36. 

When the load increases up to F = 80 kN, the slab examined starts to yield along fixed 
boundary at about Lyield = 1.6 m from the symmetry line while the remaining parts 
located at about 1.6m ≤ x  ≤ 2.4m m are in zone 3 and at about 2.4m ≤ x  ≤ 4 m are in 
zone 2. When F = 90 kN, yielding parts of the slab propagates further at about 
Lyield = 3 m. When F = 95.8 kN, Lyield = 4 m along L5 and the cracking parts of the 
studied slab develop further. The disturbances at position (x = 0.2 m, y = 1.4 m) and 
position (x = 4 m, y = 0.2 m) can be seen clearly. 

Like Figure 4.36 and Figure 4.37, it is also noted that there are always disturbances at 
position (x = 0.2 m, y = 1.4 m) and position (x = 4 m, y = 0.2 m), but these 
disturbances cannot be seen when their surrounding regions located in the same zone. 
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Figure 4.50. Contour plot at different load level up to failure load F = 95.8 kN, 

Mpl = 0.4 Mel, EII = EI/5. 
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4.5.6.3 Plastic rotation 

Figure 4.38 shows that when the slab collapsed at F = 95.8 kN, the maximum plastic 
rotation is θpl,max = 5.2·10-3 rad. Hence, this rotation is smaller than the minimum 
plastic rotation capacity of the cantilever slab examined θrd,min = 10.6·10-3 rad as 
shown in APPENDIX F. It means that plastic rotation is not a problem in this case. 
Therefore, it is possible to redistribute the moment Mplastic = 0.4Melastic with a 
distribution width w = 4 m (symmetrical case) if the applied load is not greater than 
F = 95.8 kN. 

 

Figure 4.51. Plastic rotation distribution θpl along L5 at different load level up to 

F = 143.8 kN, Mpl = 0.4 Mel, EII = EI/5. 

 

4.5.6.4 Comparison with existing guideline 

From Section 4.5.3.4, the mean moment distribution my,mean = 90.3 kNm/m, 
determined from the recommendation given by Pacoste et al. (2012), can be distribute 
within wx = 0.65 m for F = 100 kN. 

When choosing Mplastic = 0.6Melastic and Mplastic = 0.4Melastic, a failure load of 
F = 143.8 kN and F = 95.8 kN respectively, was obtained. In order to determine 
Mplastic for a failure load F = 100 kN, linear interpolation between Mplastic = 0.4Melastic 
and Mplastic = 0.6Melastic were performed as following: 
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kNm/m7.39
2.0

93.7
==plasticm  (4-44) 

Hence, in order to achieve a collapse load F = 100 kN, mplastic = 39.7 kNm/m needs to 
be provided. mplastic = 39.7 kNm/m resulted a plastic rotation as following: 

( ) 3333
100, 104.5102.5100.8

8.958.143

8.95100
102.5 −−−−

= ⋅=⋅−⋅
−

−
+⋅=Fplθ  (4-45) 

From Section 4.5.3.4, my,mean = 0.6my,max = 57 kNm/m results in θpl,max = 8.0·10-3 rad 
and it is redistributed within wx = 4 m. Therefore, it is concluded that for a collapse 
load F = 100 kN, my,mean  =0.42my,max = 39.7 kNm/m with θpl,max = 5.42·10-3 rad can 
also be distributed within wx = 4 m. 

For load F = 100 kN, the ratio γ between the mean moment distribution in 
equation (4-33) determined from the recommendation given by Pacoste et al. (2012) 
and the mean moment distribution in equation (4-44) received from elasto-plastic FE 
analysis is calculated as: 
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γ = 44 % indicates that it is possible to reduce 44 % from mean moment obtained 
from the recommendation provided by Pacoste et al. (2012). 

For shear forces distribution, reader can refer to APPENDIX C. 

 

4.5.7 Trilinear M(χ) with no yielding - EII = EII/5 

4.5.7.1 Moment 

This case corresponds to a case where the yield capacity is high enough not to be 
reached. Thus, it can be used to compare with the response in service limit state. To 
give a better understanding of the structural behavior of the studied cantilever slab in 
this case, three more parametric studies were performed. The cantilever slab in 
Figure 4.52 was examined with a trilinear moment curvature relationship with no 
yielding input illustrated in Figure 4.53. This cantilever slab has the same geometry 
and boundary condition as the slab in Figure 4.32, but was subject to the applied load 
F = 200 kN. A very large value was given for ultimate moment capacity and the 
corresponding curvature so that yielding was not reached. For the input value in 
Figure 4.53, readers can refer to equation (4-21) to (4-29) in Section 4.5.3.1 where 
Mcr1 = 19 kNm/m, Mcr2 = 28.5 kNm/m, Mpl = 57 kNm/m.  
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Figure 4.52.  Geometry and result lines of the studied slab using trilinear moment-

curvature relationship with no yielding. 
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Figure 4.53. Trilinear moment-curvature relationship without yielding for the 

analysis of the slab, EII = EI/5. 

In Figure 4.54a, F = 20 kN, F = 40 kN, F = 60 kN and F = 80 kN gives identical 
structural response to those in Figure 4.34a since these two cases have the same 
moment curvature input for my,max = 52.5 kNm/m < mpl = 57 kNm/m. When 
F = 100 kN, it is seen that my,max = 69 kNm/m > mpl = 57 kNm/m since there is no 
yielding in the moment curvature input in Figure 4.53 and the moment keeps 
increasing with increasing applied load. When F = 100 kN, my,max = 69 kNm/m is 
close to the maximum moment in elastic orthotropic case my,max,ortho = 65.1 kNm/m 
and deviates a lot from the maximum moment in the elastic isotropic case where 
my,max,iso = 95 kNm/m, see Figure 4.54a. The moment distribution shape for 
F = 100 kN is close to the distribution shape of the elastic isotropic case at about 
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0 < x < 1 m and these two curves deviate rather much from each other at around 
1 m< x < 4 m, see Figure 4.54b. 
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Figure 4.54. Moment distribution my along L5 at different load level up to 100 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/5. 

From Figure 4.55a, it can be seen that the moment increases with increasing applied 
load F. The moment distribution shape when F = 140 kN and F = 200 kN is similar to 
each other. The similarity in the response is because the stiffness in the cracked parts 
in the slab are similar for these high loads. 
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Figure 4.55. Moment distribution my along L5 at different load level up to 200 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/5. 

Since F = 100 kN, my,max = 69 kNm/m is close to the maximum moment in elastic 
orthotropic case my,max,ortho = 65.1 kNm/m, it is concluded that orthotropic analysis can 
be used to rather well predict the maximum moment for design of the cantilever slab 
studied in Figure 4.52. Consequently, the maximum moment received from 
orthotropic analysis can be used directly for the design and do not need to reduce it 
like in the case of isotropic elastic analysis. For shear forces distribution, the reader 
can refer to APPENDIX C. 
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4.5.8 Influence of state II stiffness in trilinear M(χ) without yielding 

4.5.8.1 Orientation 

In order to investigate the behaviour of the studied cantilever slab in Figure 4.52 with 
the trilinear moment curvature relationship without yielding input, a parametric study 
of state II stiffness, i.e. EII = EI/2 and EII = EI/10 was examined. The reader can refer 
to APPENDIX C for trilinear moment curvature relationsip without yielding input and 
for the moment distribution and shear forces distribution for these cases. 

 

4.5.8.2 Load-displacement relation 

In these cases, the cantilever slab studied was subjected to a load of F = 200 kN. The 
maximum vertical displacement uz at the middle of the slab becomes larger when 
increasing the applied load F, see Figure 4.56. There is no formation of the collapse 
mechanism since there is no yield limit. 

The vertical displacement uz for these three cases are identical before the slab starts to 
crack. After the cracking, the stiffness of the studied slab adapted to the stiffness of 
each case. It is seen that after the cracking, the stiffer slab provides a smaller vertical 
displacement, i.e. uz(EII=EI/2) = 13 mm < uz(EII=EI/5) = 25.3 mm < uz(EII=EI/10) = 43.6 mm. 

 

 

Figure 4.56. Vertical displacement uz at different load level up to collapse load for 

EII = EI/2, EII = EI/5, EII = EI/10. 
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4.5.8.3 Moment 

The moment distributions and the ratios of maximum moment my,max to my,x along 
fixed boundary for each case were plotted in Figure 4.57. 

 

Figure 4.57. Comparisons of moment distribution for trilinear moment curvature 

relationship without yielding at different load level up to F = 100 kN for 

EII = EI/2, EII = EI/5, EII = EI/10. 
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The ratio of the maximum moment my,max  received from the FE analysis to moment 
distribution my,(x) along x-direction is determined in equation (4-47). 

xy

y

m

m

,

max,
=δ  (4-47) 

This δ corresponds to the distribution shape for the moment. Hence, δy,m-k defines a 
distribution shape for the moment obtained using trilinear moment curvature without 
yielding input while δy,iso defines a distribution shape for the moment received from 
the isotropic analysis. 

The difference for the maximum moment received from the FE analysis with trilinear 
moment curvature without yielding input my,m-k,max and maximum moment obtained 
from orthotropic FE analysis my,ortho,max is calculated as: 

max,,

max,,max,,
100

kmy

orthoykmy

m

mm

−

− −
⋅=γ  (4-48) 

Where my,m-k,max =  maximum moment received from trilinear moment curvature 
without yielding input 

my,ortho,max =  maximum moment obtained from orthotropic analysis 

Table 4.5.  Difference between trilinear moment curvature relationship without 

yielding input and orthotropic analysis. 

Case my,m-k,max [kNm] my,ortho,max [kNm] γ [%] 

EII = EII/2 -81.6 -80.6 1.3 

EII = EII/5 -69.0 -65.1 5.9 

EII = EII/10 -62.5 -56.9 8.9 

 

Figure 4.57a and Table 4.5 shows that when F = 100 kN, the difference γ between 
my,m-k and my,ortho for EII = EI/2 is γ =  1.3 %. The distribution shape of moment from 
trilinear moment curvature relation without yieldin δy,m-k when F = 100 kN is close to 
that of elastic isotropic case δy,iso at about 0 < x < 1.4 m, see Figure 4.57b. For 
EII = EI/5, Table 4.5 show that γ = 5.9 % and δy,m-k is close to δy,iso at around 
0 < x < 1 m, see Figure 4.57d. In case of EII = EI/10, γ = 8.9 % and δy,m-k is close to 
δy,iso at approximately 0 < x < 0.8 m as illustrated in Figure 4.57f. 

From the difference in percentage γ, it is seen that the orthotropic analysis provides a 
maximum moment which is close to the maximum moment obtained from the 
analysis of the studied cantilever slab with trilinear moment curvature without 
yielding input. Hence, it is concluded that an orthotropic analysis is a possible method 
to predict a design moment for the three cases mentioned in this Section. It is 
observed that the stiffer the studied slab is, the better the orthotropic FE analysis 
predicts the design moment.  

Concerning the distribution shape for the moment, the distribution shape for moment 
from isotropic analysis can be used to predict the distribution shape for moment from 
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the trilinear moment curvature without yielding input. Consequently, δy,iso approaches 
δy,m-k when the studied cantilever become stiffer and stiffer as shown in Figure 4.57b, 
Figure 4.57d, Figure 4.57f. 
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5 Concluding remarks 

5.1 Conclusions 

This thesis studied the distribution of forces in a cantilever slab subjected to a single 
point load. A beam grillage model was analysed with different material models to 
capture the structural response of the cantilever slab. 

In this Master Thesis project, a shell element model was used to validate the beam 
grillage element model for the cantilever slab studied in isotropic and orthotropic 
case. The result from the FE analysis shows that shell element is the most appropriate 
element when analysing the cantilever slab studied in elastic isotropic and orthotropic 
case. However, results received from the FE analysis also indicates that there is a 
good agreement between shell element and beam grillage element if appropriate mesh 
sizes for the beam elements are provided. Therefore, beam grillage models should be 
used with care, but can still be used to analyse the cantilever slab studied if correct 
mesh sizes are used. 

Orthotropic analysis was used to simulate different stiffnesses of the slab in different 
directions. According to the comparisons made with nonlinear analysis it can be seen 
that an orthotropic analysis gives a good estimation of the maximum moment 
obtained before the effect of yielding takes place. Care has to be taken, though, of 
what different stiffnesses of the reinforced concrete structure that should be taken into 
account. Hence, such an orthotropic model taking this into account could successfully 
be used in service limit state (SLS) and is also as a conservative estimation in ultimate 
limit state (ULS). 

In elasto-plastic analysis, the cantilever slab studied was examined using a beam 
grillage model with non-linear moment-curvature relationship. In this case, the 
element size affects the plastic moment capacity of the structure when using beam 
elements. The finer the mesh is, the closer the results obtained from the FE analysis 
converges to the expected solution. Based on the analysis of the cantilever slab 
studied in elasto-plastic case, the need for plastic rotation is small and hence the 
possibility of redistribution due to yielding is considerable. The FE analyses of the 
cantilever slab studied shows that in term of distribution width for moment, the 
recommendation given by Pacoste et al. (2012) is conservative. The effect of plastic 
redistribution, though, should be handled with care if there are moving load that might 
cause accumulated damage to the structure, which might lead to additional plastic 
rotation. 
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5.2 Further studies 

Some simplifications related to the modelling of the slab studied have been made. In 
this report, in terms of distribution width for moment it is seen that the 
recommendation given by Pacoste et al. (2012) is conservative for the particular load 
case studied. In order to examine the recommendation for other cases, different 
combinations of loads and load positions are of interest. For the cantilever slab 
studied, it is proposed to also study the response for 2-4 point loads located in 
different positions of the slab. The study of the cantilever slab subjected to moving 
load is also worth being performed in order to study in what way such loading might 
affect the total need of plastic rotation. 

Orthotropic analysis, used in this report to simulate different stiffness in two 
directions after cracking, can be developed by considering the actual ratio between the 
uncracked and cracked stiffnesses of a real reinforced concrete slab. The elasto-plastic 
moment-curvature model used to simulate the effect of cracking and yielding in this 
thesis gives an approximation of the structural response of the reinforced concrete 
cantilever slab. This type of modelling can be improved by giving actual input values 
for the elasto-plastic moment-curvature model determined from real reinforced 
concrete slabs. 

This Master Thesis describes only the load distribution in a cantilever slab subjected 
to a single load. However the knowledge of load distribution for other types of slabs 
also needs to be expanded and developed. Therefore, analyses of one-way and two-
way simply supported slabs, carried out with the same type of studies as in this thesis, 
is of interest. Moreover, the studies of load distribution of a more complicated slab, 
for example a slab in two spans supported by both line supports and columns would 
be of interest. When a load distribution in the longitudinal direction due to changed 
stiffness or yielding takes place, this will also affect the load distribution in the 
transverse direction, and therefore such an effect would be valuable to study. 

Detail modelling of a slab with separate materials for concrete and reinforcement can 
be done in order to investigate the real structural response of the reinforced cantilever 
slab studied. With the modelling choice for the cantilever slab made in this report, it 
was seen that the slab always collapse due to the yielding in the elements along the 
fixed boundary and there is no sign of a more complex yield line failure. Therefore, a 
model with an increased length of the slab should be added to check that the more 
complex yield line failure can take place with this modelling technique. 
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APPENDIX A FE analysis-ADINA 

A.1 Beam elements 

In ADINA FE program, the beam element is a 2-node Hermitian beam with a constant 
cross-section. The element is initially straight and can be modelled by a 2D beam 
element or a 3D beam element. The material behaviour of the beam element used in 
ADINA can be described using either a cross-section shape and a material model, or a 
moment-curvature model. 

 

A.1.1 Beam geometry 

Figure A.1 shows the beam element along with its local coordinate system (r,s,t) and 
its global coordinate system (X,Y,Z). The r-direction always lies along the neutral line 
of the beam. The orientation of the s and t directions is defined using auxiliary point K 
as shown in Figure A.1. For the orientation of the s and t directions using orientation 
vector, reader can refer to ADINA (2011). 

The beam element has 6 degrees of freedoms at each node including 3 translations and 3 
rotations as illustrated in Figure A.1. These 3 translations and 3 rotations are denoted as: 

u = local translation in r-direction 
v = local translation in s-direction 
w = local translation in t-direction 
θr = local rotation around r-direction 
θs = local rotation around s-direction 
θt = local rotation around t-direction 
K = auxiliary point used to define s and t directions 
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θs 
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Z 
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Figure A.1. Geometry definition using auxiliary node K including global and local 

coordinate system for beam element. From ADINA (2011). 

 

A.1.2 Elastic-plastic beam element 

The elastic-plastic beam elements can be modelled by a 2D beam or a 3D beam 
element. For 2D beam action, it assumes that the element deformations take place in 
the r-s plane (local axis of the element) as shown in Figure A.1. In this case, the 
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element has no stiffness corresponding to the deformation out of the r-s plane and 
therefore the element does not have any torsional stiffness. 2D beam elements need to 
be defined parallel to one of the X-Y, Y-Z plane, or X-Z global coordinate plane. 
Unlike 2D action, 3D action assumes that element deforms in any direction and 3D 
beam elements can be defined in any X-Y-Z global coordinate plane. 

The elastic plastic beam element can be described using either a cross-section shape 
and a bilinear plastic material model, or an elastic-plastic moment-curvature model. 

 

A.1.3 Bilinear plastic material model 

For elasto-plastic material model, only bilinear plastic relation is available. In bilinear 
plastic material model, the ascending branch corresponds to the elastic part while the 
second part of the curve represents plastic response as shown in Figure A.2. 

 

ε 

E 

ν = 0 

σ 

1 

fyd 

εel εpl  

Figure A.2. Bilinear plastic material model used in ADINA. 

With bilinear plastic material response shown in Figure A.2, ADINA does not 
recognize that the section is cracked as it assumes that the first part of the curve 
represent linear elastic response. Hence, it is difficult to choose a correct Young’s 
modulus. For the analysis in state II, it is reasonable to model section as a fully 
cracked section without taking into account the tension stiffening effect. In order to 
perform state II analysis and model a fully cracked section it is necessary to find an 
equivalent Young’s modulus. For how to determine the equivalent Young’s modulus, 
the reader can refer to Chapter 3. 

 

A.1.4 Elastic-plastic moment curvature model 

The elastic-plastic moment curvature model in ADINA consists of uniaxial plasticity 
laws respectively applied to axial strain, each bending curvature and the twist angle 
per unit width. 

The bending moment curvature relationship can either be symmetric or non-
symmetric with respect to the sign of curvature and it depends on the axial force. The 
bending moment curvature relationship can be different between axial force in tension 
and axial force in compression. For the symmetry case as shown in Figure A.3, it is 
sufficient to enter only the positive value of the bending moment and corresponding 
curvature. In Figure A.3, the first data point always corresponds to yielding and the 
last data point always corresponds to rupture. In order to obtain a bilinear moment 
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curvature plasticity, it is only enter a multilinear plastic moment curvature with just 
two branches. For more details related to axial force and axial strain relationship, 
torsional moment and twist angle per unit length relationship, reader can refer to 
ADINA (2011). 

 M 

Myd 

χyd 

Mrupture 

χrupture 

χ 

 

Figure A.3. Symmetric elasto-plastic moment-curvature beam input. From 

ADINA (2011). 

 

A.2 Shell elements 

In ADINA FE program, the shell element follows two assumptions used in the 
Timoshenko beam theory and the Reissner-Mindlin plate theory. 

• First assumption: Material particles originally lying on a straight line normal 
to the midsurface remain on that straight during deformation. 

• Second assumption: The stress perpendicular to the midsurface of the structure 
is zero. 

For the analysis of the shell, these assumptions correspond to a very general shell 
element theory. 4-nodes shell element as shown in Figure A.4 is usually the most 
effective element to use when analysing the general shell element. Reader can refer to 
Bathe, K.J (1996) for more information about shell elements. 

s 

Shell midsurface 

r 

t 

 

Figure A.4. 4-nodes shell element for thick and thin shells. Based on ADINA (2011). 

In Figure A.4, coordinate system (r,s,t) and coordinate system (X,Y,Z) is local and 
global coordinate of the shell element defined in ADINA respectively.  

ADINA (2011) recommends 4-nodes shell elements for the analysis of general shells. 
For more information about different types of shell elements, assumptions made, 
material models and formulations, and numerical integration, reader can refer to 
ADINA (2011). 
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APPENDIX B Modified alpha factor for the 

fictitious yield stress when using 

seven integration points 

For elastic plastic beam elements used in ADINA finite element program, Newton-
Cotes integration method is used in all coordinate directions. Seven integration points 
is used in s-and t- direction (local coordinate system for beam elements) for the 
rectangular Section in 3-D beam elements regardless of any number of integration 
input defined by the user in s- and t- direction. As seven integration points are used 
over the height of the cross-section, ADINA program replaces the actual stress 
distribution shown in Figure B.1a with a stress distribution determined by polynomial 
of order six depicted in Figure B.1b. In order to achieve the expected stress 
distribution in Figure B.1a, a factor α that can be used to transform ADINA’s stress 
distribution to the expected stress distribution needs to be computed. 
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Figure B.1. Stress distribution over the cross-Section height (a) analytical expected 

stress distribution (b) stress distribution in ADINA. 

From Figure B.1a, the ultimate moment capacity for the expected stress distribution 
can be determined using equation (B-3): 
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By normalizing the height of the cross-Section to 2 and yield stress to 1 of Figure B.1 
as shown in Figure B.2 and choosing the polynomial of order six in excel, the stress 
distribution in ADINA can be determined by equation (B-4). 

1105.475.67.3 53 <<−+−= xxxxσ  (B-4) 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:100 130

 

Figure B.2. Stress distribution in ADINA using polynomial of order six in excel. 

The moment capacity of the stress distribution by normalizing the height to 2 and the 
yield stress to 1 in Figure B.2 can be computed by using equation (B-5). 
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The moment capacity of the expected stress distribution by normalizing the height to 
2 and the yield stress to 1 is determined by equation (B-6). 
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The difference between ADINA’s stress distribution and the expected stress 
distribution is: 

9593.0
4815.0

4619.0
=  (B-7) 

ADINA’s stress distribution provides 4.07% smaller value compared to the expected 
stress distribution which means: 

ectedyy ff exp'9593.0' ⋅=  (B-8) 

As a result, the expected moment capacity and α factor can be expressed in 
equation (B-9) and equation (B-10) respectively: 
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APPENDIX C Moment, shear force and deflection 

for cantilever slab 

C.1 Isotropic case 

C.1.1 Cantilever slab with shell elements 

 

The geometry of the slab is shown in Figure 4.2. 
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Figure C.1. Moment distribution my from FE-linear elastic analysis, 0.1 m shell 

elements and 0.2 m shell elements with Poisson’s ratio ν = 0: (a) my 

along L1 (b) my along L2. 
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Figure C.2. Moment distribution my from FE-linear elastic analysis, 0.1 m shell 

elements and 0.2 m shell elements with Poisson’s ratio ν = 0: (a) my 

along L4 (b) my along L5. 
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Figure C.3. Shear force distribution vy along L5 from FE-linear elastic analysis, 

0.1 m shell elements and 0.2 m shell elements with Poisson’s ratio ν = 0. 
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Figure C.4. Vertical displacement uz from FE-linear elastic analysis, 0.1 m shell 

elements and 0.2 m shell elements with Poisson’s ratio ν = 0: (a) 

vertical displacement-z along L1 (b) vertical displacement-z along L2. 
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C.1.2 Cantilever slab with beam elements 

The geometry of the slab is shown in Figure 4.7. 
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Figure C.5. Moment distribution my from FE-linear elastic analysis, 0.1 m beam 

elements, 0.2 m beam elements and 0.4 m beam elements with Poisson’s 

ratio ν = 0: (a) my along L1 (b) my along L2. 
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Figure C.6. Moment distribution my from FE-linear elastic analysis, 0.1 m beam 

elements, 0.2 m beam elements and 0.4 m beam elements with Poisson’s 

ratio ν = 0: (a) my along L4 (b) my along L5. 
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Figure C.7. Shear force distribution vy along L5 from FE-linear elastic analysis0.1 m 

beam elements,  0.2 m beam elements and 0.4 m beam elements with 

Poisson’s ratio ν = 0. 
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Figure C.8. Vertical displacement uz from FE-linear elastic analysis, 0.1 m beam 

elements, 0.2 m beam elements and 0.4 m beam elements with Poisson’s 

ratio ν = 0: (a) vertical displacement-z along L1 (b) vertical 

displacement-z along L2. 
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C.1.3 Comparisons between shell model and beam grids model 
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Figure C.9. Comparisons of moment distribution my from FE-linear elastic analysis 

between  0.1 m beam elements, 0.2 m beam elements, 0.4 m beam 

elements and 0.2 m shell elements with Poisson’s ratio ν = 0: (a) my 

along L1 (b) my along L2. 
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Figure C.10. Comparisons of moment distribution my from FE-linear elastic analysis 

between  0.1 m beam elements, 0.2 m beam elements, 0.4 m beam 

elements and 0.2 m shell elements with Poisson’s ratio ν = 0: (a) my 

along L4 (b) my along L5. 
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Figure C.11. Comparisons of shear force distribution vy along L5 from FE-linear 

elastic analysis between 0.1 m beam elements, 0.2 m beam elements, 

0.4 m beam elements and 0.2 m shell elements with Poisson’s ratio 

ν = 0. 
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Figure C.12. Comparisons of vertical displacement uz from FE-linear elastic analysis 

between 0.1 m beam elements, 0.2 m beam elements, 0.4 m beam 

elements and 0.2 m shell elements with Poisson’s ratio ν = 0: (a) 

vertical displacement-z along L1 (b) vertical displacement-z along L2. 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:100 
143 

C.2 Orthotropic case 

C.2.1 Cantilever slab with shell elements 

 

The geometry of the slab is shown in Figure 4.2 with Ex = 0.1, 0.2, 0 5,1, 2, 5, 10Ey. 
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Figure C.13. Moment distribution my from FE-linear elastic orthotropic analysis 

using 0.2 m shell elements with Poisson’s ratio ν = 0: (a) my along L1 

(b) my along L2. 
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Figure C.14. Moment distribution my from FE-linear elastic orthotropic analysis 

using 0.2 m shell elements with Poisson’s ratio ν = 0: (a) my along L4 

(b) my along L5. 
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Figure C.15. Shear force distribution vy along L5 from FE-linear elastic orthotropic 

analysis using 0.2 m shell elements with Poisson’s ratio ν = 0. 
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Figure C.16. Vertical displacement uz from FE-linear elastic orthotropic analysis 

using 0.2 m shell elements with Poisson’s ratio ν = 0: (a) vertical 

displacement-z along L1 (b) vertical displacement-z along L2. 
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C.2.2 Cantilever slab with beam elements 

 

The geometry of the slab is shown in Figure 4.22 with Ex = 0.2, 0 5, 1, 5Ey. 
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Figure C.17. Moment distribution my from FE-linear elastic orthotropic analysis 

using 0.2 m beam elements with Poisson’s ratio ν = 0: (a) my along L1 

(b) my along L2. 
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Figure C.18. Moment distribution my from FE-linear elastic orthotropic analysis 

using 0.2 m beam elements with Poisson’s ratio ν = 0: (a) my along L4 

(b) my along L5. 
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Figure C.19. Shear force distribution vy along L5 from FE-linear elastic orthotropic 

analysis using 0.2 m beam elements with Poisson’s ratio ν = 0. 
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Figure C.20. Vertical displacement-z from FE-linear elastic orthotropic analysis 

using 0.2 m beam elements with Poisson’s ratio ν = 0: (a) vertical 

displacement-z along L1 (b) vertical displacement-z along L2. 
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C.2.3 Comparisons between shell model and beam grids model 
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Figure C.21. Comparisons of moment distribution my from FE-linear elastic 

orthotropic analysis between 0.2 m beam elements and 0.2 m shell 

elements with Poisson’s ratio ν = 0: (a) my along L1 (b) my along L2. 
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Figure C.22. Comparisons of moment distribution my from FE-linear elastic 

orthotropic analysis between 0.2 m beam elements and 0.2 m shell 

elements with Poisson’s ratio ν = 0: (a) my along L4 (b) my along L5. 
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Figure C.23. Comparisons of shear force distribution vy along L5 from FE-linear 

elastic orthotropic analysis between 0.2 m beam elements and 0.2 m 

shell elements with Poisson’s ratio ν = 0. 
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Figure C.24. Comparisons of vertical displacement uz from FE-linear elastic 

orthotropic analysis between 0.2 m beam elements and 0.2 m shell 

elements with Poisson’s ratio ν = 0: (a) vertical displacement-z along L1 

(b) vertical displacement-z along L2. 
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C.3 Elasto-plastic case-cantilever slab with beam grillage 

model 

C.3.1 Quadlinear M(χ) with Mpl = 0.6 Mel 

C.3.1.1  EII = EI/5 = 6 GPa 

The geometry of the slab is shown in Figure 4.32 and moment curvature relationship 
input is given in Figure 4.33. The analysis is performed using 0.2 m beam elements 
with ν = 0. 
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Figure C.25. Moment distribution my along L5 at different load level up to 100 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/5. 
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Figure C.26. Moment distribution my along L5 at different load level up to 143.8 kN 

(a) moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/5. 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:100 
157 

(a) 

(b) 

-80

-60

-40

-20

0

20

40

60

80

100

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

S
h

e
a
r
 f

o
r
c
e
, 
v

y
 [

k
N

/m
] 

Coordinate, x [m]

Elastic, Ex=Ey, F=100kN

Elastic, Ex=5Ey, F=100kN

Plastic, F=100kN

Plastic, F=80kN

Plastic, F=60kN

Plastic, F=40kN

Plastic, F=20kN

 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

R
a

ti
o

,
γ
 [

 ]
 

Coordinate, x [m]

Elastic, Ex=Ey, F=100kN

Elastic, Ex=5Ey, F=100kN

Plastic, F=100kN

Plastic, F=60kN

 
 

Figure C.27. Shear force distribution vy along L5 at different load level up to 100 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, EII = EI/5. 
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Figure C.28. Shear force distribution vy along L5 at different load level up to 143.8 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, EII = EI/5. 
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Figure C.29. Plastic rotation distribution θpl along L5 at different load level up to 

143.8 kN from FE-elsto-plastic using 0.2 m beam elements with 

Poisson’s ratio ν = 0, EII = EI/5. 
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C.3.1.2  EII = EI/2 = 15 GPa 

The geometry of the slab is shown in Figure 4.32 and moment curvature relationship 
input is given in Figure C.30. The analysis is performed using 0.2 m beam elements 
with ν = 0. 

Here Mplastic = 0.6Melastic, Mcr2 = Mplastic/2 and Mcr1 = Mplastic/3 from equation (4-21) to 
equation (4-26) in Section 4.5.3.1 are kept unchanged. 

The curvature χI , χII , χIII and χIV,of the moment-curvature diagram in Figure C.30 are 
determined from equation (C-1) to equation (C-4). 
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Figure C.30. Quadlinear moment-curvature relationship for the analysis of the 

studied cantilever slab in elasto-plastic case, EII = EI/2. 
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Figure C.31. Moment distribution my along L5 at different load level up to 100 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/2. 
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Figure C.32. Moment distribution my along L5 at different load level up to 143.4 kN 

(a) moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/2. 
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Figure C.33. Shear force distribution vy along L5 at different load level up to 100 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, EII = EI/2. 
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Figure C.34. Shear force distribution vy along L5 at different load level up to 143.4 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, EII = EI/2. 
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Figure C.35. Plastic rotation distribution θpl along L5 at different load level up to 

143.4 kN from FE-elsto-plastic using 0.2 m beam elements with 

Poisson’s ratio ν = 0, EII = EI/2. 
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C.3.1.3  EII = EI/10 = 3 GPa 

The geometry of the slab is shown in Figure 4.32 and moment curvature relationship 
input is given in Figure C.36. The analysis is performed using 0.2 m beam elements 
with ν = 0. 

Like in case of EII = EI/2 = 15 GPa, Mplastic = 0.6Melastic, Mcr2 = Mplastic/2 and 
Mcr1 = Mplastic/3 from equation (4-21) to equation (4-26) in Section 4.5.3.1 are also 
kept unchanged for EII = EI/10 = 3 GPa. 

The curvature χI , χII , χIII , and χIV ,of the moment-curvature diagram in Figure C.36 are 
calculated as: 
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Figure C.36. Quadlinear moment-curvature relationship for the analysis of the 

studied cantilever slab in elasto-plastic case, EII = EI/10. 
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Figure C.37. Moment distribution my along L5 at different load level up to 100 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/10. 
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Figure C.38. Moment distribution my along L5 at different load level up to 144 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/10. 
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Figure C.39. Shear force distribution vy along L5 at different load level up to 100 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, EII = EI/10. 
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Figure C.40. Shear force distribution vy along L5 at different load level up to 144 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, EII = EI/10. 
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Figure C.41. Plastic rotation distribution θpl along L5 at different load level up to 

144 kN from FE-elsto-plastic using 0.2 m beam elements with Poisson’s 

ratio ν = 0, EII = EI/10. 
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C.3.2 Trilinear M(χ) with Mpl = 0.6 Mel and EII = EI/5 = 6 GPa 

The geometry of the slab is shown in Figure 4.32 and moment curvature relationship 
input is given in Figure 4.44. The analysis is performed using 0.2 m beam elements 
with ν = 0. 
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Figure C.42. Moment distribution my along L5 at different load level up to 100 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/5. 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:100 
173 

(a) 

(b) 

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

M
o

m
e
n

t,
 m

y
 [

k
N

m
/m

] 

Coordinate, x [m]

Elastic, Ex=Ey, F=100kN

Elastic, Ex=5Ey, F=100kN

Plastic, F=143.8kN

Plastic, F=140kN

Plastic, F=130kN

Plastic, F=120kN

Plastic, F=100kN

 

0

0.2

0.4

0.6

0.8

1

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

R
a

ti
o

,
γ
 [

 ]
 

Coordinate, x [m]

Elastic, Ex=Ey, F=100kN

Elastic, Ex=5Ey, F=100kN

Plastic, F=143.8kN

Plastic, F=120kN

 
 

Figure C.43. Moment distribution my along L5 at different load level up to 143.8 kN 

(a) moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/5. 
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Figure C.44. Shear force distribution vy along L5 at different load level up to 100 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, EII = EI/5. 
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Figure C.45. Shear force distribution vy along L5 at different load level up to 143.8 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, EII = EI/5. 
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Figure C.46. Plastic rotation distribution θpl along L5 at different load level up to 

143.8 kN from FE-elsto-plastic using 0.2 m beam elements with 

Poisson’s ratio ν = 0, EII = EI/5. 
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C.3.3 Quadlinear M(χ) with Mpl = 0.4 Mel and EII = EI/5 = 6 GPa 

The geometry of the slab is shown in Figure 4.32 and moment curvature relationship 
input is given in Figure 4.48. The analysis is performed using 0.2 m beam elements 
with ν = 0. 
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Figure C.47. Moment distribution my along L5 at different load level up to 95.8 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, Mpl = 0.4 Mel, EII = EI/5. 
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Figure C.48. Shear force distribution vy along L5 at different load level up to 95.8 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, Mpl = 0.4 Mel, EII = EI/5. 
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Figure C.49. Plastic rotation distribution θpl along L5 at different load level up to 

95.8 kN from FE-elsto-plastic using 0.2 m beam elements with Poisson’s 

ratio ν = 0, Mpl = 0.4 Mel, EII = EI/5. 
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C.3.4 Trilinear M(χ) without yielding 

C.3.4.1  EII = EI/5 = 6 GPa 

The geometry of the slab is shown in Figure 4.32 and moment curvature relationship 
input is given in Figure 4.53. The analysis is performed using 0.2 m beam elements 
with ν = 0. 
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Figure C.50. Moment distribution my along L5 at different load level up to 100 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/5. 
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Figure C.51. Moment distribution my along L5 at different load level up to 200 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/5. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:100 182

(a) 

(b) 

-80

-60

-40

-20

0

20

40

60

80

100

120

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

S
h

e
a

r 
fo

rc
e
, 
v

y
 [

k
N

/m
] 

Coordinate, x [m]

Elastic, Ex=Ey, F=100kN

Elastic, Ex=5Ey, F=100kN

Cracking, F=100kN

Cracking, F=80kN

Cracking, F=60kN

Cracking, F=40kN

Cracking, F=20kN

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

R
a

ti
o

,
γ

[ 
] 

Coordinate, x [m]

Elastic, Ex=Ey, F=100kN

Elastic, Ex=5Ey, F=100kN

Cracking, F=100kN

Cracking, F=60kN

 

Figure C.52. Shear force distribution vy along L5 at different load level up to 100 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, EII = EI/5. 
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Figure C.53. Shear force distribution vy along L5 at different load level up to 200 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, EII = EI/5. 
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C.3.4.2  EII = EI/2 = 15 GPa 

The geometry of the slab is shown in Figure 4.32 and moment curvature relationship 
input is given in Figure C.54. The analysis is performed using 0.2 m beam elements 
with ν = 0. 
 

Mcr1 = 19 kNm/m, Mcr2 = 28.5 kNm/m, Mpl = 5 kNm/m in Section 4.5.7 were kept 
constant and the corresponding curvature were determined based on the principle in 
Section 4.5.3.1. 
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Figure C.54. Trilinear moment-curvature without yielding relationship for the 

analysis of the studied cantilever slab, EII = EI/2. 
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Figure C.55. Moment distribution my along L5 at different load level up to 100 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/2. 
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Figure C.56. Moment distribution my along L5 at different load level up to 200 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/2. 
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Figure C.57. Shear force distribution vy along L5 at different load level up to 100 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, EII = EI/2. 
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Figure C.58. Shear force distribution vy along L5 at different load level up to 200 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, EII = EI/2. 
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C.3.4.3  EII = EI/10 = 3 GPa 

The geometry of the slab is shown in Figure 4.32 and moment curvature relationship 
input is given in Figure C.59. The analysis is performed using 0.2 m beam elements 
with ν = 0. 

Mcr1 = 19 kNm/m, Mcr2 = 28.5 kNm/m, Mpl = 5 kNm/m in Section 4.5.7 were kept 
constant and the corresponding curvature were determined based on the principle in 
Section 4.5.3.1. 
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Figure C.59. Trilinear moment-curvature without yielding relationship for the 

analysis of the studied cantilever slab, EII = EI/10. 
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Figure C.60. Moment distribution my along L5 at different load level up to 100 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/10. 
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Figure C.61. Moment distribution my along L5 at different load level up to 200 kN (a) 

moment distribution my (b).ratio of maximum moment my,max to my,x 

moment along L5, EII = EI/10. 
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Figure C.62. Shear force distribution vy along L5 at different load level up to 100 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, EII = EI/10. 
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Figure C.63. Shear force distribution vy along L5 at different load level up to 200 kN 

(a) shear force distribution vy (b).ratio of maximum shear force vy,max to 

vy,x moment along L5, EII = EI/10. 
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APPENDIX D Shear forces distribution 

D.1 Isotropic 0.2 m shell element L = 3 m 
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Figure D. 1. Shear force distribution vy along L5 from FE-linear elastic analysis 

isotropic with Poisson’s ratio ν = 0 using 0.2 m shell elements. 
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D.2 Isotropic 0.2 m shell element L = 6 m 
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Figure D. 2. Shear force distribution vy along L5 from FE-linear elastic analysis 

isotropic with Poisson’s ratio ν = 0 using 0.2 m shell elements. 
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APPENDIX E Plastic rotation of a cantilever 

beam 

E.1 Geometry and loading 

In order to determine a plastic rotation of a cantilever beam, a 1.6 metre long,  
0.2 metre width and 0.2 metre thickness cantilever beam subjected to a prescribed 
displacement of uz = 3 m shown in Figure E.1 and Figure E.2 were examined. The 
plastic rotation of this beam is calculated using both bilinear moment-curvature input 
and tri-linear moment curvature input. 

L = 1.6 m
m

uz = 0.3 m 

(a) 
Ranalytic 

Manalytic 0.05 m 

0.2 m 

L = 1.6 m
m

0.2 m 0.2 m 

(b) 

 

Figure E.1 (a) Geometry of the beam (b) 2 different meshes. 

L = 1.6 m
m

uz = 0.3 m 

(a) 
Ranalytic 

Manalytic 0.2 m 

L = 1.6 m
m

0.2 m 0.2 m 

(b) 

 

Figure E.2 (a) Geometry of the beam (b) single mesh. 

 

E.2 Alternative methods for plastic rotation of a cantilever 

beam 

The cantilever beam in Figure E.1 was examined. This cantilever beam has a certain 
plastic rotation under certain prescribed displacement magnitude-uz. There are three 
alternative methods to determine the plastic rotation capacity of this cantilever beam. 
The first and the second method are based on plastic curvature while the third method 
depends on displacement and rotation relationship. As mentioned in Section 2.2.4, 
plastic rotation is the area under plastic curvature over a plastic region. It is known 
that only the first element of this beam yields. Therefore, it is possible to determine 
the plastic rotation using only the plastic curvature of the first element of the beam. 
This plastic rotation can be computed by using equation (E-1). 
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∫ ∑ ∆⋅==
ell i

iiplplpl xdx
0 0

,χχθ  (E-1) 

12 xxxi −=∆  (E-2) 

yiipl χχχ −=,  (E-3) 

Where =plθ  plastic rotation  

=ipl ,χ  plastic curvature at point i 

=iχ  total curvature at point i 

=yχ  yield curvature 

=1x  section x1 
=2x  section x2 

=∆ ix  distance between section x1 and section x2 

 
If the first four integration points of the first element yield and are linear while the 
fifth integration point does not yield as shown in Figure E.3, the plastic rotation 
capacity can be determined using equation (E-4) instead. 

2
1,1, elpl

pl

l⋅
=

χ
θ  (E-4) 

Where =ipl ,χ  plastic curvature at integration point 1 

=1,ell  length of the first element 

Plastic curvature, χpl 

1 

lel1 

Integration point, x 

2 

3 

4 

5 lel1 

1 2 3 4 5 

(a) 

(b) 

χpl1 

 

Figure E.3. (a) Plastic curvature and integration point relationship (b) integration 

point along axial direction of an element. 

This plastic rotation θpl is the area under plastic curvature. The plastic rotation of the 
above cantilever beam can also be determined by using displacement and rotation 
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relationship as illustrated in Figure E.4. This plastic rotation θpl can be derived in 
equation (E-11). 

L = 1.6 m

m

uz = 0.3 m 

Ranalytic 

Manalytic 

uel 

upl 

uz 

 

Figure E.4. Rotation and displacement relationship 

The moment and curvature relationship is determined from equation (E-5). The elastic 
curvature χel and plastic curvature χpl can be seen in Figure 2.12a. 

EI

M
ela =χ  (E-5) 

The displacement of a cantilever beam under point load in case of linear elastic 
response is calculated using equation (E-6). 

EI

PL
uela 3

3

=  (E-6) 

The bending moment due to point is determined in equation (E-7). 

PLM =  (E-7) 

Combine equation (E-5), equation (E-6) and equation (E-7), equation (E-8) is 
obtained. 

3

2
L

u ela

ela

⋅
=

χ
 (E-8) 

Then a plastic displacement can be computed in equation (E-9) and equation (E-10). 

elatotpl uuu −=  (E-9) 

3

2
L

uu ela

totpl

⋅
−=

χ
 (E-10) 

Finally, the plastic rotation can be calculated using equation (E-11). 

3

L

L

u

L

u
elatotpl

pl

⋅
−==

χ
θ  (E-11) 

Where =plθ  plastic rotation  

=P  point load applied at the edge of the beam 
=L  length of the beam 

=totu  total displacement 

=elau  elastic displacement 
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=plu  plastic displacement 

=elaχ  elastic curvature 

 
The difference in percentage between method 1, method 2 and method 3 are 
calculated from equation (E-12), equation (E-13) and equation (E-14) respectively. 

1,

2,1,

12 100
methodpl

methodplmethodpl

θ

θθ
γ

−
⋅=  (E-12) 
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3,1,

13 100
methodpl

methodplmethodpl

θ

θθ
γ

−
⋅=  (E-13) 

2,

3,2,

23 100
methodpl

methodplmethodpl

θ

θθ
γ

−
⋅=  (E-14) 

 

E.3 Bilinear moment-curvature input-2 different meshes 

The material data input for the analysis of 3D beam with the geometry shown in 
Figure E.1  using bilinear moment-curvature illustrated in Figure E.5 was studied. 
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Figure E.5 Bilinear moment curvature relationship input for 3-D beam in elasto-

plastic case. 

From Figure E.6, it is seen that the reason for the difference between method 1 and 
method 2 of plastic rotation is that the value of the plastic curvature of the 
corresponding integration points is non-linear. Figure E.6 also shows that method 2 is 
not accurate when the plastic curvature value is non-linear. Method 2 provides the 
value larger than expected as the area below the non-linear plastic curvature curve is 
larger than the area of triangle. 
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Figure E.6 Plastic curvature and integration relation with regard to increased 

prescribed displacement, two different meshes. 

The plastic rotation of the cantilever beam in Figure E.1 using method 1, method 2 
and method 3 expressed in equation (E-1), equation (E-4) and equation (E-11) 
respectively are summarized in Table E.1. 

Table E.1.  Comparisons of plastic rotation of a cantilever beam between the three 

methods using bilinear moment curvature relationship model-two 

different meshes. 

Prescribed 

displacement upre 

(mm) 
120 150 180 195 210 300 

Reaction force R 

(kN) 
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From Table E.1, it is seen that difference between method 1 and method 2 for plastic 
rotation of the cantilever beam is converged when the prescribed displacement-uz 

becomes larger and larger. The larger the displacement is, the plastic curvature curve 
will to tend to be linear. From Figure E.6 and Table E.1, it is concluded that method 2 
is a safe-side method, but it is unconservative and it can estimate an approximation 
plastic rotation of the studied cantilever in Figure E.1. When the prescribed 
displacement upre = 195 mm and R = 101 kN, the plastic rotation due to method 1 is 
θpl,1 = 14.3·10-3 rad and the plastic rotation due to method 2 is θpl,2 = 14.5·10-3 and 
γ12 =  1.8 %. The difference between method 1 and method 2 when the plastic rotation 
θpl,2 > 14·10-3 is considered acceptable. Therefore method 2 will be used to determine 
a plastic rotation of the cantilever slab in Chapter 5. 
 

E.4 Bilinear moment-curvature input-single mesh 

In order to be sure that the three methods for plastic rotation of the cantilever beam is 
accurate; the cantilever bean in Figure E.2 was examined with bilinear moment-
curvature illustrated in Figure E.5. 

 

 

Figure E.7 Plastic curvature and integration relation with regard to increased 

prescribed displacement, single mesh. 

From Figure E.7, method 2 is accurate when the plastic curvature at each integration 
point is linear. Method 2 is on safe-side and can be used to estimate the plastic 
rotation of the cantilever beam. 
The plastic rotation of the cantilever beam with single mesh in Figure E.2 using 
method 1, method 2 and method 3 expressed in equation (E-1), equation (E-4) and 
equation (E-11) respectively are summarized in Table E.2. 
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Table E.2.  Comparisons of plastic rotation of a cantilever beam between the three 

methods using bilinear moment curvature relationship model-single 

mehs. 

Prescribed 

displacement upre 

(mm) 
120 150 180 195 210 300 

Reaction force R 

(kN) 
70.3 87.9 104 104 104 104 

∑ ∆⋅=
i

iiplpl x
0

,1, χθ

)rad10( 3−  

0 0 2.4 11.5 21.2 79.9 

2
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χ
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u ela
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χ
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0 0 5.8 15.2 24.6 80.8 

[ ]%12γ  - - -65.1 -34.1 -19.8 -5.2 

[ ]%13γ  - - -140.0 -32.5 -16.1 -1.2 

[ ]%23γ  - - -45.3 -1.2 -3.1 3.8 
 
From Table E.2, it is seen that difference between method 1, method 2 and method 3 
converged for a very large prescribed displacement uz. Since the error between 
method 1 and method 2 when using single mesh is larger than those when using two 
different meshes, two different meshes is recommended for the the analysis of the 
cantilever beam in elasto-plastic case. 
 

E.5 trilinear moment-curvature input 

The material data input for the analysis of 3-D beam with the geometry shown in 
Figure E.1 using trilinear moment-curvature illustrated in Figure E.5 is studied. 
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Figure E.8 Trilinear moment curvature relationship input for 3-D beam in elasto-

plastic case. 
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The moment and curvature input value in Figure E.8 can be found in equation (3-17), 
equation (3-18) and from Figure 3.8. Like bilinear moment-curvature input, the 
difference between method 1 and method 2 of plastic rotation is due to the non-
linearity of the value of the plastic curvature of the corresponding integration points. 

 

Figure E.9 Plastic curvature and integration relation with regard to increased 

prescribed displacement. 
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Like bilinear moment-curvature input case, from Table E.3, it is seen that difference 
between method 1 and method 2 for plastic rotation of the cantilever beam is 
converged when the prescribed displacement becomes larger and larger. When the 
prescribed displacement upre = 165 mm and R = 101 kN, the plastic rotation due to 
method 1 is θpl,1 = 12.6·10-3 rad and the plastic rotation due to method 2 is 
θpl,2 = 12.8·10-3 and γ12 =  1.3 %. The difference between method 1 and method 2 when 
the plastic rotation θpl,2 > 12·10-3 is considered acceptable. Therefore method 2 will be 
used to determine a plastic rotation of the cantilever slab in Chapter 5. 
It is note that method 3 is only valid for bilinear moment-curvature input and it is not 
valid when using multi-linear moment curvature input for elasto-plastic case. The 
reason is that for elasto-plastic moment-curvature input in ADINA, the first data point 
always corresponds to yielding and the last data point always corresponds to rupture. 
Therefore, when using multi-linear moment curvature relationship, equation (E-5), 
equation (E-6) and equation (E-8) are not valid from Mcr to Manaly in Figure E.8. 
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APPENDIX F Modelled slab versus real slab 

F.1 Geometry 

As a real reinforced concrete slab is not modelled in this report, a slab with certain 
dimension and material properties is chosen. What does the studied cantilever slab in 
Figure 4.32 with input data in Figure 4.33 mean in reality? 

Let’s assume a slab with dimension shown in Figure F.1. The concrete slab is C30/37 
and reinforcement B500 are chosen. 

w=1 m 

h =0.2 m d =0.15 m 

As - 5Ф16 

 

Figure F.1 Cross-section of a real concrete slab. 

 

F.2 Stiffness 

Concerning cracking moment of concrete, one might argue about which tensile 
properties of concrete, i.e. characteristic value or mean value should be used. In this 
case, the mean value of the concrete tensile strength is assumed. 

The total amount of reinforcement: 

4616 m101005
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The moment of inertia for uncracked state (state I) ignoring reinforcement is 
determined in equation (F-2). 
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α is the ratio between the Young’s modulus for reinforcement and concrete and 
determine as: 
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AI total area of the cross section determined as: 

( ) 26 m205.0101005)106.6(2.011 =⋅⋅−+⋅=⋅−+= −
sI AwhA α  (F-4) 

The effective depth d is: 

m15.005.02.0 =−=−= chd  (F-5) 
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xbar centre of gravity of the section determined as: 
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The moment of inertia for uncracked state (state) taking into account reinforcement is 
determined in equation (F-7). 
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In state II, the moment of inertia must be calculated from the cracked cross-section. 
By assuming negligible normal forces, the height of the compressed zone x can be 
determined by equilibrium as: 
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and can be rearranged as: 
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Then x can be determined as: 
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The moment of inertia in state II can then be calculated as 
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The ratio between uncracked and cracked moment inertia is: 
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F.3 Cracking moment 

It is possible to determine the cracking moment using moment of inertia of uncracked 
section with and without taking into account the reinforcement, i.e. II or II,reinforcement 

In this case, cracking moment is computed using moment of inertia of state I ignoring 
reinforcement as: 

kNm/m33.19
6

2.01
109.2

6

2
6

2

=
⋅

⋅⋅=⋅=
wh

fm ctmcr  (F-13) 

 

F.4 Maximum internal resistance 

When the plastic case is considered, the deformation of the slab does no longer follow 
the elastic deformation shape and the stiffness is no importance. In this case, the 
internal resistance is important. The partial coefficients used for steel and concrete are 
equal to 1.15 and 1.5 respectively. Factors αR = 0.81 and βR = 0.416 are stress block 
factors when the section has reached its ultimate capacity according to Eurocode 2, 
CEN (2004). 

The height of compression zone x is determined as: 

m 027.0

1
5.1

1030
81.0

101005
15.1

10500

6

6
6

=

⋅
⋅

⋅

⋅⋅
⋅

==

−

wf

Af
x

cdR

syd

α
 (F-14) 

The moment capacity for rectangular cross Section is: 

( )

( ) kNm/m 64.60027.0416.015.0101005
15.1

10500 6
6

=⋅−⋅⋅
⋅

=

⋅−⋅=

−

xdAfm sydrd β

 (F-15) 

 

F.5 Plastic rotation capacity 

Reader can refer to Section 2.2.4 for plastic rotation capacity. 

The ratio between the height of compression zone and effective depth is: 

179.0
15.0

027.0
==

d

xu  (F-16) 
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From Figure 2.13 with xu/d = 0.179 , ClassB steel and concrete C30/37 are used, θpl,d 

is obtained as: 

rad1013 3
,

−⋅=dplθ  (F-17) 

The shear slenderness λ determined as: 

67.10
15.0

6.1
===

d

loλ  (F-18) 

88.1
3

67.10

3
===

λ
λk  (F-19) 

Therefore, the plastic rotation capacity of the section is determined in equation (F-20). 

rad105.24101388.1 33
,

−− ⋅=⋅⋅== dplrd k θθ λ  (F-20) 

From Figure 2.13 with ClassB steel and concrete C30/37 are used, θpl,d,min is obtained 
as: 

rad106.5 3
min,,

−⋅=dplθ  (F-21) 

rad1053.10106.588.1 33
min,,min,

−− ⋅=⋅⋅== dplrd k θθ λ  (F-22) 

 

F.6 Comparison between modelled slab and real 

reinforced concrete slab 

When the plastic rotation capacity of the cantilever slab in Figure F.1 is determined, it 
is possible to estimate the plastic rotation capacity of the studied cantilever slab in 
Figure 4.32 with input data in Figure 4.33 in Section 4.5.3 by comparing mcr, stiffness 
ratio γ, and moment capacity mrd. The comparison between the real reinforced 
concrete slab in Figure F.1 and the studied chosen in Figure 4.32 with input data in 
Figure 4.33 in Section 4.5.3 is summarized in  

Table F.1  Comparison between real reinforced concrete slab and modelled slab. 

Parameters Real RC slab Modelled slab 

m)(0L  1.6 1.6 

m)(h  0.2 0.2 

m)(w  1 1 

m)(d  0.15 0.15 

Concrete  C30/37  ? 
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entReinforcem  B50016,5φ  ? 

IIc

Ic

IE

IE
=γ  7.05 5 

kNm/m)(crm  19.33 19 

kNm/m)(rdm  60.64 57 

rad)10( 3
,

−= dplrd k θθ λ  24.5 ? 

rad)10( 3
min,,min,

−= dplrd k θθ λ  10.53 10.53 

 

As can be seen in Table F.1, the properties of studied cantilever slab in Figure 4.32 
are close to real concrete slab in Figure F.1.Therefore, it is concluded that it is a 
reasonable slab that is close to reality. Since the geometry of these two slabs are the 
same and mrd are close to each other, the plastic rotation capacity of the studied 
cantilever slab in in Figure 4.32 with input data in Figure 4.33 should be around the 
region of θrd = 24.5·10-3 rad. The minimum plastic rotation of these two slabs is 
θrd,min = 10.6·10-3 rad. 


