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Abstract

The physics of certain condensed matter systems is not well understood due
to strong coupling preventing perturbative descriptions and in certain cases
also numerical simulations. The AdS/CFT correspondence might allow a
non-perturbative description of these systems in terms of a dual weakly cou-
pled system. In this thesis the AdS/CFT correspondence is used to model
a high-Tc superconductor by a gravity theory outside a black hole in AdS
space. The frequency dependent conductivity is calculated using this model
and a superconducting phase is shown to appear below a critical temper-
ature. These computations are described in detail in the first part of the
thesis. In the spirit of effective field theory, the second part of the thesis
includes a higher curvature correction on the gravity side. The correction
is shown to give a Drude peak and its properties are examined. Another
way to introduce a Drude peak is by introducing a periodic lattice [1], as
was recently done by Horowitz et al. Our way of obtaining the Drude peak
is computationally much simpler than the periodic lattice and might be a
useful effective description.
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Chapter 1

Introduction

The AdS/CFT correspondence was conjectured in 1997 by Juan Maldacena.
It relates the physics of a string theory in Anti de Sitter space (AdS) to a
conformal field theory (CFT) on the boundary of the AdS space.

AdS is the maximally symmetric space of constant negative curvature.
AdS spaces have many interesting properties which will not be described
here in detail. A visualization of a two-dimensional AdS space can be made
by embedding it as a hyperbola in a three-dimensional space-time with two
time directions. The inherited metric is then that of two-dimensional AdS-
space with one time direction. See figure on the front of this report. The
two time directions span the horizontal plane in this figure. This embedding
gives a periodic time which is not necessary. AdS space has, as opposed
to Minkowski space, a boundary at spatial infinity. This boundary, often
called the conformal boundary, can be reached by a massless particle in finite
time and boundary conditions must be specified here for a field theory in
AdS space. The action of the isometry group of AdS space on the conformal
boundary is the conformal group, thereof the name.

The string theory in the AdS space is gravitational and thus perturbs
the AdS space. The correspondence only requires an asymptotically AdS
space. The boundary of the AdS space where the CFT lives is a Minkowski
space of one spatial dimension lower. This difference in dimension is why this
approach is called holographic. The AdS isometry group requires conformal
symmetry of the boundary theory which thus is a conformal field theory.
A conformal field theory is a quantum field theory with invariance under
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conformal transformations. The conformal group is the Poincaré group with
dilations and special conformal transformations added. Dilations are scal-
ing transformations. The word conformal comes from the angle-preserving
property of these transformations.

There is no proof of the correspondence but it has been extensively tested.
The field theory of the original conjecture [2] was a supersymmetric Yang-
Mills theory. Extensions of the conjecture have later been made and we will
here use a field theory without supersymmetry. That the extended corre-
spondence also holds is motivated in for example [3].

The strength of the duality comes from that the bulk theory is weakly
coupled when the boundary theory is strongly coupled and vice versa. This
lets us solve otherwise computationally intractable problems on the strongly
coupled side by solving them on the weakly coupled side.

1.1 The Correspondence

The correspondence can be formulated through

Zbulk(δψ(0)) =

〈
exp(i

∫
ddx
√
g0δψ(0)O)

〉

CFT

(1.1)

[4]. Here Zbulk(ψ(0)) is the partition function for the bulk theory with bound-
ary condition1 ψ(0) at the conformal boundary.

The expectation value on the right-hand side is of a field theory at a
temperature given by the Euclidean time periodicity of the path integral for
the partition function. The boundary background field ψ(0) is source of the
operator O,

O =
δSCFT

δψ(0)

(1.2)

where SCFT is the CFT action.

1The boundary condition for the bulk field ψ also includes a power-law scaling towards
the boundary, ψ(0) is the factor in front of this scaling. The boundary behaviour of bulk
fields will be investigated in Section 3.3.1.
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The bulk theory becomes classical for a boundary gauge theory with a
large number of colors, a large N . We do not have a large-N theory but
a similar effect is expected for certain strongly coupled boundary theories2

so a classical bulk theory is assumed. See for example [3] for a thorough
treatment of when the bulk theory can be considered classical. The partition
function is then given in a semi-classical limit by

Zbulk(ψ(0)) = C exp(iSc) (1.3)

where Sc is the bulk theory action for the classical periodic path in Euclidean
time and C is a constant [4]. This path has boundary condition at the
conformal boundary described by ψ(0).
Expectation values of the CFT operator O(x) can be calculated by

δSc(ψ(0))

δψ(0)(x)
|ψ(0)=0 = −iδ logZbulk(ψ(0))

δψ(0)(x)
|ψ(0)=0

= −i
δ log

〈
exp(i

∫
ddx
√
g(0)ψ(0)O)

〉
CFT

δψ(0)(x)
|ψ(0)=0

=

〈
O(x) exp(i

∫
ddx
√
g(0)ψ(0)O)

〉
CFT〈

exp(i
∫

ddx
√
g(0)ψ(0)O)

〉
CFT

|ψ(0)=0

= 〈O(x)〉CFT

(1.4)

where the first equality comes from the semi-classical approximation (1.3)
and the second equality comes from the correspondence (1.1). The same
correspondence holds for tensor fields with more indices. We have for a
vector field Aa that source Ja

Ja =
δSCFT

δA(0)a

(1.5)

the following scheme for extracting a CFT expectation value from the clas-
sical bulk

〈J(x)〉CFT =
δSc(ψ0)

δA(0)a(x)
|A(0)a=0. (1.6)

The functional derivative needed to calculate these CFT expectation values

2The ratio of the AdS-radius L and the gravitational constant GN act as an effective
N , Ld−1/GN = N2 [3]. Here d is the dimension of the CFT. This N will be large since
we treat the gravity theory in the limit GN → 0.
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is the change in total on-shell action when the boundary value of the source
field is changed. This can in the case of the operator O and the source ψ
be calculated as follows. All fields of the on-shell bulk theory are in general
changed by a change of a boundary value. Denote all the fields in the bulk
theory by ψi. The bulk action Sc is made up of two parts, a bulk Lagrangian
density L and possibly a boundary term with a boundary density Lbdy.

Sc = Sbdy +

∫
dd+1y

√
gL (1.7)

The derivative becomes

δSc(ψ(0))

δψ(0)(x)
|ψ(0)=0 =

∫
dd+1y

√
g

(
∂L(y)

∂ψi(y)

∂ψi(y)

∂ψ(0)(x)
+

∂L(y)

∂(∇aψi(y))

∂(∇aψi(y))

∂ψ(0)(x)

)

+
δSbdy

δψ(0)(x)
|ψ(0)=0,

(1.8)

where i goes over all fields and summation is implied. Here the bulk La-
grangian is assumed to only depend on the fields and their first derivatives.
Now integrate by parts

δSc(ψ(0))

δψ(0)(x)
|ψ(0)=0 =

∫
dd+1y

√
g

(
∂L(y)

∂ψi(y)
−∇a

∂L(y)

∂(∇aψi(y))

)
∂ψi(y)

∂ψ(0)(x)

+

∫

∂AdS

ddy
√
g(0)na

∂L(y)

∂(∇aψi(y))

∂ψi(y)

∂ψ(0)(x)
+

δSbdy

δψ(0)(x)
|ψ(0)=0,

(1.9)

where na is an outward normal to the boundary of AdS. The first integral
vanishes since the fields obey the Euler-Lagrange equation. The CFT expec-
tation value can thus be read off from the boundary behaviour of the bulk
fields through this relation

〈O〉CFT =

∫

∂AdS

ddy
√
g(0)na

∂L(y)

∂(∇aψi(y))

∂ψi(y)

∂ψ(0)(x)
+

δSbdy

δψ(0)(x)
|ψ(0)=0. (1.10)

A CFT expectation value can in this way be obtained from each of the bulk
fields once the boundary behaviour of the on-shell bulk fields are known.
This also works for tensor fields. This relation will be used in the coming
chapters but the boundary behaviour of the bulk fields must first be found.
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1.2 Applications

The correspondence can be used both ways but we will consider a strongly
coupled boundary theory. Conformal field theories are characterised by not
having any specific length scale. Physics at critical points often have this
property. A critical point can be a thermodynamic phase transition or a
quantum phase transition. The characteristic length goes to infinity as the
critical point is approached and the length scale disappears. The physics
near a critical point can be expected to be similar to the critical system and
finding the critical behaviour is then of interest.

Examples of strongly coupled systems exhibiting critical behaviour are,
quark-gluon plasmas [5], high Tc superconductors [4], and possibly graphene
[4].

We will hereafter focus on high Tc superconductors. These superconduc-
tors are in general layered and the electrons effectively moves in two dimen-
sions. There is no accepted theory describing them possibly due to strong
coupling making a theoretical understanding hard. The high Tc supercon-
ductors might be in the vicinity of a quantum critical point [6] and therefore
exhibiting scale-invariance motivating the use of a CFT.
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Chapter 2

Application to
Two-Dimensional Condensed
Matter Systems

We wish to model a high Tc superconductor. Conventional superconduc-
tors are well described by the BCS theory where the electrons, photons and
phonons are the degrees of freedom of interest. The importance of the phonon
interactions was understood from the isotope effect, the mass of the atoms
in the lattice changed the superconductivity behaviour. The isotope effect
is though much weaker [7], in high temperature superconductors and the
phonons are thus not believed to be important for high temperature super-
conductivity. The important degrees of freedom are the electrons and the
photons. The electrons are, just as in BCS theory, expected to form Cooper-
pairs, [7]. These are pairs of electrons of opposite spin but otherwise in the
same state effectively becoming spin 0 particles. Our high temperature su-
perconductor model will thus contain two fields, a spin 1 field Aa for the
photons and a spin 0 field ψ for the Cooper-pairs.

The superconductor lives in 2+1 dimensional flat space. We will use
coordinates x, y for the spatial directions and t for time. The extra dimension
in the AdS dual will be parametrised by the coordinate z. See Appendix A
for details on how indices are labeled and ordered in this report.
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2.1 Symmetry Assumptions

The bulk theory should have the same symmetries as the boundary theory.
We therefore impose a U(1) gauge symmetry of the complex ψ field. Lorentz
invariance will also be used for both theories even though relativistic phe-
nomena hardly are important for superconductivity.

2.2 A Lagrangian

There are many different ways to construct a bulk Lagrangian for the fields
Aa and ψ and the metric gab. A Lagrangian previously used successfully to
model two-dimensional electron condensates [8, 1] will initially be used here.

L = 1
2κ

(R− 2Λ)− 1
4
FabF

ab −m2|ψ|2 − |Daψ|2 (2.1)

This is obtained using Wilsonian naturalness meaning that the lowest order
terms obeying all symmetries are used. A higher order term will be investi-
gated in Chapter 4.

The action S is calculated from this Lagrangian as

S =

∫
dd+1x

√
gL+ Sboundary. (2.2)

where g is the absolute value of the determinant of the metric tensor, g =
| det gab|. Sboundary is a boundary term that is needed to cancel divergences
when integrating the action towards the boundary. It does not affect the
equations of motion but is needed to get normaliseable modes.

The first term of the Lagrangian is an Einstein-Hilbert term with a cosmo-
logical constant Λ. A negative cosmological constant gives an asymptotically
anti-de-Sitter space as required. R is the Ricci scalar curvature obtained
from the metric gab. The constant κ, proportional to Newton’s constant GN ,
determines the coupling between the metric and the other fields.

The second term is an ordinary Maxwell term where the electromag-
netic tensor Fab is the exterior derivative of the electromagnetic field tensor,
Fab = ∂aAb − ∂bAa.
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The third and fourth terms are the kinetic and mass terms for the scalar
field respectively. ∇a is the covariant derivative, see Appendix A. Da is the
gauge covariant derivative Da = ∇a − iqAa. This minimal gauge coupling
makes the Lagrangian invariant under a U(1) gauge transformation

ψ → eiθ(x)ψ (2.3)

Aa → Aa +
1

q
∇aθ(x). (2.4)

The Lagrangian is also manifestly Lorentz invariant imposing Lorentz invari-
ance of the boundary theory.

2.3 Equations of Motion

The bulk equations of motion are obtained by varying the bulk Lagrangian
with respect to all the fields. This can be done with the Euler-Lagrange
equation since the action does not contain any higher derivatives. The Euler-
Lagrange equation for a scalar field χ states that

∇a

(
∂L

∂(∇aχ)

)
− ∂L
∂χ

= 0. (2.5)

First vary ψ. This gives

(
m2 −∇2 + q2A2 + iq(∇aA

a)
)
ψ = 0. (2.6)

Varying Aa gives these equations of motion

−∇aF
ab + 2q2|ψ|2Ab + iq

(
ψ∇bψ − ψ∇bψ

)
= 0. (2.7)

A real ψ simplifies calculations and that can be obtained since the gauge
invariance lets us relate any configuration to a real one through a gauge
transformation. The Lorentz gauge,

∇aA
a = 0, (2.8)

removes the last term in the parenthesis of the equation of motion for ψ.
The equation of motion for ψ does not mix the real and imaginary parts
after this choice and ψ can be taken to be real since a global shift of phase
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does not affect Aa, see (2.4). The gauge is still not completely fixed, a
gauge transformation θ(x) such that ∇a∇aθ(x) = 0 can still be done without
violating the gauge condition, (2.8). The equations of motion are

(
m2 −∇2 + q2A2

)
ψ = 0

−∇aF
ab + 2q2ψ2Ab = 0.

(2.9)

after choosing the Lorentz gauge and a real ψ.

2.4 Parameters

There are multiple free parameters in the bulk Lagrangian. These must be
investigated to find values that give us the boundary theory we are inter-
ested in. The Lagrangian contains the parameters κ, Λ, m2, q. Some of
these parameters might be redundant since we can make different symmetry
transformations of fields and coordinates. The physics of the bulk are treated
in the classical limit and the Lagrangian can thus be changed as long as the
equations of motion for ψ and Aa are left unchanged.

2.4.1 κ

The Einstein-Hilbert term of the Lagrangian makes the theory gravitational.
κ is proportional to Newton’s gravitational constant. A small κ gives the
probe limit where the metric equations of motion can be solved indepen-
dently of the other fields. This can be understood by varying the Lagrangian
with respect to the metric; the Einstein-Hilbert part gives a term inversely
proportional to κ and the rest of the Lagrangian gives the stress-energy ten-
sor independent of κ.

This greatly simplifies calculations and will therefore be used throughout
this work. It is though not guaranteed that the interesting boundary theories
are dual to bulk theories in the probe limit. Earlier studies have though found
that interesting boundary systems can be obtained by treating a bulk in the
probe limit. A superconducting condensate develops for low temperatures in
the work by S. Hartnoll, C. Herzog and G. Horowitz [8] where the bulk is
treated in the probe limit. κ→ 0 is a fixed-point of the theory so the physics
is independent of the exact value of κ as long as we are in the probe limit.
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2.4.2 Λ

Scale-invariance of the system lets us choose an arbitrary Λ. Two systems
with different Λ can be shown to be equal by a rescaling. Λ sets a length
scale L

L =

√
− 3

Λ
(2.10)

to which other parameters, e.g m2, can be related. Scale-invariance can thus
not be used to choose those parameters freely. The factor 3 is used so that,
as we will later see, L becomes the AdS radius.

Λ will be set to a convenient number in numerical calculations but kept
in calculations for clarity.

2.4.3 q

q sets the strength of the gauge coupling and is thus the charge of the scalar
field. Considering ψ̃ = qψ and Ãa = qAa as the fields gives a Lagrangian of
the same form but divided by q2 except for the term originally containing q2

which is divided by q4. Multiplying the Lagrangian by a constant does not
affect the equations of motion so the system can be solved for any value of
q. Other solutions can then be obtained by rescaling the fields.

2.4.4 m2

m is the mass of the scalar field in the bulk. What values of m that are
suitable will be investigated later when solving the equations of motion in
the bulk.
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Chapter 3

Solution of the Classical Bulk
Theory

We wish to compute expectation values of the CFT. This will be done through
the correspondence using relation (1.10). The bulk theory equations of mo-
tion must then be solved so that the boundary behaviour of the fields can be
obtained.

3.1 Definitions

The Lagrangian describes a general system so there are many solutions to
the equations of motion. We wish to investigate two properties of a super-
conductor, the development of a condensate at low temperatures and the
conductivity at different frequencies. We are interested in a superconductor
subject to spatially uniform conditions, the applied electric field is uniform
and the chemical potential is uniform. The atomic lattice and its imperfec-
tions are thus not accounted for but interesting superconductivity behaviour
can be obtained anyway [8]. It is thus enough to look at a system with
translational symmetry in the x and y directions. A rotationally invariant
superconductor will further be studied. The system is subject to conditions
constant in time, e.g. no time-dependent chemical potential. This lets us
assume time-independence while solving the non-linear field equations.

The conductivity is the linear electrical current response to an applied
transverse electrical field. We can apply this in the x direction due to the

14



rotational symmetry. We let the applied field have a harmonic time depen-
dence exp(itω) so we can get the response function in the frequency domain.
The linear response is sought so the applied field should be infinitesimal.
The applied field breaks the rotational and time symmetries but since it is
infinitesimal and we are not interested in the effect is has on the other fields
it can be neglected while calculating them. The applied field is later added
with the other fields as a background solution.
The electrical field in the x-direction is Ex = Fxt = ∂xAt − ∂tAx. Transla-
tional symmetry gives Ex = ∂tAx.

These limitations lets us do the following definitions

ds2 = gtt(z)dt2 + gxx(z)(dx2 + dy2) + gzz(z)dz2

ψ = ψ(z)

Aa = (φ(z), Ax(z) exp(itω), 0, Az(z))

(3.1)

where φ(z) is infinitesimal. The gauge condition requires

∇aA
a = ∂aA

a + ΓabaA
b = 0 (3.2)

this gives a homogeneous first-order linear ordinary differential equation for
Az(z) since the contracted Christoffel symbol only has a z component, see
Appendix D. The remaining gauge symmetry lets us add a function to Az
and can be used to set Az(z) = 0 for a specific z. The above differential
equation then requires Az(z) to be identically 0 for all z. We will hereafter
work with Az(z) = 0.

The explicit z and t-dependence of these functions will hereafter be omit-
ted.

3.2 Metric

The path integral for the bulk partition function is approximated in a semi-
classical approximation where we need the saddle-point of the action. We
first wish to find the metric saddle-point of the periodic imaginary time path
integral. The bulk equation of motion for the metric gab is the Einstein
equation with a cosmological constant

Rab −
1

2
gabR + gabΛ = κTab (3.3)
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where Rab is the Ricci curvature tensor and Tab is the stress-energy tensor.
We assumed the probe limit in Section 2.4.1 and therefore neglect the right
hand side of this equation. We want a translation-invariant solution in the
t, x, and y directions that is asymptotically AdS. The solution is known
to be a black hole [3], the Schwarzschild metric in AdS space. The metric
has the following form in a particular choice of coordinates where the radial
coordinate z is 0 at the boundary and zh at the horizon

gabdx
adxb =

L2

z2

(
dz2

f(z)
− f(z)dt2 + dx2 + dy2

)
. (3.4)

Here f(z) = 1 − z3z−3
h . f(z) approaches 1 at the boundary and the space

is asymptotically AdS. There is a horizon at z = zh where f(zh) = 0. The
space behind the horizon can not affect the physics of the boundary and can
thus be neglected in our calculations. This solution is periodic in imaginary
time. Consider the near-horizon metric where

f(z) = f(zh)− (zh − z)f ′(zh) +O((zh − z)2) ≈ 3(1− zz−1
h ) (3.5)

Do the change of variables ρ2 = 4L2

3
(1− zz−1

h ). This gives f(z) ≈ ρ2 9
4L2 and

ρ2dρ2 = dz2z−2
h

4L4

9
. The near-horizon metric is then

gabdx
adxb =

L2

z2
h

(
ρ2dρ2

z−2
h

4L4

9
ρ2 9

4L2

− ρ2 9

4L2
dt2 + dx2 + dy2

)

= dρ2 − ρ2 9

4z2
h

dt2 +
L2

z2
h

(
dx2 + dy2

)
.

(3.6)

Now extend this to imaginary time τ = it

gabdx
adxb = dρ2 + ρ2

(
3

2zh
dτ

)2

+
L2

z2
h

(
dx2 + dy2

)
. (3.7)

The near horizon metric is then that of a Euclidean plane in polar coordi-
nates. There is thus a deficit angle unless 3

2zh
τ has a periodicity of 2π. The

imaginary time has periodicity β so we thus have

3

2zh
=

2π

β
(3.8)
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This gives the relationship between zh and the temperature

T =
3

4πzh
. (3.9)

This expression for the temperature agrees with the Beckenstein-Hawking
temperature of a black hole.

We have assumed κTab = 0 in finding the metric. The backreaction,
δgab, from the non-zero fields will be of order κTab according to (3.3). What
change to the gravitational action does this give? Expand the total action
around the above metric. The Einstein equation is obtained by varying the
Lagrangian with respect to gab and finding the saddle-point so δS ∝ κ−1δg2

ab

for the variation around the saddle-point. We thus have that δS ∝ κT 2
ab and

the backreaction can safely be neglected also when calculating the action
from different field configurations.

This background metric can now be used instead of solving the equations
of motion for the metric together with the fields. The gravitational part of
the Lagrangian must be kept when calculating the value of the total action
which is dominated by the gravitational part.

The horizon zh and the curvature length L set length scales in the met-
ric. Length units in the numerical solution can be chosen such that zh = 1.
This means that we for different temperatures have different units since zh
is related to the temperature. We will have to convert between these units
when comparing results from different temperatures.

3.3 Field Equations of Motion

The equations of motion for ψ(z), φ(z) and Ax(z) can now be obtained.
Inserting (3.1) into the equations of motion (2.9) and using the metric (3.4)
gives





(
q2z2φ2 − L2m2f + zf(zf ′ − 2f)∂z + z2f 2∂z∂z

)
ψ = 0

(
− 2q2ψ2L2 + z2f∂z∂z

)
φ = 0

(
− 2q2ψ2L2f + z2ω2 + z2ff ′∂z + z2f 2∂z∂z

)
Ax = 0

(3.10)

(3.11)

(3.12)
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The formulas in Appendix D have here been used.

3.3.1 Field behaviour at Conformal Boundary

A Frobenious expansion [9] of these equations can be done at the boundary,
z = 0. The leading behaviour of the functions is





ψ = ψ(0)

( z
L

)∆ψ

φ = φ(0)

( z
L

)∆φ

Ax = Ax(0)

( z
L

)∆Ax

(3.13)

(3.14)

(3.15)

where ∆ψ, ∆φ and ∆Ax are constants that are to be determined. This is a
slight assumption since not all functions have this type of leading behaviour1.
Entering this in the equations of motion yields





q2z2φ2
(0)s

2∆φ − L2m2f + f(zf ′ − 2f)∆ψ + f 2∆ψ(∆ψ − 1) = 0

− 2q2ψ2
(0)s

2∆ψL2 + f∆φ(∆φ − 1) = 0

− 2q2ψ2
(0)s

2∆ψL2f + z2ω2 + zff ′∆Ax + f 2∆Ax(∆Ax − 1) = 0.

(3.16)

(3.17)

(3.18)

where s = zL−1. This immediately gives ∆ψ ≥ 0 and 1 + ∆φ ≥ 0 since the
first terms otherwise diverges at the horizon where the other terms are finite.
First consider the case of strict inequalities. The leading order behaviour is
then 




− L2m2 − 2∆ψ + ∆ψ(∆ψ − 1) = 0

∆φ(∆φ − 1) = 0

∆Ax(∆Ax − 1) = 0.

(3.19)

(3.20)

(3.21)

with solutions 



∆ψ =
3

2
±
√

9

4
+ L2m2

∆φ = 0, 1

∆Ax = 0, 1.

(3.22)

(3.23)

(3.24)

1The function log for example does not allow an expansion like this, we have assumed
the function does not have an essential singularity at z = 0.
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Observe that each of these three exponents have two solutions each, inde-
pendently of each other. Now assume ∆ψ = 0. (3.17) gives

−2q2ψ2
(0)L

2 + ∆φ(∆φ − 1) = 0 (3.25)

while (3.16) gives ∆φ = −1. We then have





q2φ2
(0)z

2
h = L2m2

q2ψ2
(0)L

2 = 1

∆Ax(∆Ax − 1) = 2.

(3.26)

(3.27)

(3.28)

with solutions ∆Ax = −1, 2. First assuming ∆φ = −1 yields the same result.
There are however no solutions to (3.26) for the negative m2 we later will
consider and infinities are encountered when calculating the action for these
solutions so they will not be considered. All useful solutions are thus given
by equation (3.22) to (3.24).

3.3.2 Field behaviour at Horizon

The same kind of expansion can be made at the horizon but there are some
simplifying conditions. The time component of the metric vanishes at the
horizon, f(zh) = 0. This means that At(zh) must be zero because a finite
At(zh) would give a finite Wilson loop around the periodic imaginary time
circle whose length in time is 0. A Wilson loop is contrary to At a physical
quantity (At is gauge-dependent). This gives a singular gauge connection
which is unphysical [4]. We thus have φ(zh) = 0. Expand the fields as





ψ = ψ(h)s
∆

(h)
ψ

φ = φ(h)s
∆

(h)
φ

Ax = Ax(h)s
∆

(h)
Ax

(3.29)

(3.30)

(3.31)

where s now is (1 − z/zh) and ∆
(h)
φ > 02. The function f can be expanded

as f = 3s− 3s2 + s3. Insert these leading terms in the equations of motion.

2The notation ∆(h) is used to signify that these exponents describe the horizon be-
haviour, ∆ was earlier used for the conformal boundary behaviour.
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We get




q2z2φ2
(h)s

2∆
(h)
φ + 9z2

h∆
(h)
ψ + z2

h9∆
(h)
ψ (∆

(h)
ψ − 1) = 0

− 2q2ψ2
(h)s

2∆
(h)
ψ L2 + z2

h3s
−1∆

(h)
φ (∆

(h)
φ − 1) = 0

− 6q2ψ2
(h)s

2∆
(h)
ψ +1L2 + z2

hω
2 + 9∆

(h)
Ax

+ 9∆
(h)
Ax

(∆
(h)
Ax
− 1) = 0.

(3.32)

(3.33)

(3.34)

Solving for the leading terms of these equations and using ∆
(h)
φ > 0 gives





∆
(h)
ψ = 0

∆
(h)
φ = 1

∆
(h)
Ax

= ±iωzh
3

.

(3.35)

(3.36)

(3.37)

The two possible ∆
(h)
Ax

represent solutions going into or coming out of the
horizon. Close to the horizon is Ax(z, t) given by

Ax(z, t) = s±
iωzh

3 exp(iωt) = exp
(
iω(t± zh log s

3
)
)
. (3.38)

The phase is constant for s = exp(∓3t/zh) so the plus sign in (3.37) gives
the ingoing solution.

3.3.3 Boundary Conditions

The equations of motion, (3.10) to (3.12), can be integrated numerically. Just
one leading horizon behaviour is allowed for ψ and φ so only two horizon
conditions are needed for them, ψ(zh) and φ′(zh). The derivative ψ′(zh)
needed for starting a numerical integration from the horizon can be obtained
directly from the equations of motion as z → 0

ψ′(zh) = −L
2m2

3zh
. (3.39)

A two parameter family of solutions to the equations of motion can then be
obtained for ψ and φ. These solutions give the boundary values of the fields
which describe the background fields of the field theory. The two horizon
parameters must be chosen to obtain the desired background fields.
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The field theory operator O corresponding to the background field ψ is
expected to spontaneously attain a non-zero expectation value breaking the
U(1) symmetry. We therefore require the source ψ(0) = 0.

The time component of the electromagnetic potential Aa corresponds to
the electrical potential in the Lorentz gauge. The electrical potential gives
the energy per charge needed to add a charge to the system and the chemical
potential for the electrons µ can thus be expressed as µ = qφ(0).

Just one of the two horizon behaviours of the Maxwell perturbation Ax is
wanted. We want a casual response from the perturbation of the background
field. This corresponds to the solution going into the horizon as time passes
[4]. We thus choose the ingoing horizon behaviour. The equation for Ax
is linear and we are only interested in the linear response at the conformal
boundary so the horizon amplitude of the ingoing solution can be chosen
arbitrarily.

The horizon parameters ψ(zh) and φ′(zh) can now be varied to find solu-
tions to the two boundary conditions ψ(0) = 0 and µ = qφ(0). See Appendix
E for a description of the numerical integration. The Maxwell perturbation
can afterwards be integrated from the horizon to the boundary for a range
of values of ω.

There is a trivial analytical solution of the equations of motion with the
above boundary conditions.





ψ(z) = 0

φ(z) = µ(1− z/zh)

Ax(z) =

[
exp

(
−
√

3 tan−1 zh+2z

zh
√

3

)
zh−z√

z2+zzh+z2h

] iωzh
3

(3.40)

The field ψ is here identically zero and there is no spontaneous symmetry
breaking. This solution thus corresponds to the physics above the critical
temperature, Tc, of the superconductor. We will now make a choice of m to
be able to numerically investigate solutions with ψ 6= 0.
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3.3.4 Choice of scalar mass m

The mass squared of a scalar field in flat space must be non-negative for
stability. This is though not the case in a space with negative curvature.
The Breitenlohner-Freedman (BF) bound is a lower stability bound on m2

of a massive scalar field in AdS space with metric given by (3.4). It requires
[10]

L2m2 ≥ −d
2

4
(3.41)

The scalar field ψ should obey this bound far away from the black-hole for
normalisable modes. We would though like a spontaneous symmetry breaking
of ψ near the black hole3 corresponding to the electron condensate [11]. This
can happen because the coupling of ψ to Aa gives ψ an effective mass that
might break the BF bound near the black hole. The effective mass is given
by

m2
eff = m2 + AaA

a = m2 − z2

L2(1− zdz−dh )
φ2. (3.42)

This can for large enough values of φ break the BF-bound, see Figure 3.1.
Consider the trivial, uncondensed, solution (3.40). When does this give an
effective mass breaking the BF-bound and possibly enabling an additional
condensed solution? The location of the effective mass minimum, z0, can be
found by differentiating (3.42) by z and using (3.40),

z0

zh
=

1

3

(
3

√
37 + 9

√
17− 2

3
√

37 + 9
√

17
− 2

)
. (3.43)

The effective mass breaks the BF-bound at z0 when

µ

T
>

2π√
3

√
4L2m2 + 9

8− 3
√

142− 34
√

17− 3
√

142 + 34
√

17
(3.44)

where (3.9) has been used. We will, following [4, 1], choose m2L2 = −2.
This does not break the BF bound but it is relatively close. It gives integer
scalings for the scalar field at the conformal boundary which is convenient.

3The physics close to the black hole in the bulk corresponds to low energy physics of
the boundary theory, see e.g. [3].
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φ

φ = 0, φ′ > 0

Figure 3.1: Schematic plot of how the the effective mass breaks the BF bound
outside the horizon. A value of φ has been assumed.

3.4 Expectation Values of Field Theory Op-

erators

Expectation values of field theory operators can now be calculated using
solutions of (3.10) to (3.12) and (1.10). Not just the leading behaviour of
the fields is needed to calculate the expectation values but also the first
subleading behaviour. Therefore we expand the fields as





ψ = ψ(0)
z

L
+ ψ(1)

( z
L

)2

φ = φ(0) + φ(1)
z

L

Ax = Ax(0) + Ax(1)
z

L

(3.45)

(3.46)

(3.47)

and obtain ψ(i), φ(i) and Ax(i) from the numerical solution. For this the
boundary terms of the action are required. The boundary term needed for
the scalar field is calculated in Appendix C.

Sbdy = −
∫

z=ε

ddxL−1ψ2√g(0) (3.48)
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Now insert this in relation (1.10)

〈O〉CFT =

∫

∂AdS

ddy
√
g(0)

(
na

∂L(y)

∂(∇aψ(y))
− 2L−1ψ

)
δψ(y)

δψ(0)(x)
=

=
L3

z3

( z
L

2∇zψ(y)− 2L−1ψ
) z
L

=
L2

z2

(
z

L
2(ψ(0)

1

L
+ ψ(1)

2z

L2
)− 2L−1(ψ(0)

z

L
+ ψ(1)

( z
L

)2

)

)

=
2ψ(1)

L

(3.49)

This simple relation thus gives us the expectation value of the scalar operator.
A similar derivation can be made for the other fields. A general expression
is shown in [4], equation 914. We have for the current Ja sourced by the
background field Aa

〈Ja〉CFT =
Aa(1)

L
(3.50)

The current gives us the charge density ρ = −φ(1) and the transverse current
Jx = Ax(1). The minus sign is a convention to get a positive charge density.

We are now in a position to numerically solve the bulk theory and obtain
these expectation values. We do this by sweeping over different horizon values
of ψ and for each value find all solutions to the boundary condition ψ(0) = 0.
This yields many different solutions ρ/T at the boundary. Scale invariance
lets us interpret this as systems of constant ρ but at different temperatures
T . We then get a variation in the chemical potential µ, see Figure 3.2. The
chemical potential of the trivial solution shown there is calculated through

ρ =
µ

zh
= µT

4π

3
. (3.51)

Alternatively one can let µ be constant while varying the temperature and
get a variation in ρ. Figure 3.3 shows the expectation value of O at different
temperatures. The solid line at the bottom is the trivial solution ψ = 0.
The temperature Tc is defined as the temperature where the first non-trivial
solution is obtained. Multiple solutions are obtained as the temperature is

4The difference of a factor 2 between our expressions is due to their kinetic term having
a factor 1/2 we do not have.
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Figure 3.2: Chemical potential needed for constant ρ at different T . The
multiple curves correspond to multiple solutions at the same temperature.
The dashed lines have different signs of the expectation value of O and the
horizon boundary condition ψ(zh). Further solutions (here omitted) are ob-
tained for lower temperature following the trend shown here.

lowered. The different solutions correspond to different phases of the system
and which one is physical can be found by finding which has the lowest free
energy.

3.5 Free Energy

The free energy, A = −T logZ, is the same for the bulk and the boundary
theory since their partition functions are the same. This can be calculated
in the classical limit in the bulk.

A = −T logZ
classical

= −iTSc (3.52)

Here Sc is the on-shell periodic Euclidean time action. The on-shell field
solutions only depend on the z coordinate and are thus proportional to V =
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Figure 3.3: Expectation value of CFT operator O at different T and constant
µ. The multiple curves correspond to multiple solutions at the same tem-
perature. The dashed lines have different signs of the expectation value of O
and the horizon boundary condition ψ(zh). Further solutions (here omitted)
are obtained for lower temperature following the trend shown here.

26



iβV2 where V2 is the area considered in coordinates x1, x2. This gives the
free energy per surface area

A

V2

=

∫ zh

0

dz
√−gL+ V −1Sbdy (3.53)

3.5.1 Free Energy of Scalar and Electromagnetic Fields

Only the free energy difference of the different solutions shown in Figure 3.3 is
needed. We therefore calculate the free energy contribution from the scalar
and electromagnetic fields and neglect the contribution from the Einstein-
Hilbert term of the action. We call this Afields. We do not need to account for
the contribution from any back-reaction on the metric following our argument
in Section 3.2. First consider the trivial solution (3.40).

Afields

V2

=

∫ zh

0

dz
√−gL+ V −1

2 Sbdy

=−
∫ zh

0

dz
( z
L

)−4 1

4
FabF

ab

=−
∫ zh

0

dz
( z
L

)−4 1

2
F 2
ztg

zzgtt

=

∫ zh

0

dz
µ2

2z2
h

=z−1
h

µ2

2

=
4πT

3

µ2

2

(3.54)

This agrees with the result from thermodynamics, µ is the change in free
energy for increasing the expectation value of the number of particles by one
while keeping the temperature constant.

µ =

(
∂A

∂〈N〉

)

T

(3.55)

This is easily shown using ρ = 〈N〉/V2 and (3.51) to get the N dependence of
µ for constant T . The gravitational part of the free energy can be neglected
since the derivative is at constant temperature.
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Figure 3.4: The free energies of the different solutions are shown here for
constant ρ and varying T . The trivial solution is shown as the thick solid
line. The other curves correspond to numerical solutions. The lowest one
corresponds to the solution appearing at T = Tc and the other roots follow
in order.

The free energy for the numerical solutions has been calculated and the
result together with this analytical result is shown in Figure 3.4. It can there
be seen that the trivial solution is the physical solution for temperatures
above Tc and that the solution appearing at the temperature Tc is the physical
solution for all lower temperatures. We will hereafter only work with these
two solutions. The graph is in line with the phase transition being a second-
order phase transition though this has not been investigated mathematically.

3.6 Electrical Conductivity

The conductivity of a superconductor can easily be measured experimentally
for a wide range of frequencies and it is therefore an interesting property to
calculate from our model of a superconductor. The agreement in different
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frequency ranges tells us about similarities and differences between our model
and the experimental superconductors.

3.6.1 Definition of Electrical Conductivity and its Prop-
erties

We define conductivity σ as the linear response function for the current
density Jx with the applied electrical field Ex as source

σ(ω) =
Jx(ω)

Ex(ω)
. (3.56)

Here the direction x has been chosen for concreteness but since we consider
two-dimensional systems with rotational symmetry we need only consider
one direction. These functions of ω are the Fourier transforms of the time-
dependent quantities. The current in the time domain can be obtained from
the conductivity and the applied field through a inverse Fourier transform

Jx(t) =

∫ ∞

−∞
Ex(t− τ)σ(τ)dτ. (3.57)

Causality implies that σ(τ) = 0 for τ < 0 since the current would otherwise
depend on future values of the electrical field. The conductivity can using
this be written

σ(ω) =

∫ ∞

0

σ(τ) exp(iτω)dτ (3.58)

and thus has an analytic extension to the upper half of the complex plane.
Both the current, Jx(t), and applied field, Ex(t), are real quantities which
makes σ(τ) also real and thus Re(σ(w)) an even function and Im(σ(ω)) odd.
These properties of σ(ω) give the Kramers–Kronig relations

Re(σ(ω)) =
2

π

∫ ∞

0

ω′Im(σ(ω′))

ω′2 − ω2
dω′

Im(σ(ω)) = − 2

π

∫ ∞

0

ωRe(σ(ω′))

ω′2 − ω2
dω′

(3.59)

These relations state that the real part of the conductivity uniquely deter-
mines the imaginary part and vice versa.
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3.6.2 Calculating the Holographic Conductivity

We earlier solved the bulk equations of motion with an infinitesimal applied
electrical field in the x direction. The field was oscillating with a frequency
ω. The conductivity can now be calculated from the obtained current in the
x direction.

σ =
Jx
−∂tAx

= − Ax(1)

iωAx(0)L
(3.60)

The electrical conductivity for the normal phase can now be found using
(3.40). The boundary behaviour is

Ax(0) = lim
z→0

Ax(z) = exp

(
−iπzhω

6
√

3

)
, (3.61)

and

Ax(1) = lim
z→0

∂zAx(z)L = −iωL exp

(
−iπzhω

6
√

3

)
. (3.62)

The conductivity is thus 1 for all ω above Tc.

The conductivity below Tc can be calculated the same way using the
numerical solution. The result is seen in Figure 3.5. The conductivity is
lowered for low ω when the condensate forms. An energy gap ∆gap forms and
the conductivity for ω < ∆gap goes to 0 as the temperature is lowered. The
superconductivity is not immediately evident from the obtained conductivity
curves. There is though a δ-function at ω = 0 since translational invariance of
the boundary theory has been assumed and the charged field ψ has obtained a
non-zero expectation value. The δ-function can be seen through the Kramers-
Kronig relations, (3.59). A δ-function in the real part is equivalent to a pole
in the imaginary part.

Im(σ(ω)) = − 2

π

∫ ∞

0

ωδ(ω′)

ω′2 − ω2
dω′ =

=
1

πω

(3.63)

This pole is visible in Figure 3.5.
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Figure 3.5: Real and imaginary part of the conductivity for different tem-
peratures. ρ is here constant.
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3.7 Consistency Check using a Conductivity

Sum Rule

The Kramers-Kronig relations and the independence of low energy properties
for the high frequency conductivity can be used to prove a sum rule for the
conductivity [12]. The rule states that

∫ ∞

0

Re(σ(ω))dω = C (3.64)

where C is a constant depending on what system we are considering. This
integral diverges in our case since σ → 1 for high frequencies, so the rule
must be modified. The proof uses that the imaginary part of σ(ω) becomes
independent of low energy properties such as the temperature at high enough
frequencies. That the Kramers-Kronig relations apply to σ(ω) is also used.
These two properties are also true for σ(ω) − 1 so the rule can be modified
into ∫ ∞

0

Re(σ(ω)− 1)dω = C. (3.65)

The analytical solution above Tc now gives C = 0. This rule can now be used
to verify that our numerics are accurate. The integral of Re(σ(ω)−1) should
vanish for all temperatures. It is then important to include the δ-function at
ω = 0 which our numerics do not catch. We can however find the amplitude,
Σδ, of the δ-function from the amplitude of the pole in the imaginary part
of the conductivity. The sum of the integral of the continuous part of the
conductivity,

∫
(σn − 1)dω, and Σδ should then equal 0 for all temperatures.

The result is seen in Figure 3.6. A suitable cut-off frequency has been used
but since σ(ω) converges fast to 1 this is not a concern. No large discrepancies
are observed. This is a strong check of the numerics since the real part of
the conductivity at all frequencies and temperatures and the amplitude of
the pole all have to match up. The largest discrepancy is observed for low
temperatures,

this is expected since the numerical integrator there has been observed
to make smaller steps indicating a numerically more difficult problem.
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Figure 3.6: The two contributions to the integral in the modified Ferrell-
Glover-Tinkham sum rule for different temperatures. The red line is expected
to be precisely at 0 for perfect numerics
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Chapter 4

Extended Lagrangian

Many simplifications have been made in the previous study. The most sim-
ple Lagrangian (2.1) has been used and translational symmetry has been
assumed. This has given us a boundary theory with a scalar field that con-
denses below a critical temperature as expected for a superconductor. The
conductivity shows both similarities and differences with that of high-Tc su-
perconductors. A δ-function develops at ω = 0 for T < Tc giving infinite
DC conductivity. An evident difference is the lack of a so-called Drude peak
at low frequencies. A Drude peak is an increase in conductivity for low fre-
quencies in metals due to impurities that can be well modeled by the Drude
model of conductivity [13], thereof the name. The Drude model agrees with
experiments on cuprates above Tc [14].

4.1 Drude Model

The Drude model is obtained by treating the charge carriers classically. They
are expected to obey the differential equation

dv

dt
=

q

m
E − 1

τ
v (4.1)

Here qE is the electric force, m the charge carrier mass, q the charge and τ is
the average time between collisions. The last term is a drag force supposed
to model the collisions slowing the charge carriers down. Solving this for
harmonic E = E0 exp(−iωt) gives

v =
τqE0

m(1− iωτ)
exp(−iωt). (4.2)
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This gives the conductivity

σ(ω) =
J(ω)

E(ω)
=
v(ω)qρ

E(ω)
=

τρq2

m(1− iωτ)
=

σ0

1− iτω . (4.3)

where ρ is the density of charge carriers of charge q. From this definition we
have

σ0

τ
=
ρq2

m
. (4.4)

4.2 Higher Order Maxwell Term

Different generalizations of the standard Lagrangian (2.1) have been studied.
Higher order corrections using ψ will not make a difference above Tc so a
Drude peak cannot be obtained using them. Three higher order corrections
using Fab are described in [15]. Wenger studied these extensions [16]. An
increase in conductivity for low frequencies similar to a Drude peak1, was
observed for one of the extensions. This will here be studied in more detail.
The extended Lagrangian has a higher order Maxwell term and a parameter
α2 introducing a new scale.

L = 1
2κ

(R− 2Λ)− 1
4
FabF

ab −m2ψψ −DaψDaψ + α2F
a
bF

b
cF

c
dF

d
a (4.5)

This gives equations of motion different from the earlier ones. They been
calculated using a computer program, see Appendix F. The exponents at
the horizon and boundary are the same since the higher order term vanishes
faster both at the horizon and boundary. The analytical solution of the
equations of motion found above Tc for the original Lagrangian is not valid
anymore and a numerical solution must now be used above Tc as well. The
result of the conductivity calculated using this extended model can be seen
in Figure 4.1 where small α2 has been used.

This higher order term introduces a perturbation in the low frequency
conductivity. The gap still appears at the same position, ωgap ≈ µ/2. The
behaviour around the transition from σ = 0 to σ = 1 is changed. The earlier
increase in conductivity for ω slightly larger than ωgap has been changed.
The increase is lower and at higher ω. The conductivity for a slightly larger
α2 is seen in Figure 4.2. Here the change around the transition is more pro-
nounced. A peak develops for low temperatures and a second peak is also

1courtesy of Hugo Strand, Chalmers University of Technology
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Figure 4.1: Real part of the conductivity for different temperatures using the
extended Lagrangian with α2 = 0.01L4. ρ is here constant.
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Figure 4.2: Real part of the conductivity for different temperatures using the
extended Lagrangian with α2 = 0.1L4. ρ is here constant.
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seen to develop. More peaks develop for higher α2 and lower T . These peaks
seem to approach δ-functions when the temperature is lowered further. The
peaks are not believed to be a numerical error since their contribution is
needed for the sum rule to be satisfied.

The transition to higher conductivity is now seen to happen in two steps.
First, the conductivity increases to σ ≈ 0.7 at ω slightly lower than ωgap.
Now this transition also happens for higher temperatures, the conductivity
approaches 0.7 from above. Secondly, the conductivity increases to reach 1
at ω ≈ 2, this second part of the transition seems to be rather independent
of temperature.

The change above the Tc is similar to Drude behaviour so this will be
investigated in the next section.

4.3 Drude Fit

The conductivity behaviour above Tc resembles that of the Drude model.
A fit of the Drude parameters σ0 and τ can be made to see how well this
model agrees with our conductivity. One point of the complex conductivity
is enough to obtain both of these real parameters. The Drude model con-
ductivity approaches 0 at high frequencies whereas the conductivity of our
holographic model approaches 1. We can thus not expect the model to work
well for high frequencies. We make the Drude fit by taking the value of the
conductivity in the limit ω → 0. First obtain σ0

σ0 = lim
ω→0

σ(ω). (4.6)

Use this to obtain τ

lim
ω→0

Im(σ)

ωσ0

= lim
ω→0

τ

1 + τ 2ω2
= τ (4.7)

A fit using these obtained parameters is shown in Figure 4.3. The fit agrees
well for low frequencies but a difference of 1 in the real part appears as the
Drude model conductivity approaches 0 and the holographic conductivity
approaches 1. This agreement might not be very impressive but the Drude
peak grows when α2 is increased and relative error vanishes in the limit of
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Figure 4.3: Conductivity for α2 = 0.1L4 and T = Tc together with Drude
model fit.

large α2. See Figure 4.4 for a Drude fit with a higher α2. The low frequency
conductivity is here much larger but the error is still if order 1 and only
appears at higher frequencies where the holographic conductivity approaches
1.

This good agreement motivates an investigation of the Drude parameters
dependence on system parameters. Figure 4.5 shows the dependence of the
parameters on the strength of the higher order term, α2. A power-law was
fit to both σ0 and τ at high α2. σ0 clearly approaches a linear dependence
on α2. τ did not permit a power-law description.

Now we investigate the temperature dependence of σ0 to try to see how
the coefficient C in the linear dependence on α2 depends on temperature.
Figure 4.6 shows the dependence of σ0 on both α2 and T . The coefficient
C also seems to follow a power-law since the separations between the curves
corresponding to different temperatures are equal. A plot of the temperature
dependence of C is seen in Figure 4.7. A formula for σ0 valid for large
α2T

−4/3
c /(T−1/3L)4 can according to these results be expressed as

σ0 = C
α2

L4

(
T

Tc

)−4/3

. (4.8)
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This is valid for a large range of values of α2 and T .

4.4 Consistency Check using a Conductivity

Sum Rule

A test of the numerics was again performed by verifying the sum rule. The
result is seen in Figure 4.8. There is a substantial error at low temperatures
but it is decreased by increasing the number of samples for the numerical
integral so it is believed to originate from the very sharp peaks, approaching
δ-functions, appearing at low temperatures making numerical integration
difficult.

4.5 Discussion

The drag force in the Drude model is due to electron collisions, the electrons
have a mean time τ between collisions. These collisions are mainly with the
lattice which is something our translation-invariant theory cannot model. A
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similar effect could though be observed for interactions between other charge-
carrying excitations of different charge.
The temperature dependence of the DC-conductivity σ0 gives the tempera-
ture dependence of the scattering rate 1/τ

1

τ
=

ρq2

σ0m
. (4.9)

Assuming the parameters of the Drude model, ρ, q2 and m, are temperature
independent we have

1

τ
=
L4ρq2

Cα2m

(
T

Tc

)4/3

. (4.10)

This disagrees with the linear temperature dependence of the scattering rate
experimentally observed in the cuprates above Tc [14]. The linear depen-
dence found in [14] is attributed to electron-phonon interactions. Electrons
might not be a suitable type of excitation for these possibly strongly coupled
systems and our model might capture interactions between some other type
of excitations. The assumptions of temperature independent Drude model
parameters, ρ, q2 and m, might then not be valid. The true temperature
dependence of the scattering rate can easily be obtained directly from the
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Drude fit but this has not been done. This can then be compared with the
linear experimental observations. The temperature dependence of the Drude
model parameters can then be found. This might give important insights as
to what types of excitations the Drude model in the cases we have studied
describes with such high accuracy.
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Chapter 5

Summary

We have shown how the AdS/CFT correspondence can be used to model a
high-Tc superconductor, both below and above Tc. This was initially done
using the simplest possible Lagrangian and the frequency-dependent conduc-
tivity was calculated. A higher order term was added to the Lagrangian and
a conductivity peak was obtained at low frequencies. The Drude model de-
scribes this peak very well in certain limits. The behaviour of the Drude
model parameter σ0 was investigated in certain limits. Our extended La-
grangian seems to give an effective description of the lattice introduced in [1]
but further investigations are needed.

5.1 Outlook

A much more thorough comparison with experimental results could be made.
Formula (3.51), which relates the chemical potential and charge density for
the non-superconducting solution, could for example be investigated. The
conductivity can also be investigated much more thoroughly. This has how-
ever already been done, e.g. [4], but it would be interesting to repeat their
calculations. A thorough treatment of the differential equations would also
be interesting. All curves in Figure 3.3 approach the same value. The dif-
ferential equation has been numerically investigated and it has the same
boundary behaviour regardless of initial conditions so it seems possible to
find a mathematical explanation for the behaviour by looking at the bound-
ary behaviour of the equations.
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The results from the extended Lagrangian can be investigated further.
A physical interpretation of the conductivity peaks for low temperatures is
needed for an understanding of the extension to the Lagrangian. The tem-
perature dependence of the scattering rate 1/τ can be found and compared
to experiments. A linear temperature dependence would agree with exper-
iments and thus indicate that our extended Lagrangian really captures the
physics giving rise to the conductivity peak. A more thorough comparison
with the results of [1] is of interest since we could hope to have found an effec-
tive description of their system. The power law behaviour of the conductivity
at intermediate frequencies could for example be investigated.
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Appendix A

Conventions in this Report

The AdS space will be referred to as the bulk and the boundary conformal
field theory will be referred to as the boundary theory or the superconductor
or just CFT. We use z for the “radial” coordinate in AdS space, it is 0 at
the conformal boundary and zh at the horizon. This is the same coordinate
as the one called r in [4], there with horizon at r = r+.
Vector quantities not involving time components will in the boundary theory
be written with boldface, E,J.
Tensor indices will be Latin letters, a, b, c, .... Tensors written in component
form will have its components ordered as a = t, x, y on the boundary and
a = t, x, y, z in the bulk. The metric sign convention for positive space-like
distances will be chosen.
The action is calculated from the Lagrangian as

S =

∫
dd+1x

√
gL+ Sboundary. (A.1)

This is independent of coordinates but makes us use covariant derivatives for
finding the equations of motion. The square root could instead be absorbed
in the Lagrangian and the space time be considered flat. This has been done
in computer-aided derivations of the equations of motion.
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Appendix B

Dimensions

What dimension different variables have can be a bit confusing. Here is a
table to clear things up

[z] = [L]

[m2] = [L−2]

[q] = [L0]

[α2] = [L4]

[ω] = [L−1]

[L] = [L−4]

[S] = [L0]

[T ] = [L−1]

[ψ] = [L−1]

[O] = [L−2]

[Aa] = [L−1]

[Fab] = [L−2]

[Ja] = [L−2].

(B.1)
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Appendix C

Boundary Term for Scalar
Field Action

The bulk Lagrangian considered will contain different fields and depends
both on the fields and their first derivatives. Here we will consider a simple
Lagrangian with just one scalar field and figure out what boundary term is
needed for the Lagrangian.

Consider a field ψ with a kinetic term −(∂aψ)2 and a potential term
V (ψ). The classical solution is the one that extremises the action. The
action integral contains the metric as an integration measure

S =

∫
dd+1x

√
| det gab|L ≡

∫
dd+1x

√
gL. (C.1)

The Euler-Lagrange equation is obtained by varying the action. The inte-
gration measure can then be regarded as part of the Lagrangian or covariant
derivatives can be used in the derivation of the Euler-Lagrange equation.
The measure becomes when using the metric (3.4) Ld+1z−d−1. The Euler-
Lagrange equation gives

0 = ∂a

(
∂(z−d−1(V (ψ)− (∂bψ)2))

∂(∂aφ)

)
− ∂(z−d−1(V (ψ)− (∂bψ)2))

∂φ
=

= −∂a
(
z−d−12∂aψ

)
− z−d−1V ′(ψ)

(C.2)

We will be interested in boundary systems with translational symmetry so
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ψ is assumed to be a function of z. The equation of motion then becomes

0 = −∂z
(
z−d−12gzz∂zψ

)
− V ′(ψ)

zd+1
=

−∂z
(
z−d−12(z2L−2f(z))∂zψ

)
− V ′(ψ)

zd+1
=

−z−d−12z2L−2f(z)ψ′′ − L−2
(
(−d+ 1)z−d2f(z) + z−d+12f ′(z)

)
ψ′ − V ′(ψ)

zd+1

(C.3)

This gives a second order differential equation for ψ(z)

0 = −z22f(z)ψ′′ −
(
(−d+ 1)z2f(z) + z22f ′(z)

)
ψ′ − L2V ′(ψ) (C.4)

Now consider the boundary, z = 0. Our metric is required to be asymptot-
ically AdS so f(0) → 1, zf ′(0) → 0. ψ can be expanded at the boundary
as a Laurent series. Call the lowest exponent in this series ∆. ψ will then
behave as z∆ near the boundary. This should solve the differential equation
in the near boundary limit. Insertion of z∆ into the differential equation and
taking the limit of small z gives

0 = −z22∆(∆− 1)z∆−2 −
(
(−d+ 1)2z + z22f ′(z)

)
∆z∆−1 − L2V ′(z∆)

= z∆ (−2∆(∆− 1)− 2(−d+ 1)∆)− L2V ′(z∆).

(C.5)

Now consider a potential for a massive scalar field, V (ψ) = −m2ψ2 +O(ψ3).
We then get the following equation for ∆

0 = ∆2 − d∆− L2m2 (C.6)

in the limit z → 0. This has solutions

∆ =
d±
√
d2 + 4L2m2

2
. (C.7)

ψ thus goes as z∆0 where ∆0 is the smaller solution and ∆1 the larger. The
leading behaviour of ψ near z = 0 is

ψ = ψ0

( z
L

)∆0

+ ψ1

( z
L

)∆1

(C.8)
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unless ∆1 −∆0 >= 1 and further terms from the series corresponding to ∆0

must be included.

What will the contribution to the action from this solution be? Consider
the action contribution from the region z ∈ [ε, δ] where δ is small and ε→ 0.

S[ε,δ] =

∫

z∈[ε,δ]

dd+1x
√
gL =

=V

∫ δ

ε

dz
( z
L

)−d−1 (
−m2ψ2 − (∂aψ)2

)
=

=V

∫ δ

ε

dz
( z
L

)−d−1
(
−m2(ψ0

( z
L

)∆0

+ ψ1

( z
L

)∆1

)2 − (∂a(ψ0

( z
L

)∆0

+ ψ1

( z
L

)∆1

))2

)
=

=V

∫ δ

ε

dz
( z
L

)−d−1 [
−m2

(
ψ2

0

( z
L

)2∆0

+ ψ2
1

( z
L

)2∆1

+ 2ψ0ψ1

( z
L

)∆0+∆1
)

− gzzL−2(∆0ψ0

( z
L

)∆0−1

+ ∆1ψ1

( z
L

)∆1−1

)2
]

=

=V

∫ δ

ε

dz
( z
L

)−d−1 [
−m2

(
ψ2

0

( z
L

)2∆0

+ ψ2
1

( z
L

)2∆1

+ 2ψ0ψ1

( z
L

)∆0+∆1
)

− gzzL−2

(
∆2

0ψ
2
0

( z
L

)2(∆0−1)

+ ∆2
1ψ

2
1

( z
L

)2(∆1−1)

+ 2∆0∆1ψ0ψ1

( z
L

)∆0+∆1−2
)]

=

=V

∫ δ

ε

dz
[
−m2

(
ψ2

0

( z
L

)2∆0−d−1

+ ψ2
1

( z
L

)2∆1−d−1

+ 2ψ0ψ1

( z
L

)−1
)

− L−2

(
∆2

0ψ
2
0

( z
L

)2∆0−d−1

+ ∆2
1ψ

2
1

( z
L

)2∆1−d−1

− 2L2m2ψ0ψ1

( z
L

)−1
)]

=

=V

∫ δ

ε

dz

(
(−m2 −∆2

0L
−2)ψ2

0

( z
L

)2∆0−d−1

+ (−m2 −∆2
1L
−2)ψ2

1

( z
L

)2∆1−d−1
)

=

=V L−2(∆1 −∆0)

∫ δ

ε

dz

(
∆0ψ

2
0

( z
L

)2∆0−d−1

−∆1ψ
2
1

( z
L

)2∆1−d−1
)

=

=V L−1(∆1 −∆0)

(
− ∆0ψ

2
0

2∆0 − d
( ε
L

)2∆0−d
+

∆1ψ
2
1

2∆1 − d
( ε
L

)d−2∆0
)

+ finite

=V L−1

(
∆0ψ

2
0

( ε
L

)2∆0−d
−∆1ψ

2
1

( ε
L

)d−2∆0
)

+ finite

(C.9)

Here ∆0 + ∆1 = d and ∆0∆1 = −L2m2 have been used. One of these

52



two terms diverges as ε → 0. The term with ψ0 diverges since 2∆0 − d =
−
√
d2 + 4L2m2. The action from the near boundary thus diverges. This can

be remedied by having a boundary term in the action that exactly cancels
this divergence.
The boundary term must thus evaluate to

−∆0V L
−1ψ2

0

( ε
L

)2∆0−d
(C.10)

near the boundary. A boundary term like this can be constructed using
ψ = ψ0L

−∆0ε∆0 near the boundary and
√
g(0) = Ldz−d where g(0) is the

determinant of the metric induced on the boundary by gab. The boundary
term then becomes

Sbdy = −
∫

z=ε

ddx∆0L
−1ψ2√g(0) (C.11)

This addition to the Lagrangian is Lorentz invariant and it also has conformal
invariance.
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Appendix D

Computer-Aided Analytical
Calculations

The Christoffel symbols for the AdS black hole were calculated using the
computer algebra system SymPy, [17]. All the non-zero components are
shown below.

Γzzz =
L2 (−zf ′ (z)− 2f (z))

2z3f 2 (z)
=

L2z3
h (5z3 − 2z3

h)

2z3 (z6 − 2z3z3
h + z6

h)

Γztt =
L2 (zf ′ (z)− 2f (z))

2z3
=
L2 (−z3 − 2z3

h)

2z3z3
h

Γzxx =
L2

z3

Γzyy =
L2

z3

Γttz = Γtzt =
L2 (−zf ′ (z) + 2f (z))

2z3
=
L2 (z3 + 2z3

h)

2z3z3
h

Γxxz = Γxzx = −L
2

z3

Γyyz = Γyzy = −L
2

z3

(D.1)

which gives

R =
−z2f ′′ (z) + 6zf ′ (z)− 12f (z)

L2
= −12

L2
(D.2)
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Some Christoffel symbol contractions are useful

Γaaz = −4

z
Γaat = 0

Γaax = 0

Γaay = 0

gabΓzab =
z (−zf ′ (z) + 2f (z))

L2
=
z (z3 + 2z3

h)

L2z3
h

gabΓtab = 0

gabΓxab = 0

gabΓyab = 0.

(D.3)

Using these one obtains

∇a∇aχ =

(
∂a∂

a +
z (zf ′ (z)− 2f (z))

L2
∂z

)
χ. (D.4)

for a scalar field χ. The non-zero components of the electromagnetic tensor
after making the definitions in Section 3.1 are

Fzt(z) = −Ftz(z) = φ′(z)

Fzx(z, t) = −Fxz(z, t) = A′x(z) exp(itω)

Ftx(z, t) = −Fxt(z, t) = iωAx(z) exp(itω)

(D.5)

Another useful quantity is ∇aF
ab

∇aF
ab = ∂aF

ab + ΓacaF
cb + ΓbcaF

ac = ∂aF
ab + ΓacaF

cb (D.6)
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Appendix E

Numerical Method

The numerical integration of the equations of motion becomes hard close to
the horizon and the boundary due to the singular behaviour of the differential
equations. The boundary and horizon behaviours calculated in Subsection
3.3.1 and 3.3.2 have here been used instead to start and stop the integration
right next to the singular points. The distance to the singular points have af-
terwards been changed some orders of magnitude to make sure this approach
does not introduce any noticeable errors. The behaviour of Ax is highly os-
cillatory close to the horizon so this oscillatory behaviour has additionally
been subtracted from the equation giving a non-homogeneous equation with
a solution approaching 0 at the horizon. The oscillatory behaviour could as
well have been divided out to get a homogeneous equation approaching 1 at
the horizon.

The explicit embedded Runge-Kutta Prince-Dormand (8, 9) method im-
plemented in “The GNU Scientific Library” [18] has been used and the rela-
tive error per step for all functions has been required to be smaller than at
most 10−7 for all results in this report.
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Appendix F

Equations of Motion for
Extended Lagrangian

The equations of motion have been calculated using the computer algebra
system SymPy, [17]. Here zh = 1 and q = 1 has been used.

(
−4z3 + 2z2φ2 + 4

)
ψ +

(
2z7 + 2z4 − 4z

)
ψ′ +

(
2z8 − 4z5 + 2z2

)
ψ′′ = 0

(F.1)

(
z5 − z2

)
φ′′ +

(
24α2z

9φ′′ − 24α2z
6φ′′
)
φ′2 + 2φψ2+(

32α2z
8 − 32α2z

5
)
φ′3 = 0

(F.2)

(
8α2z

12φ′2 − 16α2z
9φ′2 + 8α2z

6φ′2 + z8 − 2z5 + z2
)
A′′x+(

8α2ω
2z6φ′2 + ω2z2 + 2z3ψ2 − 2ψ2

)
Ax+(

16α2z
12φ′φ′′ + 56α2z

11φ′2 − 32α2z
9φ′φ′′ − 88α2z

8φ′2+

16α2z
6φ′φ′′ + 32α2z

5φ′2 + 3z7 − 3z4
)
A′x = 0

(F.3)
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