
Bayesian Inverse Problems with
Neural Generative Priors

Master’s thesis in Engineering Mathematics and Computational Science

Vincent Molin

DEPARTMENT OF MATHEMATICAL SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2023
www.chalmers.se

www.chalmers.se

Master’s thesis 2023

Bayesian Inverse Problems with Neural
Generative Priors

Vincent Molin

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology
Gothenburg, Sweden 2023

Bayesian Inverse Problems with Neural Generative Priors
Vincent Molin

© Vincent Molin, 2023.

Supervisors: Axel Ringh and Moritz Schauer, Department of Mathematical Sciences
Examiner: Professor Larisa Beilina, Department of Mathematical Sciences

Master’s Thesis 2023
Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Comparison of reconstruction using a Gaussian Markov random field prior
(middle) and using a neural generative prior (right). The ground truth is shown to
the left. The forward operator of the corresponding inverse problem observes the
10× 10 low frequency coefficients in both directions of the two dimensional discrete
Fourier transform.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2023

iv

Bayesian Inverse Problems with Neural Generative Priors
VINCENT MOLIN
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Inverse problems are ubiquitous in medical imaging and their solutions are essential
for clinical decision making. To allow for quantification of uncertainty a Bayesian
approach can be taken, but selecting an informed prior is highly non-trivial. We
present a data-driven framework where a generative neural network in the form of a
Wasserstein Generative Adversarial Network (WGAN) learns a realistic prior, decou-
pled from the inverse problem in consideration. The method is tested on a severely
undersampled two dimensional MRI analogue. We use two different Markov chain
Monte Carlo algorithms for approximating the resulting posterior expectations, one
based on piecewise deterministic Markov processes, as well as the preconditioned
Crank-Nicolson algorithm. The posterior mean and standard deviation is computed
for the reconstructions. Our experiments demonstrate that this approach outper-
forms classical imaging priors both in the quality of reconstructions and also yielding
a realistic posterior, allowing for sharp reconstructions with uncertainty using only
a sparse observation.

Keywords: Inverse problems, Markov chain Monte Carlo, generative modelling,
piecewise deterministic Markov processes

v

Acknowledgements
First and foremost I would like to express my deep gratitude to Axel and Moritz for
their trust, support, guidance, and patience, during this project as well as during
other academic pursuits.
Leading up to and during this project I have also tested the patience of others, and
I would like to say thank you to the following people:

To my brother Douglas, for your friendship,
To Richard, Carl, and the Council, for keeping me sane,
To Ove, for your tireless efforts,
To Jacob, for your tireless ears,
To Jason, for piercing the void,
To Martin, Linda, Viggo and Elisabeth,

and to the rest of my friends. I do not know where I would be without your support,
and I would very much prefer not to find out.

Vincent Molin, Gothenburg, June 2022

vii

Contents

1 Introduction 1
1.1 Inverse problems in technology . 1
1.2 Outline of the thesis . 2

2 Inverse problems 3
2.1 Linear inverse problems . 3
2.2 Regularisation . 4
2.3 Statistical inversion . 5

3 Generative neural networks 9
3.1 Neural networks . 9

3.1.1 Smooth neural networks . 10
3.1.2 Convolutional neural networks 11
3.1.3 Training of neural networks 11

3.2 Generative Adversarial Networks . 12
3.2.1 Theoretical motivation of GANs 12
3.2.2 Wasserstein GANs . 16

4 Markov chain Monte Carlo and piecewise deterministic Markov
processes 19
4.1 Making Bayesian inference tractable 19
4.2 The preconditioned Crank-Nicolson algorithm 20
4.3 Piecewise deterministic Markov processes 22

4.3.1 Sampling from a target measure 23
4.3.2 Simulating a PDMP . 26

5 Bayesian inversion with neural generative priors 27
5.1 Fitting a neural generative prior . 27
5.2 The posterior on the latent space . 28

6 Experimental setup and results 29
6.1 Defining the inverse problem . 29
6.2 Solving the inverse problem using classical priors 30

6.2.1 Tikhonov regularisation . 31
6.2.2 Structural prior . 31

6.3 Solving the inverse problem using a neural generative prior 33
6.3.1 Learning the prior . 33

ix

Contents

6.3.2 Solving the inverse problem 35
6.4 Evaluation and discussion . 36

6.4.1 Performance of point estimators 36
6.4.2 Informativeness of the posteriors 39
6.4.3 Performance of the sampling algorithms 40
6.4.4 Failed reconstruction for out-of-distribution sample 40

7 Conclusion and outlook 41

Bibliography 41

A Appendix: Image generator I

x

1
Introduction

Before anything else, it is a good idea to clarify what a problem is in this context,
since there are two prominent uses of the word. Even though essentially similar, a
problem hereafter refers to a question that one is interested in answering. One such
question is: say that we have observed some effects, i.e., something has happened,
what are the underlying properties? This sleuthy question is a so called inverse
problem.

Inverse problems are a large class of common problems. In a sense, they are so
ubiquitous that almost anything we humans do involves solving one. All of our
sensory systems collects second hand information from the world and attempts to
grasp the underlying object. For example, when light beams that bounced of a
dandelion hits a seeing persons retina, it triggers a series of electrochemical impulses
propagating through the optic nerve, that in the end leads to the perception of a
dandelion. From the specific patterns of light waves, an idea of the shape, colour,
position and size of an object in the physical world has been recreated.

Continuing with the flower example, the first time one sees a daffodil it would
probably take a bit more visual inspection to fully understand the shape of this
specific weed. If it is the first flower ever to cross ones path there is even more to
unpack. But, crucially, if one is familiar with various plants, ferns and crops, it is
fairly easy to understand the daffodil. In that case, it is not impossible that our
brain is already equipped with a way to imagine different flowers and it could then
only be a matter of tweaking this imagination to fit the new species.

In other words, an argument can be made that our perception of the world relies on
generative models. For instance, we are able to dream up flowers we have never seen
which at least supports the existence of such models. Seemingly, these create an
extremely efficient inverse problem solver that allows us to quickly and accurately
perceive our environment from limited measurements.

1.1 Inverse problems in technology

Inverse problems naturally arises in a wide range of scientific and engineering areas.
A general inverse problem can be formulated as: given a set of observed effects, find

1

1. Introduction

the factors that caused them. We refer to the other direction as the corresponding
forward problem. Some important examples of inverse problems are different types of
medical imaging problems, such as Magnetic Resonance Imaging (MRI), Computed
Tomography (CT), and Positron Emission Tomography (PET).

Recently, purely data–driven methods have shown to be both promising and pop-
ular for solving inverse problems. In Deep Bayesian Inversion (Adler and Öktem
2018) the authors develop a new method for solving inverse problems by training a
conditional generative network that can sample from the posterior distribution con-
ditioned on the observations. This method shows good results, however it requires
paired training data consisting of observed data and obtained reconstructions. In
many cases the raw observations are however discarded after a reconstruction has
been computed.

In this thesis we present a methodology that alleviates the requirement of paired
training data by instead only relying on a dataset of reconstructions. With these,
we create a generative model. This generative model then allows us to efficiently
filter the space of possible solutions for an inverse problem. The hope is that this
reduces the amount of data needed in order to obtain good-quality reconstructions.
In CT, that would mean using lower dose for similar quality in reconstruction, and
in MRI it would mean shorter scanning times for similar quality reconstructions.

1.2 Outline of the thesis
Inverse problems serve as the setting for the work presented in this thesis. However,
perhaps somewhat counter–intuitively, the presented method is mostly applicable to
inverse problems that are in some sense already well understood. We are concerned
with a class of problems where the following assumptions hold:

1. the forward problem is well understood,

2. there is a reasonably accurate model for the observation noise, and,

3. given enough resources, high quality reconstructions can be made.

Many important problems satisfy these conditions. Still, the resources required may
be prohibitive in practice. We seek to exploit both the fact that the problem is well
understood and that it has been solved many times to create a method that is able
to efficiently create a rich posterior, fusing data– and knowledge–driven approaches.

A survey of the building blocks required for the method we are proposing is presented
in the first chapters of the thesis. We then lay out the procedure. With the help of
a surrogate problem, a caricature of magnetic resonance imaging, we demonstrate
that the method works, and also compare it to existing methods. In the closing
chapter we discuss what could be pursued going forward and questions that we have
encountered during this project.

2

2
Inverse problems

An inverse problem is the task of recovering an object x, an element of the recon-
struction space X , given some observed y in the data space Y . We refer to the other
direction, determining the observation given an object x as the forward problem.

In particular, we will consider linear inverse problems related to imaging. An illustra-
tive example of an inverse problem in imaging is deblurring, where the corresponding
forward problem is a convolution with a blurring kernel.

Inverse problem

Forward problem

Figure 2.1: Illustration of a deblurring inverse problem. Here, the forward operator
is a convolution operator, and the image on the right is obtained by applying this
convolution operator to the image on the left.

The blurring operation attenuates high frequency features in the image, which can
make the task of reconstructing a sharp image in a stable way non-trivial.

2.1 Linear inverse problems
Assume now that the solution of the forward problem induces a linear operator
A : X → Y . We refer to the operator A as the forward operator and it models the
observed effects caused by x under the absence of noise. Additionally, the measure-
ment y is also assumed to be disturbed by random noise h, typically modelled by
some known distribution.

3

2. Inverse problems

The mathematical model of the problems we are considering is of the following form.

Problem 2.1.1 (Inverse problem). Given some measurement y ∈ Y , modelled by

y = A x+ h,

recover as much information about x ∈ X as possible.

The inverse problem is normally harder to solve the the corresponding forward
problem. In particular, this is the case when the inverse problem is ill-posed.

Definition 2.1.2 (Ill-posed problem, Mueller and Siltanen 2012, Chapter 1). A
problem is ill-posed in the sense of Hadamard if at least one of the following condi-
tions do not hold:

1. Existence. For all y ∈ Y , there is at least one solution to the problem.

2. Uniqueness. For all y ∈ Y , there is at most one solution to the problem.

3. Stability. The solution depends continuously on the data.

If all three conditions are met, the problem is instead called well-posed. If the first
and the second condition both are met, the forward operator A is bijective and
therefore has a well-defined inverse A −1. Condition 3 then states that A −1 needs
to be continuous, i.e., a small change in y should lead to a small change in x.

Example 2.1.3. Let X = R2,Y = R, and A ((x1, x2)) = x1 + x2. The forward
operator A is linear, for instance, it has the following matrix representation

A (x) = Ax =
[
1 1

]
x.

For any y ∈ Y there exists at least one solution since the column space of A is the
entire real line. However, this solution is not unique since the null space of A has
dimension 1. Condition 2 is not satisfied and the corresponding inverse problem is
therefore ill-posed.

2.2 Regularisation
As seen, ill-posed problems have mathematical properties which make their solutions
behave badly, if a solution exists at all. To address these issues, additional structure
is typically added to the problem in a process called regularisation. There are a wide
range of possible techniques and strategies developed over a long period of time for
regularising problems, but the core idea is to guide the solution by incorporating
prior knowledge or experience about the problem.

Example 2.2.1. Consider the problem of fitting a quadratic curve y = β2x
2 +

β1x+ β0 to a set of observed points (xi, yi)Ni=1. This can be seen as a linear inverse
problem, where

β = (β0, β1, β2) ∈ X = R3,

4

2. Inverse problems

and

y = (y1, ..., yN) ∈ Y = RN .

The forward operator A : R3 → RN is the linear transformation given by the matrix
vector product

β 7→


1 x1 x2

1
...

1 xN x2
N



β0

β1

β2

 = Xβ.

If N > 3 and all points (xi, yi)Ni=1 do not lie exactly on a quadratic curve, A β = y
has no solution. The problem can be remedied by assuming that the observations yi
actually are related to xi by yi = β2x

2
i + β1xi + β0 + εi where the εi are independent

draws from a normal distribution N (0, σ2). The parameters β can now for example
be estimated by the maximum likelihood method, which coincides with least squares
regression.

Here, the regression problem was regularised by, first, choosing a model for the
formation of the observational noise, and then electing to reconstruct the parameters
by selecting a suitable criterion to optimise.

2.3 Statistical inversion
In this work, we will take a probabilistic perspective on inverse problems. To this
end, we again consider the data formation process

y = A x+ h.

Here, since h is the outcome of some random variable H, the data y is also the
outcome of some Y-valued random variable. Denote this random variable by Y .
From a Bayesian point of view, x is also random and the pair (x, y) should be seen
as the outcome of the random element (X, Y). Let PX,Y be the joint distribution of
this random element over X × Y and let PH denote the distribution of the noise H.

To ease the presentation we now restrict ourselves to the case where X and Y are
subsets of Rn or Cm. Assuming that the distribution of the additive noise PH has
a probability density πH , we find that there also exists a conditional density of Y
given x ∈ X , namely

π(y | x) = πH(y −A x).

Previously we added additional information to the problem in order to improve the
structure of it. In the probabilistic setting, this regularisation is in essence captured
by the definition of a prior distribution PX on X . Assuming that this permits a
density πX we can find the posterior density of x given the observation y by applying
Bayes’ theorem.

5

2. Inverse problems

Theorem 2.3.1 (Kaipio and Somersalo 2006, Theorem 3.1). Assume that X ∈ Rn

has a known prior probability density πX(x) and that the observation y is the outcome
of the random variable Y ∈ Rm satisfying

∫
π(y | x)πX(x)dx 6= 0. Then the posterior

density of X given y exists and is given by

π(x) = π(x | y) = π(y | x)πX(x)∫
π(y | x)πX(x)dx.

The denominator
∫
π(y | x)πX(x)dx serves as a normalising constant and is called

the model evidence. The posterior distribution of x is the precise quantification of
our knowledge of x. Equipped with the posterior we can answer all manners of
statistical questions about x. For instance, we can determine the probability that x
has some property P given what we have observed by computing the integral∫

A
π(x)dx, A = {x ∈ X : P (x)}. (2.3.1)

This requires computing two integrals, and both these can be intractable in practice.
In Chapter 4 we will see how this issue can be circumvented by generating samples
from the posterior, with methods that only require knowing the posterior up to a
multiplicative constant not depending on x. We write this as

π(x) ∝x π(y | x)πX(x).

For instance, with a sample (x1, ..., xN) from the posterior we can approximate
(2.3.1) by ∫

A
π(x)dx ≈ 1

N

N∑
i=1

P (xi).

In a Bayesian setting, one way to reformulate Problem 2.1.1 more precisely is as
follows.

Problem 2.3.2 (Bayesian inverse problem). Given some measurement y ∈ Y , mod-
elled by

y = A x+ h,

recover the posterior density π(x | y).

Example 2.3.3. In Example 2.2.1 we chose to reconstruct the parameters β using
the maximum likelihood method. If we instead assign a prior density to the scale
σ of the observation error h, and to the coefficients βi, we can find a posterior
distribution of the parameters. The following computations summarises the steps
in O’Hagan 1994, Chapter 9. To find a closed form for the posterior in terms of
well-known distributions, it can be shown that choosing the following form of the
prior

π(β, σ2) = π(β | σ2)π(σ2),

6

2. Inverse problems

where

σ2 ∼ Inverse-Gamma(a0, b0),

and

β | σ2 ∼ Normal(µ0, σ
2Λ−1

0).

yields the following expression for the posterior

π(β, σ2 | y) ∝ (σ2)−n/2 exp
(
− 1

2σ2 (y −Xβ)T (y −Xβ)
)

· (σ2)−3/2 exp
(
− 1

2σ2 (β − µ0)TΛ0(β − µ0)
)

(σ2)−(a0+1) exp
(
− b0

σ2

)
.

Further, this can be factorised as π(β, σ2 | y) ∝ π(β | σ2, y)π(σ2 | y), where

β | σ2, y ∼ Normal(µn, σ2Λ−1
0),

Λn = XTX + Λ0,

µn = (Λn)−1(XTXβ̂ + Λ0µ0),

and

σ2 | y ∼ Inverse-Gamma(an, bn),

an = a0 + n

2 ,

vn = b0 + 1
2(yTy + µT0 Λ0µ0 − µTnΛnµn).

In the previous example, the prior densities were chosen so that the posterior had
the same functional form. This is a so-called conjugate prior.

In practice there are however two major hurdles that one needs to overcome in order
to make the Bayesian approach viable. Firstly, writing down a prior distribution,
that actually contains most of our knowledge of the problem, by hand might be
impossible. For example, this is the case in almost all inverse problems in imaging,
and it is therefore common to resort to using structural priors on the reconstruction
space.

Secondly, while Theorem 2.3.1 guarantees the existence of a posterior distribution,
it might still be numerically intractable to compute the integrals one is interested
in. When faced with complicated posteriors it is commonplace to perform Monte
Carlo inference by drawing samples from the posterior.

In the following two chapters the tools needed to tackle these two problems will be
presented. Specifically, Chapter 3 tackles the problem of difficult priors by introduc-
ing generative models and Chapter 4 presents a modern Markov chain Monte Carlo
framework for handling the computationally complicated posteriors that arise.

7

2. Inverse problems

8

3
Generative neural networks

The aim of this chapter is to present a class of modern generative models based
on neural networks, and some familiarity with the latter is assumed. For a more
thorough and formal introduction to neural networks, the reader is referred to the
textbook by Goodfellow, Bengio, and Courville 20161, or to the myriad of package
documentations, blog posts, tutorials and videos available everywhere.

The goal of generative modelling is to generate new data from a distribution of
interest. Typically, one starts from a dataset {xi} ⊂ X , viewing it as a sample from
some underlying distribution of interest. As to not bury the lead, the distribution
we are interested is the prior on X , and we denote this by PX . A generative model
should then allow one to draw new samples from PX .

There are a few major groups of generative neural networks, and while their training,
capabilities and properties vary, on a high level most work in a similar way. More
specifically, after training, the generative network is a function that maps samples
from a very simple distribution, i.e., a multivariate standard normal, to samples that
should resemble the true distribution. In this work, we will only consider a class
of models known as Generative Adversarial Networks (GANs). But first, a short
primer on neural networks is in place.

3.1 Neural networks
The current widespread use of neural networks is in large part due to the flexibility
that this class of models permits. In theory, a neural network can approximate
any function up to arbitrary precision, see for instance Section 6.4.1 in Goodfellow,
Bengio, and Courville 2016.

We consider a dense feed forward neural network fθ, consisting of n layers and
parametrised by the weights θ ∈ RN . The network fθ is a function that maps an
input vector z ∈ Rd to some fθ(z) ∈ D ⊆ Ro.

Let Liθi be the ith layer of this network. Then fθ is the composition

fθ = Lnθn ◦ ... ◦ L
1
θ1 .

1Freely accessible at https://www.deeplearningbook.org.

9

https://www.deeplearningbook.org

3. Generative neural networks

Figure 3.1: Illustration of a generative neural network. Here, z is some simple
latent distribution that gets mapped through the potentially complicated generator
network gθ, which is a function parametrised by the vector θ. With the help of
examples from the true distribution one is interested in approximating, a loss for
the generated distribution can be computed and θ is tuned by the minimisation of
this loss.

Further, each layer of this network can be written as

Liθi(x) = σ.(Wix+ bi),

whereWix is a matrix vector product, bi is the additive bias, and σ. is the activation
function of the layer, which typically is applied element–wise. If the activation
functions are linear the network collapses to an affine function Wx+ b, so typically
all intermediate activations are non-linear.

3.1.1 Smooth neural networks
While still in their infancy, it was common to use saturating activation functions
such as the Sigmoid, x 7→ (1 + e−x)−1, or tanh in neural networks. These where
the natural choice due to their similarity with the observed activation patterns
of real, biological neurons. These functions do however have numerical properties
that can cause difficulties during training. A less biologically inspired approach has
been observed to perform better, and for quite some time a common choice of non-
linearities in the intermediate layers of the network has been the rectified linear unit
(ReLU), given by x 7→ max(0, x). However, this activation function does not have
a continuous derivative at x = 0.

In our setting, we will later see that it is important that the gradient of networks we
are interested in is well-behaved. Specifically, we would like to have a gradient ∇f
that is Lipschitz continuous, and, preferably, we would like this Lipschitz constant
to be somewhat small.

Definition 3.1.1. The Sigmoid-weighted Linear Unit (SiL), presented in Elfwing,
Uchibe, and Doya 2018, is an activation function given by

x 7→ x · Sigmoid(x) = x · 1
1 + e−x

.

10

3. Generative neural networks

This activation function coincides with the Swish activation from Ramachandran,
Zoph, and Le 2017,

x 7→ x · 1
1 + e−βx

,

with the trainable parameter in the latter fixed to β = 1.

In practice, it is common to refer to both x · Sigmoid(x) and x · Sigmoid(βx) as
Swish, and going forward Swish will refer to the former.

Remark 3.1.2. Both Sigmoid and Swish are smooth activation functions. This
means that any finite network with only these two activation functions is smooth,
and therefore at least has a locally Lipschitz gradient.

3.1.2 Convolutional neural networks
The fully connected networks presented so far have been around for a long time,
heralding back to the computational model of a neuron suggested in Mcculloch
and Pitts 1943, the perceptron (Rosenblatt 1957), and the advent of computers in
general. Faith in artificial neural networks has fluctuated since their introduction,
enjoying years of unbridled enthusiasm as well as more pessimistic periods, typically
nicknamed AI winters.

While there is no clear starting point for the latest wave of optimism, the early
2010s saw the rise of deep learning with convolutional neural networks starting to
outpace other methods in computer vision. Convolutional architectures, inspired
by the organisation of neurons in the visual cortices of mammals, had already been
around for around 20 years but this is where the first implementations running on
graphical processing units (GPUs) saw the light of day.

Compared to the fully connected architectures, convolutional architectures can be
seen as imposing a lot of additional structure and sparseness on the weight matri-
ces of the networks. Specifically, this is due to the fact that many of the layers
represent discrete convolutions with kernels with relatively small support. This has
lead to great performance on various tasks involving image data and convolutional
architectures are today ubiquitous when dealing with images in machine learning.

3.1.3 Training of neural networks
Approximate optimisation of some scalar loss function with respect to the weights
of a neural network is called training the network. Neural networks are typically
trained with stochastic gradient descent, and the gradients are computed using some
form of reverse mode automatic differentiation, where back-propagation is a classic
special case (Section 6.5, Goodfellow, Bengio, and Courville 2016).

To describe training in a bit more detail, we consider a supervised learning task,
consisting of a model fθ, a datasetD = {(xi, yi)}Ni=1 of label and observation example
tuples and some scalar loss l(y, ỹ) quantifying the severity of the prediction error.

11

3. Generative neural networks

One is interested in minimising the expected prediction error

L (θ) := E(x,y)∼PX×Y [l(y, fθ(x))],

where PX×Y is the underlying joint distribution of labels and observations. In prac-
tice, PX×Y is typically unknown. However, one normally has access to a finite sample
of examples and the expectation is replaced with its empirical counterpart

Lemp(θ) := 1
N

N∑
i=1

l(yi, fθ(xi)).

When N is large it can be computationally infeasible to take gradients of the losses
of every training example at each step. Instead, a finite subsample is considered at
each step, and in place of the gradient of Lemp the random estimate resulting from
this subsample is used instead. Performing gradient descent using these estimates is
known as stochastic gradient descent, and it forms the basis for training most neural
networks.

3.2 Generative Adversarial Networks
We now turn our attention to a scheme for training generative neural networks,
famously invented one late night at a bar by Goodfellow et al. 2014. The idea is
to train a generative neural network to model some complicated distribution by
having it compete with a second critiquing network. This second network, called
the discriminator or the critic fφ is trained to discern between real samples from
PX and fake samples created by the generator gθ, which in turn is optimised to fool
the discriminator.

More precisely, the generator is a function from some low-dimensional latent space
Z with a simple and predetermined noise distribution PZ , typically a multivariate
standard normal distribution. In its most general form, the competition between
the discriminator and the generator is formulated as the minimax problem

θ∗ = argmin
θ

max
φ

Ex∼PX ,z∼PZV [fφ, gθ](x, z), (3.2.1)

where V [fφ, gθ] is some scalar function. This minimax problem is referred to as
adversarial training. In the original article by Goodfellow et al. the value function

V [fφ, gθ](x, z) = log fφ(x) + log(1− fφ(gθ(z))) (3.2.2)

was used.

3.2.1 Theoretical motivation of GANs
The following section serves as a theoretical motivation as to why training GANs
could be a good idea. However, note that the assumptions made do not hold in
practice most of the time. Nevertheless, training GANs have become a powerful

12

3. Generative neural networks

method to obtain generative neural networks. The presentation closely follows the
one of Goodfellow et al. 2014.2

First let us convince ourselves that the generators transformation of the latent noise
actually induces a probability measure on the image space. This is typically ex-
pressed in a language requiring a few measure-theoretic technicalities. If the reader
is unfamiliar, the gist is that it is pretty clear that one gets a probability distribution
on the image space but this might not permit a probability density as one is used
to.

Let M+(X) denote the space of non-negative measures on X , equipped with the
usual Borel σ-algebra Σ, and let M 1

+(X) be the subset of these with total measure
1, i.e., the probability measures on X .

Definition 3.2.1. Let (X ,Σ) and (Y , T) be two measurable spaces. A function
f : X → Y is said to be measurable if the pre-image of every E in T lies in Σ, that
is, f is measurable if

∀E ∈ T : f−1(E) := {x ∈ X : f(x) ∈ E} ∈ Σ.

This condition is easily satisfied and we can safely assume that the generator gθ : Z →
X is a measurable function with respect to the measurable spaces Z and X . Now,
given a probability measure on the latent space Z and some measurable function,
we can push this measure to X in the following way.

Definition 3.2.2. Let f : X → Y be measurable, and let µ be a measure on X .
The push-forward of µ under f , denoted f∗(µ), is a measure on Y given by

f∗(µ)(B) = µ(f−1(B)).

Now, we can be sure that it makes sense to talk about a learned distribution Qθ on
the image space, by letting Qθ be the push-forward of the latent noise distribution
PZ under the generator gθ, i.e.,

Qθ := (gθ)∗(PZ).

We set out to show that solving (3.2.1), with V selected as (3.2.2), minimises a
distance between the learned distribution Qθ and the data distribution PX .

Definition 3.2.3. Let µ and ν be two measures defined on the same measurable
space (X ,Σ). Then µ is said to be absolutely continuous with respect to ν if µ(A) = 0
for all A ∈ Σ such that ν(A) = 0.

Absolute continuity permits the existence of densities by the Radon-Nikodym The-
orem (see Billingsley 1995, Section 32). We state this result informally. If µ is

2Colin Raffel has written a nice exposition on the topic, available at https://colinraffel.
com/blog/gans-and-divergence-minimization.html.

13

https://colinraffel.com/blog/gans-and-divergence-minimization.html
https://colinraffel.com/blog/gans-and-divergence-minimization.html

3. Generative neural networks

absolutely continuous with respect to ν, there exists a measurable function p such
that ∫

A
dν =

∫
A
p dµ,

for all measurable sets A.

Definition 3.2.4. Let P,Q ∈ M 1
+(X) be two probability measures, where P is

absolutely continuous with respect to Q. Let µ be a measure such that both P and
Q are absolutely continuous with respect to µ. The Kullback-Leibler divergence DKL
from P to Q is given by

DKL(P ‖Q) =
∫
X
p log

(
p

q

)
dµ,

where p and q are densities of P respectively Q with respect to µ.

Note that the existence of a reference measure µ in the definition above can be
assumed without loss of generality, for instance, the choice of µ = 1

2(P +Q) satisfies
the condition.

While it quantifies distance between measures in some sense, the Kullback-Leibler
divergence does not satisfy the axioms of a metric. For example, it is not symmetric
in the arguments. For two probability measures P,Q it does however hold that it is
non-negative, and that DKL(P ‖ Q) = 0 implies that P = Q (Bishop 2006, Section
1.6.1). We can easily construct a symmetric divergence in the following way.

Definition 3.2.5. The Jensen-Shannon divergence DJS between P and Q is given
by

DJS(P,Q) = 1
2DKL(P ‖ µ) + 1

2DKL(Q ‖ µ),

where
µ = 1

2(P +Q).

While the Jensen-Shannon divergence is still not a metric (it does not satisfy the
triangle inequality), the square root of the divergence is actually a metric (Endres
and Schindelin 2003).

Proposition 3.2.6. Assume that the discriminator fφ : X → [0, 1] can represent
any function. The minimax problem

θ∗ = argmin
θ

max
φ

Ex∼PX ,z∼PZ [log fφ(x) + log(1− fφ(gθ(z)))]

reduces to
θ∗ = argmin

θ
DJS(PX , Qθ).

Proof. Let µ be the probability measure on X given by µ = 1
2(Qθ + PX), and let qθ

and pX be densities of Qθ and PX with regard to µ. For brevity, denote

EV [fφ, gθ] := Ex∼PX ,z∼PZV [fφ, gθ](x, z).

14

3. Generative neural networks

Then

EV [fφ, gθ] = Ex∼PX ,z∼PZ [log fφ(x) + log(1− fφ(gθ(z))]

=
∫
X

(pX log fφ + qθ log(1− fφ)) dµ.

For fixed θ, the integrand is maximised by

f ∗φ = argmax
y

pX log y + qθ log(1− y) = pX
pX + qθ

. (3.2.3)

Then, since this choice of f ∗φ maximises the expectation, it follows that

max
φ

EV [fφ, gθ] =
∫
X
pX log

(
pX

pX + qθ

)
dµ+

∫
X
qθ log

(
qθ

pX + qθ

)
dµ

=
∫
X
pX log

1
2 ·

pX(
pX+qθ

2

)
 dµ+

∫
X
qθ log

1
2 ·

qθ(
pX+qθ

2

)
 dµ

=
∫
X
pX log

 pX(
pX+qθ

2

)
 dµ+

∫
X
qθ log

 qθ(
pX+qθ

2

)
 dµ− 2 log 2

= DKL

(
PX

∥∥∥∥∥ PX +Qθ

2

)
+DKL

(
Qθ

∥∥∥∥∥ PX +Qθ

2

)
− 2 log 2

= 2 ·DJS(PX , Qθ)− 2 log 2,

so
θ∗ = argmin

θ
DJS(PX , Qθ), (3.2.4)

which completes the proof.

Corollary 3.2.7. In the ideal setting, the optimal generator models the data distri-
bution exactly, i.e., PX = Qθ.

In practice, the discriminator fφ is a neural network that does not have infinite
capacity. In addition it is also optimised with stochastic gradient ascent and there
is no guarantee that it converges to the global optimum. This means that it at best
represents some approximation of the Jensen-Shannon divergence.

Alongside the difficulties of finding the optimal discriminator one is faced with an-
other dilemma. If the discriminator is near optimal, and the generator is not, one
would have

fφ(x) ≈ 1, fφ(gθ(z)) ≈ 0, for x ∼ PX , z ∼ PZ .

Numerically, this would then lead to vanishing gradients for the generator which
can cause the optimisation of the generator to grind to halt, hindering convergence.
On the other hand, if the discriminator is not able to discern well, the gradients
are instead meaningless. For a more detailed discussion of these difficulties, we
refer the reader to the article Towards Principled Methods for Training Generative
Adversarial Networks by Arjovsky and Bottou 2017.

15

3. Generative neural networks

In practice, successful training of GANs requires a delicate balance between the
strengths of the generator and the discriminator in the intermediate steps as well as
a bit of luck.

3.2.2 Wasserstein GANs
Introduced in Arjovsky, Chintala, and Bottou 2017, Wasserstein Generative Ad-
versarial Networks (WGANs) seeks to improve the training of GANs by, loosely
speaking, replacing the somewhat problematic Jensen-Shannon divergence with a
more well-behaved distance. To possibly little surprise, the new candidate metric is
the Wasserstein-1 metric, also called the Earth mover distance.

Definition 3.2.8. The Wasserstein-1 distance between two probability measures
µ, ν ∈M 1

+(X) is the optimal solution to the linear program

W1(µ, ν) := min
π∈M 1

+(X×X)

∫
X×X
‖x0 − x1‖2π(dx0, dx1),

subject to
∫
X
π(·, dx1) = µ(dx0),∫

X
π(dx0, ·) = ν(dx1).

Intuitively, this is the minimal amount of work one would have to carry out to move
all probability mass in µ to ν if the cost of moving a massm from x to y ism‖x−y‖2.

Defining U (µ, ν) to be the set of feasible solutions to the linear program in Definition
3.2.8, that is, the joint probability distributions over X × X with marginals µ and
ν, the W1 distance can be rewritten as

W1(µ, ν) = inf
π∈U (µ,ν)

E(X,Y)∼π(‖X − Y ‖2).

Let Lipk(X) denote the set of scalar valued Lipschitz functions f : X → R with
Lipschitz constant less than k. By the Kantorovich-Rubinstein duality (see Peyré,
Cuturi, et al. 2019, page 97-98) it holds that3

W1(µ, ν) = sup
f∈Lip1(X)

Ex∼µf(x)− Ey∼νf(y). (3.2.5)

To reformulate the training criterion in terms of the Wasserstein distance, first note
that we want to select θ∗ by

θ∗ ∈ argmin
θ

W1(PX , Qθ),

which we can expand as

θ∗ ∈ argmin
θ

sup
f∈Lip1(X)

Ex∼PXf(x)− Ez∼PZf(gθ(z)).

3for any µ, ν such that
∫

X ‖x0−x‖2µ(dx) < +∞ and
∫

X ‖x0−x‖2µ(dx) < +∞, for an arbitrary
x0 ∈ X .

16

3. Generative neural networks

The set of 1-Lipschitz is intractable to optimise over, so we approximate the supre-
mum over all possible 1-Lipschitz functions by replacing it with a neural network
fφ. To ensure that the Lipschitz condition still holds additional steps needs to be
taken. Considering again the formulation of adversarial training in the beginning of
this section, (3.2.1), this is seen to correspond to the value function

V [fφ, gθ](x, z) = fφ(x)− fφ(gθ(z)).

In the original article by Arjovsky, Chintala, and Bottou 2017, the authors use
weight-clipping to ensure the critic meets the Lipschitz condition. This is done by
projecting all network weights to lie within the interval [−c, c] at every iteration.
A less crude approach that empirically has been shown to improve training further
instead adds the Lipschitz condition as a penalised term to the objective function.
The resulting training scheme, introduced in Gulrajani et al. 2017, is known as
WGAN with gradient penalty (WGAN-GP for short), and the training problem is
given by

θ∗ ∈ argmin
θ

max
φ

Ex∼PXfφ(x)− Ez∼PZfφ(gθ(z)) + λEx̂∼Px̂‖∇fθ(x̂)− 1‖2
2. (3.2.6)

The distribution Px̂ is defined implicitly, arising by uniformly sampling points on
lines between pairs of points (x, y) sampled from (PX , Qθ). In Gulrajani et al. 2017
it is shown that the gradient of the optimal f in (3.2.5) has unit norm on these lines,
which motivates the two-sided penalty on the gradient norm in (3.2.6) above.

We conclude the chapter by a slight reformulation of Theorem 1 in Arjovsky, Chin-
tala, and Bottou 2017.

Theorem 3.2.9 (Theorem 1, Arjovsky, Chintala, and Bottou 2017). Let PX be
a fixed distribution over X . Let PZ be a known distribution (e.g Gaussian) over
another space Z. Let g : Z ×Rd → X be a function, that will be denoted gθ(z) with
z the first coordinate and θ the second. Let Qθ denote the push-forward (gθ)∗(PZ).
Then,

1. If g is continuous in θ, so is W1(PX , Qθ).

2. If g is locally Lipschitz and satisfies a regularity assumption, then W1(PX , Qθ)
is continuous everywhere, and differentiable almost everywhere.

3. Statements 1-2 are false for the Jensen-Shannon divergence DJS.

While we have not directly touched upon the hypothetical low-dimensional support
of PX , this is one major reason that we expect that the low-dimensional latent
parametrisation is sufficient. The key takeaway from Theorem 3.2.9 is that, in
this case, the Wasserstein distance is differentiable whereas the Jensen-Shannon
divergence is not necessarily.

17

3. Generative neural networks

18

4
Markov chain Monte Carlo and
piecewise deterministic Markov

processes

In this chapter we will consider two methods for tractable Bayesian inference. These
methods rely on generating samples from the target distribution one is interested in.
Both rely on creating a stochastic process which is both relatively easy to simulate
and has the target distribution one is interested in as an invariant distribution.
Simulation of stochastic processes become much simpler if it is sufficient to only
know the current state of the process, i.e., if they possess the Markov property. As
the avid reader might have noticed from the title of this chapter, this is something
both methods have in common.

4.1 Making Bayesian inference tractable
Recall the posterior density given by Theorem 2.3.1

π(x) = π(x | y) = π(y | x)πX(x)∫
π(y | x)πX(x)dx,

and denote the corresponding probability measure by Π. Expectations with respect
to this measure then reduces to integrals, i.e.,

Ex∼Πf(x) =
∫
X
f(x)π(x)dx, (4.1.1)

where f is some measurable function. The evaluation of such expectations is the
goal of statistical computing. For instance, being able to compute these would allow
us to find the posterior mean and the posterior variance.

In Example 2.3.3 we saw how one could carefully select the functional form of prior
densities to guarantee that the posterior is of the same form. This is known as
conjugacy and allows for closed-form expressions of the posterior. Slight variations
of the prior can however easily break the conjugacy, leading to complicated posterior
densities not described by the named parametric distributions available. To be able

19

4. Markov chain Monte Carlo and piecewise deterministic Markov processes

to handle such more general forms of posterior distributions one needs additional
tools.

If we were able to generate a sample (x1, ..., xN) from Π, we could approximate the
expectation in (4.1.1) with the Monte Carlo approximation

Ex∼Πf(x) ≈ 1
N

N∑
i=1

f(xi).

Developed during the latter half of the twentieth century and popularised by the
growing availability of computational resources near the turn of the millennium,
Markov chain Monte Carlo (MCMC) methods allow generating samples from a pos-
terior of interest. These sampling methods have made Bayesian inference practical
at a much larger scale. Still, when the dimensionality of the space on which the tar-
get distribution is defined increases, standard MCMC algorithms typically become
arbitrarily slow. We first turn our attention to one modification of the classical
Metropolis-Hastings algorithm (see Bishop 2006, Section 11.2.2).

4.2 The preconditioned Crank-Nicolson algorithm
The preconditioned Crank-Nicolson (pCN) algorithm, named in Cotter et al. 2013
but first invented in 2008, is a Markov chain Monte Carlo method that can sample
densities of the form

π(x) ∝ exp(−Φ(x))µ(x),
where µ(x) is a Gaussian prior density1. The chain of samples is generated by
proposing a new point and either accepting or rejecting it as in the Metropolis-
Hastings algorithm. For comparison, let us first consider the standard random walk
Metropolis-Hastings algorithm for sampling from Π. Let ψ(x) = − log π(x).

• Select an initial point x(0) and set k = 0.

• Repeat N times:

– Propose xo = x(k) + β · u, where u ∼ N (0,Σ).

– Set x(k+1) = xo with probability a(xo, x(k)) = min{1, exp(ψ(xo)−ψ(x(k))}.

– Set x(k+1) = x(k) otherwise.

Importantly, we have that the proposal xo | x(k) ∼ N (x(k), βΣ). For fixed β, this
causes the acceptance probability to tend to zero as the dimensionality of x tends to
infinity. The key idea in the preconditioned Crank-Nicolson algorithm is to modify
the proposal in a way so that the acceptance probability does not approach zero.

The proposal is modified in the following way. An increment u is sampled from
the prior µ, and a Crank-Nicolson step, with parameter ρ ∈ (0, 1), is performed to

1Note that this is a slight abuse of notation compared to previous chapters.

20

4. Markov chain Monte Carlo and piecewise deterministic Markov processes

procure the proposal, i.e.,

xo =
√

1− ρ2 · x(k) + ρ · u, u ∼ µ.

Further, with the acceptance probability

a
(
xo, x(k)

)
= min{1, exp

(
Φ
(
x(k)

)
− Φ (xo)

)
},

it can be shown that this algorithm has an acceptance probability independent of
the dimension of x (Hairer, Stuart, and Vollmer 2014).

Both the random walk Metropolis-Hastings and the preconditioned Crank-Nicolson
algorithms define Markov chains with the target distribution as invariant distribu-
tions. For a proof of this statement for the former, we refer the reader to Section
11.2.2 in Bishop 2006, and for the latter, see Hairer, Stuart, and Vollmer 2014.
Algorithm 1 gives a full description of the implementation of this method.

Algorithm 1 The preconditioned Crank-Nicolson algorithm
Require: ρ ∈ (0, 1), x0, N, a negative log likelihood Φ, a Gaussian prior µ =
N (0,Σ).
x← x0
S ← {x}
for 1 . . . N − 1 do

xo ←
√

1− ρ2 · x+ ρ · u, u ∼ µ
R ∼ Unif([0, 1])
if R < exp(Φ(x)− Φ(xo)) then

x← xo

end if
S ← {x, S}

end for
return S

21

4. Markov chain Monte Carlo and piecewise deterministic Markov processes

4.3 Piecewise deterministic Markov processes
We now turn our attention towards a novel class of MCMC related methods. Com-
pared to traditional MCMC methods based on the Metropolis-Hastings algorithm,
piecewise deterministic Markov process Monte Carlo (PDMP-MC) are a class of
non-reversible and rejection free algorithms for exploring posteriors.

First introduced in Davis 1984, a piecewise deterministic Markov process (PDMP)
is a continuous time stochastic process with càdlàg2 paths in a locally Euclidean
space E. The process evolves deterministically between random jumps that happen
at random event times. A PDMP (Zt)t≥0 is characterised by

1. an ordinary differential equation with differentiable drift ξ : E → E, that is

dzt
dt = ξ(zt),

inducing the deterministic dynamics ϕ : R≥0 × E → E,

2. an event rate λ : E → R≥0, with λ(zt)ε+o(ε) being the probability of an event
in the time interval [t, t+ ε],

3. a Markov transition kernel Q(z, dz′), where at an event time τ a new state z′τ
is sampled from the probability distribution Q(zτ , ·).

The analysis of properties of a given PDMP is eased by the generator of the process,
of which we give an informal definition.

Definition 4.3.1. The generator A of a PDMP is a function defined on a well-
behaved space of measurable functions, defined by

Af(z) := lim
t→0

E[f(Zt) | Z0 = z]− f(z)
t

.

Under suitable conditions (see Davis 1993, Theorem 26.14) the generator is given
by

Af(z) = 〈ξ(z),∇f(z)〉+ λ(z)
∫

(f(z′)− f(z))Q(z, dz′). (4.3.1)

In other words, the generator of a PDMP applied to a function, Af , associates to
each point x the infinitesimal expected change if the process would run from x for
a small time dt. As such it can be helpful to think of it as some type of derivative.
Indeed, for a specific case we can explicitly recover this connection.

Example 4.3.2. Let us consider a simple PDMP where a particle in Rn travels
with some constant velocity, unbothered by random events. To this end, define
E = Rn × Rn and write z = (x, v) ∈ E where x, v ∈ Rn. We set the drift to

2continue à droite, limite à gauche, i.e., right-continuous with limits on the left, and French.

22

4. Markov chain Monte Carlo and piecewise deterministic Markov processes

ξ(z) = (v, 0), which induces the linear flow ϕ(t, z) = (x + tv, v). With the event
rate λ ≡ 0 we have precisely the prescribed scenario, showing that it actually is a
PDMP. Now, let f : Rn → R be a continuously differentiable measurable function,
and let f̃(z) = (f(x), 0). Then, by (4.3.1), we have that

Af̃(z) =
〈
ξ(z),∇f̃(z)

〉
(4.3.2)

= 〈(v, 0), (∇f(x), 0)〉 (4.3.3)
= vT∇f(x), (4.3.4)

which is the directional derivative of f along v evaluated at x.

4.3.1 Sampling from a target measure
In discrete time MCMC, a Markov chain is constructed in such a way that the
stationary distribution of the process is the distribution of interest. Samples are
then generated simply by simulating the Markov chain and collecting the visited
states. Analogously, we now show how one constructs a PDMP which preserves the
target distribution.

Let Π(dx) be a target probability measure on Rd, permitting a density π(x) with
respect to the Lebesgue measure dx, that we are interested in sampling from. Let

ψ(x) := − log π(x)

be the negative logarithm of the density π. In what follows we consider PDMPs on
state spaces E = Rd × V , where either V = Rd, or V = Sd−1, the d-dimensional
unit sphere. For a state z in E it is convenient to write z = (x, v) and call x ∈ Rd

the position and v ∈ V the velocity.

A necessary condition for the PDMP to have the measure µ(dz) as a unique sta-
tionary measure is to admit it as a stationary measure at all. Proposition 34.7 in
Davis 1993 states that invariance with respect to µ will be satisfied if∫

µ(dz)Af(z) = 0

for all functions f in the domain of the generator A.

We give a definition of the Bouncy Particle Sampler, discussed in detail in Bouchard-
Côté, Vollmer, and Doucet 2018.

Definition 4.3.3. The bouncy particle sampler is a PDMP typically on the product
space E = Rd × Rd. The deterministic dynamics are given by

ϕ(t, (x, v)) = (x+ tv, v),

i.e., linear trajectories with drift ξ((x, v)) = (v, 0). The events happen at a rate

λ(x, v) = λB(x, v) + λR

23

4. Markov chain Monte Carlo and piecewise deterministic Markov processes

where
λB(x, v) = max(0, 〈v,∇ψ(x)〉)

is the bounce rate and λR is the constant refreshment rate. For the bounce events
we have

QB((x, v), ·) = δ(x,B∇ψv)

where
B∇ψv = v − 2〈v,∇ψ(x)〉

‖∇ψ(x)‖2
2
∇ψ(x),

and for the refreshments we have

QR((x, v), (dx, dv)) = (δx(dx),N (dv; 0, Id)),

i.e., the speeds are randomised according to a standard normal distribution. We
define the full transition kernel Q implicitly; we can simulate two independent stop-
ping times, one for each kernel with their corresponding rates. If the refreshment
process stops first, the new state is simulated from QR and vice versa for QB.

Proposition 4.3.4. The product measure µ(dz) = Π(dx) ⊗ N (dv; 0, Id) is an in-
variant measure for the bouncy particle sampler.

The proof of this statement is left out in favor of a similar result later. For a
reference, see Vanetti et al. 2017.

In practice, the refreshment rate λR needs to be tuned to achieve good performance.
If λR is too large, the process evolves more like a random walk, which is only expected
to cover a distance

√
dt, and therefore explores the posterior slowly3. On the other

hand, setting it too small can lead to poor exploitation.

We present a modified version of the Bouncy Particle Sampler, where one can con-
sider the need for refreshments are alleviated via the introduction of a randomised
bounce kernel QB. In Vanetti et al. 2017 a few closely related examples of ran-
domised kernels are discussed. Specifically, at a bounce event we perform an auto-
regressive random direction change in the linear subspace orthogonal to the gradient
of the energy at that point.

Definition 4.3.5 (Orthogonal Subspace Crank-Nicolson). The Orthogonal Sub-
space Crank-Nicolson (OSCN) is a PDMP with linear flow, with an event rate

λ(x, v) = max(0, 〈v,∇ψ(x)〉).

At a bounce event, a random speed change v′⊥ is sampled in the linear subspace
orthogonal to the gradient∇ψ(x) and perform a Crank-Nicolson step with parameter
ρ ∈ (0, 1), and flip the component of v parallel to ∇ψ(x).

3Considering for instance a Wiener process Wt, it then holds that Wt+u −Wt ∼ N (0, u), i.e.,
this increment has standard deviation

√
u.

24

4. Markov chain Monte Carlo and piecewise deterministic Markov processes

The random reflection is done by orthogonally decomposing the current velocity
v = v⊥ + vp, where vp is parallel to the gradient at the current position x and v⊥
is orthogonal to vp. One then samples a random increment u from the velocity dis-
tribution N (0, In), projects this increment to the orthogonal subspace, and updates
the orthogonal component by performing a Crank-Nicolson step, i.e., by setting

v′⊥ = ρ · v⊥ +
√

1− ρ2 · u⊥.

The speed after the event is then set to

v′ = −vp + v′⊥.

Flipping the sign of the component parallel to ∇ψ ensures that the new state
(X ′, V ′) ∼ Q((x, v), ·) satisfies

〈v′,∇ψ(x)〉 = −〈V ′,∇ψ(X ′)〉 , (4.3.5)

almost surely (that is, with probability 1). The method is also illustrated in Algo-
rithm 2.

Proposition 4.3.6. The product measure µ(dz) = Π(dx) ⊗ N (dv; 0, Id) is an in-
variant measure for the Orthogonal Subspace Crank-Nicolson.

Proof sketch. The Markov kernel Q leaves x unchanged and we can factorise

Q((x, v), (dx′, dv′)) = δx(dx′)κx(v, dv′).

From (4.3.1) we have that the generator is given by

Af(x, v) = 〈v,∇xf(x, v)〉+ λ(x, v)
∫

(f(x, v′)− f(x, v))κx(v, dv′).

Note that µ(dz) = ρ(dv)π(x)dx, where ρ(dv) := N (dv; 0, Id).

Now, we have that∫
Af(z)µ(dz) =

∫ ∫
〈v,∇xf(x, v)〉ρ(dv)π(x)dx

+
∫ ∫

λ(x, v)
∫

(f(x, v′)− f(x, v))κx(v, dv′)ρ(dv)π(x)dx.

Using integration by parts and π(x) = exp(−ψ(x)) yields
∫

Af(z)µ(dz) =
∫ ∫
〈v,∇ψ(x)〉f(x, v)ρ(dv)π(x)dx

+
∫ ∫ ∫

λ(x, v)f(x′, v′)Q((x, v), d(x′, v′))ρ(dv)π(x)dx

−
∫ ∫

λ(x, v)f(x, v)ρ(dv)π(x)dx.

25

4. Markov chain Monte Carlo and piecewise deterministic Markov processes

By (4.3.5) for the second term, and by the definition of the rate λ we now have that
∫

Af(z)µ(dz) =
∫ ∫
〈v,∇ψ(x)〉f(x, v)ρ(dv)π(x)dx

+
∫ ∫

max(0,−〈v′,∇ψ(x)〉)f(x, v′)ρ(dv′)π(x)dx

−
∫ ∫

max(0, 〈v,∇ψ(x)〉)f(x, v)ρ(dv)π(x)dx

= 0,

since max(0,−a)−max(0, a) = −a.

To complete the proof, one needs to show that the process (Zt) is Feller (see Davis
1993, page 76), and that the set of functions f for which the above identity holds
is large enough (Davis 1993, Proposition 34.7). This is out of the scope of this
presentation.

4.3.2 Simulating a PDMP
The deterministic evolution of the state between events allows generating a continu-
ous trajectory from a discrete set of times, making the exact simulation of a PDMP
tractable. Most of the computational complexity arises from the sampling of these
event times, since they are the first event times of an inhomogeneous Poisson pro-
cess. This can be done by thinning a homogeneous Poisson process if the rate λ is
bounded, locally or globally. Loosely, one simulates events happening at faster rate,
and then randomly reject these according to a rejection probability. For an in-depth
description, see Bouchard-Côté, Vollmer, and Doucet 2018, Section 2.3.2.

Algorithm 2 OSCN-BPS
Require: ∇ψ, ρ ∈ [0, 1], T, (x(0), v(0)) ∈ Rn × Rn

t← 0
for i = 1, 2, .. do

1. Simulate the event time τi ∈ (0,∞) as the first event time of an inhomoge-
neous Poisson process with rate

λ(t) =
〈
∇ψ

(
x(i−1) + tv(i−1)

)
, v(i−1)

〉
.

2. Set x(i) = x(i−1) + τv(i−1).
3. Decompose v(i−1) = v⊥ + vp, where

〈
v⊥,∇ψ

(
x(i)

)〉
= 0.

4. Set v′⊥ ← ρ · v⊥ +
√

1− ρ2 ·
(
u− 〈∇ψ(x(i)),u〉

‖∇ψ(x(i))‖2
2
· u
)
, where u ∼ N (0, In).

5. Set v(i) ← −vp + v′⊥.
6. If ∑i

j=1 τi ≥ T , break.
end for

26

5
Bayesian inversion with neural

generative priors

With the required background in place, we now turn our attention to a linear inverse
problem with additive noise

y = A x+ h,

where h is the outcome of the Y-valued random variable H with probability density
πH . As we have seen in Chapter 2, πH defines for fixed x ∈ X a likelihood π(y | x)
by

y −A x = h, π(y | x) = πH(y −A x).

Still, it is in many cases difficult to define a realistic prior in the sense that samples
x ∼ PX resemble possible solutions to the problem at hand. Moreover, it is often
assumed that the true prior is only supported on a low-dimensional manifold of
the reconstruction space X (see Section 5.11.3, Goodfellow, Bengio, and Courville
2016). This motivates the use of a generative model to learn a low-dimensional
parametrisation of a prior.

5.1 Fitting a neural generative prior
Assume that we have access to a dataset D = {xi} of samples from the true prior
PX . A generative network gθ : Z → X is trained on D, yielding a transformation
of the latent random variable Z , taking values in Z, such that gθ(Z) ∼ Qθ ≈ PX .
For this to be tractable, X needs to be finite dimensional, i.e., in some cases this
means that one needs to choose a discretisation of the reconstruction space.

Specifically, in this work we propose using a generative model from the GAN family,
and out of these, the WGAN-GP algorithm has been empirically shown to perform
well. For instance, all the prominent StyleGAN models, see e.g. StyleGAN-3 Karras
et al. 2021, are based on the WGAN-GP algorithm.

The distribution and domain Z of the latent variable Z is a hyperparameter, and is
typically chosen as a standard normal on Rl, where l� dim(X). This choice yields
a simple prior density on Z given by π(z) = exp(−1

2‖z‖
2
2).

27

5. Bayesian inversion with neural generative priors

Other choices of prior distributions have been discussed in the GAN literature. In
the paper accompanying BigGAN, Brock, Donahue, and Simonyan 2019, the authors
chooses to use a truncated normal instead, and lists many other possible choices.

To reiterate, the latent variable together with the trained generator gθ serves as an
approximate parametrisation of PX . To generate a new sample x′ from Qθ, one
samples a z′ ∼ N (0, Il) and maps this to x′ = gθ(z′).

5.2 The posterior on the latent space
The key step now is essentially to compose the likelihood π(y | ·) : X → R, given by
the forward operator A and a density for the noise, with the generator gθ : Z → X ,
which yields a likelihood for the latent variable z by

πz(y | ·) := π(y | ·) ◦ gθ : Z → R
z 7→ πh(y −A (gθ(z)).

The posterior for z is then
π(z | y) ∝ π(z)π(y | gθ(z)) = π(z)πh(A (gθ(z))− y).

Further, assuming that the chosen noise model H is a zero-mean Gaussian with a
specified covariance matrix Σ, and with Z a standard normal, we find that

π(z | y) ∝ exp
{
−1

2

(
‖z‖2

2 + ‖A (gθ(z))− y‖2
Σ−1

)}
.

The negative logarithm of the posterior then becomes

ψ(z) = − log π(z | y) = 1
2

(
‖z‖2

2 + ‖A (gθ(z))− y‖2
Σ−1

)
+ C

= 1
2‖z‖

2
2 + 1

2 (A (gθ(z))− y)T Σ−1(A (gθ(z))− y) + C,

where C is some additive constant, and the gradient is then1

∇ψ(z) = z + JTgθ(z)A TΣ−1(A (gθ(z))− y),

where Jgθ is the Jacobian of the generator gθ with respect to z. Writing

v := A TΣ−1(A (gθ(z))− y),

we have that

∇ψ(z) = z + JTgθ(z)v.
This is useful since vector Jacobian products JTf v is precisely what reverse mode
automatic differentiation efficiently computes. To sample this posterior using OSCN-
BPS, one needs to evaluate the gradient ψ which should be tractable with the
available automatic differentiation software. Finally, applying the generator to the
posterior sample of the latent vector yields a posterior sample in the reconstruction
space X .

1found with the help of matrixcalculus.org, Laue, Mitterreiter, and Giesen 2020, and the
chain rule.

28

matrixcalculus.org

6
Experimental setup and results

To test the method we define a synthetic problem. This consists of two parts, an
imagined prior as well as a difficult inverse problem. On this problem, we compare
both the quality of reconstructions, as well as the informativeness of the posterior
resulting from our learned prior to carefully tuned classical reconstruction methods.

In this problem, we want to reconstruct an image from a noised subsample of its
Fourier coefficients. This can be seen as a simplified version of magnetic resonance
imaging. Specifically we will consider the case where only low frequency coefficients
are measured. This naturally leads to a loss of information about finer detail in the
image. The level of ill-posedness is proportional to the degree of the subsampling.

6.1 Defining the inverse problem
For simplicity, let X = R64×64 be the reconstruction space and let Y = C64×64 be
the data space. We define the forward operator A : X → Y to be given by

A (x) =M◦F(x),

where M is the masking operator, and F is the two-dimensional discrete Fourier
transform (DFT). Since it affects the scale of the observational noise, note that
the unnormalised DFT is used. The masking operator is given by the element-wise
product of a Boolean matrix M ∈ {0, 1}64×64, and is therefore self-adjoint.

We model the noise as independent and identically distributed complex Normal noise
on the observed coefficients, that is

yi,j =

A (x)i,j + hi,j, if Mi,j = 1,where hi,j ∼ CN (0, σ2

2 I2)
0, otherwise,

which leads to the conditional negative log density for the observation y given the
object of interest x ∈ X

− log π(y | x) = 1
σ2‖A (x)− y‖2

2.

For the problem, we also implicitly define a true underlying prior PX by construct-
ing a random image generator, creating variations of greyscale images of ellipses of

29

6. Experimental setup and results

varying shades in a random but fairly predictable pattern. Figure 6.1 shows 25 sam-
ples from this prior. The images are 64-by-64 pixels large, and are as such elements
of [0, 1]64×64. A detailed description of the procedure is presented in Appendix A.

Figure 6.1: 25 images sampled from the true prior, implicitly defined by the
random image generator.

6.2 Solving the inverse problem using classical
priors

To test the method, we sample an image xtrue from the true prior PX . We choose
the mask M to select the 10 × 10 lowest frequency components in both directions
and discard the rest. To form the observation, we also corrupt the observed Fourier
coefficients with complex Normal noise with σ = 10, leading to a slight corruption
of the image in pixel space. As shown in Figure 6.2, this is a low noise example and
the difficulty mostly arises from the low rank of A .

We first consider the performance of two classical imaging priors on this problem.
Since we have access to the ground truth, we can tune these methods by considering
different metrics. We have chosen to use the mean squared error (MSE) and the
structural similarity index (SSIM), Wang et al. 2004. The question is two fold: does
the regularisation method produce a good point estimate? And is the posterior
informative?

30

6. Experimental setup and results

Figure 6.2: True image we want to reconstruct (left), real part of the inverse
Fourier transform, abbreviated RIFT, of the masked coefficients (middle), and real
part of the additive observational noise in image space (right).

6.2.1 Tikhonov regularisation
A typical choice to regularise the inverse problem is to penalise the L2-norm of
the solution. This is the simplest case of Tikhonov regularisation, and it is most
commonly used to find a point estimate of the solution. The optimisation problem
is then

x̂ = argmin
x
‖A (x)− y‖2

2 + λ‖x‖2
2, (6.2.1)

where λ ∈ R+ is a regularisation that can be tuned. This corresponds to selecting
a zero mean independent Gaussian prior on the pixels, where the prior scale σp is
inversely related to the regularisation parameter λ, and then computing the resulting
maximum a posteriori estimate (MAP).

We found that the choice of σp = 1/2 achieved the best point estimates using this
method, scoring a SSIM of 0.46 and an MSE of 0.012.

The posterior corresponding to this choice of prior scale is then sampled using the
preconditioned Crank-Nicolson (pCN) MCMC method. The parameter ρ = 0.045
was tuned to achieve an acceptance rate of approximately 25%. Figure 6.3 shows the
posterior mean and standard deviations after sampling the posterior 1,000,000 times
starting from the posterior mode, keeping only every thousandth step. Figure 6.4
shows 20 of these samples, as well as the result of applying A TA to these samples.
The latter visualises what components of the image affect the likelihood term in the
posterior.

6.2.2 Structural prior
A more informed prior than the previous independent zero mean Gaussian one would
be to use a Gaussian Markov random field (GMRF) prior. This captures the notion
that pixel values should be positively correlated with the neighbouring values. For
instance, such priors can be used for image in-painting and de-noising.

For the GMRF we define a sparse precision matrix Λ by computing the 2 dimensional

31

6. Experimental setup and results

(a) MAP (b) Posterior mean

(c) Standard deviation (d) Absolute error of the posterior mean

Figure 6.3: Summary statistics from inversion using the Tikhonov prior computed
from a pCN chain of 1,000,000 samples starting at the MAP estimate shown in (a).
Subfigure (b) shows the posterior mean, (c) shows the pixelwise standard deviations,
and (d) shows the absolute error of the posterior mean compared to the ground truth.

32

6. Experimental setup and results

Figure 6.4: Twenty posterior samples corresponding to the Tikhonov prior in the
top two rows. The bottom two rows shows a visualisation of the observed low
frequency components in image space of the same samples affecting the likelihood
term in the posterior.

grid Laplacian Λ0 of the 64 × 64 pixel grid, and perturb this slightly with a scaled
identity matrix to ensure positive definiteness, setting

Λ = Λ0 + cI,

with c = 10−6. First Cholesky factorising LLT = Λ, the negative log posterior then
can be written as

ψ(x) = 1
2σ2

e

‖A x− y‖2
2 + λ‖LTx‖2

2,

up to some additive constant, where the parameter λ determines the strength of the
prior. As before, we tune λ by assessing the MSE and SSIM between the MAP and
the ground truth.

To sample from the posterior, we use the pCN algorithm with ρ = 0.005, tuned
to achieve an approximate acceptance rate of 20-25%, initialising the chain at the
MAP estimate. Figure 6.5 shows the resulting MAP, conditional mean and standard
deviations after 10,000 steps.

6.3 Solving the inverse problem using a neural
generative prior

Having tried two typical imaging priors, we now use our proposed method. For
brevity, we call this the neural generative prior method (NGP). First, we approxi-
mate an informed prior by fitting a generative model and then we produce samples
from the resulting posterior.

6.3.1 Learning the prior
A generative network gθ is trained to approximate the implicitly defined true prior
using the WGAN-GP algorithm. We use a DCGAN architecture for both the critic

33

6. Experimental setup and results

(a) MAP (b) Posterior mean

(c) Standard deviation (d) Absolute error of the posterior mean

Figure 6.5: Summary statistics from inversion using the GMRF prior computed
from a pCN chain of 10,000 samples starting at the MAP estimate shown in (a).
Subfigure (b) shows the posterior mean, (c) shows the pixelwise standard deviations,
and (d) shows the absolute error of the posterior mean compared to the ground truth.

34

6. Experimental setup and results

and the generator. More importantly, to guarantee that the gradient ∇gθ of the
generator is locally Lipschitz continuous, we use Swish activations for each inter-
mediate layer. Additionally, we also add a small weight penalty to the loss of the
generator since the weights imposes an upper bound on the Lipschitz constant of
the gradient.

The WGAN is trained with the standard choice of gradient penalty λ = 10, using
minibatches of 16 real and 16 generated images. We use ADAM for both the gen-
erator and the critic, with parameters η = 0.05 and (β0, β1) = (0.9, 0.99). We use a
latent dimension of 64 with a multivariate standard normal prior.

After training for 10,000 minibatches, the generated image quality has reached a
satisfactory level and training is stopped. Figure 6.6 shows a sample of 25 generated
images from the trained WGAN.

Figure 6.6: Images sampled from the learned neural generative prior.

6.3.2 Solving the inverse problem
As we saw in the previous chapter, with the neural prior Qθ, the negative log pos-
terior ψ of the latent vector z given y is

1
2σ2 ‖A (gθ(z))− y‖2

2 + ‖z‖2
2,

up to some additive constant. The gradient is then

∇ψ(z) = z + JTgθ(z)v,

35

6. Experimental setup and results

where

v = 1
σ2 A T (A (gθ(z))− y)

= 1
σ2<

(
FTMT (MFgθ(z)− y)

)
= 1
σ2<

(
FT (MFgθ(z)− y)

)
,

with < being the real part of each coordinate.

To sample from this posterior, we first find a mode of the posterior using gradient
descent with a fixed small step size, characterising it as a mode by approximating
the Hessian using finite differencing and checking that it is positive definite. We
then sample the posterior starting from this mode using OSCN-BPS for T = 100
time units, with ρ = 0.98 and a local rate bound λ̄t = λt + c‖v‖2

2 valid for one time
unit forward. For the upper Lipschitz bound we found that c = 20, 000 worked.
Sampling takes an hour of wall clock time.

Figure 6.7 shows summary statistics after discretising the trajectory to a sample of
size 100. Figure 6.8 shows 20 samples from the resulting trajectory and. Illustrating
the exploration of the posterior by OSCN-BPS, Figure 6.9 shows the trace of the
first 8 latent variables, including the optimisation steps. We also try sampling the
NGP posterior using 1,000,000 pCN steps. The trace of the first 8 latent variables
is shown in 6.10.

6.4 Evaluation and discussion
To wrap up this chapter, we discuss the findings and also consider some additional
examples and metrics.

6.4.1 Performance of point estimators
For both the Tikhonov prior and the GMRF prior, the best point estimates do not
differ much from just applying the adjoint of the forward operator, A T , to the ob-
servation. Clearly, in this case, these priors do not promote a blocky reconstruction.
This is in stark contrast to the posterior mode found by using the learned generative
prior, which visually contains more features such as near constant regions and sharp
edges.

We can quantify this by computing the SSIM, where the NGP estimate scores 0.92
out of 1, and the GMRF estimate scores 0.38. The mean squared pixel error for
the NGP reconstruction is 0.005 whereas the GMRF estimate has an MSE of 0.013.
Notably, the errors of the NGP lie on the edges of the object. The forward operator
effectively filters out sharpness in the image so this is not unexpected. The other
methods also perform the worst on the edges, but they also have errors in other
regions of the image.

36

6. Experimental setup and results

(a) MAP (b) Posterior mean

(c) Standard deviation (d) Absolute error of the posterior mean

Figure 6.7: Summary statistics from inversion using the NGP computed from a
discretised OSCN-BPS trajectory starting at the MAP estimate (a), showing the
posterior mean (b), pixelwise standard deviations (c) and the absolute error of the
posterior mean compared to the ground truth (d).

Figure 6.8: Twenty posterior OSCN-BPS generated samples from the NGP poste-
rior, discretised equally spaced over the entire trajectory.

37

6. Experimental setup and results

Figure 6.9: Trace of the first 8 latent variables from a OSCN-BPS trajectory
running for T = 100 time units on the NGP posterior. The computation runs for
a wall clock time of 62 minutes. The negative x−axis shows the gradient descent
steps approaching the mode of the posterior.

Figure 6.10: Trace of the first 8 latent variables from a pCN chain on the NGP
posterior, with ρ = 0.012 to achieve an acceptance rate of 25% starting at the mode
of the posterior. The chain is run for 1,000,000 steps, running for a wall clock time
of 15 minutes. The negative x−axis shows the gradient descent steps approaching
the mode of the posterior.

38

6. Experimental setup and results

Figure 6.11: Absolute error of point estimates of NGP (left) and GMRF (right)
after increasing the scale of the noise by a factor of 5.

The example we tried was fairly noiseless. Figure 6.11 shows the effect of increasing
the scale of the noise by a factor of 5, where the mean squared error of the GMRF
estimate has increased to 0.032 whereas the estimate produced by the NGP increased
to 0.007, showing a high stability to noise.

6.4.2 Informativeness of the posteriors
So far we have only discussed the point estimates, and not the information gained
from exploring the posterior. From the experiments it is fairly clear that it is not
interesting to sample the Tikhonov posterior. To a human eye, the samples look
corrupted by high frequency noise. This noise pattern is typically referred to as
salt-and-pepper noise. We note that this is not surprising in this case. This is due to
the fact that the likelihood term only is affected by low frequencies in the image, so
states with high frequency noise are, as long as the scale is not too large, likely. This
noise drowns out any information one could have gained by for instance considering
the posterior standard deviation, which is roughly equal to 0.5 over the entire image.

The local dependencies of the Gaussian Markov random field prior does hinder
this effect. From the posterior samples of this method, one can make out a more
interpretable pattern of the pixel-wise standard deviation. While one first might be
optimistic about the uncertainty around the edges of the shape, we note that the
standard deviation seems very highly correlated with the posterior mean. That is,
there is more variation in points where more mass is predicted. Still, this is a nice
result, this seems to have quantified uncertainty in the pixel values concentrated at
the shape.

The NGP posterior does however tell us more. For instance, just considering the
black regions in the original image, the NGP posterior shows both confidence and
accuracy in the prediction of these values. Instead, the uncertainty is focused at
the edges in the image, which as we noted previously is precisely the region that is
most obscured by the forward operator of the problem. This tells us that, for this

39

6. Experimental setup and results

Figure 6.12: Failed NGP reconstruction of an out of distribution example.

example at least, the prior is rich enough to contain both a close estimate of the
ground truth, as well as a neighbourhood of similar shapes that could also match
the observation well.

Finally, we stress that while this learned prior is in some sense very specialised, it is
not in any way coupled with the actual inverse problem. The forward operator and
noise model are completely replaceable with other implementable methods.

6.4.3 Performance of the sampling algorithms
We have tried two different methods for sampling the posterior, but trace plots and
corresponding measures of wall clock time does not really permit confidence in any
conclusions. For instance, there is no guarantee that we explored the posterior well.
During experiments, the OSCN-BPS required increasing the tuning parameter a lot
related to the local rate bound. Since we are working with neural networks, one is
essentially more or less constrained to single precision floating point numbers and
round off can become a pronounced problem in this setting. The need for a high
bound parameter can be due to using a way too long validity interval for the bound.

With the caveats in place, it certainly looks like the BPS travels much faster and
evolves less like a random walk compared to pCN. This is one promising aspect of
these methods.

6.4.4 Failed reconstruction for out-of-distribution sample
It is easy to break the NGP reconstruction by feeding it an out of distribution
example. Consider for instance exactly the same setup as before, but inverting
the pixel intensities of the ground truth. This image is not in the range of the
generator, and the reconstruction is not satisfactory as seen in Figure 6.12. This
example highlights the need for relevant training examples.

40

7
Conclusion and outlook

Overall, we have demonstrated that the method works on a simple but not trivial
example. Before touching on the the technical challenges ahead, it is a good idea to
remind ourselves of the potential of this approach. An illuminating example of the
potential benefits of developing these methods further comes from medicine.

For many medical predicaments, MRI scans are the gold standard test. However, the
long acquisition times puts heavy constraints on its widespread usage in everyday
medical practice. This potentially leads to a misdiagnosed conditions, which carry
risks ranging from lower quality of life and unnecessary stress for the patient up to
untimely death.

If, and it is a big if, one could effectively learn a highly realistic prior for, for instance,
brain scans, we have shown that this allows us to drastically under sample the data,
which could reduce acquisition times drastically. In addition, it could also allow
for quantifying uncertainty in the reconstructions which for instance allows one to
measure the confidence in predictions. Scaling the method up to real life inverse
problems is not an easy challenge. We have considered relatively small 2D images
in our experiments, but MRI scans are most often large three dimensional volumes
which increases the complexity by a staggering amount. Machine learning research
can at times be resource intensive, and while this needs to be taken in consideration
when attempting larger problems, there are clear potential gains for the society at
whole. In closing, we still think that this could be a fruitful research direction.

41

7. Conclusion and outlook

42

Bibliography

[1] J. Adler and O. Öktem. Deep Bayesian Inversion. 2018. arXiv: 1811.05910
[stat.ML].

[2] M. Arjovsky and L. Bottou. “Towards Principled Methods for Training Gen-
erative Adversarial Networks”. In: ArXiv abs/1701.04862 (2017).

[3] M. Arjovsky, S. Chintala, and L. Bottou. “Wasserstein generative adversarial
networks”. In: International conference on machine learning. PMLR. 2017,
pp. 214–223.

[4] P. Billingsley. Probability and Measure. Third. John Wiley and Sons, 1995.
[5] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[6] A. Bouchard-Côté, S. J. Vollmer, and A. Doucet. “The bouncy particle sam-

pler: A nonreversible rejection-free Markov chain Monte Carlo method”. In:
Journal of the American Statistical Association 113.522 (2018), pp. 855–867.

[7] A. Brock, J. Donahue, and K. Simonyan. “Large Scale GAN Training for High
Fidelity Natural Image Synthesis”. In: ArXiv abs/1809.11096 (2019).

[8] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White. “MCMCMethods for
Functions: Modifying Old Algorithms to Make Them Faster”. In: Statistical
Science 28.3 (2013), pp. 424 –446. doi: 10.1214/13-STS421.

[9] M. H. A. Davis. “Piecewise-Deterministic Markov Processes: A General Class
of Non-Diffusion Stochastic Models”. In: Journal of the royal statistical society
series b-methodological 46 (1984), pp. 353–376.

[10] M. Davis. Markov Models & Optimization. CRC Press, 1993.
[11] S. Elfwing, E. Uchibe, and K. Doya. “Sigmoid-weighted linear units for neural

network function approximation in reinforcement learning”. In: Neural Net-
works 107 (2018), pp. 3–11.

[12] D. Endres and J. Schindelin. “A new metric for probability distributions”. In:
IEEE Transactions on Information Theory 49.7 (2003), pp. 1858–1860. doi:
10.1109/TIT.2003.813506.

[13] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[14] I. Goodfellow et al. “Generative adversarial nets”. In: Advances in neural in-
formation processing systems 27 (2014).

43

https://arxiv.org/abs/1811.05910
https://arxiv.org/abs/1811.05910
https://doi.org/10.1214/13-STS421
https://doi.org/10.1109/TIT.2003.813506
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography

[15] I. Gulrajani et al. “Improved training of Wasserstein GANs”. In: Advances in
neural information processing systems 30 (2017).

[16] M. Hairer, A. M. Stuart, and S. J. Vollmer. “Spectral gaps for a Metropo-
lis–Hastings algorithm in infinite dimensions”. In: Annals of Applied Probabil-
ity 24 (2014).

[17] J. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems.
Applied Mathematical Sciences. Springer New York, 2006. isbn: 9780387271323.

[18] T. Karras et al. “Alias-Free Generative Adversarial Networks”. In: NeurIPS.
2021.

[19] S. Laue, M. Mitterreiter, and J. Giesen. “A Simple and Efficient Tensor Cal-
culus”. In: AAAI Conference on Artificial Intelligence, (AAAI). 2020.

[20] W. Mcculloch andW. Pitts. “A Logical Calculus of Ideas Immanent in Nervous
Activity”. In: Bulletin of Mathematical Biophysics 5 (1943), pp. 127–147.

[21] J. L. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems with
Practical Applications. Philadelphia, PA: Society for Industrial and Applied
Mathematics, 2012. doi: 10.1137/1.9781611972344.

[22] A. O’Hagan. Kendall’s Advanced Theory of Statistics: Volume 2B: Bayesian
inference. Kendall’s Advanced Theory of Statistics. Arnold, a member of the
Hodder Headline Group, 1994. isbn: 9780340529225.

[23] G. Peyré, M. Cuturi, et al. “Computational optimal transport: With appli-
cations to data science”. In: Foundations and Trends® in Machine Learning
11.5-6 (2019), pp. 355–607.

[24] P. Ramachandran, B. Zoph, and Q. V. Le. “Swish: a self-gated activation
function”. In: arXiv preprint arXiv:1710.05941 7.1 (2017), p. 5.

[25] F. Rosenblatt. The perceptron - A perceiving and recognizing automaton. Tech.
rep. 85-460-1. Ithaca, New York: Cornell Aeronautical Laboratory, 1957.

[26] P. Vanetti, A. Bouchard-Côté, G. Deligiannidis, and A. Doucet. “Piecewise-
deterministic Markov chain Monte Carlo”. In: arXiv preprint arXiv:1707.05296
(2017).

[27] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. “Image quality assessment:
from error visibility to structural similarity”. In: IEEE Transactions on Image
Processing 13.4 (2004), pp. 600–612. doi: 10.1109/TIP.2003.819861.

44

https://doi.org/10.1137/1.9781611972344
https://doi.org/10.1109/TIP.2003.819861

A
Appendix: Image generator

To generate a random image from the implicit true prior in Chapter 6, we start
with a black image matrix M = 0d×d ∈ [0, 1]d×d and then draw three filled ellipses
on M . Let h = d/2. If not mentioned explicitly, any (pseudo)-random draw is
(pseudo)-independent. The shapes are added to the matrix with anti-aliasing.

We first draw the skull ellipse, which is with very high probability the largest of the
three. First, we sample an intensity c0 by

c0 = max (0,min (1, c̃0)) , c̃0 ∼ N
(
0.9, 0.0252

)
.

The skull is drawn inside a random bounding rectangle, centered at the point

p0 ∼ N

(h, h) ,
(
h

15

)2

I2

 ,
rotated r0 ∼ N (0, 0.32) radians with width w0 and height h0 sampled by

w0 ∼ N

1.4h,
(
h

50

)2
 , h0 | w0 ∼ N

w0 + 0.25h,
(
h

50

)2
 .

Pixels inside the ellipse that best fills this rectangle is then set to c0.

For the brain ellipse, we first sample an intensity

c1 = max (0,min (1, c̃1)) , c̃1 ∼ N
(
0.5, 0.0252

)
.

The previous rectangle is then shrunk by a factor s ∼ N (0.85, 0.052), rotated around
its center p0 by r1 ∼ N (0, 0.052) radians. Pixels inside the ellipse that best fills this
perturbed rectangle is then set to c1. That is, the brain ellipse is concentric with
the skull, it is with very high probability slightly smaller and it is randomly rotated
a little bit.

Finally, one small filled circle with intensity c2 = max (0,min (1, c̃2)) , c̃2 ∼ N (0.1, 0.012)
and radius R ∼ N (0.2h, h20.0252) is drawn at a distance d ∼ N (0.1, 0.052) in a di-
rection r2 ∼ N (0, 0.252) (radians) from p0.

I

DEPARTMENT OF MATHEMATICAL SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	Introduction
	Inverse problems in technology
	Outline of the thesis

	Inverse problems
	Linear inverse problems
	Regularisation
	Statistical inversion

	Generative neural networks
	Neural networks
	Smooth neural networks
	Convolutional neural networks
	Training of neural networks

	Generative Adversarial Networks
	Theoretical motivation of GANs
	Wasserstein GANs

	Markov chain Monte Carlo and piecewise deterministic Markov processes
	Making Bayesian inference tractable
	The preconditioned Crank-Nicolson algorithm
	Piecewise deterministic Markov processes
	Sampling from a target measure
	Simulating a PDMP

	Bayesian inversion with neural generative priors
	Fitting a neural generative prior
	The posterior on the latent space

	Experimental setup and results
	Defining the inverse problem
	Solving the inverse problem using classical priors
	Tikhonov regularisation
	Structural prior

	Solving the inverse problem using a neural generative prior
	Learning the prior
	Solving the inverse problem

	Evaluation and discussion
	Performance of point estimators
	Informativeness of the posteriors
	Performance of the sampling algorithms
	Failed reconstruction for out-of-distribution sample

	Conclusion and outlook
	Bibliography
	Appendix: Image generator

