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Abstract

In vehicle dynamics, tire-to-road friction is the most important factor
for force-transfer between vehicle and road. Without friction the vehicle
would not be able to move at all. The variation of tire-to-road friction can
be large, and can reach dangerously low levels. It is therefore of great value
to be able to estimate available tire-to-road friction. Lot of effort has been
spent on research in the area for many years and the increasing number of
sensors opens up for new possibilities in friction estimation.

This thesis presents a robust sensor fusion method for tire-to-road fric-
tion estimation able to handle several information sources. A Bayesian ap-
proach that uses information from stability systems and road surface clas-
sification information is proposed. The method uses a Kalman filter with
a forgetting function modification. This approach allows the distribution
to converge to a predefined a priori distribution according to present road
surface. The method is used to investigate the possibilities with road surface
information sensors.

Simulations and tests have been run to verify and evaluate the per-
formance and behavior of the filter. Several performance parameters are
defined that allows a fair comparison of different input data.

Results show that the fusion algorithm works as intended and takes
different information sources into account when calculating the estimate
and uncertainty. The road surface classification shows good potential of
improving both availability and correctness of the friction estimate. This is
due to the road surface being the most important parameter in tire-to-road
friction, using this information result in low estimation bias.

Keywords: road friction estimation, sensor fusion, tire friction estimation
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1 Introduction

To know whether the road is slippery or not has been of interest since vehicles
started driving on the roads. As of today there is no good continuous estimation
of the road friction in the vehicles at all times. With stability systems such as
the anti-lock braking system (ABS) and traction control system (TCS) a good
momentary estimation of the friction can be obtained. This estimation is not
valid if the road conditions change. With the increasing number of information
sources available in today’s cars this project aims at merging direct estimations
with information from road surface sensors to a reliable continuous estimate of
the road friction. How the performance depends on different information sources
will also be investigated and a recommendation of further development will be
presented.

The benefit of this improved estimate is e.g. improved performance of active safety
systems and active warnings to the driver. In the case of active safety systems it
is thus important for the internal system of the car to have information about
low friction; even if the driver already knows that it is slippery. In slippery road
conditions the accident rate is higher [1], additional information may reduce road
accidents.

1.1 Purpose

The purpose of this project is to use information from several sensor sources to
merge data into a continuous estimate of the tire-to-road friction coefficient. Using
different sensors to eliminate their individual flaws, a more confident and robust
tire-to-road friction estimate is achieved.

The focus of this project is to:

• Create a filter framework able to handle arbitrary sensor data, with focus on
road surface classification and several direct measurements, to produce an
optimal tire-to-road friction estimate.

• Set up a test scenario, define performance measurements to test, tune and
evaluate the filter.

• Using information and knowledge gained during the project to specify some
future work areas that are of interest.

1.2 Limitations

Due to time limitations all aspects concerning the project will not be performed.
The main focus is to develop a filter framework able to handle one indirect in-
formation source and several direct measurements. The tire-to-road friction is
assumed to be known in these sensors and methods; no time has been spent on
further development of individual estimation techniques.

Some physical limitations have also been made. The road surface classification is
assumed to be able to distinguish four different surfaces: ice, snow, wet asphalt

, Signals and Systems, Master of Science Thesis EX053/2010 1



and dry asphalt. Other conditions such as e.g. extremely hot asphalt, oil spills
and aqua-planning is left for future work. In this project the surface is also seen
as homogenous close to the vehicle. The probability density function (PDF) for
tire-to-road friction, given the four surfaces, is assumed to be known and has not
been further investigated.

The project is validated using test results in simulations; one scenario with log data
from recorded runs is also used. To get realistic driving behavior in simulations,
recorded position and speed profiles is used. This method captures real driving
situations, while still having the ability to control the friction. No verifying tests
is made in real world experiments.

1.3 Outline

The first section gives an introduction to the subject and why it is important to
have information regarding the tire-to-road friction. The main purpose and lim-
itations are also stated here. Next the reader gets some background information
about tire mechanics, tire-to-road friction and some filter theory. This is to facil-
itate further understanding in the report. The input data from stability systems
estimate and road surface classification is described in the input data section. It
is also explained how sensor input is simulated. This is followed by a description
about the algorithm and how it is implemented using a Kalman filter.

In the performance and functionality section measurements for correctness and
availability are defined, the simulation and log scenarios are also described. The
result section for the simulation model is straightforward and presents the obtained
result. Comments, figures and performance measurements on the result are also
displayed here. This is followed by the result section for log data which structured
in the same way. Discussion and analysis of the results can be found in the dis-
cussion section, the focus is on the simulation scenario and the behavior of graphs
and performance measurements are explained. Next is a conclusion section that
summarizes what conclusions that can be drawn from the results. In the end some
further development and improvements are discussed in a future work section.
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2 Theory

The objective of this section is to give a brief introduction to some of the underlying
theory concerning the tire-to-road friction estimation problem and the proposed
filter approach.

2.1 Tire mechanics

This section gives a brief introduction to tire mechanics. The purpose of the tire
is, besides make the ride a bit more comfortable, to transfer forces from the vehicle
to the road. Without this force-transfer the vehicle would not be able to move.

The tire forces can be divided into longitudinal and lateral forces. It has been
shown that the longitudinal forces are a function of longitudinal slip ratio [2].
The longitudinal slip ratio is the difference in longitudinal movement in the outer
contact patch and the wheel axle’s velocity.
The slip ratio is defined as:

σx =
reffωw − Vx

Vx
(braking)

σx =
reffωw − Vx
reffωw

(acceleration)
(2.1)

Where reff is the effective rolling radius of the tire, ωw the rotational velocity and
Vx the wheel axle’s forward velocity.

At small slip ratio (< 10% for dry surfaces) the force is proportional to the slip
[2], therefore:

Fx,f = Cσ,fσx,f

Fx,r = Cσ,rσx,r
(2.2)

Where C(·),(·) are tire stiffness constants.

The maximum longitudinal tire force is mainly reached at 10-15% slip ratio [3].
Further increase in slip ratio results in less tire force why it is desirable to maintain
in the 10-15% slip region for full force utilization.

Lateral tire forces are, in the same way as above, due to lateral slip. Lateral slip
is often denoted as side-slip angle, it is defined as:

αf = δ − θv,f
αr = −θv,r

(2.3)

Where δ is steering angle, θv,f & θv,r is the front and rear wheel’s velocity angle
in relation to vehicle longitudinal axle.

Also the lateral force can be approximated to be proportional to slip-angle for
small angles [2]. The wheel’s velocity angle is defined as:

tan(θv,f ) =
Vy + lf Ψ̇

Vx

tan(θv,r) =
Vy − lrΨ̇

Vx

(2.4)
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Where Vy is lateral velocity, Vx longitudinal velocity, lf & lr is the longitudinal
distances from the center of gravity to the front and rear wheels and Ψ̇ is the
vehicles yaw rate.

With small angles approximation the lateral tire forces can be expressed as in
equation 2.5. [2]

Fy,f = Cα(δ − Vy + lf Ψ̇

Vx
)

Fy,r = Cα(−Vy − lrΨ̇
Vx

)

(2.5)

2.2 Tire-to-road friction model

In order to calculate, and thereby simulate, tire behavior and forces a mathematical
model of the tire is needed. There are several well approved tire models used for
this purpose. Only one model will be briefly discussed here.

2.2.1 Brush model

The brush model repose on the tire seen as small elastic bristles. These bristles are
stretched lateral in the contact patch and are infinitesimal in longitudinal direction.
The model is built with some assumptions. The elasticity of the bristles is assumed
to be linearly even though rubber isn’t. The carcass of the tire is also assumed to
be stiff, which results in the carcass deformation effects to be neglected.

The idea of the model is that the tire force generation can be divided into two
regions. In the first region the forces is due to adhesion in the elastic deformation
of rubber. In the second region all bristles are assumed to slide, and thus generating
sliding friction [4].

2.3 Filter theory

In this section some background on filter theory will be explained. Only the parts
of filter theory that are used in our work are presented here. There is rigorous
amount of available literature covering this subject and the extent of this section
is kept to a minimum. Interested readers are encouraged to consult literature
references for deeper knowledge [5, 6, 7, 8].

2.3.1 State-space modeling

When modeling dynamic systems a state-space approach gives good representation
of the problem. Information regarding the system can be stored into a state
vector. The state-space system is described with two equations. The first equation
describes the dynamic relation of the system and how it changes with time and its
possible inputs. Second equation defines how outputs/measurements are related
to the system [8].

4 , Signals and Systems, Master of Science Thesis EX053/2010



The state-space system can be continuous, discrete or even both. In continuous
state-space the process equations notes how the system changes with time (equa-
tion 2.6). Discrete state-space equations describe what the state will be the next
time instant (equation 2.7). In both cases x is a vector of all states x1, x2, ..., xn
and u is a vector of possible input signals u1, u2, ..., um

ẋ(t) = f(t,x(t),u(t))

y(t) = h(t,x(t),u(t))
(2.6)

xk = fk−1(xk−1,uk−1)

yk = hk(xk,uk)
(2.7)

Both f(·) and h(·) are known, possibly nonlinear functions mapping state and
input vectors to next state/change. In the continuous case the states are updated
at all time while the discrete state-space only is updated at defined time instants.
The time interval is often set as constant Ts but might also be a function of other
dependencies.

Whenever one of either f or h functions is nonlinear, the entire system is considered
to be nonlinear. When the system is defined as linear, the functions f and h can
be expressed as matrices instead. The system can then be noted as equation 2.8
(continuous) or 2.9 (discrete). Note that the matrices still can be time-dependent.

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(2.8)

xk = Φk−1xk−1 + Γkuk−1

yk = Ckxk + Dkuk
(2.9)

Only the discrete cases will be dealt with in this report from here on.

2.3.2 Stochastic and probabilistic system process

The model and state-space system described in previous section assumes an ideal
system without any disturbances, neither process disturbances, modeling uncer-
tainties nor measuring noise. Since this is rarely the case in reality, the system
model needs to handle these disturbances. One way of dealing with this problem
is to model the system as in equation 2.10, where vk is process disturbances and
model uncertainties and wk is measuring noise. The problem is then to find ex-
pressions for v and w. By assuming that these disturbances are stochastic variables
some important and usable properties is evolved [9].

xk = fk−1(xk−1,uk−1,vk−1)

yk = hk(xk,uk,wk)
(2.10)

Considering the system to be in probabilistic form together with the disturbances
being modeled as stochastic variables some important and well-approved methods
for dynamic system problems can be used. Given a stochastic process the Markov
property says that, given information on the present state, the future state does
not depend on the past. This makes it only necessary to save information on
present states [10].

, Signals and Systems, Master of Science Thesis EX053/2010 5



2.3.3 System estimation

The problem is often to estimate the states of a specific system. Properties de-
scribed in previous sections, the system is e.g. stochastic and probabilistic, makes
the use of some well-approved Bayesian approach suitable for the problem. Mea-
suring the output from the system, together with some prior dynamic information
of the problem, makes it possible to estimate or predict present or future system
state [11].

Having information on either present or previous state of the system, one attempts
to predict the a priori distribution of the system for the next instant. This step
uses information on how the system would evolve over one time instant and is cal-
culated without any measuring information. The next step is to use measurements,
often noisy measurements, to update the states to a posteriori distribution. These
steps are recursively performed on each time instant. The equations are similar to
equation 2.10 but instead of output yk, measurements vector zk is used (equation
2.11).

xk = fk−1(xk−1,uk−1,vk−1)

zk = hk(xk,uk,wk)
(2.11)

2.4 Kalman filter

The Kalman filter is an optimal filter used for smoothing, filtering or prediction
(estimation of past, present and future state). It was presented by Rudolph E.
Kalman in 1960’s [7] and has become widely used ever since.

The approach requires the system to be linear and its distributions to be Gaus-
sian. This makes the filter only applicable to either linear problems or linear
approximations of the system. The process equation is then noted as in equation
2.12

xk = Axk−1 + Buk−1 + vk−1 (2.12)

And the measurement equation (equation 2.13):

zk = Hxk + wk (2.13)

The matrices A, B and H are here noted as time-invariant for notation simplicity.
The variables v and w is uncorrelated white noise normally distributed as in
equation 2.14, where Q is the process noise covariance and R is measurement
noise covariance. [12]

p(v) ∼ N(0, Q)

p(w) ∼ N(0, R)
(2.14)

2.4.1 Estimation algorithm

Equations 2.12, 2.13 and 2.14 are used to produce the estimation algorithm. The
algorithm will produce an a priori estimate which will be noted x̂−k (scalar repre-
sentation will be used for simplicity) and a posterior estimate noted x̂k. We also
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introduce a priori and posteriori estimate errors (equation 2.15) [6].

ε−k ≡ xk − x̂−k
εk ≡ xk − x̂k

(2.15)

The estimation error covariances for the a priori and posteriori is as in equation
2.16, where E[·] is the expected value function.

P−k = E[ε−k ε
−
k
T

]

Pk = E[εkε
T
k ]

(2.16)

Using discrete Kalman filter, the algorithm is split into two steps. The process
update (sometimes called time update) calculates the a priori estimation. The
process update equations (2.17) uses information from previous step together with
the process model to try to predict next state.

x̂−k = Ax̂k−1 +Buk−1

P−k = APk−1A
T +Q

(2.17)

Second step in discrete Kalman filter is the measurement update. This step uses
information from measurements to correct the predicted estimate from the process
update. Introducing the difference between measurements and the predicted state
output as the innovation zk−Hx̂−k . The innovation is used to update the posteriori
estimate as in equation 2.18.

x̂k = x̂−k +Kk(zk −Hx̂−k ) (2.18)

The term Kk is a ”gain” factor on how much information from measurements and
prediction that should be used. This gain, called Kalman gain, is calculated to
minimize the posteriori error covariance. The complete set of equations for the
measurement update is seen in equation 2.19 [6].

Kk = P−k H
T (HP−k H

T +R)−1

x̂k = x̂−k +Kk(zk −Hx̂−k )

Pk = (I −KkH)P−k

(2.19)
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3 Input data

Input data to the filter algorithm can come from an arbitrary amount of sources.
There are a lot of different tire-to-road estimation methods available for this pur-
pose. There are no optimal estimation that fulfills all demands so there are always
trade-offs that has to be made. By using several estimation methods we try mini-
mizing the individual weaknesses. Only the estimation methods used in the current
filter are evaluated and described further below.

3.1 Stability systems

Maximum possible acceleration is tightly correlated to available friction. Using
this knowledge together with several available stability systems gives an oppor-
tunity to retrieve a friction estimate. There are several stability systems in the
vehicle that utilizes and provides input when they are active. The result from this
estimation is an estimate with quite good confidence; the downside is they only
provide information when maximum excitation is reached. Since they also lack
information about the friction between interventions they are not continuous.

3.1.1 Anti-lock braking system (ABS) estimation

The ABS control system tries to maximize braking ability by controlling slip-ratio.
Using this information and listening for ABS actions gives information whether
maximum friction is used. This information and an estimate on tire forces produce
a friction estimate with good accuracy [3].

3.1.2 Dynamic stability & traction control (DSTC) estimation

This is similar to the ABS estimation describe above. The traction control system
tries to optimize traction and thereby acceleration ability to meet the drivers desire.
By measuring slip ratio and braking individual wheels to eliminate wheel spin a
maximum acceleration is obtained. Listening for this action in the same way as
ABS, a quite good estimate is retrieved.

Whenever the vehicle exceeds available acceleration limitations (due to low fric-
tion) when cornering, the control systems tries to maintain control of the vehicle by
braking individual wheels to counteract the vehicles desire to under- or oversteer.
This signal present the same estimate as above [13].

3.2 Road surface classification sensors

Knowing what type of material and surface is beneath the car gives information
regarding available friction. By using different methods to classify surface condi-
tion a continuous friction estimate can be calculated. Classifying the surface into
predefined discrete steps gives opportunity to define friction distribution for these
surfaces.
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There are several ways to obtain this surface classification. Using camera data
and image analysis algorithms is one way. Other solutions are to use specific
devices, e.g. RoadEye [14], that illuminates the surface with light and measuring
backscattering for different wavelengths, or some sort of communication with other
vehicles or infrastructure. There have been several attempts to estimate the surface
from vibration models or other vehicle dynamic sensoring methods [15].

These methods don’t give a direct measurement of the friction. They only present
which predefined surface that is current. Data is needed to produce a priori dis-
tribution from these classifications. Although these methods give a continuous
estimate the weakness is their quite wide distributions and correlation in time.

Another disadvantage is that it only provides information about the surface. The
friction force is generated in the contact area between the tire and the road and the
measurements from road surface classification sensors don’t supply any information
regarding the tire.

3.2.1 Defined surface classifications

The road surface has an enormous amount of possible states. Present road surface
can be seen as a continuous state with numerous amount of influencing parameters.
To be able to deal with this situation a discretization of the surface classifications
is made. The proposed algorithm uses four discrete road surface classifications.
Deciding and dividing into these steps was made assuming available sensors and
methods could provide these steps. There are however, when more sophisticated
and advanced sensors and methods is available, possibility to change these discrete
steps into other solutions. The final discrete steps present in the current algorithm
are ice, snow, wet asphalt & dry asphalt.

Investigation and evaluation of the discrete road surface types lead to the following
assumptions. Due to the contemplated fusion algorithm (described in 2.4) the dis-
tribution for each surface class is assumed to be distributed with normal Gaussian
distribution. Consulting literature, articles and research done in the tire-to-road
friction area a suggestion for how the friction is distributed for each surface class
is presented as in table 3.1 and figure 3.1. It should be noted here that it is not in
the scope of this thesis to evaluate and verify these distributions. This suggestion
is mainly based on a literature study made by The Swedish National Road and
Transport Research Institute [1], which has summarized several surveys.

Surface Mean Standard deviation
Ice 0.15 0.1

Snow 0.3 0.1
Wet asphalt 0.7 0.1
Dry asphalt 0.9 0.1

Table 3.1: Friction distribution parameters for normal gaussian distribution of each
surface classification
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Figure 3.1: Priori distributions for ice, snow, wet asphalt and dry asphalt

3.3 Simulating sensor input

The log files that are used in this thesis are recorded without the DSTC and TCS
systems. This is to get a good reference speed from the wheels. Because of the
need for an estimate from the stability systems in our simulations, all stability
systems are simulated. The car is assumed to be all wheel drive to handle the
worst case.

To simulate when an intervention would have appeared the normalized acceleration
of the longitudinal and lateral acceleration is formed according to the first equation
in 3.1. It is then checked when ANorm divided by the gravitational constant g is
greater than available friction, see second equation in 3.1.

ANorm =
√
A2
Lat + A2

Long

ANorm
g

> µavailable
(3.1)

When the conditions are met it is assumed that an intervention would have ap-
peared and generated a friction estimate. There is also a lower limit on how long
time this condition has to be fulfilled in order to generate an estimate. This time
is set to 0.5 seconds.

To find out which stability system, i.e. ABS, DSTC or TCS that would have
generated the estimate, the angle of the normalized acceleration is used. In table
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3.2 the angles for when the different systems is assumed to give information is
displayed.

Stability system Condition for estimate
ABS 220◦ < ANorm < 320◦

DSTC −50◦ < ANorm < 50◦ ∨ 130◦ < ANorm < 230◦

TCS 40◦ < ANorm < 140◦

Table 3.2: Conditions for when different stability systems is assumed to generate an
estimate

The actual estimate that is generated is assumed to be an unbiased measurement
of the current friction; no noise is put on the value. All estimates, i.e. ABS, DSTC
and TCS are assumed to have the variance according to section 4.1.
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4 Sensor fusion method

This section covers the fusion algorithm and explains why it is chosen. Main
focus has been to develop a framework for the data fusion and therefore some
assumptions and simplifications have been made. These will be motivated here
and possible affects will be discussed in section 8.

Main work of the data fusion is performed in a Kalman filter (theory explained
in section 2.4). Maximum available friction µmax is chosen as state variable. The
process model (equation 4.1) is chosen as a random walk process1.

xk = γxk−1 + (1− γ)µ+ vk−1

vk ∼ N(0, Q)

γ ∈ [0, 1)

(4.1)

Using this approach, with parameters γ, µ and Q, makes the posterior distribution
move toward the proposed priori distribution N(µ, Q̃) when no measurements are
available. The convergence using this approach is seen in equation 4.2 [16].

E[xk+l] = γlE[xk] + µ(1− γl)

Cov[xk+l] = γ2lCov[xk] +
1− γ2l

1− γ2
Q

(4.2)

Using values for mean (µ) and covariance (Q̃) from section 3.2.1, with µ as mean
and Q = Q̃(1 − γ2) will make the filter approach the predefined distributions for
each surface. The use of parameter γ can be seen as a forgetting factor and its
implementation is described further in section 4.2.

4.1 Measurements

The measuring equations relate measurements to the estimate. Estimation meth-
ods, described in section 3.1, gives direct information about maximum friction and
are used as measurements as in equation 4.3.

zk,i = xk + wk,i

wk,i ∼ N(0, Ri)
(4.3)

Measurement error covariance Ri for the ABS estimate is obtained by calculating
data variances from a log file of a 2.5 hour long drive in winter conditions. The
variance from each intervention is calculated and the mean is formed. The specific
drive log contained 60 ABS interventions and the average variance was 0.0033. It
is assumed that there is no bias between the measurement and the actual friction
coefficient. The error covariance does besides sensor noise also include possible
short term friction fluctuations.

The covariances for TCS and DSTC estimates are assumed to be the same as
for the ABS estimate. The values are fixed and thus assumed not to depend on
velocity.

1Note: Unfortunately common notation for both mean (as in statistics) and friction is µ. This
might in some equations be confusing. To make it clearer all notations concerning friction will
be used with an index, i.e. µmax or µavailable.
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4.2 Forgetting function

The γ variable is a design parameter. It can be seen as a forgetting factor, and
determines convergence speed toward the predefined priori distribution. Our choice
is to define a driving distance when the filter only should use 10% of current
estimate and 90% of priori distribution. This can be compared to rise time or in
this case rise length. Since the filter is run on specified sampling rate, rather than
triggered on driven distance, the value needs to be recalculated each iteration with
current speed (equation 4.4). Ts is the sampling interval, Vfwd is forward velocity
and λdistance determines the length.

γ = 0.1
|Vfwd|Ts
λdistance (4.4)

4.3 Road surface input

Equation 4.1 uses, besides γ described above, µ and Q. These parameters are
specific for each surface and the road surface input then decides which parameters
to use (see section 3.2.1).

In order to not lose valuable information gained for a specific surface when switch-
ing between surfaces, each defined surface is allocated its own filter. These filters
are each run in parallel. Each filter does process updates each iteration but only
the active filter does measurement update. Present version of the fusion filter thus
uses four parallel filters x̂k,Ice, x̂k,Snow, x̂k,WetAsphalt and x̂k,DryAsphalt.
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5 Performance and functionality

In order to verify performance and functionality of the filter and framework algo-
rithm some tests has been run. Performance measurements are defined in section
5.1 and the scenarios tested are described in 5.2.

5.1 Correctness & Availability

Evaluation of simulation result is done in several ways. The first is to calculate
RMS (Root Mean Square) of the error (εk) as defined in equation 5.1. The differ-
ence between the estimate and the reference is summarized and divided according
to equation 5.1, where n is the number of samples.

εk = µref,k − x̂k

εRMS =

√∑n
i=1 ε

2
i

n

(5.1)

High friction values generate less data input than low friction values. This is
because the excitation needed to get input is seldom reached in high friction areas.
High friction is also considered less dangerous and thus it is not as important to
be accurate in high friction as in low. This might make the RMS error value a bit
unfair, and thus a proposed weighted RMS error value is also used. This value uses
(εk,weighted) instead, se equation 5.2. Since µref,k ∈ [0, 1.1] lower friction values will
affect the RMS more.

εk,weighted =
µref,k − x̂k
µref,k

(5.2)

Another interesting aspect is during how long time the estimation and its distri-
bution is within a specified interval. These tests are set up as in equation 5.3.
The first equation calculates the ratio of when the estimation error is within ±
0.1 and the second when the estimate ± error covariance is within ± 0.1. When
both estimate and actual friction is above 0.5 the estimate is also considered as
available and it is therefore included in the equations [17].

ηε±0.1 =

∑n
i=1{(|εk| ≤ 0.1) ∨ (x̂k ≥ 0.5 ∧ µref,k ≥ 0.5)}

n

η|ε±σ|±0.1 =

∑n
i=1{(|εk ±

√
Pk| ≤ 0.1) ∨ (x̂k −

√
Pk ≥ 0.5 ∧ µref,k ≥ 0.5)}

n

(5.3)

5.2 Scenarios

Since simulation model and logged model differ there has to be different scenarios
for each model. The Scenario that is run in the simulation model is used to make
performance tests and tune parameters. In simulation environment the defined
friction profile is used as reference. When running tests on logged data no friction
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reference is present, and therefore performance tests is harder to evaluate. Impor-
tant aspects on both scenarios are how the estimate is affected with or without
road surface information.

5.2.1 Simulation scenario

Two scenarios has been tested, one with pure simulated inputs and one with logged
data. The simulation scenario is chosen with a friction profile as in figure 5.1. The
road surface profile is first two sections of snow (with µmax = 0.25 and 0.35), one
section ice (µmax = 0.10) followed by one section wet asphalt (µmax = 0.8) and
last one section ice again. Each section is 300 seconds long and that makes the
complete run 25 minutes. The friction profile is intentionally set with an offset
from the predefined priori distributions to test the algorithm behavior.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Figure 5.1: Friction reference profile for simulation scenario

The steps changes in the friction profile are to simulate a change in the road
surface. The first step change is from one snow to another snow condition. This
can for instance be the case when driving on a less traveled road whit loose snow
and then reaching a more frequently travelled road which has packed snow.

The remaining three step changes are due to change in road condition that is
assumed to be detectable. From snow to ice, then wet asphalt and finally ice
again. This can be the case if one enters a road which has been ploughed and
where water has frozen on the road surface. Another road segment might be
salted, and then it is possible that this section is not frozen even though it has the
same temperature.

This simulation scenario is made to stress the filter with step changes which is
interesting in a performance testing point of view.

5.2.2 Log scenario

The log scenario is a 5 minutes long run on rural roads in winter conditions. The
main road surface is homogenous snow but there are a few shorter ice segments.
The speed is about 50-70km/h and it is normal calm driving with almost no other
traffic around. Two test breaks are made on the snow in this log and each friction
estimate, together with the mean, can be seen in table 5.1.

Because of the homogeneity of the snow and the similarities in the ABS estimates
the friction for snow in this scenario is assumed to be the mean of the two. For the
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First ABS Second ABS Mean ABS
Estimate 0.286 0.328 0.307

Table 5.1: Test breaks during log: first, second and average of the two

ice there is no information available and it is assumed to have a friction coefficient
of 0.15 according to the predefined priori.
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6 Results - Simulation model

A few tests have been made and the results is categorized as with and without
road surface classification. One test with only road surface classification and no
direct measurements have also been made as a reference.

Section 5.2 describes set up, methods and assumptions used to run and test the
algorithm when using simulated data model.

6.1 Simulation with road surface classification

With observations at ABS/TCS/DSTC interventions the filter has some informa-
tion, besides the road surface classification, that is used to improve its estimate. At
lower friction the excitation rate is higher and thus more information is retrieved.
With the friction unit step at 300s without RSC change, the filter does not adapt
to the new condition (figure 6.1). In the high friction area (900s < t < 1200s in
figure 6.1) no observation is available and the RSC information is the only input.

Correctness and availability measurements (as defined in section 5.1) are seen in
table 6.1. The estimation is at all time within reference friction plus/minus 0.1.
However, since the estimate is quite unsure at some times the other availability
measurement is not as high.
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1 std Dev
Reference

Figure 6.1: Simulation with road surface information and measurements at 100% tire-
force utilization
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εRMS 0.0537
εRMS,weighted 0.1217

ηε±0.1 1.0000
η|ε±σ|±0.1 0.7295

Table 6.1: Simulated result for simulation model with road surface information mea-
surements available at 100% tire-force utilization, tests as defined in section
5.1

6.2 Simulation without road surface classification

These tests are run without information about road surface. The friction profile
and tests are the same as mentioned in section 6.1. When no RSC is present, the
filter will assume wet asphalt. This makes the algorithm conservative when no
direct measurements are available.

Because of the lack of information concerning road surface the estimate drifts
towards the priori of wet asphalt and produces a fluctuating estimate. In the high
friction area (900s < t < 1200s in figure 6.2) no observation is available and the
filter does not have enough time to settle during this section. The irregularities
seen in the estimate at approximately 300s and 1100s is because of the speed
dependence.

In table 6.2 the correctness and availability measurements are presented as defined
in section 5.1.
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Figure 6.2: Simulation without road surface information and measurements at 100%
tire-force utilization
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εRMS 0.2349
εRMS,weighted 0.8684

ηε±0.1 0.4621
η|ε±σ|±0.1 0.3716

Table 6.2: Simulated result for simulation model without road surface information mea-
surements available at 100% tire-force utilization, tests as defined in section
5.1

6.3 Simulation with only road surface classification

This test is run with road surface classification and no direct measurements. As
can be seen in figure 6.3 the estimate is biased to the reference during the entire
run as described in section 5.2.1. The results are mostly of interest if compared to
the other runs, see table 6.4

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 
Estimate
+1 std Dev

1 std Dev
Reference

Figure 6.3: Simulation with only road surface information and no other measurements
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εRMS 0.0632
εRMS,weighted 0.3394

ηε±0.1 1.0000
η|ε±σ|±0.1 0.2000

Table 6.3: Simulated result for simulation model with only road surface information
and no other measurements, tests as defined in section 5.1

6.4 Summarized result for simulation model

Values from sections 6.1, 6.2 and 6.3 are summarized in table 6.4. Large differences
can be seen when comparing with and without RSC. It can also be noted that fairly
good results is shown even if only relying on the road surface classification.

RSC No RSC Only RSC
εRMS 0.0537 0.2349 0.0632

εRMS,weighted 0.1217 0.8684 0.3394
ηε±0.1 1.0000 0.4621 1.0000

η|ε±σ|±0.1 0.7295 0.3716 0.2000

Table 6.4: Summarized simulation result, tests as defined in section 5.1

22 , Signals and Systems, Master of Science Thesis EX053/2010



7 Results - LoggData model

A few simulation tests are run with data recorded from a logged run. The log is
from a five minute long run during winter conditions with homogenous snow and
spots of ice.

When using logged data no friction reference is present. Examination of brake
tests done in the runs is used to make an assumption of possible friction reference.
Investigation of recorded video sequence from the same occasion is made to increase
the confidence. Using reference in these tests does not ensure an absolute result,
but can be used to note and estimate tendencies or investigate a specific scenario.

7.1 Simulation with road surface classification

The data logs are recorded with data from a Road-Eye sensor (described in section
3.2). This sensor has recorded backscattering and an algorithm classifies the road
surface with a neural network approach. Visual investigation of recorded video
sequence from the logged run is made to validate its correctness.

Full force-utilization uses ABS/TCS/DSTC interventions as input data to the
filter. Since the recorded run is made with TCS and DTCS shut off, these signals
are recreated in the simulation. No interventions at all where present during the
run and the algorithm relies completely on its a priori as seen in figure 7.1. Table
7.1 notes the performance of the algorithm for the specified sequence.
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Figure 7.1: Logged data simulation with road surface information and measurements
at 100% tire-force utilization
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εRMS 0.0087
εRMS,weighted 0.0285

ηε±0.1 0.9988
η|ε±σ|±0.1 0.0000

Table 7.1: Simulated result for logged data model with road surface information mea-
surements available at 100% tire-force utilization, tests as defined in section
5.1

7.2 Simulation without road surface classification

Tests without the road surface information are run in the same way as noted in
section 7.1. Just as in section 7.1 no interventions is present during the simulation.
Without RSC in this simulation the estimation has no information which results
in large errors (figure 7.2) and poor performance (table 7.2).
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Figure 7.2: Logged data simulation without road surface information and measure-
ments at 100% tire-force utilization
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εRMS 0.3962
εRMS,weighted 1.3571

ηε±0.1 0.0000
η|ε±σ|±0.1 0.0000

Table 7.2: Simulated result for logged data model without road surface information
measurements available at 100% tire-force utilization, tests as defined in
section 5.1

7.3 Summarized result for loggdata model

Values from sections 7.1 and 7.2 are summarized in table 7.3. The difference
between having a road surface classification and not having one is shown in most
performance measurements.

RSC No RSC
εRMS 0.0087 0.3962

εRMS,weighted 0.0285 1.3571
ηε±0.1 0.9988 0.0000

η|ε±σ|±0.1 0.0000 0.0000

Table 7.3: Summarized simulation result from logged data, tests as defined in section
5.1
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8 Discussion

One of the problems in this project has been the absence of a good reference on
the friction coefficient. By simulating estimations from stability systems based on
acceleration measurements, and a predefined friction profile, this has in some sense
been circumvented. This simulation comes with some assumptions.

The log data is gathered in winter conditions under rural road driving and it’s
assumed that the driving behavior is representative for all road conditions in the
friction profile. This assumption might be a bit conservative for the high friction
areas on which maybe a more aggressive driving behavior normally is used.

The assumption that the stability systems give an unbiased estimate might be
optimistic. There is also the possibility that the DSTC estimates do not have the
same variance, which is assumed in this report.

Using a normal Kalman filter restricts the filter to only handling normal distri-
butions. This means that the uncertainty is equally large over and under the
estimate. This restricts the behavior that is possible to achieve and causes some
properties that might be unwanted.

The a priori for the different road surface classifications might not be sufficiently
approximated with a normal distribution. It might be possible to get a better
result if the output is allowed to have a different distribution. The variance of the
measurements is probably well approximated with normally distributed noise, this
assuming that they are unbiased.

Result discussion The RMS error value εRMS is a bit rough because the mea-
surement is heavily increased in the high friction area where no direct estimates
are available. The weighted RMS error εRMS,weighted presents a more interesting
measurement of the relation between the different tests. A big difference is seen if
a RSC is available or not. This is mainly due to two things, first the high friction
area, where the test with RSC detects the change directly and makes a step change
to the a priori for the new road surface. The second thing that keeps the RMS
value small is the fact that the a priori and the estimate are never largely biased
when a RSC is available. The forgetting factor is set on forgetting 90% of the bias
over a specified distance. If the bias is small the estimate does not drift as much
with distance as if the bias is large.

The availability measurement ηε±0.1 only takes the estimate into account and does
not depend on the distribution. This makes it possible to acquire full availability
in the tests with RSC even if the estimate is unsure. This is especially obvious in
the comparison test where only RSC is used. A more interesting measurement is
the availability measurement η|ε±σ|±0.1 that also depends on the certainty in the
distribution. Two notable results can be seen in table 6.4, first the fact that the run
with RSC has about twice as good availability as the test without RSC. Secondary
it can be seen that only RSC does not generate good η|ε±σ|±0.1 availability if no
other measurements are available.
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9 Conclusions

The proposed fusion algorithm, works as intended and is able to combine both
direct and indirect measurement inputs. It shows good potential for tire-to-road
friction estimation problems. The approximated linear process model makes the
filter handle model uncertainties and short term fluctuations well. Even with less
available tire-to-road friction information the filter produce good result with small
estimation error.

A road surface classification shows good potential of improving both availability
and correctness of the friction estimate. The response time after a surface change
can be greatly reduced. The estimate drifts with a slower speed due to the a priori
having a small bias to the true friction value.

The road surface classification greatly reduces the RMS error due to its short ramp
up time when changing road surface to wet or dry asphalt. The RSC also enables
the filter to keep information about a former road surface even if new information
is gathered about the present road surface.
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10 Future work

In this section some suggestions on further development is proposed.

Utilized acceleration Accelerometers give constant information about utilized
acceleration. This measurement give information on what µmax isn’t. This infor-
mation can be used to correct the friction estimate when µmax is underestimated.
Letting the acceleration measurement truncate the distribution of the estimate,
and then recalculating a new Gaussian distribution, and use this to update the
estimate can enhance the result.

A priori distributions The distributions for friction on different surfaces can
be further investigated. For example thorough test can be made with different
cars and tires on the different surfaces to get a better picture of the PDF. These
tests can also reveal if the assumption of normally distributed PDF is a good
approximation. It is preferable if the tests can be made on the specific surfaces
that are detectable with sensors.

Statistical approach to simulating input data By investigating recorded
data logs driven on a specific road surface the frequency and also PDF of 100%
utilized friction can be found. It can then be used to generate input data to the
estimation algorithm based on road surface. In this way the driver behavior for a
specific road condition is included in the simulation. Another approach is to map
the change in velocity and used acceleration on different road surfaces.

More advanced and flexible simulations If a more advanced simulation en-
vironment is used some of the assumptions made in this thesis can be validated
and sometimes avoided. By using a more advanced simulation tool, driver be-
havior can be modified depending on several parameters. Some investigations for
instance claim a change in driving behavior due to the visible change in weather
and road surface condition [1]. The stability systems can be simulated and the
friction estimate generated from them can be more realistically created.

Handling uncertainties in the RSC To have a robust algorithm that works
with real input data from a RSC information source the algorithm has to cope with
uncertainties of some sort. One way of doing this is to use interacting multiple
model (IMM). This model forms an optimal weighted sum of the output from the
filters of each road surface.
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[1] C.-G. Wallman and H. Åström, “Friction measurement methods and corre-
lation between road friction and traffic safety.,” VTI meddelande, no. 911A,
2001.

[2] R. Rajamani, Lateral and Longitudinal tire forces. Springer, 2006.

[3] D. Capra, N. D’Alfio, A. Morgando, and A. Vigliani, Experimental Test of
Vehicle Longitudinal Velocity and Road Friction Estimation for ABS System.
SAE International, 2009.

[4] J. Svendenius, Tire Modeling and Friction Estimation. PhD thesis, Depart-
ment of Automatic Control, Lund University, 2007.

[5] B. Mulgrew, P. Grant, and J. Thompson, Digital Signal Processing - Concepts
and Applications. Palgrave McMillan, 2 ed., 2003.

[6] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” Department
of Computer Science, University of North Carolina, 2006.

[7] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Prob-
lems,” Research Institute for Advanced Study, 1960.

[8] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter, Par-
ticle filters for tracking applications. Artech House Publishers, 2004.
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