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Aerodynamic Optimization of High Speed Propellers
GONZALO MONTERO VILLAR
Department of Applied Mechanics
Chalmers University of Technology

Abstract
The fact that fuel costs accounts for 29% of all airlines cost [1] and the increase in
environmental awareness is driving the aviation industry to reach for more efficient
engines. One of the promising technologies to tackle this problem is the open-rotor,
which combines the fuel efficiency of turboprops together with the high cruise Mach
number of turbofans. More specifically, counter rotating open-rotors (CROR), which
are expected to bring fuel savings in the order of 20%− 35% [2].

A new type of propeller blades was invented by Richard Avellán and Anders
Lundbladh, the Boxprop (patent filed in 2009 [3]). Its highly 3 dimensional geometry
together with the complexity of the flow, make the optimization challenging for
conventional design methods, thus necessitating a different approach.

In this thesis work a generic optimization framework in Python that can handle
both single-objective and multi-objective optimization problems by means of genetic
algorithms is presented. Moreover, the parametrization of the Boxprop is also carried
out, together with the automation of the geometry creation and mesh generation
processes using Python and ICEM CFD scripting.

Keywords: multi-objective optimization, genetic algorithm, radial basis function,
Boxprop, CFX, ICEM CFD
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1
Introduction

The fact that fuel costs accounts for 29% of all airlines cost [1] and the increase in
environmental awareness is driving the aviation industry to reach for more efficient
engines. One of the promising technologies to tackle this problem is the open-rotor,
which combines the fuel efficiency of turboprops together with the high cruise Mach
number of turbofans. More specifically, counter rotating open-rotors (CROR), which
are expected to bring fuel savings in the order of 20%− 35% [2].

In order to push the development of this type of aero-engines, Richard Avellán
and Anders Lundbladh invented a new blade type called the Boxprop (patent filed in
2009 [3]). This new blade type consist of two blades joined at the tip. The concept
of the Boxprop can be seen in Fig. 1.1 mounted in a counter rotating configuration
with a rear conventional propeller. This new concept aims to eliminate the tip
vortex, thereby reducing the induced drag and possibly decreasing the interaction
noise in a counter rotating configuration.

Figure 1.1: Boxprop propeller mounted in a counter rotating configuration [4]

With the arrival of fast and cheap computing capabilities, almost every area
of engineering has been revolutionized. In the particular field of optimization, not
only classical methods are applicable to larger problems, but some new optimization
methods have been developed, such as stochastic optimization methods. In this
particular work, genetic algorithms, which are a type of stochastic methods, are
used to carry out the optimization process.
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1. Introduction

The highly three dimensional geometry of the blade together with the complex-
ity of the flow, make the optimization of the Boxprop blade very challenging with
conventional design methods, therefore necessitating a different approach. Tak-
ing this into account, this work presents an optimization framework, a geometric
parametrization, geometry creation and mesh generation approach in order to opti-
mize the Boxprop by means of genetic algorithms.

1.1 Limitations
Due to the time and computational resources available some constrains have been
applied to the project. Mainly this constraints concern the parametrization of the
Boxprop blade. One example is the use of a fixed airfoil family instead of also
implementing a parametrization for the airfoil shape, as it was done in a previ-
ous Master’s thesis [5]. The reason behind this, is, that increasing the amount of
parameters to take into account in the optimization process, means increasing the
dimensionality of the search space. This will exponentially increment the amount
of simulations needed for the response surface to be constructed and thus the time
and computational resources needed.

1.2 Scope of the work
The aim of this thesis work is to develop a generic optimization framework in Python
that can handle both single-objective and multi-objective optimization problems
by means of genetic algorithms. Moreover, the parametrization of the Boxprop is
also carried out, together with the automation of the geometry creation and mesh
generation processes using Python and ICEM CFD scripting.
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2
Theory

2.1 Bézier curves

A Bézier curve is a parametric curve that is created using control points. The order
of the Bézier curve is equal to the number of control points minus one. This type
of curves are widely used in animation, computer graphics ...etc[6]. The equation
describing a Bézier curve reads,

B(t) =
n∑
i=0

(
n

i

)
(1− t)n−itiPi ∀ t ∈ [0, 1], (2.1)

where n is the number of control points (or the order of the Bézier curve minus one),
and P are the control points.

The curve is only guaranteed to pass through the first and last control points,
also referred to as the end points of the curve. This makes it hard to fully under-
stand the behaviour of the curves at the beginning, but looking at the geometrical
construction may help to clarify it.

In the case of a cubic Bézier curve, which contains four control points (P0,
P1, P2 and P3), the first step is to draw lines between consecutive control points
as seen in Fig. 2.1 a). Lets call this lines P0P1, P1P2 and P2P3. Now in order to
draw the Bézier curve, lets say the point corresponding to t = 0.25 in Eq. 2.1, three
new points are placed in lines P0P1, P1P2 and P2P3; Q0, Q1 and Q2 respectively.
These points are placed at 25% of the distance (because t = 0.25) from the lower
index control point an two new lines are drawn between them, Q0Q1 and Q1Q2 as
shown in Fig 2.1 b). Similarly, two new points are placed in these new lines at 25%
distance from the lower index point, lets call them S0 and S1. These two new points
will conform a new line called S0S1 as illustrated in Fig. 2.1 c). Finally at 25% of
the distance from S0 is where the point B(0.25) (see Fig. 2.1 d)) is located.

If this process is repeated with values of t varying from 0 to 1, the entire Bézier
curve is obtained (see Fig. 2.1 e).
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2. Theory
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Figure 2.1: Geometrical construction of a cubic Bézier curve

This procedure can be extended to all Bézier curves regardless of their order.
This type of curves are really useful since they have some interesting properties
which are easy to control. The curve which starts and ends at the end points is
smooth no matter how the control points are placed. The start and end of the curve
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2. Theory

is tangent to the line formed by the end point and the following control point, this
can be seen in Fig. 2.1 e). This property makes it really easy to concatenate curves
and obtaining a smooth transition between them.

2.2 STL files
STL is a widely used format for representing surfaces, which is supported by almost
every CAD software. The surfaces consist of faceted triangles, these being defined
by their vertices and the normal unit vector pointing outwards, following the right-
hand rule. The fact that they are faceted leads to some issues, such as not being
able to represent curvature, or not being smooth. On the other hand, they are
relatively easy to deal with and generate. Figure 2.2 shows an example of the STL
of a planar square on the right, and the code needed to generate it on the left (in
ASCII format). Note that lines beginning with # represent comments.

solid square
#triangle containing normal
#vector V1
facet normal 0 0 1

outer loop
vertex 0 0 0
vertex 1 0 0
vertex 0 1 0

endloop
endfacet
#triangle containing normal
#vector V2
facet normal 0 0 1

outer loop
vertex 1 0 0
vertex 1 1 0
vertex 0 1 0

endloop
endfacet

endsolid square
−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

P1 P2

P3P4

V1

V2

Figure 2.2: Example of STL

2.3 Radial Basis Functions
The radial basis function is an interpolation method where the value predicted for
a point is only a function of the euclidean distance to the points where the value of
the function is known [7]. The points where the value of the function is known are
denoted as xi, and their known values as y(xi). On the other hand the points where
the value is estimated are denoted as x, and their predicted values as ŷ(x). The
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2. Theory

predicted response surface by means of the radial basis function can be expressed
as,

ŷ(x) =
N∑
i=1

wiφ(ri) (2.2)

where N is the amount of points where y(xi) is known, and ri is defined as:

ri = ||x− xi|| (2.3)

and φ(r) is the basis function. Different type of basis can be used when creating a
response surface by means of a RBF. Some of them are:

• Multiquadric

φ(r) =

√√√√√r
ε

2

+ 1 (2.4)

• Inverse
φ(r) = 1√

( r
ε
)2 + 1

(2.5)

• Gaussian
φ(r) = e−( r

ε
)2 (2.6)

Lastly, wi are parameters calculated to ensure that at the data points, Eq. 2.7 is
satisfied,

ŷ(xi) = y(xi) (2.7)

The choice of basis and ε have a significant impact on how the approximated
function, ŷ(x), looks like. As can be seen in Figs. 2.3 a) and b) no matter what
basis or ε is chosen, Eq. 2.7 is satisfied. There the black dots are points for which
the value of y(x) is known. For the same known points, Fig. 2.3 a) illustrates
the influence of the chosen basis, whereas Fig. 2.3 b) shows the impact of the ε
parameter value.
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Figure 2.3: RBF, a) effect of the basis choice and b) effect of the epsilon parameter
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2. Theory

2.4 Genetic Algorithms
Firstly, the way a genetic algorithm works when dealing with single-objective opti-
mization problem is described in Sec. 2.4.1, afterwards the differences with multi-
objective are pointed out in Sec. 2.4.2.

2.4.1 Single-objective optimization
A genetic algorithm is a heuristic that mimics the process of natural evolution in
order to solve an optimization problem [8]. The variables are encoded in strings of
ones and zeros (binary encoding) called chromosomes (see fig, 2.4). The algorithm
deals with a population of individuals, each of them with its own chromosome which
are initialized randomly. Each one or zero from the chromosome is known as gene.

Figure 2.4: Chromosome encoding two variables, x1 and x2, with 10 bit accuracy

In order to obtain the value of the variables encoded in the chromosome mul-
tiple decoding schemes exist. The one used in this thesis is described in Eq. 2.8.

xi = Lli + Lui − Lli
1− 2−n

n∑
j=1

(
2−jgj+(i−1)n

)
(2.8)

where xi corresponds to the value of the variable i, n is the number of genes used to
encode each variable, Lli and Lui are the lower and upper limits of the range allowed
for the variable i, and gy is the value of the gene number y in the chromosome. Once
the value of the variables have been decoded for each individual, a fitness value can
be assigned to them. The fitness value measures the quality of an individual, i.e. if
a function f(x) is being maximized, the fitness of the individual is equal to f(x), so
that individuals that perform better have higher fitness values.

There are three main natural processes that are used in this algorithm; selec-
tion, crossover and mutation. When these are applied to population p, taking also
into account elitism (see Sec. 2.4.1.4), the new population (p+ 1) is formed. These
processes are described in the following lines.

2.4.1.1 Selection

Selection is the process used to choose which individuals will form the next gener-
ation. In this work this is done by tournament selection (of size two), where two
individuals are selected randomly from the current population. This is done with
replacement, i.e. the same individual can be selected more than once. From the two
chosen individuals, there is a probability ptournament, that the individual with higher
fitness value is selected, therefore, the individual with lower fitness value is selected

7



2. Theory

with probability 1 − ptournament. ptournament is often called tournament parameter,
where ptournament ∈ [0, 1], and typically 0.7 < ptournament < 0.8. This process is
done N/2 times (choosing two pairs of individuals at a time), where N is the size of
the population. The winners are selected for crossover.

2.4.1.2 Crossover

Crossover resembles the reproduction process present in nature. During this process,
genetic material of two individuals, the parents, is combined in order to generate new
individuals, the children. Different ways of carrying out crossover exist, and in this
work, one-point crossover is used. In order to combine the genes of two individuals,
a crossover point on both parents chromosome string is selected randomly. All genes
beyond the crossover point in both chromosome strings are swapped, resulting in
two children, as illustrated in Fig. 2.5.

Figure 2.5: Illustration of the one-point crossover process

The parents are two consecutive individuals selected from tournament selec-
tion, and the reproduction takes place with a probability pcrossover.

2.4.1.3 Mutation

This process represents the alteration in genes which in nature is known also as
mutation. To carry out this process, all genes of an individual are checked one by
one, and with a probability of pmutation the gene value will be swapped from 0 to 1,
or from 1 to 0. pmutation ∈ [0, 1], with a typical value of pmutation = 1/m, where m
is the number of genes in a chromosome, meaning that on average approximately
one gene will be modified per individual.

This process is illustrated in Fig. 2.6 and is applied to individuals resulting
from the crossover, if the crossover is successful, otherwise, it is applied on the
individuals selected from the tournament selection.

Figure 2.6: Illustration of the mutation process

8



2. Theory

2.4.1.4 Elitism

Elitism helps on preserving the best found individuals of each generation, to guar-
antee that the best individuals are not worsen or lost due to tournament selection,
crossover or mutation processes. In order to do this, a copy of the individual with
higher fitness value is saved, before any process is applied on the current population,
so that it can be inserted back in the population afterwards by replacing one of the
population’s current individuals.

2.4.1.5 Single-objective optimization flow diagram

A flow diagram showing how a single-objective GA works is shown in Fig. 2.7. Note
that the termination criteria can be either one specifically set for the problem, i.e.
the derivative at the best found point being zero, or an specified maximum number
of generations.

Initialize population

generation=1

Decode chromosome
& assign fitness

Save best for elitism

Tournament selection,
Crossover
& Mutation

Elitism

Stop?

Found optimum

generation+=1

yes

no

Figure 2.7: Flow diagram of a single-objective GA

2.4.2 Multi-objective optimization
When dealing with multi-objective optimization problems, the main issue is that a
fitness value can not be assigned to each individual since there is more than one ob-

9



2. Theory

jective function. Consequently, there is no way of weighting the importance of each
of them. This complicates the processes where direct comparison between designs is
needed, these being tournament selection and elitism. If a weight could be assigned
to each objective function, then the problem would become single-objective with the
new objective function being a combination of the previous two, for instance:

OF = w1OF1 + w2OF2 (2.9)

where OF1 and OF2 are the two original objective functions and w1 and w2 are the
weight assigned to each of them. Unlike the single-objective optimum solution, the
multi-objective finds a set of optimum solutions known as a pareto-front. Figure 2.8
shows a pareto-front in which both objective functions were to be maximized.

Figure 2.8: Example of a pareto-front.

In order to deal with multi-objective optimization problems, the NSGA-II [9]
genetic algorithm is chosen, to which some modifications have been done. This
method offers not only the possibility of dealing with multi-objective optimization,
but also presents an elitism approach which is not commonly found on this kind of
algorithms. As many other GAs it consist of selection, mutation and crossover.

What the NSGA-II algorithm proposes to deal with the comparison problem
is, instead of assigning fitness values to each design to be able to compare them,
it assigns a ranking to each of them. An individual is considered to be dominated
by another if it’s performance is worse on all the objective functions. Individuals
that are not dominated by any other design in the population are assigned ranking
1. Consequently, individuals that are dominated only by rank 1 individuals are
assigned ranking 2 and so on. Thus it can be ensured that a ranking 1 individual
performs better than any individual whose ranking is not 1. On the other hand,
that there is no way of choosing a better design among those in the same ranking.

Once every individual has been assigned a ranking value, an additional param-
eter is required in order to be able to chose among those with the same ranking. A
crowded distance parameter is introduced in NSGA-II to solve this problem, which
represents how disperse the area is where a certain individual is located in the pareto-
front. Therefore, for designs with the same ranking, the one with higher crowded

10



2. Theory

distance is considered to be better. Evaluating the quality of the individuals with
this parameter helps to obtain a good spread of solutions along the pareto-front.

One of the modifications applied to the original NSGA-II algorithms is the
possibility of accounting for some limitations. Individuals that fulfill the limitations
are called feasible individuals. This implies that the ranking is not done in the entire
population but it is divided between feasible and non feasible individuals. When
comparing two individuals, if both are feasible or both unfeasible, usual procedure
is followed, whereas if one is feasible and the other one not, the feasible one will be
considered better irrespectively of their ranking.

To ensure that no good designs are lost during selection, crossover or mutation
processes, elitism is used. This is done by saving a copy of the entire population
before any change is done, and when all the processes have been applied, both the
new population and the saved copy are combined and their individuals are ranked
together. Another modification done to the original algorithm, is that the user is
able to specify if all the individuals of the population that are going to be generated
should be aimed to be of rank one, or if instead, there should be some room for
unfeasible or lower rank individuals. Based on the user decision, the next generation
population is generated by choosing individuals from the combined population. This
new generation is of the same size as the original one no matter what the user has
chosen. This process is illustrated in Fig. 2.9, where population P is the one
saved before any modification and population Q is the one obtained after selection,
crossover and mutation are applied on population P .

Figure 2.9: Population combination procedure in NSGA-II in order to apply elitism.

2.4.2.1 Multi-objective optimization flow diagram

A flow diagram showing how a multi-objective NSGA-II works can be seen in Fig.
2.10. Note that the termination criteria can be either one specifically set for the
problem, or a specified maximum number of generations.
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Initialize population (popP)

Check feasibility, rank, crowded distance (popP)

gen=1

Stop?

NSGA-II :
Tournament selection

Mutation
Crossover
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no

yes

Figure 2.10: Flow diagram of a multi-objective NSGA-II

2.5 Latin Hypercube Sampling

Latin hypercube is a sampling technique which randomly spreads a certain amount
of samples, m, in an n-dimensional design space. Each design variable’s range is
subdivided into m equal ranges. The LHS guarantees that only one sample lays
in each sub-range of every design variable. Figure 2.11 illustrates an example on a
2-dimensional design space where five samples are required, and x1, x2 ∈ [0, 1].
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Figure 2.11: Example of a LHS in 2-dimensional space and with five samples.

13



2. Theory

14



3
Methods

3.1 The optimization framework
The optimization process consists of five main tasks, as illustrated in Fig. 3.1,
which begins with an initial design set, and leads to the optimal found pareto front
or design.

Figure 3.1: Optimization process outline

An initial design set is generated by means of LHS, whose number of dimen-
sions corresponds to the number of parameters to optimize, and the number of
samples is the minimum required for describing a second order polynomial in the
corresponding dimensional space. The geometry and mesh corresponding to the
initial design set are generated and evaluated using CFD.

With the results obtained from the initial design set, an initial response surface
for each of the objective functions and limiting variables, in case there are any, is
created by means of RBF. As shown in Sec. 2.3 the basis and the ε chosen have
a huge impact on how the response surface looks like. Every time the RBF is
constructed, both the basis and ε value are optimized independently for each of
objective and limiting functions. In order to be able to optimize them, not all the
available data is used in Eq. 2.2, but instead some known points are left out of the
RBF construction in order to use them as validation of the response surface. Then
the built response surface is evaluated at the not used known points, allowing this
for a measurement of an error. The three different basis types presented in Sec. 2.3
are checked with different epsilon values and the one that has a minimum error is
selected to construct the final response surface.

Once the response surface is obtained the GA optimizes based on it, leading
to a pareto-front, and a selected number of interesting designs. The selected designs
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are evaluated in CFD and the results are compared with the ones predicted by
the meta-model. If the differences are within an allowed range, the pareto-front
is considered converged and the optimization process is finished. Otherwise, the
response surface is updated with these new values optimizing the basis choice and
the value of ε again. Then the GA is run with the new response surface, and new
the selected designs are used once again to check the pareto-front convergence. This
process illustrated in Fig. 3.1 as the optimization loop. The loop stops once the
pareto-front is considered converged or an specified number of loops have been run.

3.2 Boxprop geometry
The entire geometry of the Boxprop is defined by a total of 33 parameters. These
parameters define different distributions of the propeller properties together with
the stacking line. Camber (cli) and angle of attack distribution (α), as well as the
stacking line are described by cubic Bézier curves, these being independent for each
of the blades. On the other hand, chord (c) and thickness (t) distributions are
expressed as quadratic functions of the radius which are equal for both blades. An
example of these distributions as well as the control point used for the Bézier curves
can be seen in Fig. 3.3. Finally, NACA 16 airfoil family with a rounded trailing
edge is used.

The staking line is a cubic Bézier curve and it is defined as odd symmetric
with respect to a line parallel to the z axis passing through the point at the tip. 7
parameters are used to define it. Figure 3.2 a) illustrates a projection of half of the
stacking line in the plane y-z where the four control points needed for the Bézier
curve can also be seen. P4 has fixed coordinates of x4 = y4 = 0 and z4 = 1 and the
other three control points are defined by an angle (β) and a distance in the x − y
plane (d). To define the positions of the points (P1 and P2), the angle is measured
from the direction perpendicular to the undisturbed flow at that r/R position at a
the specified distance from the z axis as illustrated in Fig. 3.2 b).
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Figure 3.2: a) projection of the stacking line, b) calculation of the stacking line
points
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Figure 3.3: Boxprop properties: a) angle of attack distribution, b) camber distribu-
tion, c) thickness distribution, d) chord distribution, e) stacking line. Note that in
a), b) and e) the points represent the control points used in order to construct the
Bézier curves.
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Using two parameters for defining each point of the stacking line, distance and
angle, adds to a total of 6 (coordinates of point number four are fixed). These 6
parameters define the x and y coordinates of the points. The z coordinates are
defined as follows; z1 is calculated so that the radius of the point matches the
specified hub to tip ratio, z3 = 1 is fixed to impose a smooth transition between the
stacking line of the leading and trailing blades, and finally z2 is defined using the
7th parameter defining the stacking line, which is the dimensionless radius at point
2, r2/R. The flow angle at an specific radius, φ(r), is calculated from the advance
ratio, J , which is specified by the user as follows,

J = V

nD
=

n = Ω
2π

 = V 2π
Ω2R = V 2πr

Ω2Rr = V πx

Ωr (3.1)

where,
x = r

R
(3.2)

Defining the flow angle φ(r) as:

φ(r) = arctan

 va
Ωr

 (3.3)

and combining Eqs. 3.1 and 3.3 the results reads,

φ(r) = arctan

 J

πx

 (3.4)

where V , r, R and Ω are the free-stream velocity, radius at current point, total
radius of the propeller and angular speed in rad/s.

Once the stacking line is defined, the rest of the parameters define the distri-
butions of angle of attack, camber, chord and thickness as shown in Fig. 3.3. Two
parameters are used to define the chord distribution, these being the chord value at
the hub to tip ratio and at the tip. Similarly, the thickness distribution is defined

In both cases the distribution is defined as quadratic and the third boundary
condition needed reads,

lim
r
R
→htr

d c

d r
= lim

r
R
→htr

d t

d r
= 0 (3.5)

For camber and angle of attack distributions 5 parameters are needed for each
of them, taking into account that they are independent for each blade, making a
total of 20 parameters. These are cubic Bézier curves, thus the parameters are the
coordinates of the control points as can be seen in Fig. 3.3, where the following
constraints have been applied,

lim
r
R
→htr

d α

d r
= lim

r
R
→htr

d cli
d r

= 0 and lim
r
R
→1

d α

d r
= lim

r
R
→1

d cli
d r

= −∞ (3.6)

Since the Boxprop has two joined blades, at the tip the pressure region of one
blade is in close proximity with the suction side of the other one and vice versa.
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Therefore, in order to have a smooth transition between them, the tip airfoil profile
is set to be symmetric (cli = 0) and equal in the rest of the properties in both blades.

With all the distributions and stacking line defined the blade geometry is cal-
culated. The user specifies the amount of airfoil sections that are going to be stacked
together forming the Boxprop blades. In order to calculate the airfoil ordinates at
each radial section the NACA 16 equations are used by obtaining the corresponding
values of cli, chord and thickness from the distributions previously defined. The
equations required for constructing the airfoil reads as follows,

y1 = 0.01 t
c
(0.989665x0.5

1 − 0.23925x1 − 0.041x2
1 − 0.5594x3

1) (3.7)

y2 = 0.01 t
c
(0.01 + 2.325(1− x2)− 3.42(1− x2)2 + 1.46(1− x2)3) (3.8)

yc = −0.079577cli[xln(x) + (1− x)ln(1− x)] (3.9)
dyc
dx

= −0.079577cli[ln(x)− ln(1− x)] (3.10)

Where y, yc and x are the ordinates in fractions of the chord measured in the
direction normal to the camber, the ordinate of the camber line in fractions of chord
and the fraction of the chord in the current station. Sub indexes 1 and 2 make
reference to points before and after the maximum thickness point [10].

Finally each of the airfoils is placed on the corresponding point of the stacking
line, with the corresponding angle according to the angle of attack distribution
specified, which is measured from the undisturbed flow angle calculated from Eq.
3.4. An example of all the airfoils stacked where forty airfoil sections were chosen
can be seen in Fig. 3.4.
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Figure 3.4: Airfoils stacked conforming the Boxprop blade

In order to convert all the points calculated into surfaces representing the blade
which are readable by ICEM CFD, STL format is used, with the help of Python.
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STL surfaces are triangulated by definition (see Sec. 2.2), and are therefore not as
continuous and smooth as other kind of surfaces commonly used, such as NURBS.
This problem is tackled by ensuring that the resolution of the surface is higher than
the one of the computational mesh. An example of the STL surface representing
the blade can be seen in Fig. 3.5. Numerous extra surfaces are also generated (a
total of 63) which help define the total computational domain and guide the blocks
that later on are used for the meshing, such as the hub and the surfaces that are
used as periodic in the CFD computation.

Figure 3.5: Boxprop STL geometry

3.3 Mesh generation

During the optimization process multiple blade designs are evaluated, requiring this
an automated mesh generation. This automation is carried out by means of ICEM
CFD scripting, which allows a fast and parametrized mesh generation. The same
Python script that creates the STL files, generates an script that can be executed
in ICEM CFD, where not only the aforementioned surfaces are imported, but also
all the required points and lines required for association are created.

Since the surfaces used for association are piecewise planar, the curves gener-
ated from the imported points have to be linear, in order for the curves to lay on the
surfaces. This is done by creating individual straight lines between every two points
and then finally concatenating them. When two points are very close to each other,
it may have problems concatenating them (due to an internal tolerence on ICEM
CFD), and therefore, grouped curves are used. These group curves are used for
the curves of the blade, which are the only ones where this issue may occur. Using
too many group curves is not recommended since it has shown to considerably slow
down ICEM CFD performance. An example of two basic commands used for the
ICEM CFD script are:

• inserting a point:
ic_point {} PARTNAMEPOINT pnt.id coordx,coordy,coordz

• creating a line between two points:
ic_curve point PARTNAMECURVE crv.id3 {pnt.id1 pnt.id2}
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From the two commands given above there is a really important aspect which
is worth mentioning. In ICEM CFD every single point and curve has an unique
identifier, which makes it crucial to have an organized system in order to keep track
of them. In most of ICEM CFD commands when making reference to a point,
as in the second example, its identifier is used, not its coordinates. This can be
seen in the second command as it uses pnt.id1 and pnt.id2. In the examples above
PARTNAMEPOINT and PARTNAMECURVE makes reference to the part to which
the point and the curve belongs to inside ICEM CFD respectively.

The computational domain is divided into two sub-domains; an inner rotational
3D domain that contains the blade and an outer quasi-2D stationary domain (see
Fig. 3.6). The multi-block mesh consists of hexahedral elements and accounts for
one blade passage.

Figure 3.6: Fluid domains and blade position

An outline of the cross sectional blocking structure of the 3D domain can
be seen in Fig. 3.7, where the red and blue colored blocks represent the o-grid of
the leading and trailing blades respectively. The entire blocking of the 3D domain
consists of a total of four cross sectional blocking structures as shown in Fig. 3.7,
far upstream, upstream close to the blade, downstream close to the blade and far
downstream.

Figure 3.7: Outline of the blocking structure
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Finally the script is executed and as a result a mesh is generated for the chosen
blade geometry. An example of a close up view of a mesh generated with the script
can be seen in Fig. 3.8

Figure 3.8: Close up view of the mesh near the hub

A mesh dependency study has been carried out to try to reduce the amount
of elements as much as possible without affecting the integrity of the simulation
results. This study embraces meshes where the largest one consists of 4.5 million
elements, and the smallest one of 0.7 millions. Since for the optimization process
the only two relevant results are the CT and η, only those have been considered in
this study. The result of the mesh dependency study is illustrated in Fig. 3.9, and
based on this, the mesh with 0.7 million elements is considered to satisfy this work’s
requirements.
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Figure 3.9: Mesh dependency study results

Finally a domain size study is been carried out. Since the size of the 2D domain
does not have such a huge impact on the amount of cells and computational time,
its been set to be 16R long in the axial direction, and 6R in the radial direction.
On the other hand reducing as much as possible the size of the 3D domain helps
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improving mesh quality, by for example, reducing the growth ratios. The effect of
the size of the 3D domain is investigated, according to the variables defined in Fig.
3.10, and the results presented in Tab. 3.1.

Figure 3.10: Variable definition for the domain size study

Table 3.1: Domain size study results, errors compared with 4.5M case

µ λ error CT [%] error η[%]
Case 1 4 2.4 -0.848 -0.717
Case 2 2.8 1.2 -1.024 -0.746
Case 3 2 0.6 -1.061 -0.747

Based on the results shown in Tab. 3.1 and the purpose of this work, domain
sizes according to Case 3 will be used.

3.4 CFD

For solving the compressible flow equations ANSYS CFX is used with the k − ω
SST turbulence model. Having a mean value of y+ lower than 2, a low-Re model is
used.

Figure 3.11: Computational domain
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Taking a look at Fig. 3.11, the boundary conditions for the simulation are set
as follows. Between the 2D and the 3D domain the interface is set as a frozen rotor.
Total temperature and total pressure are specified at the 2D domain inlet, together
with a reference static pressure in the domain. From these three quantities the inlet
velocity and Mach number can be obtained. At the 2D domain outlet the static
pressure is specified, and at the top, the static pressure and temperature together
with a symmetry boundary condition for the turbulent properties are set. The
blade surface is set as no-slip, and in the hubs of the 2D and 3D domain, free slip
condition is applied. On both domains, periodicity boundary condition is used in
order to simulate only one blade passage. Finally an angular velocity corresponding
to the inlet velocity and the chosen advance ratio is imposed to the 3D domain.
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Unfortunately, due to time constraints, the optimization of the Boxprop blade has
not been carried out. Despite not having run the optimization, most of the sections
of the optimization process (see Fig. 3.1) have been tested separately and confirmed
that they work as expected, these being: geometry creation, mesh generation and
CFD simulation. Several Boxprop geometries have been generated and simulated in
CFD to perform the mesh dependency study as well as the domain size study.

Even though the entire optimization was not carried out, an example that
illustrates the complexity of the flow and the influence of the leading blade (LB) on
the trailing blade (TB) can be seen in Fig. 4.1. There a Mach number contour is
shown at 75% of the radius, where the black line represent a isoline where the flow
is sonic. For instance, at the trailing edges, an interaction between the boundary
layer and suction side shocks can be seen.

Figure 4.1: Mach number contour at 75% radius

As far the genetic algorithm is concerned, it has been tested and compared
with the commercial software modeFRONTIER. Marcus Lejon, PhD student at
Chalmers University of Technology, provided a database of compressor simulations
and the pareto-front obtained with modeFRONTIER. For the optimization process,
modeFRONTIER used the same genetic algorithm as the one used in this work
,NSGA-II, with identical population size, tournament selection parameter and radial
basis functions for the meta-model. On the other hand some parameters used by
modeFRONTIER were unknown, for instance the number of genes used to encode
each variable. The results of the comparison were considered satisfactory, and can
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be seen in Fig. 4.2.

Figure 4.2: Comparison of the pareto front from modeFRONTIER and from this
work

Finally the entire optimization framework was tested. This has been done
working together with Borja Rojo, PhD student at Chalmers University of Technol-
ogy, where the objective was to optimize the geometry of a contraction duct with a
central body. The method that parametrizes both the shape of the casing and the
central body used for the optimization process was proposed by Rojo et al. [11].

In Figure 4.3 a comparison between two of the pareto fronts obtained during
the latest optimization process can be seen. In this case the pareto front 1 is unphys-
ical, since by definition the values of the objective function 2, OF2, must be positive
and lower than 1. This is a clear sign that the RBF function is over predicting the
values, therefore requiring more data in order to refine the response surface. On the
other hand the pareto front 2 shows the results of the optimization after some more
data is being added to it (more optimization loops (see Fig. 3.1)), and it can be
seen that now the obtained pareto front seems much more reasonable.
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Figure 4.3: Comparison between pareto fronts at different stages of the optimization
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How the response surface performs as more iteration loops are run (see Sec.
3.1) and how accurately it is able to predict values can be seen in Figure 4.4. As
explained in Sec. 3.1, the convergence criteria is the average of the difference between
the value predicted by the RBF and the one obtained in the CFD simulations for the
design selected by the GA in percentage. In this particular case, after 39 iteration
loops the RBF was able to predict the value of the objective functions within 0.2%
of error.
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Figure 4.4: Convergence of the pareto front
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5
Conclusions

In this section some conclusions for the different parts of the thesis are drawn.
From the work done in the geometry generation several conclusions have been

drawn. Firstly, the parametrization chosen for the Boxblade, despite of having some
limitations, seems to give enough design freedom in order for it to be considered for
the optimization. Furthermore, another big concern was that the STL surfaces were
faceted. It has been tested and if enough resolution is given to the STL file, which in
the specific case of the Boxprop refers to the number of airfoil sections to stack and
the number of points to construct the airfoil, the mesh is able to correctly represent
the geometry. Therefore it can be concluded that for the purpose of this work the
quality of this type of surfaces fulfils the requirements.

Moreover, this geometry generation method where STL surfaces are generated
from a cloud of points in Python has been shown useful and versatile. For instance,
working together with Alexandre Capitao Patrao, PhD student at Chalmers Univer-
sity of Technology, we were able to easily adapt the code for creating conventional
propeller blade geometries (see Fig. 5.1). Another useful feature of this geometry
generation method is that it is based on distributions. In this later example, the
distributions, instead of being obtained as described for the Boxprop, they were
obtained using a design method developed by Alexandre Capitao Patrao and were
easily introduced in the geometry generation script.

Figure 5.1: Conventional propeller STL geometry

In this thesis an entire optimization framework was implemented to deal both
with single and multi objective optimization problems using genetics algorithms. As

29



5. Conclusions

it has been shown in Sec. 4 the testing of the implemented genetic algorithm has
given good results likewise the framework has been tested and the implementation
can be considered as satisfactory.

When it comes to the RBF, it has been noticed that sometimes the importance
of the ε parameter is underestimated, not even being mentioned. Mostly the main
focus when explaining it is on the basis choice, but in Sec. 2.3 it has been shown that
is almost equally important, having a great impact on how the predicted response
surface will look like.

As far as ICEM CFD scripting is concerned, it has shown to be troublesome.
No completely automatic way of generating mesh was found during this work with-
out doing some manual process first. For instance, there is apparently no way of
predicting the numbering of the vertexes, after the blocks are split, or an o-grid is
created and so on. This vertex numbering is really important in the scripting part,
since as described in Sec. 3.3, ICEM CFD works with identifiers, in this case vertex
number. This means that we need to know the number of a vertex in order to be
able to associate it to a point, or the numbers of the two vertexes that conform an
edge to associate it to a curve or define its mesh parameters. In order to overcome
this issue, all the blocks were generated first by hand and then notes were taken on
the numbering of the vertexes to proceed with automation.

5.1 Future work
The first and probably most interesting thing to do, would be to run the complete
optimization on the Boxprop, now that all the required tools have been prepared.
This would not only finalize the work but hopefully it would show some trends on
what a good Boxprop design looks like, and would be useful as a learning tool since
not too much about Boxprop design is known yet.

Moreover, even though the current usage of the RBF has shown to give good
results, improvements in the meta model could be investigated. This could be done
in several manners. First of all, new basis functions could be considered in order
to better predict the response surface. Secondly, possible source of improvement
could be to implement different meta models, such as artificial neural networks.
These two modifications could potentially lead to a better representation of the
response surface, potentially reducing the number of optimization loops needed to
reach pareto front convergence, and thus reducing computational time.

Finally, a more complex parametrization of the Boxprop could be implemented
in order to have more control and freedom on the blade geometry. This could be
done, for instance, by including an airfoil parametrization instead of the current
fixed NACA 16 airfoil family. Other things that could be changed in order to get
more freedom in the blade design is the fact that in the actual parametrization,
chord and thickness are represented by second order polynomial and that they are
common to both blades. Removing those constraints by maybe representing those
distributions as Bézier curves, or higher order polynomial, and also having them
being different for each blade could lead to some improvements.

30



Bibliography

[1] IATA Annual Review 2015. http://www.iata.org/about/Documents/
iata-annual-review-2015.pdf. Accessed: 2016-05-31.

[2] Camil A Negulescu. Airbus ai-px7 cror design features and aerodynamics. SAE
International Journal of Aerospace, 6(2):626–642, 2013.

[3] Richard Avellan and Anders Lundbladh. Air propeller arrangement and aircraft,
December 28 2009. US Patent App. 13/519,588.

[4] Axelsson, A., Göransson, A., Hung, C., Klipic, S., Landahl, J., Olofsson, J.,
Thor, D. Development of a Box-Bladed Propeller - Mechanical Analysis and
Feasibility Study of the Concept. Technical report, Chalmers University of
Technology, Department of Product Development, 2012. Part of the project
course MPP126.

[5] Henrik Skärnell. Diploma work: Parametrization and design of transonic com-
pressor blades, 2013.

[6] Gerald Farin. Curves and surfaces for CAGD: a practical guide. Morgan Kauf-
mann, San Francisco, Calif, 5th edition, 2002;2001;.

[7] Martin D Buhmann. Radial basis functions: theory and implementations.
Cambridge monographs on applied and computational mathematics, 12:147–165,
2004.

[8] Mattias Wahde. Biologically inspired optimization methods: an introduction.
WIT Press, Southampton, 2008.

[9] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. Evolutionary Com-
putation, IEEE Transactions on, 6(2):182–197, 2002.

[10] W. F. Lindsey and D. B. Stevenson. Aerodynamic characteristics of 24 NACA
16-series arfoils at Mach numbers between 0.3 and 0.8. 1948.

[11] Borja Rojo, Darri Kristmundsson, Valery Chernoray, C. Arroyo, and J. Lars-
son. Facility for investigating the flow in a low pressure turbine exit structure.
In 11th European Conference on Turbomachinery Fluid Dynamics and Ther-
modynamics, ETC 2015, 2015.

31

http://www.iata.org/about/Documents/iata-annual-review-2015.pdf
http://www.iata.org/about/Documents/iata-annual-review-2015.pdf

	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Limitations
	Scope of the work

	Theory
	Bézier curves
	STL files
	Radial Basis Functions
	Genetic Algorithms
	Single-objective optimization
	Selection
	Crossover
	Mutation
	Elitism
	Single-objective optimization flow diagram

	Multi-objective optimization
	Multi-objective optimization flow diagram


	Latin Hypercube Sampling

	Methods
	The optimization framework
	Boxprop geometry
	Mesh generation
	CFD

	Results
	Conclusions
	Future work


