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Abstract
In this thesis, tracking of an articulated vehicle using radar measurements is investi-
gated. The radar sensors are mounted on an observing host vehicle and the purpose
is to estimate the position and motion of a distant articulated vehicle.

The problem was studied in a simulated environment using synthetic radar detec-
tions. The articulated vehicle, consisting of a trailer and its towing tractor unit,
was simulated using a modified kinematic bicycle model. A tracking algorithm was
developed which uses k-means clustering to partition the radar detections to each
vehicle unit. The state of each unit was then estimated separately and then merged
to give an estimate of the vehicle as a whole, using an Extended Kalman Filter.

The information that can be obtained from the detections depends on the aspect
angle of the vehicle. Therefore, different measurement models were developed to
handle these situations accordingly.

The developed tracking algorithm shows that it can handle certain scenarios well,
while other scenarios are more challenging. The results show that further develop-
ments are needed to obtain a robust solution.

Radar, Articulated vehicles, Extended Target Tracking, Vehicle state estimation
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1

Introduction

In many advanced technical systems there is a need to monitor objects and their
behaviour over time. The information of interest depends on the context. For ex-
ample, an airport control tower is interested in tracking nearby airplanes, or on a
smaller scale, a biologist may be interested in tracking the properties of a cell in
a microscope [1]. Another area of application is in the automotive industry, where
many different vehicles and objects are in play.

To further the feature set and safety of modern vehicles, there is a need for the
ability to construct a comprehensive and reliable perception of a vehicle’s imme-
diate surroundings. The knowledge is often used in Advanced Driver-Assistance
Systems, which are electronic systems designed to aid the driver in different traffic
scenarios. To achieve a reliable perception, many vehicle perception systems utilize,
amongst other sensors, radars mounted on the vehicle itself to gather data about
the vehicle’s surroundings [2].

The use of radar to keep track of objects can be traced back to early applications
within the air force, where radar systems were used as warning systems [3]. Radar
signals are able to easily penetrate many adverse weather conditions such as rain
and fog, making the sensor favorable over other types of sensors for relatively long
distance sensing. Historically, radars have had a low sensor resolution such that
relatively large objects would still only occupy a single resolution cell and in turn
yield a single data point. This limitation only allowed tracking of objects modeled
as a single point, as seen in Figure 1.1. However, recent advancements in sensor
technology have greatly increased the capabilities of the radar and have thus made
it possible for relatively small objects to return multiple data points thus giving rise
to the concept of extended object tracking [4].
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1. Introduction

Figure 1.1: Difference between point and extended target tracking. To the left,
an airplane occupies a single resolution cell and thus yields a single radar detection
(red dot). To the right, a car occupies several resolution cells of the radar and thus
yields several detections.

1.1 Extended object tracking
Whenever an object occupies multiple resolution cells of a sensor, the tracking prob-
lem is referred to as being of extended type [4]. As each occupied resolution cell
can return a data point, an extended object tracking problem generally involves
substantially more data which have to be processed in order to extract information
about the object. The upside is that it can now be possible to estimate parameters
of an object otherwise not possible, e.g. its shape, orientation, and kinematics. This
information can help solve harder tracking problems, for example in urban traffic
scenarios, where vehicles typically look and move very differently.

However, in the case with a radar sensor, the parameters are not directly obtainable
from the radar measurements but rather have to be derived using various estima-
tors. I.e. it is non-trivial how multiple data points should be used to estimate the
movement of the vehicle. In [5], a method to obtain the orientation by fitting a box
to the detections is proposed, but this method relies on a well visible contour of the
vehicle. When the detections are more sparse, a probabilistic method is more suited
as suggested in [6], where a radar response model uses the fact that typically radar
measurements originate from certain reflection centers such as the wheelhouses or
corners. These are a few of the current methods, however, what they all have in
common is that they are specific for a vehicle type that is rigid in shape and cur-
rently do not work well when tracking vehicles that do not meet this criteria, e.g.
articulated vehicles.

1.2 Articulated vehicle tracking
Articulated vehicles is an umbrella term covering any kind of vehicle that has one,
or more, pivot joint(s) that allow the vehicle to turn more sharply than otherwise

2



1. Introduction

possible. Some examples are trams, buses, semi-trailers or cars with trailers. Current
state of the art radar tracking algorithms mainly model vehicles as a single, rigid
shape (e.g. as a rectangle) and do not consider the kinematics of articulated vehicles.
Anyone who has tried to reverse a car with a trailer intuitively understands that this
is a great simplification and in a tracking algorithm, the current models can indeed
result in a large disconnect between the estimated and actual state of an articulated
vehicle as illustrated in Figure 1.2b.

(a) Articulated vehicle (b) Tracking output

Figure 1.2: A tracking algorithm that models the vehicle in a) as a single rectangle
can lead to an inaccurate estimation as shown in b).

Articulated vehicles are addressed in many problems related to control and path
planning but currently there exists no public research on improving the tracking
result that the authors of this thesis are aware of. In [7], radars are mounted on
the articulated vehicle itself in order to estimate the angle to the trailer, but the
information is only known to the driver of the articulated vehicle. The angle in a
tractor-trailer combination is called the articulation angle and is a crucial variable
when trying to estimate the motion of an articulated vehicle and is thus a central
part of an articulated vehicle tracking algorithm.

1.3 Purpose
The purpose of this thesis is to develop a novel tracking algorithm that is tailored to
track and estimate the movement of articulated vehicles. To do such, the aspiration
of the algorithm is to incorporate a model of articulated vehicles such that its move-
ment can be estimated at all times although parts of the vehicle may be obscured
by itself. Hence the purpose of this thesis is split two-fold, to create a model for
articulated vehicles to use in a tracking scenario, and to estimate its states using
radar measurements.

1.4 Scope and limitations
The developed algorithm uses radar data from a 2D simulation environment and is a
single object tracking algorithm, meaning only one vehicle will be tracked at a time.

3



1. Introduction

The thesis also does not deal with the data association problem, i.e, every generated
data point will be assumed to originate from the tracked vehicle. The simulated
data resembles post-processed radar data and will not address the challenges with
acquiring such data.

The tracked vehicle will be assumed to be identified as an articulated vehicle be-
forehand and only one pivot joint is allowed. The full dimensions of the vehicle are
also considered known. No real-time implementations of the algorithm have been
considered and it is limited to run in simulation only.

4
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Theory

This section aims to present the nomenclature and material necessary to digest
methods introduced in later chapters of the thesis.

2.1 Coordinate frames

This thesis is using a 2D world to simulate different scenarios. To ease computations
and nomenclature, we introduce a set of interlinked coordinate frames to express 2D
positions and vectors in the X/Y-plane. In tracking systems, the X and Y direc-
tions are commonly referred to as longitude and latitude respectively. All coordinate
frames follow the right-hand rule for orientation and the Z-axis is always pointing
up from the ground, regardless of the frame. Different frames can be rotated around
the Z-axis and translated in the X/Y-plane relative to each other. Rotation is mea-
sured as the angle between coordinate frames’ X-axis with positive direction defined
as anti-clockwise when looking in the direction of the Z-axis. To prevent ambiguity,
all angles are always kept between ±180 degrees.

With the exception of the target coordinate frame, which is introduced in Section
2.3, and the common coordinate frame, introduced in Section 4.1.2, the most used
frames are:

• the World coordinate frame, denoted by a superscript [W ] as seen in Fig-
ure 2.1a. It has an arbitrary, set, origin and orientation of its X/Y-axis. The
other coordinate frames are defined relative to the world frame.

• the Ego (Vehicle) coordinate frame, denoted by a superscript [E]. In the
context of this thesis ego vehicle refers to the vehicle on which all sensors are
mounted on. The coordinate frame origin is tied to the rear axle of the ego
vehicle and is oriented such that the X-axis is pointing forward towards the
front axle as seen in Figure 2.1b. Hence the ego vehicle coordinate frame is
free to move and rotate as the ego vehicle moves. The orientation of the ego
vehicle is referred to as the vehicle’s yaw.

5



2. Theory

(a) Vehicle in world frame (b) Ego centered frame

Figure 2.1: The vehicle is free to move around and rotate in the world frame as
seen in a). The position is measured to the center of the rear axle marked with
a dot. The ego centered frame in b) is tied to the rear axle and aligned with the
heading.

• the Sensor coordinate frame, denoted by a superscript [Sx] where x denotes
the sensor ID. Its origin and orientation is tied to the position of the sensor as
expressed in the ego vehicle frame with the X-axis pointing straight forward
out of the sensor as can be seen in Figure 2.2. The orientation of a sensor
is referred to as the sensor’s boresight and is denoted by βx where, again, x
denotes the sensor ID.

Figure 2.2: All three coordinate frames including the sensor frame.

2.1.1 Conversion between different coordinate frames
Since information expressed in different coordinate frames convey the same infor-
mation presented from different perspectives, at times it may be useful to transform
from one frame to another. To do so, the relative orientation and position of the

6



2. Theory

coordinate systems needs to be known. Let coordinate frame B be expressed in co-
ordinate frame A, θ[A]

B denote the rotation of coordinate frame B relative to A, t[A]
x,B

and t[A]
y,B denote the origin of coordinate frame B as expressed in coordinate frame

A. Then the transformation from coordinate system A to coordinate system B can
be expressed as [

x[B]

y[B]

]
=
[

cos(θ[A]
B ) sin(θ[A]

B )
− sin(θ[A]

B ) cos(θ[A]
B )

]([
x[A]

y[A]

]
−
[
t
[A]
x,B

t
[A]
y,B

])
. (2.1)

The process of conversion for positions and velocities is very similar although velocity
vectors only need to be rotated whereas positions may need to be rotated and
translated. Note, as the transform requires the relative orientation and position
between coordinate frames to be known, to transform between e.g. sensor frame
and world frame one first has to transform from sensor frame to ego frame and then
from ego frame to world frame rather than transforming from sensor to world frame
directly.

2.2 Radar basics
Whilst this thesis does not delve deep into the inner workings of radar sensors, it is
important to acknowledge the properties of their measurements. Hence this section
aims to provide background on radar to motivate some of its basic functionality and
its strengths and weaknesses.

2.2.1 Basic range estimation
Fundamentally, radar systems transmit electromagnetic waves which reflect off ob-
jects [8]. We will refer to objects of interest as targets. The radar then analyzes the
reflected wave to obtain information about the target. A basic system is the pulse
radar, which repeatedly emits a short pulse of radio energy as seen in Figure 2.3.
The time between transmission and receiving a reflected wave, the time of flight,
can then be used to determine the range (denoted r) to the target. The reflected
and received wave is commonly referred to as a detection.

Figure 2.3: Pulse radar obtaining a distance measurement r from the time of flight.
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2.2.2 Basic angle estimation
Using a single sensor as shown in Figure 2.3, the radar is unable to differentiate
between two targets spaced apart at the same distance. To solve this issue, modern
radars typically consist of an array of several receiving antennas as shown in Figure
2.4. Due to the spacing d, the reflected signal will have to travel a slightly longer
distance, ∆r, between different antennas depending on the origin of the reflected
signal. Hence the received signal between antennas will have a phase shift propor-
tional to the additional distance and the signal’s wave length. By analyzing the
phase shift between antennas, it is possible to compute where the signal originated
from [8]. Horizontally spaced antennas can hence solve for the angle of a received
signal in the X/Y-plane, commonly referred to as the detection’s azimuth which is
denoted with θ.

Figure 2.4: Angle estimation using a transmitting antenna, marked Tx and mul-
tiple receiving antennas (Rx). The antennas are separated by a distance d resulting
in a longer time of flight due to the distance ∆r. Consequently, the azimuth θ can
be solved for.

2.2.3 Basic velocity estimation
In an automotive setting, it is typically required to have precise information of the
target’s angle, range and velocity at the same time.

A Continuous Wave (CW) radar instead transmits a continuous signal with a known
frequency. Due to the Doppler effect, if the target is moving, its reflected signal will
have a slight frequency shift compared to the transmitted signal. The difference
can then be used to determine the relative velocity between the target and the
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radar sensor. This velocity is referred to as the detection’s range-rate denoted by ṙ.
The obvious disadvantage of the CW radar is that the target’s range can no longer
be determined due to the lack of clear separation between received reflections in
the signal. This is overcome by the Frequency-Modulated-Continuous-Wave radar
(FMCW) which combines the best of the pulse radar and the CW radar to solve for
range and range-rate simultaneously [9].

2.2.4 Frequency-Modulated Continuous-Wave Radars

A Frequency-Modulated Continuous-Wave (FMCW) radar is able to continuously
transmit a signal with linearly increasing frequency, also known as a chirp signal.
The signal is shown in Figure 2.5.

Figure 2.5: A chirp’s (blue line) amplitude (A) and frequency (f) over time (t).

The FMCW radar compares the frequency of the transmitted and received chirp,
as shown in Figure 2.6, to determine the range and velocity simultaneously. If a
target is moving at the same speed as the radar sensor, the received chirp will be
identical to the transmitted chirp but with a time delay ∆t, resulting in a frequency
shift of ∆f that is proportional to the range. If the target has a relative velocity to
the radar sensor, the received chirp will have a frequency shift due to the Doppler
effect. This difference ∆fD is proportional to the velocity of the target. In practice,
a different modulation scheme has to be used in order to effectively separate the two
frequency differences although the principle remains the same [9].

Figure 2.6: FMCW radar signal. Transmitted chirp in red, received chirp in green.
The difference in frequency, ∆fD, can be used to determine the velocity of the target.
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2.2.5 Radar measurement properties

Due to the nature of a radar detection’s components, there are some important
properties that should be considered. The positional information from a detection
is determined by its range and azimuth. Given a set radar range, and azimuth
resolution, the area from which two detections can be separated will form a cone
shape with a curved grid. The grid cell size will increase the further away from the
sensor origin it is, as seen in Figure 2.7. As a result of this, a distant target will
typically receive fewer detections than a target up close to the sensor.

Figure 2.7: The size of the sensor resolution cells increase the further away the
target is. At most one detection can be obtained in each cell.

The velocity information of a detection is determined by its positional information
in combination with its range-rate. Range-rate is fundamentally a measure of a
target’s relative velocity in the direction of the sensor, i.e. a radial velocity measure.
Therefore, the true target velocity is only directly measurable if the target moves
linearly (without any rotation) directly towards or away from the sensor as can be
seen in the top left in Figure 2.8. If the target is moving while also rotating (e.g. a
car in a turn), the range-rate will be a measure of the velocity component that is
directed towards the radar sensor as shown in the top right in Figure 2.8. Taken to
the extreme, if a target moves perpendicular to the sensor, the velocity component
directed towards the sensor will be zero hence the the range-rate measurement will
also be zero (or close to) as can be seen in the bottom of Figure 2.8.
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Figure 2.8: The three figures illustrate how the range-rate measurement can differ
depending on the movement of the target.

2.2.6 Transform a polar to a cartesian coordinate system
Radar detections in their raw form are commonly expressed in a polar coordinate
system using azimuth and range (and range-rate). However, many applications
that utilize the information provided by a radar sensor are more suited for use in a
cartesian coordinate system. Hence it may be useful to transform radar detections
accordingly. Transforming a radar detection expressed in a polar coordinate system
yields two components, a position (x, y), and a velocity vector (vx, vy). This is given
by [

x
y

]
= r

[
cos(θ)
sin(θ)

]
(2.2)[

vx
vy

]
= ṙ

[
cos(θ)
sin(θ)

]
(2.3)

where r is the range and ṙ is the range-rate. Again, note that the range-rate is the
projection of the target’s true velocity on to the vector pointing from the radar to the
target. The position is simply the combination of azimuth and range as expressed
in cartesian coordinates. The velocity vector on the other hand is a vector that is
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always directed towards or from the sensor with the length equal to the range-rate
as it is a measure of the radial velocity.

2.2.7 Compensation of motion of ego vehicle
In the context of this thesis, the radar sensors will be mounted on the ego vehicle.
Hence the sensors will be subject to any motion induced by the vehicle. As range-
rate is a measure of the relative velocity between a target and the radar sensor, if
the ego vehicle is moving at the same speed as the target, the measured range-rate
will thus be zero. Typically it is more convenient to express the velocity relative
to the ground i.e. as if the sensor is stationary. This can be done through adding
a term to the measurement that compensates range-rate induced by ego vehicle
motion. To do so, we first compute the velocity of the sensor relative to the ground
as induced by the motion of the ego vehicle, denoted by v[S]

sx
. Let βx denote the

sensor’s boresight, v[E]
E the ego vehicle velocity, ωE the ego vehicle yaw-rate, and

Lsx the distance between the sensor placement on the ego vehicle and the vehicle’s
rotational centre, i.e. the rear axle. Then the velocity of the sensor relative to the
ground, in sensor frame, is given by

v[S]
sx

=
[
v[Sx]
x,sx

v[Sx]
y,sx

]
=
[

cos(βx) sin(βx)
− sin(βx) cos(βx)

]
︸ ︷︷ ︸

=RE/Sx

([
v

[E]
x,E

v
[E]
y,E

]
+ ωE

[
0 −1
1 0

] [
Lx,sx

Ly,sx

])
︸ ︷︷ ︸

= vE
sx

(2.4)

where RE/Sx is the rotation matrix from ego to sensor frame and vEsx
is the sensor

velocity in ego frame.

Now we can compute how much the sensor is moving in the direction of a detection,
i.e. relative to the azimuth θ of the detection. To compute the compensated range-
rate ṙcomp, we simply add this amount to the detection’s range-rate denoted ṙ.

ṙcomp = ṙ +
√
v

2[S]
x,s + v

2[S]
y,s cos

(
θ[S] − tan−1

(
v[S]
y,s

v
[S]
x,s

))
(2.5)

2.3 Articulated vehicle model
In this section, we introduce nomenclature to describe the type of articulated vehicle
used in this thesis as well as motivate the equations behind its important kinematics.
To distinguish the units on different sides of the articulation point we refer to them
as tractor and trailer. The tractor is the unit facing the main (forward) direction of
travel whereas the trailer is the unit that trails the tractor. As their kinematics are
intertwined, it is useful to be able to exploit the relationship between them in order
to use knowledge regarding one of them to draw conclusion in regards to the other.
Therefore we seek to ultimately express states of the trailer in tractor states.
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2.3.1 Introduction to the articulated vehicle model

The model for articulated vehicles used in this thesis operates under the assumption
of Ackermann’s steering principle [10] which implies that all wheel pairs as well as
wheel axle groups operate without any tire slip and can thus be simplified to a single
tire. I.e. each tire’s velocity vector is aligned with the respective tire’s center-line.
E.g. applying this principle to a rigid-body, non-articulated autotruck with a pair of
front steering wheels and one, or more, pair(s) of rear wheels would allow the truck’s
kinematics to be simplified to a bicycle model. This holds true for the tractor of
the articulated vehicle however there is a slight difference with the trailer. The
trailer does not have a front steering wheel pair of own but is rather connected to
the tractor through a friction-free pivot joint at the articulation point. Thus the
trailer’s kinematics can also be simplified to a bicycle model with the modification
that its steering wheel is replaced with the pivot joint such that its direction of travel
at the articulation point is determined by where it is connected on the tractor and
the tractor’s movement. The complete model for the articulated vehicle is visualized
in Figure 2.9 with its nomenclature introduced in section 2.3.2

Figure 2.9: Overview of the articulated vehicle model.The solid blue and orange
line represent the units’ rigid body structure.

2.3.2 Nomenclature

A detailed description of the nomenclature used can be found in Table 2.1. An
overview of the model can be seen in Figure 2.11 where subscript 1 denotes the
tractor and subscript 2 denotes the trailer with the two units are joined together by
a moment-free articulation point denoted p.
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L1 Wheelbase of tractor
R1r Tractor rear axle turning radius
δ Steering angle of tractor

(x1, y1) Position of the tractor’s rear axle
v1r Speed of the tractor at its rear axle
φ1 Yaw of the tractor
φ̇1 Yaw-rate of the tractor
p Articulation point, where the trailer is connected to the tractor
b (Signed) Distance between the tractor rear axle & the articulation point

p
βp Body side-slip of tractor at point p
vp Speed at point p
φA Articulation angle, difference in yaw between tractor & trailer
φ̇A Articulation angle-rate, difference in yaw-rate between tractor & trailer
L2 Distance between trailer rear axle and articulation point
R2r Trailer rear axle turning radius

(x2, y2) Position of the trailer’s rear axle
v2r Speed of the trailer at its rear axle
φ2 Yaw of trailer trailer
φ̇2 Yaw-rate of the trailer

Table 2.1: Table describing the nomenclature used in the articulated vehicle model

For the purposes of this thesis, we refer to the following states as tractor state

x1 =


x1
y1
v1r
φ1
φ̇1

 , (2.6)

the following states as trailer state

x2 =


x2
y2
v2r
φ2
φ̇2

 , (2.7)

and the following states as articulation state

xA =
[
φA
φ̇A

]
. (2.8)

All states together make up the state of an articulated vehicle. However, it is
important to note that by having knowledge of two of them is enough to eventually
compute the third using the relationships introduced in the following section.
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2.3.3 Kinematic equations

A consequence of Ackermann’s steering principle is that wheels will travel in the
direction they are pointing. Thus, if the front wheel of a bicycle model is not
exactly aligned with its rear wheel, the bicycle model will travel in a circle around a
point. This point is referred to as the Instantaneous Center of Rotation (ICR) and
can be seen in Figure 2.10. It can be found at the intersection between the two lines
that are perpendicular to the front and rear wheel direction of travel.

Figure 2.10: A bicycle model with its ICR point for a given steering angle δ. The
green arrows indicate the direction of travel at the front and rear wheel respectively.

Utilizing this information, two triangles can be constructed that represent the two
ICR points for the tractor and trailer respectively. As the trailer does not have a
front wheel of its own, a line that is perpendicular to the direction of travel at the
point where it is connected to the tractor (i.e. at the articulation point) is instead
used which can be seen in Figure 2.11.
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Figure 2.11: Kinematic model of articulated vehicle. The pivot joint at the artic-
ulation point is represented by the red dot.

Using triangle B+C in Figure 2.11 we can extract the expression

R1r = L1

tan(δ) , 0 < |δ| < π

2 (2.9)

By combining (2.9) with triangle B we can extract the body-slip angle βp through

βp = tan−1
(

b

R1r

)
= tan−1

(
b tan δ
L1

)
(2.10)

Using triangle A+B we can extract the expression

R2r = L2

tan(φA + βp)
(2.11)

Comparing (2.11) to the tractor steering angle δ in (2.9), the trailer can thus be
seen as being steered by the virtual steering angle (φ+ βp).

Now the speed at the articulation point, vp, can be computed from the geometry

vp = v1r

cos(βp)
(2.12)

By computing the velocity component that is perpendicular to the trailer’s rear axle
at the articulation point we can compute the trailer’s speed at its rear axle, v2r,
through

v2r = vp cos (φA + βp) = v1r

cos(βp)
cos (φA + βp) (2.13)
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Similarly to the rear axle velocity, the yaw-rate of the trailer, φ̇2, can be described
by computing the velocity component of vp that is perpendicular to the trailer’s
body and divide with the length between the articulation point and the trailer rear
axle.

φ̇2 = vp sin (φA + βp)
L2

(2.14)

= v1r sin (φA + βp)
cos(βp)L2

(2.15)

This can be further simplified by using the rule

sin (a+ b) = sin (a) cos (b) + cos (a) sin (b) (2.16)
(2.17)

to rewrite Equation 2.15 as

φ̇2 = v1r

L2

(
sin (φA) cos (βp)

cos(βp)
+ cos (φA) sin (βp)

cos(βp)

)
(2.18)

= v1r

L2
(sin (φA) + cos (φA) tan(βp)) (2.19)

= v1r

L2

(
sin (φA) + cos (φA) b 1

R1r

)
. (2.20)

With

v1r = φ̇1R1r (2.21)

the expression for the trailer yaw rate is ultimately

φ̇2 = v1r

L2

(
sin (φA) + cos (φA) bφ̇1

v1r

)
. (2.22)

Through geometry we can express the articulation angle φA as the difference in yaw
between the tractor and trailer.

φA = φ1 − φ2 (2.23)

Similarly, the articulation angle-rate can be expressed as the difference in yaw-rate
between the tractor and trailer.

φ̇A = φ̇1 − φ̇2 (2.24)

= φ̇1 −
v1r

L2

(
sin(φA) + cos(φA)bφ̇1

v1r

)
(2.25)

To describe the trailer’s position we introduce the tractor coordinate frame. In this
frame, denoted superscript [T ], the origin is tied to the tractor’s rear axle with the
X-axis pointing forward towards the front axle. Then in the tractor frame, the yaw
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of the trailer, φ2, is the same angle as the articulation angle φ with opposite sign,
i.e.

φ
[T ]
2 = −φA. (2.26)

By using the articulation angle, the trailer’s length L2, the distance between the
tractor rear axle and the articulation point b, we can express the relationship between
the tractor’s rear axle and the trailer’s rear axle through[

x
[T ]
2

y
[T ]
2

]
=
[
b
0

]
+
[

cos(−φA) sin(−φA)
− sin(−φA) cos(−φA)

] [
−L2

0

]
. (2.27)

Thus all trailer states have now been expressed in terms of tractor and articulation
states.

2.4 Kalman filters
Kalman filters are a type of recursive algorithms that make use of Bayesian statistics
combined with several measurements over time of unknown variables in a system
to produce an estimate of the variables that tend to be more accurate than using a
measurement from a single time-instance. The filter assumes the underlying system

xk = f (xk−1) + qk (2.28)
yk = h (xk) + rk (2.29)

where xk is the state and yk is the measurement at time step k. The previous
state is linked to the next state by a process or motion model f along with some
Gaussian process noise qk. Similarly, the measurement is linked to the state via a
measurement function h with some Gaussian measurement noise rk. In this thesis,
both of these functions are non-linear and hence a non-linear Kalman filter is used.
One of the non-linear extensions of the Kalman filter algorithms is the Extended
Kalman Filter (EKF), which uses linearized motion and measurement models. [11]

2.4.1 The Extended Kalman Filter
In the EKF, the estimated state is computed recursively by using the previously
estimated state and the current measurement. The filter estimate consists of two
parts, an estimate of the state x̂k|k along with an uncertainty in the estimate Pk|k.
The double indexing k|k is interpreted as the estimate at time k, given measurements
up to and including time k. The reason for this indexing is that the filter is usually
split up in to two steps: the prediction and the update step. In the prediction
step, the filter propagates the previous state estimate through the motion model to
predict the next state estimate as

x̂k|k−1 = f
(
x̂k−1|k−1

)
. (2.30)

The covariance, or uncertainty in the predicted state, is computed by the EKF as

18



2. Theory

P k|k−1 = F kP k−1|k−1F
>
k +Q (2.31)

where F k = ∂f
∂x

∣∣∣
x̂k−1|k−1

is the jacobian of the motion model andQ is a tuning matrix
containing the (unknown) variance of the states. This completes the prediction step.
In the update step, the EKF computes a predicted measurement h

(
x̂k|k−1

)
and

compares it to the actual measurement yk

vk = yk − h
(
x̂k|k−1

)
(2.32)

to form the measurement residual or innovation vk. The covariance of the innova-
tion, Sk, is then computed by

Sk = HkP k|k−1H
>
k +R (2.33)

where Hk = ∂h
∂x

∣∣∣
x̂k|k−1

is the jacobian of the measurement model and R is another
tuning matrix with the variance of the measurement noise. The Kalman gain can
then computed as

Kk = P k|k−1H
>
k S
−1
k . (2.34)

Finally, the update step is completed by shifting the predicted state towards the
measurement and shrinking the predicted covariance using the Kalman gain

x̂k|k = x̂k|k−1 +Kkvk︸ ︷︷ ︸
shift

P k|k = P k|k−1 −KkHkP k|k−1︸ ︷︷ ︸
shrinkage

.
(2.35)

2.5 Model estimation
In many stages of the tracking algorithm presented in Section 4, there is a need to
estimate a mathematical model from measurements affected by noise. The RANdom
SAmple Consensus (RANSAC) algorithm does just that.

2.5.1 RANSAC
RANSAC is an iterative algorithm that is used to estimate the parameters of a
model given measurements, λ, of the model [12]. As with all real sensor data, mea-
surements will be corrupted by noise. Hence it is very unlikely that any estimated
model will fit all measurements perfectly, causing residuals. A residual, resi, is de-
fined as the deviation between the measurement i and the estimated model. The
algorithm operates under the assumption that the data will contain some measure-
ments that have been affected by a lot of noise and therefore have a large residual
from the true model. Measurements whose residual is such that res > τ , where τ
is a hyperparameter, are referred to as outliers. The main idea of the method is
to estimate model parameters such that the number of outliers is minimized. This
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makes RANSAC more robust to data with noisy measurements compared to e.g.
minimizing the least square of the residuals, where a single outlier amongst other-
wise perfect measurements could skew the entire model.
A difficulty with minimizing outliers is that it is a non-continuous function of λ. To
solve this, RANSAC operates as described in Algorithm 1.
Algorithm 1: General RANSAC algorithm
Data: N measurements λ, threshold τ
Result: The best model Mbest with least amount of outliers
k = 0;
minNumOutliers = N ;
while k < kmax do

Randomly sample a minimal subset λs out of λ;
Estimate a model Ms using λs;
Compute numOutliers using Ms;
if numOutliers < minNumOutliers then

Mbest = Ms;
minNumOutlier = numOutliers;

k = k + 1;
return Mbest;

One of the drawbacks of this approach is that the algorithm is non-deterministic
due to the random selection of measurements. However, the idea is that with more
iterations of the RANSAC sequence, there is a increase in probability for a suitable
subset of measurements to be selected, and in turn, an increase in probability to
estimate a suitable model.

2.6 Clustering
As described in Section 2.3, the dynamics between the tractor and the trailer of
an articulated vehicle are interlinked. This implies that there may be a difference
between the tractor and the trailer states. Therefore, it would be useful to compute
these states separately by splitting radar measurements into two groups, measure-
ments originating from the tractor and measurements originating from the trailer.
One method of achieving such is to make use of clustering. This thesis utilizes a
method named K-means clustering.

2.6.1 K-means clustering
K-means clustering is an algorithm that is used to split a multi-dimensional data
set into a set number of clusters such that it minimizes the within-cluster squared
Euclidean distances. I.e., it partitions a data set such that the resulting clusters’ data
points are as close as possible to their respective cluster’s mean. A cluster’s mean
in the context of K-means is commonly referred to as its centroid. Given a desired
number of clusters K, the algorithm operates such that it initially randomly selects
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K data points and labels these as cluster centroids. The remaining data points
are then assigned to each cluster based on the minimum distance to a centroid as
given by a distance function. For the purposes of this thesis, the distance function
is the squared physical distance (i.e. meters) of the position of a radar detection to
the centroid. With all data points now assigned to a cluster, the cluster centroids
are recomputed by calculating the mean of all points in each cluster respectively.
The process of assigning data points to the closest centroid and recomputation of
the centroid is then repeated until convergence. The algorithm is summarized in
Algorithm 2.
Algorithm 2: K-means clustering algorithm
Data: A set of data points, desired number of clusters K
Result: Data points split into K clusters
Randomly select K data points to be cluster centroids;
repeat

Compute squared euclidean distances to centroids for all datapoints;
Assign data points to the closest centroid/cluster;
Recompute centroids based on all data points in cluster;

until convergence;
return Clustered data;
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Simulation

A simulation environment is required in order to generate ground truth data for
the vehicles along with synthetic radar detections. The ground truth data is the
true state of the vehicle at any given time step and can be used for benchmarking
purposes whereas the radar detections are used as input to the tracking algorithm
introduced in Section 4. The articulated vehicle model derived in Section 2.3 is
of relatively low complexity, e.g. it does not incorporate dynamic movement, and
thus the Automated Driving Toolbox from MATLAB was suitable. The toolbox
has built-in support for generating synthetic radar measurements and simulating
movement of non-articulated vehicles. However, as this thesis concerns articulated
vehicles, some additions have to be made. Hence this section will first introduce
how the toolbox is simulating the measurements of a real radar and then delve into
how the toolbox simulates vehicles and the additions made by this thesis.

3.1 Synthetic radar measurements
Synthetic radar measurements are generated by the class radarDetectionGenerator()
[13]. To use it, a radar object is first instantiated using a set of sensor parameters
such as placement on ego vehicle and resolution. An excerpt of some of the im-
portant parameters used can be seen in Table 3.1. After the radar object has been
instantiated, it can be called on as a function to generate radar detections.

Parameter Description
’UpdateInterval’ Time between each radar mesurement

’Yaw’ The sensors rotation relative to the ego vehicle.
’FieldOfView’ The area the sensor can cover from its perspective.
’MaxRange’ Maximum range at which a detection can be generated.

’AzimuthResolution’ Minimum resolvable azimuth.
’HasElevation’ Enables elevation measurements. Is set to false.

’DetectionProbability’ Probability a sensor resolution cell yields a detection.

Table 3.1: Table explaining some crucial sensor parameters

When the radar object is called to generate radar detections, firstly, it creates a
sensor resolution grid, as discussed in 2.7, from the provided azimuth, range and
range-rate resolution limits. The coverage of the vehicle inside this grid will deter-
mine the amount of active sensor resolution cells. Each cell is then evaluated by a
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probability of detection, which is proportional to the range to the target and the
target Radar Cross Section (RCS). RCS is a measure of how "visible" the target
is for a radar and is dependent on many factors such as the angle a detection is
reflected at, material properties of the target and many other factors [14]. Finally,
to simulate imperfect detections, Gaussian distributed noise will be added to the
positional and range-rate measurements. The noise itself is computed differently
and independently for every measurement type (i.e. azimuth, range, range-rate)
although the common and underlying factor is the RCS. The end result is a data
matrix containing the information about the simulated radar detections in polar
frame for a single scan from a single radar. For convenience, the information is
also transformed into the Cartesian frame using the transform introduced in section
2.2.6 and stored alongside the polar frame. This is then repeated and aggregated
for each radar sensor for each time step. Let tk denote time step k, j denote radar
sensor number j, i denote the i:th measurement, Nj denote the number of detections
returned from sensor j in one time step, then the final output can be seen in Table
3.2.

t θi,j ri,j ṙi,j

tk θ1,1 r1,1 ṙ1,1
... ... ... ...
tk θN1,1 rN1,1 ṙN1,1
tk θ1,2 r1,2 ṙ1,2
... ... ... ...
tk θN2,2 rN2,2 ṙN2,2

tk+1 θ1,1 r1,1 ṙ1,1
... ... ... ...

tk+1 θN1,1 rN1,1 ṙN1,1
tk+1 θ1,2 r1,2 ṙ1,2
... ... ... ...

tk+1 θN2,2 rN2,2 ṙN2,2

Table 3.2: Data matrix containing the radar detections from time step tk and t+1
for a setup using 2 radars.

3.1.1 Radar setup

Although it is common to utilize several radars to cover a 360 degree area around
the ego vehicle for automotive tracking purposes, this thesis will only utilize a radar
setup with 2 radars at once. This decision is made solely for the simplicity to be able
skip the implementation of the logic needed to handle scenarios where the target
vehicle is seen from more sensors than necessary and vice versa.
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3.2 Motion simulation
Matlab’s automated driving toolbox natively only supports non-articulated vehicles.
To enable the simulation of articulated vehicles, two separate vehicles are simulated,
one representing the tractor unit and one representing the trailer unit. The tractor
is simulated using the toolbox’s methods to simulate vehicles. The idea behind the
simulation of the trailer unit is to exploit the state of the tractor along with the
articulated vehicle kinematic model introduced in 2.3 in each time step to compute
the resulting trailer state and feed it manually to the simulation. However, in order
to determine the trailer state, the articulation angle between the units has to be
known. Hence this section will first introduce what constitutes to a vehicle in the
toolbox, how it is simulated using the toolbox’s methodology, and then describe the
additions made to simulate the articulation angle.

3.2.1 Vehicle simulation
Inside the simulation, a vehicle has a state vector

x =


x
y
v
φ

φ̇

 (3.1)

where (x, y) denotes the position of a vehicle’s rear axle, v denote the speed of the
vehicle, φ the yaw of the vehicle, and φ̇ the yaw-rate. It also has the parameters

Parameter Description
Wheelbase Distance between the front and rear axles

Front overhang Distance between the front of the vehicle and the front axle
Rear overhang Distance between the rear axle and the rear of the vehicle

Table 3.3: Standard vehicle parameters

the graphical representation of which can be seen in Figure 3.1

Figure 3.1: Vehicle object parameters in MATLAB’s Automated Driving Toolbox.
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In addition to the parameters in table 3.3, each vehicle has a number of parameters
for its RCS however, for the purposes for this thesis, these will all be kept at the
default setting. A vehicle will follow a trajectory that is defined by specifying a set
of way-points. The toolbox will then use the way-points to compute a spline for the
vehicle’s rear axle to follow as seen in Figure 3.2.

Figure 3.2: Example of a generated vehicle trajectory in the toolbox.

In addition to position, each way-point also contains a set speed for the vehicle. I.e.
the vehicle’s speed will exactly match the set speed at the waypoint. The toolbox
will accelerate vehicles using constant acceleration between different speeds between
different way-points. The vehicle’s yaw will follow the trajectory’s tangent in each
time step and the yaw-rate is the result of the vehicle’s speed and movement along
the trajectory. The resulting ground truth data is hence generated on the format as
shown in Table 3.4.

t x y vx vy φ φ̇

t0 x0 y0 vx0 vy0 φ0 φ̇0
...

tk xk yk vxk
vyk

φk φ̇k

Table 3.4: Ground truth data for a single unit where φk is the yaw and φ̇k is the
yaw-rate at time step k.

3.2.2 Simulating the articulation angle

To simulate the articulation angle φA, it and the articulation angle rate φ̇A is intro-
duced as their own states and kept track of manually outside the toolbox simulation.
To do so, we exploit the equations that models articulated vehicles introduced in
section 2.3. The articulation angle rate is given by

φ̇A = φ̇1 − φ̇2. (3.2)
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By expanding the yaw-rate of the trailer φ̇2, we get

φ̇A = φ̇1 −
v1r

L2

(
sin(φA) + cos(φA)bφ̇1

v1r

)
(3.3)

i.e. an Ordinary Differential Equation (ODE) with the tractor states as input. As the
articulated vehicle model is of relatively low complexity (e.g. it does not incorporate
any dynamic relationships), a highly accurate solution to the ODE does not yield
additional benefits. Given the requirements, a natural choice of solution method is
the forward Euler method. Hence given an initial articulation angle, equation 3.3
can be used to compute the articulation angle for every time step. Let tk denote a
variable at time k and T the time step size, then the forward Euler method solves
ODEs through

xtk ≈ T ẋtk−1 + xtk−1 . (3.4)

Hence, in practice, an initial articulation angle φt0,A is used as an initial condition for
simulated scenarios. The articulation angle for all following time steps are computed
by first calculating the trailer yaw-rate using the previous articulation angle and the
input from the tractor from the simulation through

φ̇2 = vtk1r

L2

(
sin(φtk−1,A) + cos(φtk−1,A)bφtk,1

vtk,1r

)
(3.5)

and articulation angle rate through

φ̇A = ˙φtk,1 − φ̇2 (3.6)

and ultimately the articulation angle through

φtk,A = T φ̇A + φtk−1,A
. (3.7)

Then ultimately φtk,A is used to compute all other states such as trailer states and
the articulation angle rate.
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4
Tracking algorithm

In this chapter, the full tracking algorithm and state estimation techniques are pre-
sented. At its core, the algorithm tries to partition the radar detections into two
groups based on the origin of the reflection, i.e. the tractor or the trailer, through
the use of clustering. The algorithm then labels each cluster as the tractor or the
trailer. The detections are then processed using various techniques to estimate the
state of each unit separately. The states are then fed to a Kalman filter that com-
bines the information from both units with a motion model to yield a final state
estimate of the target vehicle as a whole.

A simplified overview of the algorithm can be seen in Figure 4.1

Figure 4.1: Flowchart showing the operation of the tracking algorithm.

where each stage will be explained in the coming sections below.
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4.1 State estimation methods
In this section we present the estimation methods used to determine the state of the
articulated target vehicle as introduced in section 2.3. For clarity, these are divided
into positional as well as motion estimation methods. The methods are the same
regardless of the unit that are estimated thus this section is presented assuming the
detections originate from a single unit without loss of generality. The methods of
partitioning the radar detections are introduced in Section 4.2. However, there are
times when the algorithm is unable to partition radar detections. In these scenarios,
the same methods are still utilized although with slight modifications as presented
in section 4.4.2.

4.1.1 Position and orientation estimation
To estimate the position and orientation of the target, first, a bounding-box rep-
resenting the outline of the target is fitted to the radar measurements and then,
using the bounding-box, the x- & y-position is estimated as well as the yaw of the
unit. As the articulated vehicle model assumes Ackermann’s condition, a natu-
ral choice is to use the center of the rear axle as the reference point for the target’s
x- & y-position as the velocity at this point is aligned with the heading of the target.

4.1.1.1 Bounding box estimation

A vehicle unit generally gives a distinct detection pattern resembling an L-shape as
shown in Figure 4.2. In an edge case, where only one side of the vehicle is seen,
the detection pattern is more of an I-shape. The following algorithm tries to fit the
seen sides as accurately as possible, and then extrapolates to estimate a complete
bounding box of the target vehicle. The underlying principles were first proposed
in [15].

Figure 4.2: Example of L-shape bounding box

The workflow of the algorithm is as follows:
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RANSAC is run with 3 sampled points, pi, where two of the points are used to
construct a line y1 as

y1 = kx+m1. (4.1)

The points that are regarded as inliers to the line y1 are removed. The remaining
sampled point is then used to fit another line y2, which is perpendicular to y1 given
by

y2 = −1
k
x+m2. (4.2)

The intersection point (xIP, yIP) between the lines is then computed as seen in Fig-
ure 4.2, and is an estimation of one of the vehicles corners. Next, the correct side
lengths have to be identified and this is done by selecting the inlier furthest away
from the intersection point, along both lines respectively. The distances to each of
the points are computed as l1 and l2 and the largest distance is regarded as being
the long side of the vehicle and both sides are set to predefined lengths accordingly.
The algorithm finalizes by computing unit vectors v1, v2 pointing away from the
intersection point and then assigning them to vlong and vshort, to be used in upcom-
ing estimation methods.

In edge cases, where only one side of the vehicle is seen, the line y1 will perfectly
fit the points and thus y2 can’t be computed directly. Instead, the algorithm will
save y1 only and compute the maximum distance between the inliers to the line. If
this distance is larger than a threshold value it is regarded as the long side of the
vehicle and otherwise the short side. The algorithm then chooses the extreme inlier
point furthest away from the ego vehicle, and regards this as a corner point of the
vehicle unit. A perpendicular line is then computed through the corner point with
appropriate length. The direction of the line is set such that it is pointing away
from the ego vehicle. This can be achieved by constructing a vector vEgoToIP from
the ego vehicle to the intersection point and then taking the dot product with the
line vector s.t

vEgoToIP · vline > 0. (4.3)

The end result of the bounding box algorithm is shown to the right in Figure 4.2
and the following metrics are saved in world frame

xIP yIP vlong vshort width length

where vlong and vshort are associated to the long and short side of the vehicle. The
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width and length are parameters that are known a priori.
Algorithm 3: Algorithm used to compute bounding box
Data: [x,y] components from radar detections
Result: Bounding box metrics
Sample 3 points;
y1,y2 = RANSAC(x,y);
if y2could not be fit then

Identify seen side;
Select corner from extreme inlier on y1;
Construct y2 through corner point;

Calculate intersection point between y1,y2;
Assign llong, lshort and vlong, vshort to each line.

4.1.1.2 Reference point estimation

In this section, a method for determining the reference point from the previously
computed bounding box is presented.

Figure 4.3: The possible locations of the rear-axle (RA1 and RA2), given a bound-
ing box.

The rear axle can have one of two possible locations as seen in Figure 4.3, depending
on whether the target is moving towards or away from the ego vehicle. To determine
this, the measurements are converted to world frame and the average velocity vector
v̄[W ] is computed and projected onto the long side as seen in Figure 4.3. The
projection results in a dot product

vlong · v̄[W ] =

> 0, if moving away from ego.
< 0, if moving towards ego.

(4.4)

which is used to determine the rear axle location. The rear axle is placed such that
it obeys the forward motion of the vehicle, i.e, if the vehicle is moving as in Figure
4.3, the rear axle is placed in location 2. This implies that the vehicle is not allowed
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to reverse, as the rear axle will be placed in the wrong location. The location is
set such that it aligns with the start of the rear overhang of the vehicle, as seen in
Figure 3.1.

4.1.1.3 Yaw estimation

To determine the yaw of the unit, the long side vector vlong from the bounding box
estimation is used. The heading vector is ±vlong and to determine the correct sign,
the heading vector can be computed as

vheading = sign(vlong · v̄[W ])vlong (4.5)

where the sign function is used to orient the heading vector correctly. The yaw φ is
then computed by calculating the angle to the x-axis, in world frame as

φ = cos−1
(
vheading ·

[
1
0

])
. (4.6)

4.1.2 Motion estimation algorithm

To estimate the yaw-rate and speed of the target, we utilize a motion estimation
method first proposed by Dominik Kellner et al. in [16]. This method computes
both the target’s yaw-rate as well as its velocity vector in a single time step by only
utilizing radar detections’ azimuth and compensated range-rate. It does such by
analyzing the compensated range-rate as spread over the azimuth, here-on referred
to as the target’s velocity profile. During arbitrary movement, the velocity profile of
a rigid target will form a sinusoidal. This can in turn can be exploited to compute
the motion of the target. Kellner et al. presents two variations of their motion
estimation algorithm that can yield reduced complexity at the expense of accuracy.
For the purposes of this thesis, we have implemented what is referred to as the
Least-Square Algorithm in a Transformed coordinate system (LSQ-T) which is the
middle ground in terms of complexity and accuracy.

4.1.2.1 Transformed coordinate system

The transformed coordinate frame used in LSQ-T will be referred to as the Common
frame (x′, y′) which has its origin in one of the sensors and intersects the other sensor,
as seen in Figure 4.4. In the following derivations, the information expressed in this
frame will be marked with a superscript [C].
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Figure 4.4: The ego vehicle frame (x, y) can be transformed to the common frame
(x’, y’). Ultimately, the detection velocities and azimuths are expressed in this
frame. The red detections belong to the first sensor and the green to the second
sensor and the ICR point marks the centre of rotation of the object.

I.e. the sensors’ coordinate frame have been rotated such that the two sensors’
Y-axis align. This will allow for an accuracy improvement compared to using the
two individual sensors’ frames, especially if one sensor yields a lot less detections
than the other. The reason as to why will be explained in section 4.1.2.2. To
convert unprocessed radar measurements to this frame we go through two steps,
starting with aligning the sensors’ coordinate frame with the ego vehicle coordinate
frame. This is achieved through by adding the sensor’s boresight to all azimuth
measurements. Using the same notation as in section 3.1 where j denotes sensor
number j and i denotes the i:th measurements, then

θ
[E]
j,i = θ

[Sj ]
j,i + βj (4.7)

To align the sensors’ Y-axis, we compute the required rotation α using the sensors’
position, (x[E]

S1 , y
[E]
S1 ) and (x[E]

S2 , y
[E]
S2 ) and subtracting it from the azimuth measure-

ments.

α = tan−1

−x[E]
S2 − x

[E]
S1

y
[E]
S2 − y

[E]
S1

 (4.8)

θ
[C]
j,i = θ

[E]
j,i − α (4.9)

Note that the common frame is tied to the ego vehicle frame with origin (x[E]
S1 , y

[E]
S1 )

and rotation α. Hence to convert Cartesian positions and vectors from the ego vehi-
cle frame to the common frame, we utilize the coordinate frame transform described
in section 2.1.1.
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4.1.2.2 Velocity profile motivation

As explained in section 2.2.5, the range-rate measurement is a measure of the radial
velocity vector, i.e. a component of the true velocity vector of the target. At any
point on the target, the true velocity vector is determined by the Instantaneous
Center of Rotation (ICR) and the target’s yaw-rate φ̇. The ICR is the point which
the target is circling around at a specific time instance. The true velocity vector
v

[C]
i,j,P for an arbitrary point (x[C]

i,j,P , y
[C]
i,j,P ) on the target is hence given by

[
v

[C]
x,i,j,P

v
[C]
y,i,j,P

]
= φ̇

[
y

[C]
ICR − y

[C]
P

x
[C]
P − x

[C]
ICR

]
= φ̇

 y[C]
ICR − ri,j,comp sin

(
θ

[C]
i,j

)
− y[C]

j

x
[C]]
j + ri,j,comp cos

(
θ

[C]
i,j

)
− x[C]

ICR

 , φ̇ 6= 0 (4.10)

It is important to note that Equation 4.10 can only describe the movement of a tar-
get which instantaneous movement can be described by a circle, i.e. a target with a
yaw rate 6= 0. Hence the relationship does not hold for purely linear movement and
additional methodology would be required to describe the linear movement exactly.
However, in practice, a near linear movement can be approximated by computing a
very small yaw rate with an instantaneous center of rotation very far away from the
target. It is also noteworthy that in the simulation presented section 3, the path
vehicles follows are computed by splines between three, or more, points. Thus the
target never travels in a pure linear motion unless its trajectory is defined by exactly
two points.

Further, the velocity component that the radar is measuring can be described by

ṙi,j,comp =
[
cos

(
θ

[C]
i,j

)
sin

(
θ

[C]
i,j

)] [v[C]
x,i,j,P

v
[C]
y,i,j,P

]
(4.11)

By combining Equation 4.10 and 4.11, we can formulate

ṙi,j,comp = φ̇
(
y

[C]
ICR − y

[C]
j

)
︸ ︷︷ ︸

Fj

cos
(
θ

[C]
i,j

)
+ φ̇

( =0︷︸︸︷
x

[C]
j −x

[C]
ICR

)
︸ ︷︷ ︸

G

sin
(
θ

[C]
i,j

)
(4.12)

i.e. the equation describing the velocity profile. Note that the velocity profile is a
sinusoidal which amplitude and phase is determined by Fj and G, as shown in 4.5.
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Figure 4.5: The detections obtained from the target when plotted over the azimuth
on the x-axis and the range-rate on the y-axis. The detections obtained from each
sensor determine unique sinusoidal velocity profiles defined by the parameters Fi
and G.

4.1.2.3 Exploiting the velocity profile

By using the equation 4.12, we can form a system of linear equations to solve for
each unknown variable. However, the system is clearly over-determined for more
than 3 detections on the same unit. Hence to utilize additional detections, we make
use of two least squares estimators. The first solves for Fj and G through

min
Fj ,G

∑
j

∑
i

(ri,j,comp − Fj cos(θi,j)−G sin(θi,j))2 (4.13)

Here we can also observe the reason we gain the benefits from using the common
frame. As the two sensors’ Y-axis are aligned, G = Gj = G1 = G2 which allows us
to make a single fit in the least squares estimator. The second solves for the full
motion through

min
φ̇−1,x

[C]
ICR,y

[C]
ICR

∥∥∥∥∥∥∥∥∥∥


0
0
y

[C]
S2

0

−

−F1 0 1
G 1 0
−F2 0 1
G 1 0



φ̇−1

x
[C]
ICR

y
[C]
ICR


∥∥∥∥∥∥∥∥∥∥

2

2

. (4.14)

However, using all radar measurements in a least squares estimator makes the
method prone to outliers. A single outlier may skew the result significantly. There-
fore we utilize RANSAC with the aim to detect any outliers to the velocity profile.
To do such, in every RANSAC iteration, we select 3 random radar measurements,
using at least 1 from each sensor and compute the exact fit to Fj and G in the
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velocity profile as described in equation 4.12. Then, using only measurement that
were classified as inliers, deploy the least squares estimators as described above.

Using the aforementioned method, φ̇ is solved for directly. To estimate the ve-
locity vector of any point on the target we combine the estimated yaw-rate with the
estimated ICR point. As our state vector models velocity of the target as the speed
at the rear-axle of each unit, we estimate the state through

v =

∥∥∥∥∥∥∥∥φ̇
√√√√√([x[W ]

ICR

y
[W ]
ICR

]
−
[
x

[W ]
rear−axle
y

[W ]
rear−axle

])2
∥∥∥∥∥∥∥∥ . (4.15)

4.1.3 Estimating articulation angle and angle rate

When the individual states of both units have been estimated, both of them can be
used to determine the linkage between them, i.e the state of the articulation angle.
The articulation angle is computed by subtracting the tractor yaw from the trailer
yaw as

φA = φ1 − φ2 (4.16)

and similarly, the articulation angle rate as

φ̇A = φ̇1 − φ̇2. (4.17)

4.2 Clustering

To partition radar detections into two groups, detections originating from the tractor
and detections originating from the trailer, we utilize K-means clustering. K-means
tries to create clusters with the least within-cluster squared euclidean distances, i.e.,
it aims to minimize the total euclidean distance between all data points within each
cluster [17]. Hence to partition the radar detections appropriately, we can feed the
clustering algorithm data that is based on radar detections and is distributed such
that the resulting clusters would correspond to the tractor and trailer respectively.
As an articulated vehicle consists of two units, we can exploit how the radar mea-
surement are spatially distributed. If the target vehicle consists of two units of the
same length and the radar measurements are distributed equally along the long side
of the vehicle, we would be able to split the measurements in two spatially. The
clustering with the smallest total euclidean distance between all detections is to
partition as shown in Figure 4.6.
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Figure 4.6: A set of samples partitioned such that it has 2 clusters with the smallest
total euclidean distance between all samples.

Ultimately the K-means clustering algorithm is set to create two clusters using the
cartesian position of the radar detections. I.e.

clusters = kmeans
([
x, y

]
, 2
)

(4.18)

such that, ideally, the clustered detections will be partitioned such as shown in Fig-
ure 4.7.

Figure 4.7: The detections before clustering are shown to the left and the desired
outcome of clustering shown to the right. The radar detections (black dots) are
partitioned (red/blue outline) such it results in 2 clusters where each originate from
a single vehicle unit. The mean position of each cluster is shown as a solid red/blue
dot.

4.2.1 Cluster labeling
The K-means clustering algorithm is on its own only able to split radar detections
into two, unlabeled partitions. In order to be able to take advantage of the clustering,
we need to determine which partition corresponds to which unit of the articulated
vehicle. To do such, we introduce Algorithm 4 that relies on the assumption that the
target vehicle is always moving forward and that the tractor will always be the unit
that is facing the direction of travel of the target vehicle. It will choose a cluster,
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e.g. cluster A, and compute the dot product between the relative vector of the two
clusters, P∆AB, and the cluster’s velocity vector, VA. The cluster’s velocity can be
computed from the angular velocity and the instantaneous centre of rotation of the
cluster, as seen in Figure 4.8.

Figure 4.8: The cluster’s velocity vector VA can be computed from the vectors r
(i.e. the vector between the cluster’s ICR point and the cluster’s centroid PA) and
the angular velocity vector ω.

If the dot product VA · P∆AB is positive, i.e. the two vectors are oriented such
that there are less than 90 degrees separation between them, cluster A must be the
trailer. This is shown graphically in Figure 4.9 and the algorithm is introduced in
detail in Algorithm 4.

Figure 4.9: Showcase of how the two vectors, vA, and P∆AB, are computed.
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Algorithm 4: Algorithm used to label clusters
Data: 2 unlabeled clusters clustA and clustB of radar detections
Result: Cluster labels
P

[W ]
A = mean position of clustA;
P

[W ]
B = mean position of clustB;
P

[W ]
∆AB = P

[W ]
B - P [W ]

A ;
[φ̇A,P [W ]

ICR,A] = EstimateYawrate(clustA);

V
[W ]
A =

 0
0
φ̇A

×
P

[W ]
x,A − P

[W ]
x,ICR,A

P
[W ]
y,A − P

[W ]
y,ICR,A

0

 From the angular velocity (ω × r);

scalar product = P
[W ]
∆AB · V

[W ]
A (1 : 2);

if scalar product > 0 then
clustB is the tractor;
clustA is the trailer;

else
clustA is the tractor;
clustB is the trailer;

Although not shown in Algorithm 4, there is a process to determine which of the
two clusters is most the most suited to compute the velocity vector of. This process
is determined by how many sensors is seeing each cluster and how many detections
each cluster consists of with the more, the better. If cluster B were to be chosen
instead of A, cluster B is simply switched with cluster A in Algorithm 4.

4.2.2 Increasing clustering robustness

There are scenarios where the aforementioned approach with clustering works poorly,
e.g. when there is an imbalance in how the detections are distributed between the
tractor and trailer. This happens when one of the two units of an articulated vehicle
is seen from two sides and the other unit is seen from a single side as shown to the
left in Figure 4.10. The imbalance will cause a shift in the mean position of the
clusters and, as a consequence, some detections will be miss-labeled. To minimize
the number of detections that are miss-labeled, the measurements that are at the
most risk are discarded, i.e. measurements that are close to the midpoint between
the clusters, as shown in Figure 4.10.
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Figure 4.10: The detections can be misclassified as shown to the left, where some
of the red detections belong to the other unit. Thus, detections are removed in the
circled area giving the detections on the right.

4.2.3 Scenarios where clustering is not possible
A drawback with using K-means clustering is that the algorithm always returns
two clusters. However, in many traffic scenarios, the articulated vehicle is oriented
in a such a way that only a single unit is visible from the perspective of the ego
vehicle. For example, when the ego vehicle is driving behind the target vehicle, the
detections will typically only originate from the trailer as seen in Figure 4.11.

Figure 4.11: A scenario where clustering is possible to the left and a scenario
where clustering is not possible to the right. The perspective of the ego vehicle is
represented by the green arrowhead and the black dotted lines at the bottom left in
the two scenarios.

Another situation is when the vehicle is jack-knifed and one of the units is completely
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obscured, as seen to the right. Clustering in these instances would be equivalent to
miss-label half of all measurements hence it is of importance to detect when it hap-
pens. As this thesis assume the target vehicle dimensions to be known, we can use
this knowledge to determine if the distance between the resulting clusters’ centroid
is reasonable or not.

To determine whether the clustering output should be used, a threshold for the min-
imum distance allowed between the cluster centroids, dmin, is set. If the distance is
smaller than this threshold, the clustering output will be ignored in order to prevent
a large number of misclassifications. In addition, a minimum amount of detections
for each cluster is set to increase robustness against outliers.

Even though clustering is not always available, there is still information to gain in
labeling the unit that is seen. To do so we rely on the assumption that the target
vehicle is moving forward. This implies that if the unit seen is moving towards the
ego vehicle, it must be the tractor that is in view. If it is moving away, then it must
be the trailer. This information is used in 4.4.2 to manage the inseparable case as
good as possible.

4.3 Kalman filter

It is important to note that the Kalman filter plays two important roles in the track-
ing algorithm. Firstly, it aids in minimizing the impact of noise in algorithm output.
Secondly, it assists in extrapolating the algorithm output when state measurements
are not available. Due to the dynamics of the pivot joint in articulated vehicles, at
times, parts of the vehicle may be obscured by itself from certain perspectives as
can be seen in 4.11. Hence the information the tracking algorithm is able to gather
is dependent on the target vehicle state and the relative position of the ego vehicle.
E.g. if the ego vehicle encounters a scenario such as seen in 4.11, the algorithm will
only be able to measure of the trailer and not the vehicle as a whole. This is where
the motion model of the Kalman filter enables the algorithm to still yield a reason-
able output of the vehicle as a whole despite not being able to directly measure all
its states.

4.3.1 State vector

The purpose of the state vector is to capture the important characteristics of the
target using a minimal state representation. As motivated in section 2.3, the kine-
matics of the tractor and trailer are interlinked such that all states of the trailer can
be expressed in terms of tractor states in combination with the articulation states.
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Hence the state vector of choice is

x[W ] =
[
x

[W ]
1
xA

]
=



x
[W ]
1

y
[W ]
1
v1r

φ
[W ]
1
φ̇
φA
φ̇A


. (4.19)

expressed in the world frame. Using the aforementioned state vector and the kine-
matic relationships introduced in section 2.3, the state of the trailer can still be
completely determined even though the trailer states are not explicitly included
yielding a minimal state representation.

4.3.2 Motion model
To predict the movement of the articulated vehicle, a modified Coordinated-Turn
(CT) model including the tractor and articulation states is used. The CT model
allows for uncertainties in the velocity, yawrate and articulation angle rate and is
thus commonly used when tracking objects that are expected to turn. The motion
model computes a prediction for the tractor and articulation states, which can be
used to compute the remaining states of the trailer as mentioned earlier. The motion
model f is given as

f(x) =



x1 + Tv1r cos(φ)
y1 + Tv1r sin(φ)

v1r
φ+ T φ̇

φ̇
φA
φ̇A


(4.20)

where the process noise matrix Q is given as

Γ =



0 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1


, Q = Γ


σ2
v 0 0

0 σ2
φ̇

0
0 0 σ2

φ̇A

ΓT . (4.21)

The Jacobian F can be computed by
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F = df(x)
dx

=



1 0 T cos(φ) −Tv1r sin(φ) 0 0 0
0 1 T sin(φ) Tv1r cos(φ) 0 0 0
0 0 1 0 0 0 0
0 0 0 1 T 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 T
0 0 0 0 0 0 1


. (4.22)

4.3.3 Measurement model
This thesis utilize various methods that are able to compute the tractor, the vehicle
states, and the articulation states separately. However, all measurements may not
always be available. Therefore, three separate measurement models are used, one
for each of the three state vectors. The tractor measurement model h1 will consist
of direct measurements and is hence given by

h1
(
x̂[W ]

)
=



x̂
[W ]
1

ŷ
[W ]
1
v̂1r

φ̂
[W ]
1
ˆ̇φ

 (4.23)

and has the corresponding measurement model Jacobian is given by

H1
(
x̂[W ]

)
=


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

 . (4.24)

Similarly, the articulation measurement model hA is given by

hA
(
x̂[W ]

)
=
φ̂Aˆ̇φA

 (4.25)

and the articulation measurement model Jacobian is given by

HA

(
x̂[W ]

)
=
[
0 0 0 0 0 1 0
0 0 0 0 0 0 1

]
. (4.26)

The trailer measurement model is given by

h2(x̂[W ]) = ... =



x̂
[W ]
2

ŷ
[W ]
2
v̂2r

φ̂
[W ]
2
ˆ̇φ2

 (4.27)
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which is derived using the relationship between the tractor and trailer as introduced
in section 2.3. The measurement model Jacobian, H2(x̂[W ]), is derived using Matlab
and its symbolic toolbox.

4.3.4 Filter initialization
For the purposes of this thesis, to initialize the filter, the filter is fed the ground
truth state of the target vehicle with zero uncertainty. I.e.

x̂
[W ]
t0 =



x
[W ]
1,t0
y

[W ]
1,t0
v1r,t0
φ

[W ]
1,t0
φ̇1,t0
φA,t0
φ̇A,t0


, (4.28)

Pt0 = 07x7 (4.29)

4.4 Tracking algorithm operation
In this section the algorithm at run-time is explained in detail. The exact operation
differs somewhat from the simplified overview presented in Figure 4.1 depending on
how the target is seen from the perspective of the ego vehicle. If both the tractor and
the trailer of the target is seen, similarly to what can be seen to the left in Figure
4.11, then the algorithm will enter what will be referred to as its ideal operational
state. If only a single unit of the target is seen, similarly to what can be seen to
the right in Figure 4.11, then the algorithm will enter what will be referred to as
its alternate operation state. Ultimately, the main difference between the different
states is what Kalman updates steps are performed.

4.4.1 Ideal operation
In the ideal case, the measurements originate from both units of the target vehicle.
Now, the ordinary state estimation techniques in 4.1 can be used on each cluster
individually to estimate the states of the trailer and tractor respectively. The ar-
ticulation states are then computed by using the relationships presented in 4.1.3.
All 3 are then used to make three separate Kalman update steps, one for each state
vector.

4.4.2 Alternate operation
In the alternate case, only a single unit is seen from the perspective from the ego
vehicle and thus only information regarding one unit can be derived. The trigger
for this operational state is when the algorithm is unable to cluster detections as
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presented in section 4.2.3. This section will thus detail how the algorithm make use
of the information at hand.

When all detections originate from a single unit as seen in Figure 4.12, the clustering
algorithm will flag that the mean position of the two clusters are unexpectedly close,
similarly to what can be seen to the right in Figure 4.11.

Figure 4.12: Showcase of the scenario where all radar detections (blue dots) orig-
inate from a single unit of the target vehicle.

While the clustering algorithm is unable to partition the detections, it still attempts
to label the detections at hand by assuming the target vehicle is always moving
forward. Thus, if one unit is obscured and the average velocity of the detections is
e.g. heading towards the ego vehicle, the detections will all be labeled as originating
from the tractor. Then these will be fed as one to the state estimation techniques
which in turn will be used in an appropriate Kalman update step. Note that this
means that only a single Kalman update step will be performed.

There are however cases where both units can be seen from the perspective of the
ego vehicle and the clustering algorithm is still unable to partition the detections.
This happens when the number of detections in one of the clusters is too low to be
able to be used in the state estimation techniques as can be seen in Figure 4.13.
E.g. at least 3 detections are needed in order to fit a bounding box.

Figure 4.13: Showcase of the scenario where the algorithm is unable to cluster
while both units is still visible to the ego vehicle sensors.

In this scenario, the algorithm will utilize the same workflow as when one of the units
are completely obscured to derive information in regards to the visible unit. The
addition made in this scenario is that the algorithm makes an educated guess that the
tractor and trailer is close to parallel. Thus the articulation angle is about 0 degrees.
This will then be fed to the Kalman filter with a slight increased measurement
uncertainty. As no information in regards to the articulation angle rate can be
derived, it will also be fed as 0 to the Kalman filter however with a large measurement
uncertainty.
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This section aims to quantify the performance of the articulated vehicle tracking
algorithm presented in the thesis. Due to the high number of possible scenarios that
can occur, quantifying performance is a long and complicated process. In addition,
the tracking algorithm has parameters that need tuning and often the ideal set of
parameters varies in different scenarios. As this thesis utilizes a simulation envi-
ronment, a scenario can easily be re-simulated many times using various settings.
However, any movement of vehicles has to be manually specified. Hence each sce-
nario effectively still has to be created by hand. This thesis unfortunately does not
have the resources to create such a complete set of scenarios nor pursue a thorough
tuning process. Instead, a small set of scenarios will be selected with the aim to
highlight some of the algorithm’s strengths and weaknesses with algorithm param-
eters chosen through reasonable guesses.
This section is structured such that it first introduces the evaluation methods, i.e.
how the performance is measured. Then the scenarios are presented and ultimately
the results are shown.

5.1 Evaluation methods
The algorithm will be evaluated by simulating a set of scenarios and each scenario
will be simulated 20 times. Data will be aggregated and analyzed for each of the
20. However, 1 simulation will be selected randomly to show the behavior of the
algorithm in operation rather than through aggregated data. The components up
for evaluation are split into clustering & labeling, and state estimation.

5.1.1 Evaluation of clustering & labeling
The algorithm’s ability to correctly cluster and label detections is measured by
comparing the estimated origin of each radar detection to the true origin. As an
error in clustering and labeling can affect processes downstream in the algorithm, the
result is shown per time step in addition to aggregated data to be able to correlate
between errors.

5.1.2 Evaluation of state estimation
The algorithm’s ability to estimate the state of the target is analyzed by computing
the error by subtracting the ground truth from from the estimated states. As the
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process the algorithm estimates the target’s states is situational, the state estimation
error is split into three main categories. Clustered, unclustered, and filtered state
errors. Clustered and unclustered state errors are thus a measure of instantaneous
state estimations whereas the filtered state estimation refers to the Kalman filtered
state errors. Each of the three is further split into tractor and trailer errors as
applicable.

5.2 Scenarios
To evaluate the algorithm’s strengths and weaknesses, two different scenarios were
created. Each of which are meant to highlight specific properties of the algorithm.
These are

• Scenario 1
– the ego vehicle follows an articulated vehicle down a highway

• Scenario 2
– the ego vehicle follows an articulated vehicle in repeated turns

which are shown in Figure 5.1.
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(a) Scenario 1.
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(b) Scenario 2.

Figure 5.1: Two different simulation scenarios.

5.2.1 Scenario 1
This scenario is meant to imitate typical highway driving. The ego vehicle is fol-
lowing the target vehicle in the same lane at high speeds moving relatively straight.
Because of this, most of the time, the tractor is obscured from the perspective of
the ego vehicle. However, as the target vehicle is modeled as an articulated vehicle,
the algorithm still keeps track of the position of the tractor.

5.2.2 Scenario 2
This scenario is meant to imitate typical sharp turns. The ego vehicle is trailing
behind the target vehicle as consecutive turns are executed. Again, the tractor will
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be mostly obscured from the ego vehicle’s perspective and only appear when the
target enters a turn. However, as the target vehicle is modeled as an articulated
vehicle, the algorithm still keeps track of the position of the tractor.

5.3 Results

The data from the simulations is presented on a scenario basis in the following
sections. Note that even though the trailer state vector is not part of the Kalman
filter state vector, it is still presented in the results as one. This is extrapolated
using the relationships introduced in section 2.3 in combination with the tractor
and articulation state vectors of the Kalman filter state vector.

5.3.1 Scenario 1 - State estimation

To first present an overview of the scenario, Figure 5.2 presents the positional ground
truth as well as algorithm estimated positions from the randomly chosen simulation
out of the total 20.

49



5. Algorithm performance

0

50

100

150

200

250

300

350

400

450

x
-a

x
is

 w
o

rl
d

fr
a

m
e

 [
m

]

020

y-axis worldframe [m]

Tractor
Tractor GT.

Tractor Est.

Clust.

Tractor Est.

Unclust.

Tractor Filt.

Ego Pos.

Ego Start

0

50

100

150

200

250

300

350

400

450

x
-a

x
is

 w
o

rl
d

fr
a

m
e

 [
m

]

020

y-axis worldframe [m]

Trailer

Trailer GT.

Trailer Est.

Clust.

Trailer Est.

Unclust

Trailer Filt.

Ego Pos.

Ego Start

Figure 5.2: The trajectories for the tractor and trailer in the highway scenario.
The figure shows the measured and filtered positions as well as the ground truth.
The color of the filled dots indicate whether the target vehicle is clustered or not.
Note that the ego vehicle is following the same trajectory as the target vehicle at a
distance.

The plots shown in Figure 5.3 presents the remaining state vectors for the randomly
chosen scenario.
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Figure 5.3: An overview of the estimated and filtered kinematic states of the
target vehicle versus the ground truth. The background color indicates whether the
clustering is turned on or off. A white background means that the unit is obscured
and only receives at most a few detections.

The distribution of the estimated state errors from all 20 simulations are shown in
the histograms in Figure 5.4.
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Figure 5.4: Histograms over the filtered state errors from scenario 1 after 20
simulations.

The aggregated estimated state errors from all 20 simulations expressed in terms of
mean error µ and standard deviation σ is shown in Table 5.1.
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Tractor states error (all iterations)
x [m] y [m] v [m/s] φ [deg] φ̇ [deg/s]
µ σ µ σ µ σ µ σ µ σ

Filtered 0.22 0.27 0.36 0.66 0.20 0.29 2.71 3.36 2.67 3.56
Est. Clust. 1.51 1.36 0.98 1.10 0.10 0.09 3.49 3.09 2.36 2.03

Est. Unclust. 9.06 0.40 7.71 0.65 0.32 0.08 85.59 2.73 1.45 0.75

Trailer states error (all iterations)
x [m] y [m] v [m/s] φ [deg] φ̇ [deg/s]
µ σ µ σ µ σ µ σ µ σ

Filtered 0.26 0.31 0.61 0.86 0.20 0.29 2.48 3.08 1.37 1.79
Est. Clust. 0.17 0.13 0.23 0.19 0.03 0.03 3.97 3.35 0.53 0.44

Est. Unclust. 0.12 0.15 0.32 0.36 0.02 0.03 3.13 5.72 0.58 0.47

Articulation states error (all iterations)
φ [deg] φ̇ [deg/s]
µ σ µ σ

Filtered 0.50 0.63 1.12 1.78
Est. Clust. 5.40 4.48 2.34 2.02

Est. Unclust. 1.03 0.79 0.77 0.80

Table 5.1: Monte Carlo mean µ and standard deviation σ errors for 20 simulations.
The data is split between different types of measurements, the filtered states error,
the measured states error when clustering is used, and the measured states error
when clustering is not available.
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5.3.2 Scenario 1 - Clustering & labeling

In Figure 5.5, the number of correctly classified detections in each time step is shown
for the randomly chosen simulation.
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Figure 5.5: An illustration of the clustering performance. In the highway scenario,
the target tractor unit is not always seen hence the sparsity in the left plots. In the
right plots, the effect of removing detections between the units can be seen.

In Table 5.2, the percentage of correctly classified detections in all 20 simulations
combined are shown.

Figure 5.5 in table data for all iterations
(after measurements have been discarded)
Timesteps clustering

is possible
Timesteps clustering

is not possible
45.3 % (1630 / 3600) 54.7 % (1970 / 3600)
Detections correctly

classified
Detections correctly

classified
Tractor 100.0 % (15241/15241) n/a
Trailer 99.9 % (21846/21860) 74.3% (31468/42360)

Table 5.2: Clustering data for highway scenario
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5.3.3 Scenario 2 - State estimation

To first present an overview of the scenario, Figure 5.6 presents the positional ground
truth as well as algorithm estimated positions from the randomly chosen simulation
out of the total 20.
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Figure 5.6: The trajectories for the tractor and trailer in the repeated turns sce-
nario. The figure shows the measured and filtered positions as well as the ground
truth. The filled dots indicate whether the target vehicle is clustered or not. In
this scenario, the target vehicle is tracked as two units most of the time, with only
small segments of unclustered tracking. Note that the ego vehicle trajectory is only
a rough indication and that the actual movement is smooth.

The plots shown in Figure 5.7 presents the remaining state vectors for the randomly
chosen scenario.
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Figure 5.7: An overview of the estimated and filtered kinematic states of the
target vehicle versus the ground truth. The background color indicates whether the
clustering is turned on or off. A white background means that the unit is obscured
and only receives at most a few detections.

The distribution of the estimated state errors from all 20 simulations are shown in
the histograms in Figure 5.8.
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Figure 5.8: Histograms over the filtered state errors from scenario 2 after 20
simulations.

The aggregated estimated state errors from all 20 simulations expressed in terms of
mean error µ and standard deviation σ is shown in Table 5.3.
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Tractor states error (all iterations)
x [m] y [m] v [m/s] φ [deg] φ̇ [deg/s]
µ σ µ σ µ σ µ σ µ σ

Filtered 1.05 0.79 1.00 0.81 1.06 1.16 6.64 8.06 4.25 6.35
Est. Clust. 0.59 0.93 0.51 0.78 0.16 0.16 2.50 2.00 1.66 2.32

Est. Unclust*. nan nan nan nan nan nan nan nan nan nan

Trailer states error (all iterations)
x [m] y [m] v [m/s] φ [deg] φ̇ [deg/s]
µ σ µ σ µ σ µ σ µ σ

Filtered 1.38 1.24 1.16 1.03 1.11 1.20 4.93 5.97 2.25 3.17
Est. Clust. 0.18 0.27 0.18 0.19 0.08 0.12 3.89 5.96 0.52 0.51

Est. Unclust. 0.31 0.35 0.20 0.32 0.07 0.09 5.71 5.64 2.02 1.35

Articulation states error (all iterations)
φ [deg] φ̇ [deg/s]
µ σ µ σ

Filtered 2.17 2.91 3.05 4.10
Est. Clust. 4.64 5.08 1.68 2.23

Est. Unclust. 4.49 3.46 5.82 1.38

Table 5.3: Monte Carlo mean µ and standard deviation σ errors for 20 iterations.
The data is split between different types of measurements. That is, the filtered
states error, the measured states error when clustering is clustering is utilized, and
the measured states error when clustering is not available. (*) Note that the algo-
rithm never classifies the seen unit as tractor in this scenario and thus there are no
measurements.
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5.3.4 Scenario 2 - Clustering & labeling
In Figure 5.9, the number of correctly classified detections in each time step is shown
for the randomly chosen simulation.
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Figure 5.9: An illustration of the clustering performance. In the repeated turns
scenario the clustering is on most of the time and the importance of removing
measurements between the units can be seen to the right.

In Table 5.4, the percentage of correctly classified detections in all 20 simulations
are shown.

Figure 5.4 in table data for all iterations
(after measurements have been discarded)
Timesteps clustering

is possible
Timesteps clustering

is not possible
88.8 % (4582 / 5160) 11.2 % (578/5160)
Detections correctly

classified
Detections correctly

classified
Tractor 100.0 % (74774/74774) 0 %
Trailer 99.9 % (109393/109453) 82.6% (13609/16481)

Table 5.4: Clustering data for repeated turns scenario
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6
Discussion

As first introduced in Section 2.3, an articulated vehicle can be modeled as two
units, the tractor and the trailer, which are linked through the articulation states.
Each unit can be modeled individually using the state vector (x, y, v, φ, φ̇) which is a
common choice of state vector for vehicles in many non-articulated vehicle trackers.
It is used in e.g. [18], [19], and a very similar variant in [4]. Hence estimation
methods for these states are a well researched area, i.e. there are many methods to
estimate and use the tractor and trailer states individually without any regards to
their connection.
Therefore, the decision was made to to first build a non-articulated vehicle tracker
that models vehicles using the (x, y, v, φ, φ̇) vehicle state vector and estimates the
corresponding states through existing techniques.
Hence, the contributions made by this thesis have mostly been made in regards to
how to combine the state knowledge of the tractor and trailer to get a better estimate
of an articulated vehicle as a whole. However, as a non-articulated vehicle tracker
first had to be built, the thesis had to cover a lot of ground to get to its starting
point. Because of this there are many areas that could easily be improved although
left as-is simply due to lack of time. In addition, as the some of the foundation is
built on components derived from non-articulated vehicle tracker algorithms, many
areas that can be improved can be attributed to components that not necessarily
need to be designed specifically for articulated vehicles.
Hence this chapter will mainly focus on the challenges of articulated vehicle tracking
although some of the non-articulated vehicle tracking challenges will still be brought
up as they are closely connected.

The following sections are structured such that, first the properties of the simulation
are discussed, then the state estimation methods followed by the clustering perfor-
mance and finished with a discussion focusing on the Kalman filter performance
along with some overarching discussion.

6.1 Simulation
As mentioned in section 5, quantifying the performance of a vehicle tracking al-
gorithm is non-trivial due to the high number of possible scenarios and, in turn,
random parameters. Whilst this thesis utilize a simulation environment to simulate
various scenarios, the environment is only able to generate random radar detection
distributed according to set radar sensor parameters. Hence the movement of the
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involved vehicles is the exact same between repeated runs of the same scenario al-
though the radar detections may differ. The consequence of this is that even though
e.g. scenario 1 was simulated 20 times over, the data is far from representative of all
scenarios involving highway driving. Hence it is not possible to draw any definitive
conclusion on the results presented from the simulations. Although what can be ex-
trapolated is indications of the strengths and weaknesses of the articulated vehicle
tracking algorithm.

6.2 Clustering
The need to partition radar detections based on the unit they are reflected of arose
early to enable the state estimation of the tractor and trailer individually. Hence
this challenge distills to very similar challenges as the s.c. data association problem,
the problem of linking a radar detection to the vehicle it was reflected of, brings up.
However, as the data association problem is outside the scope of this thesis such that
it can be assumed that all radar detections originate from the articulated vehicle,
the area of data association techniques was not thoroughly explored. Instead, more
suited to the premise of the thesis, effort was instead focused on building a special-
ized solution that would exploit the properties of articulated vehicles to partition
the radar detections.

The purpose of the k-means clustering techniques in this thesis is to exploit the po-
sitional distribution of radar detections on the articulated vehicle. As the shape and
size is considered known, both can be used to make assumptions on how clusters
will formed depending on the perspective the target is seen from. This can then
be compared to the clusters returned by the k-means algorithm to determine if the
radar detections have been partitioned correctly.

As presented in Table 5.2 and Table 5.4, nearly all detections are correctly classified
when the clustering is possible. However, there are still many detections that gets
incorrectly classified when clustering is not possible. This is especially visible in
Table 5.2, where about every fifth detection is misclassified.

Although the approach shows very promising results, it is important to note that
it may be an artifact created by the simulation environment. E.g. in a real world
context, there are many properties that are likely detrimental to this approach that
are unaccounted for in the simulation. The target vehicle may be obscured by other
objects or the radar detections may not reflect as expected from all parts of the tar-
get vehicle to mention a few scenarios that would invalidate the approach of known
cluster formation.

It is worth mentioning that the original idea to partition the radar detections was
by exploiting the properties of the units’ different velocity profiles during a turn
manoeuvre. The velocity profile is a relatively robust measure as it can be estimated
for rigid objects of arbitrary size. Due to the dynamics between the tractor and
trailer, when initiating a turn, there will be a difference in yaw-rate between the
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tractor and trailer, i.e. the velocity profiles would be different. This can then
be exploited to separate the detections accordingly. However, the approach was
eventually abandoned due two main challenges. First and foremost, the premise for
this method is not present when the target is not turning. It could still be used
as an addition during turn maneuvers although challenges with merging the result
from k-means and this approach lead the idea to be abandoned completely.

6.3 State estimation methods
As the radar detections will either be partitioned into tractor and trailer detec-
tions or contain mostly detections from one of the units (i.e. when clustering is
not possible), the state estimation methods can be designed very similarly to ex-
isting, non-articulated vehicle state estimation methods. However, as the tractor
and trailer are closer together than other, separate, non-articulated vehicles, some
particular edge-cases will arise for the state estimation methods.

As the strengths and weaknesses of the state estimation techniques have already
been explored in the literature they were first introduced in, the discussion in the
following sections will focus on the edge-cases introduced by articulated vehicles and
areas of improvement rather than the techniques specific performance.

6.3.1 Position estimation
The positional measurements, i.e, the reference point and the yaw of the vehicle, rely
heavily on the quality of the bounding box estimation. This estimation is vulnerable
in certain orientations where the radar detection pattern does not clearly consist of
an L-shape but rather an I-shape. This is unfortunately always the case for an
articulated vehicle. If clustering is possible, the radar detections of one unit will
form an L-shape most of the time whereas the radar detections of the other unit
resembles the I-shape as can be seen to the left in Figure 6.1.

Figure 6.1: Two situations where the bounding box estimation is vulnerable.

These scenarios can cause the bounding box to take the wrong orientation. Much of
this can be attributed to the fact that the bounding box estimation does not become
more robust over time. Ideally, knowledge from previous time steps should be used
to improve the estimate over time. In addition, the current bounding box algorithm
does not utilize knowledge of the known tractor-trailer geometry, i.e, the bounding
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boxes are fit independently of each other. Implementing additions that incorporate
these two suggestions would likely mitigate the presented issues.
In addition, this estimation technique relies on having an appropriately tuned RANSAC
threshold to correctly fit the bounding box. This thesis utilize a set threshold how-
ever the ideal threshold varies with the range to the target as the accuracy of radar
detections decrease. A possible consequence of using an unsuitable threshold is sim-
ply a poor fit of the bounding box as shown to the right in Figure 6.1. Hence, a
varying threshold is likely preferred over the current implementation.

6.3.2 Motion estimation
The full motion estimation algorithm used in this thesis is very suited for its use case
when radar detections are partitioned into tractor and trailer. It is robust by design
as it is independent of the target’s shape and size, and it is able to handle outliers
due to the use of RANSAC. The use of RANSAC is especially useful as outliers are
the same as incorrectly classified radar detections in the eye of the motion estimation
algorithm.

6.4 Kalman filter
The Kalman filter plays a fundamental role in the articulated vehicle tracking pre-
sented in this thesis. It is the link between the tractor, trailer and articulation states
such that any of the three can be fed to the filter independently with the aim to
create a better estimate of the articulated vehicle as a whole. However, there are
many flaws in the use of the Kalman filter in the approach of this thesis that are
detrimental to its performance.

The Kalman filter models the measurements obtained through the state estimation
techniques (i.e. the input to the Kalman filter) as corrupted by Gaussian noise. The
challenges is that while the raw radar detections can be modeled more accurately
as affected by Gaussian noise, the state estimation methods heavily processes the
radar detections in many, even non-deterministic (RANSAC), steps such that the
noise is highly non-gaussian. To be able to yield an accurate output by efficiently
compensate for the noise contained in the input, the Kalman filter need to precisely
model how the Gaussian noise is processed. If the filter is performing nominally,
the output should be close to zero mean Gaussian distributed. However, by ob-
serving the histograms of the Kalman filter output (see e.g. Figure 5.8), biases and
non-Gaussian distributions are present. Thus the filter used in this thesis is not
performing well. The Kalman filter is thus unable to model the noise in the input
accurately and hence cannot compensate enough for such, giving biased estimates.
This is especially an issue as the heavy processing of radar detections can introduce
outlier state estimations. As an outlier does not fit the model the Kalman filter
uses to compensate noise, an outlier is likely to throw the filter off completely. A
consequence of the aforementioned flaws, the current implementation of the filter
does not always produce a better filtered output than the measurements obtained
through the state estimation.
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It is also important to note that as the articulated vehicle state vector, consisting
of tractor, trailer, and articulation states, is under-determined by knowing just one
of the three state vectors. Hence in the scenario when only one unit is seen, the
information that can be extracted is not enough to determine the state of the whole
articulated vehicle. This is especially visible for the tractor yawrate in Figure 5.7 at
around 6, 12, and 17 seconds in. At these times, it is only the trailer that is visible
from the perspective of the ego vehicle sensors and the algorithm is thus unable to
partition the radar detections. E.g. the yawrate of the trailer cannot alone deter-
mine the articulation anglerate and the tractor yawrate. The filter motion model
can compensate for some time however, it is not enough for extended periods of
time.
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Conclusion

The purpose of the thesis was two-fold, to create a model for articulated vehicles
suitable for tracking purposes and to estimate its states. A minimal state represen-
tation was derived to describe the state of an articulated vehicle which was used in
an Extended Kalman Filter. The states of the tractor and trailer were estimated
separately to gain full state knowledge of the articulated vehicle through the use of
clustering and existing state estimation techniques.

It was hard to quantify the performance of the articulated vehicle tracking algorithm.
In part due to limited test data, part due to challenges with how to define algorithm
performance. The complexity of the algorithm was ultimately limited to fit the scope
of the project. Thus trade-offs had to be made with some performance degradation
as a result. However, the presented approach still demonstrates it is able to track
some of the key kinematics of an articulated vehicle, indicating that the approach
may be feasible for tracking purposes although further research is needed.
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