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Effects of magnetic perturbations and radiation on the runaway avalanche
PONTUS SVENSSON

Department of Physics

Chalmers University of Technology

Abstract

Electron runaway is seen as one of the main threats to reliable operation of magnetic
confinement fusion reactors, and is an issue only predicted to worsen as reactors are
scaled up. The runaway phenomenon depends fundamentally on momentum space
dynamics, but to simulate large scale systems effective theories which depend only
on spatial quantities are often employed. In this thesis, we will address how a mo-
mentum space dependent diffusive transport, which appears as a consequence of
imperfect confining magnetic fields, can be incorporated into this type of model. A
scheme to correct the generation of runaway electrons due to this transport, which
incorporates the effect of radiation reaction forces, is proposed. The corrected gen-
eration of runaway electrons is formulated as a solution to an integral equation, for
which a numerical solver is implemented. The effect of the model is investigated for
diffusion coefficients inspired by electron diffusion in stochastic magnetic fields where
a reduced generation and a larger critical electric field for the runaway generation
is observed.
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Introduction

Plasmas are abundant in our universe, existing across orders of magnitude in temper-
ature and density. As much as 99% of all matter in the visible universe is estimated
to be in the plasma state [1], but here on earth it is relatively rare as a result of
the low temperature. Despite this, plasmas play a crucial role on earth, in natural
phenomena such as lightning [2] and auroras [3], as well as in man-made contexts
such as fluorescent lamps [4], laser-matter interactions [5] and attempts to achieve
controlled fusion [6].

A plasma is an ionised gas, which means it is a combination of negatively charged
electrons and positively charged ions. However, electrostatic forces prevent a build-
up of a net electric charge on large scales, that is the plasma is quasi-neutral, but the
small-scale dynamics is nevertheless dominated by the Coulomb interaction. The
Coulomb potential decays on a longer length scale than the corresponding poten-
tial for neutral atoms [7]. Consequently, the dynamics of plasmas are dominated
by grazing collisions, or small angle collisions, in which the particles only change
their momentum by a small fraction. This grants plasmas different properties from
neutral gases, the dynamics of which are dominated by large angle collisions. One
of these is the electron runaway phenomena. Contrary to gases [8], the friction
force between particles in a plasma is not monotonically increasing with velocity,
but rather has a maximum above which the friction force decreases [9, 10]. Hence
if an external force is applied to the plasma, the light electrons which experience a
net acceleration will gain energy, and so feel an even smaller friction. This results
in a continuous acceleration to relativistic energies, so-called "runaway”, until the
emission of electromagnetic radiation will act to limit the particle energies [11, 12].

Most investigations of the runaway dynamics have been focused on their genera-
tion, but here we will focus on how these energetic particles are transported in a
stochastic magnetic field. As a charged particle gyrates around a magnetic field line,
the electrons follow the magnetic field line on a large scale. Thus, in a stochastic
magnetic field the trajectories of runaway electrons generated close to one another
will diverge [13]. This spread is energy dependent and a simplified theory to account
for this transport was proposed by Helander et al. [14]. In this thesis we will build
on this framework to account for reaction forces caused by radiation from the light
emitted from the electrons and investigate the effect of different transport models
on the electron runaway.



1. Introduction

1.1 Magnetic confinement fusion and tokamaks

In a fusion process two nuclei, small compared to *°Fe, combine and release energy
previously stored as binding energy of the nuclei. As a means of generating energy,
fusion promises a large scale production, where the main process does not produce
greenhouse gases or long-lived radioactive waste, from materials which are plentiful
here on earth. In deuterium-deuterium fusion 100 000 kWh of energy is released for
every gram fused. Every ton of sea water contains 33g of deuterium making this an
essentially unlimited energy resource [15].

Fusion occurs in the collisions between two nuclei. Classically the kinetic energy of
the particles must exceed the Coulomb barrier between them; i.e. for two isotopes
of hydrogen with charge —e,

62

By > ~ few MeV, (1.1)

4meor
where r ~ 107%m is the radius of the nucleus and &y is the permittivity of free
space. However, quantum mechanical tunnelling results in resonance [16, 17] and
the fusion reaction between two deuterium nuclei will occur at temperatures of ap-
proximately 10 keV' [6] which is of the order of hundred millions of degrees. At
these temperatures, the hydrogen isotopes are in a plasma state.

Thus the question arises how the plasma should be confined to achieve desired
densities and reaction rates to sustain a hot enough plasma for a prolonged time.
The most common method in the universe, employed by stars, is to confine the
plasma in a gravitational well [18], but this method is not applicable here on earth.
An alternative approach is Magnetic Confinement Fusion (MCF) where one confines
the fusion plasma with the help of magnetic fields. A charged particle with mass
m and charge ¢, travelling in a constant magnetic field B, will trace out a helix
around the magnetic field line as a reaction to the Lorentz force. The radius of this
trajectory is the Larmor radius,

muv

= LB (1.2)

L
where v, is the velocity of the particle orthogonal to the magnetic field line. There-
fore the particle does not have an average velocity perpendicular to the field line
and is confined in these two directions, but still behaves like a free particle along
the field lines. A natural solution to prevent particles from escaping is to close the
magnetic field line in a torus. Two major design types based on this idea exist, the
stellarator [19] and the tokamak [6]. The tokamak has a toroidal symmetry but the
magnetic geometry of a stellarator is in general more complicated.

We will focus on the tokamak as only this reactor concept has a significant electron
runaway problem, due to its use of a toroidal plasma current to produce part of

'Following plasma physics convention we suppress the Boltzmann constant and describe tem-
peratures in terms of thermal energy.
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the magnetic field confining the plasma. The magnetic geometry of a tokamak
and coordinates on the torus are shown in figure 1.1a. The toroidal magnetic field
in a tokamak B, is roughly inversely proportional to the major radius of the torus,
B, ~ 1/R, resulting in a weaker magnetic field on the outside of the torus compared
to the inside [6]. The gradient of the magnetic field makes the motion of the particles
deviate from the pure Larmor motion and a vertical drift velocity is introduced [20]

_mw? BxVB
 2Bgq B2

vp (1.3)
This can be understood as an effect of the Larmor radius being smaller on the high
field side compared to the weak field side, the process is schematically described in
figure 1.1b%. As a consequence of the appearance of the charge ¢ in the drift velocity,
which is an effect of the asymmetry of the rotation direction of figure 1.1b, ions and
electrons will drift apart, creating a vertical electrostatic field. The electrostatic
force gF on the particle will inhibit the gyro motion on half the Larmor orbit and
aid it on the other half resulting in a drift towards the low field-side for both ions
and electrons. The ions and electrons both drift outwards as the charge dependence
of the force cancels the effect of the orientation of gyration. The resulting drift is
called the E x B-drift and the drift velocity is [20]

E x B
B2
To stabilise the plasma against these drifts, a poloidal magnetic field is induced by
driving a toroidal current in the plasma, the plasma current, I,. The combined
magnetic field lines have a helical structure around the torus, allowing the drift on

the low and high field side of the tokamak to average out.

(1.4)

VExB —

1.2 Disruptions and runaway generation

In a tokamak, so-called disruptions can occur, which are violent events where the
plasma loses a major part of its thermal energy to the wall; a plasma with a pre-
disruption temperature of tens of keV may cool down to just a few eV in a few
milliseconds [21]. This has dramatic implications on the electric conductivity of the
plasma, which scales as 72, where T is the plasma temperature [22]. Lenz and
Ohm'’s law combined then means that the electric field driving the plasma current
will rise dramatically during a disruption to maintain the current - an electric field
which may generate runaway electrons. This is ultimately why stellarators do not
have large amounts of runaway electrons, as they do not rely on a plasma current
to generate the poloidal component of the magnetic field, but rather use external
magnetic field coils - with the expense of a very complicated manufacturing process.

During a disruption in a tokamak the runaway electrons can form a beam in the
plasma. If the control of this beam is lost it will hit the inner wall of the ma-
chine and cause considerable damage to the plasma-facing components as a large

20ne should note that the so-called curvature drift also introduces a vertical drift which is
proportional to the square of the particle velocity along the field line.
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Current / Toroidal
(a) [ P Qb (b)

Figure 1.1: (a) Geometry and standard coordinates of a tokamak. Surfaces of
constant pressure in the plasma are shown together with a typical magnetic field
line. (b) Schematic representation of vertical drifts due to gradient in the magnetic
field. Solid line is the particle motion and the dashed circles are the Larmor orbits
on the low and high field side.

fraction of the plasma energy content can then be deposited into a small surface
area. Significant damage to the inner wall will of course lead to closure of the power
plant for repair. The danger of runaway electrons is greatly enhanced by knock-on
collisions between the runaway electrons and the thermal population of electrons.
After these collisions both runaway and bulk electron may have large enough energy
to run away, producing what is called an avalanche, where the runaway electrons
exponentially increase in number [23].

Runaways have been extensively studied on existing tokamaks, both in disruptions
and generated during steady state operation to assess their properties in detail. Fol-
lowing the initial phase of the disruption where the temperature drops - the thermal
quench - the ohmic current and the corresponding electric field dissipates while the
runaway electrons are formed - the current quench. When a runaway current is
formed, the last phase of the disruption - the runaway plateau - is reached where
the entire plasma current is carried by runaway electrons. The beam can be sus-
tained for a long time, as only a small electric field is sufficient to drive the current
[24]. Disruptions are also associated with large thermal loads on plasma facing
components and structural stress of the vacuum vessel surrounding the plasma. To
distribute the thermal load impurities, such as argon and neon, are often released
into the plasma, either as a gas or frozen pellets, to radiate thermal energy through
line radiation® [25]. Impurities with high charge number raise the collisional friction
experienced by the runaway electrons, which in principle should be able to reduce
their formation. However, a recent study suggests that impurity injection actually
increases the runaway generation, as a result of the increased number of target elec-
trons for the avalanche process [26].

3Originating from excitations of bound electron states.
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The largest tokamak to date, ITER [27], is currently under construction in France
and it is ongoing work to design the disruption mitigation system for the machine.
Electron runaway is seen as one of the main threats to ITER’s success, as the num-
ber of e-foldings in the avalanche increase drastically when a tokamak is scaled up to
ITER parameters from the ones under operation currently. This calls for accurate
models for the runaway generation and losses to ensure the design of a successful
disruption mitigation system [24, 28].

1.3 Outline

A description of the plasma resolved both kinetically, needed for the runaway prob-
lem, and spatially, needed to describe the plasma evolution, becomes unfeasible both
analytically and numerically. To describe the evolution of the disruption, simplified
fluid models for the runaway populations are often considered [29]. In these, the mo-
mentum space dynamics has been captured approximately, and an effective theory
only dependent on spatial quantities is used to describe the growth and loss of the
runaway population. The goal of this thesis is to present such a theory, describing an
effective rate of generation for runaway electrons which incorporates the effects of a
momentum space dependent spatial diffusion. The diffusion considered here would
originate from the motion of electrons in partially or fully perturbed magnetic fields,
which occur naturally after a disruption or may be induced by external magnetic
coils. These effective rates of generation can then be used in larger scale disruption
simulations to describe the transport of the runaway electrons.

The structure of this thesis is as follows. Chapter 2 explains the underlying theory
of the runaway generation, as well as the origin of the spatial diffusion. In chapter 3,
we present how the diffusion is incorporated into the fluid description of runaways
and the effect it has on the generation of runaway electrons. In chapter 4, we
will take a step back and and look at how the correction to the growth rate is
calculated for an arbitrary diffusion coefficient, as this process in practice relies on a
numerical algorithm. To begin to incorporate gradients of the electric field into the
theory, chapter 5 presents a perturbation treatment of the problem, which results
in a formulation of the problem of the same structure as that obtained in chapter 3.
This allows the problem to again be treated with the numerical methods presented
in chapter 4. The validity of this perturbation approach is investigated in chapter
5. Finally, the conclusion in chapter 6 summarises the key points of the thesis.
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Electron runaway and perturbed
magnetic fields

The theoretical background required to follow this thesis is provided in the following
chapter. Firstly, a general introduction to plasmas and how to describe electron
runaway is presented. This is followed by a description of the motion of a particle in
a magnetic field with perturbed field lines, which is the source of the spatial diffusion
whose effect on runaways is the focus of this thesis.

2.1 Plasma theory

Plasmas are colloquially known as the the fourth state of matter, after solid, liquid
and gas. As the individual constituents of the plasma are charged particles, it ac-
quires unique properties which are used to define it [20]:

A plasma is a quasi-neutral gas consisting of charged and
neutral particles exhibiting collective behaviour.

Quasi-neutrality is the property that despite the fact that a plasma consists of
individually charged particles, on a large scale the plasma relaxes to a state where
there is no net charge density, i.e p = Y, qana =~ 0, where the index a runs over
all the species in the system with charge ¢, and density n,. Large scale in this
context is compared to the Debye length, which for a plasma of temperature T
is Ap = y/eoT/n.e?. The Debye length is the length scale on which the electric
field is exponentially suppressed by screening from the other charges in the system.
Concretely the electrostatic potential from a charge ¢ in a plasma where the electrons
have had time to relax is [30]

q —r/AD
r)=-—-e ) 2.1
o) = 21)
For this collective screening to occur, the number of particles within a Debye sphere,

a sphere with radius \p, should be large, 4mn.\3,/3 > 1.

A detailed microscopic description of a plasma consisting of N-particles would re-
quire following the evolution of the system in the 6/N-dimensional phase space,
and coupling the dynamics with the electric and magnetic fields through Maxwell’s
equations. Almost by definition a plasma consists of many particles, making such a
detailed description unfeasible both for analytical and numerical progress. Instead

7



2. Electron runaway and perturbed magnetic fields

we will work in a statistical description, where the phase space density of particles is
the object of consideration. The equation of motion for such an object is the focus
of the rest of this chapter.

2.1.1 Kinetic and fluid description

To describe a plasma we use the distribution function f, (¢, x, p) of a species a, which
is the phase space density of the particles at time ¢, position & with momentum p,
normalised such that the spatial density of particles is n,(t, ) = [ &p f.(t, x, p).
To conserve particle number, particles can only be lost from a phase space volume
through its boundary, resulting in continuity equations [31],

@_8fa+v_8fa Ofa _
op

+ ¢ (E+vxB)- 0 (2.2)

dt Ot ox
which allow for particle acceleration by an electric field E and magnetic field B due
to the Lorentz force. The particle velocity v is related to the momentum coordinate
by p = m,v/(/1 — v?/c? and c is the speed of light. The electric and magnetic fields
depend on the distribution function through the Maxwell equations, as the charge
p and current 7 densities are related to the distribution function by

p(t,iﬂ) - ZQa/dgp fa(tvwap)

(2.3)

jt,x) = an/d?’p vf.(t,z,p).
In the absence of collisions equation (2.2) is called the Viasov equation. Then E
and B should be seen as large scale electric fields and not as rapidly fluctuating on
the microscopic scale. To incorporate the effects of collisions, the Vlasov equation is
modified by adding a collision operator C'{f,} on the right hand side of the equation
[32] - we will return to this in the following section. The equation describing the
evolution of f, is commonly referred to as the kinetic equation.

The charge and current density are examples of what are called fluid quantities -
the momentum space dependence has been integrated out. When the evolution of
a system can be cast in terms of fluid quantities, instead of following the full distri-
bution function, the computational cost is significantly lower, and such models can
often be used to simulate large scale system evolution. The moments of the kinetic
equation result in a coupled set of differential equations for the fluid quantities, one
set for each species. In table 2.1 some of the lower velocity moments of the distri-
bution function are shown, and in general all fluid quantities can be derived from
the distribution function.

A further reduction often used to study the evolution of the magnetic field is obtained
by combining the evolution equations for a given moment of each fluid into a single
one. In this magnetohydrodynamic (MHD) description [33], centre of mass quantities
of the fluids are considered and their coupling to the electromagnetic fields. The

8
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Table 2.1: Lower order fluid moments of the distribution function where w = v—-V
is the particle random velocity and V' is mean flow velocity.

Description Definition

Density n = [dp f(t,x,p)
Flow velocity V =1 [d*pvf(t,x,p)

Temperature T == [d®p m7w2f(t, T, p)
Heat flux q =/dp mewa<t7w7p)
Pressure P = [d*p mwwf(t,z,p)

magnetic equilibrium, for example of a tokamak, follows from the MHD equilibrium
equations as

VP=jxB (Force balance) (2.4a)
V x B = ugj (Ampere’s law) (2.4Db)
V-B=0 (Solenoidality) (2.4¢)

where P is the (isotropic) pressure of the combined fluid [20]. The magnetic field
structure in tokamaks will be further discussed in section 2.3.

2.1.2 Collisions and the kinetic equation

A formal treatment of plasma particle collisions can be derived from the Liouville
theorem of Hamiltonian dynamics, concluding in the BBGKY hierarchy [34]. Such
a formal treatment is not necessary for the work conducted in this thesis and we will
be satisfied by a more heuristic approach to introduce the collision operator, which
is commonly applied [35]. The Vlasov equation (2.2) describes the conservation of
particles if one follows a phase space volume and therefore the collision operator
should describe how particles are scattered out of it. If F'(p, Ap) is the probability
that a particle with momentum p will change its momentum by Ap in a time At
due to collisions, the evolution of the distribution function is

fpt+ A1) = [dAp F(p— Ap, Ap)f(p— Ap.t) (25)

In plasmas where small angle collisions dominate, we expand F' to second order in
Ap, which results in a time evolution, a collision operator, of the form

Advection Diffusion

characterised by the first and second Ap moments of the probability distribution
F. This is the so-called Fokker-Planck collision operator (written for simplicity in
one momentum dimension) and takes the form of a combination of advection and a
diffusion in momentum space.
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We will not present a full derivation of the collision operator here, for such we refer
the reader to [35], but rather we will state the results. For non-relativistic electrons,
described by a distribution function f, colliding with a species a with charge Z,e,
mass m, and density n,, which has a Maxwellian velocity distribution of temperature
T,, the resulting collision operator is

Cl 1) =2 (1) + et (g el ) @)

v2 Ov Me + My ov

and the combined effect of collisions with multiple species is obtained by summing
the contribution from the individual species, C{f} = >, Cu{f, fo}. The frequencies
in the collision operator are defined as

erf (v/vra) — 9 (v/vry)

Up = Ve 3 (Deflection frequency) (2.8a)
(v/vre)
2Te a g a .
Vs = Deg (1 + ) 4 (v/vra) (Slowing-down frequency) (2.8b)
Ta me U/UTe
4 a
Y= 2196a1()v/7/j:) (Parallel diffusion frequency) (2.8¢)
A
Deq = Zfﬁl:lrsgmgv%e (Thermal collision frequency) (2.8d)

where vr, and vy, are the thermal velocities of a and the electrons!, vp, = /2T, /m,
and In A = In (47A%n.) is the Coulomb logarithm, which characterises the effect
of a screened electric field on longer distances then Ap. Typical values for the
Coulomb logarithm for fusion plasmas are in the range of 10 — 20. The function

G(x) = %7"”;&/(:”) is the Chandrasekhar function? and the operator £ is the
Lorentz scattering operator
10 o 1 1 02
L=-—(1-)=+= — 2.9
zag( 5)ag+21—52a¢2 (29)

which describes diffusion on a sphere of constant p in momentum space. When
discussing dynamics in a magnetic field one often introduces a spherical coordinate
system for the momentum (p, £, @) where the "z-axis” is aligned with the magnetic
field. The magnitude of the momentum is p, the cosine of the polar angle, also
known as the pitch angle®, is & = cos# = p;/p and ¢ is the azimuthal angle or
gyro angle. From now on all quantities with the subscript || are components along
the magnetic field line and those with L are perpendicular to it. Note that, when
there is no parameter variation on scales shorter than the gyroradius, we can often
simply average over the gyro angle dependence of the kinetic equation, as it will just
describe the gyration around the magnetic field line.

Tt is not necessary to introduce an electron temperature T, as it cancels and the electron does

not need to be in thermal equilibrium.
*The function erf(z) is the error function defined as erf (z) = 2 [ eV dy.

3Here 6 is not to be confused with the poloidal angle in a tokamak, defined in figure 1.1a.

10
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Friction force

1
1
1
1
1
1
1
i

VT Ve C

Velocity

Figure 2.1: Illustration of the friction force in plasma as a function of electron
velocity. The friction force has a maximum close to the thermal velocity vr. and is
a decreasing function with high velocities at large energies. If an electric field E is
applied to the plasma along the magnetic field line, electrons with a larger velocity
than v, will experience a net acceleration and run away.

The effective friction in the system follows from equation (2.7), proportional to
s x 4 (v/vpe) — 0.5 v3,/v? when v > vy,. This is the origin of the electron
runaway, as the friction force decreases at higher velocities as shown in figure 2.1.
The momentum at which an electric field along the magnetic field line balances the
friction is called the critical momentum p., above which electrons run away. The
Dreicer field 36, 37],

_ nee’InA

En = 2.10
P ArelT, (2.10)

sets the scale at which the electric field overcomes the internal friction, and all of the
population will run away, slide-away, when the electric field exceeds max,{¥4(z)Ep} ~
0.2Ep [38].

For the runaway electrons we need a relativistic collision operator due to their large
energy - comparatively all other particles can be seen as stationary, T, < m.c?.
Using a momentum coordinate p which is normalised to m.c such that the y-factor

is v = /1 + p?, the collision operator takes the form [35]

CUY = (1) + 5 (). @2.11)

Ip
where v, is dominated by electron-electron collisions but vp has significant con-
tributions from both the electrons and ions in the plasma. The characteristic
time scale in the problem is now the relativistic collision time between electrons
T = 4reim?c® /n.et In A, where In A, is the relativistic Coulomb logarithm, In A, =
In A+ 0.51n (m.c?/T). The relativistic generalisations for v; and vp are, in units of
1

11
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_ T
Up = EVD
2.12
Vs = lzﬂ ( )
S p3 S

where for the case of fully ionised ions vs = 1 and vp = 1+ Zeg [39]. As already
could be noted from equation (2.8a), the deflection coefficient is not dependent on
the ion mass but just the square of its charge, and therefore multiple ion species act
as a single ion species with an effective charge Zeg = -, 2 Z 2. The parallel diffusion
in momentum space is a consequence of the finite thermal speed, which is neglected
in the super-thermal limit, v > vp,.

Whereas the friction in the non-relativistic case tends to zero for large velocities,
the friction force for the relativistic collision operator (2.11) saturates as 7 — oo
to mecvs, which sets a lower limit for the required electric field along a magnetic
field line to generate runaway electrons. This lower limit in a fully ionised plasma
is called the critical electric field [40]

meC T

~
~

er MeC?

E. = Ep. (2.13)

The two electric fields, Ep and E,., concern different energy scales, the thermal and
relativistic scales, and govern two different aspects of the runaway problem, primary
and secondary generation, which will be described further on in section 2.2.

Some recent developments have incorporated the effects of partially ionised ions
in the plasma, which result in a screening of the full charge of the nucleus. The
screening acts differently depending on the energy scale, as a relativistic electron
may penetrate the cloud of bound electrons and "feel” a larger charge compared to
low energy electrons, which are only influenced by the net charge of the ion. The
effects are incorporated by generalising v and v, for relativistic electrons to [41, 42]

_ 1 Mg, 9 9 _ 2 2} Inp Na o
o~ Tt o 2 [(Z Z,) na, - N P Sz (214

vy~ 1+

1 Ng _ In Ng

v Z N, (" = 1)+ 1n]/9\c (1 +3 Z n@]\@) (2.14b)
or with the notation vp ~ vpg + vpy Inp and vy = vy + Vg Inp. These collision fre-
quencies now depend on atomic parameters of species a: Zj, ionisation degree, Z,
atomic number, N, = Z, — Zy, electron number, I, mean excitation energy and the
effective ion size a, determined from density functional theory (DFT) calculations
[41]. The effect of partially ionised ions in the plasma will influence the runaway
generation as well as increase the critical electric field.
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2. Electron runaway and perturbed magnetic fields

2.1.3 Radiation reaction forces

An accelerated charge, which an electron circulating around a magnetic field line
most definitely is, will emit electromagnetic radiation which itself carries a momen-
tum. A radiation reaction force is thus needed to act on the charge to enforce
conservation of total momentum. This force will alter the motion of the particles
and must be accounted for in the time evolution of the distribution function by the
addition of source terms to the kinetic equation (2.2).

There are two main types of radiation losses to account for, synchrotron radiation
and bremsstrahlung. For relativistic particles the head light effect directs this radi-
ation predominantly in the forward direction of the electron orbit [43], resulting in a
reaction force. The term in the kinetic equation resulting from this force is [12, 44]

d _ iﬁ P’y ) 2 5(1_52)
% (Fynf) = _p2 o ( (1 § )f) + o¢ <Tsyn7 f) (2.15)

Tsyn

where 7y, is the synchrotron radiation-damping time scale, which in units of 7 is

6regmsc

Toyn = ——m5—- 2.16

Y Tet B2 (2.16)
The synchrotron radiation primarily has a slowing down effect, which is maximised
when £ = 0 i.e. when the electron is just circulating around the field line.

The effects of bremsstrahlung can be treated with the Boltzmann operator, taking
the form of an integral operator over the distribution function and the differential
cross section for the bremsstrahlung. Based on the simplified form factor presented
in Ref. [41], the effects of bremsstrahlung are incorporated into the kinetic equation
by the term [45]

0 10

= (Finf) = = — (1Fi 217

o Borl) = =55 (PPl (2.17)
where Fy, is approximated by

Na

B, ~ 2(0.3540.201Inp) = p (Ppro + o1 Inp) (2.18)

In A

and « is the fine structure constant.

Altogether we now have a gyro averaged kinetic equation following from equation
(2.2) of the form

0 0 _
a{ % [<—§E+pVS+Fbr+ pzn (1—52)> f]

9 Bo 1 0f\_c0-g);
afwff)ﬁhf D%) — 4’

where E the electric field along the magnetic field line is normalised to E. and
f = 2mp?f is the distribution function multiplied by the measure in momentum-
space after integration over the gyro-angle. This is almost the complete kinetic

(2.19)
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2. Electron runaway and perturbed magnetic fields

equation which we will work with. In section 2.3 we will add the new part, effects
of spatial diffusion due to perturbed magnetic fields, but first we will consider the
rates of runaway electron generation without influence of spatial diffusion.

2.2 Runaway electron generation

The first person to describe the runaway phenomena was C.T.R. Wilson in the early
20th century, when he analysed (-particles in a strong electrostatic field motivated
by his investigation of thunderclouds [46, 47]. But the first to use the term "run-
away’ was the English astronomer and physicist Eddington, in his The Internal
Constitution of the Stars from 1926 [48]. Dreicer in 1959 was the first with a more
rigorous treatment, when the total friction between two Maxwellian populations was
considered [36]. He concluded, for electric fields of the order of Ep, all the electrons
would run away towards infinite energies.

Most of the early investigations of runaway electrons considered how momentum
space diffusion feeds the runaway region with electrons, from which they run away
towards relativistic energies. This process we now call primary or Dreicer generation.
Kruskal and Bernstein in 1964 were the first to properly solve the kinetic equation,
by finding the solution in five different velocity regions and then asymptotically
matching the solutions in these different regions [49]. As well as providing the
velocity distribution function, this solution gave the rate of runaway production.
However this theory was still not relativistic and arbitrarily small electric fields
could generate the runaway. In 1975, Connor and Hastie presented a relativistic
generalisation of the calculation, which introduced the critical electric field E.. The
relativistically correct runaway generation rate was found to be [40]

Ep \/ (1+ Zez) Ep |

anRE n(:‘ E _%(1+Zeﬂ)h
=C <> —A—= — , (2.20
( at )Primary ﬁe_el ED o 4E b ( )
where

E\? 1E, E.

o(E) [ R

E. 2 F E

E? 2E.\1?

n E — arcsin <1 T ﬂ (2.21)

1
" 4E,(E-E,)
1

EC E E E Zeﬁ
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and C' is a undetermined constant of order unity. The dominant scaling in equation
(2.20) is exp (—Ep/4FE), thus the primary generation rate is exponentially sensitive
to temperature and the relevant scale for the electric fields is the Dreicer field.

Existing runaway electrons have a tendency to multiply through the avalanche me-
chanics. This secondary generation is a result of a knock-on collision between a
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2. Electron runaway and perturbed magnetic fields

Cay v. Runaway region
v

Figure 2.2: Illustration of primary (solid arrow) and secondary (dashed arrow)
generation of runaway electrons. Primary generation is a result of momentum space
diffusion due to collisions resulting in particles diffusing into the runaway region.
Secondary generation occurs in large angle collisions between a thermal electron (a
dot in the illustration) and a runaway electron, such that after the collision both
the electrons run away.

runaway electron and a thermal one, resulting in both electrons ending up in the
runaway region after the collision [50, 51]. In knock-on collisions the trajectory of
the runaway electron is not significantly deflected, but the change in momentum
space of the thermal electron is characterised by the source term of the avalanche
mechanics [23],

NRE 10 1
Spaa = ——0W(E - &)= — [ ——— |, 2.22
=t e v (2:22)
where &5 is the pitch angle of the secondary electron, determined by energy conser-
vation to be & = 3—;} and here v is the Lorentz factor. Two main characteristics

should be noted. Firstly, the source term is proportional to the current number
of runaway electrons ngrg, giving rise to the exponential growth of the avalanche.
Secondly, the characteristic time scale is significantly longer than the collision time,
as it is a factor of In A longer. A solution of the kinetic equation with this source
term resulted in a growth rate, interpolated between solutions in several different
regions of parameter space, of [23]

i QnRE . 1 s <E _ 1)
7 NRE ot Ava n TInAY 3 (Zeﬂ' + 5) EC

| _E AT (1 + Zeg)? -
: ( " E  3(Zs+5) (EQ/E§+3)>

in the limit of large aspect ratio, where the effect of the toroidal geometry of a toka-
mak has been neglected. Both the primary and secondary generation is schematically
illustrated in figure 2.2.

(2.23)

N

)
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2. Electron runaway and perturbed magnetic fields

The avalanche growth is sensitive to the electric field strength and consequently the
number of runaways generated depends on the evolution of the electric field after
the disruption. The time derivative of Ampere’s law, in a source free environment
and where the displacement current is neglected, results in an inductive equation
for the electric field strength along the magnetic field line [29],

9j
V2E = “OaTH' (2.24)

To perform a zero dimensional analysis of a cylindrical plasma with toroidal and
poloidal symmetry, we introduce a characteristic radial length scale A, and replace
V2E) = —E;/A? as well as I = 2rA?j)|, where [ is the total current. If the runaway
generation is small enough to not significantly impact the electric field evolution,
the current is primarily ohmic, I ~ 2rA?¢0E), with the plasma conductivity o,
resulting in an exponential decay of the electric field strength with a time constant
tcg = oA?c. For such a time evolution the number of e-foldings for the avalanche,
based on a large E approximation of (2.23) is,

/Oodt ~/°°dt £ _ 2 Ly (2.25)
o T e B F ZarE.nA B+ Zglaln A’ '

where [4 = dmmec/ppe =~ 17kA is the Alfvén current. So the number of generated
runaway electrons increases with the plasma current I, in the exponent, predicting a
drastic increase as tokamaks are scaled up. It should be noted though that for large
tokamaks the effect of runaways cannot be neglected in the electric field evolution,
and the runaway current is limited by the plasma current.

Bound electrons and screening effects will influence the avalanche growth rate and
developments in the last years have shown that the avalanche growth rate in the
presence of partially ionised ions is well described by [26]

o/, 1 E — Egtred
Tln A, \/4 + Up(px)Vs(Px) Ee |
tot

where n'°! is the total density of bound and free electrons and E°® 4 is the new
critical electrical field described in Ref. [39]. The momentum py is determined
implicitly by the equation

g (2.26)

4/ = —

e — Up (P ) Vs (Px) (2.27)
E/E,

and acts as an effective critical momentum above which electrons run away.
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2. Electron runaway and perturbed magnetic fields

2.3 Electrons in a perturbed magnetic field

In MCF, the plasma is confined by a magnetic field allowing for a temperature
gradient from a hot core to the cold edge of the plasma. For a plasma in equilibrium
this is equivalent to a pressure gradient V P, and the magnetic structure is therefore
determined by the force balance between the pressure and electromagnetic force,
described by (2.4a). Accordingly the magnetic field lines must lie on surfaces of
constant pressure, as

B-VP=0. (2.28)

For such a system to be spatially bounded, the surfaces of constant pressure need
to be topologically equivalent to tori [52]. The fundamental magnetic geometry of
a tokamak or stellarator is to have such surfaces nested around each other.

In a perturbed magnetic field structure, a so-called magnetic island can be formed,
which is a separate pressure surface, isolated from the rest of the plasma, in the
shape of a closed tube. When the perturbation grows, the size of the island grows
with it and as islands centered on different magnetic surfaces start to overlap, the
magnetic field lines become stochastic [53]. A stochastic field is where a single field
line comes arbitrarily close to all points in some region [52]. In the following sections,
2.3.1 to 2.3.3, we will discuss the motion of electrons in these stochastic magnetic
fields, where the effective radial transport will be described by a diffusive process.

2.3.1 Experimental evidence of runaway transport

Stochastic fields are thought to occur naturally in the early stages of the disruption,
as a result of the effects of instabilities which initiate the disruption. Simulations
based on the MHD-equations with the JOREK code, have indeed shown largely
stochastic magnetic fields in the initial phases of the disruption [54]. However, the
flux surfaces can partially or fully heal, which led to the idea of externally influenc-
ing the field to enhance the effect.

Resonant Magnetic Perturbation (RMP) is a method to generate perturbations of
the magnetic field by the means of external magnetic field coils. During a disrup-
tion this is with the intention to increase transport and hinder the avalanche growth
of runaway electrons. The method has been tested in smaller tokamaks, JT-60U
[55] and TEXTOR [56], and for sufficient perturbation of the magnetic field run-
aways are absent from the disruption. The required magnitude of the pertubation
was found to be on the order of §B/B ~ 1073. The hypothesis is that particles
are transported out of the machine before they have had time to multiply by the
avalanche mechanism.

Investigations with RMPs on the larger JET tokamak, have not had the same success
- no significant effects on the runaway generation have been observed [57]. How
large the ergodic regions of the magnetic fields were in these experiments could
not be determined directly experimentally, but numerical calculations suggest that
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2. Electron runaway and perturbed magnetic fields

there was quite a small overlap between islands, which could be an explanation of
the limited effect seen in [57], as large-scale ergodic regions would not be formed.
Numerical investigations of the intended ITER RMP system have shown that the
runaway electrons in the core would be well confined, but with perturbations of the
order 0B/B 2 1072 runaway electrons in the outer regions of the plasma will be
rapidly lost [58, 59].

2.3.2 Particles following perturbed field lines

The light electrons will in general follow the magnetic field lines as a result of the
Lorentz force. Some basic understanding of the transport of particles in a stochastic
field can therefore be gained just by following the magnetic field lines. It is such a
model for the transport we will consider in this section.

The original treatment of transport resulting from perturbed magnetic field lines
was introduced by Rechester and Rosenbluth in a cylindrical geometry [13]. They
considered the effect of magnetic perturbations arising due to overlapping magnetic
islands. A plasma cylinder of length 27 R with periodic boundary conditions, was
considered to mimic a torus with major radius R. In the cylindrical coordinate
system (7,6, z) the magnetic field takes the form B = B,2 4 By(r)d + 6B, where
B, and By are the toroidal and poloidal magnetic field components and 6B is
the perturbation. For the boundary condition to be satisfied, the perturbation is
expanded in a Fourier series as [13],

{B=>" by (r)e M0 R) e (2.29)

m,n

Consider a small area at a constant 2z, which is mapped along the magnetic field
line some distance to z;. This mapping is area preserving, as V - B = 0, but the
trajectories of the magnetic field lines will generally diverge, resulting in a shape
with a large amount of detail, a process commonly known as magnetic braiding [13].
An example of this process is shown in figure 2.3. This process in a stochastic
magnetic field was shown by Refs. [60, 61] to result in a diffusive process described
by the diffusion coefficient

(A b 1) ( m
i T TRE T 5“( >‘”> (230

Dy (r) = e

where ((Ar)?) is the mean square displacement of the trajectories and L is the
length propagated along z. The safety factor ¢(r) is the number of toroidal turns a
magnetic field line makes for every poloidal turn.

This mapping is fully deterministic and to obtain a physical diffusion coefficient it
should be multiplied with a speed along the field line [13]. This transport is fun-
damentally based on the length propagated along the field line and so this effect
saturates as v — ¢ in the relativistic limit.
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2. Electron runaway and perturbed magnetic fields

Figure 2.3: Different stages of the magnetic braiding. The initial area in a toroidal
plane (a), and how this is mapped along the magnetic field lines to two other toroidal
planes, first (b) and then further to (c).

The essence of the treatment above was later generalised to provide a description of
radial transport in a perturbed field of arbitrary origin and toroidal geometry [62].
Following the above, the radial velocity of particles following magnetic field lines
was considered to be vg ~ v 0B, /B, where 0B, is the root mean square of the
radial perturbation of the magnetic field. The correlation time was taken to be due
to moving a particle through the poloidal mode structure, 7 = X /v ~ mqR/vy,
where the parallel connection length A\ ~ mgR is taken as a simple approximation
to the parallel correlation length. This may be expected to give an overestimate
for compact poloidal mode structures, but an additional effect that may be more
important is discussed in the next section. In the limit of small Kubo numbers [63]
(the particle is decorrelated due to its parallel motion and not its radial one) the
diffusion coefficient is therefore approximately

0B, (r 2
D(r) = U%TH = mqR < B( )) vy, (2.31)
which is the low energy dependence of the diffusion coefficients we will investigate
in this thesis. In the high energy limit, orbit averaging effects are believed to be
important and are discussed in the following section.

2.3.3 Orbit averaging

The transport outlined above in section 2.3.2 is known to overestimate the transport
[64], but it was pointed out in Refs. [65-67] that the effect of finite Larmor radius
as well as toroidal drift would reduce the diffusive transport. The basic idea is that
the Larmor orbit and the drift orbit mean that the actual particle is circulating at
a distance around the field line and effectively sees an average perturbation in the
region, reducing the transport. The width of the drift orbits and Larmor orbits
are related to the momentum of the particles, and continue to grow for relativistic
energies, in contrast to the parallel streaming discussed in the section above. This
difference in the relativistic generalisation suggests a maximal transport in the in-
termediate energy range.

As a result of the drift orbit width increasing linearly with the particle momentum,
Ref. [62] observed a diffusion coefficient proportional to the inverse electron energy,
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2. Electron runaway and perturbed magnetic fields

ie. (1+ p2)71/ ? for electron energies above 1 MeV in a perturbed magnetic field
resulting from micro turbulence. The Larmor orbit becomes important if the gyro
radius is comparable to the perpendicular magnetic correlation length, A, * as the
orbit is no longer within a correlated region of the magnetic field perturbation. Ref.
[68] showed that this effect becomes important, resulting in reduced transport, when

rr, > 0.36A . (232)

The transport gains an extra factor of inverse energy in the high energy region [62],
resulting in a total scaling of the diffusion constant (1 + p?)” .

These diffusion coefficients now need to be introduced into the kinetic equation
(2.19). We will work in the approximation that the toroidal geometry can be treated
as a cylinder with toroidal symmetry. Furthermore we will only consider radial
variations and not variation in the poloidal plane, assuming most plasma quantities
remain almost independent of poloidal angle. The radial diffusion operator is added
to the kinetic equation (2.19), resulting in

28 (w200
syn_ _ (2.33)
19 N(_Ez 1 Of\ €= 10 0f
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In the following chapter, we will propose a theory defining how the runaway avalanche
growth rate without any effect of diffusion, 7,, can be corrected to account for this
effect. The corrected growth rate, v, will be considered both when radiative effects
are excluded, 3.1, and included, 3.2, for a general phase space-dependent diffusion
coefficient D(p). The corrections to the growth rate are discussed specifically for a
diffusion coefficient inversely proportional to the particle momentum at high ener-
gies, in sections 3.4 and 3.5.1 as it allows a closed analytic form to be developed.
In section 3.4 the effects of radiation on such a model are of particular interest.
In section 3.5.2 the effects of models inspired by this section and 2.3.2 are consid-
ered to account for non-relativistic velocities and orbit averaging of the magnetic
perturbation.

4The magnetic correlatiQOIl 2length is defined as the length scale of the correlation function
(6B (x)6By (x +0)) ~ e % /21 where 6B, is the radial perturbation of the magnetic field.
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3

Reduction of avalanche growth
rate by radial diffusion

The generation of runaway electrons tends to occur primarily in the central regions
of the tokamak, in the hot region of the pre-disruption plasma, where the majority of
the plasma current is driven. Diffusive transport will tend to move particles radially
outwards towards the wall, spreading the runaways and inhibiting a localised build-
up. When a runaway electron passes the last closed flux surface it will be on a
trajectory towards the wall of the tokamak, where it will be lost from the plasma.
Diffusion due to magnetic perturbations, arising or applied during a disruption,
thus offers a potential runaway mitigation scheme. A finite diffusion could allow for
a sufficiently small and spatially distributed flux of electrons to the wall without
causing damage to the wall, whilst also inhibiting the avalanche, as the electrons
will be lost before they have had time to multiply.

3.1 Growth rate correction without radiative ef-
fects

The effect of diffusion on the avalanche growth rate was first considered by Helander
et al. [14]. We will present a summarised version of the calculation with some gen-
eralisations in this section, as it forms a crucial basis for the work presented in this
thesis. To begin with, as was the case in Ref. [14], we will not consider terms cor-
responding to synchrotron and/or bremsstrahlung in the kinetic equation or spatial
variations of either the electric field and/or the diffusion coefficient. These will be
discussed in sections 3.2 and 5.1, respectively.

The appearance of the diffusion term in the kinetic equation adds another dimension
to the problem, a radial one, compared to the ”"standard” growth rate calculation
[23, 51]. Instead of solving the full problem, we will find an approximate solution
with the aid of a separation of time scales. The avalanche generates secondary elec-
trons with momentum rather close to p,' and the time scale for an electron to be
accelerated from this region up to relativistic momenta is Toee ~ mec/el) = 7/E
if the electric field is measured in units of E.. The time scale of the avalanche
growth is significantly longer, namely 7! ~ In A 7,... Thus if one has transport

1The avalanche source term is -5 -2 —1— ~ p% for low momenta, and therefore does not extend

. . p? Op v—1
far into the runaway region.
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3. Reduction of avalanche growth rate by radial diffusion

time scales significantly longer than the acceleration time scale, the diffusion will not
be strong enough to alter the generation process, but may still hinder the avalanche.

To this end the momentum space is divided into a low energy region, p < p,, where
all the runaway generation occurs and the effects of diffusion are neglected, and a
high energy region, p > p,, where all the spatial diffusion takes place. The high
energy region is fed with electrons from the low energy region and not directly from
a source term (which is only present in the low energy region). Runaway electrons
often have small pitch-angles, £ =~ 1 and therefore the collision operator is expanded
assuming p, < pj|. The expansion of the terms of the kinetic equation involving
pitch-angle derivatives are:

10
2 0€

of _pi o0  Of
1-&) 2~ +0

( § )85 ML GprL N (f)
21 — &2 N ( 0 p O ) ﬁ
o p p?
where for the ordering we have assumed 0f /Opy ~ f/p; and 0f/0p. ~ f/p.. Thus

integrating the collision operator over momentum perpendicular to the magnetic
field line annihilates the leading term of (3.1) and results in

(3.1)

o pLOp. f~O(f),

o0 1 0 10
dpy 2rp C(f) = [ dp 2mp——(1+p*)f~=—F+O(f/p° 3.2
J)dp2mp O = [ dpy 21— 2 (15 f o F 4O /), - (32)
where only the leading order term in p is kept in the high energy region. The
distribution function integrated over perpendicular momenta F' has been introduced
and is defined as

F= / Pp, f = /0 “dp, 27p, . (3.3)

Integrating the kinetic equation (2.33) gives the rate of change of F' in the high

energy region as
oF oF 10 oF

T + (E — 1)a—p = T;ErD(p)E, (3.4)
where the diffusion coefficient for particles travelling purely along the magnetic field
line is used to first order. This is the same time evolution equation as equation (12)
in Ref. [14]. As the boundary condition is set by the avalanche mechanics at low
momenta, where the effect of diffusion has been neglected, the flux of particles into
the high energy region should be v,nrg. Here 7, is the growth rate without the
diffusion and ngg is the spatial density of runaway electrons. As equation (3.4) is
an advection equation without the presence of the diffusion, the boundary condition
is?

TV TV [
F(p,) = = — dp F, 3.5

(ps) E_1RET o . p (3.5)
which is not a typical boundary condition as the lower boundary in p is dependent
on the solution in the whole region. Equation (3.4) may be solved if we use that
the zeroth order Bessel modes Jy(k;r), with k; = b;/a and b; zeros to Jy(x), are

2Consider an advection equation % + % (v(x)y) = 0, the flow through a given point x is v(x)y.
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3. Reduction of avalanche growth rate by radial diffusion

eigenfunctions of the diffusion operator and form a basis set on the radial space
with boundary condition %71:|T:0 =0 and F(a) = 0 (corresponding to an absorbing
wall at r = a) with measure 27rdr [69]. Further if it is assumed that every mode is
in quasi-steady state, i.e. is only scaled in time, the momentum part of the equation
can be solved by the method of integrating factor and the solution can be written
as .
d T (P g (~ k2 ’
F(p,rt) = 3. cido(kgr)e ™1 o, W itkDE0) (3.6)
i=1
where the coefficients {c; };-, are determined by the initial condition and the growth
rate of the modes v; should be determined by the boundary condition.

In Ref. [14], only a single Bessel mode of the runaway electron density was consid-
ered, ¢ = 1, which will be the least suppressed modes as higher mode numbers have a
smaller characteristic length scale of variations and therefore will experience a larger
diffusion. This corresponds to a conservative estimate of the effect of transport on
the runaway dynamics. Here we choose to retain all of the modes, allowing us to
propagate the profile in time. As a consequence of the orthogonality of the Bessel
modes the boundary condition can be projected on each separated mode, decoupling
the modes from one another. The equation for ~; then follows from equation (3.5)
o T [ T P

25 [ e (— 7 [ i D0 (37)
The solution to this will be considered starting in section 3.3. Before we investigate
the structure of this integral equation we will generalise this treatment of spatial
diffusion in the kinetic equation to include radiation reaction forces, which were not
considered in Ref. [14].

1=

3.2 Growth rate correction with radiative effects
and finite pitch-angle

The synchrotron radiation reaction force is strongly dependent on the momentum
perpendicular to the magnetic field line as it is a consequence of the gyration around
the field line. Therefore the p,-dependence of the distribution function is no longer
trivial to handle, as was done above in section 3.1, in a model where the effect of
synchrotron radiation is included. Radiative effects are important close to the critical
electric field where the acceleration from the electric field is close to being balanced
by the radiation reaction forces, making the dynamics in the energy direction of
momentum space comparatively slow. Therefore, as earlier done in Ref. [39, 70, 71]
we will consider the pitch-angle dynamics to be a rapid process compared to the
dynamics in energy. Thus we have an equilibrium in the pitch-angle distribution for
a given p, requiring that the pitch-angle flux of particles vanishes. The condition
for the pitch-angle flux to vanish follows from the kinetic equation (2.19) as

_ of —£2) _
0=(1-¢) <—ff+;upa‘£> —g(isynj)f. (3.8)
=0 neglected
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3. Reduction of avalanche growth rate by radial diffusion

Since Ty > 1 we do not consider the effect of the synchrotron radiation on the
pitch-angle distribution but rather just a balance between diffusive transport of the
pitch-angle scattering and the collimating effect of the electric field. This approxi-
mation is strictly speaking only valid close to the point where the radiation balances
the acceleration of the electric field, as the particle flux in the energy direction is
otherwise important for the pitch distribution. As we later will observe, it is only
close to the effective critical electric field, when this approximation is valid, that the
radiative corrections will have a major influence, otherwise the electric field domi-
nates the problem. Following from these conditions the distribution function may
be written as

f=F(r,p, t)ZSi:}ll(({){?(p))(EA(p)g’ (3.9)

where A(p) = 2F/pvp determines the extent of the distribution function in &. For
large p, vp scales as 1/p? and consequently the pitch-angle distribution becomes
narrow in this limit as A o« p, in agreement with the assumptions of section 3.1.

By performing the integration of the kinetic equation over pitch-angle a reduced
kinetic equation is obtained

oF 190 10 oF
ET Top (U(p)F) = *@ND%E: (3.10)

where the pitch averaged acceleration force U(p) is

? 1
U@y:EmmA—¢%f+m%+fy+p7”’GmhA—A)L (3.11)
sny

and the pitch-angle averaged diffusion coefficient is

1 eAé
(D)etr) = [ de Do &5~ (3.12)

A qualitative difference between this model with the radiation reaction terms com-
pared to the one without is the appearance of an upper limit of particle momenta,
Pmax- Lhis is the first appearance of a momentum above p. where the forces due
to radiation balance the acceleration from the electric field, corresponding to the
momentum where the accelerating force U vanishes. Equation (3.10) may now be
solved in the same manner as equation (3.4). The solution for the distribution
function is given by

Flnrt) = g Ssetir)osn (= [ s (it B0)0) ) (519

- UW)
where once again the growth rate of the modes ~; are determined by the boundary
conditions. The lower boundary condition in momentum space is formed as above
with the exception that the integration over p to form the total number of runaway
electrons is limited by pnax. Separated for every mode the boundary condition reads

—— » o+ TEAD);
= _ , 14
A @mfm<ﬂw U0 (3.14)
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This condition for the growth rate has the same structure as (3.7) with the exception
that the generalisation of the factor £ — 1 to U is dependent on p and thus appears
inside the integrals.

The solutions ~; to the integral equation now depend on the properties of this force
function U(p). For large electric fields E, U(p) has two roots which represent p,.
and pmax, between which the runaway region exists with positive acceleration. For
lower electric field the runaway region shrinks and finally for electric field strengths
E below some ET no solution to the equation U(p) = 0 exists and the runaway
region disappears in such situations. Therefore, for electric field strengths below
E¢trad no runaway electrons will be generated, even when diffusion is not consid-
ered. Examples of the U-function for various E values in fully ionised plasmas can
be seen in figure 3.1. It should be noted that the extent of the runaway region
drastically varies close to ES% ' and that, for large electric fields, U(p) has a large
region in momentum space where it is approximately £ — 1, in agreement with the
non-radiative theory.

The existence of p.x produces a singularity which lies on the edge of the integration
region of equation (3.14). It needs to be treated with some care and this point will
be discussed extensively in section 3.3 and 4.1. Likewise, a singularity appears at
pe - this point lies outside the integration region but its appearance can strongly
affect the correction if p, is not chosen significantly above p.. The model presented
for the radiation dynamics does not capture the behaviour close to p., as there the
pitch-angle distribution becomes nearly isotropic rather than the shape described
by equation (3.9), and the effect of the electric field is better described by a diffusive
process in momentum space than an advective one [23]. We will therefore perform
a large p-expansion of U(p), which captures the effect of pya, but limits the impact
of p.. A large p-expansion keeping terms which grow with p results in

=2 ey —2
_ 1% _ UpolV 1%
Ulp) = E — g0 + s—2° —<%+-MDﬁmp+1”m%

2 sn; E2 S nEI2 2 syn
VDZ y Tujn ” (3.15)
- %m+>p—<%ﬂ+ )pmp
( TsnyE snyE

and ¢p0 and ¢p; were defined by equation (2.18). This is compared to the full
expression for U(p) in figure 3.1a. If the logarithmic and quadratically logarithmic
terms are neglected, pma.x may be expressed in terms of the product log function
W(z) 3 as

- _* (3.16)

with

3 Also known as the Lambert function and it is the inverse to f(W) = We'V.
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Figure 3.1: (a) Comparison between force function, U(p) defined by (3.11), its
large p-expansion, (3.15), and its counterpart in the non-radiative model, £ —1. (b)
The position of p. and ppa., for different values of E. At E = ngﬂ rad the runaway
region vanishes and p. = puax. Both illustrations correspond to plasma parameters
InA =15, Zeg =1, n. = 10*®m =3, B = 1T and no screening effects.
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The approximation may be iteratively refined by evaluating the neglected terms
at the approximate value of p.., and treating them as constants, shifting the a
parameter.

3.3 Unification of the radiative and the non-radiative
models

We will now consider the structure of the integral equations both in the non-radiative
model (3.7) and in the radiative one (3.14), without specifying the phase space
dependence of the diffusion coefficient. We will be able to map them to one another,
allowing for an easier comparison. We define the dimensionless quantities which
feature in the problem as,

YT

T= (3.18a)
VT

T =5y (3.18b)

a(p) = W (3.18c¢)

The pitch-angle averaged diffusion coefficient was defined in equation (3.12), and
reduces to D(p) for a diffusion coefficient independent of pitch-angle . Accordingly
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3. Reduction of avalanche growth rate by radial diffusion

x is the unknown representing the desired growth rate which should be solved for
based on z, and «(p). In this notation the implicit equations for the growth rate
take the following forms,

1=z, dp e Sy @' (+a@h) (Non-radiative model)  (3.19a)
Px
Pmax E—l_p / _15(304/ . .

1= xr/ dp 00) ¢ o W' T @+al) (Radiative model). (3.19b)
* p

In the non-radiative model, (3.19a), the electric field £ and the diffusion coefficient
D only appear through the ratio a. Therefore the same effect on the normalised
growth rate is achieved by scaling down the diffusion coefficient or scaling up the
electric field, and « sets the natural scale for the correction of x.

For the case of the model which includes the radiation reaction forces, (3.19b), the
influence of the electric field is not purely through «, as U and pp,., also depend on
E. The factor (E — 1) /U(p) is close to order unity for a large portion of momentum
space but becomes singular at pp.x, as was demonstrated in figure 3.1. Therefore the
theory is not expected to differ from the case where radiative forces are neglected,
unless puay 18 at low enough momentum values, the electric field is close to its critical
value, or when z is close to zero as the distribution function approximately decays
in momentum space as ~ exp (—zp) /U(p).

A desirable property of the theory is to retrieve the uncorrected growth rate in the
limit of no diffusion. This can readily be verified for the non-radiative model but will
also be the case when radiation is treated. To show this the momentum coordinate
q is introduced, defined by

r ., FE—1
q(p) =ps + /,, dp’ 0 (3.20)
in which the equation for z, (3.19b), takes the form
L=, [ dg e 2Pl aG@) (3.21)

D=

The upper limit of the integral is infinite as ¢ diverges as p approaches py... The
structure of this equation is exactly the same as for the theory without the influence
of radiation, with the added complexity that the diffusion coefficient now is depen-
dent on the inverse of (3.20), where ¢ should be mapped to p. So technically, the
change of variable maps one theory to the other, just with a different, but related,
diffusion coefficient.

The added complexity of the inverse mapping can be ignored in the limit of no dif-
fusion, as D(p) = 0. In this case the integrals in equations (3.19a) and (3.21) may
be carried out analytically from which we conclude that the growth rates are equal,
x = x,. Thus we recover the uncorrected theory in the no diffusion limit.
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Figure 3.2: Examples of (a) the inverse mapping of (3.20) that transforms the
radiative model to a non-radiative one and (b) the dependence of the diffusion coef-
ficient on the new coordinate ¢, for a decreasing diffusion coefficient in momentum
space of the form (1 + p2)_1/ ?. The illustrations of the transformation is based on
the U presented in (3.11) evaluated with Zg = 1, InA = 15, n, = 10 m™3 and
B =1T.

For non-zero diffusion coefficients, the general correction allowing for radiation is
dependent upon the inverse mapping, ¢ — p, for which we lack an explicit expres-
sion, but we can understand qualitatively. As g diverges when p goes to ppax, the
inverse mapping saturates at pna.x as ¢ tends to infinity - consequently the value
of the diffusion coefficient saturates to the value of D(ppnax) for large g. This is
exemplified in figure 3.2. The saturation of the diffusion coefficient determines for
which z the generalised integral in equations (3.19a) and (3.21) converge, which sets
a lower limit for the growth rate before the theory breaks down. Convergence is
guaranteed if © > —a(pmayx) in the radiative model but depends on the large energy
asymptote of o in the non-radiative theory - for most relevant diffusion coefficients
the convergence criteria is x > 0.

The divergence of the theory is unphysical as it corresponds to an unbounded num-
ber of particles at high energies. It is an artefact due to there being no quasi
steady-state solutions to the reduced kinetic equations, (3.4) and (3.10), from which
the integral theory was derived. For a similar reason, one should be cautious be-
fore one uses the solution where x is particularly small, as the distribution function
has the momentum space shape exp (—xp) /U(p), meaning that a large number of
particles have large energy in such situations. It must be assessed if it is relevant
to have such energetic particles based on the time the electrons has been accelerated.

To investigate the influence of different types of diffusion coefficients on the runaway
problem a numerical algorithm solving the integral equations (3.21) has been imple-
mented, but the detailed discussion of the methods used is deferred to chapter 4. In
the remaining part of this chapter we will further investigate the general aspects of
the growth rate correction, before considering the effects of specific diffusion models.
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3.4 Effects of radiation on the growth rate cor-
rection

Radiation reaction forces will limit the maximum energy of a runaway electron and
introduce a new momentum scale py.x, Where the acceleration from the electric field
is balanced by the radiation. If py.. is large compared to p. and p, the effects of
radiation will be limited, as most of the particles in a quasi steady-state distribu-
tion are located far below p.x and it is these particles which dominate the transport.

As demonstrated in figure 3.1b, pna.x increases drastically with the electric field
strength when it is above its critical value and the influence of this is seen on the
solution of equation (3.21) in figure 3.3a. The correction to the growth rate in the
radiative model is shown for two different field strengths, with a diffusion coefficient
proportional to the inverse of the particle energy. A significant difference can be
seen between the non-radiative model and the radiative one for £ = 1.5, while the
discrepancy is below a few percent for £/ = 3, demonstrating that radiation only has
a significant effect for electric fields close to the effective critical one, as anticipated
in section 3.2.

The derivations in 3.1 and 3.2 do not specify a particular value of p,, and the de-
pendence of the final growth rate based on the choice of p, seen in figure 3.3a is
undesirable. When this variation is comparable in size to the correction it limits the
predictive power of the theory. Some variation occurs here due to the energy depen-
dence of the diffusion for particles just above p,.. In section 3.5.2 we will investigate
other diffusion models which could limit this effect by having a weaker diffusion at
p«. The radiative model has a strong dependence on p, close to p. which is a conse-
quence of the limited electron acceleration close to p., but as was discussed in section
3.2, the theory underlying the derivation of U(p) is not expected to be valid in the
vicinity of p.. Therefore to limit the effect of p. on the theory, as demonstrated in
figure 3.3a we propose to expand U (p) for large p as shown in equation (3.15), hence
some details of the effect of p. are lost but the effect of p.x is retained, where the
theory is valid.

The variation of p. with the electric field strength is important to the dynamics of
the electron runaway problem. This dynamics is desirable to model for the diffusion
as well. Therefore we propose to set p, = p. to include the changing size of the
runaway region, but expand U(p) in a large p expansion to limit the influence of
the region close to p. which is not modelled properly. The numerical solution of
equation (3.21), using p, = p., is shown in figure 3.3b with a fixed diffusion strength
and demonstrating the dependence of the growth rate correction on the electric field
strength. The effective growth rate is strongly affected by the diffusion and a new
effective critical electric field appears for which the growth rate is corrected down
to null, v = 0.

The relative corrections in figure 3.3b shows the influence of diffusion but masks
the fact that the physical growth rate scales with the electric field as £ — 1. By
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Figure 3.3: (a) Corrections of the growth rate due to a diffusion coefficient of the
form (3.23) which is inversely proportional to the particle energy, for the three dif-
ferent radiation models; non-radiative, radiative and the radiative model expanded
in large p. Two different electric field strengths are compared while oy = 0.3 is
kept fixed. In the case of £ = 1.5, pnax = 28 and a significant difference is seen
when radiative effects are included, while in the strong field case, pp.x = 261 and
radiation has a limited effect on the result. (b) Relative growth rate correction for
the non-radiative and the large p-expansion of the radiative model, as a function of
normalised electric field strength with a diffusion coefficient again of the form (3.23).
The plasma parameters are Zeg = 1, In A = 10, n, = 10**m=3 and B = 1T.

instead considering the correction of the growth rate in absolute terms, we find that
the model predicts a nearly constant offset to the growth rate, which is illustrated
in figure 3.4. This can be understood by Taylor expanding equation (3.21) in small
a, which results in

VT = YT — Ir/ dg e PP ap_(p(q)) (3.22)

*

Independent of E ~ offset

where ap_s(p) = a(p) - (E — 1) which is independent of E. To arrive at this form
integration by parts has been used once and the correction z — x, is assumed to
be of order a. The reduction of the growth rate will lessen the generation of run-
away electrons and the fact that there is a new critical electric field for net runaway
generation will have implications for the plateau phase in the final stages of the
disruption mechanics. We will return to the critical electric field in section 4.3.

Finally here we note that plasmas with partially ionised atoms inherit extra dy-
namics from the atomic physics. For our purposes, the main effects are (a) electron
collisions with partially ionised atoms have different characteristics from collisions
with fully ionised atoms with the same net electric charge (screening), and (b) ion-
isation and recombination will alter the density of free electrons. For our model of
diffusion due to magnetic perturbations (a) will alter the uncorrected growth rate,
v, as well as the collision frequencies vp and v, which appear in the U-function.
The effect of (b) will be to alter E,. and 7 and thus the normalisations of z, and
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Figure 3.4: Comparison between the runaway growth rate in the different models
in absolute units, as a function of normalised electric field. Taking p, = p. has
resulted in a small non-linear dependence of the small a-model for weak electric
fields. Diffusion coefficient and plasma parameters are chosen as in figure 3.3b.

E. In principle, neither of these modifications alter the theory or the procedure for
correcting the growth rate significantly. We will demonstrate the general effects of
partially ionised ions in section 4.2 using the numerical solver for equation (3.21)
presented in chapter 4.

3.5 Analytical treatment of diffusion models

In the literature there are two main treatments of the momentum space dependence
of the diffusion coefficient, firstly by Rechester and Rosenbluth [13] treating the
dependence of the speed of a particle and secondly, by Hauff and Jenko [62], con-
sidering orbit averaging effects, both of which we discussed in section 2.3. In this
section we will treat the effect of the diffusion coefficient on the growth rate, using
forms motivated by these studies.

3.5.1 p l-diffusion

For highly relativistic particles, with momenta predominantly along the magnetic
field line, the diffusion coefficient is approximately inversely proportional to particle
energy [62]. Therefore we will investigate a diffusion coefficient of the form

Dy
VIt

and its implications on the effective growth rate. For this model some analytical
progress can be made which can be used to test different limits of the full numerical
solver developed in chapter 4. The fact that the integral over the high energy region
of this diffusion coefficient diverges (non-radiative theory) is problematic for a pre-
scription to correct the growth rate as outlined in equation (18) of Ref. [14], which
circumvents actually solving the integral equation by assuming a rapid convergence

D(p) = (3.23)
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of the integral of the diffusion coefficient. Here we avoid this problem as we are
solving the equation based on this specific diffusion coefficient.

Working in the non-radiative model, (3.19a), to avoid complications of the U(p)
function and using the dimensionless notation a(p) = ag/+/1 + p? the inner integral
of the integral equation (3.19a) can be performed analytically. No explicit expression
for the resulting integral equation,

o0 A/ 2 0
1= xr/ dp e=®=P+) (%) , (3.24)
p p

has been found. To achieve an explicit expression for the corrected growth rate, x,
we replace the integrand by its high and low energy asymptote as,

*

1+p ifp<1

. (3.25)
2p ifp>1.

p+ 1+p2—>{

The approximation of the integrand is continuous but not smooth, which will be
reflected in the final solution. Within this approximation the integral equation may
be written in terms of the (upper) incomplete I'-function I'(a, z)* both for p, larger
and smaller then unity. Particularly if p, > 1, equation (3.24) takes the form,

0o @0
1=z, dp e~ PP+ <p*> — I . (xp)™ T (1 — ag, xps) (3.26)
8 p X

which we will expand in terms of small z, to obtain an explicit solution. The
expansion in x is motivated as x, is typically small, of the order (21In A)_l, and at
least for positive a, the spatial diffusion reduces the growth rate, x < x,. Expanding
equation (3.26) to leading order in z allows for an explicit solution,

T = plfgo PEZ-ag)a, |\ (3.27)
’ TyPs + - Qo . '

The equivalent steps can be conducted for p, < 1 for which the growth rate is given
by

1

€= 2202, 1'(2 — o) (1 + pu)™ o (3.28)
1— ag+2,(1+po) (2700 + (14 p,) 7 — 21-00)

The explicit expressions, (3.28) and (3.27), clearly break down if ay = 1, which is
a consequence of the term in the expansion of equation (3.26) used to balance the
equation becoming independent of x. The ordering of the equation is also violated
if g > 2 limiting the use of the explicit expression in situations where the diffusion
strongly influences the problem.

“We use the following definition of the incomplete I-function; I'(a,z) = [ dt t*~'e~".
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Figure 3.5: Comparison between the full numerical solution and the approxi-
mations based on a small z-expansion, equation (3.27) and (3.28), and a small
a-expansion, equation (3.30). (a) As a function of ay with p, = 1 and (b) as a
function of p, with ag = 0.2.

The expansion in small z introduces a further constraint on «y, originating from the
assumption that higher order terms in x are small. This constraint reduces to

1> (1—ap)l(1 - ap) (nz)™, (3.29)

where 7 for (3.27) is p, and for (3.28), n = max{2, p.}, as a consequence of slightly
different expansion parameters. Thus the expansion is not valid in the no diffusion
limit. To handle this limit a direct expansion of the integral equation (3.19a) in
small o can be conducted. Assuming the correction x — x,. is of order a gives an
expression for the correction in this limit as,

T =1, (1 — /OO dp e_x"(p_p*)a(p)> , (3.30)

*

which in the following we will call the small o approximation.

Both of the approximations above are compared with the full numerical solver in
figure 3.5a, and are seen to agree with the full solution in their respective limits. In
figure 3.5b the dependence of the theory on the free parameter p, is demonstrated.
The choice of p, is seen to impact the prediction of the theory but also to be well
described by the approximate expressions, especially for small p,, understood by the
condition (3.29). The small o approximation fits the full numerical solver better for
larger p, as the diffusion coefficient used is inversely proportional to particle energy
and the maximum diffusion coefficient in the problem decreases as p, is increased.

The development of these approximate expressions for the growth rate corrections
is useful to understand the broad dependencies of the numerical solver and provide
a quantitative comparison for the numerical solver. They would also be possible
to implement in a larger fluid framework simulating the post disruption event es-
sentially without added numerical cost, although the model limitations and validity
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must be taken into account. The small o approximation can be appropriate during
the current quench of disruptions with its large electric fields (but if the transport
becomes large due to broken flux surfaces, this may not be the case) and the small
x approximation is most fitting in the plateau phase where the runaway current is
constant.

3.5.2 Non-monotonic diffusion models

If particles were to precisely follow a fully stochastic magnetic field, they would
spread out spatially according to a diffusive process proportional to the particle
velocity along the field line [13] as described in section 2.3.2. In the momentum
coordinate system (p, £) the parallel velocity is,

&p

VIt

and c is the speed of light. For the runaway electrons, which are typically highly rel-
ativistic and predominantly move in the parallel direction, this results in a constant
diffusion coefficient. To combine the low energy dependence with the effects of drift
orbit averaging [62] described in section 2.3.3, and earlier discussed in sections 3.5.1
and 3.4, a diffusion coefficient of the form

(3.31)

UH:C

€l p
"1+ p?

a(p,§) =a (3.32)
is proposed which is a non unique interpolation between the two regimes. The
normalisation of ap is chosen to agree with diffusion coefficient (3.23) for large
energies in the forward direction. The pitch-angle averaging prescribed in section
3.2 results in a diffusion coefficient,

@ 1 2
@) = 122 L[ Ayt - (rea) et 2L e
where A~! is the characteristic width parameter of the pitch-angle distribution ac-
cording to equation (3.9). In such a model, where the diffusion is reduced compared
to diffusion coefficients of the form (3.23), at momenta low compared to m.c, the
model is only weakly dependent on the choice of p, below m.c but without signifi-
cant alterations for p, > 1. This is demonstrated in figure 3.6. Using this diffusion
coefficient in the model proposed above in section 3.4, where p, = p. and a large
p-expansion of the U (p)-function is used, will limit the effect of the specific choice of
ps for large electric fields where p. can be small compared to m.c, but have limited
effect otherwise.

The investigation of Hauff and Jenko [62] further shows a reduction of the diffusion
coefficient for large energies, as the Larmor orbit is not within a correlated region of
the magnetic field perturbation. The Finite Larmor Radius (FLR) effects become
important at a critical pitch-angle ., based on equation (2.32), which decreases
with particle momentum as
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Figure 3.6: Relative correction of the growth rate as lower limit of the high energy
region is varied, for diffusion coefficient of the form (3.33). The drastic changes in
the low p, region are suppressed compared to figure 3.3a if p, is chosen below unity.
This is a consequence of the particle velocity along the magnetic field line, which

suppress the diffusion for momenta small compared to m.c. Plasma parameters are
onec again chosen as Zeg = 1, In A = 15, n, = 10®°m™3, B = 1T and z, = (2InA) ™"

Gu(p) =1- <0-36M63> =1- <pB> : (3.34)

mcp P

where we have defined pp = 0.36A eB/mc, the momentum scale at which particles
can experience this increased suppression.

It is not reported over which range of pitch-angles this transition to a better con-
finement occurs and therefore we will assume a model where the transition is quick
and discontinuous, i.e a diffusion model of the form,

Do )
D(p,€) = { Vit»* . (3.35)
e € < i
1+p2 crit -

without the additional dependence of the particle velocity introduced in (3.32) to
begin with. The pitch-angle average of this model takes the form,

- 2ysinh A \J-1 Ecrit
~ 2vysinh A

Ecrit

Scrit 'fcrit
(D)e(p) Do (/ dé AeAer/ de lAeA5+ dé AeAg)
- Y

(eA + (ry_]‘ —_ 1)6A£crit _|_ (1 _ 7_1)6_£critA _ e_A) .

(3.36)

where v = /14 p? is the Lorentz factor. The two different limits of (3.35) are
obtained by &.i = 0 (corresponding to the limit pp — 0) and &y = 1 (pp — 0)
respectively.
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This correction to the diffusion coefficient is only influential if a significant fraction
of particles have a larger pitch than the critical one, which is evidently the case if°
Eait > 1 — A7L. The corresponding condition on p is,

Ep? 1+ Z,
PB + ff <p
14+ Zeg 4F

where a large p-expansion of the deflection frequency of the form vp = (1 + Z.g)/p?
has been used. Consequently this region of increased suppression will influence the
effective diffusion for large enough momentum given this model for the pitch-angle
distribution. Figure 3.7a exemplifies the diffusion coefficient and equation (3.37) is
seen to describe when the model differs from the diffusion coefficient in the forward
direction.

(3.37)

This model has introduced a new undetermined parameter, pg, related to the corre-
lation length of the magnetic perturbation. Perturbations caused by turbulence are
of the order of the ion gyro radius, p;, and earlier investigations have used A\; = 2.5p;
[62]. Therefore in present day tokamaks, pre-disruption values of pg could be in the
range of ~ 5 while post-disruption values could be two orders of magnitude smaller.
The actual magnetic field structure during the disruption is still largely unknown.

The numerical solutions for the growth rate corrections based on a diffusion con-
stant of the form (3.36) are presented in figure 3.7b where a large range for the
correction is observed based on the choice of the parameter pg. In the large electric
field limit all the models converge to the correction based on the diffusion in the
forward direction, as the critical momentum where the increased suppression has a
significant impact, quantified by (3.37), increases with the electric field strength®.

For a combined model based on equation (3.32) and (3.35), which both accounts for
the parallel particle speed and the finite pitch-angle of the electrons, we propose the
following model,

€l p :
(7] 1+p2 if |€| > gcrit
a(p,§) = . (3.38)
{QO (1—&5)'21))3/2 if ‘5| < Lerit-
The pitch-angle averaged diffusion coefficient based on this model,
= aop 1 -1 A -1 -1 EeritA
(@elp) = 1+p22sinhA[(1_A Jet = (1=77") (g — A7) € (3.3

+ (1 - 771) (gcrit + Ail) eigcmA - <1 + Ail) e*A + T]

incorporates the characteristics of both (3.33) and (3.36) and where v = /1 + p? is
the Lorentz factor .

5Given the distribution function (3.9), this is the pitch angle where the distribution function
has decreased by a factor of e~! from its maximum.
SWhich is the case when the electric field satisfies E > 0.5(1 + Zog) /pB-
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Figure 3.7: (a) Momentum dependence of the diffusion coefficient in the model
which incorporates improves confinement from FLR effects, equation (3.36). The
diffusion coefficient is seen to differ from the one in the forward direction for mo-
mentum as the condition (3.37) is satisfied. (b) The resulting relative correction of
the growth for a set of values of pg, as a function of electric field. The diffusion
strength used is ag - (F'— 1) = 0.5, a large p expansion model for U(p) is used of the
form (3.15), and p, = p.. Plasma parameters chosen as in figure 3.6.

To compute the correction of the growth rate for most shapes of the diffusion con-
stant in momentum space a numerical algorithm is needed. Such an algorithm has
been implemented solving (3.19a) and (3.21) for arbitrary diffusion coefficients and
the method used will be discussed in the following chapter.
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4

Numerical solution to the integral
equations

The transport of runaway electrons does, in general, depend on the details of the
magnetic field, and in non-stochastic fields it may differ from the tendencies outlined
in section 2.3. In non-stochastic fields, there will still be transport as a result of
drifts. This type of transport may be investigated by following the trajectories of
test particles in the magnetic field under consideration. The resulting transport
need not formally be a diffusive process, but the transport can often be represented
by a combined advective and diffusive model [72]. To investigate the effect of the
growth rate for the diffusion models presented in sections 2.3.2 and 2.3.3, as well
as more general ones, there is a need for a general solver of the integral equations
(3.19a) and (3.21). Below we will present such an algorithm.

4.1 Numerical scheme for growth-rate corrections

The numerical solver implemented for solving the integral equation (3.21)

1=x * dq e*fﬂ(q*p*)ff:* dq a(p(@) (4.1)
D
can broadly be divided up into two parts, evaluation of the integrals for a given
growth rate x and a root-finding algorithm. Before we further discuss the detail, we
will list the major problems such a solver needs to overcome:

i. The inner integral needs to be evaluated for a large set of endpoints. Moreover,
the grid required for an accurate evaluation of the inner and outer integrals is
often drastically different.

ii. In the radiative model, both the inner and outer integral have a singular point
at the upper integration limit, pyay, or the region close to pyax is mapped to
an infinite region with the g-variable, defined in equation (3.20). This region
needs to be treated separately for numerical accuracy.

iii. In the non-radiative model the upper boundary is infinity, pm.x = oo, and
the integral needs to be truncated. The error of this truncation needs to be
estimated and the truncation chosen accordingly.

iv. The root-finding needs to be robust, as there is a point beyond which the
integral does not converge, as well as minimising the number of function eval-
uations, as the integrals result in quite an expensive function to evaluate.
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4. Numerical solution to the integral equations

To address the first point in the list above, an ODE-solver has been used for cal-
culating the inner integral as a function of its upper endpoint. A benefit of this
approach is that there exist interpolation methods, accurate to the same order as
the original ODE solver, which interpolate an ODE-solution on an arbitrary grid
within the solution region. For the present problem, this allows for the use of differ-
ent grids for the inner and outer integrals. An added benefit is that the inverse of
the mapping (3.20) to the g-variable also can be formulated as an ODE and then the
full system, consisting of the inverse mapping and the inner integral, can be treated
as two coupled ODEs.

Concretely, we define a function G as,

g(q) = 67 fp* dq’ a(p)fa(pmax) (42)

which is dependent on the inverse map p = p(¢’). Differentiating the definition of g,
equation (3.20), and G gives the following coupled ODEs,

0 (p Ulp)/ (E—1) . p(ps) | _ |Ps

— = with = 4.3

dq M [— (a(p) — a(Pmax)) G G(p.) 1 (4.3)
which any ODE-solver able to handle vector valued functions can solve. The G
function is independent of the corrected growth rate x, the unknown in the problem,
and therefore only needs to be computed once. Based on the definition of G, we

introduce a second function f(z), whose root is the solution to the integral equation
(3.21). The function f and its derivative are defined as

f@)=e [ dge TG 1= [[anGaO) -1 (14a)

*

00 1
fa) == [ dq (g=p)e G = T [ dA mAGar(V)  (44D)
where I' = 2 + a(pmax) and ¢r(A) = p, — Tt In \. In the second equality a change of
variables A = exp (—I' (¢ — p.)) has been performed, which trivialises the exponen-
tial part of the integral and maps the integration region to a finite one. The variable
I' is dependent on = and therefore effectively different grids would have been used
if a linear grid would have been used to evaluate the integral.

Since the G-function generally is expensive to evaluate, it is desirable to only eval-
uate it once. Therefore G is evaluated on a ¢-grid which is mapped to different
A-grids dependent on x, i.e the same function values are kept but their position on
the A-axis is changed dependent on x, a process which is illustrated in figure 4.1.
The grid in q is chosen based on the original ODE-solution of G because it accounts
for the variations of G. This grid in ¢ is then filled out with an interpolation method
for a more accurate evaluation of f(x).

To address the second point in the list, an analytic approximation was made to treat

the high energy tail of the integral equation in the radiative model. It is problem-
atic to evaluate G for arbitrarily large ¢ and therefore the integral is divided at a
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Figure 4.1: Illustration of how the G-function, defined in equation (4.2), is calcu-
lated on a fixed grid in ¢ which is transformed to A = exp (— (x + @(Pmax)) (¢ — p+))
for different values of x. The function values are kept fixed as their position on the
A-axis is changing for different x. The larger markers are the original adaptive grid
from the ODE solver and the minor markers are the interpolated points.

momentum ¢.¢, into a low energy region ¢ < g, which is integrated numerically,
and a high energy region ¢ > q.f for which an analytic expression is found, based
on saturation of the diffusion coefficient as demonstrated in figure 3.2b and a Taylor
expansion of U(p) and D(p) close t0 pmax- The introduction of g divides the in-
tegral formulated in the p variable at some momentum p,.s which should be chosen
close enough to pnax such that a first order Taylor expansion is valid in the region
between prer and Pray.

By definition of ppax, U(pmax) = 0 and the first order Taylor expansions of U(p) and
a(p) are

U(p) = U'(Pmax) (P — Pmax) = U1 (Pmax — D) (4.5a)
a(p) = a(Pmax) + &' (Pmax) (P — Pmax) = Omax + 1 (Pmax — D) (4.5b)

where Uj, amax and «; are positive constants in the typical case. Utilising the ex-
pansions and the integral definition of G, the high energy region of (4.1) is evaluated
by moving back to the p variable as

/ dq 6—(x+ocmax) (g—px) G (Q)

Qref

(4.6)

Pmax a—1

G (gier) E-1 ap (m—p) ot
e(@+amax)(gret—p«) [J; (pmax — pref) o Pmax — Pref

where the constants a = EU—_II ( 4+ max) and b = %1_1) (Pmax — Pref) have been de-

fined. By the introduction of the dimensionless variable s = (Pmax — P) / (Pmax — Pret)
the only dependence left on p,ef is through the parameter b. Finally integration by
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Figure 4.2: The singularity correction relative to the correction in the b — 0 limit,
plotted as a function of a for a set of finite b. As b can be chosen almost arbitrarily
small it is valid to neglect the integral part of equation (4.7).

parts results in a regular integrand and a formulation suitable for numerical evalu-
ation,

/ dq e*(ﬂf‘l’amax)(q*p*)g(q)
Gref (47)

g(Qref) E—-1 l o b/l ds Sae—b(l—s) )
Uy a alo

~ e(I+a(pmax))(Qref —Px)

The b dependent part of the integral is related to the variation of the diffusion
coefficient close to ppax Which should not impact this region significantly. An order
of magnitude estimation given a model where D ~ aq/p confirms this as

U1 ~ b=l
pmax
a = TPmax + Qp
Ol ~ —20 — » (4.8)
Pmax b ~ CYO (1 _ ref )
~ _Q0 Pmax
ap = p2
max

and the b dependent part may be neglected if p.ef is chosen close to pyax. This point
is further motivated in figure 4.2 where the dependence of (4.7) on b is explicitly
shown. In the b — 0 limit an algebraic expression for the tail of the integral in the
integral equation (4.7) is obtained, which only depends on p,¢f through a pre-factor,
which will suppress this contribution as pn.x increases. Therefore this contribution
is primarily important for low electric fields where the effects of radiation are sig-
nificant.

Just as we cannot evaluate the G-function easily for arbitrarily large ¢, we need to
introduce a cut-off for p in the non-radiative model. The calculation above is not
valid in this case as it is dependent on the saturation of the diffusion constant as ¢
tends to infinity. Instead, we will truncate the integral and estimate the error.

For diffusion coefficients that decay for large momenta, motivated by the discussion
in section 2.3.3, an upper limit of the truncation error is arrived at by considering
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4. Numerical solution to the integral equations

the diffusion coefficient as constant in the truncated region. The imposed error in
the solution for z from the truncation is,

T, foo dp g(p>ef(x+a(Pmax))(p*p*)

Pmax

2, (Do) €~ @0 Pm)) (Prnax—ps)

/()] ~ 2+ Pmax) ()]

where the correction to the derivative is assumed to be a small effect, as it would
give the same error term multiplied by the percentile error in the derivative. If the
error in x is not below the desired tolerance, €, a qualified guess for the necessary

Pmax 18

Iy =

(4.9)

Pmax Z P« — x_l 111 (Etol/IT) (410)

based on which the numerical evaluation of the integral and solver can be run again
to arrive at a solution within the tolerance.

The last point in the list relates to a root-finding algorithm for the equation f(x) = 0.
A Newton-Raphson method was implemented, as it gives quadratic convergence [73]
and the derivative of f(z) can be evaluated similarly to the function itself. As the
solver is intended to be used in a larger framework, it needs to be unconditionally
stable and converge to the solution in any case, especially as the function is rather
ill-behaved close to the convergence limit, 2 = —a(pmax)-

Unconditional stability is obtained by combining the Newton-Raphson method with
the bisection method. The solution is first bracketed by considering o to be a con-
stant function at its minimum au,;, and its maximum au.y in the interval [p., Pmax],
in which case the integral equation (3.21) can be solved analytically, yielding the
lower and upper bounds for the solution, ., = T, — Omax and T = Tp — Qmin
respectively. Then a Newton step is tested. If the next approximate solution from
the Newton algorithm falls within the bracketed interval of the solution, it is kept
and the interval updated based on the sign of f. If the approximate solution falls
outside the interval the solver falls back on the bisection algorithm for one step.
This was then iterated until convergence.

This root-finding algorithm inherits the unconditional stability from the bisection
algorithm and the quadratic convergence close to the solution from the Newton-
Raphson method. The draw-back is the non-optimal bisection steps, as extra func-
tion evaluations are needed to test the validity of a Newton step. Therefore, in
practice, the solver first performs a couple of pure bisection steps to have a better
initial guess for the solution. The use of this algorithm is demonstrated in the follow-
ing section, where diffusion in the presence of partially ionised ions is investigated.
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4. Numerical solution to the integral equations

4.2 Radial transport in partially ionised plasmas

Partially ionised ions will affect the collisional dynamics in the plasma, as the fact
that some electrons are in a bound state introduces an energy dependent change to
the slowing down rate v, and the pitch angle scattering rate vp. The rate of diffu-
sion considered here, which originates mainly from collisionless motion in perturbed
magnetic fields, will not be severely altered, although the uncorrected growth rate ~,
and the acceleration function U(p) are modified, as outlined at the end of section 3.4.

The numerical solver described in the previous section was used to produce figure
4.3, which shows a study of the correction due to diffusion on the growth rate in a
partially ionised plasma, where p, = p. and a large p-expansion of U(p) has been
used. A plasma mixture of deuterium and argon has been used for demonstration.
The ionisation states were assumed to be in thermal equilibrium based on recombi-
nation and ionisation rates provided by Ref. [74]. The uncorrected growth rate was
calculated from equation (2.26) which gives x,. a non trivial dependence on temper-
ature and electric field as is shown in figure 4.3a. Ionisation and recombination will
alter the density of free electrons in the system, altering E. with temperature.

The corrected growth rate inherits the temperature dependence of the uncorrected
one. Otherwise the trends for a varying electric field follow what is expected from
figure 3.3b, where a constant z, was investigated. This could be expected as x, is
only rapidly varying close to the effective critical electric field without the influence
of transport. In a model including radiation reaction forces the effective critical
electric field above which runaways are generated is larger than FE., which will be
labelled E¢% 184 The critical electric field in the presence of radial diffusion (and
radiation reaction forces) is where the growth is nullified by the transport v = 0,
which we will call E®T. The critical electric field in the presence of diffusion is gen-
erally larger than E% ™4 a5 there can be a flux of runaway electrons through p,
which are then lost through spatial diffusion.

The scan in figure 4.3 shows how diffusion primarily has an effect at low electric fields
and especially the appearance of a new effective critical electric field is significant.
The two following sections will look into this question of a larger critical electric
field, both how to find it numerically and predictions using the diffusion models
presented in section 3.5.

4.3 Numerical calculation of critical electric field

The electric field at which the transport losses are balanced by the generation of
runaway electrons from the avalanche process is the effective critical electric field
ET. This is of specific interest for the runaway plateau in the final stages of a dis-
ruption [39, 75]. The time evolution of the electric field is governed by the inductive
equation (2.24), where the electric field is set by the rate of change of the plasma
current. As ET denotes the threshold electric field where the generation is matched
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Figure 4.3: (a) Uncorrected growth rate in a plasma consisting of deuterium and
argon with respective densities np = 10?°m=3 and na, = 0.3 - 10**m=3 calculated
from equation (2.26). The densities of the different ionisation degrees based on
thermal equilibrium distribution. (b) Relative correction of the growth rate based
on a diffusion model of the form (3.23) and o - (£ — 1) = 1, emulating a situation
with a fixed diffusion strength. The dashed line shows the critical electric field
without diffusion, whilst the critical electric field is seen to be higher when diffusion
is accounted for. For both (a) and (b) a magnetic field strength of 5.3T is used.

by the losses, the electric field has a tendency to stabilise around this value. The
balancing around E°T predicts a strong correlation between the current decay time
in the plateau phase and the plasma density, which is observed experimentally [76].

To find £ the numerical solver presented in section 4.1 could be wrapped in an-
other root-finding algorithm solving x(F) = 0. A more efficient method is obtained
by explicitly setting = = 0 in equation (3.21) and solving for the electric field. Since
most parameters in the integral implicitly depend on E, it is challenging to evaluate
derivatives with respect to E. We therefore implemented a false position method
[77] based purely on function evaluations, which provides unconditional stability
with an improved convergence compared to a bisection method. The false position
method is a variant of the bisection method, which instead of bisecting the inter-
val in every iteration, divides the interval by finding the root of the secant to the
function between the interval endpoints. Close to the root the secant is a good
approximation for the derivative of the function, improving convergence.

To solve the integral equation (3.19b) under the condition x = 0, the root to the
function f(FE),

Pmax(E) E-1 =[P L dp FksalpiE)
f(E) = x/ dp ———e Yo T TEH T _q (4.11)
p(B) Up; E)
needs to be computed. The function evaluation can be performed in the same man-
ner as detailed in section 4.1, but the draw-back here is that the G-function needs
to be computed for every function evaluation, resulting in a significantly heavier
function to evaluate. Therefore to improve convergence the Anderson-Bjorck im-
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Figure 4.4: Schematic representation of the Anderson- Bjorck algorithm used if
two following approximate solutions have the same sign of the function. Looking for
the root of the function (solid line), the secant (dashed line) is drawn between the
interval endpoints to approximate the solution. One of the endpoints is corrected
such that the secant in the following iteration is the tangent (dashed line) at the
current approximate solution to the parabola through the endpoints and the function
evaluated at the current approximate solution (dot-dashed line).

provement [78] to the false position method was implemented [77]. If the function
f(F) has a constant sign on its second derivative, in the interval under consideration,
the false position method will always give an estimate of the root on the same side of
the real root, resulting in linear convergence. To prevent this the Anderson-Bjorck
algorithm scales the function value at the endpoints by a method schematically de-
scribed in figure 4.4 [73].

The false position method requires an upper and lower bound for the solution. As
f(E) is an increasing function for large electric fields, typically as shown in figure
4.5a, the upper limit for the solver was retrieved by successively testing larger elec-
tric fields until f(E) is positive with a positive derivative. If a lower bound for ET
is not found during this, f(E) < 0, a Golden-section search algorithm [79] searches
for the minimum of f(£) until a lower bound is found. This process is illustrated
in figure 4.5a where the steps of the solver are shown step-by-step. Figure 4.5b
shows the convergence of the algorithm in a test case and demonstrates the quicker
convergence of the Anderson-Bjorck algorithm compared to a bisection method.

4.4 Effective critical electric field

The corrected critical electric field E°T is the electric field which solves equation
(3.21) under the condition x = 0. To resolve the ambiguity of p, we will in this
section use the model presented in section 3.4, where p, = p. as well as using a large-
p expansion for U(p) according to equation (3.15). For large electric fields the effect
of pmax is limited as it becomes much larger than the average particle momentum,
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Figure 4.5: (a) A step-by-step look at the critical electrical field solver. Mark-
ers show where the function is evaluated and at which function evaluation it was
computed. At function evaluation 5, the Anderson-Bjorck correction was made. (b)
Convergence of the critical electric field solution with function evaluation, after a
bracketed interval has been established. The solver is compared to the convergence
of the bisection algorithm.

and p,. is only slowly changing with the electric field strength. Therefore the primary
dependence on the electric field strength is through « which is proportional to some
diffusion strength

a(p) - (B —1) = 7k*(D)e(p) (4.12)

and inversely proportional to (E — 1). So for a constant z, there is an a which
solves the equation x = 0, which means that there will be a linear relation between
E°T and the diffusion strength. This will be apparent later on when we look at the
numerical solutions for E°T. Physically this means that the correction to E°T scales
as (0B/B)? for the diffusion models presented in section 2.3. Furthermore, the crit-
ical electric field should scale quadratically with & ~ 1/L, with L the characteristic
length scale of radial variations in the runaway electron profile. In units of E. the
correction is seen to have a linear dependence on 7 as well, which would impose a
density scaling - but this is not expected in physical units as the product 7E. is only
dependent on natural constants.

In this model the runaway region disappears at an effective critical electric field,
Eetrad - due to radiation reaction forces. This is the effective critical electric field
in the growth rate formula (2.26) and for our model of correcting the growth rate
to match this in the no diffusion limit, z, needs to be zero at E°T 4 Therefore
we use the growth rate formula (2.26) for complete screening, in the definition of x,
(3.18b) which gives,

(InA)™ B — Eeft rad

T 5t Za E—1

where E and E°T "4 are both measured in units of E,. The critical electric field for
a p~!-diffusion model is shown in figure 4.6a and the linear relation between diffu-

(4.13)
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Figure 4.6: (a) Effective critical electric field for a diffusion model of the form
(3.23) where p, = p. and a large p-expansion of U(p) has been used. A linear
relation with diffusion strength is seen for large electric field, with a non-linear
region close to E° 4 such that the model matches the purely radiative theory in
the no diffusion limit. (b) Critical electric field for a diffusion model of the form
(3.39) as a function of pg, related to the magnetic perturbation correlation length
AL as defined in equation (3.34). The limits pg = oo (dashed line) and pg = 0
(dot-dashed line) show the critical electric field for a model where D ~ p~! and
D ~ p~2 for large p, respectively. The transition between the two limits occurs for
pp € [1,10]. Plasma parameters are In A = 10 and Zog = 1.

sion strength and E? is obvious for large field strengths, but for small electric fields
a non-linearity allows E°T to match the purely radiative theory in the no-diffusion
limit.

The critical electric field for a diffusion model which incorporates both the speed
of the particles and orbit averaging effects, with a diffusion coefficient of the form
(3.39), is investigated in figure 4.6b. The model is seen to go between its limits over
an order of magnitude of the parameter pg = pp(A,), which incorporates the effect
of the correlation length of the magnetic perturbation. The limit pg — 0, where the
diffusion coefficient for large p scales as D ~ p~2, has only a slightly larger critical
electric field than the purely radiative theory, compared to the pg — oo limit, where
the energetic particles are less well confined with a diffusion coefficient scaling as
D ~p L

The same procedure as in section 4.2 can also be performed for the critical field
calculation, i.e the uncorrected growth rate can be calculated based on (2.26) for
a plasma in thermal equilibrium. The same situation as was investigated in figure
4.3, with a plasma mixture of deuterium and argon is considered in figure 4.7, but
focusing on the critical electric field. The effective critical electric field in the pres-
ence of diffusion inherits the features of the purely radiative theory but is offset at
a larger field strength, dependent on temperature.
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Figure 4.7: The effective critical electric field as a function of temperature for a
plasma consisting of deuterium, np = 102°°m=3, and argon, na, = 0.3 - 10*m=3, in
thermal equilibrium as described in section 4.2. The diffusion constant is of the form
(3.23) where ap - (£ — 1) quantifies the diffusion strength. Most of the dependence
on the critical electric field is inherited from the purely radiative theory (dashed
line) and the effective critical field in the presence of diffusion is larger but the offset
varies with temperature.

To describe the effect of diffusion in a more complete picture on reactor scales, it
is often needed to allow for a spatial variation of the electric field. To this end, we
will in the following chapter investigate a perturbation approach to incorporate the
effect of gradients in the electric field on the growth rate in the presence of diffusion.
This approach will result in integral equations of a similar form to the ones already
considered, such that the same numerical solvers can be used.
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Growth rate corrections in the
presence of electric field gradients

Under normal operation of a tokamak there are radial gradients in the temperature
and plasma current, both of which contribute to a radially varying electric field as
the plasma is drastically cooled in a disruption. The subsequent evolution of the
electric field is described by the inductive equation (2.24) which for a cylindrical
plasma with only radial variations is [29]

djy 10 OF
ot = vor ar (5.1)
Therefore the time evolution of the electric field is dependent on its radial profile,
as the current jj has both an ohmic and a runaway component. Accordingly the
radial profile of runaway generation also plays a crucial part for understanding the
electric field evolution. Furthermore, the growth rate is proportional to the electric
field strength, for fields large compared to the critical one, such that the cumulative
generation is highly dependent on the evolution of the electric field. Consequently,
for a self-consistent treatment of both the electric field dynamics and runaway gen-
eration, it is of the utmost importance to be able to treat the runaway generation
in a region of space with an electric field gradient.

5.1 A perturbative approach to a local theory

The approach to solve the kinetic equation in the high energy region with a momen-
tum space dependent diffusion coefficient in sections 3.1 and 3.2, by the means of a
Bessel mode expansion, breaks down when a radial dependence is introduced in the
plasma parameters! (electric field, diffusion coefficient, density and temperature).
To investigate the effects of these gradients we will take a perturbative approach to
solving the kinetic equation (3.10) under a quasi-steady-state assumption,

0

2(r)F + — (

U(r,p) 7 T 10 oF
dp

Er) 1)~ m;grwk(h P)g: (5.2)

!The limiting factor is gradients in the electric field or density. With only radial gradients in
the diffusion coefficients, the radial part of the problem can still be formulated as a Sturm-Liouville
problem which would generate a basis set other than than Bessel modes for the radial profiles. In
practice though, such an approach might not be suitable as the basis set would have to be identified
for every radially dependent diffusion coefficient.
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5. Growth rate corrections in the presence of electric field gradients

where the right hand side of the equation is considered to be small. This is expected
to be especially valid for strong electric fields or weak diffusion coefficients. Rather
than a linear perturbation theory in F' we will expand g = In (%F ) as motivated
by the solution without radial gradients. In terms of g, the kinetic equation (5.2) is

U 0g TU 10 0 (E—1 E—10g
A SR Byl 5 \ DN [t )
g 1 (E—l)Z[rarr< >£(8r< U >+ U 87“) 63
0 (E—-1 E—10g)\ 0g '
D)e | — —= | =|.
o >5<ar( U >+ U 8r>8r}
and an expansion of the form ¢ = go+¢1 +... and x = 29+ 21 + ... results in a
first order equation
U 09go
990 _ ¢ 4
xo—i_E—l@p 0 (5.4)

This equation is solved by the method of integrating factor and the low energy
boundary condition is formulated as the flow of runaway electrons from a low energy
region into the high energy region, as presented in section 3.2. For the first order
solution an explicit solution of the boundary condition results in zy = z, and the
growth rate is the uncorrected one, as the effect of spatial diffusion is a higher order
effect. The corresponding distribution function of the lowest order solution is

E—1 YrT —x fp dp’
690 — nRE —c r Px
U(r,p) U(r,p)

based on which we define the local equivalents to k% and « as

Fy(r,p) = BT, (5.5)

a(r,p) :ﬂkz(r, P) (5.6a)

E—1
F11 F,
B(rp) = = (D)

Dy rar Pl

(5.6b)

It will be later seen that « characterises the local diffusion strength. With a runaway
electron density ngrg proportional to a single Bessel mode in a plasma with constant
plasma parameters, these "local” definitions reduces to the ones provided in chapter
3. In terms of « the second order contribution to equation (5.3) is

x + 1oy —a(r,p) (5.7)

which once again can be solved in a similar manner to the first order equation (5.4),
resulting in a combined distribution function of the form

- E— YrT — [P dp B (i)
F(r,p) = gotgr — p, C(r)e Joe P TED 5.8
"2 = 5, m) E ) ) 58)

with # = xy + 27 and C(r) a constant of integration. The momentum space de-
pendence of the distribution function is similar to the one for a single Bessel mode
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5. Growth rate corrections in the presence of electric field gradients

in (3.13) and application of the boundary condition therefore results in the same
type of equation for the growth rate as (3.19b). A conceptual difference is that
is now defined locally at every radial position, rather than on the discrete index
of the Bessel modes. As the growth rate correction is formulated with the same
type of equation found in chapter 3, it is possible to use the same numerical solvers
presented in chapter 4 to solve the integral equations. However, there is an extra
computational cost to evolve the runaway profile in time, as it typically takes more
radial grid points to describe a realistic profile well than it does to describe it with
Bessel modes.

By definition of the runaway density ngg as the momentum space integral of F' in
the high energy region, the constant C'(r) is set to unity, which fixes the solution for
a given radial profile of runaway electrons. Such a radial profile could be taken from
a fluid plasma simulation. The idea would thus be to use the fluid simulation code
to evolve the plasma state in time and use the corrected growth rate as a source
term for the runaway electron density.

Within this formulation, « is not necessarily positive and the corrected growth rate
is therefore not necessarily smaller than +,, a manifestation that a net amount of
particles can be transported into a region. The remaining part of this thesis will be
concerned with investigating the validity and consequences of such local theories.

5.2 Validation of the local theory

The perturbative approach which is detailed in section 5.1 concludes in a distribution
function (5.8) which is the solution to a kinetic equation of the form

o (UF) — a(rp)F (5.9)

where « is defined based on the quasi steady-state solution to the kinetic equa-
tion Fy where the influence of the transport has been neglected. This equation is
not in a conservative form, with the potential for anomalous particle losses. To
quantify this effect, the right hand side of equation (5.9) is integrated over the two
dimensional phase space to obtain the loss of the total number of runaway electrons,
Nt = 27 [y dr rngg, as

Pmax
= / dp [27ra D(a,p)—

*

0F,
or la

ONtot
ot

/dr 2mr D(r, p) aaf;o 807“ (F) ] (5.10)

~ Flux through wall Anomalous particle loss

loss

where integration by parts has been performed. The first term in the equation above
can be interpreted as the flux through the wall which almost has the expected form
of a diffusive process. The difference is that the flux is related to the gradient of
the first order solution - a natural consequence of the fact that it is the first order
solution which appears in the diffusion operator. The second term in the equation

53



5. Growth rate corrections in the presence of electric field gradients

is the anomalous part, which should vanish in the no diffusion limit as /' — Fj. In
the remaining part of this section we will investigate the impact of this anomalous
loss, and the validity of the perturbation expansion in general.

5.2.1 Without electric field gradients

A first test for the local version of the theory is to compare it to the theory de-
scribed in sections 3.1 and 3.2, in situations where these calculations are valid. It
should be noted that the two theories do not solve exactly the same equation, as
the quasi steady-state approximation is made at different points in the derivation.
In situations where the mode theory of chapter 3 is valid there is no motivation to
use the local theory, as it introduces extra approximations, is not guaranteed to be
conserve particles and is more computationally expensive (as was described in the
end of section 5.1).

Without radial gradients in the plasma parameters, the local definition of o, equation
(5.6), reduces to

TD(p) _1 10 87’LRE
E—1®E o oy
and only depends on the spatial gradients of the runaway electrons density. This
local diffusion strength results in a spatially dependent generation rate of runaway
electrons, v(r)nrg, where (r) is determined by (3.21) and a(r, p). Likewise, in the
Bessel mode formulation, the time evolution of the runaway profile is

(5.11)

a(r, p) ==

nre(r,t) = i cie’ Jo (bir /a) (5.12)

i=1
where Jj is the zeroth Bessel function, b; its zeros, ¢; is a set of projection coefficients
and ~; is the corrected growth rate for the i-th Bessel mode obtained from (3.21).
Thus the local rate of runaway electron generation in the mode based theory is

8nRE

ot

which is more easily compared to the local theory than the corrected growth rates
for the individual Bessel modes.

= nyicie’YitJ()(kiT) (513)

i=1

Two examples of the differences between the Bessel mode expansion and the local
theory can be seen in figure 5.1. Good agreement is observed in the case where
diffusion causes only a small correction and the perturbation approach is expected
to be valid. In figure 5.1b the growth is significantly altered by the diffusion, yet
although some discrepancies are seen between the local and the mode theory, the
local approximation is still much closer than the uncorrected theory.

The anomalous losses are small in the tests showcased in figure 5.1, more precisely

the total anomalous losses are 0.1% and 1.7% of the total generation of runaway
electrons for 5.1a and 5.1b respectively. The anomalous losses should be compared
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Figure 5.1: Radial profiles of the runaway growth given by the local theory (dashed
line) and the Bessel mode expansion (solid line). We allow for a diffusion coefficient
of the form (1 + pz)_l/ ? equation (3.23), and a normalised diffusion strength equal
to: (a) ap = 0.01 and (b) ap = 0.05 for the first Bessel mode. To model radiation a
large-p expansion has been used for the acceleration function U(p) and a constant
electric field strength £ = 1.5, close to the critical value in the purely radiative
theory of BT rad ~ 1.28 is used. The plasma parameters are Zgg = 1, InA = 15
and the uncorrected growth rate was chosen to be z, = (2In A)~". Good agreement
between the models is seen in the case where the correction to the growth rate is
small, however a larger discrepancy is observed for the larger diffusion case. The
local theory is still substantially closer to the correct result than the uncorrected
one (dashed-dotted line). The initial runaway electron profile is proportional to the
uncorrected growth, as the uncorrected growth is x,ngg.
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Figure 5.2: (a) Initial profiles of the runaway current, all normalised to have the
same total number of runaways. (b) Percentage error for the local theory in the
total runaway current, after the profiles in (a) have been evolved in time with a
combination of avalanche generation and diffusion without electric field gradients.
The dashed lines correspond to the time integration of the anomalous term, shown
in equation (5.10). The error is seen in the initial phase to be dominated by the
anomalous term, but in the later stages the combined effect of transport errors and
previous losses of particles due to the anomalous term, result in an altered growth.
A constant percentage error would correspond to two profiles with the same growth
rate but slightly different particle number. The plasma parameters, diffusion model
and electric fields are all the same as in figure 5.1b.

to the flux through the wall which are about 2.6% and 11% for the two cases. As
expected the anomalous part is seen to be small when the perturbative expansion
is valid.

Figure 5.2b shows the cumulative error when the initial runaway profiles shown in
5.2a are evolved in time with the mode theory and the local theory. In the initial
phase of the evolution, the error is seen to correspond to the anomalous flux given
in equation (5.10), but in the later stages the error from not capturing the trans-
port fully (as is seen in 5.1b) combined with the previous anomalous error result in
slightly different profiles and consequently different growth. For the range of profiles
tested in figure 5.2a, the percentage error stays below 2%, which includes the worst
of the two cases demonstrated in figure 5.1. The anomalous term is seen to both
add and subtract particles, depending on the profile of the runaway electron density
in question.

The error from the anomalous term in the local theory can easily be traced, by
considering the flux of particles into the wall and the total generation of runaway
electrons, but the implications of these particle losses as well as non-perfect replica-
tion of the transport on the continued evolution is harder to estimate, as an altered
profile evolves differently. Furthermore, transport with spatially constant diffusion
coefficients has the tendency to reduce gradients in the runaway profile, in which
case the approximation is expected to be more valid. The validity of the approxi-
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mation during the whole evolution is thus a question of whether the generation of
runaway electrons is localised enough to generate strong gradients in the runaway
density.

For the time propagation of the runaway electron profiles, an explicit time step
based on the corrected growth rate is prone to instabilities due to the characteristic
exponential growth. Therefore an implicit scheme was implemented based on a
predictor-corrector method, functionally equivalent to solving a linearised system of
equations in every correction step. The full procedure of such an implementation is
described in appendix A.1.

5.2.2 With electric field gradients

To further test the local theory, now in non-uniform electric fields where the Bessel
expansion breaks down, a PDE-solver was implemented for equation (3.4) which is
the original kinetic equation from which the integral theory for the non-radiative
model was derived. The PDE solver is based on a finite difference approach and is
fully implicit - the details of which are described in appendix A.2.

When all plasma parameters are constant, and radiation as well as screening effects
are neglected (such that z, is constant), « still takes the form of (5.11). There-
fore the implicit time propagation algorithm presented in appendix A.1 can also be
used, in the non-radiative limit, to compare the local theory to the PDE solver for
equation (3.4). In figures 5.3 and 5.4 two different cases with different initial run-
away distributions and electric field structures can be seen. Overall good agreement
is seen between the models, although the very strong diffusion cases could not be
tested, as the integral equation (3.7) does not have a solution for diffusion coeffi-
cients decaying as p~! or faster for large momenta. This is related to the discussion
of convergence in section 3.3.

The final runaway electron profiles from the PDE-solver with a distribution func-
tion initiated according to (5.8) and with a time propagation according to the local
theory, agree well after having evolved for 307, as is shown in figures 5.3a and 5.4a,
where two significantly different electric field structures have been used. This shows
that the local theory can capture a change in the density profile caused by the com-
bined effect of diffusion and a spatially varying avalanche generation. Quantitatively
the total number of runaways differ between the two solutions by 1.6% and 2.1% for
the two different cases, which is comparatively small compared to the total effect of
diffusion, which reduces the total runaway current by about 35% in both cases.

Despite good agreement in the density between the two methods for time propaga-
tion, some differences can be seen in the momentum space distribution functions.
The difference is especially pronounced at high momenta, but the small number of
particles at these energies results in a quite small impact on the total number of par-
ticles at a radial position. The main reason this occurs is that in the integral theory
the whole momentum space distribution is dependent on the growth rate x, thus
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Figure 5.3: (a) Normalised profiles of the runaway density. The initial profile
(initial) is propagated in time by 307 both according to the local theory (local) and
with the PDE solver (PDE) in a non-uniform electric field where the electric field
strength is £ = 5 — 2(r/a)? in units of E,. For reference the profile is propagated
for the same length of time without effects of diffusion (uncorrected). All profiles
are normalised to have the same amount of particles except (local) which has been
normalised with the same factor as (PDE). A spatially constant diffusion constant
is employed with Dy7/a® = 0.022 with a decaying strength in momentum space
according to (3.23). The normalised growth rate is , = (2InA)~" and In A = 15.
(b) Contours of log;, F' of the two dimensional distribution function of the profiles
(local) and (PDE) in figure 5.3a. For the PDE solution the distribution function is
obtained from the numerical solver and for the local theory the distribution function
is according to (5.8). The solutions are shown to agree well for low momenta.
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Figure 5.4: (a) Normalised profiles of the runaway density. The seed population
(initial) is propagated for 307 both according to the local theory (local) and with a
PDE solver (PDE). A non-constant electric field with a minimum on axis is used, of
the form E = 342 (r/a)” in units of E,. Plasma parameters and diffusion coefficients
are otherwise the same as in figure 5.3a. (b) Two dimensional plot of log,, F' for
the profiles (local) and (PDE) in figure 5.4a. The solutions are shown to agree well
closer to the lower limit of the high energy region where the avalanche electrons flow
in and where the diffusion is stronger.
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changes to the runaway density profile propagate through all of momentum space,
but in the PDE solution particles are transported according to the diffusion operator
which then takes time to alter the profiles, especially at large energies where the
diffusion is weak. The momentum space structure is seen to agree to a larger extent
if the simulation is run for a longer time, as the shape of the runaway density profile
is stabilising and time variations in the growth rate are not accounted for in the
quasi-steady state approximation.

The discrepancies in the very high energy populations of runaway electrons do not
affect the macroscopic quantities, such as the runaway density and corresponding
current, as demonstrated above. However a common way to investigate the runaway
beam after a disruption is by the emitted spectrum of synchrotron radiation [80-82].
The contribution of the high energy electrons to such a spectrum is dominant. There-
fore the synchrotron measurements predicted by the two models might not agree to
the same extent as the measurements of the current. It should be noted that the
results in this section do not include radiation effects. The inclusion of radiation
reaction forces limits the maximum energy of the runaway electrons to a region
with a stronger diffusion, which might give a better agreement at high momentum.
This effect, as well as the effect of gradients in all plasma parameters, needs to be
investigated further to validate the theory.
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Conclusion

Tokamaks are today the leading contender to achieve fusion energy production on
a commercial scale, but the large plasma current they carry has the potential to be
converted to a high energy beam of runaway electrons during disruptions. Such a
beam poses a serious threat to plasma-facing components and the reliable operation
of reactor scale tokamaks. Therefore it is of the highest priority to predict and avoid
disruptions. However, it must be accepted that a perfect success rate in prevent-
ing disruptions may be unrealistic and mitigating any damage when they occur is
crucial. The disruption mitigation system for the ITER tokamak is currently under
development, a process in need of accurate models of the runaway phenomenon.
Runaway electrons travel rapidly along the tokamak magnetic field lines, and these
can be severely distorted from their usual confining structure during disruptions.
In this thesis, we have presented a model to include the effects of radial transport
due to the interaction of runaway electrons with magnetic field perturbations on the
runaway dynamics. In particular, we have determined an expression which can be
used to correct the growth rate of the runaway electron population by the avalanche
mechanism. The perturbations can mitigate the effects of runaway electrons as the
resulting transport has the opportunity to remove them in a controlled manner,
before they have had the time to multiply through the avalanche mechanism.

Summary

Starting from the kinetic equation we take advantage of the separation of timescales
in runaway generation between the acceleration to relativistic energies after a knock-
on collision, and the characteristic avalanche population growth time. This allows
us to neglect the effect of transport due to magnetic perturbations on the gener-
ation process and focus on solving the kinetic equation in the high energy limit,
which simplifies the collision operator. The description of collisions accounts for
effects of partial screening through the expressions of the collision frequency, there-
fore such effect is naturally included here. We then use the fact that close to the
point where the radiation reaction forces balance the electric field acceleration, pitch
angle scattering is rapid compared to the energy dynamics and general expressions
for the pitch angle dependence of the distribution in the high energy region can be
established. This approximation is valid when the effects of radiation are expected
to be important, and as the dynamics at energies significantly below the balancing
point is dominated by the electric field. The acceleration due to the electric field
is not strongly dependent on the pitch angle distribution as long as the electron
beam is forward focused, which the runaway distribution is expected to be. Finally,
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upon pitch-angle averaging a general operator representing radial diffusion, we ob-
tain the expression for the growth rate during the avalanche, which takes the form
of the solution of an integral equation. This extends previous work on the effects
of perturbations on runaway evolution where radiation and screening effects were
neglected as well as the effect of the pitch angle distribution on the transport, as
the theory was an expansion around small pitch angles. Furthermore, the previous
treatment was primarily concerned with transport coefficients with a short range in
momentum space, while here transport coefficients with a long range in momentum
space were mainly of interest. The introduction of radiation is expected to impact
the theory as it introduces an upper limit in momentum space and the particles are
prevented from reaching very high energies where they are well confined.

The radial transport was considered to be diffusive, which is expected when the
transport originates from perturbations in the magnetic field. We have investigated
simple momentum space forms of the diffusion coefficients, which nonetheless are
motivated by the expected behaviour, as they allowed closed form solutions to be
developed in order to understand the impact of perturbations and provide bench-
marking cases. An explicit approximation in the weak diffusion limit or equivalently
in the strong electric field limit for the corrected avalanche growth rate was also ob-
tained.

A numerical method was developed, able to solve for the corrected growth rate for
an arbitrary diffusion coefficient. This allowed the study of diffusion coefficients
based on forms existing in the literature, which account for the spread of electron
velocities parallel to the magnetic field, and finite orbit width effects in stochas-
tic field regions which typically will have finite correlation length-scales. The more
complete description of the effect of perturbations leads to a weaker diffusion at low
velocities. We find that this essentially removes the dependence of the result on the
choice of high energy region, denoted by a cutoff in momentum space p,, when large
electric fields are considered.

The robustness of the numerical scheme developed to evaluate the corrected growth
is an important attribute and a novel combination of well-known algorithms was
used to achieve this. The robustness was especially important as we anticipate that
the solver can act as a subroutine within a larger framework used to model dis-
ruptions. The explicit expressions for correcting the growth rate could be used in
the modelling of disruptions, essentially without adding any computational cost,
when investigating the plateau phase and the large electric field regime. Otherwise,
the full numerical solver allows screening and spatial diffusion to be accounted for
self-consistently in disruption modelling. To account for gradients in the plasma
parameters, such as electric field and electron density, a local version of the theory
was found by a perturbation expansion in weak diffusion strengths. Some initial
tests of a local version of the theory were carried out, and the predictions of such
a theory were compared to the solution of a PDE-solver. The initial results are
promising although further investigations are needed.
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The diffusive transport raises the effective critical electric field for avalanche gener-
ation because even though particles can be kicked into the runaway region through
the avalanche mechanism, they can be lost due to spatial diffusion resulting in no
net gain of runaways. This is important for the dynamics in the plateau phase
of disruptions where the electric field tends to a value at which the loss and gain
of runaway electrons is balanced. The critical electric field behaviour was studied
in more detail with a second similar numerical solver. The critical electric field is
seen to match the purely radiative theory in the limit of no diffusion and an al-
most linear relation between the diffusion strength and the critical electric field is
found. Consequently, the correction of the critical electric field is predicted to scale
as ~ (0B/B)* /L? where 6B/B is the fractional perturbation of the magnetic field
and L the characteristic radial length scale of the runaway population. Note that the
correction is not predicted to scale with plasma density in physical units, whereas
the uncorrected critical field is directly proportional to the density.

Further work

With the model and numerical solver developed above, we have the potential to
explore a range of effects on runaway electron dynamics. The fusion community is
working to further develop transport models appropriate for runaway electrons and
determine in which scenarios they are valid. This requires a better understanding
of the magnetic field structure during time evolving situations such as disruptions,
which could be obtained by MHD-simulations. In principle, this process should
be carried out in conjunction with an evolving profile of runaway electrons to self-
consistently follow the evolution of the electric and magnetic fields. The evaluation
of transport coefficients in non-stochastic fields will probably require the use of par-
ticle following codes, which follow the trajectories of test particles in the perturbed
field and fit a diffusive-advective transport model, as was done in [72].

A kinetic effect lacking in the model we have presented is the impact of diffusion on
the avalanche generation mechanics at momentum scales close to the critical one.
We anticipated that this effect could be small compared to the effects investigated
so far, as the runaway electrons spend a comparatively short amount of time close
to the critical momentum. Analytical progress in this direction would require the
addition of a radial dimension in the full kinetic calculation with the source term
in Refs. [23, 51] to treat the dynamics close to the critical momentum, then the
development of a solution to the kinetic equation valid for large momenta in the
same calculation. Numerical progress, on the other hand, could be made directly by
implementing the diffusion operator in kinetic frameworks such as CODE [83, 84],
which determine the electron distribution function as the solution to the kinetic
equation, using suitable models for the collision operator. Such an implementation
would further provide knowledge on the pitch angle distribution and especially the
influence of a pitch angle dependent diffusion coefficient on the pitch-angle distri-
bution, an effect which has not been considered in the present work.
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Finally, to acquire a better understanding of the influence of the runaway electron
transport on reactor scales during a disruption, the model presented in this thesis
could be used, as noted above, in a disruption framework to evolve the runaway
profile, together with the rest of the plasma parameters, most notably the electric
field. Such computations could be carried out with the GO-framework [29, 85-87]
or similar ones. The GO-framework uses a (multi-) fluid model for the evolution
of a disruptive plasma. Introducing the effect of transport into such a model of
the system, including the effects of impurities and allowing for partial screening,
would allow us to finally quantify the reduction transport has on the total number
of runaway electrons at the end of disruptions. As runaway electrons need to be
avoided to protect the integrity of the inner wall, a still open relevant question is
whether a given transport coefficient would result in a tolerable energy flux on the
inner wall. The runaway electrons would still hit the surrounding structure, but
in a more controlled manner than if the control is lost of a fully formed runaway
beam. For such considerations, it would probably be necessary to have a more
complete picture of the disruption evolution, which could be provided by numerical
investigations of fluid models.
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A

Numerical implementation

In chapter 5 two different algorithms are used for propagating the runaway electron
profiles in time. The first one is an implicit time step method based on the corrected
growth rate from the algorithm presented in section 4.1, which is needed for stability
reasons. This algorithm is presented below in A.1. The time propagation based on
this algorithm was tested against a second numerical implementation based on a
PDE-solver which is presented in A.2. This solver allowed the test of the local
theory presented in chapter 5 for non-constant electric fields, carried out in section
5.2.2.

A.1 Implicit time evolution

The numerical algorithm described in chapter 4 can be used to find the local growth
rate, v = 7(r) in the presence of magnetic perturbations, as described in section
5.1. The naive explicit scheme for evolving the profiles of runaway electrons n(r,t)
in time,

n(r,t + 0t) = (1 + v [n(r,t)] 5t)n(7", t) (A.1)

where 7 [n] is the growth rate based on the profile n, is prone to instabilities. There-
fore an implicit scheme is needed. No explicit expression for the growth rate is
known for a changing profile, with changing k2, so a predictor-corrector method
was used for the implicit scheme. For the prediction step, equation (A.1) was used,
to arrive at the prediction m. The correction step is then based on linearising the
equation,

n(r,t + ot) — n(r,t) = 5;7 [n(r,t)] n(r,t) + (Zv [n(r,t + ot)|n(r,t +dt)  (A.2)
around the prediction n(r,t+ 0t) = m and solving the linear system of equations for
the corrected profile n. The correction step is then repeated by using the corrected
profile as the prediction. Fortunately, the growth rate is only dependent on k? whose
discretisation in a point only depends on three neighbouring points, resulting in a
tridiagonal system of equations, which can be effectively solved. Therefore, the main
computational cost of the implicit scheme is the correction of the growth rate.

The profile n(r,t) is discretised on a grid, where the continuous radial position is
replaced by a discrete index i and the profile is represented by n;(¢). The linearisation
of the correction step (A.2) around n;(t + 0t) = m; follows as
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ot ot 0y

- (A.3)

= i)+ L In(e) i) — S| m

2
where we use a repeated index summation over j but not over 7. This is an equation
for every radial position ¢, with coupling to other terms due to 0v;/0n;|,. This
equation needs to be modified at the end points to satisfy the boundary condition.
The boundary conditions used were an absorbing wall at r = a, i.e n(r = a) =0
and a Neumann boundary condition of the form dn/0r = 0 at the center to respect
the symmetry.

The implicit time propagation was implemented for two different scenarios. Firstly,
radiative theory without radial gradients in the electric field, diffusion constant or
background plasma parameters, which was used in section 5.2.1. Secondly, for the
non-radiative theory with gradients in the electric field, but still no gradients in the
diffusion coefficient or the plasma parameters, which was used in section 5.2.2. For
both of these cases the definition of k% in equation (5.6) reduces to

410 On o Ingr—nia nig—2n;+ 0

2 _ 22270 — A4
K " rafr’rar r,  20rn; n; (57«)2 (A4)

and therefore 9k?/dn; forms a tridiagonal matrix as

ok? 1 |or + 27 2 or — 2r;
on; n; {2r; (o) i < ’ ((57“)2) T2 (0r)? ! ]] (A.5)

The last piece to form the equation system (A.3) is to calculate dv;/0k; to use with
the chain rule together with (A.5). As the growth rate correction is only dependent
on k%, 0v;/ 8/{:]2» is a diagonal matrix. The diagonal is formed by differentiating the
integral equation (3.21) which results in

T 0y 1hrdge o400l (11 4gt a(p(q')))
E—10k? k2 [®dge” [ g z+alp(a) (q—ps) (A.6)
_ i fol dA g(Q) Un(g(q» B a(pmax)(q B p*)]
k2 Jo dXG(q) (g — p.)

and in the second line the notation has transitioned to the one used in section 4.1,
where ¢ = p, — 7' In A\, T' = & + @(pmax) and G is defined by equation (4.2). The
second form is more suitable for the numerical implementation as it can re-use the G
from the numerical solver for the growth rate. In fact, G only needs to be constructed
once for every radial position as for a changing k? it need only be re-scaled based
on the definition (4.2).
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A.2 Validation PDE - solver

For the validation in 5.2.2 we use a PDE-solver for equation (3.4), which is the PDE
from which the integral formulation (3.7) of the growth rate originates. Equation
(3.4) is formulated in terms of the coordinates t,r, p, but we will use a normalised
radial position z = r/a and a momentum coordinate A\ = exp (—I'(p — p,)) where I'
is a free parameter. In these coordinates equation (3.4) takes the form,

87F_F —1)\87}7_12 8£
ot T o\ x(‘?xxyd ox

(A7)

where 14 = D/a®. In these coordinates the radial and momentum dimension both
extend between [0, 1].

An equidistant grid in all three coordinates is introduced according to x; = Ax - 1,
Aj = AX-j and t, = At -n, on which the distribution function is discretised
F(x4, Aj, tn) = F;, where Az, A\ and At are the discretisation lengths in the three
directions. To have an implicit scheme the spatial and momentum derivatives are
taken to be the average of those in the current time step n and the following one
n + 1. For the diffusion operator this corresponds to a Crank-Nicolson scheme [88],
but the introduction of an implicit method in the momentum coordinate breaks the
tridiagonality of the equation system to be solved. A finite difference scheme based

on centre derivatives result in

(1 + (ZZ])Fn-‘rl_b-i-Fn-i-l o bﬁFﬁ"Fl, )\ Fn+ 4 Cz)\ Fnj_ll _

ig = it1,g 4,J+ (A.S)
=(1 = ag)F7 + b5 Ff 0 Fy + e\ F o — e FT
with
At
a;; = (va)
b+ ( ) 4 (’/d)i+1,j - (Vd)il,j>
Z,j 4
(A.9)

(-
b (( ) - (Va)iy1 ; (I/d)il,j>
1F

At E
4A)\ T

C; =

and (vq); ; = va(ri, Aj), which is a linear system of equations for the distribution
function in the following time step. These equations need to be joined with the
boundary conditions, which for the radial directions are Fy . =0 and Fg; = F';.

In momentum space we assume there to be no particles at infinite energies, Fj; = 0
and the integral boundary condition (3.7) for the distribution function at p, is

discretised by a trapezoid rule and written in terms of a matrix multiplication as
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Figure A.1: Illustration of the non-zero entries for the system of equations which
form the left hand side of equation (A.8) when 6 inner radial points and 8 inner
momentum points have been used. E’:‘fl is made into a vector by putting all radial
points for a given momentum next to one another in chunks, which are then put
after one an other. i. Corresponds to the connection in momentum-space, and is
far off diagonal due to the ordering of Fi’?fl. ii. The radial connection, the periodic
diamond shape is an effect of the radial boundary condition. iii. Corresponds to an
integral over momentum-space for all radial positions and is due to the boundary
condition in F(p,).

F(A)
1 1 1 F(A
inmax = T >\ T N 9y ( 3) (A]_O)
' Fg (E —1- g)\ﬁ) 2)\2 )\3 AInax—l .
F()\max—l)

which for every time step is incorporated partly explicit and partly implicit into the
J = max equation of (A.8).

By restructuring FZ?;“I for a given n to be a vector and using the boundary condition,
the left hand side of equation (A.8) can be written as a constant matrix multiplied
by F. The constant matrix is illustrated in figure A.1. As the matrix is constant
it can be inverted once, and re-used in the following time steps. The matrix in
figure A.1 is sparse, but its inverse is not. Therefore, in this case it is actually
more efficient to LU-factorise the matrix and solve the upper- and lower- triangular
equation systems, which are sparse, in every time step then multiply with a dense
inverse.
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