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Effect of body’s heat and moisture loss on the microclimate of a hygiene product
DIVYA SURESH
Department of Chemistry and Chemical Engineering
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Abstract

The master thesis is aimed at visualizing the effect of body’s heat and mass losses
on the microclimate of a hygiene product. The microclimate is defined by the air
layer between the body and the product. An acceptable model for the skin is aimed
to be found through in depth literature study and is validated to be used in the
next step. Following which, a model with the skin, air layer, porous domain and a
microporous film is built with the aim of the investigating the transport processes
from the skin towards the porous domain. This is built and analysed with the help
of COMSOL Multiphysics. Using virtual tools for building model and analysing the
results saves time and can be used as an aid to examine in depth the underlying
concepts of the phenomena involved. The model is made as versatile as possible so
as to be flexible to be used for other similar products. The major goal of the built
model is to analyse the heat and mass transfer behavior, including condensation
phenomenon as well.

In the model, advection and convection are found to be of lesser importance with
the help of manual calculations and dimensionless numbers. Coupled heat and
mass transfer is analysed in the working model highlighting the effect of radiation
and condensation. Radiation has pronounced effect in the heat transfer thereby
having the necessity to include it in the model. Condensation is incorporated in the
model to see the effect with the heat and mass transfer profiles. To get a working
model for condensation, additional terms are added pertaining to the description of
condensation mechanism.

Varying the ambient and skin conditions in the model gives an idea regarding the
temperature and concentration profiles as well as the details about condensation
happening in the system. The model parameters such as the porous domain thick-
ness, air layer thickness, porosity of the porous domain and breathability of the film
are then varied to check for the difference in heat and mass transfer behavior. The
trend for the percentage of moisture condensed for each of the parameters is obtained
by the post analysis of the multiple simulations of varying parameter values.

Keywords: Condensation, Porous medium, Film, Air Layer, Heat and Mass transfer,
COMSOL, skin
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1
Introduction

Mathematical modelling of heat and mass transport in the porous media have been
a boom in the field of research for several years to observe the fundamental transport
phenomena. This research has broad range of engineering applications in industries
such as textile, drying, paper and pulp, building materials, etc. [1]. The study in the
project can be related to the researches in the textile industry focussed with comfort
modelling, wherein hygiene product is substituted for clothing. The microclimate
in a hygiene product(diaper) is an important consideration for the wearer of the
product. Microclimate is defined as the air layer layer between the skin and the
product and is dependent on the body of the wearer, the construction of the product
and the heat and mass transfer that takes place in the system. Models for the
analysis of the heat and mass transfer processes in the microclimate are thereby of
primary importance in the development of new, efficient and comfortable products.

Several studies have been conducted in the textile industry where the transport
processes in the microclimate are investigated [2]. One such modelling study has
been performed by Wang et al. who focussed on the heat transfer properties within
the textiles but the moisture losses from the human body is ignored [2]. Transfer
of moisture has been accounted by Onofrei et al. In their model, heat and mass
transfer is analysed in an uncoupled fashion [3]. An improvement to the above
models has been proposed by Lotens et al. who included condensation of moisture
as an additional physical phenomena in their study [4]. Since condensation plays
an important role in the human body comfort and the product design, this project
focusses on the investigation of transport processes based on the model proposed by
Lotens et al. with modifications pertaining to the specific scope of modelling of the
processes in a hygiene product.

In general, modelling is accomplished with the aid of computational power as other-
wise, the laws governing these physical process would be complex to solve manually.
Experimentally, it would be difficult to handle large volumes of data since there are
several factors to be considered in the product design [5]. Computational modelling
provides space for such detailed analysis, and is therefore used in these cases of
product optimization.
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1. Introduction

1.1 Goals

The major goals of this study are:

• To find a simple and acceptable model for the skin.

• To construct a model for coupled heat and moisture transport away from
the body through the hygiene product to the environment with the help of
a computational tool. Also, in such a skin-product model, it is necessary to
eliminate a few transport processes to obtain a simplified model so as to reduce
the computational time.

• To investigate the condensation behaviour within the skin-product model

Analysis of these skin-product models are of vital importance to give a detailed
understanding of the transport mechanisms,thereby contributing to the development
of innovative and comfortable hygiene products.

A small portion of the hygiene product attached to the crotch part of the naked
body, as highlighted in the Figure 1.1.1, is selected in this study to analyse the
transport processes in that portion . This simple model could then be used as a
base model for modelling the transport processes in a more complex product design.

Figure 1.1.1:
Left Figure: Standing naked baby wearing the product;
Right Figure: Simple product model where A → skin, B → product’s inner bound-
ary, C→ product’s outer bounday, A-B→ air layer between skin and product, B-C
→ product core

2



2
Background

2.1 SCA

Svenska Cellulose Aktiebolaget(SCA) is Europe’s largest forest owner, which makes
the company offer a considerable attention towards the sustainable forest manage-
ment. It is one of the the leading global hygiene products and forest products group.
SCA has been initiated in 1929 and is responsible for production of sustainable per-
sonal care, tissue and forest products. In over 100 countries, the sales have been
established through strong product brands. In 2015, the sales has aggregated up to
115 billion SEK[6].

The personal care business sector at SCA is known for three types of products -
baby care products, female hygiene products and adult incontinence products. The
sales for all the three types are worldwide. The major SCA brands under which
the products are sold include Libero,Libresse, Nosotras, Saba and TENA. In the
year of 2014 in Europe, SCA market positions stand first for incontinence products,
followed by baby care and the feminine care products [7].
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2. Background
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3
Product

3.1 Overview

Among the hygiene products, as mentioned earlier, there are three major groups of
products - baby care, feminine hygiene and adult incontinence. These are grouped
to belong to the same category of absorbent products, but varies in the amount and
characteristics of the liquid absorbed onto the product [8, 7]. This study is primarily
focussed on the research of the baby care products but the results could be used as
a basis for other hygiene products as well.

Figure 3.1.1: Schematic representation of a modern diaper [9]

Though the product is offered in several styles with varying consumer features, the
basic elements in the diaper construction remains the same. Diaper fluid handling
could be visualized as four zones [10, 11]

• Top sheet, being the layer closest to the skin, allows liquid to quickly pass
through the layers underneath.

• Acquisition layer, between the top sheet and the core, helps in uniform liquid
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3. Product

distribution within the core [10, 11].

• Absorbent core consists of a blend of polyacrylate superabsorber (SAP) and
fluff cellulose pulp fibres. The pulp fibres offer integrity to the absorbent core.
The core is responsible for absorption of the liquid and locks it within the SAP
polymeric structure so that the liquid does not come in contact with the skin
even under pressure.

• Back sheet, the outer layer of the product, is composed of a polyolefin with or
without the presence of filler particles in it. It is water-resistant and safeguards
the liquid from leaking to the outer [10, 11].

In the study, only two major components are taken into consideration to substitute
the diaper - absorbent core and the back sheet.

3.2 Absorbent core

The absorbent core weighs up to 80% of the diaper weight, and hence it is an
important material to discuss. The pulp fibres within the core are vital for the
distribution of the liquid and they are also needed for the liquid absorption and
retention. To be able to offer those functions, a porous network with a defined
capillary structure is required [12].

The porous medium is generally categorised by the properties such as porosity, per-
meability and tensile strength [13]. Also the macroscopic properties of the medium
are predicted by the microscopic pore structure models [14]. Due to condensation,
swelling and deformations of the porous structure result followed with a varied poros-
ity of the porous medium. But the structural changes due to condensation is not of
specific interest in this study.

3.3 Back sheet

Conventionally, the back sheet of the product has been non breathable, which has
appeared to show skin discomfort. This has led to the finding and use of breathable
microporous outer film. Microporous film has the benefits of curtailing the skin from
excess hydration, thereby diminishing the skin rashes [15].

The breathable microporous outer film consists of several micro pores and the pores
are connected. The film is liquid impermeable but allows steam and perspiration to
penetrate. Breathability is usually measured by the moisture vapour transmission
rate through the film [16].

The film has been found to be best composed of polyolefin and inorganic filler
particles. The polyolefin could be polyethylene, polypropylene or copolymer of both,
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3. Product

whereas the inorganic filler particles could be calcium carbonate, barium sulphate
or other finely powdered inorganic particles [16]. Most commonly the film is made
of polyethylene and calcium carbonate filler, which is demonstrated in Figure 3.3.1.
This polymer-filler mixture is extruded as a ’non-porous film’. Then it is stretched
mechanically to form the film which has high pore-to-pore connections so as to allow
the air and moisture penetration through the film layer [16]. There has been many
researches going on to find a suitable cost effective breathable film.

Figure 3.3.1: Polymer-filler microporous film
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4
Skin

4.1 Structure and function

Skin has several functions, but its primary function is to serve as a protection barrier
for the body from the environment. This behaviour drives it to regulate the inward
and outward movement of water molecules, electrolytes and other substances. Also
the barrier offers strong protection again microorganisms, ultraviolet radiation and
other toxic agents [17].

Viewing skin anatomically, it is divided into epidermis, dermis and hypodermis lay-
ers. Epidermis, the outermost layer serves as a physical and chemical barrier to
the environment. The main cells in this layer are keratinocytes, which synthesize
the protein keratin. Epidermis is composed of four layers, separately formed by the
differing stages of keratinocyte maturation. Out of which, the most important is
the topmost stratum corneum layer, which comprises the final outcome of the ker-
atinocyte maturation. Epidermis has to retain sufficient water quantity in order to
keep the stratum corneum hydrated so as to maintain the flexibility and deformabil-
ity of the layer. Next structural layer of the skin is the dermis, which is responsible
for giving support to the skin. Beneath dermis is the hypodermis layer which is
known to store fats [17].

The stratum corneum contain substances to attract and hold water, known as natu-
ral moisturizing factor (NMF). NMF absorbs moisture from the outer environment
and the deep skin layers, thus would make the outermost skin layer to stay hydrated
irrespective of the drying feature of the outer environment. This balance is crucial
for maintaining the skin elasticity and flexibility, also to perform its main barrier
function. The outcome of the disruption of the balance is the skin hydration or skin
dryness, resulting in other skin problems [18].

4.2 Sweating and Transepidermal water loss

The water loss from the viable tissues of the skin to the outer environment can pass
the skin layer either by active transport(sweating) or by passive diffusion(transepidermal
water loss) [19]. Sweating is a mechanism from the sweat glands to regulate the body
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4. Skin

temperature, that is, when the body is excessively heated, sweat is produced and is
evaporated to result in cooling of the body [20]. It may express psychological stress
as well. Transepidermal water loss(TEWL) refers to water loss from the skin’s stra-
tum corneum layer,which also includes the water loss due to expired water vapour.
It is not visible to the naked eye and it is not produced on demand for thermal
regulation by the sweat glands. If the skin temperature is below 30◦C and if the
external environment temperature is below 20◦C, there is no thermal sweat gland
activity seen, provided there should be no forced convection or heat produced from
the body (through exercise) [21]. In this study, sweating and TEWL are not differ-
entiated, and are jointly considered as moisture loss from the body. The study deals
only with the vapour phase, which helps in concluding that moisture loss from the
body can be assumed as evaporated water(EW). EW is visualised as either TEWL
or both TEWL and evaporated sweat.

10



5
Transport Processes

Transport processes within the microclimate, product and the surrounding environ-
ment govern the comfort of the product. Thus, this section will give an overview
of various heat, mass and momentum transport processes within the fluid phase
and porous material. Heat transfer occurs through conduction, flow, convection
and radiation. Mass transfer occurs through diffusion,flow and convection. These
transport processes in addition to evaporation and condensation are studied.

5.1 Momentum transport

5.1.1 Fluid phase

Fluid flow is generally demonstrated with the help of Navier-Stokes equation [22],
shown below. The assumption of incompressible fluid flow is considered.

ρ(∂~v
∂t

+ v·∇~v) = µ∇2~v +∇P + gi (5.1.1)

Where v, µ, P , ρ represents the velocity, viscosity, pressure and density of the fluid
respectively. The left hand side of the equation denotes the inertial forces. The first,
second and the third term on the right hand side of the equation denotes the viscous
forces, pressure forces and other external forces acting on the fluid, respectively [23].

5.1.2 Porous media

Flow in this study is assumed laminar because the vapour flow rate in realistic case
models may not be too high for the flow to be turbulent. The laminar fluid flow in
the porous media can be expressed by Darcy’s law, shown in the Equation 5.1.2,

ūg = −kg

µg

(∇Pg − ρgḡ) (5.1.2)

where ug is the darcy’s velocity, kg is the permeability, and µg is the viscosity of the
fluid phase. This equation is valid when the boundary shear is ignored [24]. Bound-
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5. Transport Processes

ary shear is ignored because the fibre structure is porous and the fibres themselves
are assumed non porous [25].

5.2 Heat Transport

5.2.1 Fluid phase

Conduction and Flow
Heat transfer by conduction and flow in pure fluids is described by the following
equation.

ρcp
∂T

∂t
+ ρcpv ·∇T = ∇· (k∇T ) + q̇ (5.2.1)

Where q̇ represents the heat production per unit volume [26].

Heat transfer by conduction is usually achieved through molecular interaction. The
molecules of faster motion being at a higher energy level transfers energy to the
nearby molecules which are at a lower energy level. This occurs if there is a tem-
perature gradient within the system and also molecules of solid, liquid or gas are
to be present. The first term on the left side of the Equation 5.2.1 refers to the
accumulation of energy. The first term on the right side of the Equation 5.2.1 is the
net rate of heat conduction into a unit volume. k is the thermal conductivity of the
material and ∇T is the temperature gradient. This is commonly called the Fourier’s
law of heat conduction and states that the heat transfer rate is proportional to the
temperature gradient.The negative sign of the term indicates that the heat flow is
in the direction of negative temperature gradient (∇T ) [27].

The second term on the left side of the Equation 5.2.1 denotes transfer of energy due
to the fluid flow [26]. ρ is the density, cp is the specific heat at constant pressure, v
is the velocity, ∇T is given by (T − Tref ), Tref refers to the reference temperature.
Heat transfer by flow is due to the bulk transport of fluid. [26].

Convection
Heat Transfer by convection refers to movement of heat from one surface to an
adjacent fluid where the bulk fluid motion is important. It is the means of energy
transfer between surface and the adjacent fluid. In engineering, the convection heat
transfer rate is expressed as,

q

A
= h∆T (5.2.2)

where h is the convective heat transfer coefficient, q/A is the heat flux, and ∆T is
the temperature difference [27].

Depending on the driving forces, bulk fluid flow could be laminar or turbulent. There
are two categories of convection - free or natural convection and forced convection.
Natural convection is due the buoyance force caused by the density differences which
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5. Transport Processes

exist due the temperature variations, whereas the driving force for the forced con-
vection is produced by an external means such as a fan or a pump [24]. Furthermore,
natural convection could be classified as external and internal natural convection.
The former defines the heat transfer interaction between the surface and a large
reservoir of fluid whereas the latter denotes the interaction between the fluid and all
the surfaces confining it [24]. The Rayleigh number is generally used to portray the
laminar to turbulent transition in the natural convention flow problems [27]. The
Rayleigh number will be further discussed in section 6.3.

Radiation
Heat transfer by radiation between the surfaces does not require a medium for
its propagation. Its effect is visualized maximum when the surfaces are separated
by perfect vacuum [27]. Here, energy is emitted by matter through the means of
electromagnetic waves. Thermal radiation denotes the radiation emitted by the
body at a temperature above absolute zero [28].

Radiation heat transfer is given by the Stefan- Boltzmann law, and is usually surface-
to-surface radiation (shown by Equation 5.2.3). Thermal radiation taking place
between two bodies depends on the difference between the fourth power of their
absolute temperatures.

q = σsb(ε1T
4
1 − ε2T

4
2 ) (5.2.3)

where A, ε, and T are surface area, emissivity and absolute temperature respec-
tively of the body. σ is the Stefan-Boltzmann constant, which has a value equal to
5.67 · 10−8 W m−2 K−4 [29].

5.2.2 Porous medium

Conduction and Flow
In most of the cases, as explained earlier, heat transfer might not occur only by one
mechanism. Instead there would be a combination of mechanisms taking place. For
a porous medium, heat transfer by conduction in the solid and fluid phases take
place in parallel, hence there is no heat transfer from one phase to another [26].
This is valid only in cases when the assumption of fast equilibration of heat transfer
between the phases is made [30].

Equation 5.2.4 and Equation 5.2.5 denote the equations for the solid phase and for
the fluid phase respectively, where the radiation has been ignored.

(1− ϕ)(ρc)s
∂Ts

∂t
= (1− ϕ)∇· (ks∇Ts) + (1− ϕ)qm

s (5.2.4)

ϕ(ρcp)f
∂Tf

∂t
+ (ρcp)fv ·∇Tf = ϕ∇· (kf∇Tf ) + ϕqm

f (5.2.5)
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5. Transport Processes

The subscripts s and f denote the solid and fluid phase respectively, c is the specific
heat of the solid, cp is the specific heat at constant pressure of the fluid, k is the ther-
mal conductivity,ρ is the density and q is the heat production per unit volume [26].
Since heat transfer in both phases are parallel, Equation 5.2.4 and Equation 5.2.5
are combined to give Equation 5.2.6, where Ts and Tf equals T

(ρc)m
∂T

∂t
+ (ρcp)fv ·∇T = ∇· (km∇T ) + qm

m (5.2.6)

The second term on the left side of the Equation 5.2.6 denotes the transport of
energy due to the fluid flow and the first term on the right side of the same equation
is the net rate of heat conduction into a unit volume of fluid [26].

Overall heat capacity per unit volume, overall thermal conductivity and overall
heat production per unit volume of the porous medium are defined by the equations
Equation 5.2.7, Equation 5.2.8 and Equation 5.2.9 respectively [26]. Here ϕ is the
porosity of the medium

(ρc)m = (1− ϕ)(ρc)s + ϕ(ρcp)f (5.2.7)

km = (1− ϕ)ks + ϕkf (5.2.8)

qm
m = (1− ϕ)qm

s + ϕqm
f (5.2.9)

Overall thermal conductivity depends majorly on the geometry of the porous medium.
If heat transfer by conduction take place in series with the solid and fluid phases,
overall thermal conductivity is given by the following equation [26]:

1
km

= (1− ϕ)
ks

+ ϕ

kf

(5.2.10)

Convection
For the case where there is porous media as well, convection is represented by Equa-
tion 5.2.2. Also the categories of free and forced convection exist depending on the
driving forces.

Radiation
Radiation has the potential to penetrate even the porous material and serve as
a volumetric heat source generation [29]. Radiation for the porous media is also
represented by the Equation 5.2.3.
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5. Transport Processes

5.3 Mass transport

5.3.1 Fluid phase

Diffusion and Flow
Diffusion phenomenon is witnessed due to the concentration gradient established
by the motion of the fluid species. To describe diffusion, Fick’s law is appropriate
to be used in the situation of pure fluids. The law states that the flux is directly
proportional to the mole or mass concentration gradient. [24].

JM
A = −cDAB,CF∇xA (5.3.1)

c is the concentration, DAB,CF is the diffusion coefficient, JM
A is the molar flux

relative to the molar average velocity and xA is the mole fraction of component A
[24].

It is vital to consider that the molar flux, NA, is a combination of the concentra-
tion gradient contribution (referred as diffusion) and the bulk motion contribution
(referred as flow), shown in Equation 5.3.2 ,

NA = −cDAB,CF∇xA + xA(NA +NB) (5.3.2)

cAV = xA(NA +NB) (5.3.3)

where cAV is the molar average velocity and N is the molar flux relative to the
stationary spatial coordinates. The first term on the right side of the Equation 5.3.2
is the molar flux which results from the concentration gradient, and the second
term on the right of the same equation is the molar flux resulting as component A
is carried in the bulk fluid flow [27].

Convection
Apart from mass transfer with diffusion and flow, convective mass transfer is an-
other important category to be discussed. This mode of mass transfer describes
that the mass transfer of fluid from the surface to adjacent fluid by the dynamic
characteristics of the moving fluid. Convective mass transfer also involves transfer of
species from its higher towards its lower concentration. Hence this category of mass
transfer depends on both the transport properties and the dynamic characteristics
of the moving fluid [27].

As in the case of convective heat transfer, there are two types involved. If the fluid
motion occurs through the density differences, it is known as the free or natural
convection. If the fluid motion occurs through the aid of an external device, then it
is known as forced convection [27].

Anologous to the convective heat transfer rate equation (Equation 5.2.2), convective
mass transfer is rewritten as,

NA = kc∆cA (5.3.4)
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where NA is the molar flux of species A relative to the fixed spatial coordinates,
∆cA is the concentration difference and kc is the convective mass transfer coefficient
[27].

5.3.2 Porous media

Diffusion and Flow
It is important to consider the interaction between diffusion and flow. For porous
media, Knudsen diffusion is encountered in addition to the ordinary diffusion. In-
troduction of porous media factor to the Fick’s law makes it suitable to be used in
the cases to define ordinary diffusion in porous media. Equation 5.3.1 is modified
by the addition of porous media factor β to be used for the porous media [24].

D∗
AB,CF = βDAB,CF (5.3.5)

β = ϕSgτ (5.3.6)

NA = −cD∗
AB,CF∇xA + xA(NA +NB) (5.3.7)

D∗
AB,CF is the effective diffusion coefficient of the water vapour in a porous media,

DAB,CF is the effective diffusion coefficient of the water vapour in pure fluids, ϕ is
the porosity, Sg is the gas saturation (equal to 1.0 for all-gas conditions), and τ is
the tortuosity. In Equation 5.3.7, the first and the second term on the right side
represent the diffusion and flow term respectively. Tortuosity factor defines the ratio
of length of the tortuous path to the straight line, which is predicted by different
models. The most commonly used model is the Millington and Quirk model, which
relates tortuosity to the one-third power of the porosity of the porous medium,

τ = ϕ
1
3S

7
3
g (5.3.8)

Knudsen diffusion refers to the diffusion when the mean free path of the fluid
molecule is equal to the same order as the porous media pore diameter. Config-
urational diffusion is seen in cases where pore size decreases further and the size of
the fluid molecule is equivalent to the pore diameter. The effect of porous media
could be included by using Knudsen diffusion and configurational diffusion [24].

Convection
Convective mass transfer in porous media also depends on both the transport prop-
erties and the dynamic characteristics of the moving fluid. Similarly, there are two
types of mass transfer involved - free and forced convection. The rate equation is
represented by the Equation 5.2.2 [27].
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5.4 Evaporation and Condensation

Evaporation and condensation have to be discussed when moisture transport results
in phase transition. Evaporation of liquid requires energy, which is attained from
cooling an object. The amount of energy required to transform the specified amount
of liquid to gas is given by the enthalpy of vaporization [31].

Condensation is defined by the change of state from vapour to liquid when it comes
in contact with a liquid or solid surface. In the process of condensation, energy is
released from the vapour to liquid, and the amount of energy required to change the
phase is the heat of condensation. Usually, condensation is said to occur if the gas
is cooled or compressed, that is, in other words, it occurs when the vapour contacts
the surface at a temperature below the saturation temperature of the vapour [27].
The definition of relative humidity is significant in understanding the phenomenon.
Relative humidity (RH) is defined as the ratio of amount of water vapour in the
air to the maximum amount of water vapour that could be present in the air at
a particular temperature and atmospheric pressure. The atmospheric pressure is
considered constant since the changes in pressure are generally very small and are
neglected. Irrespective of the atmospheric pressure, there are noticeable changes
in atmospheric temperature and the relation between the temperature and relative
humidity (RH) could be checked in psychometric charts. Temperature and RH are
inversely proportional. It is said that change of about 2% with RH is witnessed with
every 1◦F change in temperature. If there is a certain temperature and RH is 50%,
further temperature changes up till the RH being 100% does not cause condensation.
But further temperature decrease when the RH is already 100% would result in
the concentration of water vapour in air to exceed above the saturation point and
condenses as liquid droplets. This saturation point is referred to as the dew point[32].
The rate of condensation is increased with vapour temperature decrease and is also
influenced by other parameters such as the surface area available for condensation
and the wind speed in the environment. To summarize, effect of condensation is
witnessed with the vapour temperature decrease, thus a resultant decrease in the
vapour concentration and an increase in the liquid concentration.
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6
Dimensionless numbers

Dimensionless numbers are used to give an overview of how a specific system will be-
have. In this study,they are used for parameter estimation involved in the transport
processes. In addition to give an approximation about the vital transport processes
in the model.

The relevant dimensionless numbers are presented here.

6.1 Reynolds number

The Reynolds number(Re) is the ratio of the inertial forces to the viscous forces in
a fluid.

Re = ūL

ν
(6.1.1)

ū and L are mean flow velocity and characteristic length of the flow geometry re-
spectively. ν is the kinematic viscosity. Laminar flow is generally categorised by
viscous forces and the turbulent flow is dominated by the inertial forces. If in case
the Reynolds number is small, then the viscous forces would be larger than the iner-
tial forces. Hence this dimensionless number is useful in characterizing whether the
flow is laminar or turbulent. The critical Reynolds number, below which the flow is
laminar, varies with geometry [28].

6.2 Nusselt number

The Nusselt number(Nu) is a dimensionless heat transfer coefficient, which is the
product of the Reynolds number and the Prandtl number (Nu = RePr). The
Prandtl number(Pr) is the ratio of momentum diffusivity to thermal diffusivity. To
characterize the means of heat transfer, the Nusselt number is defined as the ratio
of the heat flux including convection to the reference case of conductive heat flux
[33].

Nu = qwith convection

qreference case conduction

(6.2.1)
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6.3 Rayleigh number

The Grashof number(Gr) is the ratio of buoyancy force to viscous forces. In the cases
of free convection where the buoyancy forces dominate the flow, the Grashof number
takes the place of the Reynolds number(Re) in the Nusselt number calculations
(Nu = RePr). This combination of the Grashof number and the Prandtl number
is termed as the Rayleigh number(Ra), shown in Equation 6.3.1 [24].

The Rayleigh number is used to characterise the means of heat transfer. In the
case where it is lower than a critical value specific for a fluid, then the conductive
heat transfer is said to be dominant. There is said to be convective dominant heat
transfer taking place when Ra exceeds the critical value.

Ra = GrPr (6.3.1)

Ra = ρ2cpgβH
3∆T

µk
(6.3.2)

β,µ,ρ and cp are heat expansion coefficient, viscosity, density and specific heat ca-
pacity respectively. k denotes the thermal conductivity; H refers to the thickness
of the layer; ∆T is the temperature difference existing in the layer [26]. The critical
Rayleigh number for the pure fluids(air) is in the order 103 [34]. Whereas the critical
Rayleigh number for the air within the porous media is in the order of magnitude
105 [35].

6.4 Stark/Stefan number

Sk = Sf = εσsbT
3L

λ
(6.4.1)

Where σsb is the Stefan- boltzmann constant,T is the temperature of the external
environment,L is the characteristic length, λ is the thermal conductivity of the fluid
and ε is the emissivity of the wall. This number define the ratio of the heat transfer
by radiation to the heat transfer by conduction [36].

6.5 Hottel number

Hot = α

εσsbT 3L
(6.5.1)

Where α is the convective heat transfer coefficient, σsb, T is the absolute tempera-
ture, ε is the emissivity. The Hottel number(Hot) denotes the ratio of heat flow by
convection to the heat flow by radiation [36].
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6.6 Peclet number

The Peclet number is significant to characterise the means of both mass and heat
transfer.

It is the ratio of convection mass transfer to diffusion mass transfer. If the Peclet
number (Pe)� 1, then convective term is dominant and as means of approximation,
the diffusion mass transfer can be neglected.

Pe = UL

Dm

(6.6.1)

U and L are the flow velocity and length of the flow geometry and Dm is the mass
diffusivity [37].

Similarly, the Peclet number for heat transfer is defined by the Equation 6.6.2. Here,
k is the thermal conductivity. Pe is the ratio of convective heat transfer to conductive
heat transfer. If Pe � 1, then the convective term is dominant and the conductive
heat transfer could be ignored.

Pe = UL

k
(6.6.2)
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7
Computational tool

The complete skin-product model is designed and analyzed with the help of the
computational software COMSOL Multiphysics. COMSOL is a finite element anal-
ysis tool for modelling and simulating engineering problems. Being user-friendly, it
is employed easily to analyze the physics involved in depth by providing the user
access to the underlying equations [38].
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8
Skin Model

Skin or any other body part is complicated to be involved in a study model since
the body’s internal mechanism is hard to be predicted. Irrespective of that, through
a complete literature reading, it is understood that there are several ways to model
the skin in a simplified manner having few assumptions taken into account. This
section would discuss about the various existing skin models and the validity of the
assumptions in reality.

Previous studies have used thermal manikins and human subjects for carrying out
clothing comfort studies experimentally. Earlier, Gagge developed a two node (core
and skin) model to explain the body’s thermal regulation process. But it does not
apply for the transient conditions since there is an assumption related to isother-
mal behaviour of the human body, clothing and the environment. Li and Holcombe
combines the Gagge model with the sorption kinetics of the clothing [39]. They
evaluate the problem using the mathematics as a tool and consider the human body
as two concentric shells, that is, the inner core and the outer skin. In the study
by Wang et al., a numerical manikin is used where a heat flux pertaining to the
metabolic activity level and an emissivity at the body surface are specified [2]. The
Berkley Comfort model considers the body divided into 15 segments where each
segment is divided into four nodes (skin, core, vein blood and artery blood) and
uses the Penne’s bio heat equation to involve the body’s thermoregulation system.
The model takes into consideration the metabolic heat source, blood perfusion rate,
arterial temperature, density and specific heat of the blood [40]. The Berkley Com-
fort model can be a potential basis for the study, but in-depth knowledge of the
human circulatory system is beyond the project scope as it is sufficient to find a
relevant skin model which allows for necessary product properties to be simulated.
An interesting approach is noticed in the analysis made by Huang et al. and Zhang
et al. where the temperature and RH near the skin surface and external environ-
mental conditions are specified [1, 41]. In addition to such conditions, effective wind
speed has been also an input in another study [4]. Two groups, Celcar et al. and
Meinander focused on the measurement of heat and moisture transmission through
clothing using a sweating cylinder. Here, different sweating levels are considered on
the skin surfaces along with the specified environmental conditions [42, 43].

The model in this project investigates two approaches of representing the skin where
in both the cases, it is described as a surface or boundary. The first approach is to
consider constant skin temperature and constant RH near the skin, motivated from
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8. Skin Model

the article by Huang et al. [1]. The information for prediction of RH near skin is
not enough and hence a sub model is made to predict the RH near the skin. In
the sub model, model inputs of skin diffusive flux and skin temperature are fed as
constant parameters. The approach in the sub model is seen to be similar to the
articles [42, 43], but with further modifications such as the sweating manikin being
replaced by a skin surface and the experimental aid for analysis being replaced with
the computational power.
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9
Complete Model

9.1 Model Geometry

The complete model in COMSOL is visualized consisting of two different domains.
It explains the transport processes taking place between the skin and the product
and within the product. The product is exposed to the outer environment. The
skin and the product are separated by an air layer.

From Chapter 8, it is concluded that the skin will be modelled as a boundary. The
skin is shown highlighted in the Figure 9.1.1 by a red colour line denoted as A. A-B
in the model represents the air layer, which is highlighted as a grid shaded region.
From Chapter 3, it has been analysed to consider only the product’s absorbent core
as a single layer to denote the product in the model. The absorbent core of the
product is represented by a porous domain (B-C), shown as a dot shaded region.
B denotes the inner boundary of the porous domain, marked by a black line. The
back sheet (commonly called the film) of the product is too thin to be modelled as
a separate domain, as meshing very small domains accurately would result in very
large computation time. Hence, the product’s back sheet (film) is assumed to be a
boundary on the outer surface of the porous domain. The film is marked by blue
colour in the figure. The surrounding environment which is present after the outer
boundary of the porous domain is modelled as a virtual domain.

To sum up, the entire model is seen as two domains :

• Domain A-B : 5 mm air layer between the skin boundary and the inner bound-
ary of the porous domain.

• Domain B-C : 7 mm porous domain with its outer boundary defined as the
film.
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Figure 9.1.1: Model Geometry

9.2 Model Assumptions

There are assumptions made in the model in order to avoid complexity of under-
standing few processes. The assumptions are as follows:

• The product is drawn as a 2D model geometry. Since the scope is to analyse
the transport processes, either 1D or 2D model would suffix the purpose.

• The study in the project is carried out in the steady state.

• The body wearing the diaper is assumed to be naked, so there is no clothing
layer adjacent to the diaper back sheet,which otherwise would be an additional
resistance to the transport processes.

• The product is said to have a homogeneous fiber structure, resulting the ma-
terial properties to remain constant throughout the medium.

• A design of simplified model with standing baby wearing the product in the
room, is aimed. Hence there is no consideration of wind speed.

• Dry state product is said to be used in the analysis.

• The product is assumed to be a rigid structure. Hence swelling of product
structure due to moisture transmission is neglected, thereby permeability and
porosity of the porous medium remains constant.

• It would be difficult to analyze all of the transport processes within the model.
For modelling simplifications, wicking has been ignored since the onset of
condensation is of major interest.
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9.3 Model Data

Data required for the model is fed in through literature searches. Material data for
the air is found default in COMSOL. Through an initial literature search, material
data for the porous domain are manually entered. The porous domain is approxi-
mated to consist of cellulose fibres and the film has been assumed to be composed
of polyethylene. The material properties are shown in the Table 9.3.1.

Material ρ(kg/m3) k(W/m K) Cp(J/kg K) ε(Emissivity)

Porous domain 900[44] 0.06[45] 1700[46] 0.95[47]

Film 920[45] 0.33[48] 1900[45] 0.1
[49]

Table 9.3.1: Material Data

Here, ρ, k, Cp, ε represents the density, thermal conductivity, specific heat capacity
and emissivity respectively. For the pre-study, the permeability and porosity of
the porous domain are assumed 10−11 m2 and 0.8 respectively [25]. The diffusion
coefficient of the water vapour in the film is calculated using the Mocon number
(Appendix A1). The Mocon number quantifies the breathability of the film by
measuring the water vapour transmission rate (WVTR). It is not a dimensionless
number and g/m224h is its unit.

9.4 Meshing and Solvers

Meshing is the second step to be followed after drawing the geometry. A finer mesh is
aimed with 33572 triangular elements using the meshing technique ’free triangular’.
Average mesh quality is check with the mesh statistics and is estimated as 0.993.

Solver parameters are set just before the simulation step. PARADISO is chosen as
the stationary solver in the model and the relative tolerance is set to 0.001.

9.5 Physics and Boundary Conditions

9.5.1 Momentum Transport

In this case, there are two possible driving forces for flow - pressure gradient and
gravity. Since the system is exposed to the surrounding atmospheric pressure, the
pressure differences are considered to be negligible. Using Equation 5.1.2 the flow
due to gravity is found to be as low as 10−6 m/s. Using the Rayleigh number, the
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transport due to flow can be shown to be negligible in comparison to transport due
to conduction. Accordingly the flow component is neglected in the model.

9.5.2 Heat Transport

Heat transfer by conduction, flow, convection and radiation is modelled through
an interface ’Heat transfer in Porous media’ in COMSOL [50]. Convection is less
dominant in the model and is ignored. The interface gives the possibility to define
’heat transfer in fluid’ in domain 1 and ’heat transfer in porous medium’ in do-
main 2. Skin is assumed as a boundary with constant temperature. The ambient
environment outside the porous domain is assumed to remain constant at a lower
temperature when compared to the skin temperature. The initial temperature in
both the domains is set to be the ambient temperature. Heat transfer in general
takes place due to the existence of a temperature gradient, wherein the transfer
takes place in the direction from higher temperature to the lower temperature. This
makes it evident that at the initial stage, there is transfer of heat from the skin to-
wards the porous domain. The equations in the fluid domain and the porous domain
are slightly different, shown by Equation 9.5.1 and Equation 9.5.2 respectively. The
first term on the left side is eliminated due to the flow being neglected. Q on the
right side of equations refer to the heat source/sink terms. Qp and Qvd refer to the
work due to pressure changes and the viscous dissipation term respectively but both
the terms are eliminated due to the negligible flow. Since the equations are solved
in steady state assumption, the temperature does not change with time, hence the
time derivative term is eliminated in both of the equations. The effective thermal
conductivity of the porous media depends on the porosity of the porous medium,
which is seen in the Equation 9.5.3. keff refers to the effective thermal conductivity
of the porous medium and the porous medium. ε denotes the porosity of the porous
medium.

ρcpu ·∇T −∇· k∇T = Q+Qp +Qvd (9.5.1)

ρcpu ·∇T −∇· keff∇T = Q+Qp +Qvd (9.5.2)

1
keff

= 1− ε
kp

+ (ε)
k

(9.5.3)

Here, k, kp denotes the thermal conductivity of the fluid and the solid porous mate-
rial respectively. u denotes the flow velocity. ∇T is the temperature gradient. Since
there is no flux involved across the vertical boundaries of the domains, symmetry
is set as a condition at those boundaries, which is explained by the below equation
[50]. All the module boundary conditions are seen in Appendix A2.

− n · q = 0 (9.5.4)

30



9. Complete Model

Heat transfer through the film is accounted for imposing a heat flux boundary con-
dition at the outer surface of the product. The boundary is defined as a thin porous
layer with certain thickness ds and conductive property ks(see Equation 9.5.5 and
Equation 9.5.6).

q = −ks

ds

(Tamb − T ) (9.5.5)

1
ks

= (1− εf )
kf

+ εf

kair

(9.5.6)

where Tamb refers to the ambient temperature , εf and kf denotes the porosity and
conductivity of the film; kair refers to the thermal conductivity of air. The thickness
of the film for the initial study is assumed to be 18 µm [25]. The porosity of the
film is calculated with the Mocon number of the film and is found as 0.00074 for a
highly breathable film (Appendix A2). The rest of the film parameters are given in
Table 9.1.

Radiation
Surface-to-surface radiation is included in the heat transfer equation through the
heat source or sink term Q, seen in Equation 9.5.1 and Equation 9.5.2. Diffuse
surface boundary condition are incorporated in the model in order to include effects
of surface-to-surface radiation. The diffuse surface adds radiative heat source con-
tribution on the boundary side where radiation is defined, shown in Equation 9.5.7.
Radiative heat source is incorporated on both sides of the diffuse boundary if the
radiation is defined on both sides [50].

q = G− εσb(T ) (9.5.7)

where G is the incident radiation and the second term on the left side of the Equa-
tion 9.5.7 refers to the radiation leaving the surface.

Three diffuse surfaces has to be added to the model, which includes the skin, the
inner boundary of the porous domain and the outer boundary of the porous domain.
With the calculation of the Stark number, adding radiation source on the film gives
no effect. Hence it is concluded to define only two diffuse surfaces to account for
radiation. The porous domain is opaque, which leads to the specification of opacity
controlled direction to the diffuse surface at the inner boundary of the porous do-
main. The emissivity values of the materials are given in Table 9.3.1. Among the
diffuse surfaces, skin is the main source of radiation and it is necessary to analyse the
heat emitted from human body for this project. The emissivity is found to be 0.99,
stating it as a black body [49]. Symmetry boundary condition applies for radiation
as well, since there is no radiative flux across the ends of the domains.

The important boundary conditions in the heat transfer section is summed up in
Figure 9.5.1
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Figure 9.5.1: Boundary conditions

9.5.3 Mass Transport

Mass transfer of water vapor in air is investigated in the model. COMSOL’s interface
’Transport of diluted species’ is a potential interface which could be used since it is
used to calculate the concentration gradient of the dilute solute in a solvent. The
mechanism for the mass transport is diffusion, and when coupled to the flow field,
convection could also be included as an effect in the mass transport processes [50].
But in this study, convection is neglected. The interface gives the flexibility to model
the mass transport processes in the fluid domain and the porous domain, just like
the heat transfer physics.

The skin is defined to emit certain concentration of water vapor in the model. The
concentration is calculated from the RH near skin, which is fixed through simulations
to attain a certain diffusive flux from the skin. Diffusive flux from the skin is called
the EW in this study. EW accounts for only TEWL or both TEWL and evaporated
sweat. There are some validated TEWL range studied from literature and it is taken
into account for the model simulations to attain a starting point with the RH near
the skin. The ambient environment is assumed to have a lower vapour concentration
when compared to the vapour concentration near the skin. The concentration of
water vapor at the skin and at the ambient are calculated from the RH near skin
and the ambient RH respectively (Appendix A1). The initial concentration in both
the domains is set to the ambient concentration. Mass transfer takes place due to the
concentration driving forces in the model, where the transfer processes are governed
by Equation(9.5.8) and Equation(9.5.9) in the fluid domain and the porous domain
respectively.
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∇· (−Di∇ci) = Ri (9.5.8a)
Ni = −Di∇ci (9.5.8b)

∇· Γi = Ri + Si (9.5.9a)
Ni = Γi = −De,j∇ci (9.5.9b)

In the (9.5.8), Ri denotes the mass source/sink term; Si refers to the source term
added for the species involved in the transport; diffusion coefficient of water vapor in
air is entered as a variable dependent on the model temperature, which is shown in
Appendix A1. The diffusion coefficient of water vapour through the porous medium
(De,j) seen in the (9.5.8) is defined below.

De,j = εp

τf,j

Df,j (9.5.10)

Df,j is fluid diffusion coefficient. The tortuosity is given by the Millington-Quirk
Model, same as explained before in Equation 5.3.8. The mass transfer through the
film is modelled by imposing a boundary condition of flux. The film is modelled
as a thin diffusion barrier. The structure could be assumed similar to the porous
medium but with a lower porosity than the porous medium. The equation depicting
the diffusion through film is shown below, where the diffusion coefficient of water
vapour in the film is calculated with respect to the Mocon number (Appendix A1).

N = −Db

ds

(Camb − c) (9.5.11)

ds and Db denotes the thickness of the film and the diffusion coefficient of water
vapour through the film respectively. Camb is the ambient concentration; c is the
concentration(mass transport dependent variable).

Symmetry at the vertical boundaries of the domains is taken into consideration in
this model as well, since there is no diffusive flux across the vertical boundaries of
both the domains. The symmetry node explains the equation, as seen below. The
boundary condition is denoted in the Appendix A2.

− n · Ni = 0 (9.5.12)

The important boundary conditions in the mass transfer section is summed up in
Figure 9.5.2
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Figure 9.5.2: Boundary conditions

9.5.4 Condensation

Adsorption is a surface based process referring to the adhesion of molecules onto a
surface. It is a transient process and can catalyse condensation, which is a continuing
process. Condensation is said to modify the steady state and the heat flows involved
[4]. Since the model is studied in its steady state, condensation phenomenon alone
is analysed.

Condensation, as discussed earlier, is bound to happen when the vapour concen-
tration is greater than the saturation vapour concentration. The excess vapour
is condensed as liquid on the surface, for example, on the solid surface inside the
porous medium. Due to condensation, heat loss and moisture loss is seen in the
vapour phase. One way to model the phenomenon of condensation could be to add
the heat sink and mass sink terms to the heat transfer and mass transfer equations
respectively. This approach could be to some extent similar to the article by Lotens
et. al. [4].

In COMSOL, condensation is governed by adding a reaction term to the porous
domain in the interface ’Transport of diluted species’. In Equation(9.5.8), Ri refers
to the reaction term, which is explained as follows:

Ri = −k(c− csat)(c > csat) (9.5.13)

csat = Psat

RT
(9.5.14)
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where c, csat, Psat, R and k denotes the vapour concentration, saturation concentra-
tion, saturation pressure, universal gas constant and condensation rate respectively.
Saturation pressure and saturation concentration are calculated through COMSOL.
Condensation rate is assumed 100 s−1 for the pre-study. The condition (c > csat)
is used to generate the whole reaction term active only when c is greater than csat.
This is the case when condensation is bound to happen.

Similarly, a heat source term is added only to the porous domain in the COMSOL
interface ’Heat transfer in Porous media’. In Equation 9.5.2, Q refers to the heat
source term and is defined as shown:

Q = −Hcond ∗Ri (9.5.15)

where Hcond refers to the heat of condensation taken as 43740 J/mol for water [4];
Ri refers to the reaction term described above. The heat source term is also seen
to be activated only during the case of condensation, that is, when c is greater than
csat.
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10
Post Analysis

10.1 Skin as a boundary

It is explained previously that that boundary condition for the skin is to specify
certain temperature and certain RH at the surface. Through literature studies,
temperature at the skin surface is found to range from 28 to 35◦C. The RH near
the skin has been difficult to be predicted, and hence as mentioned before it is
attempted to be found through an approach with constant skin diffusive flux and
skin temperature as inputs. Diffusive flux from the skin is called EW in the study.
EW accounts for either the TEWL or both TEWL and the evaporated sweat.

Some validations taken from the literature are used as a base for the model study.
Having a certain RH near the skin is necessary in order to attain the appropriate
range of TEWL from skin. From literature reading, TEWL from the skin is mea-
sured when it is not occluded by any clothing under specific ambient atmosphere
conditions. The ambient atmosphere in the room is maintained at around 30-50%
RH and at a temperature range of around 20-22◦C [51]. Subjected to these condi-
tions, the skin is measured to have a surface temperature of about 30-32◦C. TEWL
measurements are said to be appropriate when the above atmospheric conditions
are maintained and is measured experimentally through instruments. TEWL is said
to be in the range of 10-20g/m2h [51]. The values could also account for some
evaporated sweat if the TEWL value is seen higher.

Even if the above ambient conditions are maintained, by reality it can be assumed
for the body to sweat when the skin is occluded with the porous medium. As a
result of which, EW is assumed to account for some evaporated sweat in addition
to the TEWL. Hence the value of 10-20g/m2h is assumed to raise and cannot be
estimated exactly. Nevertheless, to start with, it is decided to make the first study
with EW of 10-20g/m2h to could go up to the range of 10-40g/m2h if the skin is
occluded with materials.

The film occluding the skin should be to an extent breathable. The range of Mo-
con number for the breathable film investigation is decided to be 3000 g/m224h
and higher, and in the study it is decided to start with the Mocon number of
5000 g/m224h [52]. The study does not concern with exact values since it is aimed
to understand the underlying concepts. When maintaining the above conditions
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with the assumptions, RH near skin is predicted to be in the range 50-70% (see
Table 10.1.1). Nevertheless, the ambient temperature and the skin temperature
could also affect the RH near the skin. It is concluded that the RH near the skin
is dependent on the ambient RH, skin temperature, ambient temperature and the
EW. But in order to analyse and compare the effect of heat and mass transfer in
the complete model, it is assumed to proceed with a single random case. The case
is kept as skin temperature of 32◦C, RH near skin as 50%, ambient temperature of
22◦C ,and ambient RH of 40%. The parameters could be varied later in the analysis.

Trials
Ambient
Temper-

ature(◦C)

Ambient
RH (%)

Skin
Temper-

ature(◦C)

RH near
skin (%)

EW
(g/m2h)

1 22 40 32 41 14
2 22 40 32 52 22.6
3 22 40 32 55 25
4 22 40 32 60 29
5 22 40 32 65 33
6 22 40 32 70 37

Table 10.1.1: EW corresponding to the RH near skin

10.2 Heat Transport

To investigate the effect of heat transfer, the 2D surface temperature profile, as
in Figure 10.2.1, and the 2D cut line temperature profile, as in Figure 10.2.2, are
visualised in the model. Cut line is made across the middle of the 2D model.
These figures clearly show the gradual temperature decrease throughout the model,
that is caused due to the higher skin surface temperature and the lower ambient
temperature.
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Figure 10.2.1: 2D Surface Temperature Profile

Figure 10.2.2: 2D Cut line Temperature Profile

Observing the Figure 10.2.2, the temperature is seen to decrease from 32◦C at the
skin surface to 27.3◦C at the inner boundary of the porous domain, then further
decreases to 22◦C at the outer boundary of the porous domain. The linear tem-
perature drop between the skin surface and inner boundary of the porous domain
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has a different slope compared to the temperature drop between the inner and the
outer boundary of the porous domain. This is explained due to the restriction for
energy transfer within the porous material relative to the pure fluids. Since there is
no convective flux present within the system, the flux balance in the model is solely
due to the conductive flux, which is reported as 23.7 W/m2 (Figure B.1.1). There
is a negligible temperature drop across the film. This is explained by the thickness
and the transport coefficient. Very low thickness and high conductivity at the outer
boundary is the reason to such behaviour.

Skin Inner boundary
of the porous domain

Outer boundary
of the porous domain

Surface Temperature(◦C) 32 27.3 22

Table 10.2.1: Heat Transport

10.3 Mass Transport

To investigate the effect of mass transfer, the 2D surface concentration profile, as
in Figure 10.3.1, and the 2D cut line concentration profile, as in Figure 10.5.6, are
visualised in the model. Cut line is made across the middle of the 2D model. These
figures show the gradual concentration decrease throughout the model similar to
the temperature curves, due to the higher skin surface vapour concentration and the
lower ambient vapour concentration. Similar temperature and vapour concentration
behaviours are seen across the model. The diffusion coefficient is set as a temperature
dependent variable.
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Figure 10.3.1: 2D Surface Concentration Profile

Figure 10.3.2: 2D Cut line Concentration Profile
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Diffusive flux of around 20.9 g/m2h is witnessed throughout the model with the
vapour concentration is seen to decrease from 0.94 mol/m3 at the skin surface to
0.87 mol/m3 at the inner boundary of the porous domain, then it further decreases
to 0.75 mol/m3 at the outer boundary of the porous domain (Figure 10.5.6,Fig-
ure B.1.2). Due to the diffusive ability being lower within the porous domain when
compared to the pure fluid layer, the concentration drop is seen higher within the
porous domain. Across the film, there is a concentration drop of 0.32 mol/m3. The
higher concentration drop is explained by the film being the major diffusive barrier
in the model.

Skin Inner boundary
of the porous domain

Outer boundary
of the porous domain Ambient

Surface Vapor
Concentration(mol/m3) 0.94 0.87 0.75 0.43

Table 10.3.1: Mass Transport

10.4 Effect of Radiation

To check for the effect of radiation in the heat transport, two cut line 1D plots
are created highlighting the model with and without radiation (see Figure 10.4.1).
The model with radiation is activated by introducing the diffuse surfaces and the
condition surface-to-surface radiation, as explained in the section 9.5.2.
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Figure 10.4.1: Effect of Radiation

Surface radiosity pertains to the radiation leaving the surface, which is checked for
the activated diffuse surface in the radiation model. From Appendix B, it is seen
that the skin surface emits at about 492W/m2 towards the direction of porous do-
main. Similarly it is noticed that the inner boundary of the porous domain emits
radiation of about 475W/m2 towards the skin. The difference between them is the
net radiation flux from the skin since the radiation emitted from the skin is higher
compared to the radiation emitted from the inner boundary of the porous domain.
The flux balance is investigated in the radiation model. The normal radiative flux
and the conductive flux from the skin are estimated to 16W/m2 and 15W/m2 re-
spectively. Out of the total flux from the skin, radiative flux accounts for about 52%.
Such high contribution from the effect of radiation influences the energy transfer,
and also modifies the surface temperature within the radiation model. Looking at
the Table 10.4.2 , a higher temperature drop within the porous domain is witnessed
accounting for the higher rate of heat transfer, thus explaining the higher surface
temperature at the inner boundary of the porous domain. It is understood that the
inner boundary of the porous domain is cooler if radiation is not included in the
model. As the temperature rise of about 2◦C is an accountable temperature rise
when compared to the overall temperature difference in the model, it demands the
necessity to include the effect of radiation in the model for the following study.
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Without Radiation With Radiation
Skin Temperature(◦C) 32 32

Temperature of the
inner boundary of the porous domain(◦C) 27.3 29.2

Temperature of the
outer boundary of the porous domain(◦C) 22 22

Table 10.4.1: Effect of Radiation, as depicted in Figure 10.4.1

Without Radiation With Radiation

Temperature of the
inner boundary of the porous domain(◦C) 27.3 29.2

Temperature of the
outer boundary of the porous domain(◦C) 22 22

Temperature Drop across Porous domain(◦C) 5.3 7.2

Table 10.4.2: Effect of Radiation

10.5 Effect of Condensation

To check for the effect of condensation in the transport processes, two cut line 1D
plots are created highlighting the model with and without condensation. Here both
the models include radiation effects since it has been discovered that radiation has a
significant effect and is included in the further analysis. Condensation, as discussed
before, is activated in the model by introducing a heat source term and a reaction
term. The check for condensation happening in a model is visualized by looking
closely at the vapour saturation concentration (csat) and vapour concentration (c)
cut line 1D plots. In the cases where the vapour concentration is higher than the
vapour saturation concentration, condensation occurs.

10.5.1 Varying ambient and skin parameters

With the base case where the skin temperature, RH near the skin, the ambient
temperature and the ambient RH are 32◦C, 50%, 22◦C and 40% respectively, con-
densation is not witnessed since the vapour concentration has not exceeded the dew
point (c curve is below the csat curve) throughout the model (Figure 10.5.1). This
ultimately explains the zero heat source term and the zero reaction term. There is
no change in temperature and concentration curves irrespective of the condensation
effect activated (Figure 10.5.2 and Figure 10.5.3). Hence the total heat flux (conduc-
tive, radiative) and total mass flux (diffusive) is the same. If condensation happens,
the percentage of moisture condensed can be found from the model through the
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diffusive fluxes (see Equation 10.5.1)

Moisture condensed(%) = Diffusive flux at the skin−Diffusive flux at the film
Diffusive flux at the skin

(10.5.1)

Figure 10.5.1: Base case - c and csat curve comparison

Figure 10.5.2: Base case - Temperature curve
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Figure 10.5.3: Base case - Concentration curve

From the literature, it is understood that a lower ambient temperature and a higher
ambient humidity is expected to show condensation effects. To investigate the above
statement, the ambient parameters are separately varied and the conclusions are
made. The other model inputs such as the skin parameters are also varied to check
for the effect of condensation. The following section analyses the four model inputs
in detail - ambient temperature, ambient RH, skin temperature, RH near skin. In
each study, one of the model input is varied and the other three are kept constant.

In study 1, the ambient temperature is varied in the range 10◦C to 26◦C, the other
parameters are kept constant (ambient RH = 40%, skin temperature = 32◦C, RH
near skin = 50%). When decreasing the temperature from 26◦C to 18◦C, no effect
of condensation is seen. On further decreasing the temperature, the percentage of
condensed moisture increases with the temperature decrease (Figure 10.5.4). The
underlying reason is the temperature being lowered to a point where the moisture
gets condensed.

S.No
Skin

Temper-
ature(◦C)

RH near
skin (%)

Ambient
Temper-

ature(◦C)

Ambient
RH (%)

EW
(g/m2h)

Moisture
condensed

(%)

Location of
condensation

start (mm)
1 32 50 26 40 16.7 0 -
2 32 50 22 40 20.9 0 -
3 32 50 18 40 24.2 0 -
4 32 50 14 40 29.0 13 11.7
5 32 50 10 40 44.3 55 11.7

Table 10.5.1: Varying ambient temperature

46



10. Post Analysis

Figure 10.5.4: Varying Ambient Temperature

In study 2, the ambient RH is varied in the range 40-80%, and the RH near the
skin is also varied accordingly. The vapour concentration near the skin should be
kept higher than the ambient vapor concentration for the mass to be transported in
the direction from skin to the film. The difference between the ambient RH and the
RH near the skin is maintained at about 10%. Other parameters are kept constant
(ambient temperature = 22◦C, skin temperature = 32◦C). Increasing the ambient
RH up to 70% has no effect of condensation. Further increase in the ambient RH
shows an effect of condensation. Higher percentage of moisture is condensed with
the higher ambient RH. The moisture condensed is about 80% when the ambient
RH is kept at 80% (Figure 10.5.5). This is explained with the lower saturation
concentration at such high ambient humidities.

S.No
Skin

Temper-
ature(◦C)

RH near
skin (%)

Ambient
Temper-

ature(◦C)

Ambient
RH (%)

EW
(g/m2h)

Moisture
condensed

(%)

Location of
condensation

start (mm)
6 32 50 22 40 20.9 0 -
7 32 60 22 50 24.3 0 -
8 32 70 22 60 27.6 0 -
9 32 80 22 70 47.5 54 11.4
10 32 90 22 80 72.6 80 10.7

Table 10.5.2: Varying ambient RH amd RH near skin
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Figure 10.5.5: Varying Ambient RH

In study 3, the skin temperature is varied in the range 28◦C to 32◦C, the other
parameters are kept constant (ambient RH = 40%, ambient temperature = 22◦C,
RH near skin = 50%). From Figure 10.5.6, it is seen that at the conditions of study
3, varying the skin temperature without varying the ambient conditions does not
give any effect on condensation.

S.No
Skin

Temper-
ature(◦C)

RH near
skin (%)

Ambient
Temper-

ature(◦C)

Ambient
RH (%)

EW
(g/m2h)

Moisture
condensed

(%)

Location of
condensation

start (mm)
11 36 50 22 40 30.1 0 -
12 34 50 22 40 25.3 0 -
13 32 50 22 40 20.9 0 -
14 30 50 22 40 17.0 0 -
15 28 50 22 40 13.4 0 -

Table 10.5.3: Varying skin temperature

Figure 10.5.6: Varying Skin Temperature

In study 4, the RH near skin is varied from 50% to 90%, keeping the other parame-
ters constant (ambient RH = 40%, ambient temperature = 22◦C, skin temperature
= 32◦C). From Figure 10.5.7, it is seen that with the increase in RH up to the 70%
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does not show condensation. The RH increase beyond 70% shows an increase of
the percentage of moisture condensed. At the RH near the skin of 90%, the mois-
ture condensed is about 40%. The condensation is explained with the high vapour
concentration at the skin, which is higher than the saturation concentration further
down in the cooler parts of the porous domain.

S.No
Skin

Temper-
ature(◦C)

RH near
skin (%)

Ambient
Temper-

ature(◦C)

Ambient
RH (%)

EW
(g/m2h)

Moisture
condensed

(%)

Location of
condensation

start (mm)
16 32 50 22 40 20.9 0 -
17 32 60 22 40 28.7 0 -
18 32 70 22 40 36.5 0 -
19 32 80 22 40 47.7 10 11.7
20 32 90 22 40 69.9 39 11

Table 10.5.4: Varying the RH near skin

Figure 10.5.7: Varying the RH near skin

In reality, as discussed in literature, temperature and relative humidity are inter-
linked. Hence when there is a change with ambient temperature, it is important
to have changes in the ambient RH as well. In the coming study, the difference
between the ambient RH and the RH near the skin is decided around 5%. Varying
a combination of parameters in three different trials is done in the analysis. These
trials are decided to be done in order to study the phenomenon of condensation. In
trial 1, the skin temperature, the RH near the skin, the ambient temperature and
the ambient RH are set to be 32◦C, 52%, 20◦C, 47% respectively. In trial 2, the
skin temperature, the RH near the skin, the ambient temperature and the ambient
RH are set to be 32◦C, 60%, 18◦C, 54% respectively. In trial 3, skin temperature of
32◦C, RH near skin of 70%, ambient temperature of 15◦C and ambient RH of 65%
are set. With trial 3, maximum amount of condensation is seen to be achieved and
the percentage of moisture condensed is about 75% (see Figure 10.5.8). Since the
condensation effect is highly pronounced in this trial, it is taken as a relevant case in
the following study to check for the other factors affecting condensation. The tem-
perature and the RH could be varied in the future studies, also the consideration of
specific differences between the skin RH and the ambient RH could be eliminated.
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S.No
Skin

Temper-
ature(◦C)

RH near
skin (%)

Ambient
Temper-

ature(◦C)

Ambient
RH (%)

EW
(g/m2h)

Moisture
condensed

(%)

Location of
condensation

start (mm)
21 32 52 20 47 21.5 0 -
22 32 60 18 54 29.9 15 11.7
23 32 70 15 65 67.0 75 11.1

Table 10.5.5: Varying Ambient Temperature, Ambient RH and the RH near the
skin

Figure 10.5.8: Varying Ambient Temperature, Ambient RH and the RH near the
skin

10.5.2 Significance of Condensation

The stated conditions in trial 3 are incorporated in the model and condensation is
seen to start near the end of the porous domain where the vapour concentration is
higher than the saturation concentration (Figure 10.5.9). With condensation, loca-
tion of the start of the phenomena has also been observed and it has been inferred
that in all the simulations dealt until now, the percentage of moisture condensed
is related to the onset of condensation within the porous domain. Higher the per-
centage of moisture condensed, onset of condensation is further away from the inner
boundary of the porous medium.
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Figure 10.5.9: Trial 3 - c and csat curve comparison

Two cut line 1D plots for the study of the same case with and without condensation
are created within the same graph for the variables temperature and concentration
(Figure 10.5.10 and Figure 10.5.11). With condensation included in the model, there
are changes in the temperature and concentration curves, and also changes in the
heat flux and the mass flux. This is explained with the energy transfer happening
from gas to liquid phase and the accumulation of liquid droplets on the surface
respectively. With the effect of condensation, it is interesting to notice the slight
increase of about 3% in the normal boundary conductive heat flux at the skin and
at the inner boundary of the porous domain but a huge decrease of about 65% at
the film. This behaviour with the model is explained with the effect of condensation
when the energy is being transferred from vapour to liquid phase, less energy is
available to be transported giving reason to the low conductive flux at the film.
With the mass transport, there is a huge increase of about 97% in the normal
boundary diffusive flux at the skin and at the inner boundary of the porous domain,
and a decrease of 51% in the diffusive flux at the film.
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Figure 10.5.10: Trial 3 - Temperature curve

Figure 10.5.11: Trial 3 - Concentration curve

As it is evident that condensation has its effect on the heat and the mass transfer
processes, it is significant to be included in the model.
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10.5.3 Effect of evaporated water(EW)

It is interesting to check the effect of condensation when the difference between the
RH near skin and the ambient RH is higher. The ambient conditions are kept the
same as in Trial 3, and the RH near the skin is increased. It is seen that a higher
difference in the RH gave higher EW values, for example, the case with the EW
110 g/m2h, which is higher than the regular TEWL range. A higher percentage of
moisture is condensed when the EW is higher.

In this study case, the location of condensation has been observed. Condensation
starts at 10 mm and 11.1 mm for a higher EW case and lower EW case respectively,
as shown in Table 10.5.6. It is evident in this scenario as well that the condensa-
tion starts early within the porous domain with the higher percentage of moisture
condensed if the condensation rate is maintained.

S.No
Skin

Temper-
ature(◦C)

RH near
skin (%)

Ambient
Temper-

ature(◦C)

Ambient
RH (%)

EW
(g/m2h)

Moisture
condensed

(%)

Location of
condensation

start (mm)
24 32 70 15 65 67 75 11.1
25 32 85 15 65 110 86 10

Table 10.5.6: Varying effect of EW

Figure 10.5.12: Varying EW

10.5.4 Effect of Condensation rate

Condensation rate(k) is varied to unrealistic values to understand the condensation
trends. This is an advantage of the modelling processes, where the model allows the
user to keep the condensation rate as a variable in the initial study and later could
be used to predict the rates in reality. Two cases have been analysed where in both
of the cases, the condensation rate is varied in the range 0.1 s−1 to 1000 s−1.

• Case 1: skin temperature = 32◦C, RH near skin = 50%, ambient temperature
= 22◦C and ambient RH = 40%
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• Case 2: skin temperature = 32◦C, RH near skin = 70%, ambient temperature
= 15◦C and ambient RH = 65%

From figure Figure 10.5.13, it is evident that there is no condensation happening
with the case 1 even at a very low or high condensation rate. For the case 2, there are
pronounced effects of a very high and a very low condensation rate (Figure 10.5.14).
With the higher condensation rate, the percentage of moisture condensed is higher.
The condensed amount can go as high as about 77% in the model. When the con-
densation rates are varied, location of the onset of condensation can be different with
the varied amount of moisture condensed. With k as 0.1 s−1, condensation start at
7.6 mm and with k as 10 s−1, condensation starts at around 10 mm. The former has
about 12% moisture condensed and the latter has about 70% moisture condensed.
The higher the condensation rate, the higher is the percentage of moisture con-
densed implying that the onset of condensation is late within the porous domain.
This clearly shows that the relation of the percentage of moisture condensed with
the onset of condensation is the opposite if the condensation rates are varied.

S.No Condensation
rate (s−1)

EW
(g/m2h)

Moisture
condensed

(%)

Location of the
condensation

start (mm)
26 0.1 20.9 0 -
27 10 20.9 0 -
28 100 20.9 0 -
29 500 20.9 0 -
30 1000 20.9 0 -

Table 10.5.7: Varying Condensation rate with Case 1

Figure 10.5.13: Varying Condensation rate with Case 1
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S.No Condensation
rate (s−1)

EW
(g/m2h)

Moisture
condensed

(%)

Location of the
condensation

start (mm)
31 0.1 37.0 12 7.6
32 10 64.0 70 10.0
33 100 67.0 75 11.1
34 500 67.3 76 11.7
35 1000 67.3 77 11.7

Table 10.5.8: Varying Condensation rate with Case 2

Figure 10.5.14: Varying Condensation rate with Case 2

10.5.5 Thickness of porous domain

The objective of this section is to check the effect of condensation with respect to
the thickness of the porous domain. From the Figure 10.5.15, it is inferred that
with higher thickness, there is a lower percentage of moisture condensed. This is
explained by the diffusion path being higher in the model with higher porous domain
thickness. Thickness does not seem to affect the onset of condensation. Irrespective
of the varied thickness, the condensation starts around the end of the porous domain
because of the lower temperature at that site. With 3 mm and 10 mm thick porous
domain, the moisture condensed is 69% and 83% respectively.

S.No Thickness of
porous domain (mm)

EW
(g/m2h)

Moisture
condensed

(%)

Location of the
condensation

start (mm)
36 3 105 83 7.4
37 5 82.0 79 9.1
38 7 67.0 75 11.1
39 10 52.4 69 14.1

Table 10.5.9: Varying porous domain thickness
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Figure 10.5.15: Varying porous domain thickness

10.5.6 Thickness of the air layer

The study model in the analysis has eliminated the effect of convection since the air
layer in the pre-study is kept at 5 mm. Through the use of dimensionless numbers,
the air layer of 5 mm thickness did not prove high enough effect for convection to
be included. Hence if the thickness is to be varied, there is a limit to the maximum
thickness allowed in this study model and it is to be estimated with the changing
model inputs. In this analysis, the range of air layer thickness is 3 mm to 6 mm,
which is in the safe range of neglecting convection. From Figure 10.5.16, it is inferred
that with the increase in air layer thickness, the percentage of moisture condensed
decreases. The reason behind this could be the same as with the effect of porous
domain thickness, that is, the diffusion path is increased. The location of the start
of condensation is not affected much with the varied thickness and is witnessed near
the end of the porous domain.

S.No Air Layer
Thickness (mm)

EW
(g/m2h)

Moisture
condensed

(%)

Location of the
condensation

start (mm)

40 3 78.3 79 9.1
41 5 67.0 75 11.1
42 6 62.3 73 12.1

Table 10.5.10: Varying air layer thickness
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Figure 10.5.16: Varying air layer thickness

10.5.7 Porosity of the porous domain

The porosity of the porous domain has been varied in the range 0.7 to 0.9 and the
effect of condensation is checked. With the higher porosity, the higher the percentage
of moisture condensed (Figure 10.5.17). At a porosity of 0.7, the amount condensed
is 72% and at a porosity of 0.9, it is 78%. Higher porosity for heat transport processes
resulting in larger percentage of moisture being condensed. But it is interesting to
see that the difference in the amount condensed with the varying porosity is not
varying much.

S.No Porosity of
porous domain core

EW
(g/m2h)

Moisture
condensed

(%)

Location of the
condensation

start (mm)

43 0.7 59.1 72 11.1
44 0.8 67.0 75 11.1
45 0.9 74.1 78 11.1

Table 10.5.11: Varying porosity of the porous domain

Figure 10.5.17: Varying porosity of the porous domain
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10.5.8 Breathability of the film

Effect of condensation has been investigated for non-breathable and high breath-
able films. The former having Mocon number of 55 g/m224h and the latter having
Mocon numbers of 5000 g/m224h and 7000 g/m224h. From the Figure 10.5.18, it is
understood that the higher the breathability, the lower is the risk of condensation.
With the non-breathable film, condensation is shown to be maximum. This is ex-
plained with the restriction to limit the moisture that could be escaped from the
non-breathable film. Such restriction is bound to contain the entire moisture within
the system, which eventually get condensed as liquid droplets on the surface.

S.No Breathability of
backsheet (g/m224h)

EW
(g/m2h)

Moisture
condensed

(%)

Location of the
condensation

start (mm)

46 55 67.4 100 11.1
47 5000 67.0 75 11.1
48 7000 66.4 65 11.1

Table 10.5.12: Varying film breathability

Figure 10.5.18: Varying film breathability
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11.1 Skin Model

Though the bodily mechanisms are not accounted for, a realistic way can be seen
to define the body at steady state as a surface with certain temperature emitting
certain moisture outward. The temperature at the skin surface could be in the
range 28◦C to 35◦C. The RH near the skin has been difficult to predict. Hence
as mentioned before it is estimated by means of a sub model using constant skin
diffusive flux and skin temperature as inputs. From the literature reading, there
has been a case where TEWL is measured when the skin is not occluded by any
material, which is used to decide the EW range in the sub model. The range of
EW is decided to be slightly broader as the skin in the model is occluded with some
material. Then, the estimation of the RH near the skin is carried out, as shown in
(Table 11.1.1). It is concluded that the RH near skin is dependent on the ambient
and skin temperature, EW and the ambient RH.

Skin
Temperature

(◦C)

Ambient
Temperature

(◦C)

Ambient
RH (%)

Range of RH
near skin (%)

EW range
(g/m2h)

32 22 40 50-70 20.9-37

Table 11.1.1: Estimation of RH near skin

11.2 Heat and Mass Transport

Due to the higher skin surface temperature and skin surface concentration when
compared to the ambient temperature and ambient concentration, the direction of
heat and mass transfer is from skin towards the film. There is more resistances
for the heat and mass in the porous domain leading to different temperature and
concentration gradients in the two domains.

Due to the negligible pressure differences and the low flow due to gravity, the driving
forces for the flow are not strong enough for the flow to be accounted in the model.
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Using the Rayleigh number, the transport due to flow can be shown to be negligible
in comparison to transport due to conduction. Accordingly the flow component is
neglected in the model.

Effect of radiation
The body emits around 492W/m2, being a major source of radiation in the model.
The total flux emitted from the skin surface is higher than the flux emitted from
the inner boundary of the porous domain.This results in a net radiative flux from
skin towards the porous domain. Including radiation in the model results in an
increase in temperature of about 2◦C at the inner layer of the porous medium. The
temperature rise accounts for 20% of the temperature difference considered in the
model, and hence radiation has to be included in the study.

11.3 Condensation

Condensation happens when the vapour concentration is greater than the satura-
tion vapour concentration. The excess vapour is condensed as liquid on the surface,
for example, on the solid surface inside the porous medium. Due to condensation,
heat loss and the moisture loss are seen in the vapour phase. Hence the heat sink
and the mass sink terms are added to the heat transfer and mass transfer equa-
tions respectively to account for the heat losses and the mass losses. The effect of
condensation in the model is checked by visualizing the vapour concentration and
saturation vapour concentration curves. The point of intersection of the vapour
concentration and the saturation vapour concentration is the location of the start
of condensation within the porous medium. The location is calculated in the simu-
lation model. The percentage of moisture condensed is estimated from the diffusive
flux at the skin and the diffusive flux at the film boundary.

There is decrease in temperature and concentration curves with the effect of con-
densation and also changes in the heat flux and the mass flux.

Influence of various parameters
Condensation is highly prevalent due to certain ambient conditions, which influence
the rate of condensation.

After a set of few simulations, there has been trends identified for the parameters
- porous medium thickness, air layer thickness, porosity of the porous medium and
breathability of the film. The following have been identified :

• The higher the porous medium thickness, the lower the percentage of moisture
condensed

• The lower the air layer thickness, the higher the percentage of moisture con-
densed

• The lower the porosity of the porous medium, the lower the percentage of
moisture condensed. The difference with the effect of varying porosity is not
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high when compared to other parameters.

• The higher the breathability of the film, the lower the percentage of moisture
condensed
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12
Future Research

Some future works can be done using the current model as a base of modelling and
analysis.

• The risk of condensation in the model is visualized for the cases where the
vapour concentration gets higher than the saturation vapour concentration,
that is the case when the relative humidity becomes greater than 100%. There
are cases where condensation is bound to happen when the relative humidity
is lesser than 100% as well, which is the case with capillary condensation.
Since capillary condensation is dependent on the pore geometry, microstruc-
ture model for the porous medium has to be investigated to analyse the effect
of capillary condensation.

• The model in this study is restricted to stagnant air conditions. It is interesting
to see the effect of wind speed with the heat and mass transfer processes and
as well with the condensation within the porous medium. To include this,
convection and advection have to be included to the base model after analyzing
the proper boundary conditions to represent them in COMSOL.

• The model in this study deals with steady state analysis. A transient study
could be useful to visualise the effect of condensation with time. It gives a
path to incorporate absorption in the model to understand the effect of the
phenomenon.

• The porous medium in the model is restricted to be a cellulose fibre layer. This
layer could be replaced with another potential material layer to visualise and
compare its influence with the cellulose fibre. Alternatively, successive layers
could be added in addition to the cellulose fibre layer to check for the effect of
combination of materials in the porous medium.

• The project aim is limited to the vapour phase transport. An interesting study
is to consider the wet diaper which would involve the liquid phase transport
in addition in the model.
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Appendix

A.1 Calculations

Concentration calculation with known RH
Step 1: Calculation of Partial vapor pressure Pa(unit in Pascals). Saturation vapor
pressure Ps is found from COMSOL.

RH(%)
100 = Pa

Ps

Step 2: Calculation of the concentration of the vapor(unit in mol/m3)

PaV = nRT

n

V
= Pa

RT

Diffusion Coefficient
A denotes air and B denotes water vapor,

DAB =
10−3T 1.75( 1

MA
+ 1

MB
) 1

2

P [(Συ)
1
3
A + (Συ)

1
3
B]2

⇒ DAB =
10−3T 1.75( 1

28.97 + 1
18.01) 1

2

1[(19.7) 1
3 + (11.6) 1

3 ]2

⇒ DAB = 1.175 · 10−5T 1.75 cm2/s

Where DAB is in cm2/s, T is in Kelvin, P is in atm.
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Diffusion calculated from the Mocon number

Mocon number = 5000 g/m2 24h ⇒ 3.22 · 10−3 mol/m2s

N = −Db

ds

(Camb − c)

Where ds and Db denotes the thickness of the back sheet and diffusion coefficient of
water vapour through the back sheet respectively. Camb is the ambient concentra-
tion; c is the concentration(mass transport dependent variable).

ds = 18 · 10−6 m
N= 3.22 · 10−3 mol/m2s
Db = 2.22 · 10−4 cm2/s
Dair = 0.300643 cm2/s

Assumption ⇒ Camb − c = 2.61 mol/m3

After substitution,

Db = 0.00073 Dair

Porosity of the film = 0.00073

II



A. Appendix

A.2 Boundary Conditions

Figure A.2.1: Temperature(ht),
Concentration(tds)

Figure A.2.2: Heat Flux(ht),
Flux(tds)

Figure A.2.3: Symmetry(ht,tds) Figure A.2.4: Diffuse Surface(ht)

Module
ht - Heat Transfer for Porous Media
tds- Transport of Diluted Species
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B.1 Results

Heat Transport

Figure B.1.1: Heat Flux within the model
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Mass Transport

Figure B.1.2: Mass Flux within the model

Effect of Radiation

Figure B.1.3: Surface Radiosity
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