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Abstract
There exists a lot of research on how to use radar to measure forest properties,
like the forest’s biomass. Knowledge about a forest’s biomass can then be used to
determine whenever or not it is time to cut down the trees in the forest. There are
also environmental reasons for knowing the biomass of a forest on a global scale,
where the total biomass in the forest relates to the carbon cycle. However, there are
multiple forest parameters besides the biomass that affects the forest backscattering
and this may give inconsistencies when estimating the biomass at different locations.
The goal of this thesis was to study how different forest parameters affect the radar
backscattering by creating an electromagnetic model of a forest area, and perform
computations of the backscattering of incident radar waves for frequencies in the
VHF and UHF bands. To accomplish this, LIDAR data from SLU (The Swedish
University of Agricultural Sciences) was used. The trees in the forest were modelled
as a sum of cylinders placed on top of one another to approximate the trees and the
forest.

The scattering for a single cylinder can be calculated either with the truncated
infinite cylinder approximation or Generalized Rayleigh-Gans approximation. By
also considering possible ground reflections in combination with the scattering at
the cylinders, the total backscattering of the incident wave can be computed for
a single cylinder placed above the ground. The total scattering from a tree or a
forest, which is built up of multiple cylinders, can then be calculated as a sum of
the backscattering amplitude from each cylinder.

As expected, the computed radar cross section (RCS) is shown to be different
depending on the polarization of interest for the incident and reflected radar waves.
A clear connection between the size of the trees and the RCS was found. The RCS
for a single tree in the forest is also shown to be sensitive to small changes in the
ground slope or the tree’s inclination. It could also be seen that when the number
of cylinders used to approximate a tree increases, the more the RCS fluctuates with
the frequency. However, the fluctuations are around the same RCS values as the
calculated RCS for tree models with fewer cylinders.

For the forest it is observed that small changes in antenna position and small
changes to the approximation of the tree geometry barely changes the averaged
backscattering. The computations on the forest model gives consistent results
but there is currently not possible to judge how well the computed backscatter-
ing matches reality. Some differences compared to the real forest backscattering
is expected due to simplifications and approximations. An example is that the
backscattering from the needles and branches have been neglected.
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1
Introduction

In recent years, the interest in using remote sensing to determine various properties
of forests has increased. Since all forms of observations that observes an object’s
properties without touching it can be called remote sensing, this is a very broad
subject. This means that man’s sight, which the woodcutter has used for many years,
can be the oldest remote sensing method used to determine different properties of
a forest. However, using the human sight to determine a forest’s properties takes
time and can be difficult to succeed with for an inexperienced individual. To find
methods to determine various properties of a forest in an efficient and simple way,
research towards using radar to study large forest areas have become increasingly
popular.

For a remote sensing system to be useful, it is not only necessary that it can de-
termine the target’s properties, but also that the information about these properties
are useful. The information received from a remote sensing system when studying
a forest can be used to decide how to maintain the forest or estimate a reasonable
selling price. For example, an important property for a forest is it’s biomass, and
the information about the biomass can be used to determine, whenever or not, it
is time to cut down the trees in the forest. In the case one wants to buy or sell a
forest area, the biomass of the trees in the area may also be a factor in determining
the forest value. But there are also environmental uses in knowing the biomass of a
forest on a global scale, where the total biomass in the forest relates to the carbon
cycle.

There exists a lot of research on how to use radar to measure forest properties
or on how to create forest images using radar. For example [1] writes about how to
estimate biomass using radar and the research in [2] concerns radar imaging.

Radar systems work by transmitting electromagnetic waves in the form of pulses
containing multiple frequencies. Today, the used wavelength can vary from tens of
meters to a few millimeters. In the early days of the radar system, it worked by
transmitting electromagnetic pulses and measuring the time it took for the pulse to
come back, and based on that determining a distance to an object. However, since
then multiple new applications for the radar have been found, such as identifying
and tracking objects or creating images of an area showing how some of the area’s
properties varies [3].

The radar’s measurements have also proved useful in other more specialized
areas. An example is to study the relation between a forest’s backscattering of
radar signals and the biomass of the forest above the ground level. There are however
multiple forest parameters besides the biomass that affects the backscattering and
this may give inconsistencies when estimating the biomass at different locations.
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1. Introduction

Such parameters are what kind of trees the forest contains, the slope of the ground
and the inclinations of the trees, rocks and other non-tree objects which can be
found in the forest. These parameters may affect the backscattering without giving
information about the biomass. Therefore, it is important to understand how not
just the biomass relates to the backscattering, but also to know how the other forest
parameters relates to it.

The goal of this thesis was to study how the backscattering changes when the
ground/tree inclination changes or when other parameters change. We will also
study how the backscattering depends on the tree and forest model used. This will
be done by creating an electromagnetic forest model in Matlab and compute the
backscattering for trees and a forest area under various conditions.

To find out how the backscattering changes when the ground/tree inclination
changes, an electromagnetic forest model and five single tree models have been cre-
ated in Matlab. Using the forest model and the single tree models the backscattering
for incident electromagnetic waves were computed. The computation was made us-
ing one of two different approximations methods. One is the truncated infinite
cylinder and the other the Generalized Rayleigh-Gans (GRG) approximation. The
computations were made for different situations that may occur in a forest and the
parameters, like the tree inclination and ground slope, were varied for frequencies
in the VHF and UHF bands.

Before creating an electromagnetic forest model, a geometrical forest model
needs to be created. The geometrical forest model was created from LIDAR (Light
detection and ranging) data collected by SLU (The Swedish University of Agricul-
tural Sciences) using terrestrial laser scanning (TLS). SLU also processed the data
to cylinders representing the stems using the methods described in [4]. The trees in
the forest were then modeled as cylinders using those measurement data and a tree
model [5], that describes the shape of trees. The electromagnetic properties were
then added to the trees in the geometrical forest model. This is done with the help
of already performed research about electromagnetic properties of trees in [6] and
the electromagnetic properties of the ground which is described in [7].

To compute how the created electromagnetic forest model scatters incoming
radio waves, and how the scattering changes when different forest parameters are
changed, scattering theory from multiple sources were used. The theory of how
the electromagnetic wave scatters by one of the cylinders that forms the trees in
the forest was calculated using the scattering theory and models from [8], [9] and
[10]. Other literature concerning scattering theory is [11] and [12] that present some
limitations of the scattering models used in this thesis. The total backscattering
was then approximated for the forest model by taking the sum of the scattering
from all cylinders. Theory and ideas were also taken from [13] and [14] to produce
a method that compensates for the inclination of the cylinders and ground. The
cylinders have an inclination if the trees are not standing vertical.

1.1 Societal, ethical and ecological aspects
The computational model used is based on derivations from the closed-form elec-
tromagnetic scattering descriptions of simple shapes. The model therefore is not
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1. Introduction

a full-wave solver, i.e. it does not numerically solve Maxwell’s equations such as
the method of moments or finite element method. These methods would require
an immense amount of computing power for the same problem. For the selected
frequency range and forest type, the model yields solutions to scattering problems
after far fewer computations than a full-wave solver would require. This reduces the
energy consumption necessary for computing backscattering from the forest. Sense
this project is computer based, it will not give any environmental damage (except
for the small amount of energy used to run the computer). The project may in the
future be helpful in forest managing but no social or ethical consequences have been
identified.

The source of models and equations is cited and it is clearly stated when mod-
els/equations have been provided without a source or proof. No other ethical con-
sequences of this work have been identified.
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2
Theory

The simulation of an electromagnetic model of a forest requires extensive knowledge
of electromagnetic field theory, radar concepts and radar scattering which therefore
will be introduced in this chapter. The electromagnetic field theory will be used
to explain how radio waves reflect off surfaces. Radar concepts and radar scatter-
ing models can approximate the scattering that occurs when a radio wave travels
through a forest and be useful when evaluating the forest model.

2.1 Electromagnetic field theory

The electromagnetic field theory describes how a electric (E) and magnetic (H)
fields are created and changed due to the surrounding environment. The changes
in the E and H fields can be described with Maxwell’s equations compiled in 1865
[15]. Originally, Maxwell’s equations contained 20 unknown variables that where
solved with 20 equations. Nowadays it is more usual to use four equations which
are considered the main part of Maxwell’s equations. Under the assumption of a
homogeneous, isotropic and linear medium, Maxwells four equations can be written
as [16], [17]

∇ · E = ρ/ε (2.1a)
∇ ·H = 0 (2.1b)

∇× E = −µ∂H
∂t

(2.1c)

∇×H = J + ε
∂E
∂t
. (2.1d)

In these equations J represent the free current density and ρ represent the free
electric charge density. The constant ε represents the permittivity and µ represent
the permeability for the actual medium.

Usually an electrical field that propagates through a medium can be referred to
as an electromagnetic wave. By then using equation (2.1) under the assumption that
the electromagnetic wave is sinusoidal, the medium is source free and nonconducting
meaning that the variables J and ρ are zero, Helmholt’s equation that describes
how an electromagnetic wave travels through the medium can be derived [17]. This
equation is given by

∇2Fejwt + k2Fejwt = 0, (2.2)
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2. Theory

where F can represent either H or E and k = (kxx̂ + kyŷ + kzẑ) is the wave
vector which gives the direction in which the electromagnetic wave is traveling.
The magnitude of the wave number is k =

√
k2
x + k2

y + k2
z = ω

√
εµ where ω is the

sinusoidal angular frequency of the electromagnetic wave.
The solution to Helmholt’s equation (2.2) can be written as [18].

E(x, y, z) = E0e
jωt−jk·R (2.3)

where R represents the propagation of the wave traveled in the traveling direction
k̂ = k/k and E0 is the electrical field when t = 0 and R = 0. This expression gives
the electrical field at all points in time and space assuming a free space environment.
When a electromagnetic wave propagates in a homogeneous medium it travel in a
straight path but if a wave encounters objects of other materials the wave will be
scattered. Therefore equation (2.3) will need to be complemented with equations
describing the scattering of the electromagnetic wave at material borders for a more
complete description of wave propagation.

2.2 Reflection off a surface
When an electromagnetic wave propagates into a dielectric flat surface part of the
wave will be reflected and the other part will be transmitted through the surface.
The reflected wave will according to Snell’s law of reflection be reflected so that the
reflections angle θr is equal to the incidence angle θi (see Figure 2.1). Assuming the
incident wave travels in the direction k̂i and the plane’s normal is n̂g the direction
of the reflected wave k̂r can be calculated by

k̂r = k̂i − 2n̂g(n̂g · k̂i) (2.4)

To determine the transmitted wave’s angle, θt, one can use Snell’s law of refraction
[18]

sin(θt)
sin(θi)

=
√
ε1

ε2
. (2.5)

The transmitted electromagnetic wave’s electrical and magnetic fields both have
directions that are orthogonal to each other as well as the wave’s traveling direction.
A wave that has an electrical field E that is parallel to the ground plane is said to
be horizontally polarized and the horizontal component is denoted by Eh. If instead
the electrical field E is orthogonal towards the horizontal polarization, the electrical
field is vertically polarized and the vertical component is denoted by Ev. In this
thesis the letter h is used to represent the horizontal polarization and the letter v
the vertical polarization. Note that, in the general case, the horizontal and vertical
components of E can have different phases so the components Eh and Ev are complex
numbers.

One boundary condition is that the horizontal components of the electrical and
magnetic field are unchanged at the boundary between materials. Assume, as in
Figure 2.1, that the the incoming electrical field (Ei) is horizontally polarized. In
this case the polarization of the reflected (Er) and transmitted (Et) electrical field
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2. Theory

Figure 2.1: A plane wave, with a horizontal electric field polarization, traveling in the
k̂i-direction is reflected and transmitted in a plane boundary between two materials.
The different materials in the figure have different permittivity and permeability
represented by (ε1, µ1) and (ε2, µ2).

will also be horizontally polarized. Using the directions shown in Figure 2.1 the
boundary condition can be written as

Eie−jk1 sin(θi) + Ere−jk1 sin(θr) = Ete−jk2 sin(θt) (2.6a)
− cos(θi)H ie−jk1 sin(θi) + cos(θr)Hre−jk1 sin(θr) = − cos(θt)H te−jk2 sin(θt) (2.6b)

where k1 and k2 are the wave numbers for the different materials. It is possible
to solve equation (2.6) with the help of equation (2.1d) and (2.5). An expression
for how much of the wave that is reflected can be derived and this equation is well
known as Fresnel’s equation, written as [18]

Γhh = η2 cos(θi)− η1 cos(θt)
η2 cos(θi) + η1 cos(θt)

(2.7)

where ηi =
√
µi/εi, i = 1, 2, is the characteristic impedance of the two materials.

The letter combinations hh, vh, hv and vv in the index have a special meaning
where the second letter represents the polarization of an incident wave and the first
letter the polarization of the reflected wave. In the case of equation 2.7 this means
that Γhh relates the incident and reflected horizontal field component allowing for
the reflected horizontal field component to be calculated according to Er

h = Ei
hΓhh.

How much of the wave that is reflected for an incoming wave with a magnetic
field polarization perpendicular to the normal can be derived in a similar manner
and is calculated as [18]

Γvv = η1 cos(θi)− η2 cos(θt)
η1 cos(θi) + η2 cos(θt)

. (2.8)

2.3 The radar concepts
Historically, when the radar system was invented they where only capable of de-
tecting targets and determining range but since then the radar system have evolved
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2. Theory

[3]. Nowadays radars are also capable of creating images of an area showing how
the areas properties wary, identifying and tracking objects. Modern radars are also
designed so that they are capable of operating under interference from the environ-
ment and other interfering devices and objects. Radar system works by transmitting
an electromagnetic wave, such as the one described in (2.3), in a chosen direction.
The transmitted wave will when it encounters an object be scatted in all directions
causing some of it to be scatted back towards the radar system this scattering is
called backscattering. The radar system can then by measuring the time t between
sending and receiving a signal calculate the distance (R) to the target as R = ct/2
where c is the speed of light.

Important aspects for all radar systems are it’s operating center frequency (fc)
and bandwidth (B) that determines the frequency band in which the radar operates.
The frequency band is a common way to identifying radar system. There are different
definitions of frequency bands but one of the most common is the IEEE standard
(std:521-2002) that can be seen in table 2.1.

Table 2.1: The IEEE standard (std:521-2002) designation for the different radar-
frequency bands and their nominal frequency range [19].

Band letter designation Nominal frequency range
HF 3 MHz-30 MHz
VHF 30 MHz-300 MHz
UHF 300 MHz-1000 MHz
L 1 GHz-2 GHz
S 2 GHz-4 GHz
C 4 GHz-8 GHz
X 8 GHz-12 GHz
Ku 12 GHz-18 GHz
K 18 GHz-27 GHz
Ka 27 GHz-40 GHz
V 40 GHz-75 GHz
W 75 GHz-110 GHz
mm 110 GHz-300 GHz

2.4 Radar cross section and scattering

After a radar transmit a pulse, the pulse will propagate through the medium (nor-
mally air) before it scatters by an object. The magnitude of the wave that is
backscattered towards the radar receiver is dependent on the radar cross section
(RCS). While assuming propagation in free space or propagation in air and while
neglecting atmospheric attenuation, the power a radar system receives after trans-
mitting a wave can be calculated with the radar equation [3]

Pr = σ
Ptλ

2GtGr

R4(4π)3 (2.9)
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2. Theory

where R is the distance from the radar transmitter and radar receiver to the scat-
tering object, λ is the transmitted wavelength, Pt and Pr is the transmitted power
and the received power respectively, σ is the radar cross section (RCS) of the ob-
ject, Gt is the gain of the transmitting antenna and Gr is the gain of the receiving
antenna. If the same antenna is used to transmit and receive signals the receiving
and transmitting gain will be equal (Gr = Gt).

In equation (2.9), it can be seen that the strength of the backscattered wave
increases as σ increases. It is therefore common to quantify the backscattering
strength of a object using the RCS [20], [21] which can be calculated as

σ = lim
R→∞

|Es|2

|Ei|2
4πR2, (2.10)

where |Es| is the amplitude of the scatted electrical field a distance R from the
object and |Ei| is the incident electrical field strength at the object. This is for the
three dimension case and similar definitions for the RCS can be derived for the two
and one dimensional case.

The radar cross section σ is not only dependent on the scattering object but also
of the waves frequency and polarization. A solution to how cross section depends on
the polarization is to derive the RCS for all the desired transmission polarization,
but it would be more effective if a general solution to the problem could be found.
The solution is the scattering matrix S, see equation (2.11), that differs from the
RCS in that it preserve the information about phase and polarization of the wave
after scattering

S =
[
Shh Shv
Svh Svv

]
. (2.11)

The different elements of the scattering matrix describes how different polarization’s
will be reflected and this allows S to be used for all incoming polarizations. The ele-
ments in the scattering matrix are complex and can therefore affect the polarization
of the scatted electrical field whcih can be calculated by [20], [8][

Es
h

Es
v

]
= ejωt−jkRR

R2

[
Shh Shv
Svh Svv

] [
Ei
h

Ei
v

]
(2.12)

This gives a more complete description of the scattering process than what can be
achieved by using only the RCS (σ). However, radar cross section can be calculated
from S by using equation (2.10) and equation (2.12) giving

σpq = lim
R→∞

|Es
p|2

|Ei
q|2

4πR2 = 4π|Spq|2 (2.13)

where q and p, respectively can represent horizontal, h, or vertical, v, polarizations.
The fact that the the scattering matrix gives more complete description and that
one can calculate σ from the scattering matrix, makes S convenient to use.

2.5 Scattering off objects
When deriving an object’s scattering, the form of the object determines whether or
not a exact solution can be found. In most case when an exact solution not can
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2. Theory

be found an approximation of the solution has to suffice. When exact solution’s
are derived they are based on Maxwells equations (2.1) and Helmholt’s equation
(2.2). Only in the cases when an object can be placed in a coordinate system where
the object’s boundaries coincide with a constant coordinate value is it possible to
find an exact solution [21]. A consequence is that the sphere is the only possi-
ble three-dimensional finite shape that have an exact solution that can be derived
analytically [8]. In this the radius has a constant value. There are however some
non-finite forms, like the infinite cylinder, for which the exact solution can be found.

Figure 2.2: The angles and direc-
tions of the incident and scattered
waves when the wave scatters off
a cylinder.

In real environments, like forests, shapes like per-
fect spheres or infinite cylinders are unlikely and
therefore approximate solutions to other more
usual forms have to be used. Using approximate
solution may also in some cases need less com-
putational power while only losing a little accu-
racy. Both trees and tree branches can be ap-
proximated as a number of cylinders that are
place on top off each other forming a similar
shape to a tree or tree branch. Two methods
to approximate finite cylinder are the general-
ized Rayleigh-Gans estimation (GRG) and the
truncated infinite cylinder approximation.

2.5.1 Generalized Rayleigh-Gans
estimation for a cylinder
Assuming an incoming plane wave (Ei) repre-
sented by [11]

Ei = (ĥĥ + v̂v̂) · E0e
jωt−jkiR (2.14)

where Ei
h is the electric field amplitude in the

ĥ direction, Ei
v is the electric field amplitude in

the v̂ direction, R̂ gives the wave propagation
direction and the distance propagated and ĥĥ
represents a dyad. Assuming vectors and angles defined as in Figure 2.2 and that
the cylinder stands in the ẑ direction, the vector ĥ and v̂ are defined by

ĥ = ẑ× k̂i
|ẑ× k̂i|

(2.15a)

v̂ = ĥ× k̂i/k. (2.15b)

The incoming and outgoing wave directions as can be seen in Figure 2.2 can be
written as

k̂i = sin(θi)(x̂ cos(φi) + ŷ sin(φi)) + ẑ cos θi (2.16a)
k̂s = sin(θs)(x̂ cos(φs) + ŷ sin(φs)) + ẑ cos θs. (2.16b)

10



2. Theory

Under the assumption that one or two of the cylinders dimensions (length or
diameter) is small in comparison to the wavelength, or kD(ε0.5 − 1)«1, where D is
the smallest dimension, the field inside the cylinder can be estimated as [9]

α · Ei = α · (ĥĥ + v̂v̂) · E0e
jωt−jkiR (2.17)

where the polarizability tensor α is defined as [11]

α = aT I + (aN − aT )ẑẑ (2.18a)

aT = 1
(εr − 1)gT + 1 (2.18b)

aN = 1
(εr − 1)gN + 1 . (2.18c)

Here εr is the relative permittivity of the cylinder and gT and gN are demagne-
tizing factors. For cylinders that have a length much greater than the diameter, the
demagnetizing factors and modifying function can be calculated as [11]

gT = b

2

(
b+ (b2 − 1)

2 log
(
b− 1
b+ 1

))
(2.19a)

gN = −(b2 − 1)
(

1
2b log

(
b− 1
b+ 1

)
+ 1

)
(2.19b)

b =
√

1−
(2a
h

)2
(2.19c)

µ(k̂s, k̂i) = sin[kh(cos(θi) + cos(θs))/2]
kh(cos(θi) + cos(θs))/2

(2.19d)

where a is the radius of the cylinder and h the length of the cylinder. The
modifying function µ(k̂s, k̂i) was calculated under the assumptions that 2k0a

√
εr <<

1 and a << h. With this, the scattering parameters can be calculated according to
[11]

Shh(k̂s, k̂i) = k2(εr − 1)v0

4π cos(φs − φi)aTµ(k̂s, k̂i) (2.20a)

Shv(k̂s, k̂i) = k2(εr − 1)v0

4π cos(θi) sin(φs − φi)aTµ(k̂s, k̂i) (2.20b)

Svh(k̂s, k̂i) = k2(εr − 1)v0

4π cos(θs) sin(φs − φi)aTµ(k̂s, k̂i) (2.20c)

Svv(k̂s, k̂i) = k2(εr − 1)v0

4π (aN sin(θi) sin(θs)− aT cos(θi) cos(θs) cos(φs − φi))µ(k̂s, k̂i)
(2.20d)

where v0 = hr2π is the volume of the cylinder.
Some limitations for the GRG approximation when used on cylinders with a

length greater than its radius is that it only works when ka << 1/√εr and h >
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20a√εr [12], [7]. These criteria means that the GRG method can not be used for
too high frequencies or when the length is not sufficiently longer than the cylinder
radius.

2.5.2 Truncated infinite cylinder approximation
The truncated infinite cylinder approximation works by estimating the field inside
of an infinitely long cylinder and then truncating the cylinder so that it becomes of
a chosen length. The electrical field inside the truncated infinite cylinder is assumed
to be the same as it would have been for the infinite cylinder if it had not been
truncated. The truncated infinite cylinder has a finite length h and a radius a.
Assuming that the cylinder’s long side stands in the ẑ direction the inner field can
be written as [11], [10]

Ei(r) = (Eρh + Eρv)ρ̂+ (Eφh + Eφv)φ̂+ (Ezh + Ezv)ẑ (2.21a)

Epq =
∞∑

n=−∞
Fn

(
nηhnqJn(λiρ)

λiρ
+ jJ ′n(λiρ)enq cos(θi)

)
k

λi
(2.21b)

Eφq =
∞∑

n=−∞
Fn

(
−enqnJn(λiρ)

λiρ
cos θi + jJ ′n(λiρ)ηhnq

)
k

λi
(2.21c)

Ezq =
∞∑

n=−∞
Fn (enqJn(λiρ)) (2.21d)

where q can be both v or h, Jn() is a Bessel function with the derivative J ′n(),
λi = k

√
εr − cos2(θi) where εr is the cylinder’s relative dielectric constant and

hnh =
(
−J

′
n(u)εr
Jn(u)u + H ′n

(2)(vi)
H

(2)
n (vi)vi

)
j sin(θi)
RnJn(u)η (2.22a)

hnv = n cos(θi)
(
− 1
u2 + 1

v2
i

)
sin(θi)

RnJn(u)η (2.22b)

enh = −ηhnv (2.22c)

env =
(
− J ′n(u)
Jn(u)u + H ′n

(2)(vi)
H

(2)
n (vi)vi

)
j sin(θi)
RnJn(u) (2.22d)

Fn = ejkoz cos(θi)−jnφE0j
−n (2.22e)

u = aλi (2.22f)
vi = sin(θi)ak (2.22g)

Rn =
([
− J ′n(u)
Jn(u)u + H ′n

(2)(vi)
H

(2)
n (vi)vi

] [
−εrJ

′
n(u)

Jn(u)u + H ′n
(2)(vi)

H
(2)
n (vi)vi

]

+
[

1
v2
i

− 1
u2

]
cos2(θi)n2

)
H(2)
n (vi)v2

i π

2

(2.22h)

where H(2)
n is a Hankel functions with the derivative H ′n(2). The scattering matrix

element can now be derived from combining the Helmholtz integral equation with
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equation (2.21) and integrating. Using the directions described in Figure 2.2 the
scattering matrix element can be written as [11]

Shh(k̂s, k̂i) = 2
∞∑
n=1

[(ηhnhBn + jenh cos(θi)An)] cos(φs − φi)

k2h(εr − 1)µ(k̂s, k̂i) +B0h0hηk
2h(εr − 1)µ(k̂s, k̂i)

(2.23a)

Shv(k̂s, k̂i) = j2k2h(εr − 1)µ(k̂s, k̂i)
∞∑
n=1

[(ηhnvBn+

jenv cos(θi)An) sin(nφs − nφi)]
(2.23b)

Svh(k̂s, k̂i) = j2k2h(εr − 1)µ(k̂s, k̂i)
∞∑
n=1

[((enh cos(θi)Bn − jηhnhAn)

cos(θs)− sin(θs)enhzn) sin(nφs − nφi)]
(2.23c)

Svv(k̂s, k̂i) = k2h(εr − 1)µ(k̂s, k̂i)(e0v(− sin(θs)z0 + cos(θs) cos(θi)B0)

+2
∞∑
n=1

[((−jhnvAnnη + env cos(θi)Bn) cos(θs)−

sin(θs)znenh) cos(nφs − nφi))])

(2.23d)

where

µ(k̂s, k̂i) = sin[kh(cos(θi) + cos(θs))/2]
kh(cos(θi) + cos(θs))/2

(2.24a)

zn = a2

u2 − v2
s

(uJn(vs)Jn+1(u)− vsJn(u)Jn+1(vs)) (2.24b)

vs = ka sin(θs) (2.24c)

An = k
zn−1 − zn+1

2λi
(2.24d)

Bn = k
zn−1 + zn+1

2λi
(2.24e)

For a more detailed description of these equations the paper [11] is recommended. A
comparison between backscattering then using the truncated infinite cylinder- and
the GRG approximation, for a cylinder with a = 5 cm, h = 4 m and εr = 9+ j4, can
be seen in Figure 2.3. The figure shows how the backscattering varies with frequency
for both the GRG and the truncated infinite cylinder approximation for an angle of
incidence θi = 40◦. Similar results can be found in [11], that develop this subject
further.

The backscattering curves for the truncated infinite cylinder- and GRG approxi-
mation are very similar for the low frequencies but differs for the higher frequencies.
The reason for this is the limitation ka << 1/√εr, presented in Section 2.5.1, which
is not true for the higher frequencies since k = ω

√
εµ is increasing with the frequency.
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Figure 2.3: The backscattering cross section of a cylinder caused by an incidence
wave with θi = 40◦ using the truncated infinite cylinder- and GRG approximation.
The cylinder has a = 5 cm, h = 4 m and εr = 9 + j4.
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3
Method description

The goal of this thesis is to create an electromagnetic model of a forest area in
between Skara and Skövde, perform computations, use the model on this area for
the frequencies 20− 1400 MHz and evaluate whether the truncated infinite cylinder
or GRG approximation are best to use. To accomplish this, data from SLU (Swedish
University of Agricultural Sciences) collected by a research group that performed
LIDAR measurement in the forest area were available. The measurement from
the LIDAR contains point positions of objects that makes up the area surrounding
the LIDAR see Figure 3.1. By using multiple LIDAR measurements from different
positions, a forest area of 16541 m2 that contained 748 treas was measured.

Figure 3.1: A figure created from the LIDAR measurements data where both trees,
the lower part of an antenna tower and a small pyramid representing the LIDAR
equipment can be seen.
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To implement the project, the first task was to create a geometric model of the
forest that contains the position and radii of cylinders, where a sum of cylinders put
on top of each other represent an approximated tree. Secondly, a Matlab program
was written which is capable of computing how an incident electromagnetic wave will
propagate until it meets a tree trunk and how it is then scattered before propagating
to a new location. This computation should be based on either the truncated infinite
cylinder or GRG approximation. Thirdly, the Matlab program has to be adapted to
work with the geometric forest model which has been developed and the attenuation
caused by the forest will be added.

3.1 Geometric model of the forest
To create a geometric model of the forest, the LIDAR data in Figure 3.1 needed to
be converted into usable Matlab data. The scattering matrix presented in equation
(2.11) can only be calculated for certain object shapes and therefore the Matlab
data needed to be transformed so that the Matlab model contains only these object
shapes. Consequently, the LIDAR data of trees needed to be transformed so that
the trees are described as a sum of cylinders and ground position data. The TLS
data had already been processed to cylinders using the computer code developed
by SLU [4]. Another code existed to derive the ground level in the local frame,
the ground data was later used when calculating the scattering, and therefore data
for the grounds position was easily obtained. However, the data derived from the
existing code designed to derive cylinder data from the LIDAR data needed to be
improved due to two reasons which can be seen in Figure 3.2. The first reason is that

Figure 3.2: A figure created from the cylinder data derived by a computer code
designed to derive cylinder data from LIDAR measurement data. The cylinders in
the figure overlaps at some areas represented by a change in color intensity.
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there are cases when the cylinders overlap with each other. If one does not remove
this before the electromagnetic computation, the result will be incorrect. This is
because the computation will calculate the scattering at the overlapping cylinders
multiple times because of the fact that it looks as if two different cylinders occupy
the same space. The second reason is that in some of the groups of cylinders that
form a tree there are cylinders that are not connected to the other cylinders in the
group. This will cause the computation to not calculate any scattering for the space
between the cylinders that obviously should contain cylinders. Another reason, that
can not be seen in the figure, is that the data provided gives the trees a total height,
that in most cases is significantly higher than the highest cylinder position.

In this work, the resulting cylinder data was based on existing cylinder data from
a previous work which was modified, so it was not based on the original LIDAR data.
Since the existing cylinder data only contains information about the tree trunks and
not tree branches, this is also be the case for the modified cylinder data.

3.1.1 Tree approximation using trucated cylinders
To create a more realistic tree model, the truncated cylinders can be used to approx-
imate the tree using groups of cylinders without overlap or empty spaces between
the cylinders. When creating this tree model, the constraint of the GRG approxi-
mation, presented in section 2.5.1, that ka << 1/√εr and h > 20a√εr should also
be considered. Therefore this constraint was tried against a worst case scenario
to see if the method could be used with the cylinder approximation or not. The
frequency f = 1400 MHz, a tree radius bigger than 25 cm and εr = 9 was used to
test the constraints. This gives ka = 7.34 > 1 and h > 15 = 20a√εr. Consequently,
the GRG approximation will not be usable for the highest frequencies, and when
it is used it will require extremely long cylinders with a length over 15 m. So long
cylinders is too long to give a good tree approximation and the GRG method is
therefore problematic to use. This is also the case even for lower frequencies. The
truncated infinite cylinder approximation does not have the same constraint as the
GRG approximation, and was therefore the method mainly used in this work. The
groups of cylinders that were to approximate the trees was therefore not made to
meet the GRG requirements. Instead, they were made to fit the truncated infinite
cylinder approximation that does not have any problematic constraint.

When creating the geometrical model, problems can occur if the cylinder length
is made too short or too long. If the cylinder length is too short the computational
power needed in the computations will become greater than what is wanted and if the
cylinder length is too long then the tree’s shape will not be well represented. Bends
and relative changes in radius occur faster for short and small trees and therefore
the cylinder length for smaller tree segments should be shorter. The assumption
that allowing the cylinder’s length h to be a constant X times the radius a should,
for some value on the variable X, give a reasonable representation of the tree shape.
If nothing else is specified for a specific case X will be assumed to be 20 in this
thesis. The results for some other values of X can be found in Figure 4.6.

The available cylinder data contains information about the cylinder’s height,
radius, position, the direction the cylinder is inclined, which cylinders that together
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form a tree and the height of the trees. Using this, a relatively simple method to
modify the cylinders so that the tree they formed would not have overlaps or open
spaces between the cylinders was developed. We will assume the available cylinder
data for a tree, that contains N cylinders with the radius an and where the position
of the cylinder’s bottom are pbn and the position of the cylinders top are ptn and
where n = 1, ..., N . Here n = 1 represents the bottom cylinder and n = N the top
cylinder.

The method to create new cylinders, which has been developed, works by
choosing a start point ps = pb1 at the bottom of the first cylinder (which also
is the foot of the tree) and checking if the distance to the top of the first cylinder
d1 = ||pt1−ps|| > Xa1, where ||pt1−ps|| is the Euclidian distance between pt1 and
ps. This is due to the requirement on the length of the cylinder relative to its radius
presented above. If d1 > Xa1, the first cylinder will start at ps and ends at pt1. Oth-
erwise, if d1 < Xa1, the method checks the distance from ps to the top of the second
cylinder (pt2). Now, if d2 = ||pt2 − ps|| > X(a1 + a2)/2 the first cylinder will start
at ps and ends at pt2. Otherwise, if d2 < X(a1 + a2)/2 the process will be repeated
and a third cylinder will be added. This goes on until dn = ||ptn − ps|| > Xaavg,
where aavg = ∑n

i=1 ai/n. A cylinder that goes from ps to ptn is then created, with a
radius aavg, that is the average radius of the cylinders existing between ps and ptn.

In the next step, a new starting point is chosen by setting ps = ptn and the
process will be repeated using the next cylinders until all cylinders have been used
from pb1 to ptN . In the case when the last cylinder does not fulfill the length
requirement (||ptN − ps|| > Xaavg), the second-last cylinder will be made long
enough to reach’s ptN .

3.1.2 Tree approximation from the top cylinder to the tree
top

Using the method described above, cylinder approximation was used to create a tree
model. The cylinders starts at the tree root and goes to the tree’s highest position
according to the available cylinder data from SLU. However, the SLU data also
gives the trees a total height, that in most cases, is significantly higher than the top
cylinder position. This is due to the fact that the top of the trees have not been
included in the cylinder data from SLU. This omission has so far not been treated,
and the top of the tree needs to be included in the new cylinder model.

In the forest area studied, the trees that can be found are almost all Norway
spruce whose shape, according to [5], can be described with the equations

Di = Q log(1 + (1− i)β) for 1 ≥ i ≥ iv (3.1a)
Di = Db − q log(1 + αi) for iv ≥ i ≥ 0, (3.1b)

where i is the tree’s relative height, Di is the diameter at the height i, Q, q, α,
β and Db are constants and iv is a height constant that determines which of the
equations to be used when calculating Di. The tree’s relative height i is related to
the tree’s total height. The shape of the root of the trees are described by (3.1b)
and is different from the rest of the tree and needs to be described by a different
expression. This deviation will not be included in the cylinder model used in this
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thesis because the cylinder data is available to a height much higher than iv. The
value of iv is relatively small so the main part of the tree will be dealt with using
(3.1a).

Using the cylinders approximated according to the method in Section 3.1.1, the
least-squares method can be used to find a relation according to equation (3.1a).
This relation relates the radius of the tree with the relative height and can then be
used to estimate the cylinder’s radius at a given height. New cylinders are created
to describe the top of the tree and the radius of those cylinders are given by this
relation. Then, by combining the cylinders approximated in Section 3.1.1 and the
cylinders approximated using equation 3.1a an approximation of total tree is found.
In Figure 3.3 the approximated trees, with the constant X = 20, in the forest area
of interest can be seen as green lines together with a ground approximation.

Figure 3.3: The approximated forest area plotted with trees as green lines together
with the ground elevation. The three black lines sticking up above the rest is the
antenna tower.

3.2 Computing the backscattering from a tree trunk
When a single tree, without branches, is standing on the ground and a parallel
electromagnetic wave is incident, the backscattered wave will, among other things,
depend on the ground reflections. The backscattered wave can be approximated as
the sum of four different components, which are combinations of direct waves and
ground scattered waves. This gives a total scattering matrix S given by

S = Ste−jk2Rt + Stge−jk(Rt+Rgt) + Sgte−jk(Rt+Rgt) + Sgtge−jk2Rgt (3.2)
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where e−jk(Rt+Rgt) is a phase change caused by propagating a distance Rt + Rgt,
where Rt is the distance between the wave’s starting position and the tree and Rgt

is the distance from the wave’s starting position to the ground and then to the
tree. For the scattering matrices S the index t represents the tree scattering, g
represent the ground reflection and the combinations of g and t describes the way
the wave propagates. Using this notation, the index gt represent that the incoming
wave is reflected from the ground (g) to the tree (t), and then propagates directly
back towards its starting position. Using this, the scattering matrix (3.2) can be
calculated as [7]

St = S0(k̂ta, k̂at) (3.3a)
Sgt = S0(k̂ta, k̂gt)Γ(k̂gt, k̂ag) (3.3b)
Stg = Γ(k̂ga, k̂tg)S0(k̂tg, k̂at) (3.3c)

Sgtg = Γ(k̂ga, k̂tg)S0(k̂tg, k̂gt)Γ(k̂gt, k̂ag). (3.3d)

where a represents the wave’s starting position, t the tree, g the ground and index
combinations like xz represent the direction from x to z. Further, S0 is the scattering
matrix from the cylinder presented in section 2.5.2, k̂at is the incident direct wave
direction and k̂ta is the direction of the backscattered direct wave, the directions of
k̂gt is from the ground to the tree and k̂tg is from the tree to the ground and they
can be calculated using equation (2.4) and Γ is the reflections matrix at the ground.
It is assumed that the wave’s starting position is placed so far away that all waves
are parallel when they reach the tree.

Under the assumption that the tree stands straight up and that the ground has
no slope, the scattering matrix S0 for an incoming wave with the frequency f can be
calculated according to Section 2.5.2. The ground reflection matrix can be written
as

Γ =
[
Γhh 0
0 Γvv

]
(3.4)

where Γhh and Γvv are calculated using (2.7) and (2.8).

3.2.1 Effect of ground backscattering
When the backscattering was computed, using equation (3.2), the ground was as-
sumed to be perfectly planar without any change in permittivity. This is not a real-
istic scenario because in most real cases the ground will be rough and have changes
in permittivity. The Rayleigh criterion says that a surface is even if the height
variations is smaller than λ/(32 cos(θi)) where θi is the incidence angel. Assuming
that the ground roughness is less than 5 cm and the largest θi is 70◦ the criterion is
true for frequency’s below 550 MHz. This criterion is therefor true for the lower fre-
quency’s used in this project but not for the higher ones. In this thesis, the ground
backscattering will be ignored when computing the total forest backscattering even
if it have affect on the backscattering for the higher frequency’s.

Since low frequency electromagnetic waves are used in this measurements, the
wave will penetrate the ground surface. After penetrating the ground surface a wave
may scatter off a rock or because of other objects that causes the permittivity to
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change. The size of the objects and the used frequency will determine the scattering
magnitude. Measurements of this backscattering process have been made in [7] and
not found to be significant and it will therefore be ignored in the rest of this thesis.

3.2.2 Inclination of the ground plane and tree trunk
The inclination of the cylinder and ground plane will affect the scattering matrix.
To be able to calculate the scattering matrix, the coordinate system needs to be
changed to compensate for this inclination. A general formula for the normal to the
plane (n̂g) and the cylinder axis direction (n̂c) can be written as

n̂g = cos(φg) sin(θg)x̂ + sin(φg) sin(θg)ŷ + cos(θg)ẑ (3.5a)
n̂c = cos(φc) sin(θc)x̂ + sin(φc) sin(θc)ŷ + cos(θc)ẑ (3.5b)

where θg is the angle between n̂g and ẑ and φg is the angle between n̂g’s projection
on the xy-plane and x̂. The angles θc and φc are defined in the same way but n̂g
should be replaced by n̂c.

To be able to calculate the scattering matrix for the tree and ground, the co-
ordinate system can be changed to compensate for the inclination, and by doing so
the computations will be simplified. This is done by choosing the ẑ′ axis in the new
coordinate system to be equal to n̂c or n̂g, depending on which scattering matrix
should be calculated. The other coordinate axes can then be chosen to be

x̂′ = x̂− x̂ · ẑ′

|x̂− x̂ · ẑ′|
(3.6a)

ŷ′ = ẑ′ × x̂′ (3.6b)

and a transformation matrix between the coordinate system can be written as

T =

x̂
′ · x̂ x̂′ · ŷ x̂′ · ẑ

ŷ′ · x̂ ŷ′ · ŷ ŷ′ · ẑ
ẑ′ · x̂ ẑ′ · ŷ ẑ′ · ẑ

 (3.7a)

Now the direction of an incident wave (k̂′i) and the scatted wave (k̂′s) can be cal-
culated in the new coordinate system as k̂′ = T k̂. The horizontal (ĥ′) and vertical
(v̂′) directions for both k̂′s and k̂′i can be calculated with equation (2.15). Then
the reflection matrix (Γ′) and scattering matrix (S′0) can be calculated in the new
coordinate system as before.

Now the scattering matrices need to be converted back to the original coordinate
system before the total scattering matrix are calculated using equation (3.2) and
(3.3). The conversion of the scattering matrix back to the original coordinate system
can be done as [13], [14]

Spq = (p̂s · ĥ′s)S ′0hh(ĥ′i · q̂i) + (p̂s · v̂′s)S ′0vv(v̂′i · q̂i)

+(p̂s · ĥ′s)S ′0hv(v̂′i · q̂i) + (p̂s · v̂′s)S ′0vh(ĥ′i · q̂i)
(3.8)

where p (p̂) and q (q̂) can represent h (ĥ) or v (v̂), respectively. The letter h is used
to represent the horizontal polarization and the letter v the vertical polarization as
in Section 2.2
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3.2.3 Computation setups for one tree
There are many parameters and constants in the computation that can be varied
and they are all affecting the result and cause changes to the backscattering. Some
of these parameters have to do with how the tree is modelled, such as the tree size
and the size of the cylinders that make up the tree. To perform computations of
how the cylinder size and tree size affect the result, five tree models that can be
seen in Figure 3.4, were created with equation (3.1a). The average height of the
trees, approximated in the forest area in section 3.1, is approximately 19 m and this
height is therefore chosen to be the height of the trees in Figure 3.4a.

(a) (b)

Figure 3.4: Five, with equation (3.1a), approximated trees created by placing cylin-
ders on top of each other. In (a), tree model 1 is made up of 10 cylinders while tree
model 2 is made up of 100 cylinders and tree model 3 is made up of 5 cylinders. In
(b) all tree models are made up of 10 cylinders but the radius and height have been
doubled in model 4 and halved in model 5.

The three tree models are created with different cylinder sizes: tree model 1 is
made up of 10 cylinders, tree model 2 is made up of 100 cylinders and tree model 3
is made up of 5 cylinders. In Figure 3.4b all tree models are made up of 10 cylinders
but the radius and height have been doubled in model 4 and halved in model 5 in
comparison to tree model 1. If nothing else is specified the tree model used in this
rapport will always be tree model 1.

In reality, a tree also has branches that will affect the backscattering, but in this
thesis the branches will be ignored if nothing else is mentioned. In the case that the
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branches is mentioned, they will be approximated as cylinders. The backscattering
from these cylinders will be calculated in the same way as the backscattering from the
cylinders that makes up the tree. The assumption that a tree has 50 branches that
are 4 m long and 1.5 cm thick will be used and they are assumed to be perpendicular
to the tree stem axis. Assuming a vertical tree that has an axis in the ẑ direction
the branches axis will be in xy-plane. The 50 branches are then placed on a random
height on the tree with a random direction in the xy-plane.

Some parameters are in real life likely to vary because of environmental or
weather conditions, like how the relative permittivity (εr) varies for the trees and
the ground. In [6] more is explained about variation of εr for trees that in this thesis
will have the value εr = 12.7 − j2.1 if nothing else is specified. For moist soil, the
permittivity can, based on real measurements, be calculated as [7]

εrground = 11− i σg
2πfε0

(3.9)

where σg = 0.001 S/m. In this thesis, this value for the ground permittivity is used
if nothing else is specified.

Other parameters that can be changed is the frequency, the direction n̂c(θc, φc)
of the cylinders, the direction n̂g(θg, φg) of the ground normal and the incoming
waves traveling direction k̂i = − sin(θi)x̂ + cos(θi)ẑ). If noting else is specified the
variables θg, φg, θc and φc will be assumed to be 0◦ and θi will be assumed to be
θi = 60◦.

3.3 Forest simulation
The forest computation is similar to the computations for one tree since the compu-
tation for the forest computes the scattering of each tree individually and then sums
them together. However, there are a few things that change because of the fact that
the forest has a known antenna position. This changes how the RCS is calculated
since equation (2.10) can no longer be used when the distance does not approach
infinity. Instead equation (2.9) can be rewritten to calculate the RCS for one path
of one cylinder by assuming the use of an omnidirectional antenna (Gt = Gr = 1).
The radar cross section can in this case be written as

σpq
R2
tR2

r

=
|Er

p|2

|Et
q|2

(4π)3

λ2 = |Spq|2
(4π)3

λ2R2
tR2

r

(3.10)

where Et
q and Er

p are the transmitted and received electrical fields respectively, Rt

is the length that the wave travels from the antenna to the tree and Rr is the length
that the wave travels from the tree to the antenna. If the wave is reflected at the
ground between the antenna and tree the distance R is equal to the sum of the
tree-to-ground distance and the ground-to-antenna distance.

Assuming that the forest model created earlier is built up of N cylinders, and
taking the four paths in equation (3.2), there exist Ntot = 4N different scattering
paths. The number N represents the total number of cylinders in the forest. By
assuming transmission of a continuous wave, a total backscattering coefficient (Ω)
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can be calculated using the sum of the backscattering for all possible propagation
paths as

Ω =
|Er

p|2

|Et
q|2

= σtotpq
R4

λ2

(4π)3 (3.11a)

σtotpq
R4 = (4π)3

λ2

∣∣∣∣∣
Ntot∑
n=1

Snpqe
−jk(Rtn+Rrn)

RtnRrn

∣∣∣∣∣
2

(3.11b)

where different values of n represent the different cylinder reflection paths and
e−jk(Rtn+Rrn) is the phase shift caused by the different traveling distances for the
different paths. The factor σtotpq can be interpreted as the forest’s total radar cross
section seen from the antennas direction and distance R from some defined center
of the forest.

In this thesis, both a Born approximation and a distorted Born approximation
of the forest backscattering will be used. In the Born approximation, the branches’
attenuation and backscattering will be ignored while in the distorted Born approx-
imation only the branches’ backscattering will be ignored. In the distorted Born
approximation, the attenuation caused by branches and trunks when the wave prop-
agates trough the forest, will be considered when calculating the scattering matrix.
The attenuation matrix (A) can be calculated as in Appendix A.1 (see Figure A.1),
and needs to be incorporated into equation (3.3). Hence, equation (3.3) will become

St = AtaS0(k̂ta, k̂at)Aat (3.12a)
Sgt = AtaS0(k̂ta, k̂tg)AtgΓ(k̂tg, k̂ag)Aag (3.12b)
Stg = AgaΓ(k̂ga, k̂tg)AtgS0(k̂tg, k̂at)Aat (3.12c)

Sgtg = AgaΓ(k̂ga, k̂tg)AtgS0(k̂tg, k̂gt)AgtΓ(k̂tg, k̂ag)Aag (3.12d)

where the indices are explained in equation (3.3).

3.3.1 Ground approximation
When calculating the reflections at the ground, information about the the inclination
and elevation of the ground is necessary. In the case when the tree trunk was
approximated with cylinders, this was assumed to be known. This information is
also included in the forest data, but the ground and it’s inclination are varying as
can be seen in Figure 3.3. To handle this, the ground’s elevation and inclination for
each reflection will be calculated with the least-squares method. This is done while
using data from a small area around an approximated reflection point paprox.

Using the elevation data from the ground in Figure 3.3 an average elevation
Eavg can be calculated. Using the assumption that the ground has an elevation
Eavg and a normal in the ẑ direction, paprox can be calculated. Then, by using all
the elevations data from the area within 2 m of paprox, the elevation of the ground
plane can be estimated. This is done using the least-squares method to minimize
the elevation error of the approximated elevation level compared to the elevation
data. Using the approximated ground elevation, the slope the reflection matrix (Γ)
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can be calculated as usual. The average variance when comparing the real elevation
to the estimated elevation, inside a 2 m distance from a grid of estimated reflection
points, was 4.6 cm. A plot over how the variance changes depending on the position
of the estimated reflection point can be seen in Figure 3.5.

Figure 3.5: The variance between the elevation of the estimated ground plane and
the real ground plane. The reason a corner is missing, when compared to Figure 3.3,
is because there are no trees in that corner and those data are therefore omitted.

3.3.2 Forest computation setup
The computation setup is best described with Figure 3.3 that, as earlier described,
was created from LIDAR data. The different parameters that can be changed,
have the same values as in the computation setups for one tree if nothing else is
specified. However, the forest computation has three parameters that can be varied
that was not used in the simulation setups for one tree. The first one is X, which
was introduced in Section 3.1.1, that describes how the approximated cylinder’s
length should compare to the cylinder radius. The second parameter that can be
varied is the antenna position at the top of the antenna tower, that can be seen
in Figure 3.3. In reality, the antenna position is stationary, but the exact antenna
position is not known and the result of moving the antenna by small distances could
produce similar effects as when the trees move with the wind. Another thing that
will be tried is a comparison between measuring the backscattering with and without
branch attenuation. If noting else is specified the variable X will be assumed to be
20 and the antenna position will be assumed to be (79.5,−8, 50) (see Figure 3.3).
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4
Results

In this chapter, the results from the computation of the backscattering from a single
tree trunk and the backscattering from a complete forest will be presented. First,
the computation of the backscattering from a single tree trunk, described in Section
3.2, will be presented. These results will be helpful in the interpretation of the result
of the backscattering from the forest. The result for the forest backscattering will
then be presented using the setup described in Sections 3.1 and 3.3

4.1 Backscattering from a single tree trunk

In this section, the results of the backscattering from a plane wave incident on a
single tree trunk standing on a ground is presented. There are many parameters in
the model that can be varied, allowing for different results for a wide variety of real
world situations. For a more detailed explanation, see Section 3.2.3.

First, the result from computations using the different tree models, presented in
Section 3.2.3, will be presented. Then, the effect of changing the inclination angles
(θg, φg, θc and φc) of the tree and the ground will be presented. Finally, the RCS
for the tree models with and without branches will be compared.

4.1.1 Backscattering for trees of different sizes

How the backscattering varies depending on tree size is important to know when
trying to measure the biomass in a forest area. When performing forest measure-
ments it would be good to have clear and simple relations between the measured
backscattering and the forest properties. Therefore in an ideal case, the backscat-
tering should be proportional to the tree volume or tree mass for all frequencies,
but as can be seen in Figure 4.1, this is not the case. Figure 4.1 shows the radar
cross section (RCS) for an incident and reflected horizontal polarization of the wave
(σhh) and and for the corresponding vertical polarization (σvv), calculated accord-
ing to equation (2.13). The results are shown for tree models 1,4 and 5, which are
described in Section 3.2.3.

Every cylinder that makes up tree model 4 has a radius and length twice that
of the corresponding cylinders in tree model 1 and every cylinder that makes up
tree model 5 has a radius and length half that of the corresponding cylinders in tree
model 1. This means that tree model 4 has a volume 8 times that of tree model 1
which has a volume 8 times that of tree model 5. Using the specific setup described
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in Figure 4.1, σvh and σhv will become zero because neither the ground nor the tree
changes polarization of the wave.

Figure 4.1: Using the tree model 1,4 and 5, described in Section 3.2.3, σhh and σvv
have been plotted against the frequency. Tree model 4 has a volume eight times that
of tree model 1 which has a volume eight times that of tree model 5. The figure was
created using a dielectric horizontal ground plane θg = 0◦ φg = 0◦, θc = 0◦, φc = 0◦,
θi = 60◦ and εr = 12.7− j2.1

While looking at the σhh in Figure 4.1, it is apparent that the larger tree models
have a larger radar cross section (σ). The magnitude difference between the different
σhh varies over the frequency band and seems to be greater for the lower frequencies
(20-400 MHz). For low frequency’s, when the wave is Rayeleigh scattered, the
backscattering should be proportional to the square off the volume which is in line
with the results of the computations. The amplitude variations for frequencies above
400 MHz, are for σhh when comparing tree model 1 and 4 or when comparing tree
model 1 and 5 mostly between 4 and 12 dB. On average, the difference is less than 9
dB and this means that increasing the tree’s volume eight times will not necessarily
increase the backscattering by eight times. The reason for this can be the fact that
the wave scattering happens partially at the tree’s surface. This may mean that the
surface area of the tree determines the scattering, but the amplitude difference of
the different σhh is usually greater than 6 dB. It therefore seems like σhh does not
scale linearly with the tree’s surface area either. It may be so that some combination
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of the tree surface area and volume determines the amplitude of σhh. However, the
result shows a connection between the tree size and σhh which implies that it is
feasible to use σhh to estimate the biomass.

When the wavelength of an incident wave is much longer than the size of it’s
scattering object, the wave will be Rayleigh scattered. This can be used to explain
the abnormality for tree model 4, where the amplitude diminishes for σhh and in-
creases for σvv around the frequency 1 GHz. This is because at this frequency (1
GHz) the wavelength is approximately the same as the tree’s diameter. This means
that the waves will not be Rayeleigh scattered and when the frequency is increased
further the scattering process will be transformed into optical scattering. Optical
scattering occurs when the objects size is much greater than the wavelength. The ef-
fect is caused by the wavelength becoming close to the cylinder diameter. Attempts
were made, where the frequency was increased to produce corresponding effects for
tree model 1 and 5. The effects were found for model 1 at frequencies around 2 GHz
and for model 5 at 4 GHz.

The σvv, like the σhh, shows that the backscattering from the larger trees are
greater than the backscattering from the smaller trees. But the σvv are fluctuating
more than the σhh. This results in that σvv for some frequencies are greater for
a small tree than for a large tree. Because of the greater stability and a more
stable relation between σ and the tree size, σhh seems to be more appropriate to use
when measuring the backscattering to estimate the tree size than σvv for this setup.
However, changing the parameters, like εr, changes the size of the fluctuations for
σhh and σvv so this is not always the case.

4.1.2 Backscattering using different cylinder sizes
The backscattering variations, depending on the cylinder size, can be used to deter-
mine the necessary cylinder size to be used in the forest model. This is because, if
the backscattering from the longer cylinders differs from the backscattering from the
shorter cylinders it may be due to approximation errors. Figure 4.2 shows σhh and
σvv calculated according to equation (2.13), for tree model 1,2 and 3 described in
Section 3.2.3. All three tree models are of the same size but with the difference that
tree model 1 is made up of 10 cylinders, tree model 2 is made up of 100 cylinders
and tree model 3 is made up of only 5 cylinders. For the specific setup described in
Figure 4.2, σvh and σhv will become zero.

While looking at σhh in Figure 4.2 it is apparent that the curve created using
tree model 2 fluctuate more than the other curves for frequencies above 400 MHz.
This is because tree model 2 is using more cylinders than the other tree models
which allows for more variations in the backscattering. The fluctuation of σhh for
tree model 2 is however approximately centred around the other tree models value
of σhh. This implies, that even though the σhh value fluctuates differently depending
on the number of cylinders in the tree model, the value is still following the same
general curve. The great fluctuations for figure 4.2 is not physical and may be
caused by neglected interactions between cylinders. If one only is interested in
approximate σhh for a frequency interval, the estimation of σhh using tree models
with 5 to 10 cylinders are better than using tree models with many more cylinders.
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Figure 4.2: The values of σhh and σvv are plotted against the frequency for tree
model 1,2 and 3 described in Section 3.2.3, Tree model 2 is made up of ten times as
many cylinders as tree model 1 that is made up of twice as many cylinders as tree
model 3. The trees are of the same size in all models. The figure was created using
a dielectric horizontal ground plane θg = 0◦, φg = 0◦, θc = 0◦, φc = 0◦, θi = 60◦ and
εr = 12.7− j2.1

Similar observations can be made for σvv, with the difference that the fluctuations
are greater even for tree model 1, where the σvv value can be seen fluctuating.

The average amplitude of σhh and σvv does not seem to have any obvious de-
pendence on the number of cylinders used in the simulation. This means that it
might be possible to only use a few cylinders when simulating the average value of
σhh or σvv. This is advantageous because computations using many cylinders for
each tree would take a lot more computing power than computations using only a
few cylinders for each tree.

For the frequencies lower than 400 MHz an obvious increase of σhh and σvv
can be seen as the frequency increases. Also for the lower frequencies the values
computed using many cylinders in the tree model can be seen fluctuating more than
the values computed using fewer cylinders in the tree model.

The value of σhh in Figure 4.2 seems to be more stable than the value of σvv
when the number of cylinders in the tree model changes. This can be seen in that
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the σhh changes very little for the frequencies above 400 MHz in comparison to σvv.
An abnormality can also be seen in the σvv curve for tree model 3 in the frequency
interval 1− 1.2 GHz where the σvv value drops significantly.

4.1.3 Backscattering for different ground slopes
Knowing how the backscattering varies depending on the ground slope (θg, φg)
is advantageous when performing backscattering measurements on hills or sloping
grounds. Figure 4.3 shows how the computed σ varies for tree model 1, described
in Section 3.2.3, when θg and φg varies. A similar figure can be found in [7].

(a) (b)

(c) (d)

Figure 4.3: The RCS (σ) for a single tree trunk standing on a ground plane with
varying inclination. Figure a, b, c and d shows how σhh, σvv, σhv and σvh vary with
different θg and φg. The figures were computed using tree model 1 described in
section 3.2.3 with θc = 0◦, φc = 0◦, θi = 60◦, εr = 12.7 − j2.1 and the frequency
f = 150 MHz.

The values of σhh and σvv in Figure 4.3, can be seen to rapidly decrease for
φg = 0◦ and φg = 180◦ when θg increase. But, when φg = ±90◦ the magnitude
of σhh and σvv will not decrease as rapidly when θg increases. This has to do with
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that the largest contributor to σ is the ground-trunk (Sgt) and trunk-ground (Stg)
scattering, described in equation (3.3). When θg = 0◦, the backscattering for Stg and
Sgt occur, so that for the tree the reflected and incident wave direction have the same
angular distance to the tress surface normal. When this changes, as it does when
the ground’s inclination in the waves traveling direction changes, σhh and σvv will
decrease. Since the inclination in the wave’s traveling direction changes faster the
closer φg is to 0◦ or 180◦, σhh and σvv will decrease faster for φg = 0◦ and φg = 180◦
when θg is increased. Similarly, the inclination in the waves traveling direction does
not changes when φg is ±90◦ and therefore σhh and σvv will not decrease so fast for
φg = ±90 when θg is increased.

In Figure 4.3a, at φg = 180◦ and θg = 15◦, one can see that the σhh value has
a local peak compared to higher and lower values of θg. This peak shifts towards
larger θg-values as φg becomes larger or smaller. The peak is due to the ground-
tree-ground scattering (Sgtg), and occurs when the from the ground reflected wave
traveling direction is orthogonal to the tree trunk giving k̂gt = −k̂tg.

The cross-polarized radar cross sections, σhv and σvh, in Figure 4.3 can bee seen
to be zero when φg = 180◦, φg = 0◦ or θg = 0◦. This is because neither the tree
scattering matrix nor the ground reflection matrix contributes to any polarization
changes for thees angles. But then φg = ±90◦, the ground reflection matrix after
the coordinate system changes, described in equation (3.8), will have cross-polarized
components. Even the tree scattering matrix will then have cross-polarized compo-
nents that are not zero, this is due to φs 6= φi, described in Figure 2.2.

The magnitude of σhv and σvh, when they attain their maximum value, are larger
than the magnitude of σhh. This means that the backscattering from σhv and σvh
can be significant at hills due to the ground inclination.

4.1.4 Backscattering for different tree inclinations
Knowing how the backscattering varies depending on the inclination of the tree (θc,
φc) can be useful then performing backscattering measurements on a forest. Figure
4.4 shows how the computed σ varies for tree model 1, described in Section 3.2.3,
when θc and φc is varied.

There are many similarities in Figure 4.4 and 4.3 that can bee seen if comparing
the figures. One such similarity is how the values of σhh and σvv can be seen to
rapidly decrease for φc = 0◦ or φc = 180◦, when θc is increased. However when
φc = ±90◦, the magnitude of σhh and σvv will not decrease as fast. The reason for
this is due to the ground-trunk (Sgt) and trunk-ground (Stg) scattering described in
equation (3.3). When the inclination is changed, the reflected and incident waves’
direction will not have the same angular distance to the trees surface normal causing
σhh and σvv to decrease. This happens faster for angles close to φg = 0◦ or φg = 180◦
and slower fore angles close to φc = ±90◦.

There are some things in Figure 4.4 that can not be seen in Figure 4.3, like
how σhh has a barely visible peak at θc = 30◦ when φc = ±180◦ and θc is varied.
As φc changes, the peaks will change towards larger θc values. This is caused by
the incident and reflected wave directions for St, presented in equation (3.3), being
both normal to the tree inclination or k̂ta = −k̂ta. When φc or θc then changes the
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(a) (b)

(c) (d)

Figure 4.4: The RCS (σ) for a single tree trunk with varying inclinations to a ground
plane without any slope. Figure a, b, c and d shows how σhh, σvv, σhv and σvh varies
with different θc and φc. The figures where created using tree model 1, described in
section 3.2.3, with θg = 0◦, φg = 0◦, θi = 60◦, εr = 12.7− j2.1 and f = 150 MHz.

condition k̂ta = −k̂ta will no logger hold true and σhh will rapidly decrease. For σvv
the same peak can be seen more clearly and has a value much higher than anything
else in Figure 4.3b. When it comes to σhv and σvh they are 0 at θc = 30 when
φc = ±180◦. This does not mean that having k̂ta = −k̂ta does not affect σhv and
σvh. This is because the S0 matrix, presented in equation (3.3), has the components
Shv = Svh = 0 for φc = 180◦ and φc = 0◦. Therefore, when φc is close to 180◦, the
same peak values that is seen in the upper corners of Figure 4.4 for σhh and σvv, can
be seen for σhv and σvh.

Further, in Figure 4.4a, it can be seen that σhh, for φc = ±90◦ and starting at
θc = 0◦, seems to decrease when θc increases initially but as θc increases further, σhh
will start to increase. The reason for this, as can be seen in Figure 4.2, is that σvv
is generally greater than σhh for frequencies around 150 MHz. Then, if φc = ±90◦
and θc is increased, the tree in the model will start to lie down and the horizontal
electrical field component will start to align with the tree axis. When this is the
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case, the horizontal component of the wave will be reflected as if a part of it is
aligned with the tree and σhh will increase.

4.1.5 Backscattering with and without tree branches
The backscattering from a tree is not only dependent on the tree trunk but also on
the branches. The backscattering from the branches varies with the angle of the
branch axis relative the incident wave propagation direction. This is because the
scattering of the cylinder used to approximate the branch varies with the incident
direction of the wave as can be seen for the trunk in Figure 4.4. Figure 4.5 shows
σhh and σvv calculated according to equation (2.13), for tree model 1 described in
Section 3.2.3 with and without tree branches. If one calculates the volume of the
tree trunk it becomes approximately 0.394 m3 and the branch volume becomes 0.141
m3.

(a) (b)

Figure 4.5: The values of σhh, σvv, σhv and σvh were plotted against the frequency
for tree model 1, described in Section 3.2.3. The radar cross sections were computed
with and without tree branches and the branches were placed according to Section
3.2.3. The values were computed using θg = 0◦, φg = 0◦, θc = 0◦, φc = 0◦, θi = 60◦
and εr = 12.7− j2.1.

The tree branches’ directions and heights were randomly decided as described in
Section 3.2.3. After performing computations for multiple random placements and
directions of the branches, it was obvious that the height of the branches and their
direction affected the backscattering. In most cases the resulting σhh and σvv from
trees with branches was similar to the σhh and σvv from trees without branches in
Figure 4.5a. The value of σ for trees with branches in Figure 4.5a usually fluctuate
around the value of σ for trees without branches. But in some rare cases, σ for
trees with branches would be a lot greater and in other rare cases almost the same
as the σ without branches. The reason behind those rare cases was when multiple
branches had inclinations that allowed for unusually large or small backscattering.

In almost all placements of the branches it could be seen that σvv for a tree
with and without branches had almost the same value for the lower frequencies.
This is because the reflection from a polarization in the same direction as the tree
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axis is far greater, for the lower frequency’s, than the reflection from a polarization
orthogonal to the tree axis. The tree trunk has an axis that is orthogonal to the
horizontal polarization of the incident wave and therefore, for low frequencies, gives
greater backscattering for the vertical polarization than the horizontal polarization.
However, the branches’ axes are not in the incidents wave’s vertical polarization
direction and will therefore give a smaller backscattering in comparison to the tree
trunk for low frequencies.

Using the specific setup described in Figure 4.5, σvh and σhv will become zero
for the tree without branches because neither the ground nor the trunk changes
polarization of the wave. For the tree with branches σvh and σhv will not become
zero because of the scattering of the branches. The computed σvh is almost the same
as the computed σhv.

4.2 Backscattering from a forest
From the computed radar cross sections for a plane wave incident against a single
trunk, it is seen that σhh is larger than σvv for high frequencies but smaller for low
frequencies, see Subsection 4.1.2. The results have also shown that the slope of the
ground have great effect on the RCS. In fact, as can be seen in Figure 4.3 and 4.4, for
certain angles the amplitude can vary greatly for small changes in either the ground
slope or the tree inclination. This will greatly effect the forest calculations since a
single tree with the same size as the average tree, can give a reflection several times
as large as other trees with the same size for certain slopes. Similarly, other slopes
may cause a tree to barely scatter anything at all and therefore contribute several
times less than the average trees of the same size.

There are many parameters that can be changed in the computation of the
backscattering from a forest, allowing for simulation of a wide variety of real world
cases. For more detailed explanations, see Section 3.3.2. However, for the forest
the parameters that we will vary is the constant X, introduced in Section 3.1.1,
that relates the cylinder length to the cylinders radius, the antenna position and εr.
Because of positive and destructive interference between the backscattered waves,
small changes in the antenna position may affect the backscattering more than
expected.

4.2.1 Forest backscattering using different cylinder lengths
Figure 4.6 shows how σtot/R

4, presented in equation (3.11), varies for different
X,introduced in Section 3.1.1, as the frequency changes. The figure shows X = 20,
X = 40 and X = 10, where X relates the cylinder length to the cylinders radius.
When using X = 20 the forest approximation is made up of approximately 6000
cylinders, when X = 40 approximately 11000 cylinders and when X = 10 approxi-
mately 3000 cylinders. Since the forest is made up of 748 trees, this corresponds to
approximately 8, 15 and 4 cylinders per approximated tree.

The variation of the backscattering depending on the cylinder size for one tree
trunk has been tested and studied in Section 4.1.2 and Figure 4.2. There, it was
found that when computing an approximate value for σhh there was no need to use
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(a) (b)

(c) (d)

Figure 4.6: The values of σtothh/R4, σtotvv/R4, σtothv/R4 and σtotvh/R
4 are shown

in subplot (a) – (d), respectively against the frequency for different values of X.
X relates the cylinder length to the cylinders radius. When using X = 20 the
forest approximation is made up of approximately 6000 cylinders, when X = 40
approximately 11000 cylinders and when X = 10 approximately 3000 cylinders. The
figures was created using εr = 12.7 + j2.1 and the antenna position (79.5,−8, 50).

more than 5 to 10 cylinders per tree. However, when more cylinders where used more
fluctuations can be seen allowing more exact calculations for specific frequencies.
Prominent was also that independent of the number of cylinder used, σhh follows
the same general curve with the only difference of more or less fluctuations.

In Figure 4.6a it can be seen that the value of σtothh/R4 shows several similarities
to the value of σhh in Figure 4.2. One similarity is the independence of the number
of cylinders used σtothh/R4 follows more or less the same curve for all values of X,
with the only difference of how it fluctuates. Another similarity is the shape of
the curve which shows that when the f goes from 100 MHz to 400 MHz, both σhh,
from Figure 4.2, and σtothh/R4, from Figure 4.6a, increases with approximately 25
dB. This shows a clear connection between the reflection of a single tree and the
reflections from multiple trees combined.
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However, something different is that σtothh/R4 fluctuates equally much both
when a tree is approximated with 15 and 4 cylinders. This is because the fluctuations
are dependent on the total number of cylinders rather than the number of cylinder
for a single tree. The reason that the forest models σtothh/R4 value fluctuate more
than the single tree models σhh value is because the forest have more cylinders than
the model of a single trunk.

Another difference between Figure 4.6 and Figure 4.2 is that the size of σtothh/R4

is approximately the same as the size of σtotvv/R4. In the case of a single tree it
is for the higher frequencies obvious that σhh > σvv. This signifies that for small
inclinations of the ground and trees, the vertical polarization will decrease less than
the horizontal polarization. Indications of this can also be seen in Figure 4.3 where
σhh has its maximum value then there are no inclination while σvv does not have a
maximum value for no inclination. The fluctuation in the σtotvv/R4 value is due to
the same reason as the fluctuation in σtothh/R4.

The value of σtothv/R4 and σtotvh/R4 can be seen to be very similar in Figure 4.6.
The reason these are not zero, as σvh and σhv were in Section 4.1.2, is because the
ground and trees have different inclinations in the forest. How the ground and tree
inclination affects σtothv/R4 and σtotvh/R4 can be estimated from Figure 4.3 and 4.4.
Worth noting is that both σtothv/R

4 and σtotvh/R
4 is much smaller than σtothh/R

4

and σtotvv/R4.

4.2.2 Forest backscattering for different antenna positions

Figure 4.7 shows how σtot/R
4, presented in equation (3.11), depends on the frequency

for different antenna positions. The exact position for the antenna in the forest is
not known but has been estimated to be at (79.5,−8, 50) meters (see Figure 3.3).
The results for this position can be seen in Figure 4.7 as ‘specific position´. The
figure also shows the average result of eight antenna positions around the estimated
antenna position. The eight used position are all possible combinations of (79.5 ±
0.5,−8 ± 0.5, 50 ± 0.5). The figure is created using X = 20, which means that the
forest model is approximately built up using 6000 cylinders.

Figure 4.7 indicates that the average value of σtot/R4 for the eight antenna
positions has less fluctuations than the value for an individual antenna, as expected.
This is because the fluctuation is reduced in the average process since the individual
values have fluctuation at different frequencies. However, both curves can be seen
to vary similarly with the exception of the fluctuations. This continues to be true
even for other antenna positions close to the estimated antenna position. This
indicates that the general curve shape of the backscattering is not dependent on
the exact antenna position. This is advantageous, because it means that if one in
a real scenario slightly moves the antenna, it should not affect the result of the
measurements to become totally different. It also indicates, that even if we in our
computations do not know the exact antenna position, the estimated position should
give a result similar to the result given by the exact antenna position.
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(a) (b)

(c) (d)

Figure 4.7: The figure shows σtot/R4 for different polarizations against the frequency
and for different antenna positions. The exact antenna position in the forest is not
known but has been estimated to be at position (79.5,−8, 50) (black line). The
result at this antenna position is in the figures compared to the average results of
eight different antenna positions (79.5±0.5,−8±0.5, 50±0.5) (red line). The figure
was created using X = 20 which means that the forest is approximately made up of
6000 cylinders, and using εr = 12.7 + j2.1.

4.2.3 Forest backscattering with attenuation

Figure 4.8 shows σtot/R4, presented in equation (3.11), when the attenuation is
included in the model. The figure shows two plots, one where the attenuation have
been considered and one where the attenuation has not been considered. As can
be seen in the figure, the value of σtot/R4 has become noticeably lower for some
frequencies when the attenuation has been included in the model. But for other
frequencies the attenuation’s influence cannot be seen as clearly and the reason for
this is that the attenuation is frequency dependent as can be see in Appendix A.1
Figure A.1. In Figure A.1, it can be seen that the attenuation for the horizontal
polarization is largest between 125 and 350 MHz. Indications of this can also be
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seen in σtothh/R4, in Figure 4.8a, where the red curve is significantly lower than the
black one for the frequencies 125-350 MHz. This shows that adding attenuation
to the computation has a noticeable effect in diminishing the RCS. However, this
is not always the case, at some frequencies σtothh/R4 with attenuation is larger
than it is without attenuation. This has to do with destructive and constructive
interference of waves that scatters towards the antenna with different polarizations.
For some frequencies, adding attenuation could diminish the destructive interference
and therefore cause σtothh/R4 to increase.

Similar observations can be made for σtotvv/R4 in Figure 4.8b, which decreases
more for some frequencies than for other frequencies due to the attenuation being
frequency dependent, as can be see in Appendix A.1, Figure A.1.

(a) (b)

(c) (d)

Figure 4.8: The values of σtothh/R4, σtotvv/R4, σtothv/R4 and σtotvh/R
4 with and

without attenuation are shown in subplot (a) – (d), respectively against the fre-
quency. The figures was created using X = 20, εr = 12.7 + j2.1 and the antenna
position (79.5,−8, 50).
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4.2.4 Forest backscattering for different moisture contents
Knowing how the backscattering varies depending on the ground and tree’s moisture
content is advantageous when performing backscattering measurements. This is
because the moisture content in the trees and earth changes with the weather and
season. As the moisture content in wood and soil changes, the permittivity will also
change according to what is presented in Appendix A.2 (see Figure A.2) and A.3
(see Figure A.3). Figure 4.9 shows how the computed σtot/R4 varies for the forest
as the tree and ground moisture content changes. The figure is created without
considering any attenuation, using f = 435 MHz, X = 40 that relates a cylinders
length to it’s radius, which means that the forest model is approximately build up
using 3000 cylinders.

(a) (b)

(c) (d)

Figure 4.9: The values of σtothh/R4, σtotvv/R4, σtothv/R4 and σtotvh/R
4 are shown

in subplot (a) – (d), respectively against the moisture content percentage in the
soil and the wood. The figures were created using X = 40, f = 435 MHz, the
antenna position (79.5,−8, 50) and permittivities corresponding to the moisture
content percentage, see Appendix A.2 and A.3.

The values of σtot/R4, in Figure 4.9, can for all polarization’s and all wood
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moisture content be seen to be increasing as the soil’s moisture contents increases.
This is because of the fact that as the soil’s moisture content increases, the grounds
permittivity will increase, see Appendix A.3 (see Figure A.3). This causes |Γhh| and
|Γvv|, see equation (2.7) and (2.8), to increase for almost all incidence angles which
results in that σtot/R4 increases, see equation (3.11) and (3.3).
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5
Conclusion

The goal of this thesis was to create an electromagnetic model of a forest, calculate
the backscattering from this forest and determine whenever the GRG approximation
or truncated infinite cylinder approximation can be used. It is concluded that the
truncated infinite cylinder approximation is a better approximation in the model due
to the constraints of the GRG approximation. The latter constraints constraints are
that ka << 1/√εr and h > 20a√εr, and a consequence of this is that the GRG
can not be used for all frequencies of interest (20-1400 MHz). Another consequence
is that the cylinder length, that needs to be used when approximating the forest,
would become too long which will make it difficult, if even possible, to create a good
forest approximation. As a consequence of this, only the truncated infinite cylinder
approximation was used in the model of this thesis.

In the creation of the forest model, the cylinder data presented in Section 3.1
were used even if this data contained a few irregularities. An example of an ir-
regularity was that cylinders with different radii and inclinations could overlap one
another. This means that one of the cylinders will contain data that does not corre-
spond to the real tree at the overlapping point. In addition, several approximations
were made to get rid of the overlap of cylinders and fill in the empty space between
the cylinders. Since the original cylinder data already contained approximations,
and then more approximations where made, it is likely that the final forest model is
a bit different from the real forest. But when looking at Section 4.2.1 and 4.2.2, it
can be seen that moving the antenna position slightly or changing the cylinder ap-
proximation only affects the backscatter’s fluctuation, but not it’s mean value. This
indicates that the model is quite stable, and most likely, the general curve’s shape of
the backscattering would not change much even if a more perfect geometrical forest
model could have been made.

The effect of changing the size of a tree, studied in Section 4.1.1, gave the
expected result that large trees gives more backscattering than small trees. However,
a bit unexpected was that for some frequencies, σvv was larger for a small tree than
for a large tree. A direct relationship between tree size and tree volume or tree size
and tree surface area could however not bee seen.

It was in Section 4.1.3 and 4.1.4 found that changing the tree inclination or
ground slope slightly can significantly change the backscattering. It can therefore
be concluded that tree inclination and ground slope are extremely important factors
when measuring or computing backscattering.
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A
Appendix

A.1 Attenuation due to trees and branches

When an electromagnetic wave passes though a forest, it will be partly scattered by
trees and branches. But parts of the electromagnetic wave will continue propagat-
ing without changing direction. However, this part will attenuate more and more
the longer the wave propagates though the forest. The mathematical method to
calculate the attenuation is presented below, for the more interested reader a the-
oretical description of the physics behind the attenuation process can be found in
[22]. The mathematical equations used when calculating the attenuation A, when a
wave travels to the ground and back, is as follows [22]

I =
[
1 0
0 1

]
(A.1a)

K = 2π
λ

(A.1b)

KABR = K ∗RADBR (A.1c)
KAST = K ∗RADST (A.1d)

RI = √εrµr (A.1e)

BDENS = BPERT

2HSEP
(A.1f)

where BPERT is the number of branches per tree, H is the tree height, SEP is the
distance between the trees, RADBR is the average branch radius and RADST is the
radius of the tree. Furthermore, θ is the incidence angle and χ is the angle between
the branches and the tree. Then

AH =
N∑
i=1

2AA(i) (A.2a)

BH =
N∑
i=1

2BB(i) (A.2b)
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where

N = round(AK) (A.3a)
J(i) = J(i−1)(AK) (A.3b)

JM(i) = J(i−1)(RIAK) (A.3c)
H(i) = H

(1)
(i−1)(KARB) (A.3d)

HM(i) = H
(1)
(i−1)(RIKARB) (A.3e)

DJ(i) = J1(AK) for i = 1 (A.3f)
DJ(i) = (J(i−2)(AK)− Ji(AK))/2 for i 6= 1 (A.3g)
DJM(i) = J1(RIAK) for i = 1 (A.3h)
DJM(i) = (J(i−2)(RIAK)− Ji(RIAK))/2 for i 6= 1 (A.3i)
DH(i) = H

(1)
1 (RIAK) for i = 1 (A.3j)

DHM(i) = (H(1)
(i−2)(RIAK)−H(1)

i (RIAK))/2 for i 6= 1 (A.3k)

BB(i) = JM(i)DJ(i)−RIDJM(i)J(i)
RIH(i)DJM(i)−DH(i)JM(i) (A.3l)

AA(i) = DJM(i)J(i)−RIJM(i)DJ(i)
RIDH(i)JM(i)−H(i)DJM(i) (A.3m)

where Jn() is n-order order Bessel function of first kind, H(1)
n () is a n-order order

Bessel function of third kind and AK can represent either KABR or KAST . Further-
more,

EBR = (0,− sin(χ), cos(χ)) for AK = KABR (A.4a)
EBR = (0, 0, 1) for AK = KAST (A.4b)

ATE = j ∗
√

2AH/K (A.4c)
ATM =

√
2BH/K (A.4d)

PHI(L) = πL/180 (A.4e)
EP (L) = [sin(θ)sin(PHI(L)),−sin(θ)cos(PHI(L)), cos(θ)] (A.4f)

VERT = [0, 0, 1] (A.4g)
PXC1(L) = EP (L)× EBR; (A.4h)

ABSPXC(L) =
√
PXC1(L) · PXC1(L) (A.4i)

PXC(L) = PXC1(L)/ABSPXC(L); (A.4j)
VDOTPXC(L) = VERT · PXC(L) (A.4k)
COSPSI(L) = |VDOTPXC(L)| (A.4l)

SINPSI(L) =
√

1− (COSPSI(L))2 (A.4m)
ABR11(L) = ATM(COSPSI(L))2 + ATE(SINPSI(L))2 (A.4n)
ABR12(L) = (ATM − ATE)COSPSI(L)SINPSI(L) (A.4o)

ABR21(L) = ABR12 (A.4p)
ABR22(L) = ATE(COSPSI(L))2 + ATM(SINPSI(L))2. (A.4q)
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Using AK = KABR in equation (A.4), the next step in the calculations will be

AV ABR1 =
[∑60

L=1 ABR11(L) ∑60
L=1 ABR12(L)∑60

L=1 ABR21(L) ∑60
L=1 ABR22(L)

]
/60 (A.5a)

AV ABR2 =
[∑90

L=61 ABR11(L) ∑90
L=61 ABR12(L)∑90

L=61 ABR21(L) ∑90
L=61 ABR22(L)

]
/30 (A.5b)

AV ABR4 =
[∑120

L=91 ABR11(L) ∑120
L=91 ABR12(L)∑120

L=91 ABR21(L) ∑120
L=91 ABR22(L)

]
/30 (A.5c)

AV ABR5 =
[∑180

L=121 ABR11(L) ∑180
L=121 ABR12(L)∑180

L=121 ABR21(L) ∑180
L=121 ABR22(L)

]
/60 (A.5d)

(A.5e)

and using AK = KAST in equation (A.4), the next step in the calculation will be

AV ABR3 =
[
ABR11(0) ABR12(0)
ABR21(0) ABR22(0)

]
(A.6)

The scattering and attenuation can then be calculated as

SCATT1 = (I + SEPBDENSAV ABR2/4)(I + SEPBDENSAV ABR1/4) (A.7a)
SCATT2 = (I + SEPBDENSAV ABR4/4)((I + AV ABR3/SEP )(SCATT1)) (A.7b)

SCATT3 = (I + SEPBDENSAV ABR5/4)SCATT2 (A.7c)
SCATT0 = |SCATT3|.2 (A.7d)

DEPTH = H

cos(θ) (A.7e)

SCATT = SCATT0.
2DEP T H/SEPA = |SCATT |d (A.7f)

In Figure A.1 the attenuation due to the trees is plotted against the frequency for
a wave traveling though a forest.

Figure A.1: The wave’s total attenuation due to the trees when traveling though a
forest to the ground and back, while BPERT = 50, H = 18.7 m, θ = 60◦, χ = 90◦,
SEP = 4.3 m, RADBR = 0.015 m and RADST = 0.0903 m.
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A.2 The permittivity’s dependence on the wood
moisture content

A tree trunk’s dielectric properties are dependent on how much water is in the trunk.
A measure of the amount of water in the trunk is the wood moisture content, which
is calculated as the mass of the water in the trunks divided by what the trunks mass
would have been without any water. The permittivity’s dependence on the wood
moisture is well explained in [23], and using this the permittivity (εr) of the wood
is calculated as

εr = εtemp(1− jL) (A.8)
where εtemp and L for a horizontal polarization is defined as

εtemp = 0.001016 ∗m2
c + 0.03705 ∗mc + 2.002 (A.9a)

L = 0.115 ∗ e0.003321mc − 0.09049 ∗ e−0.07819∗mc . (A.9b)

This relation is approximately valid for Norway spruce when the temperature is
20◦ C and the frequency is 100 MHz, but the value of the permittivity should only
change slightly as frequency is increased to 1 GHz. The variable mc represents the
wood moisture content in percentage. In Figure A.2, mc is plotted against εr for
horizontal polarization. For vertical polarization, εr will become different but in

Figure A.2: The permittivity of Norway spruces against moisture content, when the
temperature is 20◦ C and the frequency is 100 MHz

this thesis, εr will only be calculated for the horizontal polarization. This is because
the cylinder scattering model used (see Subsection 2.5.2) does not work when εr is
different for different polarization directions.
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A.3 The permittivity’s dependence on the soil mois-
ture content

The dielectic properties of the ground is dependent on how much water is in the
soil. A measure for the amount of water in the ground is the soil moisture content
which is calculated as the mass of the water in the soil divided by what the soil mass
would have been without any water. The permittivity’s dependence on soil moisture
content for the ground is well explained in [24], and using this the permittivity (εr)
of the soil is calculated as

εr = εsoilreal + jεsoilimag (A.10)

where εsoilreal and εsoilimag is defined as

εsoilimag = (mβ2
v )εWimag (A.11a)

εsoilreal = 1.15(1 + 0.66pb +mβ1
v (εαWreal −mv)1/α − 0.68 (A.11b)

εWimag = (2πfτW )(εw0 − εWinf )/(1 + (2πfτW )2)+
((2.65− pb)/(2.65mv))(σ/(2πε0f))

(A.11c)

εWreal = εWinf + (εw0 − εWinf )/(1 + (2πfτW )2) (A.11d)
σ = 0.0467 + 0.22pb − 0.411S + 0.661C (A.11e)

α = 0.65 (A.11f)
β1 = 1.27− 0.519S − 0.152C (A.11g)
β2 = 2.06− 0.928S − 0.255C (A.11h)

pb = 1.7 (A.11i)
τW = (1.1109 ∗ 106 − 38240T + 693.8T 2 − 5.096T 3)/(2 ∗ 1016π) (A.11j)

εWinf = 4.9 (A.11k)
εw0 = 88.045− 0.4147 ∗ T + (6.295 ∗ 10−4) ∗ T 2 + (1.075 ∗ 10−5) ∗ T 3 (A.11l)

mv = mc/100 (A.11m)

In the equations, T is the temperature in Celsius, f is the frequency, mc represent
the soil moisture content percentage, S is the mass fraction of sand and C is the
mass fraction of clay.

Figure A.3 shows mc against εr for T = 20◦ C, S = 0.5, C = 0.15 and f = 435
MHz.
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Figure A.3: The permittivity of soil plotted against moisture content, when T =
20◦C, the mass fraction of sand S = 0.5, the mass fraction of clay C = 0.15 and
f = 435 MHz
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