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Abstract

The usual notion of propositional equality in intensional type-theory is restrictive. For instance it
does not admit functional extensionality nor univalence. This poses a severe limitation on both
what is provable and the re-usability of proofs. Recent developments have, however, resulted
in cubical type theory, which permits a constructive proof of univalence. The programming
language Agda has been extended with capabilities for working in such a cubical setting. This
thesis will explore the usefulness of this extension in the context of category theory.

The thesis will motivate the need for univalence and explain why propositional equality in cubical
Agda is more expressive than in standard Agda. Alternative approaches to Cubical Agda will
be presented and their pros and cons will be explained. As an example of the application of
univalence, two formulations of monads will be presented: Namely monads in the monoidal form
and monads in the Kleisli form. Using univalence, it will be shown how these are equal.

Finally the thesis will explain the challenges that a developer will face when working with cubical
Agda and give some techniques to overcome these difficulties. It will suggest how further work
can help alleviate some of these challenges.
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Chapter 1

Introduction

This thesis is a case study in the application of cubical Agda to the formalization of category
theory. At the center of this is the notion of equality. There are two pervasive notions of equality
in type theory: judgmental equality and propositional equality. Judgmental equality is a property
of the type system. Propositional equality on the other hand is usually defined within the system.
When introducing definitions this report will use the symbol ≜. Judgmental equalities will be
denoted with = and for propositional equalities the notation ≡ is used.

The rules of judgmental equality are related with 𝛽- and 𝜂-reduction, which gives a notion of
computation in a given type theory. There are some properties that one usually want judgmental
equality to satisfy. It must be sound, enjoy canonicity and be a congruence relation. Soundness
means that things judged to be equal are equal with respects to the model of the theory or
the meta theory. It must be a congruence relation, because otherwise the relation certainly
does not adhere to our notion of equality. E.g. One would be able to conclude things like:
𝑥 ≡ 𝑦 → 𝑓 𝑥 ≢ 𝑓 𝑦. Canonicity means that any well typed term evaluates to a canonical form.
For example, for a closed term 𝑒 ∶ N, it will be the case that 𝑒 reduces to 𝑛 applications of suc
to 0 for some 𝑛; i.e. 𝑒 = suc𝑛 0. Without canonicity terms in the language can get “stuck”,
meaning that they do not reduce to a canonical form.

For a system to work as a programming languages it is necessary for judgmental equality to
be decidable. Being decidable simply means that that an algorithm exists to decide whether
two terms are equal. For any practical implementation, the decidability must also be effectively
computable.

For propositional equality the decidability requirement is relaxed. It is not in general possible to
decide the correctness of logical propositions (cf. Hilbert’s entscheidigungsproblem).

There are two flavors of type-theory. Intensional- and extensional- type theory (ITT and ETT
respectively). Identity types in extensional type theory are required to be propositions. That is,
a type with at most one inhabitant. In extensional type theory the principle of reflection

𝑎 ≡ 𝑏 → 𝑎 = 𝑏

is enough to make type checking undecidable. This report focuses on Agda, which at a glance
can be thought of as a version of intensional type theory. Pattern-matching in regular Agda
lets one prove Uniqueness of Identity Proofs (UIP). UIP states that any two identity proofs are
propositionally identical.
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The usual notion of propositional equality in ITT is quite restrictive. In the next section a few
motivating examples will be presented that highlight. There exist techniques to circumvent these
problems, as we shall see. This thesis will explore an extension to Agda that redefines the notion
of propositional equality and as such is an alternative to these other techniques. The extension
is called cubical Agda. Cubical Agda drops UIP, as it does not permit functional extensionality
nor univalence. What makes cubical Agda particularly interesting is that it gives a constructive
interpretation of univalence. What all this means will be elaborated in the following sections.

1.1 Motivating examples

In the following two sections I present two examples that illustrate some limitations inherent in
ITT and, by extension, Agda.

1.1.1 Functional extensionality

Consider the functions:

zeroLeft ≜ 𝜆 (𝑛 ∶ N) → (0 + 𝑛 ∶ N)
zeroRight ≜ 𝜆 (𝑛 ∶ N) → (𝑛 + 0 ∶ N)

The term 𝑛 + 0 is definitionally equal to 𝑛, which we write as 𝑛 + 0 = 𝑛. This is also called
judgmental equality. We call it definitional equality because the equality arises from the definition
of +, which is:

+ ∶ N → N → N

𝑛 + 0 ≜ 𝑛
𝑛 + (suc 𝑚) ≜ suc (𝑛 + 𝑚)

Note that 0 + 𝑛 is not definitionally equal to 𝑛. This is because 0 + 𝑛 is in normal form. I.e.
there is no rule for + whose left hand side matches this expression. We do, however, have that
they are propositionally equal, which we write as 𝑛 ≡ 𝑛 + 0. Propositional equality means that
there is a proof that exhibits this relation. We can do induction over 𝑛 to prove this:

zrn ∶ ∀𝑛 → 𝑛 ≡ zeroRight 𝑛
zrn zero ≜ refl

zrn (suc 𝑛) ≜ cong suc (zrn 𝑛)
(1.1.1)

This show that zero is a right neutral element (hence the name zrn). Since equality is a transitive
relation we have that ∀𝑛 → zeroLeft 𝑛 ≡ zeroRight 𝑛. Unfortunately we don’t have zeroLeft ≡
zeroRight. There is no way to construct a proof asserting the obvious equivalence of zeroLeft and
zeroRight. Actually showing this is outside the scope of this text. It would essentially involve
giving a model for our type theory that validates all our axioms but where zeroLeft ≡ zeroRight
is not true. We cannot show that they are equal even though we can prove them equal for all
points. This is exactly the notion of equality that we are interested in for functions: Functions
are considered equal when they are equal for all inputs. This is called pointwise equality where
points of a function refer to its arguments.
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1.1.2 Equality of isomorphic types

Let ⊤ denote the unit type – a type with a single constructor. In the propositions as types
interpretation of type theory ⊤ is the proposition that is always true. The type 𝐴 × ⊤ and 𝐴
has an element for each 𝑎 ∶ 𝐴. So in a sense they have the same shape (Greek; isomorphic). The
second element of the pair does not add any “interesting information”. It can be useful to identify
such types. In fact it is quite commonplace in mathematics. Say we look at a set {𝑥 ∣ 𝜙 𝑥 ∧ 𝜓 𝑥}
and somehow conclude that 𝜓 𝑥 ≡ ⊤ for all 𝑥. A mathematician would immediately conclude
{𝑥 ∣ 𝜙 𝑥 ∧ 𝜓 𝑥} ≡ {𝑥 ∣ 𝜙 𝑥} without thinking twice. Unfortunately such an identification can not
be performed in ITT.

More specifically what we are interested in is a way of identifying equivalent types. I will return
to the definition of equivalence later in section §3.2, but for now it is sufficient to think of
an equivalence as a one-to-one correspondence. We write 𝐴 ≃ 𝐵 to assert that 𝐴 and 𝐵 are
equivalent types. The principle of univalence says that:

univalence ∶ (𝐴 ≃ 𝐵) ≃ (𝐴 ≡ 𝐵)

In particular this allows us to construct an equality from an equivalence

ua ∶ (𝐴 ≃ 𝐵) → (𝐴 ≡ 𝐵)

and vice versa.

1.2 Formalizing Category Theory

The above examples serve to illustrate a limitation of ITT. One case where these limitations are
particularly prohibitive is in the study of Category Theory. At a glance category theory can be
described as “the mathematical study of (abstract) algebras of functions” ([1]). By that token
functional extensionality is particularly useful for formulating Category Theory. In Category
theory it is also commonplace to identify isomorphic structures. Univalence gives us a way to
make this notion precise. In fact we can formulate this requirement within our formulation of
categories by requiring the categories themselves to be univalent as we shall see in section §3.3.

1.3 Context

The idea of formalizing Category Theory in proof assistants is not new. There are a multitude
of these available online. Notably:

• A formalization in Agda using the setoid approach: https://github.com/copumpkin/
categories

• A formalization in Agda with univalence and functional extensionality as postulates: https:
//github.com/pcapriotti/agda-categories

• A formalization in Coq in the homotopic setting: https://github.com/HoTT/HoTT/
tree/master/theories/Categories
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• A formalization in CubicalTT – a language designed for cubical type theory. Formalizes
many different things, but only a few concepts from category theory: https://github.
com/mortberg/cubicaltt

The contribution of this thesis is to explore how working in a cubical setting will make it possible
to prove more things, to reuse proofs and to compare some aspects of this formalization with the
existing ones.

There are alternative approaches to working in a cubical setting where one can still have univa-
lence and functional extensionality. One option is to postulate these as axioms. This approach,
however, has other shortcomings, e.g. you lose canonicity ([4, p. 3]).

Another approach is to use the setoid interpretation of type theory ([3, 4]). With this approach
one works with extensional sets (𝑋, ∼). That is a type 𝑋 ∶ 𝒰 and an equivalence relation
∼ ∶ 𝑋 → 𝑋 → 𝒰 on that type. Under the setoid interpretation the equivalence relation serve
as a sort of “local” propositional equality. Since the developer gets to pick this relation, it is
not a priori a congruence relation. It must be manually verified by the developer. Furthermore,
functions between different setoids must be shown to be setoid homomorphism, that is; they
preserve the relation.

This approach has other drawbacks: It does not satisfy all propositional equalities of type theory
a priori. That is, the developer must manually show that e.g. the relation is a congruence.
Equational proofs 𝑎 ∼𝑋 𝑏 are in some sense ‘local’ to the extensional set (𝑋, ∼). To e.g. prove
that 𝑥 ∼ 𝑦 → 𝑓 𝑥 ∼ 𝑓 𝑦 for some function 𝑓 ∶ 𝐴 → 𝐵 between two extensional sets 𝐴 and 𝐵 it
must be shown that 𝑓 is a groupoid homomorphism. This makes it very cumbersome to work
with in practice ([4, p. 4]).

1.4 Conventions

In the remainder of this thesis I will use the term Type to describe – well – types; thereby
departing from the notation in Agda where the keyword Set refers to types. Set, on the other
hand, shall refer to the homotopical notion of a set. I will also leave all universe levels implicit.
This of course does not mean that a statement such as 𝒰 ∶ 𝒰 means that we have type-in-type
but rather that the arguments to the universes are implicit.

I use the term arrow to refer to morphisms in a category, whereas the terms morphism, map or
function shall be reserved for talking about type theoretic functions; i.e. functions in Agda.

As already noted ≜ will be used for introducing definitions = will be used to for judgmental
equality and ≡ will be used for propositional equality.
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All this is summarized in the following table:

Name Agda Notation
Type Set 𝒰
Set Σ Set IsSet Set

Function, morphism, map A → B 𝐴 → 𝐵
Dependent- ditto (a : A) → B ∏𝑎∶𝐴 𝐵

Arrow Arrow A B Arrow 𝐴 𝐵
Object C.Object ℂ.𝑂𝑏𝑗𝑒𝑐𝑡

Definition = ≜
Judgmental equality =

Propositional equality ≡

5



Chapter 2

Cubical Agda

2.1 Propositional equality

Judgmental equality in Agda is a feature of the type system. It is something that can be checked
automatically by the type checker: In the example from the introduction 𝑛 + 0 can be judged to
be equal to 𝑛 simply by expanding the definition of +.

On the other hand, propositional equality is something defined within the language itself. Propo-
sitional equality cannot be derived automatically. The normal definition of propositional equality
is an inductive data type. Cubical Agda discards this type in favor of some new primitives.

Most of the source code related with this section is implemented in [7] it can be browsed in
hyperlinked and syntax highlighted HTML online. The links can be found in the beginning of
section §3.

2.1.1 The equality type

The usual notion of judgmental equality says that given a type 𝐴 ∶ 𝒰 and two points hereof
𝑎0, 𝑎1 ∶ 𝐴 we can form the type:

𝑎0 ≡ 𝑎1 ∶ 𝒰 (2.1.1)

In Agda this is defined as an inductive data type with the single constructor refl that for any
𝑎 ∶ 𝐴 gives:

refl ∶ 𝑎 ≡ 𝑎 (2.1.2)

There also exist a related notion of heterogeneous equality which allows for equating points of
different types. In this case given two types 𝐴, 𝐵 ∶ 𝒰 and two points 𝑎 ∶ 𝐴, 𝑏 ∶ 𝐵 we can construct
the type:

𝑎 ≅ 𝑏 ∶ 𝒰 (2.1.3)

This likewise has the single constructor refl that for any 𝑎 ∶ 𝐴 gives:

refl ∶ 𝑎 ≅ 𝑎 (2.1.4)

6



In Cubical Agda these two notions are paralleled with homogeneous- and heterogeneous paths
respectively.

2.1.2 The path type

Judgmental equality in Cubical Agda is encapsulated with the type:

Path ∶ (𝑃 ∶ I → 𝒰) → 𝑃 0 → 𝑃 1 → 𝒰 (2.1.5)

The special type I is called the index set. The index set can be thought of simply as the interval
on the real numbers from 0 to 1 (both inclusive). The family 𝑃 over I will be referred to as the
path space given some path 𝑝 ∶ Path 𝑃 𝑎 𝑏. By that token 𝑃 0 corresponds to the type at the left
endpoint of 𝑝. Likewise 𝑃 1 is the type at the right endpoint. The type is called Path because
the idea has roots in homotopy theory. The intuition is that Path describes paths in 𝒰. I.e.
paths between types. For a path 𝑝 the expression 𝑝 𝑖 can be thought of as a point on this path.
The index 𝑖 describes how far along the path one has moved. An inhabitant of Path 𝑃 𝑎0 𝑎1 is
a (dependent) function from the index set to the path space:

𝑝 ∶ ∏
𝑖∶I

𝑃 𝑖

This function must satisfy being judgmentally equal to 𝑎0 at the left endpoint and equal to 𝑎1
at the other end. I.e.:

𝑝 0 = 𝑎0
𝑝 1 = 𝑎1

The notion of homogeneous equalities is recovered when 𝑃 does not depend on its argument.
That is for 𝐴 ∶ 𝒰 and 𝑎0, 𝑎1 ∶ 𝐴 the homogenous equality between 𝑎0 and 𝑎1 is the type:

𝑎0 ≡ 𝑎1 ≜ Path (𝜆 𝑖 → 𝐴) 𝑎0 𝑎1

I will generally prefer to use the notation 𝑎 ≡ 𝑏 when talking about non-dependent paths and
use the notation Path (𝜆 𝑖 → 𝑃 𝑖) 𝑎 𝑏 when the path space is of particular interest.

With this definition we can recover reflexivity. That is, for any 𝐴 ∶ 𝒰 and 𝑎 ∶ 𝐴:

refl ∶ 𝑎 ≡ 𝑎
refl ≜ 𝜆 𝑖 → 𝑎 (2.1.6)

Here the path space is 𝑃 ≜ 𝜆 𝑖 → 𝐴 and it satsifies 𝑃 𝑖 = 𝐴 definitionally. So to inhabit it, is
to give a path I → 𝐴 that is judgmentally 𝑎 at either endpoint. This is satisfied by the constant
path; i.e. the path that is constantly 𝑎 at any index 𝑖 ∶ I.

It is also surprisingly easy to show functional extensionality. Functional extensionality is the
proposition that given a type 𝐴 ∶ 𝒰, a family of types 𝐵 ∶ 𝐴 → 𝒰 and functions 𝑓, 𝑔 ∶ ∏𝑎∶𝐴 𝐵 𝑎
gives:

funExt ∶ (∏
𝑎∶𝐴

𝑓 𝑎 ≡ 𝑔 𝑎) → 𝑓 ≡ 𝑔 (2.1.7)

So given 𝜂 ∶ ∏𝑎∶𝐴 𝑓 𝑎 ≡ 𝑔 𝑎 we must give a path 𝑓 ≡ 𝑔. That is a function I → ∏𝑎∶𝐴 𝐵 𝑎. So let
𝑖 ∶ I be given. We must now give an expression 𝜙 ∶ ∏𝑎∶𝐴 𝐵 𝑎 satisfying 𝜙 0 ≡ 𝑓 𝑎 and 𝜙 1 ≡ 𝑔 𝑎.
This neccesitates that the expression must be a lambda abstraction, so let 𝑎 ∶ 𝐴 be given. We
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can now apply 𝑎 to 𝜂 and get the path 𝜂 𝑎 ∶ 𝑓 𝑎 ≡ 𝑔 𝑎. This exactly satisfies the conditions for
𝜙. In conclusion 2.1.7 is inhabited by the term:

funExt 𝜂 ≜ 𝜆 𝑖 𝑎 → 𝜂 𝑎 𝑖
With funExt in place we can now construct a path between zeroLeft and zeroRight – the functions
defined in the introduction §1.1.1:

𝑝 ∶ zeroLeft ≡ zeroRight
𝑝 ≜ funExt zrn

Here zrn is the proof from 1.1.1.

2.2 Homotopy levels

In ITT all equality proofs are identical (in a closed context). This means that, in some sense,
any two inhabitants of 𝑎 ≡ 𝑏 are “equally good”. They do not have any interesting structure.
This is referred to as Uniqueness of Identity Proofs (UIP). Unfortunately it is not possible to
have a type theory with both univalence and UIP. Instead in cubical Agda we have a hierarchy
of types with an increasing amount of homotopic structure. At the bottom of this hierarchy is
the set of contractible types:

isContr ∶ 𝒰 → 𝒰
isContr 𝐴 ≜ ∑

𝑐∶𝐴
∏
𝑎∶𝐴

𝑎 ≡ 𝑐 (2.2.1)

The first component of isContr 𝐴 is called “the center of contraction”. Under the propositions-
as-types interpretation of type theory isContr 𝐴 can be thought of as “the true proposition 𝐴”.
And indeed ⊤ is contractible:

(tt, 𝜆 𝑥 → refl) ∶ isContr ⊤
It is a theorem that if a type is contractible, then it is isomorphic to the unit-type.

The next step in the hierarchy is the set of mere propositions:

isProp ∶ 𝒰 → 𝒰
isProp 𝐴 ≜ ∏

𝑎0,𝑎1∶𝐴
𝑎0 ≡ 𝑎1

(2.2.2)

One can think of isProp 𝐴 as the set of true and false propositions. And indeed both ⊤ and ⊥
are propositions:

(𝜆 tt, tt → 𝑟𝑒𝑓𝑙) ∶ isProp ⊤
𝜆 ∅ ∅ ∶ isProp ⊥

The term ∅ is used here to denote an impossible pattern. It is a theorem that if a mere proposition
𝐴 is inhabited, then so is it contractible. If it is not inhabited it is equivalent to the empty-type
(or false proposition).

I will refer to a type 𝐴 ∶ 𝒰 as a mere proposition if I want to stress that we have isProp 𝐴.

The next step in the hierarchy is the set of homotopical sets:

isSet ∶ 𝒰 → 𝒰
isSet 𝐴 ≜ ∏

𝑎0,𝑎1∶𝐴
isProp (𝑎0 ≡ 𝑎1) (2.2.3)
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I will not give an example of a set at this point. It turns out that proving e.g. isProp N directly
is not so straightforward (see [5, §3.1.4]). Hedberg’s theorem states that any type with decidable
equality is a set. There will be examples of sets later in this report. At this point it should be
noted that the term “set” is somewhat conflated; there is the notion of sets from set theory. In
Agda types are denoted Set. I will use it consistently to refer to a type 𝐴 as a set exactly if
isSet 𝐴 is a proposition.

As the reader may have guessed the next step in the hierarchy is the type:

isGroupoid ∶ 𝒰 → 𝒰
isGroupoid 𝐴 ≜ ∏

𝑎0,𝑎1∶𝐴
isSet (𝑎0 ≡ 𝑎1) (2.2.4)

So it continues. In fact we can generalize this family of types by indexing them with a natural
number. For historical reasons, though, the bottom of the hierarchy, the contractible types, is
said to be a -2-type, propositions are -1-types, (homotopical) sets are 0-types and so on…

Just as with paths, homotopical sets are not at the center of focus for this thesis. But I mention
here some properties that will be relevant for this exposition:

Proposition: Homotopy levels are cumulative. That is, if 𝐴 ∶ 𝒰 has homotopy level 𝑛 then so
does it have 𝑛 + 1.

For any level 𝑛 it is the case that to be of level 𝑛 is a mere proposition.

2.3 A few lemmas

Rather than getting into the nitty-gritty details of Agda I venture to take a more “combinator-
based” approach. That is I will use theorems about paths that have already been formalized.
Specifically the results come from the Agda library cubical ([7]). I have used a handful of
results from this library as well as contributed a few lemmas myself1.

These theorems are all purely related to homotopy type theory and as such not specific to the
formalization of Category Theory. I will present a few of these theorems here as they will be
used throughout chapter 3. They should also give the reader some intuition about the path type.

2.3.1 Path induction

The induction principle for paths intuitively gives us a way to reason about a type family indexed
by a path by only considering if said path is refl (the base case). For based path induction, that
equality is based at some element 𝑎 ∶ 𝐴.

1The module Cat.Prelude lists the upstream dependencies. My contribution to cubical can as well be
found in the git logs which are available at https://github.com/Saizan/cubical-demo .
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Let a type 𝐴 ∶ 𝒰 and an element of the type 𝑎 ∶ 𝐴 be given. 𝑎 is said to be the base of the induction.
Given a family of types:

𝐷 ∶ ∏
𝑏∶𝐴

∏
𝑝∶𝑎≡𝑏

𝒰

and an inhabitant of 𝐷 at refl:
𝑑 ∶ 𝐷 𝑎 refl

We have the function:
pathJ 𝐷 𝑑 ∶ ∏

𝑏∶𝐴
∏

𝑝∶𝑎≡𝑏
𝐷 𝑏 𝑝 (2.3.1)

A simple application of pathJ is for proving that sym is an involution. Namely for any set 𝐴 ∶ 𝒰,
points 𝑎, 𝑏 ∶ 𝐴 and a path between them 𝑝 ∶ 𝑎 ≡ 𝑏:

sym (sym 𝑝) ≡ 𝑝 (2.3.2)

The proof will be by induction on 𝑝 and will be based at 𝑎. That is 𝐷 will be the family:

𝐷 ∶ ∏
𝑏′∶𝐴

∏
𝑝∶𝑎≡𝑏′

𝒰

𝐷 𝑏′ 𝑝′ ≜ sym (sym 𝑝′) ≡ 𝑝′

The base case will then be:

𝑑 ∶ sym (sym refl) ≡ refl
𝑑 ≜ refl

The reason refl proves this is that sym refl = refl holds definitionally. In summary 2.3.2 is
inhabited by the term:

pathJ 𝐷 𝑑 𝑏 𝑝 ∶ sym (sym 𝑝) ≡ 𝑝

Another application of pathJ is for proving associativity of trans. That is, given a type 𝐴 ∶ 𝒰,
elements of 𝐴, 𝑎, 𝑏, 𝑐, 𝑑 ∶ 𝐴 and paths between them 𝑝 ∶ 𝑎 ≡ 𝑏, 𝑞 ∶ 𝑏 ≡ 𝑐 and 𝑟 ∶ 𝑐 ≡ 𝑑 we have the
following:

trans 𝑝 (trans 𝑞 𝑟) ≡ trans (trans 𝑝 𝑞) 𝑟 (2.3.3)

In this case the induction will be based at 𝑐 (the left-endpoint of 𝑟) and over the family:

𝑇 ∶ ∏
𝑑′∶𝐴

∏
𝑟′∶𝑐≡𝑑′

𝒰

𝑇 𝑑′ 𝑟′ ≜ trans 𝑝 (trans 𝑞 𝑟′) ≡ trans (trans 𝑝 𝑞) 𝑟′

The base case is proven with 𝑡 which is defined as:

trans 𝑝 (trans 𝑞 refl) ≡ trans 𝑝 𝑞
≡ trans (trans 𝑝 𝑞) refl

Here we have used the proposition trans 𝑝 refl ≡ 𝑝 without proof. In conclusion 2.3.3 is inhabited
by the term:

pathJ 𝑇 𝑡 𝑑 𝑟

We shall see another application of path induction in 3.3.5.
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2.3.2 Paths over propositions

Another very useful combinator is lemPropF: Given a type 𝐴 ∶ 𝒰 and a type family on 𝐴;
𝐷 ∶ 𝐴 → 𝒰. Let propD ∶ ∏𝑥∶𝐴 isProp (𝐷 𝑥) be the proof that 𝐷 is a mere proposition for all
elements of 𝐴. Furthermore say we have a path between some two elements in 𝐴; 𝑝 ∶ 𝑎0 ≡ 𝑎1
then we can built a heterogeneous path between any two elements of 𝑑0 ∶ 𝐷 𝑎0 and 𝑑1 ∶ 𝐷 𝑎1.

lemPropF propD 𝑝 ∶ Path (𝜆 𝑖 → 𝐷 (𝑝 𝑖)) 𝑑0 𝑑1

Note that 𝑑0 and 𝑑1, though points of the same family, have different types. This is quite a
mouthful, so let me try to show how this is a very general and useful result.

Often when proving equalities between elements of some dependent types lemPropF can be
used to boil this complexity down to showing that the dependent parts of the type are mere
propositions. For instance say we have a type:

𝑇 ≜ ∑
𝑎∶𝐴

𝐷 𝑎

for some proposition 𝐷 ∶ 𝐴 → 𝒰. That is we have propD ∶ ∏𝑎∶𝐴 isProp (𝐷 𝑎). If we want to
prove 𝑡0 ≡ 𝑡1 for two elements 𝑡0, 𝑡1 ∶ 𝑇 then this will be a pair of paths:

𝑝 ∶fst 𝑡0 ≡ fst 𝑡1
Path (𝜆 𝑖 → 𝐷 (𝑝 𝑖)) (snd 𝑡0) (snd 𝑡1)

Here lemPropF directly allow us to prove the latter of these given that we have already provided
𝑝.

lemPropF propD 𝑝 ∶ Path (𝜆 𝑖 → 𝐷 (𝑝 𝑖)) (snd 𝑡0) (snd 𝑡1)

2.3.3 Functions over propositions

∏-types preserve propositionality when the co-domain is always a proposition.

propPi ∶ (∏
𝑎∶𝐴

isProp (𝑃 𝑎)) → isProp (∏
𝑎∶𝐴

𝑃 𝑎)

2.3.4 Pairs over propositions

∑-types preserve propositionality whenever its first component is a proposition and its second
component is a proposition for all points of the left type.

propSig ∶ isProp 𝐴 → (∏
𝑎∶𝐴

isProp (𝑃 𝑎)) → isProp (∑
𝑎∶𝐴

𝑃 𝑎)
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Chapter 3

Category Theory

The source code for this formalization, including this report, is available as open source software
at:

https://github.com/fredefox/cat/

All modules imported for this formalization can be browsed at this link1:

http://web.student.chalmers.se/~hanghj/cat/doc/html/

The concepts formalized in this development are:

Name Module
Equivalences Cat.Equivalence
Categories Cat.Category
Functors Cat.Category.Functor
Products Cat.Category.Product
Exponentials Cat.Category.Exponential
Cartesian closed categories Cat.Category.CartesianClosed
Natural transformations Cat.Category.NaturalTransformation
Yoneda embedding Cat.Category.Yoneda
Monads Cat.Category.Monad
Kleisli Monads Cat.Category.Monad.Kleisli
Monoidal Monads Cat.Category.Monad.Monoidal
Voevodsky’s construction Cat.Category.Monad.Voevodsky
Opposite category Cat.Categories.Opposite
Category of sets Cat.Categories.Sets
Span category Cat.Categories.Span

1In case the linked sources are unavailable the html documentation can be generated by navigating to the root
directory of the project and executing make html.

12

https://github.com/fredefox/cat/
http://web.student.chalmers.se/~hanghj/cat/doc/html/
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Equivalence.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Category.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Category.Functor.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Category.Product.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Category.Exponential.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Category.CartesianClosed.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Category.NaturalTransformation.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Category.Yoneda.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Category.Monad.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Category.Monad.Kleisli.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Category.Monad.Monoidal.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Category.Monad.Voevodsky.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Categories.Opposite.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Categories.Sets.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Categories.Span.html


Furthermore the following items have been partly formalized:

Name Module
Category of categories Cat.Categories.Cat
Category of relations Cat.Categories.Rel
Category of functors Cat.Categories.Fun
Free category Cat.Categories.Free
Monoids Cat.Category.Monoid

I also provide a various results about these. E.g. I have shown that the category of sets has
products. In the following I aim to demonstrate some of the techniques employed in this for-
malization. In the interest of brevity I will not detail all the things I have formalized. Instead
I have selected parts of this formalization that highlight some interesting proof techniques rel-
evant to doing proofs in Cubical Agda. This chapter will focus on the definition of categories,
equivalences, the opposite category, the category of sets, products, the span category and the two
formulations of monads.

One technique employed throughout this formalization is the idea of distinguishing types with
more or less homotopical structure. To do this I have followed the following design-principle: I
have split concepts up into things that represent data and laws about this data. The idea is that
we can provide a proof that the laws are mere propositions. As an example a category is defined
to have two members: raw which is a collection of the data and isCategory which asserts some
laws about that data.

This allows me to reason about things in a more “standard mathematical way”, where one can
reason about two categories by simply focusing on the data. This is achieved by creating a
function embodying the equality principle for a given type.

For the rest of this chapter I will present some of these results. For didactic reasons no source-
code has been included in this chapter. To see the formal definitions the reader is referred to the
implementation which is linked in the tables above.

3.1 Categories

The data for a category consist of a type for the sort of objects, a type for the sort of arrows, an
identity arrow and a composition operation for arrows. Another record encapsulates some laws
about this data: associativity of composition, identity law for the identity morphism. These are
standard constituents of a category and can be found in typical mathematical expositions on the
topic. We shall impose one further requirement on what it means to be a category, namely that
the type of arrows form a set.

Categories whose type of arrows form a set are called 1-categories. It is possible to relax this
requirement. This would lead to the notion of higher categories ([5, p. 307]). However this thesis
will restrict itself to 1-categories. Generalizing this work to higher categories would be a very
natural extension of this work.

Raw categories satisfying all of the above requirements are called a pre-categories. As a further
requirement to be a proper category we require the arrows to be univalent. Before we can define
this, I must introduce two additional definitions: If we let 𝑝 be a witness to the identity law,
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which formally is:

IsIdentity ≜ ∏
𝐴,𝐵∶Object

∏
𝑓∶Arrow 𝐴 𝐵

(id ⋘ 𝑓 ≡ 𝑓) × (𝑓 ⋘ id ≡ 𝑓) (3.1.1)

Then we can construct the identity isomorphism idIso ∶ (identity, identity, 𝑝) ∶ 𝐴 ≊ 𝐴 for any
object 𝐴. Here ≊ denotes isomorphism on objects (whereas ≅ denotes isomorphism on types).
This will be elaborated further on in sections §3.2 and §3.3. Moreover due to substitution for
paths we can construct an isomorphism from any path:

idToIso ∶ 𝐴 ≡ 𝐵 → 𝐴 ≊ 𝐵 (3.1.2)

The univalence criterion for categories states that idToIso must be an equivalence. The re-
quirement is similar to univalence for types, but where isomorphism on objects play the role of
equivalence on types. Formally:

isEquiv (𝐴 ≡ 𝐵) (𝐴 ≊ 𝐵) idToIso (3.1.3)

Note that 3.1.3 is not the same as:

(𝐴 ≡ 𝐵) ≃ (𝐴 ≊ 𝐵) (3.1.4)

However the two are logically equivalent: one can construct the latter from the former simply by
“forgetting” that idToIso plays the role of the equivalence. The other direction is more involved
and will be discussed in section §3.3.

In summary the definition of a category is the following collection of data:

Object ∶ 𝒰 (3.1.5)
Arrow ∶ Object → Object → 𝒰 (3.1.6)

identity ∶ Arrow 𝐴 𝐴 (3.1.7)
⋘ ∶ Arrow 𝐵 𝐶 → Arrow 𝐴 𝐵 → Arrow 𝐴 𝐶 (3.1.8)

and laws:

ℎ ⋘ (𝑔 ⋘ 𝑓) ≡ (ℎ ⋘ 𝑔) ⋘ 𝑓 (3.1.9)
(identity ⋘ 𝑓 ≡ 𝑓) × (𝑓 ⋘ identity ≡ 𝑓) (3.1.10)

isSet (Arrow 𝐴 𝐵) (3.1.11)
isEquiv (𝐴 ≡ 𝐵) (𝐴 ≊ 𝐵) idToIso (3.1.3)

The function ⋘ denotes arrow composition (right-to-left) and reverse function composition (left-
to-right, diagrammatic order) is denoted ⋙. The objects (𝐴, 𝐵 and 𝐶) and arrows (𝑓 , 𝑔, ℎ) are
implicitly universally quantified.

With all this in place it is now possible to prove that all the laws are indeed mere propositions.
Most of the proofs simply use the fact that the type of arrows are sets. This is because most of
the laws are a collection of equations between arrows in the category. And since such a proof
does not have any content, exactly because the type of arrows form a set, two witnesses must be
the same. All the proofs are really quite mechanical. Let us have a look at one of them: Proving
that 3.1.1 is a mere proposition:

isProp IsIdentity (3.1.12)
There are multiple ways to do this. Perhaps one of the more intuitive proofs is by way of the
‘combinators’ propPi and propSig presented in sections §2.3.3 and §2.3.4:

propPi ∶ (∏
𝑎∶𝐴

isProp (𝑃 𝑎)) → isProp (∏
𝑎∶𝐴

𝑃 𝑎)

propSig ∶ isProp 𝐴 → (∏
𝑎∶𝐴

isProp (𝑃 𝑎)) → isProp (∑
𝑎∶𝐴

𝑃 𝑎)
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The proof goes like this: We ‘eliminate’ the 3 function abstractions by applying propPi three
times. So our proof obligation becomes:

isProp ((id ∘ 𝑓 ≡ 𝑓) × (𝑓 ∘ id ≡ 𝑓))

We then eliminate the (non-dependent) sigma-type by applying propSig giving us the two obli-
gations isProp (id ∘ 𝑓 ≡ 𝑓) and isProp (𝑓 ∘ id ≡ 𝑓) which follows from the type of arrows being
a set.

This example illustrates nicely how we can use these combinators to reason about ‘canonical’
types like ∑ and ∏. Similar combinators can be defined at the other homotopic levels. These
combinators are however not applicable in situations where we want to reason about other types
e.g. types we have defined ourselves. For instance, after we have proven that all the projections
of pre-categories are propositions, we would like to bundle this up to show that the type of
pre-categories is also a proposition. Formally:

isProp IsPreCategory (3.1.13)

Where the definition of IsPreCategory is the triple:

isAssociative ∶ IsAssociative
isIdentity ∶ IsIdentity

arrowsAreSets ∶ ArrowsAreSets

Each corresponding to the first three laws for categories. Note that since IsPreCategory is not
formulated with a chain of sigma-types we will not have any combinators available to help us
here. Instead the path type must be used directly.

The type 3.1.13 is judgmentally the same as:

∏
𝑎,𝑏∶IsPreCategory

𝑎 ≡ 𝑏

To prove the proposition let 𝑎, 𝑏 ∶ IsPreCategory be given. To prove the equality 𝑎 ≡ 𝑏 is to give
a continuous path from the index-type into the path space; i.e. a function I → IsPreCategory.
This path must satisfy being being judgmentally the same as 𝑎 at the left endpoint and 𝑏 at
the right endpoint. We know we can form a continuous path between all projections of 𝑎 and 𝑏.
This follows from the type of all the projections being mere propositions. For instance, the path
between 𝑎.isIdentity and 𝑏.isIdentity is simply formed by:

propIsIdentity 𝑎.isIdentity 𝑏.isIdentity ∶ 𝑎.isIdentity ≡ 𝑏.isIdentity

To give the continuous function I → IsPreCategory, which is our goal, we introduce 𝑖 ∶ I and
proceed by constructing an element of IsPreCategory by using the fact that all the projections
are propositions to generate paths between all projections. Once we have such a path e.g.
𝑝 ∶ 𝑎.isIdentity ≡ 𝑏.isIdentity we can eliminate it with 𝑖 and thus obtain 𝑝 𝑖 ∶ (𝑝 𝑖).isIdentity.
This element satisfies exactly that it corresponds to the corresponding projections at either
endpoint. Thus the element we construct at 𝑖 becomes the triple:

propIsAssociative 𝑎.isAssociative 𝑏.isAssociative 𝑖
propIsIdentity 𝑎.isIdentity 𝑏.isIdentity 𝑖
propArrowsAreSets 𝑎.arrowsAreSets 𝑏.arrowsAreSets 𝑖

(3.1.14)

I have found this to be a general pattern when proving things in homotopy type theory, namely
that you have to wrap and unwrap equalities at different levels. It is worth noting that proving
this theorem with the regular inductive equality type would already not be possible since we
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at least need functional extensionality (the projections are all ∏-types). Assuming we had
functional extensionality available to us as an axiom, we would use functional extensionality to
retrieve the equalities in 𝑎 and 𝑏; pattern match on them to see that they are both refl and then
close the proof with refl. Of course this theorem is not so interesting in the setting of ITT since
we know a priori that equality proofs are unique.

The situation is a bit more complicated when we have a dependent type. For instance when we
want to show that IsCategory is a mere proposition. The type IsCategory is a record with two
fields: a witness of being a pre-category and the univalence condition. Recall that the univalence
condition is indexed by the identity-proof. To follow the same recipe as above, let 𝑎, 𝑏 ∶ IsCategory
be given, to show them equal, we now need to give two paths. One homogeneous:

𝑝 ∶ 𝑎.isPreCategory ≡ 𝑏.isPreCategory

and one heterogeneous:

Path (𝜆 𝑖 → (𝑝 𝑖).𝑈𝑛𝑖𝑣𝑎𝑙𝑒𝑛𝑡) 𝑎.isPreCategory 𝑏.isPreCategory

This path depends on the choice of 𝑝. The first of these we can provide since, as we have shown,
IsPreCategory is a proposition. However, even though Univalent is also a proposition, we cannot
use this directly to show the latter. This is because isProp talks about non-dependent paths.
So we need to ’promote’ the result that univalence is a proposition to a heterogeneous path. To
this end we can use lemPropF, which was introduced in §2.3.2.

Looking at the definition of lemPropF we have that 𝐴 = IsIdentity identity and 𝐷 = Univalent
to give the path at hand. We have shown that being a category is a proposition, a result that
holds for any choice of identity proof so it will also hold for the witness obtained at an arbitrary
point along 𝑝. Finally we must provide a proof that the identity proofs at 𝑎 and 𝑏 are indeed
the same, this we can extract from 𝑝 by applying congruence of paths:

cong isIdentity 𝑝

In summary the heterogeneous path is inhabited by:

lemPropF propUnivalent (cong 𝑝.isIdentity)

This finishes the proof that being-a-category is a mere proposition (3.1.13).

When we have a proper category, we can make precise the notion of “identifying isomorphic
types”. That is, we can construct the function:

isoToId ∶ (𝐴 ≊ 𝐵) → (𝐴 ≡ 𝐵)

A perhaps somewhat surprising application of this is that we can show that terminal objects are
propositional:

isProp Terminal (3.1.15)

It follows from the usual observation that any two terminal objects are isomorphic - and since
categories are univalent, so are they equal. The proof is omitted here, but the curious reader can
check the implementation for the details. It is in the module:

Cat.Category
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3.2 Equivalences

The usual notion of a function 𝑓 ∶ 𝐴 → 𝐵 having an inverses is:

∑
𝑔∶𝐵→𝐴

(𝑓 ∘ 𝑔 ≡ identity) × (𝑔 ∘ 𝑓 ≡ identity) (3.2.1)

This is defined in [5, p. 129] where it is referred to as the a “quasi-inverse”. We shall refer to the
type 3.2.1 as Isomorphism 𝑓 . This also gives rise to the following type:

𝐴 ≅ 𝐵 ≜ ∑
𝑓∶𝐴→𝐵

Isomorphism 𝑓 (3.2.2)

At the same place [5] gives an “interface” for what the judgment isEquiv ∶ (𝐴 → 𝐵) → 𝒰 must
provide:

fromIso ∶ Isomorphism 𝑓 → isEquiv 𝑓 (3.2.3)
toIso ∶ isEquiv 𝑓 → Isomorphism 𝑓 (3.2.4)

isEquiv 𝑓 (3.2.5)

The maps fromIso and toIso naturally extend to these maps:

fromIsomorphism ∶ 𝐴 ≅ 𝐵 → 𝐴 ≃ 𝐵 (3.2.6)
toIsomorphism ∶ 𝐴 ≃ 𝐵 → 𝐴 ≅ 𝐵 (3.2.7)

Having this interface gives us both a way to think rather abstractly about how to work with
equivalences and a way to use ad hoc definitions of equivalences. The specific instantiation of
isEquiv as defined in [6] is:

𝑖𝑠𝐸𝑞𝑢𝑖𝑣 𝑓 ≜ ∏
𝑏∶𝐵

isContr (fiber 𝑓 𝑏)

where
fiber 𝑓 𝑏 ≜ ∑

𝑎∶𝐴
(𝑏 ≡ 𝑓 𝑎)

I give its definition here mainly for completeness, because as I stated we can move away from this
specific instantiation and think about it more abstractly once we have shown that this definition
actually works as an equivalence.

The implementation of fromIso can be found in [6] where it is known as gradLemma. The
implementation of fromIso as well as the proof that this equivalence is a proposition (3.2.5) can
be found in my implementation.

We say that two types 𝐴 𝐵 ∶ 𝒰 are equivalent exactly if there exists an equivalence between
them:

𝐴 ≃ 𝐵 ≜ ∑
𝑓∶𝐴→𝐵

isEquiv 𝑓 (3.2.8)

Note that the term equivalence here is overloaded referring both to the map 𝑓 ∶ 𝐴 → 𝐵 and the
type 𝐴 ≃ 𝐵. The notion of an isomorphism is similarly conflated as isomorphism can refer to
the type 𝐴 ≅ 𝐵 as well as the the map 𝐴 → 𝐵 that witness this. I will use these conflated terms
when it is clear from the context what is being referred to.

Both ≅ and ≃ form equivalence relations (no pun intended).
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3.3 Univalence

As noted in the introduction the univalence for types 𝐴 𝐵 ∶ 𝒰 states that:

Univalence ≜ (𝐴 ≡ 𝐵) ≃ (𝐴 ≃ 𝐵)

As mentioned the univalence criterion for some category ℂ says that for all objects 𝐴 𝐵 we must
have:

isEquiv (𝐴 ≡ 𝐵) (𝐴 ≊ 𝐵) idToIso

This is logically equivalent to
(𝐴 ≡ 𝐵) ≃ (𝐴 ≊ 𝐵)

Given that we saw in the previous section that we can construct an equivalence from an isomor-
phism it suffices to demonstrate:

(𝐴 ≡ 𝐵) ≅ (𝐴 ≊ 𝐵)
That is, we must demonstrate that there is an isomorphism (on types) between equalities and
isomorphisms (on arrows). It is worthwhile to dwell on this for a few seconds. This type looks
very similar to univalence for types and is therefore perhaps a bit more intuitive to grasp the
implications of. Of course univalence for types (which is a theorem – i.e. provably holds) does
not imply univalence of all pre-category since morphisms in a category are not regular functions,
instead they can be thought of as a generalization hereof. The univalence criterion therefore is
simply a way of restricting arrows to behave like regular functions with respects to paths.

I will now mention a few helpful theorems that follow from univalence that will become useful
later.

Obviously univalence gives us an isomorphism between 𝐴 ≡ 𝐵 and 𝐴 ≊ 𝐵. I will name these for
convenience:

idToIso ∶ 𝐴 ≡ 𝐵 → 𝐴 ≊ 𝐵
isoToId ∶ 𝐴 ≊ 𝐵 → 𝐴 ≡ 𝐵

The next few theorems are variations on theorem 9.1.9 from [5]. Let an isomorphism 𝐴 ≊ 𝐵 in
some category ℂ be given. Name the isomorphism 𝜄 ∶ 𝐴 → 𝐵 and its inverse 𝜄−1 ∶ 𝐵 → 𝐴. Since
ℂ is a category (and therefore univalent) the isomorphism induces a path

𝑝 ≜ idToIso (𝜄, 𝜄−1, … ) ∶ 𝐴 ≡ 𝐵

From this equality we can get two further paths:

𝑝dom ∶ Arrow 𝐴 𝑋 ≡ Arrow 𝐵 𝑋
𝑝cod ∶ Arrow 𝑋 𝐴 ≡ Arrow 𝑋 𝐵

We then have the following two theorems:

coeDom ∶ ∏
𝑓∶𝐴→𝑋

coe 𝑝dom 𝑓 ≡ 𝑓 ⋘ 𝜄−1 (3.3.1)

coeCod ∶ ∏
𝑓∶𝐴→𝑋

coe 𝑝cod 𝑓 ≡ 𝜄 ⋘ 𝑓 (3.3.2)

I will give the proof of the first theorem here, the second one is analogous.

coe 𝑝dom 𝑓 ≡ 𝑓 ⋘ (idToIso 𝑝)2 lemma
≡ 𝑓 ⋘ 𝜄−1 idToIso and isoToId are inverses
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In the second step we use the fact that 𝑝 is constructed from the isomorphism 𝜄. The subscript
in term (idToIso 𝑝)2 is intended to denote the inverse map 𝐵 → 𝐴 from the isomorphism
idToIso 𝑝 ∶ 𝐴 ≅ 𝐵. The helper-lemma is similar to what we are trying to prove but talks about
paths rather than isomorphisms:

∏
𝑓∶Arrow 𝐴 𝐵

∏
𝑝∶𝐴≡𝐵

coe 𝑝dom 𝑓 ≡ 𝑓 ⋘ (idToIso 𝑝)2 (3.3.3)

Again 𝑝dom denotes the path Arrow 𝐴 𝑋 ≡ Arrow 𝐵 𝑋 induced by 𝑝. To prove this statement let
𝑓 and 𝑝 be given then we invoke based path induction. The induction will be based at 𝐴 ∶ Object.
Let 𝐵 ∶ Object and ̃𝑝 ∶ 𝐴 ≡ 𝐵 be given. The family that we perform induction over will be:

𝐷 𝐵 ̃𝑝 ≜ coe ̃𝑝dom 𝑓 ≡ 𝑓 ⋘ (idToIso ̃𝑝)2 (3.3.4)

The base-case therefore becomes 𝑑 ∶ coe refldom 𝑓 ≡ 𝑓 ⋘ (idToIso refl)2 and is inhabited by:

coe refldom 𝑓 ≡ 𝑓 refl is a neutral element for coe
≡ 𝑓 ⋘ identity
≡ 𝑓 ⋘ subst refl identity refl is a neutral element for subst
= 𝑓 ⋘ (idToIso refl)2 By definition of idToIso

To close the based-path-induction we must supply the value “at the other end”. In this case this
is simply 𝐵 ∶ Object and 𝑝 ∶ 𝐴 ≡ 𝐵 which we have. In summary the proof of 3.3.3 is the term:

pathJ 𝐷 𝑑 𝐵 𝑝 (3.3.5)

This finishes the proof of 3.3.3 and thus 3.3.1.

3.4 Categories

3.4.1 Opposite category

The first category I will present is a pure construction on categories. Given some category we
can construct its dual, called the opposite category. Starting with a simple example allows us
to focus on how we work with equivalences and univalence rather than being distracted by some
intricate structure of the category.

Let ℂ be some category, we then define the opposite category ℂOp. It has the same objects, but
the type of arrows are flipped, that is to say an arrow from 𝐴 to 𝐵 in the opposite category
corresponds to an arrow from 𝐵 to 𝐴 in the underlying category. The identity arrow is the same
as the one in the underlying category (they have the same type). Function composition will be
reverse function composition from the underlying category.

I will refer to things in terms of the underlying category unless they have a line above them. E.g.
idToIso is a function in the underlying category and the corresponding thing is denoted ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅idToIso
in the opposite category.

Showing that this forms a pre-category is rather straightforward.

ℎ ⋙ (𝑔 ⋙ 𝑓) ≡ ℎ ⋙ 𝑔 ⋙ 𝑓
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Since ⋙ is reverse function composition this is just the symmetric version of associativity.

identity ⋙ 𝑓 ≡ 𝑓 × 𝑓 ⋙ identity ≡ 𝑓

This is just the swapped version of identity.

Finally, that the arrows form sets just follows by flipping the order of the arguments. Or in other
words: since Arrow 𝐴 𝐵 is a set for all 𝐴 𝐵 ∶ Object then so is 𝐴𝑟𝑟𝑜𝑤 𝐵 𝐴.

Now, to show that this category is univalent is not as straightforward. Luckily section §3.2 gave
us some tools to work with equivalences. We saw that we can prove this category univalent by
giving an inverse to ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅idToIso ∶ (𝐴 ≡ 𝐵) → (𝐴̅̅ ̅̅≊̅𝐵). From the original category we have that
idToIso ∶ (𝐴 ≡ 𝐵) → (𝐴 ≅ 𝐵) is an isomorphism. Let us denote its inverse with isoToId ∶ (𝐴 ≊
𝐵) → (𝐴 ≡ 𝐵). If we squint we can see what we need is a way to go between ̅̅ ̅̅≊̅ and ≊.

An inhabitant of 𝐴 ≊ 𝐵 is simply an arrow 𝑓 ∶ Arrow 𝐴 𝐵 and its inverse 𝑔 ∶ Arrow 𝐵 𝐴 (and a
witness to them being inverses). In the opposite category 𝑔 will play the role of the isomorphism
and 𝑓 will be the inverse. Similarly we can go in the opposite direction. I name these maps
shuffle ∶ (𝐴 ≊ 𝐵) → (𝐴̅̅ ̅̅≊̅𝐵) and shuffle−1 ∶ (𝐴̅̅ ̅̅≊̅𝐵) → (𝐴 ≊ 𝐵) respectively.

As the inverse of ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅idToIso I will pick ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅isoToId ≜ isoToId ∘ shuffle. The proof that they are inverses
goes as follows:

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅isoToId ∘ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅idToIso = isoToId ∘ shuffle ∘ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅idToIso
≡ isoToId ∘ shuffle ∘ shuffle−1 ∘ idToIso lemma
≡ isoToId ∘ idToIso shuffle is an isomorphism
≡ identity isoToId is an isomorphism

The other direction is analogous.

The lemma used in step 2 of this proof states that ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅𝑖𝑑𝑇 𝑜𝐼𝑠𝑜 ≡ shuffle−1 ∘ idToIso. This is a rather
straightforward proof since being-an-inverse-of is a proposition, so it suffices to show that their
first components are equal but this holds judgmentally.

This concludes the proof that the opposite category is in fact a category. Now, to prove that
opposite-of is an involution we must show:

∏
ℂ∶Category

(ℂOp)Op ≡ ℂ

The laws in (ℂOp)Op
get quite involved. Luckily since being-a-category is a mere proposition,

we need not concern ourselves with this bit when proving the above. We can use the equality
principle for categories that let us prove an equality just by giving an equality on the data-part.
So, given a category ℂ all we must provide is the following proof:

raw (ℂOp)Op ≡ raw ℂ

And these are judgmentally the same. I remind the reader that the left-hand side is constructed
by flipping the arrows, which judgmentally is an involution.
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3.4.2 Category of sets

The category of sets has as objects, not types, but only those types that are homotopic sets.
This is encapsulated in Agda with the following type:

Set ≜ ∑
𝐴∶𝒰

isSet 𝐴

The more straightforward notion of a category where the objects are types is not a valid
(1-)category. This stems from the fact that types in cubical Agda can have higher homotopic
structure.

Univalence does not follow immediately from univalence for types:

(𝐴 ≡ 𝐵) ≃ (𝐴 ≃ 𝐵)

because here 𝐴, 𝐵 ∶ 𝒰, whereas the objects in this category have the type Set so we cannot form
the type hA ≃ hB for objects hA hB ∶ Set. Instead I show that this category satisfies:

(hA ≡ hB) ≃ (hA ≊ hB)

Which, as we saw in section §3.3, is sufficient to show that the category is univalent. The way
that I have shown this is with a three-step process. For objects (𝐴, 𝑠𝐴), (𝐵, 𝑠𝐵) ∶ Set I show the
following chain of equivalences:

((𝐴, 𝑠𝐴) ≡ (𝐵, 𝑠𝐵)) ≃ (𝐴 ≡ 𝐵) 3.4.1
≃ (𝐴 ≃ 𝐵) Univalence
≃ ((𝐴, 𝑠𝐴) ≊ (𝐵, 𝑠𝐵)) 3.4.2 and 3.4.3

Since ≃ is an equivalence relation we can chain these equivalences together. Step one will be
proven with the lemma:

(∏
𝑎∶𝐴

isProp (𝑃 𝑎)) → ∏
𝑥 𝑦∶∑𝑎∶𝐴 𝑃 𝑎

(𝑥 ≡ 𝑦) ≃ (fst 𝑥 ≡ fst 𝑦) (3.4.1)

The lemma states that for pairs whose second component are mere propositions equality is
equivalent to equality of the first components. In this case the type-family 𝑃 is isSet which itself
is a proposition for any type 𝐴 ∶ 𝒰. Step two is univalence for types. Step three will be proven
with the following lemma:

∏
𝑎∶𝐴

(𝑃 𝑎 ≃ 𝑄 𝑎) → ∑
𝑎∶𝐴

𝑃 𝑎 ≃ ∑
𝑎∶𝐴

𝑄 𝑎 (3.4.2)

which says that if two type-families are equivalent at all points, then pairs with identical first
components and these families as second components will also be equivalent. For our purposes
𝑃 ≜ isEquiv 𝐴 𝐵 and 𝑄 ≜ Isomorphism. We must finally prove:

∏
𝑓∶𝐴→𝐵

(isEquiv 𝐴 𝐵 𝑓 ≃ Isomorphism 𝑓) (3.4.3)

Lets us first prove 3.4.1: Let 𝑝𝑟𝑜𝑝𝑃 ∶ ∏𝑎∶𝐴 isProp (𝑃 𝑎) and 𝑥 𝑦 ∶ ∑𝑎∶𝐴 𝑃 𝑎 be given. Because
of fromIsomorphism it suffices to give an isomorphism between 𝑥 ≡ 𝑦 and fst 𝑥 ≡ fst 𝑦:

𝑓 ≜ cong fst ∶ 𝑥 ≡ 𝑦 → fst 𝑥 ≡ fst 𝑦
𝑔 ≜ lemSig propP 𝑥 𝑦 ∶ fst 𝑥 ≡ fst 𝑦 → 𝑥 ≡ 𝑦
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Here lemSig is a lemma that says that if the second component of a pair is a proposition it
suffices to give a path between its first components to construct an equality of the two pairs:

lemSig ∶ (∏
𝑥∶𝐴

isProp (𝐵 𝑥)) → ∏
𝑢 𝑣∶∑𝑎∶𝐴 𝐵 𝑎

(fst 𝑢 ≡ fst 𝑣) → 𝑢 ≡ 𝑣

The proof that these are indeed inverses of one another has been omitted. The details can be
found in the module:

Cat.Categories.Sets

Now to prove 3.4.2: Let 𝑒 ∶ ∏𝑎∶𝐴 (𝑃 𝑎 ≃ 𝑄 𝑎) be given. To prove the equivalence it suffices
to give an isomorphism between ∑𝑎∶𝐴 𝑃 𝑎 and ∑𝑎∶𝐴 𝑄 𝑎, but since they have identical first
components it suffices to give an isomorphism between 𝑃 𝑎 and 𝑄 𝑎 for all 𝑎 ∶ 𝐴. This is exactly
what we can get from the equivalence 𝑒.�

Lastly we prove 3.4.3. Let 𝑓 ∶ 𝐴 → 𝐵 be given. For the maps we choose:

toIso ∶ isEquiv 𝑓 → Isomorphism 𝑓
fromIso ∶ Isomorphism 𝑓 → isEquiv 𝑓

As mentioned in section §3.2. These maps are not in general inverses of each other. Instead, we
will use the fact that 𝐴 and 𝐵 are sets. The first thing we must prove is:

fromIso ∘ toIso ≡ identityisEquiv 𝑓

For this we can use the fact that being-an-equivalence is a mere proposition. For the other
direction:

toIso ∘ fromIso ≡ identityIsomorphism 𝑓

We will show that Isomorphism 𝑓 is also a mere proposition. To this end, let 𝑋, 𝑌 ∶ Isomorphism 𝑓
be given. Name the maps 𝑥, 𝑦 ∶ 𝐵 → 𝐴 respectively. Now, the proof that 𝑋 and 𝑌 are the same
is a pair of paths: 𝑝 ∶ 𝑥 ≡ 𝑦 and Path (𝜆 𝑖 → AreInverses 𝑓 (𝑝 𝑖)) 𝒳 𝒴 where 𝒳 and 𝒴 denotes
the witnesses that 𝑥 (respectively 𝑦) is an inverse to 𝑓 . The path 𝑝 is inhabited by:

𝑥 = 𝑥 ∘ identity
≡ 𝑥 ∘ (𝑓 ∘ 𝑦) 𝑦 is an inverse to 𝑓
≡ (𝑥 ∘ 𝑓) ∘ 𝑦
≡ identity ∘ 𝑦 𝑥 is an inverse to 𝑓
= 𝑦

For the other (dependent) path we can prove that being-an-inverse-of is a proposition and then
use lemPropF. To this end we prove the generalization:

∏
𝑔∶𝐵→𝐴

isProp (AreInverses 𝑓 𝑔) (3.4.4)

but AreInverses 𝑓 𝑔 is a pair of equations on arrows, so we use propSig and the fact that both
𝐴 and 𝐵 are sets to close this proof.
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3.5 Products

In the following a technique for using categories to prove properties will be demonstrated. The
goal in this section is to show that products are propositions:

∏
ℂ∶Category

∏
𝐴 𝐵∶Object

isProp (Product ℂ 𝐴 𝐵)

where Product ℂ 𝐴 𝐵 denotes the type of products of objects 𝐴 and 𝐵 in the category ℂ. I do this
by constructing a category whose terminal objects are equivalent to products in ℂ. Since terminal
objects are propositional in a proper category and equivalences preserve homotopy level, then
we know that products are also propositions. But before we get to that, we recall the definition
of products.

3.5.1 Definition of products

Given a category ℂ and two objects 𝐴 and 𝐵 in ℂ we say that a product is triple consisting of an
object and a pair of arrows. The object is denoted with 𝐴 × 𝐵 in ℂ and is also referred to as the
product (object) of 𝐴 and 𝐵. The arrows will be named 𝜋1 ∶ 𝐴 × 𝐵 → 𝐴 and 𝜋2 ∶ 𝐴 × 𝐵 → 𝐵
also called the projections of the product. The projections must satisfy the following property:

For all 𝑋 ∶ 𝑂𝑏𝑗𝑒𝑐𝑡, 𝑓 ∶ Arrow 𝑋 𝐴 and 𝑔 ∶ Arrow 𝑋 𝐵 we have that there exists a unique arrow
𝜋 ∶ Arrow 𝑋 (𝐴 × 𝐵) satisfying

𝜋1 ⋘ 𝜋 ≡ 𝑓 × 𝜋2 ⋘ 𝜋 ≡ 𝑔 (3.5.1)

The arrow 𝜋 is called the product (arrow) of 𝑓 and 𝑔.

3.5.2 Span category

Given a base category ℂ and two objects in this category 𝒜 and ℬ we construct the span category.
The type of objects in this category shall be an object in the underlying category, 𝑋 and two
arrows (also from the underlying category) Arrow 𝑋 𝒜 and Arrow 𝑋 ℬ.

An arrow between objects 𝐴, 𝑎𝒜, 𝑎ℬ and 𝐵, 𝑏𝒜, 𝑏ℬ in this category will consist of an arrow
from the underlying category 𝑓 ∶ Arrow 𝐴 𝐵 satisfying:

𝑏𝒜 ⋘ 𝑓 ≡ 𝑎𝒜 × 𝑏ℬ ⋘ 𝑓 ≡ 𝑎ℬ (3.5.2)

The identity morphism is the identity morphism from the underlying category. This choice
satisfies 3.5.2 because of the right-identity law from the underlying category.

For composition of arrows 𝑓 ∶ Arrow 𝐴 𝐵 and 𝑔 ∶ Arrow 𝐵 𝐶 we choose 𝑔 ⋘ 𝑓 and we must
now verify that it satisfies 3.5.2:

𝑐𝒜 ⋘ (𝑓 ⋘ 𝑔) ≡ (𝑐𝒜 ⋘ 𝑓) ⋘ 𝑔 Associativity
≡ 𝑏𝒜 ⋘ 𝑔 𝑓 satisfies 3.5.2
≡ 𝑎𝒜 𝑔 satisfies 3.5.2
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Now we must verify the category-laws. For all the laws we will follow the pattern of using the
law from the underlying category, and that the type of arrows form a set. For instance, to prove
associativity we must prove that

ℎ ⋘ (𝑔 ⋘ 𝑓) ≡ (ℎ ⋘ 𝑔) ⋘ 𝑓 (3.5.3)

Here ⋘ refers to the ‘embellished’ composition and 𝑓 , 𝑔 and ℎ are triples consisting of arrows
from the underlying category (𝑓 , 𝑔 and ℎ) and a pair of witnesses to 3.5.2. The proof obligations
consists of two things. The first one is:

ℎ ⋘ (𝑔 ⋘ 𝑓) ≡ (ℎ ⋘ 𝑔) ⋘ 𝑓 (3.5.4)

The other proof obligation is that the witness to 3.5.2 for the left-hand-side and the right-hand-
side are the same.

The proof of the first goal comes directly from the underlying category. The type of the second
goal is very complicated. I will not write it out in full here, but for the purpose of this exposition
it will suffice to show the type of the path space. Note that the arrows in 3.5.3 are arrows between
objects on the form ̅̅ ̅̅ ̅𝐴 = (𝐴, 𝑎𝒜, 𝑎ℬ) to ̅̅̅ ̅𝐷 = (𝐷, 𝑑𝒜, 𝑑ℬ) where 𝑎𝒜, 𝑎ℬ, 𝑑𝒜 and 𝑑ℬ are arrows in
the underlying category. Given that 𝑝 is the chosen proof of 3.5.4 we then have that the witness
to 3.5.2 vary over the type:

𝜆  𝑖 → 𝑑𝒜 ⋘ 𝑝 𝑖 ≡ 𝑎𝒜 × 𝑑ℬ ⋘ 𝑝 𝑖 ≡ 𝑎ℬ (3.5.5)

These paths are in the type of the hom-set of the underlying category, so they are mere propo-
sitions. We cannot apply the fact that arrows in ℂ are sets directly, however, since isSet only
talks about non-dependent paths, instead we generalize 3.5.5 to:

∏
𝑓∶Arrow 𝑋 𝑌

isProp (𝑦𝒜 ⋘ 𝑓 ≡ 𝑥𝒜 × 𝑦ℬ ⋘ 𝑓 ≡ 𝑥ℬ) (3.5.6)

For all objects 𝑋, 𝑥𝒜, 𝑥ℬ and 𝑌 , 𝑦𝒜, 𝑦ℬ. This follows from the fact that ∏ and ∑ preserve
homotopical structure. 3.5.6 gives us an equality principle for arrows in this category. The
equality principle says that to prove two arrows (𝑓, 𝑓0, 𝑓1) and (𝑔, 𝑔0, 𝑔1) equal it suffices to give
a proof that 𝑓 and 𝑔 are equal. And thus we have proven 3.5.3 using 3.5.4.

We must now prove that the arrows form a set:

isSet (Arrow ̅̅ ̅̅ ̅̅𝑋 ̅̅ ̅̅ ̅𝑌 )
Since pairs preserve homotopical structure this reduces to the following two obligations: The
first one is:

isSet (ℂ.Arrow 𝑋 𝑌 )
which holds. The other one is:

∏
𝑓∶Arrow 𝑋 𝑌

isSet (𝑦𝒜 ⋘ 𝑓 ≡ 𝑥𝒜 × 𝑦ℬ ⋘ 𝑓 ≡ 𝑥ℬ)

We get this from 3.5.6 and the fact that homotopical structure is cumulative.

That concludes the proof that this is a valid pre-category.

Univalence

To prove that this is a proper category we must additionally prove the univalence criterion. That
is, for any two objects 𝒳 = (𝑋, 𝑥𝒜, 𝑥ℬ) and 𝒴 = 𝑌 , 𝑦𝒜, 𝑦ℬ I will show:

(𝒳 ≡ 𝒴) ≅ (𝒳 ≊ 𝒴) (3.5.7)
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I do this by showing that the following sequence of types are isomorphic.

The first type is:

(𝑋, 𝑥𝒜, 𝑥ℬ) ≡ (𝑌 , 𝑦𝒜, 𝑦ℬ) (3.5.8)

The next types will be the triple:
𝑝 ∶𝑋 ≡ 𝑌

Path (𝜆  𝑖 → Arrow (𝑝 𝑖) 𝒜) 𝑥𝒜 𝑦𝒜
Path (𝜆  𝑖 → Arrow (𝑝 𝑖) ℬ) 𝑥ℬ 𝑦ℬ

(3.5.9)

The next type is very similar, but instead of a path we will have an isomorphism and create a
path from this:

iso ∶𝑋 ≊ 𝑌
Path (𝜆  𝑖 → Arrow ( ̃𝑝 𝑖) 𝒜) 𝑥𝒜 𝑦𝒜
Path (𝜆  𝑖 → Arrow ( ̃𝑝 𝑖) ℬ) 𝑥ℬ 𝑦ℬ

(3.5.10)

where ̃𝑝 ≜ isoToId iso ∶ 𝑋 ≡ 𝑌 .

Finally we have the type:

(𝑋, 𝑥𝒜, 𝑥ℬ) ≊ (𝑌 , 𝑦𝒜, 𝑦ℬ) (3.5.11)

The proof is a chain of isomorphisms between the types 3.5.8, 3.5.9, 3.5.10 and 3.5.11. I will
highlight the most interesting bits of this proof. For the full proof see the implementation in the
same module:

Cat.Categories.Span

Proposition 3.5.8 is isomorphic to 3.5.9: This is just an application of the fact that a path between
two pairs 𝑎0, 𝑎1 and 𝑏0, 𝑏1 corresponds to a pair of paths between 𝑎0, 𝑏0 and 𝑎1, 𝑏1.

Proposition 3.5.9 is isomorphic to 3.5.10: This proof of this has been omitted but can be found
in the module:

Cat.Categories.Span

Proposition 3.5.10 is isomorphic to 3.5.11: For this I will show two corollaries of 3.3.2: For an
isomorphism (𝜄, 𝜄−1, inv) ∶ 𝐴 ≅ 𝐵, arrows 𝑓 ∶ Arrow 𝐴 𝑋, 𝑔 ∶ Arrow 𝐵 𝑋 and a heterogeneous
path between them, 𝑞 ∶ Path (𝜆 𝑖 → 𝑝dom 𝑖) 𝑓 𝑔, where 𝑝dom ∶ Arrow 𝐴 𝑋 ≡ Arrow 𝐵 𝑋 is a
path induced by iso, we have the following two results

𝑓 ≡ 𝑔 ⋘ 𝜄 (3.5.12)
𝑔 ≡ 𝑓 ⋘ 𝜄−1 (3.5.13)

The proof is omitted but can be found in the module:

Cat.Category

Now we can prove the equivalence in the following way: Given (𝑓, 𝑓−1, inv𝑓) ∶ 𝑋 ≅ 𝑌 and two
heterogeneous paths

𝑝𝒜 ∶ Path (𝜆 𝑖 → 𝑝dom 𝑖) 𝑥𝒜 𝑦𝒜
𝑞ℬ ∶ Path (𝜆 𝑖 → 𝑝dom 𝑖) 𝑥ℬ 𝑦ℬ
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all as in 3.5.10. I use 𝑝dom here again to mean the path induced by the isomorphism (𝑓, 𝑓−1, inv𝑓).
We must now construct an isomorphism (𝑋, 𝑥𝒜, 𝑥ℬ) ≊ (𝑌 , 𝑦𝒜, 𝑦ℬ) as in 3.5.11. That is, an
isomorphism in the present category. I remind the reader that such a gadget is a triple. The
first component shall be:

𝑓 ∶ Arrow 𝑋 𝑌 (3.5.14)

To show that this choice fits the bill, I must verify that it satisfies 3.5.2, which in this case
becomes:

(𝑦𝒜 ⋘ 𝑓 ≡ 𝑥𝒜) × (𝑦ℬ ⋘ 𝑓 ≡ 𝑥ℬ) (3.5.15)

which, since 𝑓 is an isomorphism and 𝑝𝒜 (resp. 𝑝ℬ) is a path varying according to a path
constructed from this isomorphism, this is exactly what 3.5.12 gives us. The other direction is
quite analogous. We choose 𝑓−1 as the morphism and prove that it satisfies 3.5.2 with 3.5.13.

We must now show that this choice of arrows indeed form an isomorphism. Our equality principle
for arrows in this category (3.5.6) gives us that it suffices to show that 𝑓 and 𝑓−1 are inverses,
but this is of course just inv𝑓 .

This concludes the first direction of the isomorphism that we are constructing. For the other
direction we are given the isomorphism:

(𝑓, 𝑓−1, inv𝑓 , inv𝑓−1) ∶ (𝑋, 𝑥𝒜, 𝑥ℬ) ≊ (𝑌 , 𝑦𝒜, 𝑦ℬ)

Projecting out the first component gives us the isomorphism

(fst 𝑓, fst 𝑓−1, cong fst inv𝑓 , cong fst inv𝑓−1) ∶ 𝑋 ≊ 𝑌

This gives rise to the following paths:

̃𝑝 ∶ 𝑋 ≡ 𝑌
̃𝑝𝒜 ∶ Arrow 𝑋 𝒜 ≡ Arrow 𝑌 𝒜
̃𝑝ℬ ∶ Arrow 𝑋 ℬ ≡ Arrow 𝑌 ℬ

(3.5.16)

It then remains to construct the two paths:

Path (𝜆  𝑖 → ̃𝑝𝒜 𝑖) 𝑥𝒜 𝑦𝒜
Path (𝜆  𝑖 → ̃𝑝ℬ 𝑖) 𝑥ℬ 𝑦ℬ

(3.5.17)

This is achieved with the following lemma:

∏
𝑎∶𝐴

∏
𝑏∶𝐵

∏
𝑞∶𝐴≡𝐵

coe 𝑞 𝑎 ≡ 𝑏 → Path (𝜆  𝑖 → 𝑞 𝑖) 𝑎 𝑏 (3.5.18)

which is used without proof. See the implementation for the details.

3.5.17 is then proven with the propositions:

coe ̃𝑝𝒜 𝑥𝒜 ≡ 𝑦𝒜
coe ̃𝑝ℬ 𝑥ℬ ≡ 𝑦ℬ

(3.5.19)

The proof of the first one is:

coe ̃𝑝𝒜 𝑥𝒜 ≡ 𝑥𝒜 ⋘ fst 𝑓−1 3.3.1 and the isomorphism (𝑓, 𝑓−1, inv𝑓)
≡ 𝑦𝒜 3.5.2 for 𝑓−1

We have now constructed the maps between 3.5.8 and 3.5.9. It remains to show that they are
inverses of each other. To cut a long story short, the proof uses the fact that isomorphism-of
is a proposition and that arrows (in both categories) are sets. The reader is referred to the
implementation for the full gory details.
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3.5.3 To have products is a property of a category

Now that we have constructed the span category I will demonstrate how to use this to prove that
products are propositions. On the face of it this may seem surprising. Products look like they are
a structure on categories. After all it consist of a select object and two arrows. If formulated in
set theory this would be the case but in the present setting univalence of categories give us that
products are properties. I will show this by showing that terminal objects in the span category
are equivalent to products:

Terminal ≃ Product ℂ 𝒜 ℬ (3.5.20)

and as always we do this by constructing an isomorphism: In the direction

Terminal → Product ℂ 𝒜 ℬ

we are given a terminal object 𝑋, 𝑥𝒜, 𝑥ℬ. 𝑋 will be the product-object and 𝑥𝒜, 𝑥ℬ will be the
product arrows, so it just remains to verify that this is indeed a product. That is, for an object
𝑌 and two arrows 𝑦𝒜 ∶ Arrow 𝑌 𝒜, 𝑦ℬ Arrow 𝑌 ℬ we must find a unique arrow 𝑓 ∶ Arrow 𝑌 𝑋
satisfying:

(𝑥𝒜 ⋘ 𝑓 ≡ 𝑦𝒜) × (𝑥ℬ ⋘ 𝑓 ≡ 𝑦ℬ) (3.5.21)

Since 𝑋, 𝑥𝒜, 𝑥ℬ is a terminal object, there is a unique arrow from this object to any other object.
In particular we have 𝑌 , 𝑦𝒜, 𝑦ℬ. The arrow we will play the role of 𝑓 and it immediately satisfies
3.5.21. Any other arrow satisfying these conditions will be equal since 𝑓 is unique.

For the other direction we are now given a product 𝑋, 𝑥𝒜, 𝑥ℬ. Again this will be the terminal
object. Now it remains that for any other object there is a unique arrow from that object into
𝑋, 𝑥𝒜, 𝑥ℬ. Let 𝑌 , 𝑦𝒜, 𝑦ℬ be another object. As the arrow Arrow 𝑌 𝑋 we choose the product-
arrow 𝑦𝒜 × 𝑦ℬ. Since this is a product-arrow it satisfies 3.5.21. Let us name the witness to this
𝜙𝑦𝒜×𝑦ℬ

. We have picked as our center of contraction 𝑦𝒜 × 𝑦ℬ, 𝜙𝑦𝒜×𝑦ℬ
we must now show that it

is contractible. Let 𝑓 ∶ Arrow 𝑋 𝑌 and 𝜙𝑓 be given (here 𝜙𝑓 is the proof that 𝑓 satisfies 3.5.21).
The proof will be a pair of proofs:

𝑝 ∶Path (𝜆 𝑖 → Arrow 𝑋 𝑌 ) 𝑓 𝑦𝒜 × 𝑦ℬ (3.5.22)
Path (𝜆 𝑖 → Φ (𝑝 𝑖)) 𝜙𝑓 𝜙𝑦𝒜×𝑦ℬ

(3.5.23)

Here Φ is given as:
∏

𝑓∶Arrow 𝑌 𝑋
(𝑥𝒜 ⋘ 𝑓 ≡ 𝑦𝒜) × (𝑥ℬ ⋘ 𝑓 ≡ 𝑦ℬ)

We can construct 𝑝 from the universal property of 𝑦𝒜 × 𝑦ℬ. For the latter we use the same trick
we did in 3.4.4 and prove this more general result:

∏
𝑓∶Arrow 𝑌 𝑋

isProp ((𝑥𝒜 ⋘ 𝑓 ≡ 𝑦𝒜) × (𝑥ℬ ⋘ 𝑓 ≡ 𝑦ℬ))

Which follows from arrows being sets and pairs preserving such. Thus we can close the final
proof with an application of lemPropF.

This concludes the proof Terminal ≃ Product ℂ 𝒜 ℬ and since we have that equivalences preserve
homotopic levels along with 3.1.15 we get our final result. That is, in any category ℂ we have:

∏
𝐴,𝐵∶Object

isProp (Product ℂ 𝐴 𝐵) (3.5.24)
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3.6 Functors and natural transformations

For the sake of completeness I will briefly mention the definition of functors and natural trans-
formations. Please refer to the implementation for the full details.

3.6.1 Functors

Given two categories ℂ and 𝔻 a functor consists of the following data:

ℱ ∶ ℂ.Object → 𝔻.Object
fmap ∶ ℂ.Arrow 𝐴 𝐵 → 𝔻.Arrow (ℱ 𝐴) (ℱ 𝐵)

and the following laws:

fmap ℂ.identity ≡ 𝔻.𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦
fmap (𝑔 ℂ.⋘ 𝑓) ≡ fmap 𝑔 𝔻.⋘ fmap 𝑓

The implementation can be found here:

Cat.Category.Functor

3.6.2 Natural Transformation

Given two functors between categories ℂ and 𝔻. Name them ℱ̂ and 𝒢. A natural transformation
is a family of arrows:

∏
𝐶∶ℂ.Object

𝔻.Arrow (ℱ 𝐶) (𝒢 𝐶)

This family of arrows can be seen as the data. If 𝜃 is a natural transformation 𝜃 𝐶 will be called
the component (of 𝜃) at 𝐶. The laws of this family of morphism is the naturality condition:

∏
𝑓∶ℂ.Arrow 𝐴 𝐵

(𝜃 𝐵) 𝔻.⋘ (ℱ̂.fmap 𝑓) ≡ (𝒢.fmap 𝑓) 𝔻.⋘ (𝜃 𝐴)

The implementation can be found here:

Cat.Category.NaturalTransformation

3.7 Monads

In this section I present two formulations of monads. The two representations are referred to
as the monoidal- and Kleisli- representation respectively or simply monoidal monads and Kleisli
monads. We then show that the two formulations are equivalent, which due to univalence gives
us a path between the two types.

Let a category ℂ be given. In the remainder of this sections all objects and arrows will implicitly
refer to objects and arrows in this category. I will also use the notation ℛ̂ to refer to an
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endofunctor on this category. Its map on objects will be denoted ℛ and its map on arrows will
be denoted fmap. Likewise I will use the notation p̂ure to refer to a natural transformation and
its component at a given (implicit) object will be denoted pure. This is the same notation as in
§3.6.2.

3.7.1 Monoidal formulation

The monoidal formulation of monads consists of the following data:

ℛ̂ ∶ Functor ℂ ℂ

p̂ure ∶ NT ̂identity ℛ̂
ĵoin ∶ NT (ℛ̂ ⊕ ℛ̂) ℛ̂

(3.7.1)

Here NT denotes natural transformations and ⊕ means functor composition.

Note that fmap is ℛ̂’s map on arrows. This data must satisfy the following laws.

join ⋘ fmap join ≡ join ⋘ join (3.7.2)
join ⋘ pure ≡ identity (3.7.3)

join ⋘ fmap pure ≡ identity (3.7.4)

The implicit arguments to the arrows above have been left out and the objects they range over
are universally quantified.

3.7.2 Kleisli formulation

The Kleisli-formulation consists of the following data:

ℛ ∶ Object → Object
pure ∶ Arrow 𝑋 (ℛ 𝑋)
bind ∶ Arrow 𝑋 (ℛ 𝑌 ) → Arrow (ℛ 𝑋) (ℛ 𝑌 )

(3.7.5)

The objects 𝑋 and 𝑌 are implicitly universally quantified. With this data we can construct the
Kleisli arrow:

⤇ ∶ Arrow 𝐴 (ℛ 𝐵) → Arrow 𝐵 (ℛ 𝐶) → Arrow 𝐴 (ℛ 𝐶)
𝑓 ⤇ 𝑔 ≜ 𝑓 ⋙ (bind 𝑔)

It is interesting to note here that this formulation does not mention functors nor natural trans-
formations. All we have here is a regular map on objects and a pair of arrows. This data must
satisfy:

bind pure ≡ identityℛ 𝑋 (3.7.6)
pure ⤇ 𝑓 ≡ 𝑓 (3.7.7)

(bind 𝑓) ⋙ (bind 𝑔) ≡ bind (𝑓 ⤇ 𝑔) (3.7.8)

Here likewise the arrows 𝑓 ∶ Arrow 𝑋 (ℛ 𝑌 ) and 𝑔 ∶ Arrow 𝑌 (ℛ 𝑍) are universally quantified
as well as the objects they range over. The third law is stated in terms of reverse function
composition to mirror the way in which it interacts with the Kleisli arrow.
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3.7.3 Equivalence of formulations

Both formulations mention a map called pure. This is of course no coincidence as that arrow in the
Kleisli formulation shall correspond exactly to the map on arrows for the natural transformation
in the monoidal formulation.

In the monoidal formulation we can define bind:

bind 𝑓 ≜ join ⋘ fmap 𝑓 (3.7.9)

and likewise in the Kleisli formulation we can define join:

join ≜ bind identity (3.7.10)

It now remains to show that this construction indeed gives rise to a monad. This will be done
in two steps. First we will assume that we have a monad in the monoidal form; (ℛ̂, pure, join)
and then show that (ℛ, pure, bind) is indeed a monad in the Kleisli form. In the second part we
will show the other direction.

Monoidal to Kleisli

Let (ℛ̂, p̂ure, ĵoin) be given as in 3.7.1 satisfying the laws 3.7.2, 3.7.3 and 3.7.4. For the data of
the Kleisli formulation we pick:

ℛ ≜ ℛ
pure ≜ pure

bind 𝑓 ≜ join ⋘ fmap 𝑓
(3.7.11)

Again ℛ is the object map of the endo-functor ℛ̂, pure and join are the arrows from the natural
transformations p̂ure and ĵoin respectively and fmap is the map on arrows of the endofunctor ℛ̂.
It now just remains to verify the laws 3.7.6, 3.7.7 and 3.7.8. For 3.7.6:

bind pure = join ⋘ (fmap pure)
≡ identity By 3.7.4

For 3.7.7:

pure ⤇ 𝑓 = pure ⋙ bind 𝑓
= bind 𝑓 ⋘ pure
= join ⋘ fmap 𝑓 ⋘ pure
≡ join ⋘ pure ⋘ 𝑓 pure is a natural transformation
≡ identity ⋘ 𝑓 By 3.7.3
≡ 𝑓 Left identity
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For 3.7.8:

bind 𝑔 ⋙ bind 𝑓 = bind 𝑓 ⋘ bind 𝑔
= join ⋘ fmap 𝑔 ⋘ join ⋘ fmap 𝑓
≡ join ⋘ join ⋘ (fmap ∘ fmap) 𝑓 ⋘ fmap 𝑔 join is a natural transformation
≡ join ⋘ fmap join ⋘ (fmap ∘ fmap) 𝑓 ⋘ fmap 𝑔 By 3.7.2
= join ⋘ fmap join ⋘ fmap (fmap 𝑓) ⋘ fmap 𝑔
≡ join ⋘ fmap (join ⋘ fmap 𝑓 ⋘ 𝑔) Distributive law for functors
= join ⋘ fmap (join ⋘ fmap 𝑓 ⋘ 𝑔)
= bind (bind 𝑓 ⋘ 𝑔)
= bind (𝑔 ⋙ bind 𝑓)
= bind (𝑔 ⤇ 𝑓)

The construction can be found in the module:

Cat.Category.Monad.Monoidal

Kleisli to Monoidal

For the other direction we are given (ℛ, pure, bind) as in 3.7.5 satisfying the laws 3.7.6, 3.7.7 and
3.7.8. For the data of the monoidal formulation we pick:

ℛ̂ ≜ (ℛ, bind (pure ⋘ 𝑓))
pure ≜ pure
join ≜ bind identity

(3.7.12)

We must now not only show the monad laws given for the monoidal formulation (3.7.2, 3.7.3 and
3.7.4), we must also verify that ℛ̂ is a functor and that pure and join are natural transformations.
I will ommit this here. Instead we shall see how these two mappings are indeed inverses. The
full construction can be found in the module:

Cat.Category.Monad.Kleisli

Equivalence

To prove that the two formulations are equivalent we must demonstrate that the two mappings
sketched above are indeed inverses of each other. To recap, these maps are:

toKleisli ∶ Kleisli → Monoidal

toKleisli ≜ 𝜆 (ℛ, pure, bind) → (ℛ̂, pure, bind identity)

where ℛ̂ ≜ (ℛ, bind (pure ⋘ 𝑓)). The proof that this is indeed a functor is left implicit as well
as the monad laws. Likewise the proof that pure and bind identity are natural transformations
are left implicit. The inverse map will be:

toMonoidal ∶ Monoidal → Kleisli

toMonoidal ≜ 𝜆 (ℛ̂, p̂ure, ĵoin) → (ℛ, pure, bind)

31

http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Category.Monad.Monoidal.html
http://web.student.chalmers.se/~hanghj/cat/doc/html/Cat.Category.Monad.Kleisli.html


Where bind 𝑓 ≜ join ⋘ fmap 𝑓 . Again the monad laws are left implicit. Now we must show:

toKleisli ∘ toMonoidal ≡ identity (3.7.13)
toMonoidal ∘ toKleisli ≡ identity (3.7.14)

For 3.7.13 let (ℛ, pure, bind) be a monad in the Kleisli form. Since being-a-monad is a proposi-
tion2 we get an equality-principle for kleisli-monads that say that to equate two such monads it
suffices to equate their data part. It thus suffices to equate the data parts of 3.7.13. Such a proof
is a triple equating the three projections of 3.7.5. The first two hold definitionally – essentially
one just wraps and unwraps the morphism in a functor. For the last equation a little more work
is required:

join ⋘ fmap 𝑓 = fmap 𝑓 ⋙ join
= bind (𝑓 ⋙ pure) ⋙ bind identity By definition of fmap and join
≡ bind (𝑓 ⋙ pure ⤇ identity) By 3.7.8
≡ bind (𝑓 ⋙ identity) By 3.7.7
= bind 𝑓

For the other direction (3.7.14) we are given a monad in the monoidal form; (ℛ̂, p̂ure, ĵoin). The
various equality-principles again give us that it is sufficient to equate the data-part of the above.
That is, we only need to verify that the following pieces of data: ℛ, fmap, pure and join get
mapped correctly. To see the full details check the implementation in the module:

Cat.Category.Monad

2The proof was omitted here but can be found in the implementation.
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Chapter 4

Perspectives

4.1 Discussion

In the previous chapter the practical aspects of proving things in Cubical Agda were highlighted.
I also demonstrated the usefulness of separating “laws” from “data”. One of the reasons for this is
that dependencies within types can lead to very complicated goals. One technique for alleviating
this was to prove that certain types are mere propositions.

4.1.1 Computational properties

The new contribution of cubical Agda is that it has a constructive proof of functional extension-
ality and univalence. This means in particular that the type checker can reduce terms defined
with these theorems. One interesting result of this development is how much this influenced the
development. In particular having a functional extensionality that “computes” should simplify
some proofs.

I have tested this by using a feature of Agda where one can mark certain bindings as being
abstract. This means that the type-checker will not try to reduce that term further during type
checking. I tried making univalence and functional extensionality abstract. It turns out that the
conversion behaviour of univalence is not used anywhere. For functional extensionality there are
two places in the whole solution where the reduction behaviour is used to simplify some proofs.
This is in showing that the maps between the two formulations of monads are inverses. See the
notes in this module:

Cat.Category.Monad.Voevodsky

I will not reproduce it in full here as the type is quite involved. In stead I have put this in a
source listing in A. The method used to find in what places the computational behaviour of these
proofs are needed has the caveat of only working for places that directly or transitively uses these
two proofs. Fortunately though the code is structured in such a way that this is the case. In
conclusion the way I have structured these proofs means that the computational behaviour of
functional extensionality and univalence has not been so relevant.
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Barring this the computational behaviour of paths can still be useful. E.g. if a programmer
wants to reuse functions that operate on a monoidal monads to work with a monad in the
Kleisli form that the programmer has specified. To make this idea concrete, say we are given
some function 𝑓 ∶ Kleisli → 𝑇 , having a path between 𝑝 ∶ Monoidal ≡ Kleisli induces a map
coe 𝑝 ∶ Monoidal → Kleisli. We can compose 𝑓 with this map to get 𝑓 ∘ coe 𝑝 ∶ Monoidal → 𝑇 . Of
course, since that map was constructed with an isomorphism, these maps already exist and could
be used directly. So this is arguably only interesting when one also wants to prove properties of
applying such functions.

4.1.2 Reusability of proofs

The previous example illustrate how univalence unifies two otherwise disparate areas: The
category-theoretic study of monads; and monads as in functional programming. Univalence
thus allows one to reuse proofs. You could say that univalence gives the developer two proofs
for the price of one. As an illustration of this I proved that monads are groupoids. I initially
proved this for the Kleisli formulation1. Since the two formulations are equal under univalence,
substitution directly gives us that this also holds for the monoidal formulation. This of course
generalizes to any family 𝑃 ∶ 𝒰 → 𝒰 where 𝑃 is inhabited at either formulation (i.e. either
𝑃 Monoidal or 𝑃 Kleisli holds).

The introduction (section §1.3) mentioned that a typical way of getting access to functional
extensionality is to work with setoids. Nowhere in this formalization has this been necessary,
Path has been used globally in the project for propositional equality. One interesting place where
this becomes apparent is in interfacing with the Agda standard library. Multiple definitions in
the Agda standard library have been designed with the setoid-interpretation in mind. E.g. the
notion of unique existential is indexed by a relation that should play the role of propositional
equality. Equivalence relations are likewise indexed, not only by the actual equivalence relation
but also by another relation that serve as propositional equality.

In the formalization at present a significant amount of energy has been put towards proving
things that would not have been needed in classical Agda. The proofs that some given type is
a proposition were provided as a strategy to simplify some otherwise very complicated proofs
(e.g. 3.1.14 and 3.5.5). Often these proofs would not be this complicated. If the J-rule holds
definitionally the proof-assistant can help simplify these goals considerably. The lack of the J-rule
has a significant impact on the complexity of these kinds of proofs.

4.1.3 Motifs

An oft-used technique in this development is using based path induction to prove certain proper-
ties. One particular challenge that arises when doing so is that Agda is not able to automatically
infer the family that one wants to do induction over. For instance in the proof sym (sym 𝑝) ≡ 𝑝
from 2.3.2 the family that we chose to do induction over was 𝐷 𝑏′ 𝑝′ ≜ sym (sym 𝑝′) ≡ 𝑝′.
However, if one interactively tries to give this hole, all the information that Agda can provide
is that one must provide an element of 𝒰. Agda could be more helpful in this context, perhaps
even infer this family in some situations. In this very simple example this is of course not a big
problem, but there are examples in the source code where this gets more involved.

1Actually doing this directly turned out to be tricky as well, so I defined an equivalent formulation which was
not formulated with a record, but purely with ∑-types.
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4.2 Future work

4.2.1 Compiling Cubical Agda

Compilation of program written in Cubical Agda is currently not supported. One issue here is
that the backends does not provide an implementation for the cubical primitives (such as the
path-type). This means that even though the path-type gives us a computational interpretation
of functional extensionality, univalence, transport, etc., we do not have a way of actually using
this to compile our programs that use these primitives. It would be interesting to see practical
applications of this.

4.2.2 Proving laws of programs

Another interesting thing would be to use the Kleisli formulation of monads to prove properties
of functional programs. The existence of univalence will make it possible to re-use proofs stated
in terms of the monoidal formulation in this setting.

4.2.3 Initiality conjecture

A fellow student at Chalmers, Andreas Källberg, is currently working on proving the initiality
conjecture. He will be using this library to do so.
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Chapter 5

Conclusion

This thesis highlighted some issues with the standard inductive definition of propositional equal-
ity used in Agda. Functional extensionality and univalence are examples of two propositions not
admissible in Intensional Type Theory (ITT). This has a big impact on what is provable and
the reusability of proofs. This issue is overcome with an extension to Agda’s type system called
Cubical Agda. With Cubical Agda both functional extensionality and univalence are admissible.
Cubical Agda is more expressive, but there are certain issues that arise that are not present in
standard Agda. For one thing Agda enjoys Uniqueness of Identity Proofs (UIP) though a flag
exists to turn this off. This feature is not present in Cubical Agda. Rather than having unique
identity proofs cubical Agda gives rise to a hierarchy of types with increasing homotopical struc-
ture. It turns out to be useful to build the formalization with this hierarchy in mind as it can
simplify proofs considerably. Another issue one must overcome in Cubical Agda is when a type
has a field whose type depends on a previous field. In this case paths between such types will
be heterogeneous paths. In practice it turns out to be considerably more difficult to work with
heterogeneous paths than with homogeneous paths. This thesis demonstrated the application of
some techniques to overcome these difficulties, such as based path induction.

This thesis formalizes some of the core concepts from category theory including: categories, func-
tors, products, exponentials, Cartesian closed categories, natural transformations, the yoneda
embedding, monads and more. Category theory is an interesting case study for the application
of cubical Agda for two reasons in particular. One reason is because category theory is the study
of abstract algebra of functions, meaning that functional extensionality is particularly relevant.
Another reason is that in category theory it is commonplace to identify isomorphic structures.
Univalence allows for making this notion precise. This thesis also demonstrated another tech-
nique that is common in category theory; namely to define categories to prove properties of other
structures. Specifically a category was defined to demonstrate that any two product objects in
a category are isomorphic. Furthermore the thesis showed two formulations of monads and
proved that they indeed are equivalent: Namely monads in the monoidal- and Kleisli- form. The
monoidal formulation is more typical to category theoretic formulations and the Kleisli formula-
tion will be more familiar to functional programmers. It would have been very difficult to make
a similar proof with setoids and the proof would be very difficult to read. In the formulation
we also saw how paths can be used to extract functions. A path between two types induce an
isomorphism between the two types. This e.g. permits developers to write a monad instance for a
given type using the Kleisli formulation. By transporting along the path between the monoidal-
and Kleisli- formulation one can reuse all the operations and results shown for monoidal- monads
in the context of kleisli monads.
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Appendix A

Non-reducing functional
extensionality

In two places in my formalization was the computational behaviours of functional extensionality
used. The reduction behaviour can be disabled by marking functional extensionality as abstract.
Below the fully normalized goal and context with functional extensionality marked abstract has
been shown. The excerpts are from the module

Cat.Category.Monad.Voevodsky

where this is also written as a comment next to the proofs. When functional extensionality is
not abstract the goal and current value are the same. It is of course necessary to show the fully
normalized goal and context otherwise the reduction behaviours is not forced.

First goal

Goal:

PathP (λ _ → §2-3.§2 omap (λ {z} → pure))
(§2-fromMonad
(.Cat.Category.Monad.toKleisli ℂ
(.Cat.Category.Monad.toMonoidal ℂ (§2-3.§2.toMonad m))))

(§2-fromMonad (§2-3.§2.toMonad m))

Have:

PathP
(λ i →

§2-3.§2 K.IsMonad.omap
(K.RawMonad.pure
(K.Monad.raw
(funExt (λ m₁ → K.Monad≡ (.Cat.Category.Monad.toKleisliRawEq ℂ m₁))
i (§2-3.§2.toMonad m)))))

(§2-fromMonad

i
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(.Cat.Category.Monad.toKleisli ℂ
(.Cat.Category.Monad.toMonoidal ℂ (§2-3.§2.toMonad m))))

(§2-fromMonad (§2-3.§2.toMonad m))

Second goal

Goal:

PathP (λ _ → §2-3.§1 omap (λ {X} → pure))
(§1-fromMonad
(.Cat.Category.Monad.toMonoidal ℂ
(.Cat.Category.Monad.toKleisli ℂ (§2-3.§1.toMonad m))))

(§1-fromMonad (§2-3.§1.toMonad m))

Have:

PathP
(λ i →

§2-3.§1
(RawFunctor.omap
(Functor.raw
(M.RawMonad.R
(M.Monad.raw
(funExt
(λ m₁ → M.Monad≡ (.Cat.Category.Monad.toMonoidalRawEq ℂ m₁)) i
(§2-3.§1.toMonad m))))))

(λ {X} →
fst
(M.RawMonad.pureNT
(M.Monad.raw
(funExt
(λ m₁ → M.Monad≡ (.Cat.Category.Monad.toMonoidalRawEq ℂ m₁)) i
(§2-3.§1.toMonad m))))

X))
(§1-fromMonad
(.Cat.Category.Monad.toMonoidal ℂ
(.Cat.Category.Monad.toKleisli ℂ (§2-3.§1.toMonad m))))

(§1-fromMonad (§2-3.§1.toMonad m))
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