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Abstract

A radar observes its surroundings relative to itself in terms of distance and angles. In
order to calculate a target’s absolute position it is therefore crucial to know the radar’s
own position and especially its orientation. This is because even a fractional error in the
assumed orientation of the radar highly impacts estimated target position. This demand
for high accuracy in orientation can be solved by using expensive inertial sensors. But
because of their high price and recent developments in sensor hardware technology it
has become interesting to investigate the capability of cheaper sensors based on micro
electromechanical systems (MEMS) technology.

In this thesis, a MEMS based inertial navigation system (INS) is evaluated and
compared in relation to a considerably more expensive INS, which typically can be found
in radar systems. The evaluation of the different systems is performed on a non-moving
mobile radar system in which the radar antenna is mounted on what can be described
as a mast-like construction in order to increase its range. Even if the radar system can
be considered as stationary there is still be some minor movement of the radar antenna
due to that the mast is mounted on sways back and forth as an effect of the rotating
antenna, which is not perfectly balanced. This swaying movement causes the orientation
of the radar antenna to vary periodically within a range of angles. In order to not only
evaluate the MEMS INS but also investigate how its performance can be enhanced for
radar applications, the authors have designed a Kalman filter that tries to make use of
the periodic behaviour.

The results show that the designed periodic filter outperforms the existing MEMS
INS (under periodic movement). The presented periodic filter design also offers some
unique advantages with respect to typical filters used for estimating orientation. Even if
the periodic filter described in this thesis does not describe a complete design, including
adaptivity to a wider range of periodic behaviours that can change over time, it does
suggest that the fundamental design is valid and is suitable for at least a mode of
operation if not as a complete filter solution.





Sammanfattning

En radar observerar sin omgivning relativt sin egen position och orientering. För att
beräkna ett m̊als absoluta position är det därför extremt viktigt att veta radarns position
och i synnerhet orientering. Detta eftersom även ett mycket litet fel i antagen orientering
har stor p̊averkan p̊a m̊alets skattade position. Dessa höga krav p̊a noggrannhet kan
uppfyllas genom att använda dyra tröghetsnavigeringsensorer. P̊a grund av det höga
priset och utveckling inom sensor-h̊ardvara är det intressant att undersöka hur billigare
sensorer baserade p̊a MEMS teknologi st̊ar sig mot de dyrare systemen.

I den här rapporten utvärderas ett tröghetsnavigeringsystem och jämförs med ett
betydligt dyrare system som typiskt används i radarsystem. Utvärderingen utförs p̊a
ett stillast̊aende mobilt radarsystem där radarantennen är monterad p̊a en mastlik kon-
struktion för att öka räckvidden. Även om radarsystemet kan anses stationärt finns det
fortfarande en rörelse p̊a antennen eftersom masten svänger fram och tillbaka. Detta p̊a
grund av att antennenen inte är perfekt balanserad och snurrar. Svängningen f̊ar orien-
teringen för radarantennen att variera periodiskt inom ett spann p̊a vinklar. Utöver att
utvärdera MEMS INS:en har författarna utvecklat ett Kalman filter som använder den
periodiska rörelsen för att förbättra mätvärdena.

REsultaten visar att det designade filtret är bättre än den färdiga MEMS INS lös-
ningen(givet en periodisk rörelse). Det periodiska filtret erbjuder även unika fördelar
jämfört med typiska filter för orientering. Även om det periodska filtret i den här rap-
porten inte beskriver en komplett lösning, visar det att det grundläggande konceptet
fungerar och är möjlig för åtminstone en del av en komplett lösning.
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Notation

Abbreviations

ARW Angular random walk

AVAR Allan variance

BMFLC Bandlimited multiple fourier linear combiner

DCM Direct cosine matrix

EKF extended Kalman filter

FLC Fourier linear combiner

FOG fiberoptic gyroscope

IMU inertial measurement unit

INS inertial navigation system

LMS Least mean squares

MEMS micro-machined electro mechanical sensors

NED North-east-down

RLG ring laser gyro

RMSD Root mean square deviation

Capital Letters

A amplitude

D process noise covariance matrix

E measurement noise covariance matrix

F transition matrix

H measurement model

K Kalman gain

O observation matrix

P state covariance matrix

Q quaternion rotation matrix

R rotation matrix



Small Letters

a odd Fourier coefficient

b even Fourier coefficient

e error

f motion function

g gravity vector

h measurement function

q quaternion vector

w amplitude weight vector

x state vector

x x-axis

y measurement vector

y y-axis

z z-axis

Greek Letters

α misalignment angle

ω frequency

θ roll angle

ϕ pitch angle

ψ heading angle

Θ orientation vector

δ process noise

ε measurement noise

µ bias

φ phase

Subscripts

k current time

ς number of roll frequencies

τ number of pitch frequencies

ν number of heading frequencies



Superscripts

acc accelerometer

gyr gyroscope

p periodic

s stationary

t translational

ref reference system

sbg SBG sensor

Diacritical marks

ˆ approximation or estimate

˙ time derivative



Contents

1 INTRODUCTION 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Available radar and selected INS . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Choice of sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.2 Market overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5.3 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 BACKGROUND THEORY 11
2.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 MEMS sensor errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Scale factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Constant bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 High frequent noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Bias stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Rotations of coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Euler and Tait-Bryan angles . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Rotation matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Quaternion representation . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Sensor fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 State space models . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.4 Quaternion based orientation filter, QEKF . . . . . . . . . . . . . 22

i



CONTENTS

2.5 Linear combiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1 Fourier linear combiner . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 BMFLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 MATHEMATICAL MODELS AND FILTER DESIGN 26
3.1 System motion behaviour (Periodic motion) . . . . . . . . . . . . . . . . . 26
3.2 Filter design, the periodic filter . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Periodic orientation component estimation . . . . . . . . . . . . . 29
3.2.2 Stationary orientation component estimation . . . . . . . . . . . . 33

4 RESULTS 36
4.1 Scenario specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Misalignment correction . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Parameter choices/Tuning . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Filter evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Attitude estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Heading estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 CONCLUSION 55

Bibliography 59

ii



1
INTRODUCTION

The introduction will give some background to why the thesis is needed. The purpose
and objective is stated. The scope of the project is explained and to motivate a choice
of sensor the introduction also contains a brief market survey. A radar platform and a
selected sensor are described to give some background for the evaluations described later
in the thesis.

1.1 Background

Saab is Sweden’s leading provider of defence and security solutions and is the company
that this thesis is performed for. Saab offers a wide variety products and services in-
cluding radar systems which in in essence is a highly advanced sensor with the purpose
to gather intelligence about its surrounding and anything of interest residing therein.
Radar applications can be found in the skies as well as at sea and on land. The latter
two product segments are included in Saab’s battle proven Giraffe line-up, which can be
seen exemplified in Figure 1.1.
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1.1. BACKGROUND

(a) The Giraffe AMB with the radar antenna
located at the top.

(b) The Sea Giraffe AMB with the radar an-
tenna located inside the cone on top of the ves-
sel.

Figure 1.1: Two examples of radar applications from the Girraffe AMB product family by
the Swedish defence and security company Saab.
(These images are the property of Saab AB and must not be used or altered without Saab AB’s prior written consent.)

In our ordinary day lives many of us come in contact with radar as a safety function
used when reversing our car or when watching the weather forecast on the news. Radar
information is in these cases often represented as a top-down view consisting of a two-
dimensional image where objects appear to be at a certain distance from the radar sensor.
Many of today’s radar system such as the high performing Giraffe AMB radar family
track targets of interest in three dimensions [1]. Even if the fundamental principals
of two- and three-dimensional radar systems are very similar, in that observations are
made relative to the radar sensor, a three-dimensional system further increases the need
to accurately know the radar antenna’s orientation as well as its position in order to
calculate the targets position in a global reference frame [2]. The sketches in Figure 1.2
provide a basic impression for the volume, as well as what kind of targets, that can be
observed by a radar system.

(a) Sketch of the observed volume seen in per-
spective view.

(b) A section of the observed volume seen in pro-
file along with indicated distances and relevant
targets.

Figure 1.2: Sketches depicting the volume observed by a three-dimensional radar.
(These images are the property of Saab AB and must not be used or altered without Saab AB’s prior written consent.)
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1.2. PURPOSE

Even if Figure 1.2 only is an example and the observed volume can differ from radar
system to radar system it highlights the vast distances that can exist between the radar
and a target. Any errors in the position of the radar system results in a translation
of the calculated target position causing an error with same size as that of the radar
system’s positional error. A small deviation in the orientation of the radar system can
however cause a considerably larger error since the long target distances acts as lever
arms that can affect the final position of the target severely. As a consequence of this,
radar applications requires the orientation and position of the radar system with respect
to a global reference frame to be known with great accuracy in order to be able to
compensate for any differences.

Inertial navigation systems (INSs) are currently the most common solutions used
in order to deal with the issue of estimating the desired orientation and position [2]. A
complete INS can estimate both orientation and position based on inertial measurements
of rotational rates and accelerations. These measurements are usually provided by gyro-
scopes and accelerometers but the navigation system can be aided by a wide variety of
sensors and systems to observe the surroundings, such as GPS, magnetometers (which
acts like a magnetic compass) or even radar to mention a few [3]. By knowing the posi-
tion of where the radar system is deployed the functional need of the inertial navigation
system can be reduced to estimating only the orientation. The thesis is based on this
assumption and will therefore focus on the challenge of estimating orientation.

Because of the operational conditions and the required level of accuracy from today’s
radar systems regarding orientation the used INS consequently comes associated with a
high price. Despite it only being a subsystem of the larger radar system the typically used
INS has a form factor and power consumption that has to be taken into consideration
for the radar system, and thereby also imposes restrictions in terms of overall design.

MEMS-based sensors is a sensor technology that has seen an increase in terms of
performance over the last years, and also offers it at a fraction of the cost compared to
today’s high end inertial navigation systems [4]. Additional benefits of MEMS are also
their small size and low power consumption, but price is as in many cases one of the major
incentives for considering new technologies. A reduction for the INS cost would not only
benefit the overall cost of the radar system but would also allow for new possibilities in
reducing downtime due to INS malfunction, which is of utmost importance since lives can
depend on a radar system being operational or not. The reduction in downtime might not
be obvious but is possible because an inexpensive part or system allows for replacements
to be kept in storage, which might not even be an alternative for an expensive system
as it would mean tying up to much valuable equity.

1.2 Purpose

The previously explained circumstances bring to mind a very relevant question:
How do available MEMS-based inertial systems perform compared to the high-end

systems used in today’s radar applications?
Since this currently is unknown the main purpose of this thesis will be to gain insight

3



1.3. THESIS OBJECTIVE

regarding existing trade-offs and issues associated with MEMS-based inertial systems for
use in radar systems.

1.3 Thesis objective

In order to attain the desired insight the thesis first objective is to evaluate a MEMS-
based inertial navigation system by practical trials. These trials should naturally be
carried out in an environment resembling that for existing or possible future radar sys-
tems so ensure the results are useful in practice. Apart from evaluation of the sensor
the thesis will also include exploration of the possibility to develop an inertial system
which takes advantage of behaviours typical for radar systems for increasing performance
accuracy of estimated orientation.

Both the objectives are to be evaluated by comparing the estimates of orientation
from the different systems with those of an inertial navigation system with accuracy
similar to that which is found in existing radar applications. The results are also to be
compared with parts of the MEMS-based inertial navigation system’s specification to
verify whether they are met or not.

1.4 Scope

The thesis has some fundamental limitations in terms of available resources. The dura-
tion of the thesis is 20 weeks and the authors are the mainly available personnel. A radar
system has been made available to the authors by Saab for practical trails but require
experienced operators in order to carry out the trials. The radar system is stationary
under its typical deployment and the trials are in order to limit evaluated scenarios also
be conducted under this presumption. There is no existing MEMS-based INS, which
means that a suitable one has to be selected to facilitate all aspects of its installation
and usage during trials. The MEMS-based INS can cost no more than 50 KSEK to be
within the budget made available by Saab. Further details of the available and selected
MEMS-based INS is found in Section 1.5.

To aid in the operation and other practical aspects there is a time budget of 60
working hours to allow employees at Saab to assist the authors. The availability of any
employee with relevant knowledge is however not guaranteed since any work pertaining
to assistance with the thesis comes secondary to the employees’ daily responsibilities.

There exist no requirements to develop a complete implementation in hardware when
exploring the possibility to increase the MEMS-based inertial navigation system’s per-
formance. The exploration will therefore be carried out by post-processing logged data
from the practical trails using MATLAB which provides insight whether the developed
concept for the inertial system is valid or not.
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1.5. AVAILABLE RADAR AND SELECTED INS

1.5 Available radar and selected INS

The radar platform evaluated is one similar to the one in Figure 1.3 and has a high-
end inertial navigation system mounted below the rotating radar antenna. This inertial
navigation system is considered to be so accurate that it can be considered as measuring
the ”true” orientation and is therefore called the reference inertial navigation system.
Orientation can be described in relation to an arbitrary frame but the thesis will use the
north-east-down (NED) frame as depicted in 1.3. Since the radar platform is stationary
and the reference does not rotate with the antenna this means that the reference measures
the orientation as the mast of the platform sways due to the rotating antenna and
external forces such as wind.

𝑥𝑁𝐸𝐷 𝑦𝑁𝐸𝐷 

𝑧𝑁𝐸𝐷 

Figure 1.3: The available radar platform and the NED reference orientation frame. Rela-
tive to the vehicle the x-axis is defined in the forward direction, the y-axis in the lateral and
the z-axis in the downward direction. The orientation consisting of roll, pitch and heading
are defined around those axes in the same order.
(This image is the property of Saab AB and must not be used or altered without Saab AB’s prior written consent.)

1.5.1 Choice of sensor

In this thesis a MEMS-based inertial navigation sensor is evaluated and there are several
parameters to consider when choosing a sensor. It should of course fit the project budget
but it also has to be accurate enough to be used in the considered environment. The INS
market is fast growing and accuracy and price of the sensors are ever changing. In this
section a brief market overview will be presented to give insight in how the INS market
looks and how accuracy affects price, but also other parameters such as user friendliness
and size.
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1.5. AVAILABLE RADAR AND SELECTED INS

1.5.2 Market overview

Inertial navigation systems are usually divided into four main classes depending on price,
accuracy and gyroscope technology. These are commonly named Automotive, Industrial,
Tactical and Navigation grade [4]. Automotive sensors are as the name implies often
used in car applications, but the low end sensors of this class are cheap enough to use
in toys and smartphones. Automotive sensors are often individual rate and acceleration
sensors and an Industrial INS can be achieved by combining several of these to achieve
angular measurements. When high accuracy in orientation is needed the more expensive
solutions in the Tactical graded sensors are used. Navigation graded sensors are as the
name implies used for navigation, especially in submarines where GPS is not possible.
This requires extreme precision in the INS, however these sensors are in practice not
used for orientation estimation. Figure 1.4 shows a figure over how the gradings are
located in a price/performance graph. This graph is based on [4] and [5] together with
data provided from sensor manufacturers. The sensor chosen for this project is one in
the price range of Industrial grade.

1,000 SEK 

20,000 SEK 

100,000 SEK 

200,000 SEK 

Price 

Orientation accuracy 

Automotive 

Industrial 

Tactical 

1,000,000+ SEK 
Navigation 

Figure 1.4: Illustration of the different classes of INS.

To give some insight in how INS from different grades perform a simplified table of
typical specifications are shown in Table 1.1.
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1.5. AVAILABLE RADAR AND SELECTED INS

Table 1.1: Approximate accuracies for INS

Roll/pitch Heading

Industrial 0.1-0.5 ◦ 0.5-1.0 ◦

Tactical 0.01-0.05 ◦ 0.05 ◦

Navigation <0.01 ◦ <0.05 ◦

Apart from price and accuracy size is also a parameter that needs to be considered
since the size difference between grades is significantly different. Automotive and indus-
trial sensor are exclusively based on MEMS technology explained in Chapter 2, while
tactical and navigation graded sensors uses FOG and RLG (two types of gyroscopes that
will be discussed later in Chapter 2). This means that an industrial sensor can weigh just
a couple of grams (often around 50 g [6]), while a tactical sensor can weigh up to 10 kg [7].

In Table 1.1 it can be noted that the heading angle accuracy is lower than for roll
and pitch for all classes of sensors. This is natural because the heading is the hardest
angle to measure, for this accelerometers can not be used since they have no information
in how the sensor is pointed. In cheaper sensors such as the automotive graded ones,
magnetometers measuring the earth’s magnetic fields and in that way determining where
north is. However this is rarely good enough due to disturbances in the magnetic field
caused by wires, metals or electric motors. To overcome this GPS aiding is often added.
This means that if the sensor is kept in constant translational motion GPS can be used to
determine where the sensor is heading and in extension how it is pointing. This however
causes problem if the sensor is not moving, to solve this one has to look in the high end
of the price range of industrial graded sensors, where often dual GPS antennas are used.
Dual GPS aiding is based on two antennas placed in known position relative the sensor
and by using position data from both antennas the heading angle can be determined.
For even higher precision in heading a technique used in tactical and navigation graded
sensors must be considered. This technique is simply called north seeking and requires
extremely accurate gyroscopes (typically RLG) [5]. What north seeking is all about is
to basically measure the earth’s rotation with the gyroscopes and calculate how the sen-
sor is oriented. Doing so is time consuming but yields very accurate precision in heading.

It is not just heading angle that can be obtained from other sensors. It is common
for more expensive INSs to have support from other sensors to aid for example posi-
tion estimates. This could for example in a moving vehicle be odometers measuring the
wheel rotation. Aiding from other sensors is more common in the cheaper sensors up to
industrial graded, but of course this cost more.

It is apart from accuracy desirable if the sensor is easy to work with. Good doc-
umentation can be very important to make sure that the full capacity of the sensor is
retrieved. Smaller, cheaper sensors are often designed to be plug and play and many

7



1.5. AVAILABLE RADAR AND SELECTED INS

companies provide analyzing programs that the user can play around with to get a grasp
on how the different sensors inside the INS behaves. For more expensive solutions whole
systems can be considered and the manufacturer can adapt the sensor depending on the
usage.

1.5.3 Characteristics

Based on the market study performed a suitable sensor was selected and used in the
project. The sensor is called Ellipse-N and is developed and manufactured by the french
company SBG. This is an industrial grade sensor consisting of MEMS gyroscopes and
accelerometers in three axis, magnetometers in three axis and also support for GPS
aiding. Ellipse-N contains a predefined EKF that outputs the orientation in Euler angles
or quaternions; it is also possible to get the raw measurements from all sensors in different
output rates up to 200 Hz. In Table 1.2 the specified RMS accuracy of the sensor is
listed [6].

Figure 1.5: The SBG Ellipse-N sensor used in this project.

Table 1.2: Specified RMS accuracy for Ellipse-N. Here 0.8 ◦ denotes accuracy with mag-
netometers and 0.5 ◦ with GPS aiding

Roll/pitch (RMS) Heading (RMS)

accuracy 0.2 ◦ 0.8/0.5 ◦

In the filters that are implemented in this project, raw values from gyroscopes and
accelerometers are used. In Table 1.3 the specified accuracies for the gyroscopes and the
accelerometers are listed in terms of the error parameters described later in Chapter 2.
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The constant bias is not listed here since it is different for individual sensors but it can
easily be measured or estimated later on.

Table 1.3: Raw sensor specifications for Ellipse-N [6].

Random walk Bias instability Scale factor Range

accelerometer 100 µg/
√
Hz 20 µg 0.1 % 8 g

gyroscope 100 ◦/s/
√
Hz 8 ◦/h 0.05 % 450 ◦/s

During trials the Ellipse-N with its GPS antenna is attached to a plate which is
mounted in close proximity to the reference inertial navigation system. The sensors can-
not physically occupy the space and because there are limited options in where to place
the Ellipse-N the systems will be misaligned due to limitations of where the sensor can
be placed. This misalignment can however be compensated for so that sensors measure
the same movement in orientation and can be compared. To read the sensor output a
cable is connected from the sensor to a PC that runs a logging program (sbgCenter [8])
provided a development kit purchased with the Ellipse-N.

1.6 Related work

Orientation estimation using inertial sensors is a problem with a wide range with many
approaches and solutions. Due to low prices of the MEMS sensors IMUs can be found
in all kinds of applications such as toys, cars, and especially mobile phones. In mobile
phone technology IMUs are used daily, for example in games and whenever tilting the
phone to get a landscape format of the screen instead of portrait the phone sensors
estimates the orientation and adapts to suitable format. In areas such as segways and
quadrocopters that has grown popular in recent years, IMUs are used to control the
orientation.

To solve the problems of orientation estimation there are various methods and filters
developed, some are more complex focusing on specific properties while some are more
general and easier to interpret.
Madgwick [9] has proposed a filter solution using gyroscopes, accelerometers, and mag-
netometers that performs well and is widely used. Zhang et al. [10] has for example used
it to estimate the attitudes of buoys. For monitoring the oceans a network of antennas
placed buoys can be used. For increased communication distance a concept called beam
forming can be used, this means that the signal beam energy is concentrated and can
thus be directed directly at the target node. The problem of applying this concept on
the buoys is that they are constantly moving due to waves and wind. Zhang presents an
algorithm that uses the work of Madgwick to estimate the attitude and use it to com-
pensate for the tilt in the beamforming. The algorithm is tested in simulations under
the assumption of regular waves and the results showed improvement in antenna gain
and distance between nodes.
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1.7. THESIS OUTLINE

Tully et al. [11] has developed a method for tracking a heart’s moving surface using
a camera and Kalman filtering to estimate fast Fourier transform parameters. The im-
plementation was tested on a phantom of a heart and the results showed that the surface
was indeed tracked. Further use of periodic filtering is done in the medical area where
periodic motion is a common phenomenon. Veluvolu et al [12]. introduces a method
of estimating involuntary rhythmic motions(tremor) of body parts using accelerometers
and Bandlimited multiple Fourier linear combiner, in this work the designed filter is able
to distinguish voluntary motions due to the fact that the frequencies of the tremor is
known. A comparison is made between combinations of filters using the BMFLC method
and the Kalman filter shows the best results.

1.7 Thesis outline

This thesis begins with an introduction describing the problem formulation and back-
ground. In Chapter 2 some general background theory describing concepts that is used.
The theory is applied in the modelling and development of filters in Chapter 3. The
filters are applied on data collected from the radar platform in Chapter 4 where the per-
formance is presented and discussed. The last Chapter 5 consists conclusions connected
to the objectives of the evaluation.

10



2
BACKGROUND THEORY

This chapter introduces the reader to basic concepts and theory needed to later understand
the proposed method and the results. Concepts of Inertial Measurement Units will be
discussed and what typical errors this causes. The chapter also gives insight in how
filtering works and how periodical motion can be modelled in the filters.

2.1 Sensors

To measure how an object is oriented inertial measurement units (IMUs) are often used.
IMU is a collection name for inertial sensors such as gyroscopes and accelerometers.
To fully understand inertial sensors the concepts of them need to be explained. In
this section the construction and operation of gyroscopes and accelerometers will be
explained. Typical errors and specification parameters will also be explained to give
insight in how to evaluate the use of a sensor for a certain application.

2.1.1 Gyroscopes

Gyroscopes measures the rate of rotation around an axis, typically three gyroscopes are
used to cover rotations around the xyz-axis. There are mainly three types of gyroscope
technologies, in this section these technologies will be briefly explained and what the ad-
vantages and disadvantages are of each type of sensor. The three technologies are called
Micro-machined electro mechanical sensors (MEMS), Fiberoptic gyroscope (FOG) and
Ring Laser gyroscope (RLG). The main differences between these types of sensors are:
price, size and accuracy of the measurements. These parameters affect the applications
where the sensor is meant to operate in; the cheaper sensors are typically used in smart-
phones and car application while the more expensive sensors can be used in aircraft and
military equipment. The three types of gyroscopic sensors are illustrated in Figure 2.1
to give a comparative picture.
The MEMS sensors are manufactured on silicon chips, which mean that they are easy
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2.1. SENSORS

to manufacture in large quantities and therefore the cheapest of the three types of sen-
sors. The basic concept of MEMS gyroscopes is that they consist of small tuning forks
manufactured in silicon vibrating due to the Coriolis effect [13]. The vibration gives rise
to a change in capacitance measured and translated to a rotation rate. MEMS sensors
are sensitive to changes in temperature since the conductivity of the semiconductor is
temperature dependent [14], this is a problem avoided in the more expensive solutions
presented next.
FOGs are more accurate but can not be as small as the MEMS. This because the FOG
technology is based on a fiberoptic cable arranged as a coil. Light is sent in both direc-
tions through the cable and when the sensor is rotated the light moving in the rotation
direction will travel faster than the light in opposite direction due to the Sagnac effect
[15]. This causes a phase shift that can be observed to determine the angular velocity.
The coil needs to consist of a very long optic cable (up to several km [16]) for the phase
shift to be big enough to be measured accurately.
RLGs are the most accurate but also the most expensive gyroscopic sensors. It uses the
Sagnac effect just like the FOG-sensors but instead of light travelling in an optic cable
it has laser beams in two directions and mirrors to guide them. Just as with the FOG
the phase shift due to rotation is measured. One disadvantage with RLG is that laser
lock-in can occur when the rotation rate is low [17]. To remove this, a motor applying
a vibrating dither is used to make sure that the sensor is never completely still. The
construction of an RLG therefore needs more mechanical parts and this causes the sensor
to increase in size which has to be accounted for in implementation.

(a) MEMS gyroscope.

Light source 

Phase detector 

(b) Fiberoptic gyroscope.

Readout 

Laser excitation 

Mirror 

Dither motor 

(c) Ringlaser gyroscope.

Figure 2.1: Three different types of gyroscope technology.

2.1.2 Accelerometer

Accelerometers measure the acceleration of an object in typically three axis. An ac-
celerometer behaves as damped mass on a spring, when the object accelerates the mass
is displaced. The higher the acceleration is the more the mass is displaced. This be-
haviour causes an accelerometer to be affected by the gravity acceleration. But the
gravity is always pointing toward the center of the earth, so it can be accounted for.
The gravity vector can also be used to determine how the object is oriented by calcu-
lating the angle of the gravity vector. An accelerometer can also be used to estimate
position by integrating the measurements twice; however this causes a second order drift
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error. Accelerometers used in electronic devices are of MEMS type. The MEMS ac-
celerometers are basically a small version of damped mass on a spring. The mass is here
a moving plate with smaller plates located between fixed plates as seen in Figure 2.2b.
When the sensor is accelerated the moving plate will be pressed in the opposite direction
like a passenger is pushed to the seat in an accelerating car. This causes a difference in
capacitance between C1 and C2 that gives rise to a change in voltage v1 as shown in the
figure. v1 can then be translated to a corresponding acceleration [18]. In Figure 2.2 a
MEMS accelerometer and the concept of operation is shown.

(a) MEMS accelerometer [19].

Moving plate 

Motion 

Fixed
 p

lates 

𝐶1 𝐶2 

𝐶1 𝐶2 

+𝑣0 -𝑣0 

𝑣1 = 𝑣0(
𝐶2 − 𝐶1
𝐶2 + 𝐶1

) 

(b) Concept of a MEMS accelerometer.

Figure 2.2: A MEMS accelerometer and the concept.

2.2 MEMS sensor errors

In this project MEMS sensors are used due to the low cost. To understand how these
sensors are specified it can be useful to explain typical errors. To do this simplified
models of the sensors are used. A MEMS gyroscope can be modelled in one axis with
some simplifications as

ygyr = (1 + sgyr)ωtrue + µgyr + nhf + nlf , (2.1)

where ygyr is the raw measurement from the sensor and ωtrue is the true angular rate.
The bias is denoted µgyr and the highfrequent and lowfrequent noise is denoted nhf and
nlf respectively. A MEMS accelerometer can be modelled very similarly to a gyroscope
with some minor differences as

yacc = (1 + sacc)atrue + µacc + nhf . (2.2)

Just as in the gyroscope case, am is the measured acceleration and atrue the true ac-
celeration. The accelerometer is modelled with bias µacc and assumed to only contain
highfrequent noise nhf It can be noted that many of the error parameters are common
for both the gyroscope and the accelerometer due to the same type of construction. In
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the following sections the error parameters will be explained to give an insight in why
measurements from the sensors contain errors and what can be done to separate them.

2.2.1 Scale factor

The scale factor sgyr and sacc is an effect of mis-calibration that causes each measurement
to be scaled. Ideally the scale factor should be 0 but this is never the case since the real
world is not perfect. For high performance MEMS the scale factor is typically less than
0.05 %.

2.2.2 Constant bias

The constant bias of a gyroscope µgyr is the mean offset from the true rotation rate. This
is easily seen by observing the output values when the gyroscope is still. Since the bias
is constant it is easily removed by just subtracting it after it is measured or estimated.
The bias of an accelerometer µacc is a bit harder to distinguish since when the sensor
is still it accelerates due to gravity, the constant bias would then be the acceleration in
addition to the gravity.

2.2.3 High frequent noise

Angular random walk (ARW) is a way of representing the high frequency noise nhf for
a gyroscope. Basically it describes how far the angle measurements would drift away if
the angular rate is integrated. When a signal with noise is integrated the integration will
drift, how fast it is drifting depends on how much noise the signal contains and it can
be shown that the standard deviation of the ARW grows proportionally to the square
root of time[20] as

σARW = σnhf
√
Tst (2.3)

The ARW is expressed in ◦/
√
h meaning that a sensor with ARW = 1 has an angular

drift of 1 ◦ in one hour and 1√
2
◦ in two hours and so on. Some manufacturers use

different notations of the high frequency noise the most popular notation is the same
that is used for high frequent noise in accelerometers the noise spectral density (usually
denoted PSD for power spectral density). To convert a PSD to ARW the following
formula can be used [21]

ARW =
1

60

√
PSD (2.4)

For accelerometer the noise is described in the same way as for gyroscopes with the main
difference that it is called velocity random walk.

2.2.4 Bias stability

Bias stability is a way of describing the low frequent noise nlf in gyroscopes, basically
this describes how the bias in the gyroscope changes over time. The bias stability is small
for all gyroscopes and usually expressed in terms of ◦/h. To calculate the bias stability
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a method mainly used for expressing stability of clocks but well suited for gyroscopic
sensors are used. This method is called Allan variance (AVAR) [22] and is defined as

AV AR =
1

2(n− 1)

∑
i

(y(τ)i+1 − y(τ)i)
2 (2.5)

where the gyroscope signal is divided into bins of length τ seconds. When τ is small
AV AR will be mostly dominated by the high frequency noise, but for longer averaging
times AV AR reaches a minimum value corresponding to the bias stability [22].

2.3 Rotations of coordinate systems

IMUs are measuring angular rate and acceleration around/in three axis corresponding
to a coordinate system of the sensor, which means that the measurements are the values
corresponding to the internal axis of the IMU, that is, in the so called sensor frame,
S. In this thesis it is not the orientation of the the internal axis that is of interest but
rather a fixed global axis such as a coordinate system called North, East, Down frame
(NED) defined as in Figure 2.3. To be able to use the measurements from the sensor
as orientation relative to the ground they can be represented in the NED frame. The
mismatch between NED and S can be seen as a pure rotation. The measurements thus
only need to be rotated to express orientation in NED. This section will explain how
such rotations can be handled.

2.3.1 Euler and Tait-Bryan angles

To express orientation in three dimensions the most intuitive way is to describe it by
three rotations (roll, pitch and heading). This way of representing is called Euler angles.
To describe a rotation of a coordinate system relative another fixed system, Euler angles
describes it as a rotation sequence around first one axis, then a second and last around the
first axis again. The Tait-Bryan angles is similar to the Euler angles with the difference
that they express rotation around all three axis.
A problem with Euler and Tait-Bryan angles is that if the coordinate system is rotated
90 ◦ in pitch, the x- and z-axis will align. This causes rotations around x to be the same
as rotations around z meaning that one degree of freedom is lost [23]. This problem is
called gimbal lock and has to be considered when using Euler or Tait-Bryan angles.

2.3.2 Rotation matrices

To rotate a vector in one coordinate system to another, rotation matrices is a well
established method often used in IMU contexts. Rotation matrices are used to rotate a
vector by an angle

Θ =

θϕ
ψ

 (2.6)
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without changing the length of the vector. In two dimensions rotations around x,y,z,
denoted Θ can be expressed as the rotation matrices

Rx(θ) =

1 0 0

0 c(θ) −s(θ)
0 s(θ) c(θ)

 , Ry(ϕ) =

 c(ϕ) 0 s(ϕ)

0 1 0

−s(ϕ) 0 c(ϕ)

 , Rz(ψ) =

c(ψ) −s(ψ) 0

s(ψ) c(ψ) 0

0 0 1

. (2.7)

A rotation can be performed by multiplying a vector around one axis at the time but a
more compact solution is to multiply the vector with a matrix describing the full three
dimensional rotation. This matrix is called a direct cosine matrix (DCM) [6] and is
defined as (in Tait-Bryan angles)

R(θ,ϕ,ψ) = Rz(ψ)Ry(ϕ)Rx(θ) (2.8)

or equivalently

R =

c(θ)c(ψ) s(θ)s(ϕ)c(ψ)− c(θ)s(ψ) c(θ)s(ϕ)c(ψ) + s(θ)s(ψ)

c(θ)s(ψ) s(θ)s(ϕ)s(ψ) + c(θ)c(ψ) c(θ)s(ϕ)s(ψ)− s(θ)c(ψ)

−s(θ) s(θ)c(ϕ) c(θ)c(ϕ)

 . (2.9)

Since R(θ,ϕ,ψ) is only describing a rotation it is in fact another way to describe the
orientation in terms of unit vectors. To rotate a vector v by (θ,ϕ,ψ) in 3D-space the
DCM is used as

v′ = R(θ,ϕ,ψ)v, (2.10)

where v′ is the rotated vector. DCM are often used to transform vectors from a sensor
frame S to a global earth frame NED, especially in IMU areas where the interesting
orientation is often the one relative the earth or a room. This would mean that using
angular information the sensor frame vector vS can be expressed in earth frame NED
as

vNED = R(θ,ϕ,ψ)vS . (2.11)

To rotate a vector from NED to S the inverse of R(θ,ϕ,ψ) is used as

vS = (R(θ,ϕ,ψ))−1vNED (2.12)

and because R(θ,ϕ,ψ) is an orthogonal matrix

(R(θ,ϕ,ψ))−1 = (R(θ,ϕ,ψ))T . (2.13)

2.3.3 Quaternion representation

A common way to describe rotations is to use Euler or Tait-Bryan angles, but as ex-
plained earlier this is not suitable in practical applications due to the risk of gimbal lock.
Another way of expressing is to use quaternions, this is a method mainly used to gain
computational efficiency [24]. This comes from the fact that quaternion rotation needs
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less multiplications. The quaternion representation has also an advantage that it does
not suffer from gimbal lock. A quaternion is a four-dimensional complex number that
can be used to describe a coordinate system S relative another coordinate system NED.
This can be described in three dimensions as a rotation of S around a unit vector r with
an angle of θ. This rotation is shown in Figure 2.3.

𝛳 
 
 

𝑥𝑁𝐸𝐷 

𝑦𝑁𝐸𝐷 

𝑧𝑁𝐸𝐷 

𝑥𝑆 

𝑦𝑆 

𝑧𝑆 

𝒓 

Figure 2.3: Rotation of a coordinate system around a unit vector.

This gives the quaternion expressing the sensor frame S’s orientation relative NED
as

q =


q0

q1

q2

q3

 =


cos( θ2)

−rx sin( θ2)

−ry sin( θ2)

−rz sin( θ2)

 . (2.14)

To use quaternion for rotation it is necessary to understand a concept called quaternion
product. The quaternion product between two quaternions a and b is defined as [9]

a⊗ b =


a1b1 − a2b2 − a3b3 − a4b4
a1b2 + a2b1 + a3b4 − a4b3
a1b3 − a2b4 + a3b1 + a4b2

a1b4 + a2b3 − a3b2 + a4b1

 (2.15)

and can be used to express compound orientation. A vector vS in S can be expressed
in NED by rotating it with the quaternion [9]

vS = q⊗ vNED ⊗ q∗ (2.16)

17



2.3. ROTATIONS OF COORDINATE SYSTEMS

where q∗ is the conjugate of the quaternion. This corresponds to using a DCM rota-
tion matrix as explained earlier and in quaternion notation the rotation matrix can be
expressed as

Q(q) =

2q20 − 1 + 2q21 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 2q20 − 1 + 2q22 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q20 − 1 + 2q23

 (2.17)

which means that the rotation of vS to NED can be accomplished by

vNED = Q(q)vS (2.18)

To express orientation gyroscopic sensors are often used. The measurements from
the sensor can be considered as a vector containing x,y,z components of the angular
rate, and by inserting a 0 as the first vector element to get four dimensions the angular
rate vector can be written as

ω =


0

ωx

ωy

ωz

 (2.19)

The measurements from the sensor are expressed in the sensor frame and needs to
be rotated to the NED frame. This is done using (2.16), but since the vector to be
rotated contains the derivative of the orientation, the quaternion expression needs to be
differentiated [25] as

q̇ =
1

2
q⊗ ω =

1

2


0 −ωx −ωy ωz

ωx 0 ωx −ωy
ωy −ωz 0 ωx

ωz ωy −ωx 0

q. (2.20)

By simply integrating (2.20)
qk = qk−1 + q̇kTs (2.21)

the orientation of the sensor expressed in quaternions is obtained.
For more intuitive visualizations the quaternions are often converted to Euler angles

in roll, pitch and heading as [6]

θ = atan2(
2q2q3 + 2q0q1
2q20 + 2q23 − 1

) (2.22)

ϕ = −asin(2q2q3 − 2q0q2) (2.23)

ψ = atan2(
2q1q2 + 2q0q3
2q20 + 2q21 − 1

) (2.24)
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2.4 Sensor fusion

Sensor fusion is a term that in recent years has become popular in all types of applications
using sensors. As the name implies the term describes usage of more than one sensor
fused together to improve measurements. The basic idea is that several sensors used
together can be better than each sensor individually. This section describes typical
model based sensor fusion algorithms.

2.4.1 State space models

State space models are a useful way of describing how a system behaves. The base of this
type of model is a state vector describing the current state of the system, a motion model
describing how these states are expected to change between times and a measurement
model that describes the output in terms of the state vector.

Motion model

The motion model describe how the states propagate in time.

xk+1 = Fkxk + δk (2.25)

where δk is normally distributed process noise

δk ∼ N (0,Dk) (2.26)

The process noise is a parameter that tells how much the states are expected to move
between instances of time. Another way of representing the motion model assuming that
it is a Gauss-Markov model [26] is by denote it as a probability distribution

p(xk|xk−1) = N (xk|Fk−1xk−1,Dk), (2.27)

where Fk−1xk−1 is the expected value and Dk is the covariance. This representation will
be used later to describe the Kalman filter.

Motion models are often adapted to the type of motion that is estimated. The idea
is that if there is some extra knowledge on how the states are propagating this can
improve filter estimates. There are several standard models that can be used and the
simplest of all are the random walk model. Basically what the random walk model says
is that there is no knowledge of how the next state is going to be. The only constraint
is how far the state can move between instances of time while the direction is arbitrary.
This constraint is expressed in the process noise that describes how much from the cur-
rent state the next state should be. Using equation (2.25) the random walk model would
look like

xk+1 = xk + δk (2.28)

with normally distributed process noise

δk ∼ N (0,Dk) (2.29)
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This means that the next state is just the last state with some added movement deter-
mined by the process noise, and this is a very generalized model.

Measurement model

The states in the model do not have to be in the same domain as the measurements.
But to compare the measurements with the states, the states must be mapped to the
same domain as the measurements. The model describing this mapping is called a
measurement model and is expressed as

yk = Hkxk + εk (2.30)

where Hk is a matrix mapping the states to the same domain as the measurements, and
the measurement noise

εk ∼ N (0,Ek) (2.31)

or as in the form of probability distribution [26]

p(yk|xk) = N (xk|Hkxk,Ek). (2.32)

The measurement noise is just as the process noise assumed to be white Gaussian dis-
tributed and describes how noisy the measurements are expected to be. In a practical
application the measurement noise describes how noisy a sensor is described by the ran-
dom walk and this can easily be measured by observing the sensor output when it is not
excited.

2.4.2 Kalman filter

The Kalman filter is the most common method for sensor fusion and is an algorithm
based on linear models of dynamics and minimizes the uncertainties of the states. It
is used to estimate the states in the state vector using measurements affected by noise
and/or other inaccuracies. The Kalman filter is a recursive filter that for each instance
of time predicts the next state given a model of dynamics and updates the current state
using the prediction and measurements. These steps are referred to as the prediction
step and the update step. By using the probability distribution notation and that the
posterior distribution is calculated recursively, the distribution for the previous step can
be assumed to be Gaussian as

p(xk−1|y1:k−1) = N (xk−1|x̂k−1,Pk−1) (2.33)

It can then be shown that the predicted distribution of the states given the measurements
up to time k − 1 can be expressed as [27]

p(xk|y1:k−1) = N (xk|Fk−1x̂k−1,Fk−1Pk−1F Tk−1 +Dk). (2.34)

This corresponds to the prediction step where the expected value is the predicted state

x̂k|k−1 = Fkx̂k−1|k−1 (2.35)
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and the predicted state covariance

Pk|k−1 = FkPk−1|k−1F
T
k +Dk. (2.36)

In a similar way the update step can be derived according to [27] as the distribution

p(xk|yk) = N (xk|x̂k,Pk) (2.37)

with the expected value
x̂k|k = x̂k|k−1 +Kkvk (2.38)

and covariance
Pk|k = Pk|k−1 −KkSkK

T
k . (2.39)

Here vk denotes the innovation

vk = yk −Hkx̂k|k−1, (2.40)

and Sk the innovation covariance that tells how confident we are in that the measure-
ments are correct

Sk = HkPk|k−1H
T
k + Ek. (2.41)

The Kalman gain Kk

Kk = Pk|k−1HkS
−1
k (2.42)

is used to determine how much from the innovation the prediction should be corrected
with.

2.4.3 Extended Kalman filter

The Kalman filter is based on linear motion and measurement models, however these
models often suffer from nonlinearities. An arbitrary nonlinear state space model can
be expressed as functions of the state vector. The motion model is then expressed as

xk+1 = f(xk) + δk (2.43)

and the nonlinear measurement model

yk = h(xk) + εk (2.44)

This means that the Kalman filter needs to be modified to handle the nonlinear situa-
tions. The Extended Kalman Filter (EKF) is linearizing the models for each recursion
of time and uses the linearized models in the Kalman filter. Basically the EKF follows
the same algorithm as the Kalman filter but with the linearized models f ′ and h′ instead
of F and H as in the regular Kalman filter. [28] The prediction step for the states then
becomes

x̂k|k−1 = f(x̂k−1|k−1) (2.45)
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and the predicted covariance matrix is calculated with the linearized transition matrix
as

Pk|k−1 = f ′(x̂k−1|k−1)Pk−1|k−1f
′(x̂k−1|k−1)

T +Dk. (2.46)

And the update step can then be formed as

Sk = h′(x̂k|k−1)Pk|k−1h
′(x̂k|k−1)

T + Ek, (2.47)

Kk = Pk|k−1h
′(x̂k|k−1)

TS−1k , (2.48)

x̂k|k = x̂k|k−1 −Kk(yk − h(x̂k|k−1)). (2.49)

2.4.4 Quaternion based orientation filter, QEKF

A simple general filter for expressing orientation in terms of quaternions using gyroscopes
and accelerometers is designed in [25]. The quaternions are chosen for state vector as

x̂k =


q0

q1

q2

q3

 (2.50)

In this filter the gyroscope signal with sample time Ts is assumed to be good enough to
use as an input signal

x̂k+1 = (I +
1

2
S(ωk)Ts)xk +

Ts
2
S̄(xk)ε

gyr
k (2.51)

with

S̄(ωk) =


0 −ωx −ωy ωz

ωx 0 ωx −ωy
ωy −ωz 0 ωx

ωz ωy −ωx 0

 S(xk) =


−q1 −q2 −q3
q0 −q3 q2

q3 q0 −q1
−q2 q1 q0

 (2.52)

This model is used in the Kalman prediction step described in (2.45)-(2.46) with

f(xk) = (I +
1

2
S(ωk)Ts)xk (2.53)

and the process noise covariance matrix is defined in terms of the current states and the
measurement noise covariance matrix as

Dk = (
Ts
2
S̄(xk))E

gyr(
Ts
2
S̄(xk))

T . (2.54)

The measurement model for the accelerometer is defined as

yacck = QT (xk)(g
0 + ftk) + εacck (2.55)
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which is used to find the attitude of the sensor. g0 is here the nominal gravity vector
which is assumed to be constant. facck is external forces due to accelerations in trans-
lational directions. In this filter ftk is considered small enough to be neglected causing
the model to be valid for pure rotations of the sensor. The measurement model for the
accelerometer is nonlinear which means that the extended Kalman filter needs to be used
and in this case the function that is linearized is

h(xk) = QT (xk)g
0 (2.56)

With the linearized measurement function h′(xk) the EKF update step is implemented
according to equations (2.47)-(2.49) and the filter is estimating the orientation. However
since the filter is not using magnetometer inputs the heading is not accurately estimated.
The only information the filter has in heading is from the gyroscope signal and that can
only describe relative rotation.

2.5 Linear combiners

The term linear combiner is referring to the technique of combining parts of a signal to
produce the signal itself. This can be useful when working with periodic signals that can
be built by harmonics and amplitudes. In this section a certain type of linear combiners
is introduced, these linear combiners can be used as adaptive filters if there is some idea
of the shape of the signal that is being tracked. These linear combiners are called Fourier
linear combiners.

2.5.1 Fourier linear combiner

Fourier linear combiner (FLC) is a method for tracking a periodic signal. The method
is derived from the Fourier series where every periodic signal can be written as a sum of
sine waves as

yk =
M∑
r=1

ark sin(rω0k) + brk cos(rω0k). (2.57)

This is a linear representation of the nonlinear amplitude-phase representation

yk = Ak sin(ωk + φk) (2.58)

and it can be shown [29] that

Ak =
√
a2k + b2k (2.59)

φk = arctan(
ak
bk

) (2.60)

For the FLC the fundamental frequency ω0 is fixed and the amplitude weights ar and
br are unknown. What the FLC does is that it uses an extension of the LMS filter to
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calculate ar and br as adaptive gains

wk =



a1k
...

aMk

b(M+1)k
...

b2Mk


(2.61)

that is used together with a matrix

Hrk =

sin(rTs
∑k

j=0 ω0j ), 1 ≤ r ≤M

cos(rTs
∑k

j=0 ω0j ), M + 1 ≤ r ≤ 2M
(2.62)

describing the sinusoidal parts of the signal. The error to be minimized is defined as

ek = yk −Hkwk (2.63)

where Hkwk is the reconstructed signal. The LMS-algorithm computes the adaptive
gains by minimizing ek [30] as

wk+1 = wk + 2µekHk (2.64)

The concept of the FLC algorithm is illustrated as a block chart in Figure 2.4.
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Figure 2.4: Illustrative explanation of the FLC algorithm.
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2.5.2 BMFLC

A more effective method originating from FLC is the Bandlimited multiple FLC (BM-
FLC) [12]. The main concept of this filter is to assume that the approximate frequencies
present in the signal that is tracked are known. This gives the possibility to specify

a list of frequencies
[
ω1 · · · ωn

]
where the frequency of the motion is located. This

approach makes it possible to track more than one dominant frequency and makes the
adaptation faster for sudden changes in frequency [12]. In the same sense as in FLC the
sinusoidal terms are ordered in a vector but now with one term per frequency component

Hk =

[
sin(ω1k) sin(ω2k) · · · sin(ωnk)

cos(ω1k) cos(ω2k) · · · cos(ωnk)

]
(2.65)

The weight vector is now limited to a set of frequencies and can be written as

wk =


[
a1k a2k · · · ank

]T[
b1k b2k · · · bnk

]T
 (2.66)

and the estimated signal can be built in the same way as in the FLC case as

ŷk = Hkwk. (2.67)

The BMFLC is explained illustratively in Figure 2.5 and it is clear that the only
difference from FLC is that more frequencies are used
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Figure 2.5: Illustrative explanation of the BMFLC algorithm.

Instead of using LMS one could use Kalman filtering as explained in Section 2.4.2 to
estimate the amplitudes wk. This would mean that the matrix Hk corresponds to the
measurement matrix.
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3
MATHEMATICAL MODELS

AND FILTER DESIGN

The following chapter explains the typical motion of the investigated radar platform which
motivates the developed filter design. The motion also motivates the mathematical models
used in the Kalman based design divided in two parts, one describing the short term
dynamics and one the second the long term dynamics. The modeling takes into account
available sensor data and error parameters such as bias and high frequent noise.

3.1 System motion behaviour (Periodic motion)

To be able to design a model based filter for the inertial sensor mounted on the radar
system we first need to analyse the type of motion that characterizes its behaviour. A
log of the orientation from the reference system discussed in Section 1.5 is shown in
Figure 3.1. During the log the radar antenna rotates at 60 rpm and it is the behaviour
during this condition that will serve as a foundation for characterizing the behaviour of
the system.

As seen from Figure 3.1 there are two elements that make up the variation of the
orientation over time, the short term dynamics and the long term. In a time window
of 10 seconds as in Figure 3.1b the roll and pitch appears to move periodically with
a constant frequency. The heading does on the other hand not appear to have any
dominating behaviour that can be expressed as any trivial mathematical function.
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(b) Zoomed in on 10 seconds of data.

Figure 3.1: Recorded motion of the reference system.

The roll and pitch behaviour over a longer period of time (300 sec.) as in Figure 3.1a
can be seen as more of a drifting motion that changes relatively slow and without any
clear trajectory or trend. As to what to conclude about the heading there is no obvious
model that fits is movement, at least not with the provided resolution given by the
reference.

Both the short and long term dynamical behaviour is consistent with what can be
expected of the radar platform upon which the reference system is mounted. To elabo-
rate on this the short term periodical behaviour in roll and pitch can be motivated by
the rotating radar antenna likely being not perfectly balanced, which explains why the
pattern appears time after time and also coincides with the antennas rotational rate of
60 rpm. Why this periodic behaviour is not seen in the heading can be attributed to that
the mast that the radar antenna is mounted on is much stiffer with regards to twisting
along its axis, which would need to occur on order for the heading to change.

The observed long term dynamics would ideally be a constant angle seeing as the
scenario being evaluated for the radar system is that it is deployed as a stationary
outpost and not moving during the evaluation. But the movement can have a stationary
orientation that varies slightly over time since the radar system rests on the suspension
of a truck and is not directly constrained by any supporting struts.

3.2 Filter design, the periodic filter

The following sections will focus on the formulation of mathematical models. The radar
system’s orientation is represented by the column vector

Θ =

θϕ
ψ

 (3.1)
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3.2. FILTER DESIGN, THE PERIODIC FILTER

where θ, ϕ, ψ denotes roll, pitch and heading respectively. The platform orientation can,
as stated in Section 3.1, be described as periodic to some extent. The orientation is how-
ever not a periodic signal centred about a constant level but can rather be decomposed
into two parts or what further on will be called components. The first component is the
periodic which has relatively fast dynamics and oscillates around the other component
which has considerably slower and less predictable dynamics. This slower component
can be considered as the stationary level of the orientation which also relates the periodic
component to the global NED orientation frame.

By denoting the periodic component as Θp and the stationary component as Θs we
can formulate the decomposition of the complete orientation Θ as the sum of the two
components according to

Θ = Θp + Θs. (3.2)

Because of this decomposition each of the two components will need to be estimated in
order to estimate the complete orientation Θ.

Since the component Θp is an angle and possess periodic properties it by extension
also means that its derivative, or the angular rate as it also may be referred to, also will
be periodic. The angular rate of the orientation can be measured by a gyroscope and
the BMFLC-Kalman filter explained in Section 2.5.2 is a filter which is designed to take
advantage of periodic signal properties. The resulting estimate from the filter becomes
an estimate of the derivative of the periodic component Θp which then can be integrated
to estimate the actual angles. This argument serves as motivation as to why it is suitable
to use a BMFLC-Kalman filter with angular rates from a gyroscope as input in order to
estimate the periodic component Θp.

To estimate the stationary component Θs there is a need to describe the orientation
of the sensor in relation to the global NED frame. Seeing as gravity is a constant force
present in both the sensor frame and the NED frame, and which also can be measured by
an accelerometer, it can be used to estimate the stationary component Θs. A common
filter design used for estimation orientation given measurements of gravity is an EKF
similar to that explained in [25].

The filters proposed to estimate the periodic component Θp and stationary compo-
nent Θs can be presented as parts of a larger filter design which estimates the complete
orientation. This complete design can be represented as a block diagram which is seen
in Figure 3.2.

Figure 3.2: Block diagram of the periodic filter.

Both the periodic and stationary component filters are based upon the Kalman filter
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3.2. FILTER DESIGN, THE PERIODIC FILTER

and will in the following sections be explained separately from one another. Each section
will first motivate a state vector for each of the components before moving on to state
motion models and how they are used to formulate the prediction step of the Kalman
filter algorithm. Finally the filter descriptions explains the states measurement models
used for the Kalman algorithms measurement update step along with any eventual ob-
servation model needed for the estimate which concludes the complete filter descriptions.

3.2.1 Periodic orientation component estimation

The BMFLC filter works under assumption that the signal to be estimated (roll, pitch
and heading rates) can be constructed from a known and finite number of constant
periodic frequencies. The signals in this filter design each have their own set of these
constant frequencies defined as

ωθ =


ωθ1
...

ωθς

 , ωϕ =


ωϕ1
...

ωϕτ

 , ωψ =


ωψ1
...

ωψυ

 , (3.3)

where ς,τ and υ are the corresponding number of frequencies for each signal. By selecting
these frequencies we determine what in the input signal the desired information is and
should be included in the estimated signal output. To motivate the selection of which
frequencies to include we can analyze the frequency content of the input signal using Fast
Fourier transform (FFT). The FFT will indicate the frequency of any present periodic
signals, as the desired angular rate, within the input signal but also any noise, bias and
variation of the stationary orientation component Θs. The noise is however assumed to
be spread out evenly over the frequency spectrum of the FFT and the bias and variation
of the stationary orientation component Θs as a frequency very close to 0 Hz as they
are assumed to change very slowly over time. By disregarding the frequencies associated
with noise and low frequencies all that are left are the periodic frequencies of the desired
angular rates. From Figure 3.1 we can observe that the roll and pitch are likely to have
a single dominating frequency and the selection of frequencies for roll and pitch can with
this in mind be made as a narrow band of frequencies covering the dominating frequency
to increase the robustness in case the periodic frequency should vary. The angular rate
of the heading is however more likely to contain several frequencies. As the number of
frequencies affect the size of the BMFLC state vector it can therefore be wiser to select
only the actual dominating periodic frequencies as opposed to a range covering each of
them. Since the an increase in the size of the state vector increases the computational
requirement of the filter the more sparse selection suggested for heading offers a more
computationally efficient selection for several dominating frequencies spread out over a
wider range.

For each one of the selected frequencies there are two associated coefficients for
the odd and even terms of the frequency according to the Fourier decomposition of
periodic signals [29]. The odd and even Fourier coefficients are denoted a and b and
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by extending the BMFLC state vector with states to estimate any existing bias of the
gyroscope measurements the final state vector can be described as

xp =
[
aθ bθ aϕ bϕ aψ bψ µgyrθ µgyrϕ µgyrψ

]T
(3.4)

where

aθ =


aθ1
...

aθς


T

, bθ =


bθ1
...

bθς


T

, aϕ =


aϕ1
...

aϕτ


T

, bϕ =


bϕ1
...

bϕτ


T

, aψ =


aψ1
...

aψυ


T

, bψ =


bψ1
...

bψυ


T

. (3.5)

Since the input to the filter relates to the derivative of the periodic component Θp,
as opposed to measuring the actual angles of the components, the resulting estimates
will need to be integrated. A trivial solution to this would be to add the integrated
states as for the states in the state vector and integrate them by means of numeric
integration. Numeric integration is however problematic due to that any errors in the
derivative domain will cause the integrated estimate to drift over time making its errors
theoretically unbounded. The BMFLC-Kalman filter offers unique capabilities in terms
of performing integration since the state vector actually describes the properties of a
constant periodic signal rather an estimate of the single sample of the measured signal.
These periodic properties is of great value when performing integration since it means
that the signal can be analytically integrated as opposed to the numerical method.
Exactly how this analytic integration is performed will be explained in detail further
on but for now it is enough to know that the chosen state vector can be used to fully
describe the periodic component Θp in terms of angles as well as angular rates.

State motion model and filter prediction

The Fourier coefficients and biases in the state vector (3.4) are assumed to change ac-
cording to a random walk behaviour. This results in a state space model which describes
the state dynamics as

xpk+1 = F pxpk + δpk (3.6)

δpk ∼ N (0,Dp
k), (3.7)

where F p is the state transition matrix defined as

F p = I2(ς+τ+υ)+3. (3.8)

By using the modified Euler method as described in [31] the process noise covariance
matrix Dp

k can be selected as

Dp
k = TsD̃

p (3.9)

where Ts is the sampling time.
The prediction step of the BMFLC-Kalman filter at time k can now be described by

the algorithm
x̂pk|k−1 = F px̂pk−1|k−1 (3.10)

P pk|k−1 = F pP pk−1|k−1(F
p)T +Dp

k. (3.11)
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State measurement model and filter update

Any constant level apart from the true rotation in the gyroscope measurement can be
seen as a bias since the radar system is stationary. This leads to that the measured
angular rates from the gyroscope can be modelled using the relation

ygyrk =


(
ς∑
i=1

aθik sin(ωθi k) + bθik cos(ωθi k))

(
τ∑
i=1

aϕik sin(ωϕi k) + bϕik cos(ωϕi k))

(
υ∑
i=1

aψik sin(ωψi k) + bψik cos(ωψi k))


︸ ︷︷ ︸

Θ̇
p
k

+

µ
gyrθ

µgyrϕ

µgyrψ

+ εgyrk (3.12)

εgyrk ∼ N (0, Egyrk ). (3.13)

This can be translated into the linear state space measurement model

ygyrk = Hp
kx

p
k + εgyrk (3.14)

where Hp
k is the measurement matrix at time k defined by

Hp
k =

hθk 0 0 1 0 0

0 hϕk 0 0 1 0

0 0 hψk 0 0 1

 (3.15)

in which
hθk =

[
sin(ωθ1k) · · · sin(ωθς k) cos(ωθ1k) · · · cos(ωθς k)

]
(3.16)

hϕk =
[
sin(ωϕ1 k) · · · sin(ωϕτ k) cos(ωϕ1 k) · · · cos(ωϕτ k)

]
(3.17)

hψk =
[
sin(ωψ1 k) · · · sin(ωψυ k) cos(ωψ1 k) · · · cos(ωψυ k)

]
. (3.18)

It can be noted that the measurement matrix Hp
k is linear with respect to the state

vector even if it is not linear with respect to time.
The innovation and the BMFLC-Kalman gain Kp

k can now be calculated according
to

vpk = ygyrk −Hp
k x̂

p
k|k−1 (3.19)

Spk = Hp
kP

p
k|k−1(H

p
k)
T

+Rpk (3.20)

Kp
k = P pk|k−1H

p
k(Spk)

−1
(3.21)

and the measurement update at time k is then described by

x̂pk|k = x̂pk|k−1 +Kp
kv

p
k (3.22)

P pk|k = P pk|k−1 −K
p
kS

p
k(Kp

k)
T

(3.23)
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Analytic integration of the periodic orientation rate

The estimated states and measurement model have up to this point only been described
as an abstract representation relating to the periodic orientation component’s angular
rate Θ̇

p
. But since the periodic filter is intended to estimate an angle as its output there

is a need to relate the states to the desired angular domain as opposed to its derivative
domain. To formulate the relation between the state vector xp and the angles in the
periodic orientation component Θp we can utilize a method similar to that described in
[12]. The method takes advantage of the fact that the periodic component’s angular rate
Θ̇
p

described in (3.12) is an analytic expression containing terms with the general form

ak sin(ωk) + bk cos(ωk)). (3.24)

Seeing as the frequency ω is constant we can similar to [12] formulate the integral of
(3.24) at time instance k as

ak
−1

ω
cos(ωk) + bk

1

ω
sin(ωk)). (3.25)

By applying the general relation of (3.24) and (3.25) to all the terms in the periodic
component’s angular rate Θ̇

p
k we can express the periodic orientation component as

Θ̂
p
k =



ς∑
i=1

aθik
−1
ωθi

cos(ωθi k) + bθik
1
ωθi

sin(ωθi k)

τ∑
i=1

aϕik
−1
ωϕi

cos(ωϕi k) + bϕik
1
ωϕi

sin(ωϕi k)

υ∑
i=1

aψik
−1
ωψi

cos(ωψi k) + bψik
1

ωψi
sin(ωψi k)

 . (3.26)

The equivalent linear state space observation model for the estimated periodic orienta-
tion component Θ̂

p
becomes

Θ̂
p
k = Opkx̂

p
k (3.27)

where Opk is the estimate observation matrix at time k defined as

Opk =

oθk 0 0 0 0 0

0 oϕk 0 0 0 0

0 0 oψk 0 0 0

 (3.28)

in which

oθk =
[
−1
ωθ1

cos(ωθ1k) · · · −1
ωθς

cos(ωθς k) 1
ωθ1

sin(ωθ1k) · · · 1
ωθς

sin(ωθς k)
]

(3.29)

oϕk =
[
−1
ωϕ1

cos(ωϕ1 k) · · · −1
ωϕτ

cos(ωϕτ k) 1
ωϕ1

sin(ωϕ1 k) · · · 1
ωϕτ

sin(ωϕτ k)
]

(3.30)

oψk =

[
−1
ωψ1

cos(ωψ1 k) · · · −1
ωψν

cos(ωψν k) 1

ωψ1
sin(ωψ1 k) · · · 1

ωψν
sin(ωψν k)

]
(3.31)
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As a result of (3.14) and (3.27) both being linear state space models this means that
the estimated state vector x̂pk indirectly represent both the angular rate and the angle of

the estimated periodic orientation component Θ̂
p
k. The only difference between the two

domains is simply which observation matrix is used.
It is also because of this that the analytic integration can be performed by nothing

else than a matrix-vector gain operation[12] as opposed to the numerical method which
usually involves a summation over time. This particular method for performing analytic
integration also has an advantage over the numerical method since error in the analytical
integration only depend on the error at time k and not any previous time instances.

3.2.2 Stationary orientation component estimation

Since the accelerometer measurements contain the direction of the earth’s gravitational
force it also implies the orientation of the sensor with respect to the NED frame. Because
the input to the stationary orientation component filter, the accelerometer measure-
ments, has a direct relation to the stationary orientation component Θp a suitable state
vector is the component which is to be estimated. The state vector for the stationary
orientation component is therefore defined as

xs =
[
θ ϕ ψ

]T
. (3.32)

State motion model and filter prediction

Based on the observation that the stationary orientation component Θs varies in a
relatively slow and unpredictable manner we have decided to model its movement by a
random walk model stated as

xsk+1 = F sxsk + δsk (3.33)

δsk ∼ N (0,Ds
k), (3.34)

where F s is the state transition matrix defined by an identity matrix according to

F s =

1 0 0

0 1 0

0 0 1

 . (3.35)

By again using the modified Euler method as previously done in (3.9) the process noise
covariance matrix Ds

k can be selected as

Ds
k = TsD̃

s (3.36)

where Ts is the sampling time.
With the described process model the EKF filter prediction step at time k can be

described by the algorithm
x̂sk|k−1 = F sx̂sk−1|k−1 (3.37)
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P sk|k−1 = F sP sk−1|k−1(F
s)T +Ds

k. (3.38)

It can be noted that the result of the algorithm only is that the previous state
covariance P sk−1|k−1 is increased by the process noise covariance Ds

k to form the predicted
state covariance P sk|k−1. To give a more intuitive interpretation of this we can describe
this as the certainty of knowing the value of the state being decreased. That is also what
can be expected since the random walk model does not give any clear indication of what
value the state should assume next other than that it should be in the vicinity of the
previous state value. The most motivated prediction for the state is therefore the same
as previous value but with a lower degree of certainty.

State measurement model and filter update

Each measurement from the accelerometer includes both the gravity acceleration g0 as
well as any other forces caused by translational acceleration ft. In the present context
the gravity acceleration g0 can be considered as constant and known in the NED frame,
but the accelerometer observes it in its own orientation frame which means that the
force of gravity g0 has to be rotated from the NED frame to the observed one. This
rotation is dependent on the stationary orientation Θs that is to be estimated and can
be performed using a DCM rotation matrix as described in Chapter 2. Knowing this
allows the measured acceleration to be modelled using the relation

yacck = (R(xs))T (g0 + ft) + εacck (3.39)

εacck ∼ N (0,Eacck ). (3.40)

The use of this model does however pose a challenge since the accelerometer can not
distinguish between the two measured forces, but information regarding the stationary
orientation Θs is given by the gravitational force and not the translational. This means
that the translational force ft should be removed in the ideal scenario and a solution
to this would therefore be to estimate the translational force ft in order to remove it.
That would on the other hand increase the complexity of the filter so another solution
is to assume that the translational force is of negligible size and can be ignored. Even if
this argument might be somewhat faulty it can still be useful seeing the radar system is
stationary meaning that any other acceleration apart from that caused by gravity should
have a mean value of zero over time. This fact can be utilized when tuning the filter by
reducing the process noise covariance matrix Ds

k since any translational force will cause
the estimate to move around the stationary orientation with what can be compared to as
increased noise. By neglecting the translational force ft in (3.39) the final mathematical
model describing the accelerometer measurement can be reduced to

yacck = (R(xs))Tg0 + εacck (3.41)

(3.41) can be translated into the nonlinear state space measurement model

yacck = Hs
k(xs) + εacck (3.42)
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where Hs
k(xs) is the nonlinear measurement matrix defined as

Hs
k(xs) = (R(xs))Tg0. (3.43)

Seeing as the measurement matrix Hs
k(xs) is non-linear it therefore needs to be

linearized in the operation point, the state xpk, which is defined as the 3x3 Jacobian
matrix of Hs

k described by

H ′sk (xs) =
[
(∂R(xs)

∂θ )
T
g0 (∂R(xs)

∂ϕ )
T
g0 (∂R(xs)

∂ψ )
T
g0
]

(3.44)

The Kalman gain Ks
k can now be calculated using

vsk = yacck −Hs
k(x̂sk|k−1) (3.45)

Ssk = H ′sk (x̂sk|k−1)P
s
k|k−1(H

′s
k (x̂sk|k−1))

T
+ Esk (3.46)

Ks
k = P sk|k−1(H

′s
k (x̂sk|k−1))

T
(Ssk)

−1 (3.47)

and the measurement update at time k is then described by

x̂sk|k = x̂sk|k−1 −K
s
kv

s
k (3.48)

P sk|k = P sk|k−1 −K
s
kS

s
k(K

s
k)T . (3.49)

The estimated stationary estimates are then added to the periodic to give an estimate
of the absolute angle.
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4
RESULTS

The results are divided into attitude (roll, pitch) and heading estimation. Data collected
from the available radar platform with sensor installed is used for evaluation. The sensor
estimates are compared to the reference as an evaluation of the SBG sensor. A designed
periodic filter estimating the orientation is tuned and compared to a general solution
based on quaternions but also the reference system and the SBG filter.

4.1 Scenario specifications

To motivate the results from the filter evaluation it is important to consider how the
testing is performed. The evaluation of long term performance is set by what duration
of time where longer obviously is preferred, but a suitable upper time limit has to be set
which was determined to be 15 min (900 seconds). This section describes the method of
collecting data that the filters can be applied to. It also describes how the synchronization
is performed and how the filter tuning is decided as well as how this affects the results.

4.1.1 Data collection

Data is collected from the reference system and the sensor simultaneous. The output
rate of the reference is 10 Hz while the sensor output is collected at a rate of 100 Hz.
The duration of the collected logs are each approximately 15 minutes. This corresponds
to a normal timespan when the radar is used and it is enough time to see long term
trends in the filter outputs. Both systems have access to GPS which means that for
time synchronization GPS time can be used. GPS can provide the time with great
accuracy and the systems can produce data with GPS timestamps, which leads to well
synchronized measurement points.
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4.1.2 Misalignment correction

To be able to use the reference system the evaluated sensor and filter needs to be defined
in a coordinate system as close as possible to the one of the reference. This means that
before logging any data the misalignment between the sensor and the reference needs to
be compensated for. The misalignment angle α can be seen as a very important tuning
parameter since if the two systems are measuring roll, pitch and heading in two different
coordinate systems it is meaningless to compare them. In the test situation for the radar
platform described earlier the coordinate system for the sensor is located as in Figure 1.5.
The misalignment angle α is unknown but can be obtained by taking observing angular
measurements when the whole system is still. The reference system is not completely
perpendicular relative the ground which means that there is an initial pitch angle βref
as shown in the leftmost illustration in Figure 4.1. Since positive direction of pitch angle
is defined in different directions between the two systems, the SBG sensor will measure
an angle βsbg. The two measurement angles are added to remove the angle relative to
ground as

β′sbg = βref + βsbg (4.1)

where β′sbg is the relative difference between the two coordinate systems. This gives the
situation in the middle illustration in Figure 4.1. Then the misalignment angle α easily
can be calculated as

α = 90◦ − β′sbg. (4.2)

The last step is then to define the axes in the same orientation as the reference system
as

x′sbg = −zsbg, y′sbg = −ysbg, z′sbg = −xsbg. (4.3)
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Figure 4.1: Illustration of misalignment between two coordinate systems.

In Figure 4.2a a measurement sequence of roll and pitch angle before calculation of
α is shown. The pitch outputs here corresponds to βref and βsbg. The mean values of
this data are used in (4.1)-(4.3) to calculate the misalignment and rotate the axis into
the correct position. After the compensation with α the measurements look like those
in Figure 4.2b. Now the angle outputs are more consistent between the systems.

(a) Before correction for misalignment. (b) After correction for misalignment with α.

Figure 4.2: The coarse misalignment correction.

However when measuring the filter output from the SBG sensor compared to the
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reference it can be seen in Figure 4.3a that there still is a small offset due to misalign-
ment. This fine misalignment is solved by observing pitch values from the SBG and the
reference, the mean difference is here measured to be 0.092◦. By using this angle and
forming a rotation matrix as introduced in Chapter 2, a matrix describing a rotation of
0.092◦ in pitch is obtained. The raw sensor data is then transformed to a more correct
coordinate system. For the gyroscope the transformed data can be expressed as

ygyr = R(0,0.092,0)ygyr
′

(4.4)

where ygyr′ is the measured data that needs to be rotated. The accelerometer data is
rotated with the same rotation matrix as

yacc = R(0,0.092,0)yacc
′

(4.5)

For a fair comparison of any filter using raw sensor data and the already implemented
SBG filter, the SBG filter output needs to be transformed to the correct system as well.
This is not trivial but can be done by expressing the orientation in terms of a DCM
matrix as

ΘDCM ′
= R(θ,ϕ,ψ) (4.6)

then instead of rotating a vector, the DCM matrix are rotated with the same rotation
matrix as in REF. This corresponds to instead of rotating a vector in the sensor frame,
the actual sensor frame is rotated to the reference frame as

ΘDCM = R(0,0.092,0)ΘDCM ′
(4.7)

The rotation of a DCM matrix yields another DCM matrix that needs to be expressed
as Euler angles. This is easily done as described in [6]

θ = arctan(
ΘDCM

32

ΘDCM
33

) (4.8)

ϕ = sin−1(ΘDCM
31 ) (4.9)

ψ = arctan(
ΘDCM

21

ΘDCM
11

) (4.10)

that gives the roll, pitch and heading Euler angles but now in the reference coordinate
system. The results from the fine misalignment of 0.092◦ is shown in Figure 4.3b, now
the measurements are centred around the reference axis instead of offsetted. By rotating
the measurements small static errors can be compensated for but there is no way of
measuring the exact misalignment angle there will always be some small error due to
misalignment. Since the measured angles are extremely small a small misalignment is
more dominant than if the measured angles were larger. This is of course a problem when
validating results from filtering but it is known that the small remaining misalignment
error is static which means that at least the dynamic error is easy to observe.
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(b) After fine misalignment.

Figure 4.3: Results from the correction for fine misalignment. The measurements are now
centred around the reference axis.

4.1.3 Parameter choices/Tuning

For the Kalman filter to work the noise parameters are assumed to be normally dis-
tributed with some mean and variance. The measurement noise E is easily classified by
letting the system stand still (no antenna rotation) and observing the raw sensor data
from both the gyroscopes and the accelerometers. In Figure 4.4 the distributions of
the gyroscope measurements with the sensor still. The histograms show typical normal
distributions which means that the Kalman filter introduced in Chapter 2 can be used.
As expected the histograms shows that the gyroscopes contains biases, but this is not a
problem since the implemented filter uses a bias estimator.
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(a) Histogram gyroscope x.
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(b) Histogram gyroscope y.
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(c) Histogram gyroscope z.

Figure 4.4: Distributions for gyroscopes.

From the distributions in Figure 4.4 the covariance matrix describing the gyroscope
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measurement noise is calculated to

Egyr =

3.0355 · 10−7 1.3016 · 10−8 5.2566 · 10−9

1.3016 · 10−8 1.9341 · 10−7 −1.0519 · 10−8

5.2566 · 10−9 −1.0519 · 10−8 1.9226 · 10−7

 (4.11)

In the same way as the gyroscope measurements the accelerometer measurements
from the same measuring sequence can be illustrated with histograms as in Figure 4.5.
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Figure 4.5: Distributions for accelerometers.

Also here the noise seems normal distributed and the covariance matrix for the
accelerometer noise is calculated as

Eacc =

1.1630 · 10−4 2.5361 · 10−5 2.0552 · 10−6

2.5361 · 10−5 2.3213 · 10−4 −8.8820 · 10−6

2.0552 · 10−6 −8.8820 · 10−6 2.1310 · 10−4

 (4.12)

To be able to measure orientation relative ground the accelerometers are used to find
the nominal gravity vector and estimating how they are tilted. For this to work, the
nominal gravity vector must be defined as a tuning parameter. This is done by collecting
data from the accelerometers when the sensor is installed and radar platform is still. For
each instance of time the magnitude of the acceleration vector is determined and in the
end the mean values of the magnitudes are calculated. This value is in this case −9.8297
m/s2. If the sensor was perfectly placed relative ground there would only be acceleration
in z and the corresponding gravity vector is chosen as

g0 =

 0

0

−9.8297

 (4.13)

Until now more general tuning parameters are described but to achieve the best per-
formance of the filter derived in Chapter 3 some other parameters needs to be tuned. The
main tuning parameter of the periodic filter is which frequencies the BMFLC algorithm
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can use to build the estimated signal. These frequencies are determined by investigating
the raw data from the SBG sensor installed in the radar platform. By performing fast
Fourier transform (FFT) on this signal any dominating frequency is found. Figure 4.6a
shows the full frequency spectrum of 50 Hz for the three angular velocities. In these
figures the DC component is removed. The magnitude of the frequency content is here
normalized to 1 and it is clear that in roll and pitch there is one distinct frequency domi-
nating the spectrum. This frequency is approximately 1 Hz and comes from the fact that
the radar antenna is rotating with 1 Hz causing the platform to sway. Five frequencies
in each axis are selected for the periodic filter. Apart from the dominating frequency two
additional frequencies in each direction is used to allow some deviations from the main
frequency. The selected frequencies are illustrated as stems in Figure 4.6b. In heading
there seems to be no single dominating frequency but several dominating frequencies.
This means that for tuning the BMFLC filter the five largest frequency components are
chosen for the frequency tuning.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

R
ol

l

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

P
itc

h

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

H
ea

di
ng

Frequency (Hz)

 

 

Selected frequencies
SBG gyroscope

(a) Full spectrum.

0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07
0

0.2

0.4

0.6

0.8

1

R
ol

l

0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07
0

0.2

0.4

0.6

0.8

1

P
itc

h

20 22 24 26 28 30 32 34 36 38 40 42
0

0.2

0.4

0.6

0.8

1

H
ea

di
ng

Frequency (Hz)

 

 

Selected frequencies
SBG gyroscope

(b) Selected frequencies.

Figure 4.6: Frequency content of measured rotation rate.

The last tuning parameter to complete the filter is the process noise for the states.
The states are divided into three parts: the amplitudes, the biases and the stationary
angles. The amplitudes are assumed to be more or less constant but if the amplitude
changes, the filter will need to be able to estimate this change. The estimated bias is
assumed to be even slower due to high bias stability. The process noise for the states
describing amplitude weights and bias is selected as

Dp
k = TsD̃

p = 0.01

[
I2(ζ+τ+ν) · 10−2 0

0 I3 · 10−7

]
(4.14)
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The stationary angle describes in some sense the base orientation that the radar
platform moves around. This orientation is in the ideal case not changing but reference
data shows that this is not the case. However this movement is very slow and the process
noise is assumed to be as low as

Ds
k = TsD̃

s = 0.01I3 · 10−5 (4.15)

4.2 Filter evaluation

This thesis is mainly focused on two things: evaluate the sensor directly and present
some solution to take advantage of the situation that the sensor is placed in to improve
estimates in orientation. The results will here be presented first in attitude (roll, pitch)
and then in heading, this since the methods differ for these two cases. The results from
the periodic filter will be compared to the reference and the QEKF will be used as a
baseline for comparing the periodic filter with.

4.2.1 Attitude estimation

In the sensor there is an already implemented extended Kalman filter (EKF). This filter
is developed by SBG and the specifications for orientation presented in Chapter 1 is
based on this. How this filter works in detail is unknown but for evaluation purposes
it is interesting to examine the filter output compared to the reference. The sensor has
the capability to output angular measurements directly and it is therefore interesting to
investigate the gain of implementing a more complex filter using raw sensor data. In
Figure 4.7 the filter output in attitude(roll, pitch) from the SBG sensor are compared
to the output from the reference system. As can be seen, the roll angle from the sensor
follows the reference’s dynamic but the absolute angle seems to be less accurate. In
Figure 4.7d the error between the SBG filter and the reference is shown. It can be seen
that the error from SBG is less than ±0.2◦ which also corresponds to the specified error
of the sensor.
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200 202 204 206 208 210
−0.05

0

0.05

0.1

0.15

R
ol

l(d
eg

)

 

 
Reference
SBG

200 202 204 206 208 210
2.1

2.15

2.2

2.25

2.3

2.35

P
itc

h(
de

g)

Time(sec)

(c) Zoomed in to 10 s window.
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(d) SBG absolute error from reference.

Figure 4.7: SBG filter vs Reference system output.

There is a drifting behaviour in the estimated angles, but the dynamic behaviour of
does however follow the reference’s dynamic behaviour. This can be seen more clearly
in the 10 second window in Figure 4.7c. If the drift behaviour was then removed it is
reasonable to believe that the EKF is a good solution when it comes to estimating the
attitude.

The periodic filter described in Chapter 3 estimates the dynamic angle, the station-
ary angle and the biases of the gyroscopes. This should provide a filter solution that if a
periodic motion is observed give good estimates on the absolute angle. That is both the
stationary and periodic angle should correspond to the motion of the platform measured
by the reference system.
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The amplitudes of the estimated angular velocity signal can be visualized using the
amplitude states as described in (2.59). In Figure 4.8a periodic angular rate measure-
ments from the gyroscope together with the estimated angular velocity is shown. The
estimated amplitudes for each of the five selected frequencies are depicted in Figure 4.8b
and as expected there is one amplitude in roll/pitch that is more dominant than the
others. This amplitude are the one corresponding to the dominant frequency in the FFT
plot in Figure 4.6. Since the additional four frequencies surrounding each of the domi-
nant ones in roll and pitch have a very low amplitude their usefulness can be questioned
as they do not seem to add any robustness.
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(a) Gyroscope signal(red) and estimate.
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Figure 4.8: Estimates illustrated as angular velocity and amplitudes.

As seen from the distributions of gyroscope measurements in Figure 4.4 there is some
bias of the sensors that needs to be removed for best estimation. In Chapter 3 the bias
estimator is explained that finds the biases and then subtracts them to form the best
possible estimation of the angular rate. The mean angular rotation of the platform should
be zero since it is not moving from its starting point. In Figure 4.9 the measurements
of angular rotation and the estimated biases are shown.
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Figure 4.9: Raw gyroscope data and estimated bias.

With the bias and the amplitudes estimated the angular velocity estimate can be
formed. Figure 4.10 shows the estimates from Figure 4.8a zoomed in to a window of
10 seconds. Here the power of the periodic filter is shown. All frequencies except the
one defined in the FFT is neglected and what is left is a smooth signal representing the
angular velocity. The estimated velocity is centred around 0 ◦/s which is an additional
indication that the bias estimation works.
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Figure 4.10: Raw gyroscope data and estimated angular velocity.

When assuming the periodic motion it is assumed that the drift observed in the SBG
estimates is not an actual motion and the platform is moving around a stationary base
angle. This base angle however are not assumed to be fixed but is determined in the
filter estimating this stationary angle Θs. This assumption is intended to improve the
orientation estimates compared to a more general method such as the QEKF derived in
2. In Figure 4.11a these two filters are compared to the reference. It is clear that the
periodic filter is performing better than the QEKF, especially by inspecting Figure 4.11d
where the error for the both filters are plotted. The error from the QEKF is in static
error bigger than the periodic and also the dynamic error is worse for the QEKF where
the error spans from 0 to 0.4 ◦ in roll and 0 to 0.2 ◦ in pitch. The error from the periodic
filter is more stable from 0 to 0.1 ◦ in roll and 0 to 0.05 ◦ in pitch. The reason that the
pitch error is smaller is due to the fact that the movement in pitch is about half of the
movement in roll

The results show that the periodic filter is estimating the attitude better than a
simple more general solution. This is an important observation since it shows that it
actually can be worth developing a more complex filter that uses information of motion
to improve orientation estimation atleast compared to the general solution.
The assumption of slowly changing amplitudes seems to be correct which means that
the low process noise is well motivated. the static angle is also slow varying but the low
noise on this tuning parameter causes the filter to have a long transient period as seen
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in Figure 4.11a. This is of course a disadvantage with the implemented periodic filter
but in radar applications the accuracy is way more important so the 80 seconds long
transient time is worth the wait if the filter produces stable accurate results after that.

0 100 200 300 400 500 600 700 800 900

0

0.5

1

1.5

R
ol

l(d
eg

)

 

 
Reference
QEKF
Periodic

0 100 200 300 400 500 600 700 800 900
−1

0

1

2

3

P
itc

h(
de

g)

Time(sec)

(a) Complete log of 900 s.

200 220 240 260 280 300
−0.5

0

0.5

1

R
ol

l(d
eg

)

 

 
Reference
QEKF
Periodic

200 220 240 260 280 300
2

2.1

2.2

2.3

P
itc

h(
de

g)

Time(sec)

(b) Zoomed in to 100 s window.

200 202 204 206 208 210

0

0.5

1

R
ol

l(d
eg

)

 

 
Reference
QEKF
Periodic

200 202 204 206 208 210
2.05

2.1

2.15

2.2

2.25

2.3

P
itc

h(
de

g)

Time(sec)

(c) zZoomed in to 10 s window.

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

R
ol

l(d
eg

)

 

 
QEKF
Periodic

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

P
itc

h(
de

g)

Time(sec)

(d) Absolute error of periodic filter and QEKF.

Figure 4.11: Periodic vs QEKF filter and Reference system.

In Figure 4.12a the periodic filter is compared to the SBG filter outputs in the sensor.
It is clear that the periodic filter estimates are comparable with the SBG estimates. The
periodic filter has one great advantage over the SBG filter and that is that due to the
assumption of periodicity it does not drift. The drift observed in the SBG output results
in an error that changes over time. The error from the periodic filter is however not
drifting due to the analytical integration. The stable error from the periodic filter is
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mainly due to some small remaining misalignment between the SBG sensor and the
reference.
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(b) Zoomed in to 100 s window.
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(c) Zoomed in to 10 s window.
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(d) SBG and periodic filter absolute error.

Figure 4.12: Periodic vs SBG filter and Reference system.

To quantify the results from the filter comparison root mean square deviation (RMSD)
[32] is used, this is a way of determining the standard deviation of the error and is cal-
culated as

RMSD =

√
E[yref − Θ̂]2 (4.16)

where E[] corresponds to the expected value. In Table 4.1 the RMSD values for the three
filters are shown and it is seen that the periodic filter outperforms both the general QEKF
and also the SBG solution.
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Table 4.1: RMSD values from 800 s long data sequences where The initial transients are
excluded.

RMSD SBG Quaternion EKF BMFLC

Roll 0.0927 0.1757 0.0509

Pitch 0.0595 0.1888 0.0282

4.2.2 Heading estimation

The method for testing and evaluating heading angle is the same as for attitude. A pure
comparison between the SBG filter and the reference is shown in Figure 4.13. As seen
the reference heading is more or less constant while the SBG output is monotonically
decreasing. This is a not entirely unexpected behaviour since it is known that the SBG
filter uses magnetometers to estimate heading and the rotating antenna disturbs the
magnetic fields. The measured magnetic field is shown in Figure 4.13b and as seen
it is not constant but periodically distorted as expected which means that it cannot
be compensated with calibration. To compensate for the distortions in magnetic field
it is possible to use the fact that it is known to be constant and remove all periodic
measurements and hence get only the constant level.
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Figure 4.13: Comparison of heading and magnetometer data from SBG.

For the periodic filter the amplitudes in heading are harder to interpret since now
there is not one dominating frequency. In Figure 4.14b the amplitudes of heading rate
is illustrated in the same way as for the attitude. In this case amplitude weights for
other frequencies than the strongest are influencing the estimated angular velocity. The
amplitudes describe how much of each frequency component that is present in the signal
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since the estimated signal is a sum of sine waves with the amplitudes in Figure 4.14b
and with corresponding frequency.
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(a) Gyroscope signal(red) and estimate.
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Figure 4.14: Estimates illustrated as angular velocity and amplitudes.

For the bias estimation there is no difference between attitude and heading since it
is only gyroscope measurements around different axis and the periodicity does not affect
the bias. This is confirmed in Figure 4.15 where the bias is estimated just as good in
heading as attitude.
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Figure 4.15: Raw gyroscope data and estimated bias of heading rate.

Figure 4.16 shows a 10 second window of the gyroscope measurements and the esti-
mated heading rate. In this figure there is no smooth signal as in the attitude case and
that is of course because the estimated angular velocity no longer consist of a signal with
more or less one frequency. It is hard to see but the estimated signal is a periodic signal
consisting of the frequencies chosen for tuning which means that the noise is filtered out
leaving only the motion.

52



4.2. FILTER EVALUATION

200 202 204 206 208 210
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time(sec)

H
ea

di
ng

 r
at

e(
de

g/
s)

 

 
SBG gyroscope measurements
Estimated angular velocity

Figure 4.16: Raw gyroscope data and estimated angular velocity.

The periodic filter does not use magnetometers since this is known to cause problems.
Therefore the filter is not able to resolve the absolute heading of the sensor which leads
to that the estimated heading will always be centred around 0◦ which is verified in
Figure 4.17. However if heading movement is periodic and the mean velocity is zero,
the periodic filter can be used to estimate the dynamic heading. That is how much the
heading moves but not around which stationary angle it moves. In Figure 4.17 the mean
of the reference signal is removed for easier comparison with the dynamics in the periodic
filter. The estimates from the periodic filter are not consistent with the reference and
the dynamic behaviour is not the same either. The reference system has an output rate
of 10 Hz meaning that frequencies higher than 5 Hz is not observable, which means that
the frequencies from the SBG gyroscope data of 22.5 Hz and up to 40 Hz is not possible
to see in the reference signal. It is therefore impossible to see the true motion in the
reference and comparing the dynamics is useless. As it is there is no way of telling how
good the estimated heading is with the available reference system.
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5
CONCLUSION

The evaluation of the SBG sensor shows that the specified accuracy in attitude is fulfilled,
the angular estimates are never further from the reference system than 0.2◦. There is
however a drifting behaviour in the estimates most likely due to that the filter is general
and not tuned for radar platforms. In heading the SBG estimates are drifting due to
that the sensor is placed in an environment that distorts the magnetometers used for
this estimation.

The periodic filter designed shows that it, despite simplifications regarding modelling
and tuning, can be worth defining a periodic model for the type of system being evalu-
ated. Compared to a general solution using quaternions it shows improved results. When
compared to the SBG filter the periodic filter is better, especially the drift obtained in
the SBG estimates is not present in the output of the periodic filter. The analytical
integration of estimated velocity is a good solution when the properties of the motion
are known because the numerical integration is avoided and thereby also drift.

There is a small static error remaining in the periodic filter due to problems in
measuring an exact misalignment angle. In heading gyroscope data shows that there
seems to be frequencies of 22.5-40 Hz in the heading motion. But since the reference
only shows frequencies up to 5 Hz it is impossible to determine the performance of the
periodic filter in heading to any further extent.

A major advantage of the periodic filter is in how it divides the stationary and peri-
odic components of the estimates. This separation is currently only done to filter out the
periodic part of the angular rate from the gyroscopes. A possibility is however to use the
same concept of separation to eliminate any periodic component of the accelerometer
measurements which currently interfere with the estimated stationary of the orientation.
This issue is currently dealt with by tuning of the stationary orientations process noise
that has the disadvantage of also making it slow in the initial convergence during filter
initialization. Even if it has not been investigated there is also the possibility that remov-
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ing the periodic component of the magnetometer could remove much of the disturbance
meaning that heading may be able to be estimated.

As a final remark it can be said that the MEMS-based inertial navigation system Ellipse-
N does not provide a complete solution for the orientation when used in radar appli-
cations. A partial solution such as the roll and pitch or relative movement of those
can however be obtained reliably meaning that MEMS-based sensors can be used as a
complementing system.
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