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Vascular Bifurcation Detection in Cerebral CT Angiography Using CNN and Frangi
Filters
NILS JACOBSON
Department of Physics
Chalmers University of Technology

Abstract
Segmentation and feature extraction are important tools for analysing and
visualizing information in medical image data, particularly in vascular image data
which relates to widely spread vascular diseases. Vessel segmentation is extensively
featured in research, recently adapting deep learning trends in image processing.
This paper aims to develop a vessel bifurcation detection method to support a seed
point based segmentation approach. The suggested approach is a combination of
classification, with a convolutional neural network, local vessel segmentation, with
Frangi filters, and 3D morphological skeletonization. A small data set is produced
for network training and evaluation. Results indicate a high classification accuracy
which filters problematic samples for the Frangi filter. Thus, the combination can
suggest quality branch seed points under most circumstances. Next step would be
to expand the data set to enable further optimization and more rigid evaluation.
In any case a combination of a high-performance classifier followed by qualitative
assessment of local samples show potential.

Keywords: CNN, CTA, DenseNet, Vessel Segmentation, Vessel Branch, Vascular
Bifurcation Detection
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1
Introduction

Currently there is tremendous technical progress in the medical field, not least in
areas of image processing and analysis. Applications include visualization and
simulation of the human body, and diagnostic assistance. More specifically an
application is simulation of systems for training medical professionals in
performing difficult procedures. Developing and maintaining proficiency in such
procedures requires massive amounts of practice.[1][2] Simulations provide
opportunities to practice without having to risk patients’ health or use expensive
animal trials.[3]

Endovascular surgery are minimally invasive procedures performed to treat a wide
range of vascular conditions such as aneurysm, stroke, and embolism. The
procedures involve inserting a catheter into an peripheral vessel and with a wire
guide it to the vessel section in need of surgery.[4] This requires a lot of experience
and training which partially can be obtained through simulations.[1] Endovascular
surgery can be simulated with an optical sensor used to interface medical tools and
catheters to a virtual 3D model of the vascular system.[5] Apart from educational
practice a future potential use of this simulation system is to prepare for an
impending medical emergency case, for example a patient with ischemic stroke.
The surgeon could practice in the simulator on a patient specific anatomy while
the patient is being anaesthetised and prepared for the operation.[5] A requirement
to enable such usage is being able to quickly make a 3D model of an actual
patient’s specific vascular anatomy.

3D models of vascular anatomies used in simulations of endovascular surgery are
modelled from CT- and MR-angiograms. Manual segmentation of blood vessels in
angiograms is time consuming and require expert radiologists. To quickly build a
3D model, vessel segmentation must be automated. Automated vessel segmentation
can, in addition to speed up model creation, make models cheaper and more readily
available. There are various approaches to automate vessel segmentation. Currently
approaches based on deep learning show the best robustness and accuracy.[6]

CTA is standard procedure for stroke patients as they are admitted to a hospital.
The blood vessels of main interest in stroke patients are the carotid and cerebral
arteries.[7] Cerebral and coronary arteries supply the most vital organs, the brain,
and the heart, respectively. Hence, even small vessels are of interest when segmenting
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1. Introduction

these arteries which make the requirements for segment stricter than elsewhere in
the vessel tree. Existing methods leave room for further progress and improvements
in this field.[8]

Against this background this thesis is carried out in collaboration with Mentice,
which has developed a semi-automatic method for segmenting the carotid and
cerebral arteries. As a part of Mentice’s method, seed points are needed in
protruding vessels from bifurcations along a known vessel. Specifically, this thesis
will attempt to develop and suggest a solution for the sub problem of detecting
vascular bifurcations. Branch detection is not only relevant in the context of this
project. Other methods that use seed points, for instance [9], also requires branch
detection to find new seed points and recursively segment the vessel tree. In Figure
1.1 a vascular model with example seed points place along vessels branching from a
known marked vessel can be seen.

Figure 1.1: Part of a model of the cerebral vascular tree. The yellow line marks a
known vessel, yellow circles mark bifurcation locations along the known vessel and
the tiny blue dots are seed points along the vessel branches.

1.1 Problem Description
Overarching the problem addressed in this thesis is an opportunity to improve the
availability of 3D models for specific patients’ vascular anatomy to include in
surgery simulators for practice and preparations. In this case the focus is
segmentation of carotid and cerebral arteries, which are the vessels of interest with
stroke patients. To realize this opportunity, automatic vessel segmentation must
be performed quickly and with sufficient quality. One approach for segmenting
arteries in standard procedure stroke CTA requires a sub-task to be solved to
succeed. The sub-task consists of detecting bifurcations along an arbitrary known
vessel and marking the protruding vessels. This sub-task is the problem addressed
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1. Introduction

in this thesis.

1.1.1 Aim and Research Questions

The aim of this thesis is to develop and propose a method for detecting vascular
bifurcations along a blood vessel with priorly known centerline and radii in cerebral
CTAs including the carotid arteries. Proposed method is to provide seed points in
branches for a seed point based vessel segmentation method.

To reach this aim, the following research questions should be answered:

• Which methods are suitable for branch detection in CTA?

• Does the developed and proposed method perform sufficiently well?

1.1.2 Scope and Limitations

As the bifurcation detection approach suggested in this thesis is supposed to be
compatible as a part of a particular vessel segmentation method there are some
requirements on the input and output. Furthermore, to be feasible for the time
frame of this project, there are some additional imposed limitations.

• Assume that there are vessels with prior known centerline and radii when
specifying the input format.

• Proposed method will only be developed to work with CTAs, not MRAs or
other imaging techniques.

• All used CTA data will be provided by Mentice

• It will be assumed that there only are two-way branches. This should not
be a very restrictive constraint. It might exclude some complex branching
structures such as the circle of Willis, this can be left for future work.

• The main focus will be on large branches of the carotid arteries.
Furthermore, there is a limit to which size of branching vessels need to be
detected. Endovascular surgery cannot effectively be performed on the
smallest vessels. These vessels are therefore of no interest against the
background of this project. Additionally the resolution and quality of the CT
angiograms will inevitably limit the ability to detect vessels, particularly
small vessels.

• Rigid verification of the method might not be possible due to shortage of
ground truth material. Further verification will have to be done by manual
trial on various samples.

3



1. Introduction

1.2 Thesis Outline
In the introduction, Chapter 1 , a brief background of the problem is given. The
problem is defined with a purpose and scope.

Chapter 2 gives a deeper background understanding by introducing relevant
medicine related concepts and prior vessel segmentation research. A few other
theories applied in this thesis are described here as well.

Chapter 3 serves to describe the theory of deep learning. This is the main theory
applied in this thesis. Thus, a separate chapter is justified.

Chapter 4 describes the choices made during development of the algorithm and
why they were made. This includes how theories were applied and how data was
obtained and processed.

In Chapter 5 the results are presented along with the settings for which they
were acquired.

The results are discussed in Chapter 6 with respect to validity, prior research
and future opportunities. This chapter is concluded with summarizing conclusions
of this thesis.

4



2
Segmentation and Feature

Extraction of Vascular Structures

This chapter introduces relevant background information and prior research on vessel
segmentation and vascular feature extraction. The theoretical framework used later
in the report is also presented here. However, the topic deep learning is attended to
separately in Chapter 3.

2.1 Computed Tomography Angiography
The medical imaging technique used to visualize the lumen of blood vessels and other
vascular structures is called angiography. In this thesis CTA is used, as it is standard
procedure for stroke patients [7], as mentioned in the Introduction, Chapter 1. MRA
(magnetic resonance angiography) is a similar technique based on MRI (magnetic
resonance imaging). Qualitatively a difference is that bones are easier to discern
from blood vessels in MRA than in CTA as mentioned in [10].

CT compute image slices from X-ray measurements. Stacking these image slices
produce a 3D tensor of pixel values. Pixels are called voxels in 3D and constitute a
3D image. Various tissues and substances attune differently to X-rays and give rise to
different intensities in the CT images. The intensities, called the linear attenuation
coefficient, µ, are calibrated for individual CT-scanners, usually with water as a
reference. To simplify comparison between different CT-scanners the intensity is
usually converted to the Hounsfield units, HU , see the Hounsfield scale[11]. The
Hounsfield scaled corresponds to a radiodensity and is defined by distilled water
having 0 HU and air -1000 HU. The conversion from the linear attenuation coefficient
to HUs is

HU = 1000 · µ− µwater
µwater − µair

.

Details about CT can be read in [12] or in an article by G. N. Hounsfield [13], who,
together with A. M. Cormack was awarded the Nobel prize for the development of
CT in 1979.

5



2. Segmentation and Feature Extraction of Vascular Structures

Blood is mostly water, which also is the main component in most body tissues.
Thus, it is difficult to distinguish blood vessels in CT images. Hence, in CTA, a
radio contrast fluid is injected into the vessels. As the contrast fluid blend with
the blood the radiodensity rises and the vessels will be easy to discern from the
background tissues.[7] Blood vessels with radio fluid are about 200-600 HUs. Most
other tissues are as mentioned at 0 HUs. However, some soft tissues and cancellous
bone can be in a similar range. Cortical bone is 500-1900 HU which also can overlaps
with blood vessels in CTAs.[14]

2.1.1 DICOM File Format

CT images are usually saved as DICOM file format. The DICOM file header contains
a lot of information. Details about DICOM format can be found in [15]. Header
information relevant in this thesis is:

• Pixel Spacing, physical distance between/size of pixels in mm, two values,
one for each dimension

• Slice Thickness, thickness of an image slice in mm

• Rescale Slope, slope when rescaling to HU

• Rescale Intercept, offset term according to Equation 2.1, when rescaling to
HU

Information about the specific CT-scanner calibration is included and makes the
conversion to HUs from intensity, I:

[HUs] = [Rescale Slope] · I + [Rescale Intercept] (2.1)

2.2 Cerebral Vascular Anatomy

Standard procedure stroke CTA usually include everything from the aorta arch
and up in cranial direction, as seen in Figure 2.1. The aorta arch usually is only
partially included as seen in yellow in the bottom of Figure 2.1. From the aorta
mainly four branches lead to the brain. Firstly, the left and right carotid arteries,
which each split into an external and internal branch. The internal branch passes
through the temporal skull bone where the vessel is difficult to discern from the
bone. Secondly, the left and right vertebral arteries which partially runs inside the
vertebrae.[16] As the carotid arteries are the largest vessels supplying the brain, they
are most important in the context of stroke and are vessels mainly focused on this
thesis.

6



2. Segmentation and Feature Extraction of Vascular Structures

Figure 2.1: Full sagittal plane of a CTA from a standard procedure stroke scan.
The image to the right is in a colormap which makes it easier to differentiate vessels
from bone and background. This colormap will be used for CTA images in the rest
of this thesis.

2.2.1 Geometrical Features of The Vascular Tree

There is prior research suggesting that the geometry of the vascular tree must follow
physical rules for fluid mechanics. Murray’s law, Equation 2.2, states the connection
between the radius, r, of the vessel prior to a branch and radii, r1, r2,...,rn , of the
branching vessels as:

rγ = rγ1 + rγ2 + ...rγn (2.2)

where γ depends on if the flow is laminar or turbulent. Suggestions from [17] are
γ = 3 for laminar and γ = 7/3 for turbulent flow. There are also constraints,
Equation 2.3, on the possible angles between two branches that depend on the
radii. With angles, θi and θj as introduces in Figure 2.2, with i, j ∈ 1, 2, i 6= j, the
constraints are:

cos(θi) =
r4 + r4

i − r4
j

2r2r2
i

(2.3)

Furthermore, the geometry is affected by the metabolic growth of the arteries during
angiogenesis. In [18] all these theories are used to generate synthetic vessel trees.
However, this synthetic data lack realistic artefacts, noise and background structures
found in real CTAs which are not feasible to generate and thus were not pursued
further in this thesis.
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2. Segmentation and Feature Extraction of Vascular Structures

Figure 2.2: Schematic model of a vessel bifurcation with notations introduced.

2.3 Previous Work in Vascular Image
Analysis

In an article from 2009 by D. Lesage, et al. [8], state-of-the-art of literature on
vascular segmentation is reviewed. The most common task in vascular image
analysis is segmentation of vessels and organs. Features such as branches,
centerlines, aneurysms, etc. are usually easier to extract from a segmentation
rather than directly from the images. A later review article from 2019 by F. Zhao,
et al. [6] includes newer machine learning, especially deep neural networks, based
methods for vessel segmentation. This section first treats vessel segmentation
methods divided in non-machine learning based, in Section 2.3.1, and machine
learning based, in Section 2.3.2. Deep learning theory is attended more thoroughly
in Chapter 3. In Section 2.3.3 prior work in vessel feature extraction is
covered.

2.3.1 Non-Machine Learning Segmentation Methods
Well cited non-machine learning methods for automatic vessel segmentation
include: analysing eigenvalues of the Hessian to find principal directions [19]; cross
sectional marching filters, modelling vessels as Gaussian intensity ridges [20];
utilizing mathematical morphological, including watershed [21] filters, for
pre-processing or region growing; minimizing energy formulations with minimal
paths[22], active contours[23, 24, 25] or graph based methods[26, 27]; and
stochastic approaches with Markov marked point processes [28] or random walks
[29]. Of these Frangi Filters[19], based on Hessian eigenvalues, are used in this
thesis and paid attention in Section 2.3.1.1.

2.3.1.1 Frangi Filters

A. Frangi, et al.[19] in 1998 presented a filter for enhancing tubular vessel structures
in 2D and 3D images. The response from this filter is in later literature often
referred to as Frangi’s vesselness measure and often incorporated when developing

8



2. Segmentation and Feature Extraction of Vascular Structures

new methods, for example in [30] as well as some listed in 2.3.1. Frangi filters are
used in some recent state-of-the-art vessel segmentation software such as QAngioCT
[31].

The idea of the filter is to analyse the eigenvalues of the Hessian matrix, H, to
find principal direction of the second order nature in the image. The Hessian is the
Jacobian of the gradient, which in this case is

H(I(~x, S)) = ∇T∇I(~x, S), (2.4)

of the image, I(~x), at a point, ~x, at various scales, S. In image processing derivation
is often defined as convolutions with a Gaussians distribution, N(~x, S), at scale S,
which in the 3D case is:

N(~x, S) = 1
√

2πS23 · exp
(
−‖~x‖

2

2S2

)
. (2.5)

Therefore, the derivative is written

∂I(~x, S)
∂~x

= SI(~x) ∗ ∂N(~x, S)
∂~x

. (2.6)

Eigenvalues of the Hessian, |λ1| ≤ |λ2| ≤ |λ3|, will for a tubular structure have these
properties:

|λ1| ≈ 0
|λ1| � |λ2|
|λ2| ≈ |λ3|

(2.7)

A bright tube with a dark background is indicated by |λ2|, |λ3| < 0 and vice versa.
In CTA, the vessels are always bright, so |λ2|, |λ3| < 0 is the correct criteria.
Corresponding eigenvectors, v̂1, v̂2, v̂3, are orthonormal with v̂1 pointing in the
direction with minimum intensity variation (along the vessel) and v̂2 and v̂3 span a
plane with a cross section of the vessel.

Eigenvalues are used to define three measures terms which form the final vesselness
measure. The first term,

RB = |λ1|√
|λ2λ3|

, (2.8)

which respond to deviation from blob-like structures. The second term,
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2. Segmentation and Feature Extraction of Vascular Structures

RA = |λ2|
|λ3|

, (2.9)

respond to the deviation from a plate-like structure and enables distinguishing plate-
like and line-like structures. Lastly third term,

S = ‖H‖F =
√√√√∑

j≤
λ2
j , (2.10)

called “second order structuredness” in [19], is added to stop random noise
fluctuations in background from producing unpredictable responses. This term is
the Frobenius matrix norm of the Hessian and adjusts the sensitivity to areas of
high variance. Collectively these terms a function,

V (x, s) =

 0, if |λ2| > 0 or |λ3| > 0
1− exp

(
−R2

A

2α2

)
exp

(
−R2

B

2β2

) [
1− exp

(
− S2

2γ2

)]
, else, (2.11)

with parameters α, β and γ to tune the three terms RA, RB and S. By making
calculation on different scale vessel of different size can be found. As the final
vesselness measure the maximum response over all investigated scale is chosen:

V (x) = max
s
V (x, s) (2.12)

2.3.2 Machine Learning Segmentation Methods
Machine learning based vascular segmentation methods has recently been very
successful. In machine learning segmentation is a classification problem where
pixels or voxels are labelled as vessel or non-vessel. Explored methods include
conventional ANNs (FCNNs); K-nearest neighbour classifiers combined with
Gaussian mixture models; unsupervised K-mean and Fuzzy C-mean clustering;
support vector machines combined with marching filter methods;
decision-tree-based combined with random forest; and deep learning with
specifically CNNs. Often methods are combined with non-machine learning
methods. More details can be found in [6], including references to more specific
articles.

CNNs are very well suited for image processing and has stepped up as the main
competitor in image classification in start of the 21st century. Hence, they are
winning much popularity in medical image processing and have proven superior
in both robustness and accuracy to many older methods. Limited work has been
performed on coronary and cerebral due to lack of standard data bases [6]. Lack
of data is a recurring issue in medical processing as machine learning methods, in
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2. Segmentation and Feature Extraction of Vascular Structures

particular deep learning and CNNs, is driven by data for training and performance
validation. Labelling ground-truth is difficult, time consuming and subject to human
error.

To contest the lack of data, many projects explore generation of synthetic data.
Synthetic data provides unlimited data with perfect ground truth. The difficulty is
to produce an abstraction for all features found in real medical images. In [18]
synthetic data is generated from known geometrical properties of vascular
anatomy, as mentioned in Section 2.2.1. Even if the data was reasonably vessel-like
only Gaussian-like noise was introduced making the image analysis substantially
easier. Generative adversarial networks (GANs) are a deep learning method for
generating novel samples with resemblance to existing samples. GANs are
promising but requires some data to be trained from and even though the output
samples might look authentic, they can lack important properties which are not
easily discernible to the eye.

2.3.3 Vascular Feature Extraction

Extracting vessel features such as centerlines and branches involves finding vessels.
Consequently, it is often performed after or synchronized with vessel segmentation,
on the binary image.[6]

A method including similar steps as the project in this thesis is presented in [9]. A
tubular based, Frangi inspired, method is used to segment the vessels. Centerlines
and vessel thickness are thereafter traced with a method similar to Diffusion Tensor
Imaging tractography [32]. Branch detection is used to find new seed points in
connected vessels and recursively map the entire vessel tree. The method used for
branch detection uses the known centerline and vessel thickness, radius, to apply an
unsupervised clustering.

In [18] a CNN is applied for vessel segmentation, centerline prediction and
bifurcation detection. Again, the centerline extraction makes use of prior
segmentation and bifurcation detection rely on both segmentation and centerline
predictions. However, the directions of the bifurcation branches aren’t given.

2.3.3.1 Skeletonization of Segmented Vessels

Skeletonization is an imaging process where a thinning algorithm is applied
repeatedly in a binary image until it does not change the image anymore. This
leaves a thin line corresponding to the geometrical and topological shape of the
thinned components like shown in Figure 2.3. A basic method for thinning is
mathematical morphology structuring elements and hit-and-miss transforms.
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2. Segmentation and Feature Extraction of Vascular Structures

Figure 2.3: Skeletonization of 2D image Left: Binary image of segmented
components Middle: Skeletonization overlayed Right: Only skeletonization

A skeletonization is a reasonable representation blood vessels’ structure, as
proposed in [33]. It offers readily accessible seed points, which not necessarily have
to be the exact centerline of the vessel. However, in 3D, topological properties are
more difficult to address. Lee, et al. [34] suggest a method for extracting medial
surfaces and axis of 3D objects which is applied in this thesis. In 3D a common
type of neighbourhood for each voxel includes 26 neighbours and is called a Moore
neighbourhood [35]. In [34] these 26 neighbours are divided into eight overlapping
octants, consisting of 2× 2× 2 cubes. Thinning is then performed by labelling the
octants and using the sum of octant labels to determine whether to keep the voxel.
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3
Deep Learning

In this chapter the aim is to introduce the concepts of deep learning that was applied
in this thesis. Particularly the focus is on convolutional neural networks (CNNs),
but the basics of general artificial neural networks is also included.

Deep learning is a type of machine learning based on deep artificial neural
networks (ANNs). Computer vision, image processing, speech recognition and
other domains which find patterns in and interpret large amounts of complex data
all have seen dramatic improvements recently by introducing deep learning
algorithms. CNNs dominates where spatial arrangement of data is relevant such as
images while recurrent neural networks (RNNs) thrive in processing sequential
data such as text and speech.[36]

3.1 Artificial Neural Networks
The basis of artificial neural networks (ANNs) is inspired by the biological brain,
which literally is a network of neurons. Braincells, neurons, are connected by
projections called dendrites and axons which, through synapses, communicate with
other neurons. Connections between neurons vary in strength depending on how
useful the connection is.

A ANN is typically structured like in Figure 3.1, which depicts a fully connected
feed forward neural network (FC-FFNN). The structure features artificial neurons
arranged in layers. Information feed to the input layer propagates through the
hidden layers until it produces an output in the final layer. A neuron, j, in layer, l,
sends out an activation signal,

o
(l)
j = a

(∑
i

w
(l)
ij o

(l−1)
i + b

(l)
j

)
(3.1)

to neurons in the next layer, l + 1, based on the received inputs, o(l−1)
i , from the

previous layer, (l − 1). Where w(l)
ij is the weight representing the strength of the

connection and b
(l)
j is a bias term. The activation function, a, which introduce

non-linearity, is explained further in Section 3.1.1.
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Figure 3.1: A FC-FFNN multilayer perceptron with one hidden layer. Maps from
Rn1 input space and Rn3 in output space via a hidden layer with n2 neurons.

A deep NN consists of many hidden layers and can model more complex function
than a shallow NN. Information is feed between neurons through one-way weighted
connections.

3.1.1 Activation Functions

Without activation functions the network would correspond to stacking linear affine
mappings, ~o = A~o+B, with matrices A and B. Through linearity this only creates a
new affine mapping, thus not increasing the complexity. Activation functions provide
a source of non-linearity which remedy this issue. The most common activation
functions used in NNs include sigmoid functions, a(x) = 1

exp (−x)+1 , tanh x, rectified
linear unit, ReLU(x) = max (0, x), and softmax,

aj(~x) = exp(xi)∑M
j=1 exp(xj)

. (3.2)

Softmax is calculated from the outputs of the entire previous layer and can be
interpreted as a probability distribution. In multiclass classifiers there is often a
softmax after the final output layer which signifies that the input ~x belongs to class
j with probability aj.
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3.2 Convolutional Neural Networks
Convolutional neural networks (CNNs) are FFNN that feature convolutional layers.
The general structure was first introduced by Fukushima et al. in [37]. Convolutional
layers are especially suited for making use of spatial data like images which is proven
by great results on classification of large public image data sets, such as ImageNet
[38], starting with A. Krizhevsky’s et al. contribution in [39].

3.2.1 Convolutional Layers
CNNs are driven by the cross-correlation operation, ?. This is not to confuse with
the similar, but different, convolution operation. Cross-correlation is a sliding inner
product between a filter kernel and the signal, in this case an image. In 2D, for
each filter position, (x, y), a filter kernel, Fkernel, with size d × d, d = 2n + 1, gives
output

C(x, y) = Fkernel ? I(x, y) =
N∑

i=−N

N∑
j=−N

Fkernel(i, j) · I(x+ i, y + j) (3.3)

where I(x, y) is the image pixel value at (x, y). Therefore, after sliding kernel over
all filter position, separated by filter stride length s a new image is produced, called
a feature map. A convolutional layer is made up of a number, k, filter kernels which
is called the filter size. Therefore, a convolutional has k output channels, meaning
it outputs k different feature maps.

A filter with kernel size, d > 1 can’t be placed on the edge of an image, as seen
in Equation 3.3. Feature maps will thus be smaller than the original image input.
If this is not desirable zero padding the image can resolve this issue. Stride length
s > 1 also will reduce the size of the image, but in this case, it is usually intended
as a way to reduce the dimensionality of the input.

Functionally filter kernels in convolutional layers give respond to image structures
which match the shape of the filter. Therefore, feature maps will contain
information about features in the image, like edges and small shapes. This exploits
local spatial relations and is invariant to translation as the same kernel is applied
all over the image. With several consecutive convolutional layers, deeper layers will
extract features from feature maps of feature maps. Thus, abstraction level of the
feature maps increases through the network and can eventually represent complex
objects.

3.2.2 Pooling Layers
To reduce dimensionality as the image data propagates through the network pooling
is used. Dimensionality is reduced to let the network look at larger scale structures.
There are two types of pooling: average and max pooling. Average pooling takes the
average of a neighbourhood of pixels and converts into one pixel while max pooling
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takes the maximum. An average pooling layer with kernel size d × d and stride s
outputs the feature map

Pavg(x, y) = 1
d2

d−1∑
i=0

d−1∑
j=0

I(i+ sx, j + sy). (3.4)

In max pooling the output is

Pmax(x, y) = max
i,j∈{0,1,2,...,d−1}

I(i+ sx, j + sy). (3.5)

Pooling can also be performed globally in an entire feature map. An example of
where global pooling can be used is at the backend of a CNN to make the output
1D for a final FC-layer.

3.2.3 Batch Normalization
Batch normalization layer is added to normalize the outputs from the previous layer.
This keeps the mean and variance of the inputs consistent during training. Varying
input distributions, internal covariate shift, slows down training by having layers
remap training targets to a new distribution. Thus, batch normalization increases
the speed of the training. Batch normalization also keeps the values in ranges where
there is less risk of activation functions saturating. Saturating activation functions
make gradients vanish and thus essentially halts the learning. Bath normalization
was originally introduced by S. Ioffe and C. Szegedy [40], where more details can be
found.

3.2.4 CNN Architectures
A great number of variations in the network architecture of CNNs have been
proposed over the years. Initially there are structures with basic convolutional
layer building blocks like [38]. For image segmentation, U-shaped networks, which
involve upsampling to original image size after features has been extracted are
common, like U-net by Ronneberger et al. [41]. More complex building blocks,
consisting of various constellations of convolutional filters, have shown promise for
handling increasingly complex tasks rather than simply increasing network depths.
This includes ResNet[42] and DenseNet[43] which have brought image
classification up another step.

3.2.4.1 DenseNet

DenseNet suggested by Huang et al. in [43] is a densely connected convolutional
network. The architecture significantly improves state-of-the-art classification on
popular benchmark tasks such as CIFAR[44] and ImageNet[38] and requires less
computations. Densely connected is a reference to the introduced dense block (see
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Figure 3.3) in which the convolutional layers are connected to all subsequent
convolutional layers. This allows reusing filters several times on different scales
and levels of abstraction. Thus, trainable parameters is reused and the amount of
convolutions necessary in later layers is reduced. The information flow in a
DenseNet is shown in Figure 3.2. There is an initial convolutional layer which
produce feature maps for the first dense block. Between each dense block there are
transitional layers which change scale of the feature maps. Finally, the output
from the last dense block is flatten by global average pooling and classified with a
FC- and softmax-layer.

Figure 3.2: DenseNet structure with an initial convolutional layer, three dense
blocks, transitional layers between dense blocks and a linear classifier layer. The
transitional layers consists serve to change scale of the feature maps by convolution
and pooling.

The special building block, the dense block, can be seen in Figure 3.3. A dense
block consists of several convolutional layers with filter size, k, five layers with k = 4
in this case. Between each layer there is a BN-ReLU-Conv layers which consists
of a batch normalization, a ReLU and a 1x1 convolution. Each convolutional layer
receives the output of all the preceding convolutional layers. Thus, each layer has a
filter size k larger than the preceding layer. The parameter k is called the growth
rate of the network.
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Figure 3.3: Dense block with 5 layers and growth rate k = 4. The output of each
layer is included in the input and output of every other layer respectively. ©2017
IEEE. Reprinted, with permission, from G. Huang, Z. Liu, L. Van Der Maaten
and K. Q. Weinberger, “Densely Connected Convolutional Networks”, 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. The
views expressed in this report are those of the author and do not necessarily represent
those of any content provider.

3.3 Learning

The process of optimizing network parameters, filters, weights, and biases, is called
training. Optimization is done in respect to target output (labels) representing the
ground truth of the input training data and the model outputs to mini the error
between the two.

3.3.1 Loss Function

In order to quantify the error between network output, ~x, and target output, ~y, a
loss function, L( ~x, y) is defined. As the error decreased the loss function should go
towards zero. Thus, training of a network is the minimization of the loss function.
Defining an optimal loss function can be difficult and must specifically adapted for
the problem at hand. In a two class classification networks binary cross entropy
(BCE) loss, LBCE, is commonly used.
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LBCE(~x, ~y) = −
n∑
i=1

[yi · log(xi) + (1− yi) · log(1− xi)] . (3.6)

The terms inside the sum in Equation 3.6 will produce zero if xi = 1 and yi = 0 or
vice versa. Thus, the loss is minimizing the loss requires the network output to
clearly belong to class xi = 1 or class xi = 0. So Equation 3.6 is a negative log
likelihood (NLL), quantifying the difference between two probability
distributions.

3.3.2 Backpropagation
Loss calculated in the output layer must be propagated backwards through the
network in order to update weights accordingly. This process is called
backpropagation and involves computing the gradients of the loss. Gradients are
then used to update weights in the order which the loss decreases fastest,

wij(tn) = wij(tn−1)− η
∂L

∂wij
, (3.7)

where tn is step n and η is the learning rate. Backpropagation was introduced by
Rumelhart et al. [45].

3.3.3 Optimizer
Exactly how the gradients and backpropagation is carried out is defined by the
optimiser. Gradient descent (Equation 3.7) is a simple description of such optimiser.
In computers stochastic gradient descent (SGD), which is a stochastic approximation
of gradient descent, has advantages in terms of computational speed.

Adam[46] is a currently popular optimizer which use SGD with adaptable learning
rates for each weight. This allows for faster convergence and easier setup than
SGD.

3.3.4 Epochs and Steps
During training the network is passed training samples from the training data batch
repeatedly in a loop. For each step one sample, a subset of samples (called mini
batch) or the entire batch is feed to the network. After each step, the weights are
update according to the loss function and optimizer. An epoch is when one iteration
of the loop has been completed, i.e., each training sample has been passed to the
network once.

3.3.5 Overfitting
Overfitting is when the network has learnt a specific set of training data very well
but perform poorly on new data. At this point the network has learned details of the
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training data but have not learned general features which generalize to other data.
To notice overfitting tendencies, the network is usually evaluated on a validation data
set, separate from the training data set, each epoch. Performance on the validation
set will give information about how well the network generalizes. Regularisation
methods aim to prevent overfitting from happening and promotes the network to
learn to generalize.

3.3.6 Data Augmentation Transforms
One regularisation method is data augmentation. In data augmentation various
natural transforms are applied to manipulate training data to create greater
variation without disturbing important features. Thus, important features which
are not affected by transforms will be learned while details which are varied by
transforms will not. Augmentation can be done either offline by duplicating the
data set and augmenting the copy; or online. Online augmentation is of course
very powerful as it provides unique data each epoch. However, the transforms
must be computed each epoch, which with more complex transforms increases
training time.

For images flipping along axes, rotations, translations, scaling, noise, blurring, and
affine transforms are common transforms. An elastic deformation transforms [47]
can be useful in medical imaging as they can smoothly vary shapes of organs. In
this thesis, altering the path of vessels without distorting branches and radii could
be useful.

An elastic deformation image transform can be performed by introducing a
rectilinear grid and then alter the grid point locations with random displacements.
The original grid points in the image are resampled to the displaced grid points.
Preferable interpolation method which avoids introducing disconuities, like the
B-spline based interpolation suggested in [48], is used.

Specifically which augmentation transforms were applied in this these can be found
in Sections 4.3.3.5 and 5.1.4.
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4
Development of Bifurcation

Detection Method

This chapter describes what I have done to obtain the results presented in this
thesis. How and why I applied described methods is also explained. The work can
be divided in three steps: first acquiring and preparing data, second developing a
neural network model, and third extracting bifurcation seed points.

4.1 Overview of Approach
The target of this project was to find bifurcations from a known vessel path in
cerebral CTA. Information about the known vessel in question can be used to
disregard most of the CTA and only consider a vicinity of the vessel. My general
idea was to traverse the vessel centre line in tangential direction while looking for
branching vessels in radial direction. Branch detection in [9] is based on a similar
idea. For a vessel vicinity I adopted an approach of sliding windows in the form of
3D boxes along the centre line of the vessel, see boxes in Figure 4.5 and Figure 4.6.
I trained a CNN to classify between boxes containing and not containing
bifurcations. After classification vascular structures in the boxes containing
bifurcations can be segmented using the Frangi’s vesselness measure [19]. By
thinning the segmented structures, seed points along the general path of the vessel
and branching vessels are obtained.

4.2 Data Acquisition and Preparation
This section describes the CTA data and how I processed it to produce a training
set.

Performance of a CNN is largely decided by the data used while training the network.
With suggested approach the input to the CNN is 3D boxes extracted from CTA
along a vessel path. This is a quite specific input format which means it doesn’t
exist any publicly labelled or unlabelled data sets. One way of obtaining data sets
for training would be to generate synthetic data, mentioned in Section 2.2.1 and
Section 2.3.2. However, training a GAN or creating an abstraction of features to be
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able to generate synthetic data is not feasible in the time scope of and data available
in this project. Therefore, this project included extracting and labelling data sets
from CTA. This limits the amount of available data for training, but with good data
augmentation even a small data set can give good performance.

4.2.1 Description of CTA Images
I extracted the data sets used in this project from five anonymized CTA scans
available at Mentice. In this report each CTA will be referred to as CTA#1, CTA#2,
..., CTA#5, respectively. The CTAs had been scanned with standard procedure
stroke protocol including everything cranial of the aorta arch in the patients. CTAs
come from a few clinics in Europe. All images came in DICOM-file format, which
is described in Section 2.1.1. Pixel spacing of the CTAs were in the range 0.4 mm
to 0.6 mm and slice thickness 0.2 mm to 0.6 mm. However, the results should be
similar with any standard procedure stroke CTAs in Hounsfield units with similar
resolution. As described in Section 2.1 a 3D image is created by stacking a series of
2D CTA images in sequence.

4.2.2 Obtaining Prior Known Vessels
As described in 1.1, the centerline and radii of a vessel path is assumed to be
given. In this project I manually marked the centerline and radii to facilitate
reproducibility. There are automatic methods for marking centerlines and radii,
brought up in Section 2.3.3, but they generally aren’t robust enough to not
warrant manual validation in which case manual marking can be performed from
the start. The manual marking was done to emulate the output of Mentice’s
automatic method. How I did the manual marking is shown in Figure 4.1. I
centered points along a vessel by visually inspecting 2D image slices along each 3D
image axis. At each point I matched a circle’s radius to vessel width in
corresponding 3 perpendicular image slices (coronal, axial and sagittal
planes).

Figure 4.1: Centerline point with responding vessel radius marked with purple in
a CTA. The 3 images are 3 perpendicular planes; Left: Coronal plane, Middle:
Axial plane, Right: Sagittal plane. The marked centerline point and radii is the
same in all images, the level zoom into the CTA is different in all 3 images.
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The centerline I interpolated from marked points fitting a Catmull-Rom spline [49]
as seen in Figure 4.2, correspondingly the radii was linearly interpolated. Together
the centerline and radii make up a tubular vessel-like structure a part of which a
polyhedron rendering is on display in Figure 4.3.

Figure 4.2: The centerline interpolated with a Catmull-Rom spline (blue curve)
fitted to the manually marked centerline points (red *). The axes ticks are in voxel
coordinates.

Figure 4.3: Part of rendering of marked vessel centerline and radii as a polyhedral
in 3D. Not based on the same vessel as Figure 4.2.
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4.2.3 Extraction of Samples Along Vessel Path
I only considered a vicinity of the known vessels to be able to leverage vessel
centerlines and radii. There are various ways of choosing a vicinity. The use of
CNN suggests the use of 2D or 3D images. Cross section 2D slices along the vessel
path can been feed to a RNN like a sequential time series. Another alternative is
to mask everything but the vessel and vicinity and feed the entire masked CTA to
a 3D CNN. This would be able to use more large-scale spatial information such as
where along a certain vessel type usually bifurcations are located. However, this
would require plenty of samples of each kind of vessel type, respectively. Marking
and labelling vessels manually is very time consuming which makes this less viable
in the scope of this project. It would also require a large CNN which takes longer
to train. Instead, I choose to use 3D boxes along the vessel path. I feed the small
3D boxes to a 3D CNN DenseNet as described in Section 3.2.4.1 and will be
specified later in this chapter. While the CNN cannot learn large scale features
bifurcations are a distinguished feature which should be possible to categorize by
itself. There are several bifurcations along each marked vessel which results in
more training samples per vessel. The required CNN can be made smaller which
makes for fast training. Smaller boxes are also a less complex task than large,
masked boxes which further lowers the necessary network size.

4.2.3.1 Box Orientation, Size and Resampling

I extracted boxes along the blood vessels as in 4.5. A local orthonormal coordinate
system was defined, as drawn in Figure 4.4, with origin in current point along the
centerline of the vessel. Two axes, i = 1, 2 are perpendicular to each other and the
centerline in current point and the third axis, i = 3, tangent to the centerline in
current point. Exact orientation of the axes beyond previous description doesn’t
matter as data augmentation mirrors and rotates the 3D box, data augmentation
is described in more detail in Section 3.3.6, Section 4.3.3.5 and Section 5.1.4. The
axes are scaled by pixel spacing and slice thickness specified in the DICOM-file, so
a unit step is 0.5 mm along each axis. Boxes are aligned with this local orthonormal
coordinate system and centered at the current point.

Figure 4.4: 3D model of sample box on vessel polyhedron model.
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Figure 4.5: Local orthonormal coordinate system with origin in current vessel
centerline point. The red line is a vessel centerline. The blue dashed line is the
tangent to the centerline in current point. Axes i = 1, yellow arrow, and i = 2,
green arrow, are perpendicular to the tangent. Axis i = 3, purple arrow, is parallel
with the tangent.

The size of the box should be large enough to accommodate the largest
bifurcations but should also be as small as possible to diminish the possibility of
several bifurcations, other vessels, and structures within one box. As branching
vessel radii, RB, according to Equation 2.2, is related to main vessel radius, RV , it
makes sense to scale the box size by current vessel radius. Similarly, the step
length between centerline points for which boxes are extracted should be as large
as possible while small enough to not miss any bifurcations. In Figure 4.6
branching vessel radius, RB, main vessel radius, RV , box height, H, box width W
and box step length, d, are defined. As the vessel is cylindrical the base of the 3D
box is a square with side length W .

Figure 4.6: 2D model of vascular branch with sample box. The following measures
are defined: branching vessel radius, RB, main vessel radius, RV , box height, H,
box width W and box step length, d.
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Equation 2.2 and 2.3 some further calculations were made. For a two branch
bifurcation Equation 2.2 gives that with one radius, r1 → 0, going to zero the
other radius, r2 → r, goes to the main vessel radius. In this limit Equation 2.3 we
have cos(θ1) → 0 and cos(θ2) → 1 so θ1 → 90◦ and θ1 → 0◦. In the other extreme
case, the branch radii are equal, r1 = r2. Equation 2.2 then give
r = 21/γr1 = 21/γr2. By Equation 2.3 we the obtain cos(θ1) = cos(θ2) = 22/γ−1.
With the values for γ suggested in Section 2.2.1 for we obtain the lowest possible
angle θ1 = θ2 ≈ 25◦ in the turbulent flow case. Bifurcations with a maximum total
angle of θ1 + θ2 ≈ 90◦ and a large and small branch are very cover with a small
box. The case which will decide lower limit of the box size is the bifurcation with
equally large branches and total angle θ1 + θ2 ≈ 50◦. However, these results didn’t
match observations in real CTA data perfectly, so even if the equations can give
pointers I had to confirm that the box size was suitable in real observations.

Lastly the CTA must be resampled in the box at a uniform grid align with the local
coordinate system. The resolution of the of the grid is preferably as low as possible
while still being able to discern bifurcations to reduce number of computations
and memory usage. Eligible resolution depends on box size. Which resolution
I used in this project is specified in Section 5.1.5. As box extraction will be a
part of the algorithm to find bifurcations along a vessel, low computation time
is desirable. Therefore, a fast sampling algorithm is preferable. Nearest neighbour
interpolation was not good enough for very tiny vessels, so I used linear interpolation
when resampling. In Figure 4.7 a tiny vessel is resampling at grid points from low
to high resolution.

(a) Resampled at grid points without up sampling
resolution.

(b) Resampled at grid points, up sampling to
64x64x64 resolution.

Figure 4.7: Tiny vessel resampled at grid points. The figure shows three slices
which are mutually perpendicular. The images to the left are slices perpendicular
to the centerlines respectively.
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4.2.4 Labelling of Data Sets

I labelled the data sets by defining bounding boxes for each bifurcation along the
vessel such as the one seen in Figure 4.8. I then classified extracted boxes as a
bifurcation if a box fully contained a bonding box, else as a non-bifurcation. This
way the labelling of extracted boxes was automated and did not have to be redone
for various box sizes. In total I defined bounding boxes for about 100 branches from
five different CTAs.

Figure 4.8: Bounding box place around a bifurcation. The figure shows three slices
which are mutually perpendicular. The image to the left is a slice perpendicular to
the centerline.

4.2.4.1 Bifurcation Samples

To get good class balance, I extracted boxes containing bifurcations first. For each
bifurcation I extracted a number of boxes with random rotations around axis i = 3
as defined in Figure 4.4 and at random centerline positions such that the bounding
box still was fully contained by the box. Using many copies of the same bifurcation
allows for including more non-bifurcation boxes without the class balance suffering
and each bifurcation to be included from various angles and offsets.

4.2.4.2 Specially Labelled Non-Bifurcation Samples

After I had extracted all boxes with bifurcations, I extracted boxes around specially
labelled vessel points. These specially labelled points I had specified to make sure
certain important non-bifurcation structures were included in the data sets. Which
areas were important I determined by training a network on a data set without
specially labelled points and examine which boxes the trained network had high
loss on. Examples of types of samples that were specifically included in the data
set:

• the internal carotid artery passing through the temporal skull bone

• the vertebral artery passing through the vertebra

• vessels sharply bending

• close parallel vessels
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4.2.4.3 Attain Class Balance

To achieve good class balance I filled up the rest of the data set, containing
bifurcation boxes and specially labelled non-bifurcation boxes, with random
non-bifurcation boxes until the total number of non-bifurcation boxes matches the
number of bifurcation boxes. The boxes I used to complete the data set was
randomly picked after excluding sections of the centerline containing bifurcation
bounding boxes and specially labelled non-bifurcations.

4.2.5 Rescaling and Clamping Intensities
I rescaled intensity levels of the CTA images to the dimensionless physical Hounsfield
Scale which are described in Section 2.1.1. The translation between intensity level
and HUs are defined by the DICOM-file header attributes rescale slope and rescale
intercept. Much of the CTA images contains HU values which are way out of the
of range of HU values for vessels and surrounding anatomical structures. These
outlying values I clamped into a relevant range lessen their impact in the CNN
model. As mentioned in Section 2.1.1, typical values for arteries containing radio
contrast fluid in CTAs range from 200 to 600 HUs. To keep distinctive differences
in HU values of background and other anatomical structures like bone I added a
margin to the artery HU range. Much of the background is constituted by water,
fat, connective tissue, and other bodily fluids which have HU values around 0. Air
has a value of -1000 HUs, but it is not relevant to distinguish between air and
background when looking for vascular bifurcations unless perhaps if looking in the
lungs. Therefore, I used a lower threshold at 0 HU or lower for clamping intensities.
The highest relevant HU values are bone tissue which has values in 400 to 1800
HUs. However, there are not any other relevant structures above 600 HUs which
means the upper threshold for clamping can be set much lower than 1800 HUs. An
upper threshold of 800 HUs leaves 200 HUs above the upper end of the artery HU
range which is enough to distinguish vessels and the same 200 HUs as the difference
between a lower threshold of 0 HUs and the lower end of the artery HU range.

4.2.5.1 Intensity Standardization

As explained in Section 3.2.3 standardization of the input data hastens the
training process of NNs. This standardization also will have to be applied when
samples are feed to the trained network model. For consistency in standardization
between various sample boxes and CTAs, I used set values of standard deviation
and mean. The alternative would be to compute standard deviation and mean for
either entire CTA or each sample box. Due to variance in ratios between
background and anatomical structures and noise the standard deviation varies
greatly between different sample boxes and CTAs. Hence HU values would be
mapped differently for each CTA or sample box. Set values for the standardization
makes sure the values of vessel voxels will be in the same range after
standardization and retains the physical property of HUs. Additionally, set values
avoids having to compute standard deviation, σ, and mean, µ, inside the
bifurcation detection algorithm.
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I performed standardization according to Equation 4.1, where I chose S and D to
scale the intensities from -1 to 1. After clamping intensities range from 0 to 800 this
gives us

µ = 0 + 800
2

and
σ = 800− µ.

So summarily the intensity levels, I, were pre-processed as follows:

1. Converted to Hounsfield Units according to Equation 2.1

2. Clamped to range [0, 800]

Iclamped =
{

0, I < 0
800, I > 800

3. Standardize to
Istandardized = Iclamped − µ

σ
(4.1)

4.3 Implementing the CNN
Implementing and training a 3D CNN is the main focus of this thesis. I chose CNN
as a method mainly due to having higher potential in robustness, accuracy and
stability than other methods viewed in Section 2.3.1 according to [6]. The alternative
of 2D CNN connected to a RNN wasn’t pursued due to being less examined in the
context of medical image processing and most likely being more difficult to train.
I used Python and the deep learning framework, PyTorch[50], for implementing
and training the CNN. In addition to PyTorch, I used utilities from the packages
Monai[51] and TorchIO[52]. Monai and TorchIO contain tools for deep learning in
medical imaging based on PyTorch. In Table 4.1 the versions of used software is
listed.

Table 4.1: Versions of software and packages used in the implementation of the
network.

Python 3.6.12 PyTorch 1.6.0 Monai 0.3.0+60.gbd1e008 TorchIO 0.17.52

4.3.1 Pytorch, Monai and TorchIO
PyTorch is one among several popular deep learning frameworks. It provides a
intuitive, Pythonic style interface to implementing and training deep learning. Other
frameworks including Caffe, TensorFlow and Theano represent computations with
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a static graph which is repeatedly applied to on the data set. A static graph can
have some advantages when it comes to optimizing performance and scalability.
PyTorch uses a dynamical approach which execute tensor computations one by one
to dynamically form a network graph and does differentiation automatically for
each computation step. Even so PyTorch is comparable in speed with the fastest
frameworks. The dynamical approach allows for simple debugging and changing the
computation graph at runtime without having to recompile. PyTorch can run its
computations on the GPU by interfacing to NVIDIAs parallel computing platform,
CUDA. Which lowers training time considerably. [50]

Monai [51] and TorchIO [52] are Python packages which implements many tools
in PyTorch for deep learning in medical imaging. They integrate into the normal
PyTorch workflow. Both packages extend PyTorch mainly with tensor transforms
customized for medical images in 3D which are useful in data augmentation and
pre-processing and are used in this project. Specifically what are used from each
package is specified in Section 4.3.3.5.

4.3.2 Network Architecture

DenseNet, a Densely Connected Convolutional Network originally suggested in
[43], is network architecture I chose in this project. The building blocks and
structure of DenseNet are described in Section 3.2.4.1. Compared to earlier
suggested popular architectures for medical imaging like U-net[53], ResNet[42],
DenseNet shows promise for medical imaging applications according to [54] and
[55]. Furthermore, DenseNet has shown great performance for image classification
on popular data sets like CIFAR [44] and ImageNet [38].[43]

I implemented a 3D DenseNet with PyTorch in Python closely based on the
implementation by Monai [56]. A detailed example of the network architecture I
used is shown in Table 4.2. Various combinations of parameter settings were
attempted, but all followed this structure. The parameters are explained in
Section 4.3.2.1.
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Table 4.2: A network architecture used for image boxes with resolution 64× 64×
64. In the table “conv” includes the entire BN-ReLU-Conv sequence. The first
convolution layer with 7× 7× 7 kernel has filter size 32 (32 output channels). Each
3 × 3 × 3 kernel convolution (dense layer) in the dense blocks has a filter size of
k = 4, where k is the growth rate of DenseNet. The last layer is a fully connected
softmax classification layer gives 2 output classes.

Layers Output Size Building Block
Convolution 32× 32× 32 7× 7× 7 conv, stride 2, pad 3

Pooling 16× 16× 16 3× 3× 3 max pool, stride 2, pad 1

Dense Block (1) 16× 16× 16
(

1× 1× 1 conv
3× 3× 3 conv, pad 1

)
× 3, stride 1

Transition Layer (1) 16× 16× 16
8× 8× 8

1× 1× 1 conv
2× 2× 2 average pool, stride 2

Dense Block (2) 8× 8× 8
(

1× 1× 1 conv
3× 3× 3 conv, pad 1

)
× 5, stride 1

Transition Layer (2) 8× 8× 8
4× 4× 4

1× 1× 1 conv
2× 2× 2 average pool, stride 2

Dense Block (3) 4× 4× 4
(

1× 1× 1 conv
3× 3× 3 conv, pad 1

)
× 7, stride 1

Classification Layer
1× 1 global average pool

flatten tensor
2D fully connected, softmax

4.3.2.1 Network Architecture Parameters

The architecture parameters I used are the same as in the implementation of
DenseNet in Monai[56]. These are initial features, growth rate k and block
configuration. Initial features is the filter size of the initial 7 × 7 × 7 kernel
convolution. Growth rate, k, is the growth rate defined in [43], e.g., how many
filters are added in each layer. Block configuration is how many layers there are in
each dense block meaning if the block configuration for a dense block is 5 it will
consist of 5 dense layers which each has filter size k. In Table 4.2 the initial
features are 32, the growth rate, k, 4 and the block configurations 3, 5, 7 for each
dense block respectively.

4.3.3 Training the Network

To find the suitable weights for the network it must be trained. How a neural
network is trained is explained in Section 3.3. In PyTorch networks are trained in
a loop where a data set of training samples are repeatedly feed to the network,
meanwhile computing gradients and updating the network weights accordingly
through backpropagation.
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4.3.3.1 Summary of Training Algorithm

This is a step-by-step summary of the training algorithm which parts will be
described separately in following sections.

1. Divide data set in training and validation sets

2. Initialize network parameters

3. Select a batch of samples from the training data set

4. Augment the data batch

5. Calculate the network output of the data batch

6. Calculate loss between outputs and target ground truths

7. Backpropagate the gradients of the loss

8. Update network parameters with optimiser according to the gradients

9. Evaluate network performance on validation set

10. Go to step 3 and repeat until stopping condition is reached

4.3.3.2 Training and Validation Set

How a data set is divided in training and validation set is very important for
performance of the network. Especially when using a small data set. There is a
risk that important rare type of samples are absent in one of the sets. If the data
set representation is poor in the training set the network will not learn the missing
samples types and perform poorly. If sample types are not represented in the
validation set the evaluation will show the network overperforming on the
validation set. As the finished model chosen is based on performance on validation
set this could result in a less optimal model, which only performs well on the
overly simple validation set, being picked.

Another important issue is that the training and validation set must be completely
independent from each other. For example, as the same branch is sampled at
different locations and angles, all samples for a unique branch should be kept
together and restricted to either training, validation set or the test set. Otherwise,
evaluation on the validation set will show the network overperforming as the
network has learned identical branches from the training set.

Accordingly, the samples I chose to include in training, validation and test sets
were from separate CTA, respectively. Samples were picked so the same types of
bifurcations are represented in each CTA.
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4.3.3.3 Kaiming Initialization

I initialized network parameters with Kaiming initialization [57] as in the original
DenseNet paper [43]. In Kaiming initialization all biases are initialized to zero.
Batch normalization weights are initiated to 1. The weights, wl, of a convolutional
layer, l, are initialized based on a criterion for ensuring that gradients do not become
exponentially large or small. In [57] this criterion is:

1
2 · nl · V ar(wl) = 1,∀l,

where nl = k2 · d is the number of inputs to layer l, with the input k × k pixels
and filter size d. Therefore, the initial weights will be sampled from a gaussian
distribution,

wl = N(0, σl),

with zero mean and standard deviation

σl =
√

2
nl
.

4.3.3.4 Mini Batches

During training data can be feed sample by sample, the entire data set in a batch
or as subset of samples called mini batches. Feeding mini batches of data to the
network allows more utilization of parallel processing on the GPU compared to one
sample at a time. It also lowers variance of network parameter updates which can
lead to more stable convergence. However, if batches are too large it is difficult to
fit on the memory and the training can be slow. A suitable mini batch size depends
for various networks and data sets. Common mini batch sizes used in training of
image classification networks are 4, 8, 16 or 32.[58] For this project I found a mini
batch size of 32 to work well.

4.3.3.5 Data Augmentation

In deep learning for medical imaging the size of training data is generally small
which makes data augmentation particularly important. The size of the training set
is virtually enlarged which is crucial to be able to generalize from a small data set.
In this project I augmented the data online in every iteration of the training loop.
Hence new samples were seen every cycle which made the network less susceptible
to overfitting. Online augmentation clearly prolongs the training cycle. However,
Monai[51] and TorchIO[52] implements the most computation heavy augmentation
transforms on the GPU which speeds up the process immensely. If augmentation
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had been performed offline, before the training loop, a large amount of memory
would have to been allocated to store the extra augmented data sets.

I decided which transforms to apply and their parameter settings by visual
inspection. The transform must preserve the ground truth of the samples and also
output a sample which plausibly is an anatomy from a CTA. The augmentation
transforms are described in Section 3.3.6 and Section 5.1.4. Transforms performed
for data augmentation in this project were in order:

1. Random flip along an axis

2. Random motion artefacts [59]

3. Add random gaussian noise

4. Random spatial and elastic transforms

(a) Random rotation along tangent to centerline

(b) Small random rotations along axes perpendicular to centerline

(c) Small random translations

(d) Small random scaling

(e) Random affine shearing transform

(f) Random elastic deformation transform

Flipping along an axis is straightforward and gives 32 plausible samples from each
sample in the data set. Implementation of random Gaussian noise is also straight
forward. Flipping and Gaussian noise was implemented using
torchio.transforms.RandomFlip and torchio.transforms.RandomNoise from
TorchIO[[52]]. Motion artefacts simulates artefacts from the patient moving during
the CTA scan. The TorchIO[[52] implementation,
torchio.transforms.RandomMotion, based on Shaw et al.[59], was tested. Spatial
transforms were implemented with monai.transforms.Rand3DElastic from
Monai[[51]. Some of these spatial transforms resample outside of the sample image
which means the image has to be padded. Border padding, using the value at the
closest border, was used as it doesn’t introduce any large gradients or implausible
anatomical structures. Rotations were small for rotations along axes perpendicular
to the centerline as the orientation of the centerline is a consistent feature of the
samples separates the known vessel from the unknown bifurcations. Translations
and scaling were included to simulate potential imperfections of the given vessels’
centerlines and radii. Affine and elastic transformation represents variation in
anatomies of different patients and vessel sections to create almost novel vessel
anatomies. Elastic transforms are described in Section 3.3.6. Figure 4.9 shows a
sample of a bifurcation, to the same sample all augmentation transforms have
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randomly been applied in Figure 4.10

Figure 4.9: A sample of a bifurcation. The figure shows three slices which are
mutually perpendicular. The image to the left is a slice perpendicular to the
centerline.

Figure 4.10: All augmentation transforms applied to the sample seen in Figure 4.9.
The figure shows three slices which are mutually perpendicular. The image to the
left is a slice perpendicular to the centerline. Parameters used in the augmentation
are specified in Section 5.1.4

4.3.3.6 Loss Function and Optimiser

For classification networks typically a cross entropy loss is used as mentioned in
Section 3.3.1. In multi-class classifications problems, as in [43] and in this thesis,
a softmax (see Equation 3.2) layer is added after the fully connected layer. For
softmax out, multi-class cross entropy is used as loss function which is negative log
likelihood loss function. As the classification problem really is binary, with two
classes, a sigmoid (see Section 3.1.1) in the output layer with a binary cross entropy
loss function is basically the same thing.

In my implementation I use torch.nn.CrossEntropyLoss from PyTorch[50] which
combines a logarithmic softmax layer with negative log likelihood loss. The output
of logarithmic softmax is a probabilities
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ŷi = LogSoftmax(xi) = ln
(

exp(xi)∑M
j=1 exp(xj)

)
,

where xi is the ith network output and the length of x is M , the number of classes.
Negative log likelihood loss, L(x, y), of network output x and target class vector y
is given by

L(x, y) = − 1
M

M∑
i=1

ŷi.

The optimizer I used was the Adam algorithm, implemented by PyTorch [50], which
is widely used as a quick and efficient optimizer as well as being easy to use. Adam
was suggested in [46] and is explained in Section 3.3.3. Basically, Adam is based on
SGD but adaptively adjust learning rates individually for each weight.

4.3.3.7 Early Stopping

Network training iterations continues until the set stopping criteria is reached. The
criteria usually are based on performance on the validation set which indicates how
well the network generalizes from the training set. In this thesis the training was
stopped when a moving average of the classification accuracy on the validation set
did not increase anymore or if the moving average of loss on the validation set started
increasing. Then the model with best classification accuracy on the validation set
was chosen.

4.3.3.8 Optimising Training Setup

There are a lot of parameters which affects how quick the training process is and
how well the trained network model will perform. One of the most important
factors is picking good samples for training data. I iteratively improved the
training data by adding new samples chosen based on previous attempts of trained
network models. The goal for new samples were to resemble previous samples with
high loss to emphasis learning these in the next training experiment. Other factors
include division of training and validation set, mini batch size, various
combinations of augmentation transforms and their parameters, initial learning
rate and size of the various network layers. I found a setup with adequate
performance by conducting series of training experiments featuring various
setups.

4.4 Evaluating the Network
Predictions of the network is decided by which of the two output classes is given the
higher score. If both outputs score similarly the sample might have to be marked
down for further evaluation. I used samples with inconclusive classification scores
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for improving the data set. If these samples were labelled inconsistently from other
samples, I replaced them. Else, if the consistent, I added more similar samples to
the data set to improve learning of those particular class features.

Performance of the network model I evaluated based on classification of a test data
set taken from a CTA separate from the CTAs included in the training and validation
sets. The measures I used for evaluation were precision, recall and F1-score (also
called dice score). These are statistical measures of classification accuracy commonly
used for evaluating classification models. Precision determines the accuracy of the
network’s positive predictions and is calculated:

Precision = TP

TP + FP
(4.2)

where TP is the number of true positive and FP the number of false positive.
Recall determines the accuracy of predictions for actual positive samples and is
calculated:

Recall = TP

TP + FN
(4.3)

where FN is the number of false negative. The F1-score is a harmonic mean which
emphasises balance of between precision and recall and is calculated:

F1 = 2 · Precision · Recall
Precision + Recall (4.4)

I also used loss and accuracy curves from the training in evaluation of the network.
From the learning curves signs of overfitting and poor data representation in the
training or validation sets can be found. For example, if the learning curves of the
training data continues to improve while the curves of the validation data stops
improving or deteriorates the network has overfitted the training data.

4.5 Finding Seed Points in Branching Vessels
After obtaining predictions from the classification network, seed points in the
protruding vessel branch must be found. A CNN could potentially handle the
prediction of seed points as well. However, classification CNNs are more proven in
prior research and above all is a lot easier to label unambiguously. Hence, I went
with classification CNN and adopted non machine learning approaches like Frangi
filtering[19] and skeletonization. Additionally, the classification network handles
cases where these methods alone would have given non-branch seed points. The
approach I used in this project involves skeletonization of a vessel segmentation in
the sample. Seed points could then be drafted seed points from the skeletonization
curves.
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4.5.1 Segmentation of Bifurcation Sample

In the sample classified as a bifurcation the vessels will emanate from the center of
the box. By applying Frangi filters, as proposed by Frangi et al.[19] and described
in Section 2.3.1.1, a measure for vesselness is obtained which can be used to label
all voxels above a threshold as a vessel. Then the bifurcation can be segmented
by selecting the connected component closest to the center of the sample box. In
this thesis I applied Frangi filter on scales of 1, 3, 5 and 7 with filter parameters
α = 0.5, β = 0.5 and γ = 50. These parameter settings were suggested in [60] and
gave satisfactory performance in this project. The threshold was 0.01 in the Frangi
measure (see Section 2.3.1.1). A segmentation can be seen in Figure 4.11 with the
segmentation overlaid with the original sample and in Figure 4.12 and Figure 4.13
in 3D together with skeletonization curve.

Figure 4.11: Segmentation overlaid with sample. Segmented by applying a
threshold of 0.01 to a Frangi filter sample. Frangi filter applied on scale 1, 3, 5
and 7 with parameters α = 0.5, β = 0.5 and γ = 50.

4.5.2 Skeletonization and Selecting Seed Points

Skeletonization of the segmented bifurcation I performed using an implementation
from skimage[61] of a method suggested by Lee et al. [34] which is described in
Section 2.3.3.1. I then selected seed points from the part of the skeletonization seen
in Figure 4.12 and Figure 4.13. The bifurcation location can be found by finding
a voxel in the skeletonization with three neighbours. A 3D Moore Neighbourhood
[35] is used for this which includes the 26 closest surrounding voxels[34]. From the
bifurcation voxel the average distance between each of the protruding curves and
the original known centerline can be calculated. The curves with the lowest average
distance to the centerline can be discarded as belonging to the originally known
vessel. The remaining curve is kept as seed points for the branching vessel and
constitutes the output of the bifurcation detection.
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Figure 4.12: Skeletonization of segmentation in Figure 4.11. In the left image the
segmentation is included.

In Figure 4.13 the sample contains two bifurcations. In this case the bifurcation
location closest to the center of the sample should be used for suggesting seed
points. The other bifurcation will be found in another sample further down the
centerline.

Figure 4.13: Skeletonization in sample containing two branches. In the left image
the segmentation is included.

4.5.3 Evaluating Branch Seed Points
Evaluation of the branch seed points can depend on what application they’re used
for. As no data including ground truth of the seed points is featured in this thesis
a comprehensive evaluation is difficult to perform. Hence quality of the seed point
extraction was evaluated by visual inspection of choice samples.

4.6 Summary of Assembled Algorithm
Here Chapter 4 is summarized and listed in order of execution to describe the
complete bifurcation detection algorithm. The algorithm assumes that the
centerline and radii are given for the blood vessel to find bifurcations along.

39



4. Development of Bifurcation Detection Method

1. Select points on the vessel centerline inter-spaced by a step length varying
with vessel radius, see 4.2.3.1

2. Loop over selected points

(a) Resample the CTA in a 3D box centered at the point, see Section 4.2.3.1

(b) Rescale and clamp intensity, see Section 4.2.5

(c) Classify sample as branch or non-branch with the classifier CNN, see
Section 4.4

(d) Segment by applying Frangi filter and a threshold, see Section 4.5

(e) Skeletonize the segmented components, see Section 4.5.2

(f) Find skeletonized voxels with 3 neighbours and select the one closest to
the middle as bifurcation location, see Section 4.5.2

(g) For each curve protruding from the bifurcation location; calculate the
average distance to the originally known vessel centerline, see Section
4.5.2

(h) Select and output the curve with largest average distance as bifurcation
seed points, see Section 4.5.2
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Results

In this chapter results from implementing and applying the methods in Chapter 4 are
presented. Included are results from CNN training, performance of a trained CNN
and behaviour of the seed point extraction scheme both unaided and in conjunction
with the CNN output.

5.1 Network Training
As explained in Section 4.3.3.8, there are a multitude of parameters which influence
the training. I attempted various setups of parameter settings to find suitable ones.
In this section resulting choices from such experiments are presented as well as
learning curves for the most significant experiments. The training setup I used for
results in later sections is specified here.

5.1.1 Hardware Specifications
Everything in this thesis, including network training, was tested to run on a single
NVIDIA Quadro M2000M GPU with 4 GB memory. However, most of the network
training was done on a remote NVIDIA Tesla K80 GPU with 12 GB memory through
Google Colab [62].

5.1.2 Training Parameter Setup
In training, the Adam algorithm [46], mentioned in Section 3.3.3, was used as
optimizer. After some training runs I concluded an initial learning rate of 10−3 was
working well. The loss function I used was NLL loss (see Section 4.3.3.6) and the
mini batch size 32 (see Section 4.3.3.4). I picked the best model according to the
stopping criteria specified in Section 4.3.3.7. However, for learning curves
presented in this chapter, I continue the training after the best model had been
picked to further visualize learning dynamics.

5.1.3 Network Architecture Setup
The network size I used for the results in Sections 5.2 and 5.3 was the one specified
in Table 4.2, with 32 initial features, growth rate 4 and block configurations 3, 5
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and 7 (these network parameters are explained in 4.3.2.1). Larger networks did not
change the learning dynamics qualitatively. Very large networks were prone to
overfitting the training data and performing worse on validation set. Smaller
networks were not able to learn the training set well. This made the training
performance generalized well to the validation sets, but overall, the performance
on validation set was worse.

5.1.4 Data Augmentation Setup

I found that a suitable augmentation setup for the final data set was as presented in
Section 4.3.3.5 excluding the randommotion artefact transforms. This augmentation
setup was used for the results in Sections 5.2 and 5.3.

To determine how various augmentation transforms affected the learning I performed
numerous experiments. In Figure 5.1 learning loss curves are shown for some of the
various augmentation setups. As can be seen augmentations clearly enable lower
loss than without augmentation. Random flip transforms decrease the loss by a
large margin. Adding Gaussian noise further decrease the loss. Random motion
artefacts increase the loss slightly and hence is not included in the final augmentation
setup.

Figure 5.1: Accuracy (left) and loss (right) on validation set during training.
Comparison of augmentation transforms. Clearly augmentation noticeably improves
performance on validation set, i.e., generality. No augmentation (purple curve)
stops improving after just a few epochs. Random flipping along axes (blue curve)
drastically improves the generality. The addition of random Gaussian noise (red
curve) perhaps slightly improves generality, but above all increases the learning rate
in the start of training. No discernible improvement comes from adding random
motion artefacts (green curve), arguably the generality instead deteriorates. Finally
adding the random spatial transforms (black curve) boosts in generality. Loss and
classification accuracy doesn’t seem to correlate perfectly.
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5.1.5 Data Set

After repeated training experiments and sample additions, the final labelled data set
consisted of 663 branch samples taken from 103 unique branches and balanced out
with 663 unique non-branch samples. Sample box size was H = W = 1.5∗RV , using
the notation specified in Figure 4.6. The resolution of sample boxes was 64×64×64.
Samples came from five different CTAs. Data samples were divided by CTA, the
training set from three CTAs, the validation one CTA and the test set from one
CTA.

Training Set Validation Set Test Set
Data division 1 CTA#1, #2, #3, CTA#4 CTA#5
Data division 2 CTA#1, #2, #5, CTA#3 CTA#4
Data division 3 CTA#3, #4, #5, CTA#1 CTA#2

Table 5.1: Three different divisions of the data set into training, validation and
test sets. The CTA notation is introduces in Section 4.2.1.

Effects of different division of CTAs into training, validation and test sets can be
seen in Figures 5.2, 5.3 and 5.4. The divisions are specified in Table 5.1.

Figure 5.2: Learning curves for accuracy and loss for Data division 1 as presented
in Table 5.1. The accuracy on the validation set reaches approximately 95%. After
about 300 epochs the validation loss reaches a plateau while the loss for the training
set keeps decreasing. At this point further learning doesn’t generalize well to the
training set, so there are presumably some types of samples present in the validation
set which aren’t in the training set making the validation set too difficult.
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Figure 5.3: Learning curves for accuracy and loss for Data division 2 as presented
in Table 5.1. Accuracy for the validation set does not exceed 90%. Validation loss
does not seem to lower much as the training set loss decreases. This indicates poor
representation of the data set in the training set. Makes it impossible to generalize
well to particular samples only represented in the validation set.

Figure 5.4: Learning curves for accuracy and loss for Data division 3 as presented
in Table 5.1. Loss for the validation set is lower than for the training set but
improves as the loss for the training set is minimized. This indicates that the
learning generalizes well to the validation set. First after 500 epochs the curves
for the training set catches up. However, 95% validation accuracy is reached very
quickly, which could indicate that the validation set is too simple compared to the
training set. But the training set is being enlarged by online augmentation which
make it take longer to learn.
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Figure 5.5: Same data set division as in Figure 5.4, division 3 according to Table
5.1. In this figure the only augmentation transform applied is random flip along
axes. Here we can see that the validation accuracy is not higher than the training
accuracy. This suggests that the initially low training accuracy in Figure 5.4 can be
explained with augmentations increasing the learning time.

All three figures show that the accuracy clearly improves as the loss on the training
set is minimized. However in Figure 5.2 the accuracy reached for the validation set
is low, ≈ 90%, compared to ≈ 95% in Figure 5.3, and ≈ 98% in Figure 5.4. Learning
on the training set is similar all three divisions of the data set. Overall, this indicates
that some CTAs contain unique features which are not learned if those CTAs are
not present in the training set. In all three figures improvement on the validation
set flatten at about epoch 200 to 300. Improvement on the training set continues
after this point. Further training after this point is overfitting but does not decrease
performance on the validation set. In Figure 5.4 the loss curves of the training and
validation sets show the most correlation out of the three figures, pointing to that the
test set has a good representation of the data set. Accuracy initially is much higher
for the validation set than the training set which could suggest that the validation
set is too simple to predict and gives an overestimation of performance. However
as explained in Figure 5.5 it has to be kept in mind that the training set is heavily
augmented, thus featuring an enlarged data set which takes longer to learn. Figure
5.5 shows learning curves for the same data set division as in Figure 5.4 but with
the only augmentation transform being random flip around axes.

5.2 Network Performance on Test Set
In this section the performance of the obtained classification model is evaluated on
a test set of samples. Data set was divided according to Data division 2 in Table
5.1. The network and training setup used in for the results presented in this section
is as specified in Section 5.1. The rule used for classifying samples as a branch is
that the prediction score for branch class is higher than for the non-branch class,

45



5. Results

and vice versa for classifying non-branches.

Table 5.2 presents precision, recall and f1-score, by category, for the classification
model’s predictions on the test set. Precision for the branch class is 0.94, recall 0.96
and f1-score 0.95. For the no-branch class precision is 0.97, recall 0.95 and f1-score
0.96. Lower precision and higher recall for branch indicates a very slight tendency
towards classifying non-branches as branches.

Table 5.2: Statistical evaluation of the predictions on the test data set performed
by the classification model. Data set was divided according to Data division 2 in
Table 5.1. Details of the setup are referred in 5.2. Precision, recall and f1-score are
included by category and accuracy for all predictions.

Category Precision Recall f1-score
no branch 0.97 0.95 0.96
branch 0.94 0.96 0.95

In Figure 5.6 the model is evaluated on sample boxes along a vessel centerline with
labelled branches. Samples were take at distance intervals of d = 0.2 ∗RV , which is
a suitable step length in order to not miss any branches with the box size specified
in Section 5.1.5, H = W = 1.5 ∗ RV . Sample box notations are specified in Figure
4.6. As seen in Figure 5.6 predictions match the ground truth well. The ranges of
samples being predicted as bifurcations are wider than the actual samples labelled
with bifurcation. Class scores are practically symmetrical around zero. This will be
the case for a two-class classifier with cross entropy loss as the loss is minimized as
a sum of losses (see Section 4.3.3.6).
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Figure 5.6: Classification model evaluated along a vessel centerline (such as seen
in Figures 4.2 and 4.3) with labelled branches. The model’s output class scores are
plotted as a function of distance along centerline spline. (Orange curve) branch class
score. (Blue curve) non-branch class score. (Gray dotted lines) is the ground truth
which, in the figure, is high for a branch and low for a non-branch sample. Class
scores are practically symmetrical around zero. Samples are classified as branches
if the class score is higher for branch than non-branch. The ranges of samples being
predicted as bifurcations are wider than the actual samples labelled with bifurcation.
Details of the model are referred to in 5.2. Data set was divided according to Data
division 2 in Table 5.1.

In table 5.2 present precision, recall and f1-score for using a the data set division
in Figure 5.4. The predictions of the test set are perfect. However by reasons
discussed in Section 5.1.5, it’s possible that the test set could consist of easier
sample, just as the validation set. Thus the results 5.2 should be considered as an
potential overvaluation of the network performance until more rigid evaluation is
performed.

Table 5.3: Statistical evaluation of the predictions on the test data set performed
by the classification model. Data set was divided according to Data division 3 in
Table 5.1. Details of the setup are referred in 5.2. Precision, recall and f1-score are
included by category and accuracy for all predictions.

Category Precision Recall f1-score
no branch 1.00 1.00 1.00
branch 1.00 1.00 1.00
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5.3 Bifurcation Seed Points

Results presented in this section are seed points based on the bifurcation classified
samples from Section 5.2. Some of these results has already been presented in Figures
4.12 and 4.13. In Figure 5.7 and Figure 4.12 typical bifurcations without much
noise or background structures in the background are segmented and skeletonized.
In these cases there only one way to pick seed points which clearly are within the
branching vessel according to the selecting scheme in Section 4.5.2.

Figure 5.7: Segmentation, skeletonization and seed points of a sample correctly
predicted as a bifurcation by the classification model. A typical case with only one
relevant way to chose seed points.

Branch samples with much noise or background structures make the segmentation
with Frangi filters more difficult and can result in false seed points suggestions in
addition to the correct suggestion like shown in Figure 5.8. Using the suggested
selection approach in Section 4.5.2 the seed point candidate closest to the center
of the sample will be selected. It is very likely that the correct seed points will
be selected in one of the branch-classified samples surrounding the bifurcation. For
instance in Figure 5.8, the correct branch is chosen. However, in a later sample along
the centerline one the false seed points will be closer to the center and are picked
instead. False candidates will have to be handle separately and are not covered in
the scope of this thesis.
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Figure 5.8: Segmentation, skeletonization and seed points of a sample correctly
predicted as a bifurcation by the classification model. The segmentation is not good
because of background structures and many reasonable seed point suggestions can
be made from the skeleton. In this particular case seed points will be picked for the
true branch as its closest to the center of the sample. However, if the sample were
taken a bit further down the centerline the false seed points down to the left would
be chosen.

An example of the branch classified samples far away from the actual branch, seen
in Figure 5.6, is shown in Figure 5.9. The skeletonization does not show any
branch, this is fine because it will be picked up in a later sample where the branch
is more centered. Similar cases exist where correct seed points are indicated even if
classification model incorrectly predicted a sample as a branch. Hence the wider
range samples are being predicted as branches in 5.6 generally isn’t an issue.
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Figure 5.9: Segmentation, skeletonization and seed points of a sample incorrectly
predicted as a bifurcation by the classification model. However, the sample is near
enough to contain part of the bifurcation. In this case no seed points are indicated.
However there are similar cases where correct seed points will be given even if the
classification model gave a false positive bifurcation prediction.

If the samples have been miss-classified the segmentation will most likely suggest
no branch seed points like in Figure 5.10. However in difficult areas with lots of
background structures or noise false bifurcation seed points might be suggested as
in Figure 5.11. Cases like this is rare and again false seed point candidates is not
handled in the scope of this thesis.

Figure 5.10: Segmentation, skeletonization and seed points of a sample correctly
predicted as a non-bifurcation by the classification model. A typical case without
any seed points indicated.
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Figure 5.11: Segmentation, skeletonization and seed points of a sample correctly
predicted as a non-bifurcation by the classification model. A sample from a vessel
section passing through bone which give very poor segmentation with current Frangi
filter settings. Indicates several possible choices of seed points. Such locations are
typically not predicted as bifurcations by the classification model.
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Discussion

In the discussion, the results from Chapter 5 are analysed in relation to the theory
presented in Chapter 2 and Chapter 3, and the methods described in 4. Relevance
and validity are discussed and suggestions for future research are made.

6.1 Relevance and Validity of the Algorithm’s
Performance

6.1.1 General Results and Limitations Imposed by Data

Results from the suggested algorithm manage to both detect and extract seed points
for vascular bifurcations which resonate well with the purpose, stated in Section
1.1.1. However, it must be questioned what these results really imply. The algorithm
was developed, trained, and evaluated solely on a data set produced and labelled as
a part of this thesis. Hence subjective bias in the training data is likely to be present
in the validation and testing data. However, the fact that the CNN generalized well
to the validation data indicates that the data set was consistently designed and
labelled. Moreover, the data set consisted of samples taken from only five CTAs.
These five CTAs were not unusually similar in any particular way, thus, even if few,
still provides a decent representation of a larger number of CTAs. Additionally,
there’s no particular reason to believe that performance transferring to test data
taken from one of these CTAs wouldn’t transfer to external CTAs. Although it
clearly delimits the range of sample types available for training, consequently making
some very specific types of samples impossible to learn.

Keeping the limitations imposed by the data set in mind, reaching over 90%
classification accuracy even on one of the most unfavourable divisions of training,
validation and testing set, in Figure 5.2, is a promising sign. Tendencies of
overfitting are over the board low and generalization to validation data is decent
for most data set divisions. Figure 5.6 shows that the model functions in the
intended context, detecting branches along a given vessel centerline. Extracted
seed points appear mostly good and the CNN clearly improves the potential of the
seed point extraction by excluding difficult non-branch samples. It should be lifted
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that there isn’t any labelled ground truth for the bifurcation seed points. Seed
points are therefore only evaluated by spot-checking samples manually and visual
inspection. More testing should therefore be performed before drawing any larger
statistical conclusion about the seed point quality.

6.1.2 An Abundance of Simple Samples

An observation can be made in Figure 5.2 that the loss on the validation set is
quite high compared to that of the training set. According to NLL loss in Section
3.3.1 and Section 4.3.3.6 the network isn’t able to easily discriminate between the
two classes. However, the classification accuracy is still quite high, around 90%. A
similar observation can be made in Figure 5.1 where variations in loss doesn’t
perfectly reflect in classification accuracy. The curve for no augmentations shows
very high and increasing loss for the validation set. Still the classification for no
augmentations increases and reach over 80%. This could indicate that the
classification is extremely easy for many of the samples, being feasible even with
very poorly optimized network with high loss. A possible explanation for this is
that the data domain, by attributes, by clear majority consists of simple samples.
Most branches are not especially difficult, and most non-branches contain a plain
straight tube. Some precautions were taken to ensure inclusion of difficult rare
samples, as explained in Section 4.2.4. The specially labelled non-bifurcation
samples described in Section 4.2.4.2 were added to amend this issue. In earlier
iterations of the data set, with less of these specially added samples, this issue was
worse, so the precautions seem to have helped. However, being rare in a limited
amount of manually labelled data, finding these samples is not feasible. The final
data sets consequently contains only a few of these difficult samples. Additionally
this theory could also possibly explain the flat stop of improvement at around
epoch 200-300 on the validation sets seen in Figures 5.2, 5.3 and 5.4. At this point
only the rare difficult samples are being miss-classified, which has none or low
representation in the training set and thus cannot easily be learned. If this indeed
is an explanation, more difficult samples would need to be added to the data
set.

Another matter to address is the division of the data set in training, validation, and
test sets. Figures 5.2, 5.3 and 5.4 can be seen as an inexhaustive cross validation. It
appears that each set of CTA samples does not contain equally good representations
of the data domain. Figure 5.2 show that learning CTA#1, #2, #3 (in Table 5.1)
doesn’t generalize very well to samples CTA#4. By contrast, learning CTA#3,
#4, #5 generalize very well to samples CTA#1 as seen in Figure 5.3 and also to
CTA#2 as seen in Table 5.3. This indicates either that CTA#4 has some unique
types of samples or that CTA#1, #2, #3 (especially CTA#1 and #2) are under
representative of the data domain; or both. Similar conclusions about other CTA#1
could be drawn by expanding the cross validation. However, the main point being
made by this discussion is that data set division is important to consider and that,
as in previous paragraph, more rare difficult samples from more CTAs should be
included in the data set.
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6.1.3 Network Predictions

Prediction accuracy of a trained network can be quite high on the test data set as
can be seen in Tables 5.2 and 5.3. In Figure 5.6 the class scores for all samples
along an entire vessel centerline is shown. There are cases where the separation
between the classes is very high. These are the kind of samples to consider when to
expanding the data set. Another point is that the samples close to branches tend to
be predicted as branches. In particular the second and third branch from the right
in Figure 5.6 are very close to each other and samples in between aren’t predicted as
non-branches. This does not necessarily pose a large issue, but the reason is likely
that samples nearby a branch partially contain the branch. It makes sense that the
network cannot handle these very well as it is unlikely that those kinds of samples
are added to the data set. It is also in some cases subjectively difficult to judge
exactly where to draw the line between a sample containing a branch and a sample
not containing a branch. To remedy this issue quotas in the data set should be
allocated for nearby branch samples. However, first a strict policy of how to judge
if the branch is outside or inside a sample should be in place.

It’s difficult to draw any conclusions from Tables 5.2 and 5.3 as they show good
balance between recall and precision. No trends between training runs were
discernible to favour recall over precision or vice versa. With more test data
available perhaps these values would be interesting. To consider is that a
classification model never will be able to guarantee 100% accuracy in class
predictions. Consequently, the target algorithm would preferably feature some
analysis to verify a suggested branch. In this case it would be prioritized for the
branch detection method to have high recall for the branch class as it would be
easier to exclude miss-classified non-branches than finding missed branches.
However, this obviously depends on the exact application. In some cases, it could
be more important to have high precision for the branch class, i.e., that the
predicted branches very likely are branches.

6.1.4 Inconclusive Seed Point Propositions

Figures 5.8 and 5.11 both show samples were the skeletonization of the Frangi
segmentation indicate multiple possible branch points. Figure 5.11 is a non-branch
sample, thus the classification network is tasked to prevent this issue. Figure 5.8
however is a branch and there could be examples where the resulting skeleton is
even more inconclusive. The reasons for this happening are disturbances and
structures in the surface of the vessel wall. Samples with such disturbances
produce and uneven surface in the segmentation which will trigger additional lines
to be found in the skeletonization. Optimally a superior segmentation method or
skeletonization method would be used to prevent this issue. However, a solution
which comes with a trade-off is to smooth the surface. The trade-off with
smoothing is that smaller vessels branching from large vessels will disappear.
Consequently, this could be applicable if only bifurcations with similarly size
vessels are of interest.

55



6. Discussion

6.1.5 Comparison to Related Work
While there is much work done on vessel segmentation and vascular feature
extraction, the quite specific scope of this thesis limits what comparisons can be
performed. Like many other vascular image analysis methods proposed in [6] and
[8], a combination of methods is used. In [9] branch detection is performed with a
similar purpose as in this thesis (brought up in Section 2.3.3). They can perform a
more rigid evaluation by visual scores from cardiology experts and branch
detection in fresh patient CTAs. However, the results on display show mostly quite
easy branch detection situations where the algorithm proposed in this thesis also
would perform well. In bifurcation with several simultaneous branches seems to be
handled better by their method though. They focus on coronal arteries, which
present a smaller range of variation than focusing on carotid arteries from the
aorta arch all the way up to the brain.

Augmentations, aided by Monai[51] and TorchIO[52], are effective; allowing learning
and generalizing from a very small data set of only 100 unique labelled branches and
in total 1300 samples. This goes to show why data augmentation is widely used in
medical imaging. Random motion artefacts rather worsened (see Figure 5.1) the
generality than improved it as suggested by [59]. Most likely the reason for this
is that motion artefacts appearing exactly at vessels is quite rare and thus was
not represented in the limited data set. Another reason could be that the motion
artefacts introduced by [59] was meant for MRI and might have lower realism in
CTA.

6.2 Suggestions for Future Work
As made clear in Section 2.3 the field of vascular image processing is large. There
are several methods and combinations of methods which potentially could be
investigated to add or replace parts the approach suggested in this thesis. However
concrete suggestions closely connected to the results in this thesis will be included
in this section.

Most importantly the data set used in this thesis must be expanded to include, well
selected, samples from more CTAs. This would certainly improve generality of the
network. Moreover, it will increase the possibility for rigid validation and evaluation.
With a larger test set analysis of the ROCs (receiver operating characteristics) and
PRCs (precision-recall curves) would be interesting to provide greater insight of
classification properties and optimal thresholds for class scores.

On the same topic of training data, it would be interesting to include synthetic
data sets. Especially development of a GAN for generating synthetic CTA data
would be useful, not only for this specific project, but for vessel segmentation and
medical imaging in general. However even simpler synthetic data could be used for
transfer learning to focus learning on some specific vessel features before training on
the real CTA data. Perhaps this could prevent learning some irrelevant features in
CTA.
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The suggested approach, as summarized in Section 4.6, has a lot of parameters.
Even though some optimization has been done in this work, rigid optimization had
to be left out in order complete an acceptable algorithm. Therefore, there is a lot
of optimization that can be explored. Sample box size is very resource consuming
to optimize as it requires generating several data sets. Each data set must be
thoroughly probed for flaws before uses in training. However larger sample boxes
would include more global information to discern vessels from vessel-like noise. A
closely related task is to study how the resolution of the sample boxes affect the
predictability. The architecture of the DenseNet, which is not altered much from
the original, is also a relevant subject for further optimization.

Frangi filtering is a quite basic vessel segmentation technique with observed flaws
like classifying objects connected to vessels like vessels.[6] A more advance method
for vessel segmentation could reduce probability of cases like Figure 5.8. With
access to labelled segmented vessel CTAs an additional CNN could be trained for
local segmentation. A less extensive change would be to use an adaptive scheme for
selecting Frangi filter parameters α, β and γ. The suggested fixed parameter values
compromise for being able to detect small vessels but exclude nearby noise particles.
During trials, manually selected filter parameters were able to handle cases like the
sample in Figure 5.8 perfectly.

A possible expansion of the use area would be to train the network to detect
vascular bifurcations in a sliding window sample all over the CTA, not limited to a
vessel centerline. This would allow independently providing initialization seed
points for vessel segmentation methods which require seed points, including
Mentice’s algorithm.
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Conclusion

The aim of this work was to develop and propose a method for vascular bifurcation
detection in cerebral CTAs including the carotid arteries. Previous studies indicate
that feature extraction such as bifurcation detection often is preceded by vessel
segmentation. It was also indicated that CNN show great potential for vessel
segmentation and often are combined with other methods. In addition to detecting
bifurcations the aim was to provide seed points in the branches for a seed point
based vessel segmentation method. Consequently, the proposed method was
chosen to exploit information available from the seed point based vessel
segmentation method and use a CNN for bifurcation detecting combined with
Frangi filters and 3D morphological skeletonization for seed point extraction. The
branch detection was posed as a classification problem, thus the high performing
DenseNet architecture was chosen as the employed CNN. Training data for the
DenseNet was manually extracted and labelled from five CTAs making up a quite
small data set of about 1300 samples. Online data augmentation on the GPU was
applied to enable generalizing from such a tiny data set. The chosen augmentation
transform was enough to nearly make overfitting a none factor. Assisted by the
classification network, excluding most difficult samples, Frangi filters was able to
locally segment branches which could be skeletonized to present seed points.

Results are promising with classification network provided a high classification
accuracy of 90-100% with a similar f1-score. Extracted seed points were also good
in most cases. However, no rigid validation was available due to low amount of
data. There were also discrepancies of representability between the five CTAs
where one or two contained unique sample types. Thus, the division in training
and validation had a large effect which was seen in a inexhaustive cross-validation.
Future studies could work to expand and improve the data set, particularly
improve the balance between difficult and easy samples. With more data the
performance can be validated and improved. There are also more sophisticated
methods than Frangi filters and 3D skeletonization for seed point extraction which
could be adopted. Possibly the CNN could be trained to find branches from
scratch over an entire CTA which could be used to provide initial seed points for a
seed point based segmentation method.
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