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Abstract

Spaceborne earth observation missions constitute an essential source of information
for climate science. In order to extract physically relevant quantities from the
electromagnetic signals recorded by the detector onboard the satellite several
data processing steps are required. This process, the so called data retrieval,
requires a thorough mathematical formulation as well as an efficient implementation
to ensure both the correctness of the retrieved data and the ability to handle
large retrievals at a sufficiently high bandwidth. As part of this thesis project
the invlib C++ template library has been developed, which implements Bayesian
methods for inverse problems arising from the retrieval of remote sensing earth
observation data. The library provides functionality for the memory-efficient
calculation of maximum a posteriori estimators of Bayesian inverse problems with
Gaussian priors and measurement error. This method, known in the field of remote
sensing as the optimal estimation method (OEM), has been implemented using
generic programming techniques in order to provide a maximum of flexibility and
performance to the user of the library. The invlib library has been integrated
into the Atmospheric Radiative Transfer Simulator (ARTS), which is a publicly
available software package for the simulation of the propagation of electromagnetic
radiation through the atmosphere. The integration of the retrieval functionality
considerably simplifies the data retrieval workflow with ARTS, which previously
required the use of a separate, external software package. In this thesis report the
use of the invlib library for tomographic retrievals from the Odin SMR mission is
demonstrated. Using the new implementation based on the invlib library, it is now
possible to perform the tomographic retrievals of data from a complete half-orbit
in a single computation. Furthermore, it is demonstrated how the computations
can be parallelized using invlibs generic parallel matrix and vector types. Finally,
also the use of the invlib library for the three-dimensional retrieval of simulated
data from the MATS satellite mission is illustrated.

The principal result of this thesis is a free software C++ template library for remote
sensing data retrieval, that emphasizes generality and performance. Furthermore,
the invlib library has been integrated into the ARTS software package and the
retrieval functionality made available to a large community of existing users. The
capabilities of the library to perform and accelerate the solution of real world
retrieval problems has been demonstrated by applying it to data from two different
earth observation missions.
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Introduction

It is scientific consent that the human-induced climate change and its related effects
constitute a major challenge to the development of mankind (Oppenheimer et al.,
2014). In order to find ways to efficiently reduce anthropological influences on the
climate and mitigate the effects of global warming, a deep understanding of the
climate system is indispensable. Advancing this understanding requires scientists
to be able to monitor this system not only locally but on a global scale. The
main source of such global observations are spaceborne earth observation missions.
Already today, a large number of earth observation missions are orbiting the earth
providing a constant stream of observational data containing information about
its climate system. In general, however, the quantities measured by the detectors
onboard these earth observation satellites are only indirectly related to physical
properties of the atmosphere or the earth. The process of inferring these physical
quantities from the data recorded by the detector onboard the satellite is called
the data retrieval and is the subject of this thesis.

One such earth observation mission is the Swedish Odin satellite carrying the
Sub-Millimetre Radiometer (SMR), which measures thermal emission from the
atmosphere. The measurements recorded by the SMR are spectra of sub-millimeter
radiation. The Global environmental measurements and modeling group at the
Department of Earth and Space Sciences at Chalmers University of Technology,
where this thesis project has been carried out, is responsible for the retrieval
of atmospheric properties including trace gas concentrations, temperature and
atmospheric pressure from this data. The previous implementation of the data
retrieval used a combination of two software packages, that had to exchange large
amounts of data. In addition to that, this implementation lacked the ability to
exploit specific structures of the retrieval data as well as functionality to reduce its
memory footprint. Thus, the primary aim of this thesis project was to simplify the
data processing of the Odin SMR data by integrating all functionality required for
the retrieval into a single software package as well as to extend the functionality of
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the implementation to achieve improved performance.

To the best knowledge of the author, there is currently only a very limited number of
publicly available implementations of maximum a posteriori methods for Bayesian
inverse problems. One of them is the implementation provided by the Qpack
package (Eriksson et al., 2005) developed by Patrick Eriksson. This is also the
implementation that is currently used for the processing of the Odin SMR data.
While these methods are commonly used for the processing of remote sensing data
retrieval (Ungermann et al., 2015; Hoffmann et al., 2008), developing a general
implementation of the method is difficult. This is because the retrieval requires an
implementation of a so called forward model, which simulates the measurements
performed by the satellite. Since the forward model implementation is usually
highly problem dependent, the retrieval implementations are developed specifically
for a given forward model.

Aim

The primary aim of this Master’s thesis is the integration of retrieval functionality
into the Atmospheric Radiative Transfer Simulator (ARTS), which is currently used
as a forward model for the retrieval of the Odin SMR data. The implementation of
the retrieval method should be optimized with respect to computational performance
and memory footprint making it suitable also for large retrieval problems. In
particular, the new implementation should yield improved performance for the
retrieval of Odin SMR data and if possible also allow for the tomographic retrieval
of data from a complete half-orbit of the satellite. While tomographic retrievals
of Odin SMR data have been performed before, memory limitations required the
splitting up of the data into chunks which then had to be processed separately.
Apart from being cumbersome, this introduced considerable processing overhead
due to the overlap between adjacent chunks.

As a secondary aim, the implementation should strive to be as general as possible,
exploring the possibilities of developing a general-purpose library for remote sensing
data retrieval which can be applied to a large number of retrieval problems without
trading off performance.
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Limitations

In terms of methodology, this thesis is limited to Bayesian methods for inverse
problems with Gaussian priors and measurement errors. Furthermore, for all
inverse problems treated here the existence of a suitable forward model is assumed.
The discussion will be limited to mathematical and computational aspects of the
retrieval and the physical results will be presented only briefly.

The main work of this thesis was conducted over a duration of four months, which
of course required limiting its scope. During this time, the focus was put on
integrating the retrieval functionality into ARTS and the parallelization of the
tomographic retrievals of Odin SMR data. A treatment of the computational
aspects of the calculation of measurement diagnostics has not been possible within
the limited amount of time available for this project.

Method

The invlib library implements maximum a posteriori estimators (MAP) for Bayesian
inverse problems with Gaussian prior and Gaussian measurement errors. In the field
of atmospheric remote sensing this method is also known as the optimal estimation
method (OEM) as presented in Rodgers (2000). The library is implemented in C++

and uses template programming techniques to avoid code duplication and simplify
the interaction with the forward model implementation.

Results

The main result of this thesis is the invlib free software library, which provides
a generic implementation of Bayesian methods for inverse problems with Gaus-
sian prior and Gaussian measurement error. The code is freely accessible online
(Pfreundschuh, 2016) and distributed under the MIT License (MIT, 2016). The
invlib library has been integrated into the ARTS software package, which allows
ARTS users to perform remote sensing data retrievals directly, without the need
for additional software.

The new ARTS retrieval functionality has been used to perform tomographic
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retrievals of Odin SMR data. By performing the retrieval on a dedicated compute
cluster, it was possible to retrieve the data from a complete half-orbit of the
satellite. Furthermore, the computations have been parallelized using MPI and
distributed over multiple compute nodes, which significantly reduced the processing
time required for the retrieval.

As a secondary result, it is demonstrated how the invlib library can be used for the
retrieval of remote sensing data outside of ARTS using simulated data from the
future MATS satellite mission. Also for this application, a considerable reduction
in processing time could be achieved by parallelizing the computations.

Outline

Following this introduction, this thesis report contains four additional chapters.
Chapter 1 introduces the mathematical theory of inverse problems and presents
the numerical methods required to solve them efficiently. Chapter 2 contains a
description of the design of the invlib library together with a general usage example.
Chapter 3 describes the retrieval setup for tomographic measurements of the upper
mesosphere based on Odin SMR data, which serves as a verification and benchmark
case for the implementation. The results of this thesis project as well future work
are discussed in Chapter 4.

Appendix A contains the algorithms required for the solution of inverse problems.
Appendix B contains implementation details accompanying the invlib usage example
from Chapter 2.
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Chapter 1

Theory

This chapter introduces the mathematical theory and computational methods
required for computing the solution of a retrieval problem. The first section
introduces the mathematical theory of inverse problems, based on which a general
solution of the retrieval problem can be formulated. Following this, the numerical
methods required for the computation of such a solution are presented. The chapter
closes with a discussion of general performance characteristics of the previously
introduced methods.

1.1 Inverse Problem Theory

Although the problem of retrieving atmospheric parameters from satellite measure-
ments may seem like a very specific one, the underlying mathematical problem
is much more general. So general in fact that a whole mathematical theory, the
theory of inverse problems or inverse problem theory, has been developed to treat
problems of this kind. This section briefly introduces the main concepts of inverse
problem theory relevant to the processing of remote sensing data. For a more
in-depth treatment of the subject, the reader is referred to the excellent text by
Tarantola (Tarantola, 2005).

The general setting in inverse problem theory is as follows: Given a system in an
unknown state, the problem is to gain information on the state of this system.
This state, however, can not be measured directly. Instead, the only way to obtain
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information about it is through indirect measurements that depend in a known
and predictable way on the state of the system.

This is analogous to the situation in atmospheric remote sensing. While it is not
possible to measure the global state of the atmosphere directly, electromagnetic
radiation propagating through the system can be measured by a suitable detector.
Since the theory of radiative transfer is well understood, most situations allow an
efficient simulation of the signals recorded by such a detector for given atmospheric
states.

The theory of inverse problems provides a theoretical framework for the extraction
of information about the state of the system from these indirect measurements as
well as tools to investigate the accuracy and precision of this information.

1.1.1 The Forward Problem

As the name suggests, the actual problem in inverse problem theory is the inversion
of yet another problem. The problem to be inverted is referred to as the forward
problem. The fundamental assumption of inverse problem theory is that this
problem can be solved efficiently by a so called forward model. This may be any
model that allows to predict the measurement from a given state of the system. In
the case of the Odin SMR data retrieval, this is a numerical simulation of radiation
passing through the atmosphere. In mathematical terms, the forward model F is a
mapping from the set of possible states of the system, the state space S, into the
space of possible measurements, the measurement space M:

F : S →M (1.1.1)

In what follows, it is assumed that there exist suitable mappings that allow the
representation of elements of the state and measurement spaces by real vectors
x ∈ Rn and y ∈ Rm, respectively. The forward model F thus takes the form
of a function F : Rn → Rm, mapping an n-dimensional state vector x onto an
m-dimensional measurement vector y. The respective dimensions n and m of the
state and measurement space will later be important characteristics of the inverse
problem at hand. In the case of the Odin SMR retrieval, the state space is the set
of all possible parameter vectors that describe the model atmosphere. These may
consist for example of the temperature or water vapor concentrations at different
vertical and horizontal positions in the atmosphere. The measurement space is the
set of all possible signals that can be recorded by the detector onboard the satellite.
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1.1.2 The Inverse Problem Solution

In an ideal setting, a solution of the inverse problem given by the measurement
vector y and the forward model F would be the exact solution, i.e. the vector x
satisfying

y = F(x). (1.1.2)

Unfortunately, as will be seen below, such a vector x is unlikely to exist for general
inverse problems. An important point to note is that the forward and the inverse
problem are generally not symmetric. The forward problem is a process, which
allows a unique prediction F(x) (up to some prediction uncertainty) of its outcome
based only on the parameter vector x. Moreover, a small deviation from x will
result in a small deviation in the prediction F(x). A problem that satisfies these
three properties, namely the existence, uniqueness and continuity of the solution
F(x) in x is called a well posed problem (Hadamard, 1907). The inverse problem
on the other hand is generally ill posed. This means that for the inverse problem
any of the following conditions are met:

An exact solution to the problem does not exist. Due statistical errors in
the measurement process and systematic errors in the forward model, a state
vector x satisfying F(x) = y may not exist.

The solution is not unique. Even in the absence of systematic or statistic er-
rors, there may be two state vectors x1,x2 that yield the same observed
measurement y. Without additional information, it is thus impossible to
know which of the two vectors to choose.

The solution is ill-conditioned. An inverse problem is ill-conditioned if a small
deviation in the measurement vector y may lead to a completely different
solution x.

Because of this, one can generally not expect to find an exact solution to a given
inverse problem. Nonetheless, the vector y contains information about the state
x of system. In order to extract this information from the measurement y, it is
thus necessary to reconsider the definition of a solution of the inverse problem. A
very general and powerful formulation of inverse problems can be obtained from a
Bayesian approach to the problem.
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1.1.3 The Bayesian Formulation

The fundamental idea of the Bayesian approach to inverse problems is to formulate
the problem in terms of available knowledge about the state of the system, rather
than trying to find an exact solution for a particular measurement. A general way to
represent knowledge about a system is by specifying a probability distribution P (x)
over the state space. In the Bayesian framework, there are two types knowledge
about the state x: The a priori and the a posteriori knowledge. The a priori
knowledge is any knowledge about the state of the system that is available before
the measurement. It is given by the a priori probability P (x), also called the
prior. The a posteriori knowledge is the combination of a priori knowledge and
information gained through the measurement. It is given by the conditional
probability distribution P (x|y) over the the state space for the given measurement
vector y. This distribution is called the a posteriori distribution or posterior.

In the Bayesian formulation the solution of the inverse problem is just the knowledge
about the state x after the measurement, i.e. the posterior distribution P (x|y).
Using the definition of the conditional probability P (x|y) of x given y

P (x|y) = P (x,y)
P (y) , (1.1.3)

the posterior distribution of x can be obtained from

P (x|y) = P (y|x)P (x)
P (y) (1.1.4)

= P (y|x)P (x)∫
x P (x,y) dx . (1.1.5)

This result is known as Bayes’ theorem. Equation (1.1.4) is the general Bayesian
solution of the inverse problem. The computation of a concrete solution of the
inverse problem requires the definition of a suitable prior distribution P (x) as
well as a conditional probability P (y|x). The approach taken here is to assume
a Gaussian prior on the state space as well as Gaussian-distributed errors in
measurement space. That means the prior distribution is assumed to be of the
form

P (x) = 1
(2π)n

2 |Sa|
1
2

exp
{
−1

2(x− xa)TS−1
a (x− xa)

}
(1.1.6)

for given a priori state xa and a priori covariance matrix Sa. For the conditional
probability P (y|x), it is assumed that the forward model F(x) is a physically
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exact model of the measurement process and that the only error entering the
measurement is multi-variate Gaussian- distributed zero-mean noise:

P (y|x) = 1
(2π)m

2 |Sε|
1
2

exp
{
−1

2(y− F(x))TS−1
ε (y− F(x))

}
(1.1.7)

Inserting the formulas for the prior and conditional distribution into (1.1.4) gives,
up to a normalization factor, the following solution of the inverse problem:

P (x | y) ∝ exp
{
−1

2
(
(y− F(x))TS−1

ε (y− F(x)) + (x− xa)TS−1
a (x− xa)

)}
(1.1.8)

Even though this is the general solution to the problem, for further data analysis it
is desirable to represent the solution using a single state vector x and a suitable
measure of uncertainty. A common way of doing this is by choosing the state x
that maximizes the posterior probability P (x | y). This technique is known as the
Optimal Estimation Method (OEM) as described in Rodgers (2000) or alternatively
the Maximum A Posteriori (MAP) Method as described in Tarantola (2005).

Consider first the case of a linear forward model:

F(x) = Kx (1.1.9)

For a linear forward model, the a posteriori distribution (1.1.8) is just a Gaussian
distribution with mean and covariance given by:

xµ = xa −
(
KTS−1

ε K + S−1
a

)−1
KTS−1

ε (F(xa)− y) (1.1.10)

S =
(
KTS−1

ε K + S−1
a

)−1
(1.1.11)

Due to the symmetry of the Gaussian distribution, the mean xµ is at the same
time the maximum of the posterior distribution and thus (1.1.10) is also the MAP
estimator of the linear inverse problem.

Unfortunately, for a general forward model no such closed form of the maximum of
the posterior distribution is available. In this case the MAP estimator can still be
obtained by numerically minimizing the negative log-likelihood

−L(x) = 1
2
(
(F(x)− y)S−1

ε (F(x)− y) + (x− xa)S−1
a (x− xa)

)
, (1.1.12)

where an additive constant arising from the normalization factors of the distribution
has been ignored.
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In order to obtain an uncertainty measure for the MAP estimator x̂ obtained
from minimizing (1.1.12) one generally assumes that the forward model F is
approximately linear around the maximum a posteriori state x̂. In this case the
posterior distribution in the vicinity of x̂ will be approximately Gaussian and its
covariance can be obtained from (1.1.11) with K = Kx̂, the Jacobian of the forward
model evaluated at the maximum a posteriori state x̂:

(Kx̂)i,j = d(Fi(x̂ + x))
dxj

(1.1.13)

Note that formulas (1.1.10) and (1.1.11) for a linear forward model arise as special
cases from the more general formulation of the minimization of the negative log-
likelihood (1.1.12).

1.1.4 Error Analysis

Equally as important as a method to compute the solution of an inverse problem
are diagnostic quantities that characterize its accuracy and precision. This requires
a more detailed analysis of the sources of error in the inverse problem formulation,
which is provided in this section. The discussion is based on the presentation in
Chapter 4 in Rodgers (2000).

The computation of the solution of the inverse problem for a given measurement y
may be viewed as the application of a retrieval operator R to y:

x̂ = R(y,xa) (1.1.14)

The retrieval operator R represents the method used to compute the inverse
problem solution x̂. Except for the measurement vector y, the result of this method
also depends on the a priori state xa. The measurement vector y is the result
of a physical process that is described by the forward model F. In a real world
application, this model will be inexact and describe the physical processes involved
only up to a modeling error εF. In addition to that, the measurement process is
subject to noise which requires the incorporation of an additional error term εn:

y = F(x) + εF + εn (1.1.15)

Let xt designate the true state of the system. Linearizing (1.1.15) about the a
priori state xa yields:

y = F(xa) + Kxa(xt − xa) + εF + εn (1.1.16)
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where Kxa is the Jacobian of the forward model F evaluated at xa. Plugging this
into (1.1.14) and linearizing with respect to y about F(xa) gives

x̂ = R(F(xa),xa) + GKxa(x− xa) + G(εF + εn) (1.1.17)

where G is the Jacobian of the retrieval operator R evaluated at F(xa). Next,
consider the difference xt − xa of the true state xt and the a priori state xa. This
term represents the ideal knowledge that can be gained from the measurements.
Inserting this into the equation above leads to an interesting characterization of
the retrieval process:

x̂− xa = R(F(xa),xa)− xa︸ ︷︷ ︸
Bias

+ A(xt − xa)︸ ︷︷ ︸
Smoothing

+ G(εF + εn)︸ ︷︷ ︸
Measurement Error

(1.1.18)

The result of the measurement process may thus be viewed as the sum of three
separate terms: A bias term R(F(xa),xa)− xa, a smoothing term A(xt − xa) and
the measurement error term G(εF + εn).

The bias term represents the bias introduced by the retrieval of a simulated
measurement of the system in a priori state. For all retrieval methods treated here
this term will be zero, so it can be ignored.

Equation (1.1.18) implies that the information retrieved from a measurement is the
sum of a smoothed version of the true information A(xt − xa) and an error term
G(εF + εn). The matrix A = GK is called averaging kernel matrix. For an ideal
measurement, the averaging kernel matrix is the identity matrix and the error term
in (1.1.18) equal to zero. Since in general the averaging kernel matrix A will have
non-zero off-diagonal elements, it has a smoothing effect on the information about
the true state of the system xt − xa on the information x̂− xa obtained from the
measurement. The columns ai of A represent the response in the retrieved vector
to a unit perturbation in the true state xt of the system. For a good measurement
the columns should be peaked around the index of the corresponding component
of the state vector and the sum of all elements close to 1.

The Jacobian of the retrieval operator G, also called the gain matrix, determines
the effect of measurement noise and modeling errors on the inverse problem solution.
A detailed analysis of the contribution of this error source to the retrieved state
x̂ requires knowledge of the errors εF, εn, which depend on the specific problem
setting.

For very large problems, the computation of A or G may computationally not
be feasible or desirable. In such cases the error analysis can be performed by
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examining specific columns of the averaging kernel and gain matrices corresponding
to certain elements of the retrieval vector.

1.2 Numerical Optimization

As presented in Section 1.1.3, the solution of an inverse problem can be reduced to
minimizing a cost function of the form

J(x) = 1
2
(
(F(x)− y)S−1

ε (F(x)− y) + (x− xa)S−1
a (x− xa)

)
. (1.2.1)

In general, no closed-form solution of this minimization problem exists and therefore
numerical methods are required to find a minimum of (1.2.1).

The numerical optimization algorithms discussed in this section are all iterative
methods that, starting from a start vector x0, generate a sequence of iterates {x}∞i=0
that under certain conditions are guaranteed to converge to a minimum of the
cost function. At each given step i, such a numerical optimization method uses
local properties of the cost function at the current iterate xi and possibly also a
limited number of additional points to determine the next iterate xi+1. Important
local properties of the cost function are its value J(x), the Jacobian ∇xJ and the
Hessian ∇2

xJ . For the cost function given in (1.2.1), these depend directly on the
forward model F(x). In what follows, it will be assumed that besides evaluating
the forward model for a given state vector x also its Jacobian Kx at x can be
computed efficiently. Furthermore it is assumed that the Hessian of the forward
model can be neglected. For a sufficiently linear forward model, this will be a
reasonable assumption. The Gradient and Hessian of the cost function (1.2.1) are
given by

∇xJ(x) = KT
xS−1

ε (F(x)− y) + S−1
a (x− xa) (1.2.2)

∇2
xJ = KT

xS−1
ε Kx + S−1

a (1.2.3)
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1.2.1 Gauss-Newton Method

Newton-methods are a family of optimization algorithms that choose the direction
for the current minimization step ∆x by solving the linear system

∇2
xJ ∆x = −∇xJ. (1.2.4)

The advantage of Newton methods over gradient-based methods is that they
incorporate information about the curvature of the function J in form of the
Hessian ∇2

xJ into the choice of ∆x. This allows them to achieve superlinear
convergence (cf. Chapter 11 in Nocedal and Wright (2006)) sufficiently close to a
solution of the minimization problem, which considerably reduces the time required
to find a minimum of J .

The Gauss-Newton method is a modified Newton method for least-squares problems.
Least-sqares problems give rise to cost functions of the form

J(x) = (f(x)− y)T (f(x)− y) (1.2.5)

for some vector-valued function f(x). For a cost function of this form the direction
of the Gauss-Newton step is computed using

(∇xf)T ∇xf∆x = −∇xf(f(x)− y). (1.2.6)

The Hessian of the cost function is here approximated by the matrix product
(∇xf)T ∇xf . This approximation is valid when the partial second derivatives of
f are negligible. While the above method applies to least squares problems, it
can easily be generalized to the cost function (1.2.1) by replacing the approximate
Hessian on the left hand side of (1.2.6) by (1.2.3) and the gradient on the right
hand side by (1.2.2). The resulting optimization method is given as pseudocode in
Algorithm 1 in Appendix A. In general, equation (1.2.4) is only used to determine
the direction of the current step ∆x and further criteria may be applied to determine
the length of the minimization step. The invlib implementation currently uses ∆x
directly without optimizing the step length. The final form of the Gauss-Newton
method for the Bayesian formulation of inverse problems presented above can be
written as follows:

xi+1 = xi −
(
KT

xS−1
ε Kx + S−1

a

)−1 (
KT

xS−1
ε (F(x)− y) + S−1

a (x− xa)
)

(1.2.7)

As shown in Rodgers (2000), using fundamental matrix algebra, (1.2.7) can also be
written in two additional ways:
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xi+1 = xa −
(
S−1
a + KT

xi
S−1
ε Kxi

)−1 (
Kxi

S−1
ε (y− F(xi)) + S−1

a (xi − xa)
)

(1.2.8)

xi+1 = xa − SaKT
xi

(
Sε + Kxi

SaKT
xi

)−1
(y− F(xi) + Kxi

(xi − xa)) (1.2.9)

Equations (1.2.7), (1.2.8), (1.2.9) will be referred to as the standard, n- and m-form,
respectively. The main difference between the standard and the n-form on the one
hand and the m-form on the other hand is the size of the linear system that needs
to be solved in each minimization step. For the standard and n-form this linear
system has n equations and n unknowns, while for the m-form it has m equations
and m unknowns. For problems where the values of m and n differ strongly, it may
thus be computationally advantageous to choose the formulation accordingly.

1.2.2 Levenberg-Marquardt Method

The Levenberg-Marquardt method may be viewed as a trust region version of the
Gauss-Newton method described above. This means that the next iterate xi+1 is
required to lie within a certain distance of the current iterate xi. As shown in
section 10.3 in Nocedal and Wright (2006), the constrained optimization problem of
finding the step ∆x that leads to the largest reduction in the norm of the gradient
in a given region around the current iterate xi

minimize
∆x

||∇xi
J(xi) +∇2

xi
J ∆x||22 (1.2.10)

subject to ||∆x|| < d (1.2.11)

is solved by the solution of the linear system of equations

−
(
∇2

xJ + λD
)

∆x = ∇xJ (1.2.12)

for some scalar λ that satisfies

λ(d− ||∆x||) = 0. (1.2.13)

The matrix D must be positive definite and defines the distance measure ||x||2 =
xTDx that is used to constrain the size of the trust region.

In practice, a heuristic is used to set the value of λ and the step ∆x for the
current iteration is determined by solving (1.2.12). While this provides no direct
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way to control the size of the trust region, Equation (1.2.13) indicates that if λ is
non-zero the size of the trust region d is equal to the length of the current step ∆x.
Since increasing λ will decrease the length of ∆x, this provides an indirect way to
influence the size of the trust region.

The value of λ is adapted in each iteration depending on whether the predicted
value obtained from a second order approximation to the cost function agrees with
the actual cost function value at the new iterate xi+1 = xi + ∆x. The degree to
which the second order model agrees with the true cost function can be quantified
by computing the ratio of the actual and the expected cost function reduction:

c = J(xi+1)− J(xi)
1
2∆xT∇xi

J
(1.2.14)

The heuristic used to set the value of λ is the following: If the value of c is larger
than 0.75, the quadratic model fits the true cost function well and considerable
progress can be made by incorporating curvature information contained in the
Hessian into the computation of the step direction. The iterate is thus accepted
and λ decreased, i.e. the trust region radius enlarged. If c is positive but less
than 0.75, the computed step leads to a reduction of the cost function, but the
quadratic model does not fit the data very well. In this case the iterate xi+1 is
still accepted but λ is kept constant. If c < 0.2, λ is increased but the step still
accepted. If c is negative, i.e. no reduction in the cost function is achieved, the
step is not accepted and ∆x is recomputed with a higher value for λ. Note that
for large enough λ, solving (1.2.12) will eventually lead to a reduction in the cost
function since ∇2

xi
J + λD will be positive definite for sufficiently large λ and ∆x

thus point into a descent direction.

The increasing and decreasing of λ is performed by scaling the value with predefined
factors. In addition to that, a minimum and maximum value for λ are defined.
If λ falls below the minimum value, it is set to zero in order to benefit from
the good convergence properties of the Gauss-Newton method. The maximum
value for λ, if chosen sufficiently large, ensures that the trust region size is not
decreased indefinitely. For completeness, the above method is given as pseudocode
in Algorithm 2 in Appendix B.

1.2.3 Solving Linear Systems

Both of the iterative methods described above require the solution of a linear
system of equations of the form
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(
KT

xSεKx + Sa
)

︸ ︷︷ ︸
M

∆x = −∇xJ (1.2.15)

or (
KT

xSεKx + (1 + λ)Sa
)

︸ ︷︷ ︸
M

∆x = −∇xJ (1.2.16)

to compute the step ∆x. This linear system is also referred to as the linear
subproblem of the minimization method. To simplify notation, the shorthand M
will be used to refer to the matrix defining the respective linear system. From a
computational point of view, there are two fundamentally different ways of solving
a linear system: Using a direct solver based on a decomposition technique that
computes an exact solution of the linear system or using an indirect solver that
iteratively computes an approximate solution of the linear system.

The most common decomposition technique for general dense matrices is the
LU-decomposition. For symmetric, positive definite matrices also the Cholesky
decomposition is available, which has the advantage of improved performance of
about a factor of two (Ungermann, 2011). Solving dense linear systems is a very
common problem in computational science and numerical implementations are
readily available. A detailed discussion of these methods is therefore omitted here
and the reader is referred to one of the many references in literature, such as
for example Chapter 2 in Press et al. (2007). The disadvantage of direct solvers
is that they require the explicit computation of the matrix M representing the
linear system. For the linear system arising in each minimization step during
the computation of the solution of an inverse problem, this involves two matrix
multiplications as well as storing at least two additional matrices. For large m and
n the computational time required to set up the linear system may even exceed the
time that is required to solve it. Furthermore, the memory required to store the
system may become prohibitively large and limit the size of the inverse problems
that can be solved.

An alternative to the decomposition techniques discussed above is the conjugate
gradient (CG) method, which iteratively computes a solution of the linear system.
Its advantage is that the method requires only the computation of matrix-vector
products of the matrix M representing the linear system and an arbitrary vector x.
While the computational performance of the conjugate gradient method for small
problems is often inferior to that of decomposition techniques, the method achieves
comparable performance for medium- and large-sized problems. Furthermore,
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since the method does not require explicitly computing the matrix M, its memory
requirements are significantly reduced. This makes it possible to solve even very
large problems which cannot be handled by decomposition techniques due to
memory limitations. On the other hand, since it is an iterative method, the CG
method requires specification of suitable starting vector and convergence criterion.
Since the derivation of the method is quite involved and does not provide particular
insight into its workings, it is omitted here. A formulation conjugate gradient
method in pseudo code is given in Algorithm 3 in Appendix A. A detailed discussion
of the algorithm and its properties can be found in Nocedal and Wright (2006).

1.3 Performance Considerations

For large problems with high-dimensional state and measurement spaces, computing
the solution of an inverse problem quickly becomes computationally demanding
both with respect to computation time as well as memory required to hold the data
in main memory. In addition to that, non-linear problems require the repeated
evaluation of the forward model and computation of its gradients. In many cases,
this is even more expensive than the matrix operations involved in the computation
of the MAP estimator. Since the dimensions of state and measurement space as
well as the complexity of the forward model and the resulting structures of the
Jacobian and correlation matrices vary from problem to problem, it is not possible
to specify a single, optimal way of solving an inverse problem. Nevertheless, there
are some general performance characteristics of the computational methods involved
that should be considered when choosing a concrete solution scheme for a given
inverse problem. In order to illustrate these characteristics, a number of numerical
experiments have been performed, which will be presented in this section.

The timings presented in this section have been obtained on a laptop machine
equipped with an Intel®Core™i5-3320M CPU and 8 GB of main memory. While
this kind of architecture is unlikely to be used for large retrieval problems, it
should be sufficient to demonstrate the general scaling properties of the numerical
routines considered. For dense matrix and vector arithmetic the standard Ubuntu
implementation of the BLAS/LAPACK (Netlib, 2016) library is used. Sparse
arithmetic is implemented using the Eigen 3 (Eigen, 2016) library.

To illustrate the general performance characteristics of computing the MAP esti-
mator of an inverse problem, a linear toy problem with randomly chosen Jacobian
and Covariance Matrices is considered. Since solving a linear problem is equivalent
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to computing one iteration of a non-linear problem, all considerations for the linear
problem extend to the case of a non-linear problem. Care has been taken, that
the precision matrices involved are positive definite. In order to illustrate the
advantages of using sparse matrix algebra, the Jacobian as well as the covariance
matrices were chosen to be symmetric, diagonal band matrices with a bandwidth
of 10. While this is a somewhat idealized assumption, it will serve to demonstrate
the potential performance gains that can be achieved through the use of sparse
arithmetic.

1.3.1 Critical Operations

The arithmetic operations that are critical for the performance of the computation of
a solution of an inverse problem are matrix-matrix and matrix-vector multiplication
as well as solving linear systems of equations. While additional operations such
as matrix and vector addition or the computation of the vector norm need to be
performed, their contribution to the total time required to compute the solution of
an inverse problem can generally be neglected.

Figure 1.3.1: Time to solution for matrix-matrix (MM) and matrix-vector (MV)
multiplication using dense and sparse matrix representations. The gray lines mark
a polynomial fit to the computation time for the dense operations with degree 3
for matrix-matrix multiplication and 2 for matrix-vector multiplication.

The scaling of matrix-matrix and matrix-vector multiplication for a square matrix
of size n×n is displayed in Figure 1.3.1. For the matrix-matrix multiplication (blue)
and the matrix-vector multiplication (green) a third-degree and a second-degree
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polynomial have been fitted to the computational times and are plotted in gray.
Since the purpose of the fit is to illustrate the scaling of the computation time,
they have both been offset slightly so that they are not covered by the curve they
have been fitted to. For the product of a m× k matrix with a k × n matrix using
a standard BLAS implementation, the computation time can be expected to scale
linearly in the dimensions m, k and n. The multiplication of a m× n matrix and
a n-dimensional vector scales linearly in the dimensions m and n. For an inverse
problem with n-dimensional state and m dimensional measurement space, the
involved matrix products are thus expected to scale proportionally to n2m or m2n,
depending on the chosen formulation. Due to their complexity, matrix products
are critical for the performance of the solution method and should be avoided if the
product is not required explicitly. Also displayed in Figure 1.3.1 are the timings for
the corresponding sparse operations. While sparse matrix-matrix multiplication
performs worse than the dense version, the improved scaling of the sparse matrix-
vector product is clearly visible from the graph. Another important advantage of
using sparse arithmetic is that it can significantly reduce the memory required to
store the matrices, which otherwise would scale linearly in both dimensions of the
matrix.

The time required for the computation of a solution of a linear system is displayed in
Figure 1.3.2. The matrix representing the linear system was chosen to be a random,
symmetric, positive-definite, banded matrix. For a direct solver the expected scaling
of the solution of the linear system is quadratic in the number of unknowns of the
linear system. This is confirmed by the quadratic fit to the time to solution of the
LU decomposition method, which is displayed in gray. Again, the fits have been
offset slightly to avoid them being covered by the curve they have been fitted to.
For this benchmark setting, solving the linear system using the CG method with
sparse arithmetic performs significantly better than LU decomposition. Also given
in the plot is the computational time required to fully invert the linear system.
Inverting a linear system is very expensive and should be avoided. Therefore the
mathematical expression A−1x should always be computed by solving the linear
system given by the matrix A and the right hand side x, instead of inverting the
matrix and then multiplying the inverse A−1 by x.

1.3.2 The Linear Test Problem

In order to obtain an impression of the contribution of the different operations to
the overall performance, profiles of the solution of a randomly generated linear test
problem have been generated. Three different problem sizes have been analyzed:
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Figure 1.3.2: Time to solution for computing the inverse (INV) of a matrix and
computing a single solution (SLV) of the corresponding linear system. Three
different methods have been used for computing a single solution of the system: LU
decomposition (blue, dashed), conjugate gradient using dense arithmetic (green,
solid), conjugate gradient using sparse arithmetic (green, dashed).

m = n = 103, m = 103 and n = 104, as well as n = 104 and m = 104. The standard
formulation (1.2.7) is used to compute the inverse problem solution. For each
problem size, the inverse problem is solved using three different combinations of
matrix representations and methods for solving the linear system:

1. Dense arithmetic, direct solution of the linear system

2. Dense arithmetic, conjugate gradient method

3. Sparse arithmetic, conjugate gradient method

For each of these configurations, the total time to solution as well as time spent
computing matrix-matrix, matrix-vector products and solving the linear system
has been recorded. The results displayed in Figure 1.3.3 support the claim made
above, that the total time to solution for solving the linear inverse problem is
mainly determined by the computation of matrix-matrix products, matrix-vector
products and solution of the linear system. Furthermore, for the dense case it can
be seen that when n and m are of approximately the same size, the time required
to perform matrix-matrix multiplication, i.e. to set up the linear system, actually
takes more time then solving the system itself. The standard formulation of the
OEM method that was used for the benchmark requires the solution of a linear
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Figure 1.3.3: Linear OEM Benchmark. Three problem sizes are considered: n =
m = 103, n = 104 and m = 103, n = m = 104. For each total time to solution as
well as time spent in the critical arithmetic routines for matrix-matrix multiplication
(MM Mult.), matrix-vector multiplication (MV Mult.) and solution of the linear
system (Solve) are displayed.

system with n unknowns. For the case with n = 104,m = 103 it would of course
be advantageous to use the m-form formulation of the OEM, which only requires
the solution of a linear system of size m. Unfortunately, the applicability of the
m-form is limited to some extent by the fact that it can not be used with the
Levenberg-Marquardt method and the requirement of both, the covariance matrices
and their inverses, for the solution of the inverse problem. Comparing the LU
decomposition method to the conjugate gradient method, one can see that the
conjugate gradient method provides superior performance only for larger problems.
For small problems, using LU decomposition to solve the linear system is almost
an order of magnitude faster.

1.3.3 Memory

Performing one step of an OEM computation using the standard formulation
involves the matrices Kx, i.e. the Jacobian of the forward model evaluated at
x, and the inverses of the covariance matrices S−1

ε , S−1
a . These matrices are of

size m× n, m×m and n× n, respectively. If decomposition techniques are used
to solve the linear subproblem of the chosen optimization method, a number of
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Figure 1.3.4: Peak heap memory allocated for the linear OEM Benchmark problem.
As above, three problem sizes are considered: n = m = 103, n = 104 and m = 103,
n = m = 104. For each solution configuration the peak value of allocated heap
memory is given as determined using the Valgrind tool Massif.

additional, temporary matrices are required to set up, hold and solve the linear
system. If these matrices are stored in dense representation, the memory required
to hold these matrices in main memory quickly becomes too large to perform the
computations on an ordinary desktop machine. For example, an inverse problem
withm = n = 105 requires roughly 80GB of memory just to hold the dense Jacobian
in memory. Fortunately, for large problems, the covariance matrices Sa and Sε,
respectively the precision matrices S−1

a and S−1
ε , as well as the Jacobian Kx tend

(or can be chosen in a way) to be sparse. Using sparse storage schemes for the
matrices involved can greatly reduce the memory required to store the matrices.
To illustrate the memory requirements of the different configurations, heap memory
profiles of the linear benchmark case described above have been recorded. To
this end, the Valgrind tool Massif (Massif, 2016) has been used to measure the
allocated heap storage during execution of the program. The resulting peak values
for the three solution schemes described above are displayed in Figure 1.3.4. The
plot clearly displays the large memory requirements of the computations when a
dense matrix representation is used and especially when the linear system is solved
directly. Memory-wise the best performance is achieved by using the conjugate
gradient method together with sparse matrix representation.
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Chapter 2

The invlib Library

In this chapter the general design and implementation of the invlib library is
presented, which has been developed as a part of this Master’s thesis project. After
a general description of the modeling of inverse problems and the structure of the
library, its usage is illustrated by using invlib to retrieve simulated measurements
from the MATS (Gumbel et al., 2014) satellite mission.

The invlib library provides functions to solve inverse problems based on the mini-
mization of a cost function of the form

J(x) = (y− F(x)) S−1
ε (y− F(x)) + (x− xa) S−1

a (x− xa)) . (2.0.1)

Such problems arise from the Bayesian formulation of inverse problems, which has
been presented in the previous section, as well as the more general framework of
Tikhonov regularization (c.f. Chapter 5 in Aster et al. (2005)).

2.1 Design Goals

The invlib library was designed with two primary goals:

Generality: Just as the mathematical formulation of inverse problems, the library
should be applicable to a wide range of problems. In addition to that, it
should be extensible, allowing for simple adding and testing of new features
or adapting the library to specific problems.
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User
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x̂y,xa,Sε,Sa

x

F(x),Kx

Figure 2.2.1: Data flow diagram for the solution of an inverse problem using invlib.

Performance: The library should be efficient both with respect to computation
time as well as memory requirements. This is necessary for the handling of
large retrieval problems.

In order to reach these goals invlib has been implemented in C++ , which provides
both fined grained control over performance critical processes as well as powerful
abstraction mechanisms required to handle the complexity of the problem. The
code relies heavily on template programming as well as features introduced in the
C++11 standard (ISO C++, 2012). Resulting from the underlying formulation of
inverse problems, the invlib library has to interact with a forward model. Through
the use of template programming, the library can be used on top of the foward
model code and directly reuse its underlying datastructures. The invlib library
therefore does not provide an implementation of data types for vectors and matrices,
but relies on them being provided by the forward model or an external library.

2.2 General Usage

The data flow of the general usage of the invlib library to compute the solution of an
inverse problem is illustrated in Figure 2.2.1. The forward problem is represented
by a forward model type, which provides functions to evaluate the measurement
vector y = F(x) and compute its Jacobian Kx for a given vector x. In addition
to that, the user is required to provide the a priori state vector xa, the covariance
matrices Sε,Sa, directly or in the form of precision matrices S−1

ε ,S−1
a , as well

as the measurement vector y. The invlib library then computes the maximum a
posteriori (MAP) state vector x̂ of the inverse problem.
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2.2.1 User Interface

All invlib classes and functions live in the the invlib namespace. The main
interface of the invlib library is provided by the invlib::MAP class template. The
template parameters of the MAP class template specify the type of the forward
model ( ForwardModel ), the types implementing the matrix and vector algebra
represented by the matrix type to be used in the calculations ( MatrixType ), the
type used to represent the a priori covariance matrix Sa ( SaType ), the type used to
represent the measurement space covariance matrix Sε ( SeType ) and finally which
formulation should be used.

template
<
typename ForwardModel,
typename MatrixType,
typename SaType = MatrixType,
typename SeType = MatrixType,
Formulation Form = Formulation::STANDARD
>
class MAP;

The class structure used to model the computation of MAP estimators for a given
inverse problem is presented in Figure 2.2.2. The inverse problem is described by
a forward model object, an a priori vector as well as a priori and measurement
space covariance matrices. The corresponding objects have to be provided to the
constructor of the given instantiated MAP template class:

MAP(ForwardModel &F_,
const VectorType &xa_,
const SaType &Sa_,
const SeType &Se_ );

The actual computation is defined by which Formulation enum was used to instan-
tiate the MAP class as well as which optimization method is used to minimize the
cost function (2.0.1). The actual computation of the MAP estimator is executed
by the compute member function of the MAP object. The optimization method
that is used for the computation is defined by the Minimizer object that is passed
to the compute function. In addition to the Minimizer type, the compute member
function takes an additional Log template argument which is used to specify the
way log output is printed to the user.
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invlib::MAP

MAP(ForwardModel &F, const VectorType &xa, const SaType &Sa, const SeType &Se);
void compute(VectorType &x, const VectorType &y, Minimizer M);

ForwardModel,
MatrixType,
SaType,
SeType,
Formulation

ForwardModel

const unsigned int m;
const unsigned int n;

VectorType evaluate(const VectorType &x);
JacobianType Jacobian(const VectorType &x, VectorType &y);

SaType

operator*(const MatrixType &)
operator*(const VectorType &

SeType

operator*(const MatrixType &)
operator*(const VectorType &

JacobianType

operator*(const MatrixType &)
operator*(const VectorType &)
transpose(const MatrixType &)

Minimizer

VectorType step(...)

Solver

Solver

VectorType solve(...)

Figure 2.2.2: Class diagram displaying the abstraction levels used to model the
solution of the inverse problem.

template<typename Minimizer, template <LogType> class Log = StandardLog>
void compute(VectorType &x,

const VectorType &y,
Minimizer M,
int verbosity = 0);

The setting up of a given inverse problem is performed in two steps. First, the
MAP class template and all other required class templates for the forward model,
optimizers, solvers and matrix types are instantiated. This specifies the solution
scheme for the inverse problem, i.e. which calculations are performed to compute
the MAP estimator. In the next step, concrete objects of the MAP type and
the instantiated types for solver and optimization method are created and the
computation parameters are set. This defines how the chosen computations are
performed.

2.2.2 Matrix Algebra

The invlib library does not provide its own implementation of the linear algebra
data types and routines required for solving an inverse problem but relies on them
being provided either by the forward model or an interface to an external linear
algebra library. The motivation for this design choice is to avoid type conversions
from the forward model types to the invlib types and allow the use of matrix and
vector representations that are specific to the concrete problem at hand.

In order to separate the mathematical formulation from implementation details
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of the linear algebra types and routines, invlib provides abstract, generic matrix
and vector types, that serve as wrapper for the user provided types. The resulting
generic matrix algebra implements a number of high level optimizations such as
avoiding matrix-matrix products and matrix inversions as well as minimizing the
creation of temporary objects required to store intermediate results. The matrix
algebra is implemented using mathematical operator notation ( * , + , - ) to make
the code more readable and also easier to develop. As an example, take a product
of two matrices AB multiplied from the right by a vector x:

y = ABx (2.2.1)

Computationally this should be computed in two steps: First compute the vector
t = Bx and then y = At, which requires two matrix-vector multiplications and
the allocation of one temporary vector. On the other hand, first computing the
matrix product T = AB and then y = Tx, requires the computation of one
matrix-matrix product, one matrix-vector product and the allocation of storage to
hold the intermediate result matrix T. Unfortunately, C++ operator precedence
rules lead to the product A * B to be evaluated before B * x in the expression
A * B * x . The invlib library uses proxy-types that represent algebraic expressions
to implement those optimizations automatically at compile time. Furthermore,
the invlib matrix algebra replaces inverses of matrices by solving a linear system
where possible and minimizes the number of temporary matrix or vector objects.
The code below results in one matrix-vector product and the solution of one linear
system instead of the inversion of a matrix and a matrix-matrix product, as one
might suspect at first glance:

auto C = inv(A) * B;
VectorType w = C * w;

invlibs generic matrix algebra is implemented by the invlib::Matrix and invlib::Vector
class templates, which take as type arguments the user provided matrix and vector
types. An example of how to instantiate the generic matrix and vector classes is
given in Appendix B. The user provided matrix and vector types must implement
the interface required by the invlib::Matrix and invlib::Vector class templates.
However, since for class templates only functions that are actually called in the
application code are instantiated by the C++ compiler, the interfaces that the user
provided matrix and vector types must implement depend on the actual computa-
tions performed. For example, if the inverse problem is solved using the conjugate
gradient method as solver for the linear subproblem, the user-provided matrix type
is required only to provide functions for the multiplication and transposed multipli-
cation of the matrix with a vector but not for matrix-matrix multiplication. Full
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invlib::Matrix

operator*(const T&)
operator+(const T&)
operator-(const T&)
inv(const invlib::Matrix &A)
transp(const invlib::Matrix &A)
...

UserMatrix

UserMatrix

multiply(const VectorType &v)
multiply(const MatrixType &A)
accumulate(const MatrixType &A)
subtract(const MatrixType &A)
...

invlib::Vector

operator+(const T&)
operator-(const T&)
...

UserVector

UserVector

accumulate(const MatrixType &A)
subtract(const MatrixType &A)
...

Figure 2.2.3

interfaces for the matrix and vector types, that provide the functions required for
all computation schemes are given by the matrix and vector archetypes distributed
with the invlib code. The class structure of the invlib matrix and vector types with
respect to user provided types are displayed in Figure 2.2.3.

2.2.3 Covariance Matrices

The MAP class template takes as optional template arguments types for the co-
variance matrices Sa and Sε. This allows the user to freely choose and combine
different matrix representations for the covariance matrices. In addition to that,
this mechanism can be used to specify the covariance matrices either directly or
using their inverse, i.e. the so called precision matrices. To this end, invlib provides
the PrecisionMatrix wrapper class, which takes any matrix type and signals to
invlib that the provided matrix is the inverse of a covariance matrix.

template
<
typename Matrix
>
class PrecisionMatrix;
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2.2.4 Formulation

The invlib library aims to provide high flexibility also with respect to how the MAP
estimator is computed. To this end the user can use the Formulation template
argument of the MAP class template to specify which formulation of the MAP
estimator should be used. As described in the previous chapter, three different
formulations can be derived to compute the MAP estimator of an inverse problem
solution: The standard, n- and m-form (cf. Section 1.2.1). Which form should be
used for the computation of the MAP estimator is specified by the Formulation
enum used to instantiate the MAP class.

enum class Formulation {STANDARD = 0, NFORM = 1, MFORM = 2};

2.2.5 Optimization Methods

Currently invlib implements three optimization methods that can be used to
perform the actual minimization of the cost function (2.0.1). Each optimization
method is implemented by a class that provides a member function step

VectorType step(const VectorType &x,
const VectorType &g,
const MatrixType &H,
CostFunction & J);

which takes the current iteration vector x, the gradient g and (approximate)
Hessian H of the cost function as well as a CostFunction object that can be used to
evaluate the cost function. The function returns a minimization step ∆x computed
according to the chosen optimization method.

The optimization method object is used to specify convergence criterion and
maximum number of steps for the optimization loop via the member functions
get_tolerance() and get_maximum_iterations() , respectively. Those values can
be set using either the constructor or the corresponding setter functions. The
GaussNewton and LevenbergMarquardt class templates take, in addition to the type
used to represent floating point numbers, a Solver type argument. The Solver
argument specifies the method used to solve the linear system arising in each step
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of the optimization method. Furthermore, the LevenbergMarquardt class template
method takes an additional type argument which specifies the type of the positive
definite matrix D that is used to define the distance measure used for the trust
region of the Levenberg-Marquardt method via

||x||2 = xTDx. (2.2.2)

template
<
typename RealType
>
class GradientDescent;

template
<
typename RealType,
typename Solver = Standard
>
class GaussNewton;

template
<
typename RealType,
typename DampingMatrix,
typename Solver = Standard
>
class LevenbergMarquardt;

2.2.6 Solver Types

The solver type argument of the GaussNewton or LevenbergMarquardt class template
defines how the linear system arising in each minimization step is solved. Each
solver object must provide a solve member function of the form

VectorType solve(const MatrixType&A,
const VectorType& v);

Note that the MatrixType here is not fixed and may for example be a proxy type
representing an algebraic expression such as A + B for two matrix objects A and
B .
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invlib currently provides two basic solver types. The Standard solver simply
forwards the call to solve to the solve(const VectorType &) member function
which must be implemented by the underlying matrix type provided by the user.
Note that for general algebraic expressions this will require the evaluation of the
expression which may involve other expensive operations such as matrix-matrix
multiplication or matrix inversions.

The ConjugateGradient solver implements the conjugate gradient method (c.f.
1.2.3). Since the conjugate gradient method only requires the computation of
matrix-vector products, using a ConjugateGradient solver to solve a linear system
given by an arbitrary algebraic expression will not trigger the evaluation of the
corresponding matrix but rather propagate the vector successively through the
expression.

2.3 Usage Example

In this section an example is provided that demonstrates the usage of the invlib
library to retrieve simulated measurements from the MATS satellite mission.

The Mesospheric Airglow/Aerosol Tomography and Spectroscopy (Gumbel et al.,
2014) satellite mission uses optical measurement techniques to study the mesosphere.
The corresponding foward model is linear and thus fully described by a constant
Jacobian matrix. While invlib was designed to build upon an already existing
forward model implementation, it can also handle the case where a linear forward
model is given only by its Jacobian matrix. All that is required here is an interface
to an external library for the fundamental matrix and vector types and a wrapper
class for the Jacobian that implements the invlib forward model interface.

In this example the Eigen 3 (Eigen, 2016) library is used as an external library to
provide the underlying matrix algebra implementation. While both the Eigen 3
interface as well as an interface class for the linear forward model are distributed
with the invlib library, a documented implementation of both of them is given in
Appendix B.
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2.3.1 Solving An Inverse Problem

The code below demonstrates the general usage of the invlib library when concrete
matrix and vector types as well as a forward model implementing the invlib forward
model interface are available. The general usage is the same independent of which
type of problem one wants to solve.

int main()
{

using MatrixType = invlib::Matrix<EigenSparse>;
using VectorType = invlib::Vector<EigenVector>;

using SolverType = invlib::ConjugateGradient;
using MinimizerType = invlib::GaussNewton<double, SolverType>;
using PrecisionMatrixType = invlib::PrecisionMatrix<MatrixType>;
using MAPType = invlib::MAP<LinearModel,

MatrixType,
PrecisionMatrixType,
PrecisionMatrixType>;

While not compulsory, the readability of the code can be greatly improved by
introducing type aliases (or typedefs) for the instances of the template classes that
will be used for the computation. This also makes sense semantically, since the
types define which representations, methods and formulations are used to solve
the inverse problem. In the code above, first the concrete matrix and vector types
are defined using the invlib::Matrix and invlib::Vector wrapper instantiated
with the EigenSparse and EigenVector Eigen 3 interface types. To solve the linear
inverse problem the Gauss-Newton method is used, since it converges after only one
step. Due to the size of the system, it is necessary to use the conjugate gradient
method, which is specified by using the invlib::ConjugateGradient class as solver
type argument for the invlib::GaussNewton class template.

Since the MATS retrieval uses Tikhonov regularization, the (pseudo) covariance
matrices are given in the form of precision matrices. The invlib::MAP class template
is thus instantiated here with the LinearModel class, that represents the linear
forward model, the MatrixType which specifies the types used for linear algebra,
and the PrecisionMatrixType for both a priori and state covariance matrices. Since
the retrievals are performed using the standard formulation of the OEM together
with the standard output method, the corresponding template arguments are left
unchanged from their default values.
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// Load the data.
MatrixType K = read_sparse_matrix("data/K.sparse");
MatrixType SaInv = read_sparse_matrix("data/SaInv.sparse");
MatrixType SeInv = read_sparse_matrix("data/SeInv.sparse");
PrecisionMatrixType Pa(SaInv);
PrecisionMatrixType Pe(SeInv);

VectorType y = read_vector("data/y.vec");
VectorType xa = read_vector("data/xa.vec");

The next step is loading the data and creating the Jacobian and covariance matrices
as well as the measurement and a priori vector. In addition to that, the precision
matrix wrappers are created from the loaded inverses of the covariance matrices.

SolverType cg(1e-6, 1);
MinimizerType gn(1e-6, 1, cg);
LinearModel F(K, xa);
MAPType oem(F, xa, Pa, Pe);

VectorType x;
oem.compute(x, y, gn, 0);

Finally, the computation parameters are set by instantiating the SolverType ,
MinimizerType , LinearModel and MAPType types, with the corresponding matrices,
vectors and convergence criteria. The call to cg(1e-6, 1) requires the size of the
residual normalized by the right-hand side vector for the conjugate gradient method
to be less than 10−6 for convergence. The second argument activates log output to
standard out. The call to gn(1e-6, 1, cg) creates the Gauss-Newton minimizer
with a convergence criterion of 10−6, the maximum number of iterations equal to 1,
and the previously created conjugate gradient solver as the solver for the linear
subproblem. The actual MAP computation is then started by calling the compute
member function of the MAPType object and the result is returned in the vector x
passed as the first argument to the method.

The MATS satellite measures optical emissions from the upper mesosphere. The
atmospheric state is represented by the values of the scattering coefficient on a three-
dimensional grid along the satellite orbit. The measurements used for the retrieval
are simulated data of an atmospheric volume containing a polar mesospheric cloud.
Solving the linear system up to an accuracy of 10−6 requires about 7000 steps of the
standard conjugate gradient solver. A volume redering of the of the a priori state
of the scattering coefficient and the retrieved state of the calculation are displayed
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in Figure 2.3.1a and Figure 2.3.1b, respectively. The a priori state contains only
the Rayleigh background, whereas in the retrieved state the structure of the cloud
is clearly visible.

2.3.2 Parallelizing the Computation

One disadvantage of using the Eigen 3 sparse matrix implementation is that sparse
matrix-vector multiplication is not parallelized. The invlib library provides a generic
matrix class that parallelizes matrix and vector computations using MPI (MPI,
1994). This is helpful because it allows large problems to be run on distributed-
memory systems and thus relaxes the memory requirements, but can also be used
in cases such as this where the underlying matrix and vector operations are not
parallelized. Using invlib’s parallel matrix and vector types requires only a few
changes to the code presented above and are mostly related to setting up the
MPI environment and distributing the data over the different processes. However,
in order to enable invlib to distribute the Eigen 3 matrices over MPI processes,
additional functions in the matrix and vector interfaces are required. The required
changes are described in Appendix B.

In order to use the MPI-parallel types in the actual computation, it is necessary to
redefine the matrix and vector types accordingly.

using SolverType = invlib::ConjugateGradient;
using MinimizerType = invlib::GaussNewton<double, SolverType>;
using PrecisionMatrix = invlib::PrecisionMatrix<MPIMatrixType>;
using MAPType = invlib::MAP<LinearModel,

MPIMatrixType,
PrecisionMatrix,
PrecisionMatrix>;

invlibs parallel matrix and vector types parallelize computations by splitting up
matrices and vectors row-wise over processes. Here, each process reads the full
Jacobian and precision matrices as well as a priori and measurement vectors. The
splitting up is performed by using the corresponding types’ static split functions,
which return the distributed object corresponding to the provided local, full matrix
or vector.
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(a) Volume rendering of the a priori state used for retrieval containing
only the Rayleigh background.

(b) Retrieved scattering coefficient for the retrieval of simulated data
from the MATS satellite mission. In addition to the Rayleigh back-
ground the structure of the polar mesospheric cloud is clearly visible.

Figure 2.3.1: Volume rendering of the a priori and retrieved state of simulated data
from the MATS satellite mission.
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MatrixType K = read_sparse_matrix("data/K.sparse");
MatrixType SaInv = read_sparse_matrix("data/SaInv.sparse");
MatrixType SeInv = read_sparse_matrix("data/SeInv.sparse");

MPIMatrixType K_mpi = MPIMatrixType::split_matrix(K);
MPIMatrixType SaInv_mpi = MPIMatrixType::split_matrix(SaInv);
MPIMatrixType SeInv_mpi = MPIMatrixType::split_matrix(SeInv);

PrecisionMatrix Pa(SaInv_mpi);
PrecisionMatrix Pe(SeInv_mpi);

VectorType y = read_vector("data/y.vec");
VectorType xa = read_vector("data/xa.vec");

The differences in the calls to the other invlib functions are mostly due to the
different naming of the distributed variables. The call to the compute function
of the MAP object is slightly modified, since a specialized logging method is used
which ensures that only one process prints messages to the standard output.

SolverType cg(1e-6, 1);
MinimizerType gn(1e-6, 1, cg);
LinearModel F(K_mpi, xa_mpi);
MAPType oem(F, xa_mpi, Pa, Pe);

// Run OEM.
MPIVectorType x_mpi{};
oem.compute<MinimizerType, invlib::MPILog>(x_mpi, y_mpi, gn, 1);

MPI_Finalize();

Figure 2.3.2a displays the performance gains achieved using the the parallelized
matrix and vector types that could be achieved by distributing the calculations
over two nodes of the Hebbe compute cluster. Considerable performance can be
gained by scaling the application up to ten cores, i.e. a single node, while for more
cores not much additional performance can be gained. While the scaling is not
ideal, considerable speed up of the calculation can be obtained with a very low
effort from the user.
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(a) Time to solution in with respect to the number of cores of
the parallelized MATS retrieval performed above.

(b) Scaling of the parallelized MATS retrievals.

Figure 2.3.2: Performance of the MPI-parallelized implementation of the MATS
retrievals.
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Chapter 3

Tomographic Retrievals of
Odin-SMR Data

While the discussion of inverse problems so far has been kept general, this chapter
describes the application of the developed theory to tomographic retrievals of
satellite remote sensing data from the Odin-SMR imager. In the field of remote
sensing, tomography refers to an imaging technique which combines multiple
measurements from overlapping imaging regions in order to improve the spatial
reconstruction and increase the accuracy of the retrieval. These computations were
first performed by Christensen, Eriksson, Urban and Murtagh in (Christensen et al.,
2015). However, due to limitations of the implementation of the retrieval method,
the retrievals had to be performed in relatively small batches, combining a reduced
number of spectra along the half-orbit over which the tomographic measurements
were performed. The batch sizes had to be chosen with sufficient overlap to
guarantee consistency of the retrieved data, which unnecessarily increased the
computational cost of the retrievals. As part of this thesis work, data from one half
orbit has been retrieved using the newly developed OEM implementation in ARTS,
that is based on the invlib library. In this chapter, the setup of the computations
and the results of the retrieval are presented. In addition to the computations
using the standard OEM implementation in ARTS, it is also demonstrated how
the computation time can be reduced using invlibs support for arbitrary matrix
representations and generic distributed matrices.
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3.1 Retrieval Setup

From a mathematical point of view, the retrieval process is fully described by the
formulas presented in Chapter 1. Nonetheless, finding a solution for a concrete
inverse problem requires a consistent setup of the problem. For satellite remote
sensing retrieval, this requires an accurate modeling of the atmosphere as well
as the measurement device itself. The purpose of this section is to provide an
overview of physical processes involved in the measurement and the technicalities of
incorporating them into the problem setup. The discussion is based on the article
by Christensen, Eriksson, Urban and Murtagh Christensen et al. (2015).

3.1.1 The Odin Satellite

The Odin satellite (Murtagh et al., 2002) is a Swedish-led project in cooperation
with Canada, France and Finland and was launched into a sun-synchronous orbit
in 2001. The satellite carries two instruments, the optical spectrograph and infrared
imaging system (OSIRIS) and the sub-millimetre radiometer (SMR).

The Odin SMR is a limb sounding instrument, which means it measures submil-
limeter radiation looking backwards along its orbit through the atmosphere with
cold space as background. The SMR sweeps over a range of vertical viewing angles
so that measurements at different tangential altitudes of the line of sight (LOS)
are obtained. The SMR provides a special mode for tomographic measurements,
in which the vertical scanning range is reduced in order to shorten the horizon-
tal distance between overlapping measurements. The resulting measured spectra
from overlapping lines of sight can then be combined using tomographic retrieval
techniques to increase the resolution of the retrievals. The viewing geometry is
illustrated in Figure 3.1.1. Note that refractive effects of the atmosphere are ignored
here, since they are negligible for measurements that are limited to the mesosphere.
The vertical resolution of the SMRs antenna is about 1.8 km at the tangent point
due to its continuous, vertical scanning movement.

The vertical range scanned in tomographic mode is limited to altitudes between
75 km and 90 km. The available tomographic measurements were started when the
satellite crossed the equator and continued over half its orbit. The region of the
atmosphere under consideration is thus a two-dimensional band stretching over the
northern hemisphere below the orbit of the satellite.
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Figure 3.1.1: Illustration of the Odin SMR tomography mode in which spectra are
recorded with increased frequency so that there is considerable overlap between
consecutive measurements of the same altitude.

The spectra used for the retrieval cover the frequency range from 556.90 GHz
to 557.01 GHz with a channel separation of 1 MHz and an effective resolution of
2 GHz. The frequency range is chosen so that it covers the H2O spectral line at
556.9 GHz, which constitutes the main source of radiation in this frequency range.
Spectra measured during one sweep over the vertical scanning range are displayed
in Figure 3.1.2.

3.1.2 The Model Atmosphere

The forward model for the retrievals is a numeric simulation of the propagation of
the radiation measured by the SMR through the atmosphere. This simulation is
based on a suitable model of the atmosphere which includes the physical quantities
that influence the propagation of radiation in the considered frequency range. The
atmospheric model is implemented using ARTS. Here, a two-dimensional model
is used, which represents an atmospheric state by a number of two-dimensional,
discrete scalar fields holding the values of the considered physical quantities at
given grid points. ARTS uses the pressure as vertical grid dimension, while the
height is treated as an atmospheric quantity described by a corresponding scalar
field. In addition to the atmospheric processes, also the imaging properties of the
SMR must be taken into account to properly simulate the measurements. This
functionality is also provided by the ARTS package. A complete description of the
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Figure 3.1.2: Odin SMR spectra recorded during one sweep over the vertical
scanning range. Line colors indicate the zenith angle of the line of sight (LOS) of
the measurement.

atmospheric model is out of the scope of this work, so in the following only a brief
description of the properties specific to this retrieval problem is provided.

The two-dimensional atmospheric model represents the atmosphere below the orbit
of the satellite. It extends over pressures from about 4.2 × 10−4 to 1.3 × 103 Pa
corresponding to altitudes from about 30 to 161 km. Horizontally, the atmosphere
model extends from 20◦ to 201.5◦ with 0◦ designating the point where the satellite
crosses the equator from south to north.

The State Space

The choice of the state space defines which quantities can be retrieved from the
measurements as well as the degrees of freedom available to the model to fit the
measurement vector. In the frequency range around the H2O spectral line at
556.9 GHz all significant emission is due to water vapor. The measured spectra can
thus be assumed to depend only on the pressure, temperature and concentration
of water vapor in the atmosphere. The retrieval grid consists of 79 grid points
along the vertical pressure dimension and 195 points along the satellite orbit. To
represent the atmospheric state as a single state vector, the discrete scalar fields
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Figure 3.1.3: A discrete representation of the atmospheric state is obtained by
representing it by the values of the physical quantities under consideration on each
point of the retrieval grid. The grid is then transformed into a single vector by
concatenating the fixed-latitude vectors into one large vector x as illustrated in
figure.

holding the water vapor concentrations and the temperature at the atmospheric
grid points are concatenated into a single large vector first along the pressure
dimension and then along the latitudes. This is illustrated in Figure 3.1.3. In
addition to the water vapor concentrations and the atmospheric temperatures
also a constant correction to the pointing and a baseline for the recorded spectra
are fitted to the data. This is done in order to allow the retrieval to correct for
errors in the estimates of these parameters and reduce their effects on the retrieved
quantities. The resulting dimension n of the state space is n = 31279.

The Measurement Space

The measurements used for the retrievals consists of the combined spectra recorded
by the SMR as the Odin satellite moves along its orbit. A single spectrum consists
of 112 intensity values spanning the frequency range from 556.89GHz to 557.01GHz.
The measurement for the complete half orbit consist of 468 spectra. The resulting
dimension m of the measurement space is m = 52416.
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Atmospheric Radiative Transfer

The physical processes that determine the propagation of radiation through the
atmosphere are described by the theory of radiative transfer. While a general theory
of radiative transfer is very complex, for this specific problem setting a number of
simplifying assumptions can be made, that considerably simplify the calculations.
First of all, for the frequency regions measured by the Odin SMR scattering can be
neglected. Furthermore, the radiation is assumed to be unpolarized and absorbing
species to be in local thermal equilibrium. In this case the transmission of the
radiation trough the atmosphere along a given direction is described by the following
form of the scalar radiative transfer equation:

dI(ν)
dl

= k(l, ν) (B(l, ν)− I(ν)) (3.1.1)

Here, I is the spectral radiance, dI
dl

its derivative along a given path through the
atmosphere, k the absorption coefficient and B(ν, r) the intensity of the black body
radiation at the given point in the atmosphere. The absorption coefficient models
the attenuation of radiation through gaseous line and continuum absorption. The
black body term represents the emission of black body radiation at a given point in
the atmosphere. ARTS solves (3.1.1) by first determining the propagation paths of
the monochromatic pencil beams entering the detector and then integrating (3.1.1)
along these paths.

The Sensor Model

The sensor model describes how the radiation entering the sensor is converted to
the digital data that constitute the measurements obtained from the satellite. As
described in Eriksson and Buehler (2016), these effects can be described by a linear
model of the form

y = Hi + εs (3.1.2)

where H is the so called sensor response matrix, i is the radiance vector of the
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monochromatic pencil beams entering the sensor and εs is the noise entering the
measurement.

3.1.3 A Priori State and Covariance Matrices

The mathematical formulation of inverse problems also requires the specification of
an a priori state xa as well as covariance matrices for the a priori vector and the
measurement vector.

The a priori vector and the a priori covariance matrix describe the available
knowledge about the region of the atmosphere under investigation before the actual
measurements are made. It should be noted here, that the Bayesian interpretation
of those quantities differs from the maybe more common frequentist interpretation.
All probabilistic quantities treated here should be interpreted as representing states
of knowledge as opposed to frequencies in a fictive sampling experiment. This
allows specification of the a priori vector and covariance matrices even if those
quantities would be unknown in a frequentist interpretation. This, of course, needs
to be taken into account in the interpretation of the results.

For the a priori vector xa, values of all retrieval quantities must be specified for
each point on the atmosphere grid. For water vapor, those values were obtained
from measurements from another satellite mission. Of these measurements the
mean was taken over all latitudes over 60◦ and over the three months in which
the tomographic measurements took place. The resulting a priori water vapor
concentrations vary only with altitude, so that horizontal structures can be more
easily detected in the retrievals. The a priori data for the temperature grid was
obtained from the MSISE-90 model.

The a priori covariance matrix specifies the uncertainty of the a priori knowledge.
Here it is assumed that different atmospheric variables are uncorrelated. The a
priori matrix thus takes the form of a block diagonal matrix with one block for
each retrieval species (SHa ,STa ) and an additional block for the variables specifying
the pointing and baseline fits (SMa ).

Sa =

 SHa
STa

SMa

 (3.1.3)
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Figure 3.1.4: The one dimensional water vapor concentration profile used in the a
priori vector.

The water vapor concentrations and the temperature are assumed to be locally
correlated with an exponentially decaying covariance. For two variables located at
grid points i and j the covariance takes the form

σi,j = σs exp

−
√√√√(∆x

lx

)2

+
(

∆y
ly

)2
 (3.1.4)

where σs is the variance of the retrieval species s, the variable ∆x,∆y denote the
horizontal and vertical distances between the two grid points, and lx, ly the hori-
zontal and vertical correlation lengths. The chosen values are given in Table 3.1.1.
A plot of the shape of the correlation function along the horizontal grid dimension
is given in Figure 3.1.5. The retrieved parameters for the pointing correction and
the baseline fit are assumed to be uncorrelated and the corresponding block in the
covariance matrix is thus diagonal.

For the measurement state covariance matrix, it is assumed that the forward model
accurately predicts the measurement vector y. The only source of uncertainty is the
noise in the signal detected by the Odin SMR sensor. Noise in different channels
and from different measurements is uncorrelated and Sε is thus a diagonal matrix.
The noise level for each channel can be obtained from the noise temperature of the
receiver and the integration time used for the measurements.
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Quantity σs lx ly

H2O 3 ×105 ppm 5◦ 8 km
T 7 K 5◦ 8 km

Table 3.1.1: Retrieval quantity correlation lengths used for the a priori covariance
matrix.

Figure 3.1.5: Shape of the correlation function along the horizontal grid dimension.

3.2 Retrieval Results

The retrieved concentrations of water vapor and temperature together with the
respective a priori states are displayed in Figure 3.2.1a and Figure 3.2.1b. The
retrieval region displays the upper region of the mesosphere limited from above by
the mesopause, which is the temperature minimum between between the mesosphere
and thermosphere above. The current understanding of the dynamics of the summer
mesosphere is that water vapor is brought up and then removed by photodissociation
as it reaches the mesopause. This knowledge is represented in the a priori water
vapor concentrations which show a strong gradient at a height of about 90 km.
While this general structure is reproduced in the retrievals, they also reveal a much
finer structure of this transition region. The most salient of these structures are
the peaks around 80◦ and 110◦ along orbit. Those are related to the formation of
polar mesospheric clouds and are usually found beneath or between them. Also
clearly visible is an increased concentration of water vapor in the upper mesosphere
around the pole. The retrieved temperature exhibits less deviation from the a priori
state, of which the strongest are the temperature minima in the region around
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the pole. This observation is also in agreement with current understanding of the
mesosphere. For a more detailed discussion of these results the reader is referred
to the article by Christensen et al.Christensen et al. (2015).

3.3 Computational Performance

The tomographic retrievals of the Odin SMR data are computationally demanding
both numerically as well as with respect to memory requirements. The main
limitation of the calculations performed by Christensen, Eriksson and Murtagh
in Christensen et al. (2015) were that they were performed on a desktop machine
whose main memory limited the maximum problem size and thus required the
splitting up of the orbit into several batches. These limitations can be overcome by
performing the calculations on a dedicated compute cluster. In addition to that, the
newly developed OEM implementation in ARTS provides the conjugate gradient
method as a solver for the linear subproblem of each minimization step, which can
further reduce the memory footprint of the calculations. In this section, the general
performance characteristics of the two solution methods are presented. Furthermore,
two possible performance optimizations are investigated: Representing the Jacobian
as a sparse matrix and distributing the computations over multiple compute nodes
using invlibs generic distributed matrix types.

The computations presented here have been performed on 1 to 8 nodes of the Hebbe
compute cluster at Chalmers University of Technology. Each node is equipped with
a 10-core Intel Xeon E5-2650 and 64 GB of main memory. The optimization method
used for the retrieval is the Levenberg-Marquardt method with the convergence
criterion chosen to be 10−3. The start value for the λ parameter in the Levenberg-
Marquardt method was set to 10 with a decrease factor of 10 and an increase factor
of 2. The convergence criterion for the conjugate gradient method was set to 10−4.

3.3.1 Single-Node Calculations

The increased amount of main memory available on a node of the Hebbe compute
cluster made it possible to perform the retrieval using a conjugate gradient solver
as well as a direct solver using LU decomposition. These calculations have been
performed with the current development version of ARTS. In addition to that,
possible runtime improvements that can be obtained by exploiting the sparse
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(a) A priori and maximum a posteriori water vapor concentrations as
obtained from the Odin SMR tomographic measurements.

(b) A priori and maximum a posteriori temperature as obtained from
the Odin SMR tomographic measurements.

Figure 3.2.1: Results of the tomographic retrievals of the Odin SMR data.
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Figure 3.3.1: Computational time required for the retrieval of a full half orbit as
well as the time spent in the main subroutines for the three retrieval configurations.

structure of the Jacobian in the calculations have been investigated by adding the
corresponding functionality to ARTS. This development is currently experimental
and not published as an official version of ARTS. The required time for the retrieval
calculations together with the time spent in the principal compute routines are
displayed in Figure 3.3.1. As can be seen from the plot, the best performance is
obtained using the direct solver, while the calculations using the conjugate gradient
method take almost twice as much time. The performance of the conjugate gradient
method can be improved by choosing a sparse representation for the Jacobian,
which reduces the computation time to about the time required using the direct
solver. What can be further seen from the plots is that the largest part of the
computation time is spent evaluating and computing the Jacobian of the forward
model. For the direct solver this amounts to about 80 % of the total computation
time, whereas for the conjugate gradient solver without sparse Jacobian this fraction
is reduced to 60 %. This also shows that the conjugate gradient solver not only
requires more time to solve the linear subproblem of the minimization method,
but also prolongs the computation by requiring more minimization steps to reach
convergence.
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3.3.2 Distributed Calculations

Due to the complexity of the forward model, a large part of the computational
time required for the retrieval calculations is spent evaluating and computing the
Jacobian of the forward model. However, since the tomographic retrievals combine
observations from different positions of the satellite, which are computed completely
independently of each other, these calculations can be very easily parallelized. This
parallelism is exploited in ARTS using OpenMP (OpenMP, 2008). Since OpenMP
only supports shared memory systems, the calculations are restricted to execution
on a single node of the compute cluster, which of course limits the achievable
performance gains through parallelism. Nonetheless, the complete independence of
the calculations for the different satellite positions can be used to easily extend
ARTS to distribute calculations over multiple compute nodes using MPI. Together
with invlibs support for generic distributed matrices, this extended version of ARTS
can be used to distribute the retrieval calculations over multiple compute nodes. In
order to investigate the performance of the resulting distributed implementation of
the retrieval, the Odin-SMR tomographic retrievals have been performed on 1,2,4,6
and 8 compute nodes of the Hebbe cluster. The corresponding timing results as
well as the time spent in the main computational subroutines are displayed in
Figure 3.3.2a. As expected, the computation time can be decreased considerably
by distributing the calculations over multiple compute nodes. The overall speed-
up as well as the speed-ups obtained for the main subroutines are displayed in
Figure 3.3.2b. From the plot it can be seen that the overall computation time scales
acceptably well with the number of compute nodes. In particular, the computation
of the Jacobian as well as the evaluation of the forward model scale very well with
the number of compute nodes, but these performance gains are neutralized to some
extent by the sub-optimal scaling of the conjugate gradient method.
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(a) Time to solution of the MPI-parallelized retrieval.

(b) Scaling of the MPI-parallelized retrieval.

Figure 3.3.2: Performance of the distributed, tomographic retrievals of Odin-SMR
data.
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Chapter 4

Conclusions and Future Work

In this chapter, the main results of this thesis work are summarized and discussed.
Finally, the main part of the report is concluded with a future outlook and ideas for
further developments and improvements of the invlib library and the implementation
of the OEM in ARTS.

4.1 Results

The main result of this thesis work is the invlib library, which provides a free
software implementation of Bayesian methods for inverse problems with Gaussian a
priori knowledge and measurement error. The library has been integrated into the
ARTS software package for the simulation of atmospheric radiative transfer. ARTS
can now be used as a stand-alone package for the retrieval of atmospheric remote
sensing data. The retrieval functionality in ARTS provides the Gauss-Newton
and Levenberg-Marquardt method as minimization methods, which both can be
combined with a direct or an indirect solver for the linear system arising in each
minimization step.

This newly developed OEM implementation has been used to perform tomographic
retrievals of Odin-SMR data. By performing the computations on the Hebbe
compute cluster, the calculations for a complete half orbit could be computed
in a single computation, which has not been possible previously. Furthermore,
experimental extensions of the ARTS code have been developed that allow for a
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sparse representation of the Jacobian as well as the distribution of the calculations
over multiple compute nodes using MPI. As an additional result, it has been
demonstrated that the invlib library is general enough to handle retrieval problems
outside of ARTS. In particular, invlib has been used to perform the retrieval of
simulated data from the MATS satellite mission. Also here, the use of invlibs
distributed data types to parallelize the calculations could considerably speed up
the retrievals.

4.2 Discussion

From a mathematical point of view, the treatment of inverse problems as they arise
in remote sensing is straight forward. Nevertheless, the implementation of those
methods in a numerical software library is still challenging. This is due to the great
flexibility and generality required to handle arbitrary problems efficiently. Different
problems may, for example, require different representations for the matrices
involved in the computation in order to achieve optimal performance. Moreover,
large problems require an implementation that is efficient both computationally
as well as with respect to memory usage. The approach taken here was to make
extensive use of template programming. While this may make the code more difficult
to use for users unexperienced with this technique, the successful application of
the library to two large-scale retrieval problems demonstrates that this approach is
capable of achieving both the generality and performance required for the retrieval
of remote sensing data.

Based on the invlib library, functionality for performing retrievals using the optimal
estimator method has been integrated into ARTS. This implementation has been
used to perform tomographic retrievals of Odin-SMR data and to investigate the
performance characteristics of different retrieval configurations. Interestingly, the
single-node retrievals that used a direct solver for the linear subproblem achieved
the best performance. Nevertheless, similar performance could be obtained using
a sparse representation for the Jacobian. One of the reasons for the inferior
performance of the conjugate gradient method is likely to be the structure of the a
priori covariance matrix Sa, which has non-zero values in about 48% of its elements
and thus not really exhibits a sparse structure. This is in accordance with the
results from Section 1.3, which indicate that the conjugate gradient method yields
improvements in computational time only for sufficiently sparse matrices.

Furthermore, this thesis explored the parallelization of the computation of MAP

58



estimators. On the invlib side, the parallelization is achieved through generic,
distributed matrix and vector types. As was shown in the application to the
retrieval of MATS data, the implementation achieves acceptable scaling to a small
number of nodes. It should be noted here that the implementation uses a single,
generic implementation of the MAP estimators, the minimization method and the
conjugate gradient method for the serial as well as for the parallel version. This has
the advantage of reducing the code base and thus simplifies ensuring correctness
and maintaining the code. While it is very likely that better performance can be
achieved by further optimizing communication patterns, the current code should
be regarded as a proof of concept which can be further optimized if required by
the application. Finally, also a simple parallelization of the ARTS forward model
implementation was developed. Since the ARTS code is currently not designed for
distributed computations, one aim of the parallelization was to require as little
changes to the existing ARTS code as possible. Still, as the numerical results in the
previous chapter show, this distributed version of ARTS achieves good scaling to a
small number of nodes. All in all, using the distributed retrieval implementation,
the compute time for the tomographic retrieval of the Odin-SMR data could be
reduced to about 4 hours.

While a number of different retrieval configurations has been investigated in this
work with respect to their performance, there still remains a large number of
different configurations and parameters whose influence could not be investigated
here due to time constraints. These configurations include the convergence criterion
for the conjugate gradient method, preconditioners for the conjugate gradient
method, the parameter settings of the Levenberg-Marquardt method, optimization
of the step size of the Gauss-Newton and Levenberg-Marquardt method as well as
different OEM formulations.

4.3 Future Work

While the main aim of this thesis, namely adding an implementation of the
optimal estimation method to ARTS, has been achieved, there still exist a number
of interesting extensions of the invlib functionality. One of them would be to
implement preconditioners for the conjugate gradient method, which may accelerate
the convergence of the conjugate gradient solver and thus improve the run time of
retrievals using the indirect solver. Furthermore, for linear retrievals, it would also
be interesting to investigate potential speed ups that can be obtained by performing
the calculations on an hardware accelerator device such as a GPU. Finally, it would
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also be interesting to apply the invlib library to solve other inverse problems in
order to obtain further insight into the capabilities and requirements on the library.
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Appendix A

Algorithms

The Gauss-Newton method iteratively minimizes a cost function J . In each step,
the function J is approximated by a quadratic function using its gradient ∇xJ at
the current iteration vector x and the corresponding Hessian ∇2

xJ . The minimum
of this second-order fit is then used as the next step in the iteration.

A.1 Gauss-Newton Method

Algorithm 1 Gauss-Newton Method
1: x← xa
2: repeat
3: ∆x← − (∇2

xJ)−1∇xJ
4: x← x + ∆x
5: until converged

A.2 Levenberg-Marquardt Method

The Levenberg-Marquardt method extends the Gauss-Newton method with a
heuristically controlled trust region around the current iteration step. The size
of the trust region is adapted at each step of the iteration depending on the cost
reduction obtained in the current step.
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Algorithm 2 Levenberg-Marquardt Method
1: x← xa
2: λ← λstart
3: repeat
4: repeat
5: ∆x← − (∇2

xJ + λD)−1∇xJ
6: xn ← x + ∆x
7: c← J(xn)−J(x)

∇xJT ∆x+ 1
2 ∆xT∇2

xJ∆x
8: if c > 0.75 then
9: if λ > 0 then
10: λ = λdec · λ
11: if λ ≥ λmax then
12: Error
13: end if
14: else
15: λ = λmin
16: end if
17: else if c < 0.2 then
18: λ = λinc · λ
19: if λ < λmin then
20: λ = 0
21: end if
22: end if
23: until c ≥ 0
24: until converged
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A.3 Conjugate Gradient Method

The conjugate gradient method iteratively solves a linear system Ax = b.

Algorithm 3 Conjugate Gradient Method
1: x← x0
2: r0 ← A x0
3: p0 ← A x− r0
4: k ← 0
5: while ||rk||

||x|| < tol do

6: α← rT
k A pk

pT
k

A pk

7: xk+1 ← xk + α pk
8: rk+1 ← A xk+1 − b
9: β ← rT

k+1rk

rT
k
rk

10: rk+1 ← −rk + β pk
11: k ← k + 1
12: end while
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Appendix B

Code Examples

This appendix contains the documented implementation of the matrix, vector and
forward model interfaces for the usage example from Section 2.

One pecularity arising through the use of template programming in the imple-
mentation of the invlib library is that the interfaces for the underlying matrix
and vector types depend on the configuration of the retrieval calculations that
are performed. Indeed the matrix and vector types need only implement the
operations that are finally called when the code is compiled. For example, if the
conjugate gradient method is used as a solver for the linear subproblem, the matrix
type needs only provide funtions for matrix-vector and transposed matrix-vector
multiplication, but no functions for matrix-matrix multiplication. Since invlib also
allows the user to specify different types for the covariance matrices as well as the
Jacobian, also the required interfaces for these types may differ. Used with the
conjugate gradient method, for example, the covariance matrices are not required
to provide an implementation of transposed matrix-vector multiplication due to
their symmetry. A complete implementation of the interfaces for the matrix and
vector types, that is compatible with all computations that can be performed with
invlib is provided by the matrix and vector archetypes that are distributed with
the invlib code (Pfreundschuh, 2016).
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B.1 The Eigen3 Interface

The Eigen3 library is used for the underlying implementation of the matrix and
vector types for the usage example. The interfaces for the vector and matrix types
are implemented by the EigenVector and the EigenSparse classes, respectively. To
make the code more concise, we begin by introducing type aliases for the Eigen3
types used. We also forward declare the EigenSparse class, since it is required by
the EigenVector class.

using EigenSparseBase = Eigen::SparseMatrix<double, Eigen::RowMajor>;
using EigenVectorBase = Eigen::VectorXd;

class EigenSparse;

B.1.1 The EigenVector class

All types that are to be used in an arithmetic expression in invlib are required to
declare public types that specify the associated types implementing the matrix
algebra. Those are:

BaseType : Interfaces in invlib are implemented using inheritance and the type
that is being interface is available through the BaseType type alias.

RealType : The floating point type used to represent scalars.

VectorType : The type used to represent vectors.

MatrixType : The type used to represent matrices.

ResultType : The result type of a product with an object of this type as right
operand.
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class EigenVector : public EigenVectorBase
{

public:

using BaseType = EigenVectorBase;
using RealType = double;
using VectorType = EigenVector;
using MatrixType = EigenSparse;
using ResultType = EigenVector;

Next, the constructors for the interface class are implemented. For the default
constructor EigenVector() the compiler-generated default implementation is used,
which simply calls the default constructor of the base class. In addition to that,
a one-argument constructor that uses perfect forwarding to call the constructor
of the base class is defined. This is done for efficiency reasons. Since Eigen3
calculations produce proxy objects that represent the results of matrix and vector
computations, these proxy objects can be directly forwarded to the constructor of
the EigenVectorBase object which avoids unnecessary copy operations.

EigenVector() = default;

template <typename T>
EigenVector(T &&t)

: EigenVectorBase(std::forward<T>(t))
{

// Nothing to do here.
}

In addition to that, invlib requires a function to resize a vector to a given size.
Since the EigenVector is derived of the EigenVectorBase class, an implementation
of this function is already available from the base class. For completeness the
inheritance relation was declared protected , which is why a wrapper for the resize
function must be reimplemented here:

void resize(unsigned int n)
{

this->EigenVectorBase::resize((int) n);
}

Now all that is left to do is implement the mathematical operations required to be
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performed on vectors. Those are:

accumulate : Add another vector to the given vector

subtract : Subtract another vector from the given vector

scale : Scale the given vector by a scalar.

norm : Compute the norm of the given vector.

dot : Compute the dot product of two vectors.

These functions can be implemented in a straight-forward way by simply forwarding
them to the corresponding call of arithmetic functions provided by Eigen3 base
types:

void accumulate(const EigenVector& v)
{

*this += v;
}

void subtract(const EigenVector& v)
{

*this -= v;
}

void scale(RealType c)
{

*this *= c;
}

RealType norm() const
{

return this->EigenVectorBase::norm();
}

};

double dot(const EigenVector &v, const EigenVector &w)
{

return v.dot(w);
}
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B.1.2 The EigenSparse class

The interface for the Eigen3 sparse matrix class requires even less functions. As
above, we begin with declaring the associated types of the matrix algebra as well
as a perfect forwarding constructor.

class EigenSparse : protected EigenSparseBase
{

public:

using BaseType = EigenSparseBase;
using RealType = double;
using VectorType = EigenVector;
using MatrixType = EigenSparse;
using ResultType = EigenSparse;

template <typename T>
EigenSparse(T &&t)

: EigenSparseBase(std::forward<T>(t))
{

// Nothing to do here.
}

In addition to that, for the matrix class rows() and cols() functions returning
the number of rows and columns of the matix are required. Again, those could be
directly inherited, if the inheritance relation would have been declared public .

unsigned int rows() const
{

return this->EigenSparseBase::rows();
}

unsigned int cols() const
{

return this->EigenSparseBase::cols();
}

The arithmetic operations that are required by invlib are matrix-vector multipli-
cation, which is implemented by the multiply member function, and transposed
matrix-vector multiplication, implemented by the transpose_multiply function.
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VectorType multiply(const VectorType &v) const
{

VectorType w = *this * v;
return w;

}

VectorType transpose_multiply(const VectorType &v) const
{

VectorType w = this->transpose() * v;
return w;

}

};

This concludes the implementation of the interface for the necessary matrix and
vector operations. This code can be found in the MATS folder in the example
directory tree distributed with invlib.

B.1.3 The Linear Forward Model

Now that the matrix arithmetic is in place, the next step is to implement a forward
model class that represents the linear model here given only by the Jacobian K:

y = K(x− xa) (B.1.1)

The invlib forward model interface consists of two functions evaluate and Jacobian .
The evaluate function takes a state vector x as argument and returns the corre-
sponding measurement vector y as predicted by the forward model. The Jacobian
function takes as arguments a state vector x and a measurement vector y, returns
the Jacobian corresponding to the measurement vector x and sets the provided
vector y to the current value of the forward model. Since the forward model is
passed as a template argument to the MAP class, the user is free to choose the exact
argument and return types of the two functions. This, for example, allows the
user to choose a different matrix representation for the Jacobian than for the other
covariance matrices or the general matrix type used for the calculations. The only
requirement is that this type can be multiplied from the right with the vector type
used for the calculations. Furthermore, the foward model class must provide public

72



member variables m and n , which specify the dimensions of the measurement and
state spaces, respectively.

Again, we begin by introducing type aliases for conciseness.

using MatrixType = invlib::Matrix<EigenSparse>;
using VectorType = invlib::Vector<EigenVector>;

The implementation of the LinearFoward model class is straight forward. The class
simply holds references to a given Jacobian and the a priori vector.

class LinearModel
{
public:

LinearModel(const MatrixType &K_, const VectorType &xa_)
: K(K_), xa(xa_), m(K_.rows()), n(K_.cols())

{
// Nothing to do here.

}

To evaluate the forward model, we simply compute K(x− xa). Since we are using
the invlib matrices and vectors, these expressions can be written using operator
notation.

VectorType evaluate(const VectorType &x)
{

return K * (x - xa);
}

const MatrixType & Jacobian(const VectorType &x, VectorType &y)
{

y = K * (x - xa);
return K;

}

Finally, the required public m , and n members, that contain the dimensions of
the inverse problem are added to the class.
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const unsigned int m, n;

private:

const MatrixType &K;
const VectorType &xa;

};

B.2 The MPI Interface

In order to use the Eigen3 matrices and vectors with invlibs generic distributed
matrix and vector types, additional functions in the matrix and vector interfaces
are required. Those additions to the interfaces are described in this section.

B.2.1 The EigenVector class

The invlib distributed vector and matrix types split up vectors and matrices row-
wise over processes. The library thus needs to access blocks of rows. For vectors,
the corresponding required function is get_block :

EigenVector get_block(unsigned int start, unsigned int extent) const
{

return this->block((int) start, 0, (int) extent, 1);
}

For the communication between processes using MPI, invlib requires access to
the raw data arrays of the vector type. This is provided by the data_pointer()
member functions for both, mutable as well as immutable access.
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template <typename Real>
auto MatrixArchetype<Real>::data_pointer()

-> Real *
{

return data.get();
}

template <typename Real>
auto MatrixArchetype<Real>::data_pointer() const

-> const Real *
{

return data.get();
}

This concludes the necessary additions to the EigenVector interface class.

B.2.2 The EigenSparse class

For this example only one additional function for row-block access must be added
to the matrix interface. This function is required to restrict the local matrices of
each process to the corresponding row ranges. The get_block function is used by
invlibs generic split function, which takes a full matrix loaded by each process
and returns the row block obtained by splitting the matrix evenly over the total
number of processes.

EigenSparse get_block(unsigned int row_start,
unsigned int col_start,
unsigned int row_extent,
unsigned int col_extent) const

{
return this->block((int) row_start,

(int) col_start,
(int) row_extent,
(int) col_extent);

}
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