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Abstract

To gain understanding of proteins and increase knowledge of how they interact with and
impact each other, studying larger sets of data on proteins is important. Being able to
easily aggregate such data is essential for this type of analysis.

This work is investigating how to detect some specific sections of protein secondary
structures, α-helices, and to, within a given protein, identify pairs of such helices that
are close to each other. The identified pairs are categorized in four different categories,
depending on how the distance is detected.

The outcome is a program, HelixFinder, that detects such helix pairs and gathers
information about them. The program uses an implementation of the DSSP algorithm
to identify the structures, and a rotational algorithm together with a number of distance
tests to identify α-helix pairs and output data relevant for further analysis.
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1
Introduction

P
roteins are vital for all life as we know it, and are part of every living crea-
ture. As macromolecules they are unique in that they are involved in every
biological reaction [1]. The function varies depending on the type of protein,
but proteins are active in almost all areas of life. Hormones, enzymes and anti-

bodies are examples of groups of proteins, and keratin and gluten are examples of some
of the well known proteins.

Proteins have an important role to fill in our lives as humans, but proteins losing
their function or changing their behavior can also cause reduced functionality in life
critical areas, or result in diseases like Alzheimer’s, Parkinson’s and Huntington’s [2].
This means that proteins are important for our well being, as well as being the cause of
some of our deceases.

To understand how living creates function is important for understanding how to
improve life and prevent deceases, and a vital step in this is to understand how proteins
work. This is not only about understanding how they function, but there is also a
possibility to understand and find new, preventive methods or cures for diseases. This
can be done both by understanding why proteins sometimes malfunction as well as
trying to identify or even construct special customized proteins, like specially constructed
antibodies, for certain diseases.

How a protein interacts depends on the form, or the structure, of the protein [3]. Ex-
perimentally determining the structures is cumbersome, and for some groups of proteins
it is especially complex [4]. To learn more about proteins, and especially to be able to
construct new proteins, more statistical information about how proteins are structured
is needed.
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1.1. LOOKING AT α-HELICES CHAPTER 1. INTRODUCTION

1.1 Looking at α-helices

Several different areas can be investigated to gather statistics about protein structures,
but one such area is to look at how the so called α-helices within proteins interact
with each other as for instance done by Zhang at al. [5]. α-helices are special sections
of protein structures, with a clearly defined formation and is one of the most common
sub-section of proteins. For many proteins, interaction between such α-helices are critical
for the structure of the protein [6]. And for many proteins they provide stability and
function [7].

Several methods exists for predicting the form of proteins and several of these relies
on knowledge on existing α-helices and statistics about helices interacting. Fleishman
et al. have constructed a scoring function aimed to differentiate between helix pairs in
membrane proteins that would closely interact from helix pairs that would not [8]. In
this function, real data for helix pairs is used as a confirmation space for the scoring
function.

Another method for trying to predict membrane protein structures is the Roset-
taMembrane tool, developed in increments by different teams. The increment done by
Barth et al. uses a library of known protein structures with α-helix pairs, where local
sequence matching is used to provide possible interaction points [9]. To allow for such
tools to evolve, as well as for development of new tools, statistical gathering of known
structures is important as a standpoint for the prediction tools to base the predictions
on.

in general, statistical data for protein interaction could be used as an important
source for data when constructing scoring functions for protein predictions, as well as
for protein-protein docking predictions in relation to interaction of α-helices.

Although the interaction of α-helices is important for the structure of proteins, it has
not been possible to define rules for how they impact the final structure [7]. This means
that continued investigation of relations between such helices is needed, and to gain a
better understanding of the process statistical analysis of larger sets of data would be
one way to gain a better understanding.

Such analysis tools are available, with different approaches to what to evaluate as
well as how interaction is defined. Burba et al. developed a web service, HIT, where
analysis of α-helix interaction can be performed [7]. The method uses two approaches
to evaluate if the helices interact, either by looking at the partitioning of space between
helices by usage of the Voronoi method, or by measuring distance between atoms and if
enough atom pairs are found fulfilling the closeness definition, the helices are defined as
interacting.

Another tool, TMPad, for analyzing α-helix pairs is developed by Lo et al. [6].
They state that ”helix packing [...] is not governed by a single factor alone”, and to
understand how helices are packing together in a protein one need to investigate and
evaluate a number of different factors [6]. In their work the method for determining if
helices are interacting is by looking at the distance between atoms of the helices, in a
number of different criteria.

2



1.2. AIM CHAPTER 1. INTRODUCTION

1.2 Aim

This thesis main focus is methods in the area of protein analysis. The aim is to investigate
methods needed for detecting α-helix pairs in proteins and also for allowing to do analysis
of the behavior of patterns in such interactions. In comparison to the work of Burba et
al. [7] and Lo et al. [6], this method for identifying helix interaction is focusing on the
whole helix, rather than looking at distance between single atoms within the helices.

The closeness detected is also categorized depending on how the distance is measured.
The categories are based on the relation between the helices and their position in relation
to each other.

The result is a compilation of methods that can be used to find information on
distance and angles between such helix pairs, as well as other characteristics for the
identified pairs. These methods are then evaluated by the implementation of a program,
called HelixFinder, that is using these methods.

The output of the program can be used for statistical analysis of groups of proteins,
when it comes to α-helix pairs. The generated data could also be used for scoring
functions in prediction methods.

1.3 Thesis outline

To be able to understand the work, as well as the methods presented, the biology behind
proteins will be presented in chapter 2. Also, to set the methods in context as well as
explaining the choices made, a review of different computational methods for analyzing
proteins and their form will be presented in chapter 3.

The program will then be presented, with a focus on the major parts of the software,
in chapter 4. This will be followed by an analysis of the result from the program as well
as suggestions for potential improvements, in chapter 5.

3



2
Protein structure

T
o understand this work and the reasoning behind the program developed,
there is a need to understand the concepts of proteins and therefore the biology
behind. In addition, understanding how prediction of protein functionality is
done provides some concepts needed to understand how the results fits into the

goal of protein prediction.

2.1 Protein building blocks

The central dogma in molecular is that DNA is transcribed to mRNA, and mRNA is
translated to protein. Proteins consist of chains of specific combinations of amino acids,
where the same protein have the same sequence no matter where it occurs. There are a
number of different amino acids, but all proteins are constructed from a set of 20 amino
acids1, each with different chemical properties [3].

Each amino acid consists of a carbon atom(called α-carbon and written Cα) bonded
with an amino group (H2N), a carboxyl group (COOH), a hydrogen atom (H) and a
side-chain group (usually called R). For the different amino acids, it is the side chain
that varies and it can vary from a single hydrogen atom (H) to more complex structures
(as seen in figure 2.1).

The amino acids have different properties, depending on the structure of the side
chain; they can be differently charged, or hydrophobic or they can be polar. This
results in different interactions and behavior depending on how they are contained in
the proteins, and help diversify the range of proteins that exists. Some do, for instance,
have ionizable side chains, making it possible to donate or accept protons to facilitate
reactions, which is an important trait for enzymes [10].

1There are a few exceptions where there are proteins containing other amino acids [1]. This can,
however, be disregarded for this work since the focus on this work is on the Cα) in the backbones, and
the amino acid differences are impacting the side chains.

4
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Figure 2.1: Amino acids vary in their side chains, where the size of the side chain can
differ from a single atom to a more complex structure. Here, from left to right, Glycine,
Serine, Methionine and Proline are shown in their predominant ionic forms as examples of
amino acids, with all atoms of the side chains explicitly drawn to clearly show the difference
in size.
Proline is a special case among the amino acids used in proteins, in that the side chain is
also bonded to the main chain nitrogen atom.

2.2 Levels of protein structure

The amino acids of a protein are bonded together into chains, where the ordered sequence
of the amino acids is called the primary structure of the protein. The chain is then
formed into some common sub-structures shared between many proteins, that are called
secondary structure. But the whole protein has a certain three dimensional form, its
conformation, enabling its function; this is called the tertiary structure.

In some cases several amino acid chains come together to form a single protein; such
a structure is called a quaternary structure.

Most proteins are in the size of 50 to 2000 amino acids, although there are proteins
decoded with as many as 35 000 [11]. With the availability of 20 amino acids a protein
with 100 residues would have 10130 possible combinations, which is much more than
there are atoms in the universe2. Only very few of these structures become real proteins,
and by natural selection, over time, only the best proteins have survived [3].

2.2.1 Primary structure

Amino acids are linked together between the amino and the carboxyl group by a stable
bond with double bond characteristics [1], called a peptide bond. A number of amino
acids bonded together like this is called a polypeptide chain, and each amino acid in such
a chain is called a residue [10]. The repetitive, part of the chain, is called the backbone
of the protein (as seen in figure 2.2).

Because of the double bond characters of the peptide bonds, the backbone is fixed
in one of two ways in the bond connection: trans or cis. The trans form means that the
α-carbons on the side of the bond are on opposite sides, while for the cis form they are

2The estimated mass of the universe is below 1053 kg [12], and with the assumption that all atoms
are hydrogen atoms the total number of atoms in the universe would be approximately 1080.
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Figure 2.2: Amino acids link to each other by a peptide bond, resulting in chains of amino
acids. The repeating main part of the chain is called the backbone, and is colored blue in
the figure.

on the same side. Because of steric clashes between the R groups for the cis form, the
trans form is dominating and almost all peptide bonds in proteins are actually of that
form [10]. The ratio between cis and trans is 1:1000 for most peptide bonds3 [1].

While the nature of the peptide bond means that there is no flexibility around that
bond, the other bonds in the backbone can rotate. Although the possible positions are
limited, and only 25% of all possible angles are actually available in reality in natural
proteins [1], this does alllow the chain to change in form and shape, and thus result in
the 3 dimensional structure of the protein.

Each polypeptide chain has a predetermined 3 dimensional structure it will retain,
after it has been assembled. This process of going from an irregular extended structure
to a functional structure is called folding.

2.2.2 Secondary structure

Looking at the 3 dimensional structure of a protein, it is possible to identify a number
of structural sections that are reoccurring in proteins throughout. Those common struc-
tures are called secondary structures, and the most common ones are α-helices, β-sheets
and turns.

When a chain folds into its final structure, it strives for a structure with low energy
[3]. What holds it together varies between a number of different factors, but for the
secondary structures the main force is the hydrogen bond, occurring between the NH
and the CO group of the main chain.

α-helices are the most common structure found in proteins [1], and are the result
of several hydrogen bonds between some consecutive residues and the fourth residue
following each residue in the same chain. This means that all NH and CO groups are
bonded by hydrogen bonds in the structure.

Some amino acids will not accommodate perfectly into an α-helix, because of steric
clashes, and the amino acid proline lacks an NH group, as can be seen in figure 2.1, and

3The main exception here is proline, where a ratio is 1:4 when a residue is followed by proline.
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2.3. STRUCTURE DETERMINATION CHAPTER 2. PROTEIN STRUCTURE

therefore does disrupt a helix [10]. When it comes to peptide bonds that adopt the cis
form, such a bond would break the helix.

A β-sheet is created by multiple straight polypeptide chain sections, so called β-stran-
ds, that are linked together by hydrogen bonds. One β-sheet can consist of a pair of
β-strands or more than 10 strands [1].

A turn is simply a small section of the chain that makes it change direction. There
are different types of turns, but the basic behavior of changing the direction is the same.
The main difference is how many residues there are between the hydrogen bond resulting
in the turn. The most common one is the β-turn that has a hydrogen bond between a
residue and the following fourth one4 [1].

Other structures exist as well, like 310 helix and π helix. But those are quite rare in
comparison [1]. In figure 2.3 a small protein with β-strands and an α-helix is shown.

Figure 2.3: An example of a small protein with both β strands (orange) and an α-helix
(pink). On the left the protein is shown with all non-hydrogen atoms shown, in the middle
only the backbone is visualized, while on the right a cartoon representation of the structures
is seen, and is used to better illustrate the position of the structures. The coloring is the
same for the three illustrations and colors the α-helix with pink and the β-sheet with orange.
The protein is the amyloid precursor protein of Alzheimer’s, with PDB id 2FMA.

2.2.3 Tertiary structure

The final 3D form of the protein, the tertiary structure, is specifically defined by the
primary sequence [10]. The creation of the final structure can come from disulfide bridges
between side chains containing sulfur, it can be a result of hydrophobic effects, it can be
van der Waals interactions or a number of other causes [1]. The folding of the protein
reflects the summary of all the different forces coming from the different binding.

2.3 Structure determination

As proteins are such an important contributor to so many biological interactions, and
the structure of the protein is what determines what the protein can contribute with,
identifying structures for proteins is vital for many reasons. Two of the main reasons

4The definition is the same as for α-helices, but the difference is that a β-turn is only between two
residues while an α-helix includes several residues. Slightly simplified, an α-helix could be described as
several consecutive β-turns.
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2.4. STRUCTURE PREDICTION CHAPTER 2. PROTEIN STRUCTURE

are, firstly, for understanding how existing proteins are formed and therefore understand
how they function, and, secondly, for being able to design new proteins with a certain
function, based on the structure.

When it comes to understanding the structure of existing proteins, the normal way
of identifying the structure is to do it experimentally. This can be done in a few different
ways, where the absolutely dominating method is through X-ray crystallography [13].
Although there are some different methods, they are all complex and time consuming [14].
X-ray crystallography does for instance require the protein to be grown into a crystalline
form that is X-rayed to generate a diffraction pattern (because of the reflections of the
crystals), and by applying Fourier analysis to the result, the structure can be calculated
[2].

If one looks at the current development, one can see that currently the structure of
some 100 000 proteins are known while the known sequences of proteins are more than
20 000 000. As if this was not enough, the number of known sequences is increasing at a
much higher rate than known structures [3].

This means that just identifying existing proteins experimentally will be a major
challenge and therefore algorithm based methods allowing to calculate the structure is
important to enable future understand of how proteins are structured, to be able to
evolve in the area of protein research [15].

Another reason for wanting to be able to computationally predict the structure of a
protein, is for creation of completely new proteins. For instance, to be able to prevent
diseases, constructing customized antibodies is a possibility. But to understand the
behavior of the new protein, it is important to understand the structure of it. This can
either be done by constructing the protein and experimentally analyze the result, or by
having a good approach for how to predict the structure from the sequence.

2.4 Structure prediction

There are major challenges in the field of protein prediction. If one should try to calculate
the number of possible ways a protein can fold, one can see that brute force calculation
is simply not possible. Even if we restrict the possibilities of the backbone of a protein
and assumes that only a few angles are possible for the rotational bonds, a protein of
100 residues would still have between 1030 and 1047 conformations to be considered [16].
Such calculations would be impossible to carry out for a normal computer. But likely a
protein cannot fold into every shape imaginable, and there is most likely a very limited
number of different folds to choose from, estimated to a range of some thousand [17].

There are a number of different method groups for predicting the structure of a
protein, of which two are template based modeling and de novo prediction. None of them
are currently at a level where they can be used to actually determine the structure of a
protein, but the evolution is progressing and they are constantly improving [18].

Many of the methods uses, in one way or another, statistically generated data for a
larger set of existing proteins, or uses parts of known proteins to match the unknown
proteins with. In some of these, data is used for comparison, whiles in others interactions
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between structures, like α-helices, or distance between structures is used.
The fact that proteins with similar sequences have a tendency to adopt similar struc-

tures is the basis for comparative modeling, and this can then be used to identify tem-
plate proteins as a basis for comparison [14]. Threading is an example of such a template
based modeling method and it uses the assumption that there is a limited number of
folds possible for a protein. Based on this, a database of experimentally determined
folds is used, from where the sequence of a protein with unknown structure is matched
with sequences from the database with known structures. In this way, the protein with
unknown structure mimics the structure of the already known protein structures [16].

De novo modeling, on the other hand, tries to predict the structure for proteins by
using the sequence information and without having similar proteins to compare with.
Often de novo modeling still uses statistical information about known structures as for
instance a basis for understanding interaction between different secondary structures. A
number of different methods exists within this group, where some use fragments of folds.
The method RosettaMembrane is an example of a method that uses distance constraints
by taking helix-helix interactions into consideration [15].
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3
Methods

T
o be able to detect α−helices in proteins, there needs to be information
about the 3 dimensional structure of the proteins that should be analyzed.
Throughout the years, a standard for how to document the 3 dimensional
structure of a protein has been developed, and such protein structures are

stored in the Protein Data Bank as PDB files [19].
Such data files are what needs to be used as input for being able to detect α-helices

and for analyzing if the helices are close to each other. When it comes to what defines
close α-helices, in this project it is determined by measuring the distance between the
closest points on the axes of the α-helices, for each pair of α-helices. This needs to be
done in two steps:

1. Detecting α-helices, based on the data in the given PDB file

2. Identify if there are any α-helix pairs that are close to each other

In this thesis work the focus is on the methods chosen for detecting α-helices, and
finding pairs of such α-helices that are close to each other. In the chapter 4, the program
itself is described.

3.1 Finding helices

Finding secondary structures of a protein, based on the coordinate data provided in a
PDB file, is an important step in understanding the structure and behavior of a protein.
There is no objective truth as to when a secondary structure starts and ends, meaning
that different approaches might have different advantages [20].

Also, different approaches might be better than others at certain types of secondary
structures, or have other traits that makes them valuable from other aspects. In this
work, however, only α-helices are of interest to be detected.

10
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There are a number of different aspects that could be looked at for detecting sec-
ondary structure, but the majority of the methods either look at the coordinate data in
the PDB file for calculating hydrogen bonds, or look at the coordinates of the α-carbon
from the backbone of the proteins polypeptide chain [21].

The first method for calculating secondary structure was presented 1977 by Michael
Levitt and Jonathan Greer; a method using the location of the Cα and angles between
residues and looking at a window with four residues at a time [22]. This was followed by
a number of methods for identifying secondary structure, where for instance one method
looked at the coordinates of the Cα and based on those calculated the angles between
residues in the backbone [23]. Another example of such a method is DEFINE, that used
a matrix to identify distances between all Cα and if the distances matched to a mask,
it would be detected as an α-helix [24]. As late as 2005 a method, called KAKSI, was
developed trying to handle some of the drawbacks of the existing methods. It used the
coordinates of the Cα in combination with the angles in the backbone, trying to improve
the analysis and detection of secondary structures [20].

The most used methods [21] are based on calculations of the hydrogen bonds within
the protein structure: DSSP [25] and STRIDE [26]. Of these, the majority of the
secondary structures defined in PDB files are defined using DSSP [20]. The calculations
are based on the coordinates of a number of atoms and varies between STRIDE and
DSSP. STRIDE is developed to make automatic prediction fit better with the known
assignments done manually by the crystallographers [26]. The main difference between
the two methods lies in how the hydrogen bonds are defined, and that STRIDE also uses
the angles between atoms on the backbone to improve calculations.

Several studies have been done, comparing different methods for identifying sec-
ondary structure. Cuff and Barton did one such study where they compared DSSP,
STRIDE and DEFINE [27]. Their conclusion is that the result of STRIDE and DSSP
are similar and have quite a high percentage of agreement, while DEFINE deviates from
the other two methods [27]. In addition, DSSP does not find quite as long helices as the
other methods, but finds more helices in total than the other two.

In another study, by Zhang and Sagui, compared STRIDE, DSSP and KAKSI to see
what the advantages and disadvantages of the different methods are [21]. The conclusion
is that STRIDE and DSSP defines more secondary structure than KAKSI, and DSSP is
the method to achieve the highest results when distinguishing between different types of
helices [21].

Looking at a number of different protein visualization tools, the majority of them
uses DSSP or variants of DSSP. RasMol, Jmol and Chimera all uses DSSP, while PyMOL
uses a variant similar to DSSP. Of the tools looked at, VDM uses STRIDE and is the
only one using something else than DSSP.

This leads to the conclusion that the most suited method for usage in this work, to
identify α-helixes, is DSSP. That is, since the limitations of DSSP are on other structures
than α-helices and that is also the most used method for identifying secondary structure.
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3.1.1 Finding α−helices with DSSP

DSSP is a method using hydrogen bonds to determine secondary structures of the pro-
tein. It can determine several different structures, but here only the detection of α-helices
will be of interest.

To calculate the hydrogen bonds, a formula is used for the electrostatic interaction
energy between residue i and j:

Ei,j = q1q2

(
1

r(OiNj)
+

1

r(CiHj)
− 1

r(OiHj)
− 1

r(CiNj)

)
∗ f (3.1)

In this equation q1 = 0.42e and q2 = 0.20e, where e is the unit electron charge. Also,
f = 332 is the dimensional factor and r is a function for calculating the distance in
ångström between the given atoms. A good hydrogen bond should have a value of E
about -3 kcal/ml, but for DSSP a generous cutoff is chosen to allow for divided H-bonds
and for errors in coordinate data [25].

In PDB files there are usually no coordinates for the hydrogen atoms, and therefore
they need to be calculated. The location of the hydrogen atom is easily calculated from
the other atoms, since the backbone of the polypeptide chain is planar between two Cαs.
This means that the structure in figure 3.1 is all in one plane. In addition it is known
that the distance between the nitrogen atom and the hydrogen atom is about 1 Å [10]
and the angles between them are all approximately 120°[28].

Cα

N C

O

N

H

Cα

C

Figure 3.1: The six atoms in the middle of the pictured polypeptide chain, are all located in
the same plane, while the bonds to the Cα can rotate and thus is what enables the structure
to fold into different forms.

The location of these hydrogen atoms can be calculated under the assumptions that
the direction of the vector ~NH is dividing the angle between the vectors ~NC and ~NCα

in half [29]. Then the direction of vector ~NH can be calculated by adding the normalized
vectors of ~NC and ~NCα. To get the length, the vector can simply be normalized, since
the distance between the N and H atom is 1 Å. Thus, the calculation is done as:

~HN =
N̂C + ˆNCα

‖N̂C + ˆNCα‖
where V̂ =

~V

‖~V ‖
(3.2)

To get the actual coordinates of the hydrogen atom, the vector given by equation 3.2
needs to be added to the coordinates of the nitrogen atom: Hcoord = Ncoord − ~HN .

By this the hydrogen bonds can be calculated using the DSSP algorithm, the coordi-
nates provided in the PDB file and the equation for finding the location of the hydrogen
atom.
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The DSSP algorithm detects a number of elementary H-bond patterns [25]. Based
on those, a number of larger structures are constructed. For detecting α-helices the
basic structure needed to be detected is a β-turn, that is created by a hydrogen between
residue i and residue i+4. These are then used to identify α-helices, by identifying two
consecutive β-turns. Such a combination is named minimal helix, and is illustrated in
figure 3.2.

i− 1 i

i+ 1
i+ 2

i+ 3 i+ 4

(a) Turns at i− 1 and i.

i− 1 i

i+ 1
i+ 2

i+ 3 i+ 4

i+ 5i+ 6

(b) Turns at i and i+ 1.

Figure 3.2: A simplified representation of a polypeptide chain, where the blue line repre-
sents the backbone and the black dots represents residues in the chain. The black, dotted
lines represent hydrogen bonds as they would be detected by DSSP.
A minimal helix is identified when two consecutive β-turns have been identified. All identi-
fied minimal helices are identical, but they can be combined differently into longer helices,
as seen in figure 3.3.

So in this work Ei,i+4 is calculated using the equation 3.1, to identify two consecutive
β-turns, which results in a minimal α-helix. So when Ei,i+4 and Ei+1,i+5 fulfills the
requirements for a valid energy bond, a minimal α-helix at position i + 1 is found and
the position for that is stored.

When all minimal α-helices are detected, those are iterated to find the full helices
of the protein. In this iteration irregularities in the helices are also considered, and
therefore a helix does not have to have formed all hydrogen bonds to be considered. In
DSSP, this is catered for by allowing a helix to skip as many as two hydrogen bonds
between two minimal helices, while still counting it as a complete helix [25]. This is
illustrated in figure 3.3.

As a final step, the data about helices is stored for usage when calculating the axes
of the helices found.

3.2 Finding closeness

Detecting which helices are close can be done in different ways, depending on the data
known as well as the approach taken. In this work, the desired goal is to test the approach
of considering the full helix for closeness instead of only parts of it. This will be done
by calculating the axes for all helices in a protein, and using those to detect which
helices are close. This choice is based on the assumption that α-helices, despite their
irregularities, are helix shaped and can be modeled, as such, fairly accurately. With such
an assumption, the distance between the axis will closely map to the distance between
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i− 2

i− 1 i

i+ 1
i+ 2

i+ 3 i+ 4

i+ 5i+ 6

(a) Combination of minimal
helices starting in i− 1 and i
((a) and (b) in figure 3.2.)

i− 2

i− 1 i

i+ 1
i+ 2

i+ 3 i+ 4

i+ 5i+ 6

(b) Combination of minimal
helices starting in i − 1 and
i+ 1.

i− 2

i− 1 i

i+ 1
i+ 2

i+ 3 i+ 4

i+ 5i+ 6

(c) Combination of minimal
helices starting in i − 2 and
i+ 1.

i− 2

i− 1 i

i+ 1
i+ 2

i+ 3 i+ 4

i+ 5i+ 6

i+ 7

(d) Combination of minimal
helices starting in i − 2 and
i+ 2.

i− 2

i− 1 i

i+ 1
i+ 2

i+ 3 i+ 4

i+ 5i+ 6

i+ 7
i+ 8

(e) Combination of minimal
helices starting in i − 2 and
i+ 3.

Figure 3.3: The figures illustrates how minimum helices are combined into larger helices.
The minimal helices can be combined in different ways to create a longer helix. Of the
examples above all but (e) will result in detection as a longer helix by DSSP.

the helices. To accomplish this, as a first step, the axes need to be calculated for the
helices to be compared.

3.2.1 Calculating axes

When the helices of a protein are defined, the axis of each helix needs to be calculated
to make it possible to identify helices that are close to each other. Axes can be defined
in several different ways. For a perfect helix, formed as a cylinder, it is fairly simple
to identify the axis, but an α-helix in a protein is seldom perfectly formed [30], in that
sense. Thus, a method for identifying axes for helices needs to be robust.

There exist many methods for identifying different geometrical properties of protein
helices, where usually axis is included as a property. Singh and Brutlag presents a
method for identifying the axis of a helix by a method when they are looking at the
ends of the helices [31], while Richards and Kundrot presents a method using a method
considering using vectors and planes [24].

The method by Singh and Brutlag uses the first (and last) four Cαs and approximates
them as a circle. By calculating the centers of mass for the two circles, a starting and
end point of the axis of the helix is obtained.

Richards and Kundrot presents a method where they calculate a vector pointing
in to the middle of the helix, by calculating axis between three consecutive Cαs and
subtracting one from the other. By defining two such vectors with the Cαs next to each
other, three planes can be defined (from two perpendicular axes and the cross product of
those and the initial vectors). The intersection of those three planes will be an axis point.
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The calculation is then done for all Cαs and the resulting axis is created by calculating
the mean of the resulting segments.

In a study by Christopher et al. five different methods for identifying an axis of a
helix was compared [32]. The methods compared were (with the names taken from the
study, as well as the basis for the description):

parlsq A parametric least squares method, where three dimensional linear least squares
fitting is used for the Cα to find the axis.

eigenfit A moment matrix method, where the least squares axis is found by creating a
least squares matrix from the coordinates of the Cα on the helix, and identifying
the eigenvectors of that matrix, where the one with the highest eigenvalue is an
approximation of the direction of the helix and thus represent the axis.

Åqvist A cylindrical fit method, where the coordinates of the Cα are fitted to a cylinder,
by minimizing the root mean square difference from each atom to the axis. This
does require an initial estimate of the axis to be available.

Kahn A method using cross-product of triad bisectors, where vectors are calculated
from the known coordinates of the Cα that are perpendicular to the axis. By
calculating the cross product of two such vectors, one get a directional vector of
the axis. By combining multiple such directional vectors one can use a least squares
method to identify the directional vector for the full helix axis.

rotfit A rotational least squares method, where the helix is superimposed to a copy of
itself with a displacement of one residue. By using a quaternion-based method,
the axis was found.

Of the tested methods, rotfit is the one recommended in the study. It is considered
being the quickest to evaluate, while still being accurate and fairly insensitive to noise.
Actually, it is described as given ”an excellent combination of speed and accuracy” [32].

Comparing rotfit with the other methods, the method by Singh and Brutlag gives an
axis that fits well for a straight helix, but for a kinked or bent helix the variations are
not considered at all since the method only considers the first and last residues of the
total helix.

The method by Richards and Kundrot does consider all atoms in the helix, but the
approach of calculating the mean to achieve the final axis will not give any better result
than the least squares method used by rotfit.

rotfit - how it works

The principle of the rotfit method is to let a copy of the helix rotate around itself by
moving the start point of the copied helix one residue ahead. Then it is possible to map
the Cα

i of the original helix to Cα
i−1 of itself, using the copy. By identifying the axis of

rotation the axis of the helix itself is also determined. Since an α-helix is not perfectly

15



3.2. FINDING CLOSENESS CHAPTER 3. METHODS

symmetric, the result is calculated by using least squares fitting to get the best value
possible.

The rotation is done by using a fast quaternion transformation method described
by Alan Mackay [33], and using this to superimpose the Cα on top of itself [32]. The
transformation method results in a linear least squares fitting problem, that is solved by
using singular value decomposition. To accomplish this, the origins of the two helices
need to be moved, making the centers of mass for the helices the origin of the coordinate
system.

Quaternions are an extension of the complex numbers, and are in particular used for
rotations in three dimensions where usage of quaternions has a number of advantages
over other methods [34]. With a unit quaternion Q with a scalar ps and a vector ~p, the
Cα of the copied helix, r′ as unit vectors, and of the original helix, r as unit vectors, are
related by a rotation θ around an axis with direction cosines l, m and n [33].

Q is not uniquely defined by only one pair of Cα but rather of multiple pairs, since
the axis of rotation could lie anywhere in the plane of symmetry. This means that several
pairs of Cαs are needed for identifying Q.

With the correct usage, a set of equations is formed that are solved using least squares
fitting to identify how much rotation is needed and thus around what axis the rotation
needed to be done. Based on the rotational axis, the real axis for the helix can be
calculated by moving the rotation axis to the center of mass for the original helix.

As a final step, the first and last residues in the helix are projected onto the axis to get
the start and end point of the axis for the specific helix. This is needed when detecting
if the points of distance between the helices are actually between the real helices and
not only between the calculated axes of the helices.

3.2.2 Finding close pairs

When the axes of two helices are calculated, the distance between those helices can be
analyzed. A number of tests need to be performed to determine if the helices are to be
defined as close, or not.

The tests carried out to analyze the distance between the helices are divided into
a number of steps, to ensure all cases are covered. For all cases, the found distance
between helices needs to be below a specified threshold for the helices to be considered
as close to each other.

Depending on the test of distance, the helix pairs are grouped into one of four cat-
egories. These categories are dependent on what type of tests are carried out to detect
the helices, and are illustrated in the coming sections. The illustrations shown are pro-
jections of the 3 dimensional environment of the helices onto a 2 dimensional space. By
rotating the 3 dimensional structure they will fit into one of the cases described.

The first category is based on calculating the closest distance, while the three other
tests are all based on projections of the end points of the helices onto each others axes.
This means that if no projection points fall within the helices, and the minimum distance
between the helix axes is not within not helices, and the helices will not be detected as
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close. But if any of the projection points fall within a helix, the remaining tests will be
performed.

First category

As a start, the minimal distance between the two axes is calculated using an algorithm
for finding minimal distance between two lines [35]. To ensure that the helices are close,
and not only the axes, the points of closest distance is checked to see if both points are
inside the actual helices. An illustration of the difference can be seen in figure 3.4.

H
elix

A

Helix B

Minimal

distance

H
elix

A

Helix B

Minimal

distance

Figure 3.4: Helix closeness is determined by looking at the minimal distance between the
actual helices. If that is not found, the projection of the end points of one helix onto the
other helix is checked to see if it fulfills the criteria for being close.
The helix pair to the left is a pair where the minimal distance would be used, while the
pair to the right would instead use the projection points. In the helix pair to the right,
the projections of the ends of the helices are illustrated with colored lines. The filled lines
are projection points that fall within the other helix, while the dotted lines are when the
projection points are outside of the helix.

The tests of minimal distance does require that the helices are ”crossing” for a point
to be detected as close. The possible cases for this is illustrated in figure 3.5.
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Figure 3.5: Helices where true minimal distance can be used, for determining the distance
between the helices, require that the helices intersect with each other. These are the cases
when the actual helices intersect and make up the Category 1 in the closeness categorization.

Second category

As the second test for closeness, the projection points from one helix end points onto
the other is evaluated. If both helix end points are projected onto the other helix, as
illustrated in figure 3.6, the distance between the end point of each helix and the points
where they are projected is evaluated. If any of these distances are below a requested
threshold, the helices are detected as close.
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Figure 3.6: The second test for distance evaluates the distance between helices where one
of the helices has projections of the end points where both fall on the other helix. These are
the cases evaluated and make up the Category 2 in the closeness categorization.

Third category

The third test for closeness evaluates helix pairs where two end points are projected onto
the other helices, but not on the same helix, as illustrated in figure 3.7. The distance
between the end point and the projection of that end point is evaluated for both cases,
and if any of them are below the threshold, the helices are detected as close.
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Figure 3.7: The third test for distance evaluates the distance between helices where each
helix has a projection point falling within the other helix. These are the cases evaluated and
make up the Category 3 in the closeness categorization.

Fourth category

Finally, the fourth test looks at helix pairs where only one projection point is projected
inside the other helix, as illustrated in figure 3.8. Once again the distance between
the end point and the projection of that end point is evaluated, and if it is below the
threshold, the helices are detected as close.

Not detected cases

There are also a number of cases when detection of closeness will never be done. Those
cases are illustrated in figure 3.9.
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Figure 3.8: The fourth test for distance evaluates the distance between helices where one
of the helices has a projection of the end points that falls on the other helix. These are the
cases evaluated and make up the Category 4 in the closeness categorization.

Helix A

Helix B

(a)

H
elix

A
Helix B

(b)

H
elix

A

Helix B

(c)

H
elix

A

Helix B

(d)

H
elix

A

Helix B

(e)

Figure 3.9: A number of cases for how helices are situated will result in that no test for
closeness is performed, and no closeness is detected. These are those cases.

Projection length test

For all distance tests where projection points are used, an additional verification test
can be done to ensure the helices are somewhat aligned. This is done by looking at the
projection of one helix onto another helix. If the length of the projection is at least a set
percentage of the original length of the helix, the helices are considered for being close.
This eliminates helices based on the angle between them, but also where only a part
of the helix is overlapping with the other helix. If they completely overlap, the angle
between them will be the fully determining factor, while if they do not overlap fully, the
requirement on the angle becomes tighter.

In figure 3.10 three examples are seen, where in example (a) the helices will be
tested for closeness if the percentage of the red helix overlapping the blue helix is more
than a defined percentage of the red helix. In example (b) the helices are completely
overlapping, and therefore the angle between them decides if they will be tested for
closeness. In example (c) the combination of the angle and the length of the overlap will
determine if the helices will be tested for closeness.
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Figure 3.10: An option is possible to limit the number of detected close helices. If used,
the projection of the helix onto the other helix must be meeting a threshold set for the length
of the original helix. Here three examples of different cases are seen, where in (a) the angle
does not impact at all and only the overlap will impact while in (b) the angle is important.
For (c) both the overlap and the angle will impact.

3.3 Combining the methods

To be able to identify α-helices, two things were identified as needed: identify helices
and identify which helices are close. As has been shown, this is done in three steps,
where identifying if helices are close is done by first calculating the actual helix location
followed by calculating the axis of every helix. When that is known, the final step is to
measure the distance between the found helices.

The identified methods for solving the different areas is the base for the program
constructed to identify helices that are close. In chapter 4 the program will be described
in more detail.

20



4
The program - HelixFinder

T
he methods and algorithms described are implemented in a C program called
HelixFinder, where of course also a number of other operations are carried out.
The program is structured such that each area is contained within a separate
file, and the shared data structures are defined separately, as visualized in

figure 4.1.

helixFinder.c

findHelixInfo.h

outputFunctions.h outputFunctions.c

hfHelp.c

hydrogenFunctions.h hydrogenFunctions.c

findAxes.c

findCloseness.c

readPdb.c

findHelices.c

Figure 4.1: The program consists of a number of files, containing the code. The different
files contains the functionality of HelixFinder and the functionality is distributed over the
different files based on the process of the work of the program.
In addition to the files in the figure, the program has two modules with data structures
(xyzVectors.h and datastructures.h) that most modules use.

The major parts of the program are divided into the different files, where each file
contains the functions needed for accomplishing a major step in the program. Those
major steps are:

reading data Reading and parsing protein data; done in the file readPdb.c

findHelices Detecting α-helices; done in the file findHelices.c

findAxes Calculating the axes of the α-helices; done in the file findAxes.c

findCloseness Identify α-helix pair closeness; done in the file findCloseness.c
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outputFunctions Providing output data; done in the file outputFunctions.c

More information about the files and the content is provided in Appendix C.

4.1 Reading data

The Protein Data Bank files contain data that describes various characteristics of a
protein and the structure of it, such as the residue sequence, the coordinates of the atoms
in the residues as well as other atoms interacting with the protein. It also contains, among
other things, a lot of information about for instance how the structure was determined,
what limitations there are when it comes to resolution of the analysis and also possibly
some information about the secondary structures in the protein.

PDB files are regular text files with a fixed row width of 80 characters and where
each row is tagged with a label described in the specification of the file format [19]. To
be able to do the analysis of the α-helices, the data used in the program is the atom data
labelled as ATOM in the PDB files. Those lines describe the relevant atoms the protein
consists of, with the coordinates for each atom (or combined for a group of atoms) within
the polypeptide chain.

Each atom line is parsed and combined at a residue level, where the data is stored in
a C struct defined to represent the important data for a residue, as can be seen in listing
4.1. Each such residue struct is, during the PDB parsing, populated with information
about the residue type, the residue sequence number as well as the coordinates of the
important atoms (Cα, C, O and N). In addition, it is populated with information on
some data needed for recreating snippets of the PDB file (for reasons described in section
4.6.2). After that, the residues are combined into a list of residues, representing a chain
of residues. Those chains are then stored in a chains struct for handling proteins with
multiple chains.

Residue struct

typedef struct r e sS t ru c t {
char nr [ 5 ] , type [ 4 ] , chainID ;
int s ta r t , end , intNr ;
int i sHca l cu l a t ed ;
xyzVector CA, C, O, N, H;
struct r e sS t ru c t ∗next ;

} ∗ r e s i du e s ;

Chain struct

typedef struct cha in sS t ruc t {
r e s i du e s chain ;
r e s i du e s l a s tRes ;
int count ;
struct cha in sS t ruc t ∗next ;

} ∗ cha ins ;

Listing 4.1: In the program, data for residues is stored in a residue C struct. The residues
contains information about relevant atoms, as well as the type of residue, among other
things. The residues are linked in a list, representing residue chains of a protein. Those
chains are then contained in a chain struct, where multiple chains are contained.

In addition to the atom information, the program considers information about models
in the files, that distinguish between different models of the same protein stored in the
same PDB file (labelled with MODEL and ENDMODEL). The consideration of models
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is limited to selecting the first model in the file. Although only one model is considered,
if the protein consists of several chains, all chains are taken into consideration when
evaluating the protein data. The separation of chains is identified by the TER label in
the PDB file, and the chain identifier is actually not used.

Although it is not part of parsing the data, during the data collection the position
of the hydrogen atom is also calculated. This is done since the formula used in DSSP
for calculating the hydrogen bonds require information about the hydrogen bonds, and
since the data is already iterated the extra calculation is done directly for each residue,
using the function seen in listing 4.2 (located in the hydrogenFunctions.c file). The
function directly sets the coordinates on the residue provided by the call to the function
setCoordinate, that also sets the flag isHcalcualted in the residue struct. The function
for calculating the hydrogen atom position does so for all amino acids except for Proline,
since that amino acid has no hydrogen atom in the relevant position.

void calcH ( r e s i du e s rp ) {
i f ( savedAtomInfo && ( strncmp ( getResidueType ( rp ) , ”PRO” , 3) != 0) ) {

xyzVector atom H ;
xyzVector atom N = getCoord (N, rp ) ;
xyzVector vect NC = vectorSub (atom N , atom save ) ;
xyzVector vect NCA = vectorSub (atom N , getCoord (CA, rp ) ) ;
atom H = vectorAdd ( vectorDiv ( vect NC , vectorNorm ( vect NC ) ) ,

vectorDiv ( vect NCA , vectorNorm (vect NCA ) ) ) ;
atom H = vectorAdd (atom N , vectorDiv (atom H , vectorNorm (atom H ) ) ) ;
setCoord (H, rp , atom H ) ;
savedAtomInfo = 0 ;

}
}

Listing 4.2: The function for calculating the position of the hydrogen atoms, based on the
method described in section 3.1.1. The function also sets the value of the coordinates in the
residue. As can be noted, no hydrogen is calculated for the amino acid Proline, because of
the special form of that amino acid.

4.2 Finding helices

The entire algorithm for DSSP is not implemented, since only α-helices are of interest
for the program. The general algorithm used is described in algorithm 4.1, where the
most important parts of the calculations are captured. The status of the calculations is
actually not stored as part of the residues, but rather in a string with the length defined
by the number of residues in the chain.
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Algorithm 4.1 Calculating α-helices in all chains of a protein

for all chain in allChains do
for all residuei in chain do

if H-bond between residuei and residuei+4 then
mark residuei and residuei+4 as minimal helix

end if
if residuei already is end of other helix then

merge minimal helices to one
end if

end for
for all residuei in chain do

if residuei is start of helix then
helixStart← residuei

else if helixStart has value and not helixEnd then
if residuei+1 is not in helix then

helixEnd← residuei
helixLength← helixEnd(id)−HelixStart(id)

end if
end if

end for
end for

In the algorithm for calculating helices, a function is needed for calculating the H-
bond. This function is located in the hydrogenFunctions.c file as shown in listing 4.3.
As can be seen in the code listing, the energy level threshold is not a constant. It is
actually a variable possible to alter as an input to the program.

int isHbond ( r e s i du e s r1 , r e s i du e s r2 ) {
f loat calcEnergyL , ON, CH, OH, CN;
i f ( isH ( r2 ) ) {

ON = 1/( vec to rDi s tance ( getCoord (O, r1 ) , getCoord (N, r2 ) ) ) ;
CH = 1/( vec to rDi s tance ( getCoord (C, r1 ) , getCoord (H, r2 ) ) ) ;
OH = 1/( vec to rDi s tance ( getCoord (O, r1 ) , getCoord (H, r2 ) ) ) ;
CN = 1/( vec to rDi s tance ( getCoord (C, r1 ) , getCoord (N, r2 ) ) ) ;
calcEnergyL = Q ∗ (ON + CH − OH − CN) ∗ F;
return ( calcEnergyL < (−energyL ) ) ;

}
return 0 ;

}

Listing 4.3: The function for calculating the hydrogen bonds, as described in DSSP in
3.1.1. The variable energyL has a default value of 15, but can be changed as an option to
the program.

There is also an option in the program to disregard a helix if it is shorter than a
specified number of residues. This control is done when the length is calculated, and if
the length is below the threshold the helix is never saved but simply disregarded.

The data collected is stored in a C struct representing the helices. In the struct data
of at what residues the helix start and ends is stored (as links to the residue chains) as
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well as the length of the helix. In addition, a unique number is set for each helix created,
to make it possible to refer to it in for instance output data. Additional data in the helix
struct is populated by the functions for calculating axes and closeness of helices.

typedef struct he l i x S t r u c t {
xyzVector axStart , axEnd ;
r e s i du e s s ta r t , end ;
c l o s eHe l i x c l o s e s t ;
struct he l i x S t r u c t ∗next ;
int l ength , nr , i sAx i sCa l c ;

} ∗ h e l i c e s ;

Listing 4.4: In the program, information about helices is stored in a special C data struct,
where information is stored about at what residues the helix starts and stops, the length
in residues of the helix, in addition to data calculated in the steps for calculating distance
between helices.

When helices are calculated the number of found helices is also calculated, to provide
it as a feedback to the user in the result.

4.3 Calculating Axes

Calculating the axis of the helix is done using the rotfit algorithm, as described in
section 3.2.1. It does a rotation of the helix around itself to identify the rotational axis.
In the algorithm description 4.2 the most important parts are included.

Algorithm 4.2 Calculating axes of all helices in a protein

for all helix in allHelices do
centerOfMassA ← center of mass for all Cα

i in helix
centerOfMassB ← center of mass for all Cα

i+1 in helix
for residuei in helix do

CαCross← Cα
Ai× Cα

Bi
for j = 1 to 3 do

for k = 1 to 3 do
v = Cα

Ai× Cα
Bi

a(i)j,k ← vj,k

end for
end for

end for
ATb←

∑
CαCross

ATAx←
∑

a(i)
axisV ector ← solution to ATAx = ATb with SVD
axisStart← projection of first Cα on axisV ector
axisEnd← projection of last Cα on axisV ector

end for

To simplify the calculations and the code of the program, solving the equation system
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by singular value decomposition is done using the GNU Scientific Library (GSL) [36],
rather than implementing the procedure as part of the program itself. This means that
when compiling the program GSL needs to be available.

The data of the axes calculations is stored in the helix struct as two vectors repre-
senting the axis start and end points. In addition, the variable isAxisCalculated is set
to make identifying if the axis data exists simpler.

4.4 Finding closeness

Closeness is identified by calculating the distance between the axes of two pair of helices.
The distance is, as described in subsection 3.2.2, calculated using a number of different
tests to cover the different cases that can occur.

Beside the possibility in the DSSP implementation, as a default, there are no limita-
tions as to what helices to consider; if they are found by the DSSP implementation, they
will be considered. But to allow for some flexibility, there are two options implemented
for disregarding helices if they are too close to each other in the chain, or if they are too
far apart in the chain. What defines too close or too far apart is given as input to the
program.

The tests and calculations can be divided into two groups:

• Shortest distance between the two axes is used

• Distance between end point projections is used

All in all there are four tests done for distance, where each test represents a category
in the four types of distances categories provided. The program also allows for selecting
how many of the distance tests to be executed. This is done by selecting a value between
1 and 4, where the number indicates how far in the list of distance tests the program
will go. 1 means that only the first test will be executed, 2 means that the first two will
be executed, 3 means that the first three will be executed (and thus skipping the last
one) and 4 means running all tests (and is thus equivalent to not setting the option at
all).

To identify the shortest distance between two helix axes, an algorithm for finding
closest path between two lines is used, using geometrical approach [35]. The under-
standing that two lines, that are not parallel or crossing, have a minimum distance that
is ”uniquely simultaneously perpendicular” to both lines. By using that knowledge, an
equation for calculating the distance is derived.

When the shortest distance is identified, as described in subsection 3.2.2, the position
of the axis is calculated to ensure the position is between the start and end position of
the helix. If both points of the shortest distance (one on each helix axis) are within
the actual axes, the shortest distance is used as the distance between the helices. If the
distance is lower than the specified threshold value, the two helices compared are seen
as close.

To allow for flexibility, the threshold defined for the maximum allowed distance be-
tween two helices to be considered close, is a variable. That variable can be altered
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as an option to the program, allowing for varying its value and thus what helices are
determined as close.

If the shortest distance calculated between the axes is not located within the helices,
the projection distance is instead evaluated. This is, as described in subsection 3.2.2,
done in a number of steps, where the test for closeness is stepwise relaxed.

The projection tests are described in algorithm 4.3 and 4.4. A number of values are
pre-calculated before the tests are run, to simplify the code. Of those, the most important
are the projection points where it is also calculated beforehand if the projection points
are within the helix of the axis they are projected on.

Algorithm 4.3 Projection distance test number 1

if p(i)1 and p(i)2 are hits then
if distance between p(i)1 and p(i)2 > 50%∗ axis i length then

closeness is detected
end if

end if

Algorithm 4.4 Projection distance test number 2

for each combination of p(i)1 and p(i+ 1)2 and a(i+ 1)2 do
if p(i)1 and p(i+ 1)2 are hits then

if distance between p(i)1 and a(i+ 1)2 > 50%∗ axis i length then
closeness is detected

end if
end if

end for

In all of the projection distance tests, there is a possibility to enable a test for if
the helices have very small amount of overlap or if they have an angle that is deemed
to high, as described in subsection 3.2.2. This test is turned off by default but can be
turned on by an option to the program. In addition, it is possible to set the percentage
of projection overlap used by the program. If no value is set, 50 % is used as default.

When the distance is calculated, and if the helices are considered close, the data
related to the closeness is stored in a struct, as described in listing 4.5. This information
is then linked to from the main helix evaluated. Thus, stored in each helix struct, there
is a link to a list of closeHelix structs describing the relation of one helix to all other
helices identified as close.

When a closeness is detected data about the distance, the points of where the min-
imum distance was detected and the category for the distance test is stored in the
closeHelix struct.
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typedef struct c lo seHStruct {
f loat angle , mindist ;
int r e sDi s t , i sResD i s t ;
xyzVector hitC [ 2 ] ;
struct he l i x S t r u c t ∗H;
struct c lo seHStruct ∗next ;
int d i s tTe s t ;

} ∗ c l o s eHe l i x ;

Listing 4.5: The information about helices close to each other is stored in a closeHelix
struct, where data about the interaction is stored, as well as direct links to the helices in
question.

4.5 Other calculations

When helices that are close are identified, two more values are also calculated to allow
for different approaches to doing analysis of the data created. The number of residues
separating the helices, and the angle between the axes of the helices.

The number of residues between helices is simply calculated by usage of the internal
sequence number of the residues, and taking the distance from the end residue of the
helix first on the chain to the start residue of the other helix. To handle the case of
when the helices are on different chains, a variable is used to keep track of whether the
residue distance is set or not.

The angle between the helices is calculated by using the definition of the dot product
(where θ is the angle between the vectors):

~A · ~B = ‖ ~A‖‖ ~B‖ cos θ ⇐⇒ θ = arccos
~A · ~B
‖ ~A‖‖ ~B‖

(4.1)

Since two points of each axis are saved (the start point and the end point) after the axis
calculation, subtracting the start point from the end point will give a standard vector
that can be used in the equation.

4.6 Writing results

When all calculations are done, the result is presented to the user. This can be done
either as output written to standard output, or a file. In addition, there are two options
that impact the output of the program: the program can provide more feedback of the
run during execution, and it can generate analysis data for visualization of what has
been done.

4.6.1 Execution feedback

When the program is running it provides no information about the status, unless some-
thing goes wrong or until the result of the analysis is shown, unless one chooses the

28



4.6. WRITING RESULTS CHAPTER 4. THE PROGRAM - HELIXFINDER

verbose mode. Turning on the verbose mode will provide information about what steps
the program is taking as well as some information about the findings.

The information given is:

1. what file it is working with and how many chains were found in the file when it is
processed

2. that searching of helices has started and that it ended, and the number of helices
discovered

3. that axes are being calculated

4. that closeness calculations have started and how many close helices were found,
and at what distance

5. that output data is written

All of these feedback messages are handled as part of the main helixFinder program and
are produced either when entering a function or at the return of a function.

4.6.2 Analysis data

If the user chooses to, the program can provide files to enable analysis of the run. The
data provided is two files containing 1) a snippet of a PDB file, and 2) a script possible
to run in the protein visualization tool RasMol [37].

The PDB file is generated by a combination of data generated, and data saved at
the initial parsing of the original PDB file. The format does not fulfill the specification
of a real PDB file and only contains atom data for the atoms relevant for displaying the
protein with some additional data to allow for visualizing axes and distance points. The
additional data is really just atoms not used within proteins (iron for the axis points and
xenon for the distance point), added under the label HETATM.

The script file is done to enable stepping through the different helices identified as
close, one helix at a time. In addition, the script colors the helices, the axes, and the
distance between the helices to allow for simple understanding of what the program has
actually done.

4.6.3 Result data

As the result of the program, the discovered data is listed. This is done by simply
iterating through the lists as described above and displaying the data in a structured
format. The format of the output is described in the User Guide included in Appendix A.
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5
Results and discussion

F
inding α-helix pairs in protein files is one of many important steps in helping
to gain a better understanding of how proteins are structured. The program
HelixFinder detects such pairs on proteins with good results. It has been tested
on some 50 protein files with a varying number of α-helices and the result

has been visually analyzed. Both helix detection and closeness evaluation matches the
criteria as described.

The algorithms used fit the need of the intended goal of identifying valid α-helix
pairs, and in figure 5.1 there is an example of how the close helices are detected around
the active helix (where the active helix is colored read and the helices detected as close
to the red helix are colored green).

Figure 5.1: Closeness is calculated for every helix detected in the protein. Here some
examples are shown how close helices are found when iterating through the helices of the
protein. The main helix is colored red, and the helices detected as close to the main helix
are colored green.
The protein used is the thermostabilised human a2a receptor, with PDB id 4UG2.

The default minimum distance between helices is set to 15 Å in the program. Al-
though an α-helix has a radius of 2.5 Å there will be additional side chains between the
expanding lengthening the actual helix size. Having said that, 15 Å is still a generous
maximum value for the distance between two helices. But the argument behind the
choice is that allows for reasoning about cut-off points or areas where patterns can be
seen to change. The distance is also provided as output data for allowing selection of
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only a subset of the pairs detected, and it is also possible to set as an option to the
program defining the minimum distance to be used if one does not want them in the
output at all.

5.1 Flexibility of evaluation

To allow for flexibility and variations of usage of the program, it is possible to alter the
evaluation of the program in a several different ways. The options available are fully
described in the Reference Manual (included in Appendix A), and gives the user the
possibility to change how evaluations are done as well as what is to be considered, in a
number of different ways.

Throughout chapter 4 the options are mentioned in relation to the sections of imple-
mentation. Here is a summary of them:

energy level Editing the energy level used in DSSP, as described in section 4.2

helix size Disregarding helices shorter than a certain length, as described in section 4.2

chain distance Disregarding helices that are too close and/or too far apart, as de-
scribed in section 4.4

minimum distance Editing longest allowed distance value, as described in section 4.4

projection angle test Turning on the test of limiting overlap or angle in connection,
as described in section 4.4, as well as the possibility to set the percentage value to
be used

distance test selection Select how many of the distance tests to use, as described in
section 4.4

The options allow for doing different analysis of helix interaction on the same dataset
and using the same program. Also, they are independent of each other, and are therefore
possible to combine in any way one would like to.

5.1.1 Program options examples

The options for chain distance and helix size, as well as the altering of maximum allowed
distance between helices, limits the search space of helices. In figure 5.2 it is shown how
some of the options reduced the number of helices detected as close.

This allows the program to be very flexible in the detection, and allowing for a
broader usage than only looking at comparison of any type of helix. For instance, it
could be relevant to disregard helices that are so tight that the connection between the
helices itself have too great impact on the properties of the relation between the two. On
the other hand, those type of helices could be just what might be desirable to evaluate.
Both possibilities exists by varying the settings of the program.
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Figure 5.2: When doing a search for close helices, the program allows for a number of
settings to reduce the search space. In the first picture, a requirement for a min number of
residues on the chain between the helices is set. In the second picture, a requirement for a
max number of residues on the chain between the helices is set. In the third picture, only
helices that are longer than a max value are considered. The value is set to 8 in all cases.
The protein used is the adenosine receptor A2a, with PDB id 3REY.

5.2 Visual feedback

As mentioned previously, in subsection 4.6.2, there is a feature for allowing to create
some scripting files for a protein visualization tool called RasMol [37]. The reason for
enabling the possibility to create these files is to allow for visual analysis of the result
of a HelixFinder run. This feature can easily be used for any user and how to use it is
described in Appendix A. In figure 5.3 an example is given of what the visualization can
provide.

Figure 5.3: An example of the output from the different steps one can see when running
the script. The steps in the script file follows the process of the program, and here the steps
are shown. The first step shows the helices, the second step highlights the axes, and the
finishing steps shown helices that are close to each other (with one step per helix with close
helices detected). This is just a sample of all the detected close helices for this protein.
The protein used is myoglobin, with PDB id 1A6M.

All protein images included in this report are actually generated using RasMol with
the script files as input (both the generated PDB file and the actual RasMol script).
The scripts have then been used to get to the desired state of the detection process.

5.3 Usage of HelixFinder

When analyzing proteins, searching for patterns and similarities is one way of gaining a
better knowledge of groups of proteins. The HelixFinder can be used for such analysis,
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when it comes to looking at the relation between, for example, length of helix and
distance or angle between helices. Here are some examples of what can be done with
some simple scripting.

Besides analyzing single protein files, and visualizing the results, the program can
be used for analysis of different interactions between helices in a larger set of protein
files. The program only handles one PDB file at a time, but with some simple scripting
analysis of larger data sets can easily be done, as described in Appendix B.

5.3.1 Inter-helix angles vs. distance

By evaluating multiple protein files with different properties, and comparing the angle
between the helices with the distance between them, it might be possible that there are
some patterns to be found.
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Figure 5.4: A scatter plot over relation between the helix angle and helix distance, as an
example of data than can be retrieved from the HelixFinder program.

An example of this is seen in figure 5.4 and is based on a dataset of 47 proteins1,
selected to ensure there is a variation in the selection. They where selected by using
the filtering mechanism at RCSB PDB (rcsb.org) and selecting all alpha proteins with
a high resolution where the limitation on the sequence identity of maximum 50 % (see
Appendix D for more details). Based on this data, the program detected 607 unique
helix pairs for evaluation with the maximum distance of 15 Å between them.

One can in the scatter plot see that short distances seems to be occurring at a short
range of angles, somewhere in the area of 1.5 to 2 radians. This could be because of a
possibility to interlace when not in a more parallel state, and that in that range of angles

1Actually only 46 proteins are used since one of the selected proteins (1jni) had too short α-helices
to be able to calculate axes.
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the helices are actually able to come closer. To verify this though, one would have to
look at a much larger set of proteins.

5.3.2 Inter-helix angle distribution

Looking at the scatter plot in figure 5.4 one can see indication of groupings of angles
that does not match what would be expected if the angles where randomly distributed.
To be able to see if that is the case, random pairs of points on a sphere are generated to
ensure a random distribution of angles [38]. Two such numbers are generated at a time,
and are treated as unit vectors between which the angle is calculated. 10 000 such pairs
are generated to ensure a randomly distributed variation of angles. In the histogram in
figure 5.5 the distribution is visualized (the dark bars in the background) and one can
see that it is a sinusoidal distribution [39]. This means that the distribution is what is
expected if the protein helix pairs has a randomly distributed angular relation.
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Figure 5.5: An indexed histogram comparing the distribution of angles between the 607
helix pairs of the 47 proteins (light bars) with a randomized population of 10 000 angles
(dark bars).

When adding the 607 helix pairs to the histogram in figure 5.5 (the gray bars) it is
easily seen that the distribution of the angles is not sinusoidal and does not follow the
expected random distribution. In fact, it can be seen that the analyzed helix pairs have
a very much higher number of large angles, and also does not have as many angles as
expected in the area around 1 - 1.5 radius.

In many proteins with a lot of α-helices it is very common that the helices tend to be
roughly parallel or anti-parallel. The higher value of larger angles would indicate that
helices are in fact anti-parallel in a greater extent than what would be expected if they
where randomly distributed. In addition, the test data shows that angles of higher or
lower value is more common than values in the middle of the histogram. This indicates
that helices are more often lined up in proteins than crossing in a perpendicular manner.
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Further analysis could be done with a larger set of proteins and by reducing the
allowed closeness, to see if there are clearer such patterns when helices are closer together.

5.3.3 Sequence separation

If one instead looks at the distance in residues on the chain between helices, HelixFinder
provides that data as well in the output. Using a similar approach as described in
Appendix B, information about the angle and the number of residues separating the
helices can be extracted.

Also here the 46 proteins described earlier are used, but of the 607 helix pairs, only
the helices with fewer than 50 residues between them are used. This results in 418 helix
pairs where the relationship is visualized in the graph.

Plotting these as a scatter plot (figure 5.6) one can quite easily see that for helices
close to each other on the chain, the angles are quite high, while for the other helix pairs
it is hard to make any conclusions although there might be a slight predominance of
greater angles when the distance is between 15 - 30 residues.
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Figure 5.6: A scatter plot over relation between the helix angle and the number of residues
between the helices, as an example of data than can be retrieved from the HelixFinder
program.

The result of having greater angles for helices being close to each other is not surpris-
ing. Although not all proteins are packed in the same way, the structures seen in figures
5.2 and 5.1 is a very common one, with helices laying in a somewhat parallel form. This
means that for helices close to each other on the chain they will have a quite large angle.

5.3.4 Helix pair classification

In the result of an evaluation, data for what category of group of closeness is also pro-
vided. That data can be used to visualize if there are any patterns between angles and
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the given test. In figure 5.7 the angles related to the tests are provided. Based on that
graph one can see some indication on relationships between category and angles, but
more proteins would have to be tested to verify any true patterns between the angles
and the tests.
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Figure 5.7: A scatter plot of relation between angles between helix pairs and the closeness
category it was detected as.

With the data provided in the output it is also possible to combine the data to allow
for a visualization of the graph in figure 5.4 with indications of the tests passed, as seen
in figure 5.8. In the graph one can also see that the Category 1 closeness pairs seems to
be dominating. In fact, the Category 1 pairs are 249, the Category 2 pairs are 146, the
Category 3 pairs are 114 and the Category 4 are 115.
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Figure 5.8: A scatterplot visualizing the relationship between the angle and the distance,
with added information of what category the pair belongs to.

Looking at the relation between angles and residue distance in the chain, as shown
in 5.6, one can also add the categories to the plot for a visualization of any the relation
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between the angle, the residues between two helices and the category of the closeness,
as seen in figure 5.9. Once again one can see that the Category 1 closeness tests is
the dominating test. The Category 1 tests are actually 180 of the total 424 helix pairs
compared.
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Figure 5.9: A scatterplot visualizing the relationship between the angle and the distance
between the residues on the chain, with added information of what category the pair belongs
to.

5.3.5 Other comparisons

Other comparisons can of course be done by using the different options to the program,
in combination with some parsing of the result files. One could for instance look for
frequency of residues on helices that interact with each other (where interaction would
be defined as being close enough). Or one could see if there is any correlation between
the lengths of helices and distance.

5.4 Performance

In the test runs with the 47 proteins also performance of the application was evaluated.
The time it took to evaluate and produce results for those proteins was less than 0.4
seconds2. With a larger set of randomly selected proteins, with a large proportion of
α-helices, the evaluation time for 1392 protein files was about 15 seconds.

On average each protein takes about 0.01 seconds to execute. Evaluating 100 000
proteins would then be done in under 20 minutes.

2The tests where done on a dual core 1.7 GHz Intel Core i5 equipped computer.
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5.5 Future work

Although the program works and delivers results in accordance with what was set up as
a goal for this work, there are areas where it is possible to evolve the program. Looking
at the major parts of the program, there can be seen some possible areas where more
work could be done to increase flexibility or even improve the result.

5.5.1 Detection of α-helices

When it comes to detection of helices, it has previously been described, in section 3.1,
that there is no objective truth as to where an α-helix starts and where it stops on
a polypeptide chain. But there is no other method currently as accepted as DSSP
for identifying such structures. As an improvement, an option for using the structures
provided in the PDB file could allow for a possibility to change what defines helices for
the program.

Another option for improving the detection of helices could be to allow for a selection
of algorithms for detecting helices, or at least to allow for also using STRIDE [26] as an
algorithm. Potentially an even more advanced approach would be to use both methods,
and find a way to combine the results to get an evaluation where the advantages of the
different methods could be taken into account.

5.5.2 Detection of axes

For the detection of the axis of a helix, a linear approach is used. This simplifies the
detection of closeness, but does not fully fit within the true structure of α-helices, as can
be seen in figure 5.10.

Figure 5.10: A helix that is bent can result in an axis not falling completely within the
helix. Here is an example of a helix where the axis is partly outside of the helix itself.
The protein used is a section of the leukotriene C4 synthase, with PDB id 4J7T.

Since there is no detection of bent helices, there will be errors in the detection of
truly bent helices. Currently there is no way to detect this in the program, but one could
look at the shortest distance between each residue and the axis to detect if any of the
residues are further away than a set threshold based on the normal radius of an α-helix.
Having this would allow for detection and to drop such helices, or parts of them, from
the analysis, although it would add a substantial amount of extra calculations.

To enable thorough analysis of bent helices an axis detection method would need to
be used that provides bent axes, when needed. Such algorithms exists (see for instance
the work of Smith et al. [30]) but this would, however, also require a changed definition of
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what closeness is for helices and would add complexity to the solution. As a continuation
of this work, it could be worth examining the approach of bent helices and providing
indications of the deviation, but for the aim of this thesis the approximation of the axis
as straight is deemed sufficient to identify helices close to each other.

5.5.3 Detection of closeness

If, when calculating closeness of helix pairs, the projection length test (the requirement
that the length of the projection of a helix onto another helix needs to be at least
a specified percentage of the helix being projected) is used, it is only done for the
distance tests based on projection points (category 2 - 4) and not for the first test of
closeness. This means that the first test for closeness can detect helices that would not
be detected by the other tests, since they are more limiting in that perspective. To make
it transparent, the projection length test should be added to the first closeness test as
well. This will reduce the number of detected pairs, but on the other hand it would
result in more consistent detections if the option is used.

On the other hand, the projection length test might result in that a large helix is
not detected as being close to a small helix, while the small helix could be detected as
being close to the large helix, as illustrated in figure 5.11. This will result in symmetric
results in some cases, while in other cases the result will be asymmetric, where one helix
will be detected as close to another helix, but not the other way around.

Figure 5.11: The projection length test of the helix closeness detection will result in that
the same pair of helices will be evaluated differently depending on which helix is the active
helix the other helices are compared with, as can be seen in the two examples.
The protein used is the ephrin type-b receptor 2, with PDB id 1F0M.

The behavior of sometimes reporting duplicate pairs, and sometimes not, could be
somewhat confusing. Cleaning out duplicates from the result list would eliminate that
potential confusion. The behavior of asymmetry does have a point in that a large helix
could be assumed to not be impacted by a small helix in a way that the a larger helix
has on the small helix. But especially, the projection length test verifies that the near
perpendicular helices are not detected as close. An alternative to the projection length
test would be to simply verify that the angle between the helices are below a specified
threshold.
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5.5.4 Data handling

Data in the program is handled both when reading data to work with as well as when
producing the result of the runs.

Reading data

When it comes to reading data of proteins, the program is limited to reading PDB files,
and cannot handle the newer XML-based PDBML files. The program also assumes that
the PDB files are correctly formatted, and will not detect errors in the format or in the
structure of the protein (like number of side chain atoms, distance between the Cαs, but
also pure formatting of the file). Here improvements could be made to do some analysis
of the read data, but for formatting errors to be handled, the best approach is probably
to support the PDBML format instead, since format verification is easier with an XML
structure.

When reading the files, there are also some limitations as to what is handled in the
PDB files. As stated previously, any information about secondary structures contained
in the PDB file is ignored. Also, if there is more than one model in the PDB file, the
program will use the first one. Data about scale and other coordinate systems used, as
described in the PDB file [19], is also not taken into consideration.

In addition, the program only handles single files and cannot process multiple PDB
files at once. This is a limitation when it comes to creating data for many PDB files,
but on the other hand, as has been shown in producing the data in 5.3 it can easily be
scripted.

Writing data

In the result data, the same helix pair can be included twice, since all helices are matched
to all helices. This means that when using the result for further analysis, it is important
to take into consideration that there can be duplicates and handle those, if they would be
a problem3. An improvement here would be to make sure the program does not return
any such duplicates.

The program could also add even more data describing the relations of the helices.
For instance could one add data on the coordinates of the axis points of the helices for
analyzing how the helices actually overlap.

Another improvement of the result data would be to change the format to either a
comma separated file, or to an XML format. This would simplify the parsing of the data
and allow for easier processing of the results of the program.

The generation of the visualization script file could also be improved by supporting
also other viewers than RasMol, or entirely replace the RasMol support with another
tool. The visualization programs PyMol, Jmol and VMD all support scripting, although
none of them share scripting language. The fact that the different programs have their

3In the visualization of the result done in section 5.3 the used python script actually removed all
duplicates.
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own script language would mean that one implementation would have to be done per
program, and therefore if any other program should be added, the user base of the
different programs should be used to identify what program(s) to support.
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6
Conclusions

I
n the aim of gaining a better understanding of how proteins work and how they
interact, analysis of proteins is needed. Searching for patterns in groups of proteins
can gain a greater understanding of similarities between proteins. In addition, gath-
ering information about similarities can be used as part in prediction of unknown

protein structures.
In this work, a tool for analysis of α-helices and how they interact within a protein is

developed. Such analysis is important when trying to understand how proteins function
as well as how similar proteins are structured. The intention has been to provide a
flexible tool for analysis of α-helix interaction as well as trying to develop a different
approach for defining interaction between helices than what has previously been seen.

As has been shown, finding helix pairs can be done in three steps: a) identifying
helices, b) identifying axes of the helices and c) calculating the distance between the
helices. Identifying helices can be done in different ways, but DSSP as the chosen
method is the most commonly used and provides good results for the purpose needed.
Detecting if helices are close is, in this work, done by calculating the axis of each helix
and measuring the distance between those. Although there is no objective truth about
what ”close”means or a standard method for detecting helices that are close, the chosen
approach provides good results on the tested data and seems to be providing a result
that is satisfactory for the majority of the helices.

By detecting helices that are close, one cannot say that those helices are necessarily
interacting. The advantage of this design of the program is that it lets the user decide
what close means, in the sense of distance between the helices. This flexibility also allows
for varying the usage of the program and the data gathered will therefore be context
dependent.

In addition, the program categorizes the detected helix pairs into four groups de-
pending on the type of distance measurement done between the helices. The categories
are based on how the distance is measured in the program, where the presence of a
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closest distance value between the axes within both the helices is one category, the other
categories depends on the number of overlapping projected end points.

Compared to other studies, like the one developed by Lo et al. [6], the calculation
of what is determined as close is done differently, but handles detection of close helices
well. In addition, the possibility to vary the distance between helices allows for analyzing
break points of when patterns of behavior changes depending on the distance between the
helices. Allowing for this type of analysis can give more information of how for instance
α-helices in groups of proteins behave or how such groups behave in comparison to other
groups of proteins.

The result of the program can be used to statistically investigate patterns of groups
of proteins when it comes to relations between the data generated as a result of the
runs. But the program could also be used for generating statistical material for scoring
functions in protein prediction tools, when it comes to interactions between helices.

Moving forward with this work as a standpoint, there are possibilities to add more
analysis data as a result of a program run, like coordinates of the helix axes, allowing
for more extended analysis of the result. In addition, creating XML based output data
would simplify the parsing of the result.

Improvements could also be made in the area of how the axes are calculated and
especially when it comes to considering α-helices that are bent. Of interest could be to
add an indicator of how the axis deviates from the helix, and especially if the calculated
axis is partly outside of the helix itself.

Also, an extension that could be interesting to explore further, is the possibility
to process multiple files at a time and provide a combined result. This would most
likely require some more configuration possibilities of the output data, though, since the
current result could result in a very long listing of protein data if many files are provided.
It is also, as has been shown in this report, fairly easy to create small scripts for creating
the same effect.

Though much work remains in the field of protein structural prediction, this work
contributes to raising the knowledge about the possibilities around collecting data on
structures in proteins. In the work it is shown that it is possible to analyze and gather
such data fairly quickly from currently evaluated protein structures, as they are stored
in the Protein Data Bank.

Although there are more steps possible to take to advance the program, this does
however go beyond the present work. In this thesis a set of methods for calculating
α-helix pairs that are within a specified distance is identified, and from that a program
that detect helices close to each other is created. A classification scheme for helix pairs
has been proposed and implemented. In addition, the program provides the possibility
to visually view the result using the RasMol protein viewing program and by the usage
of the RasMol scripting functionality it even allows the user to walk through the steps
taken by the program.
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A
HelixFinder user guide

T
his is a user guide, describing how to work with the application HelixFinder,
a program for detecting α-helices that are close to each other in protein struc-
ture data.

A.1 Introduction

The HelixFinder program is used for detecting helices that are located close to each
other in the protein structure. The program is a command line program operating on
one Protein Data Bank (PDB) file at a time. It takes a PDB file as input and provides
the result as either a text file or as output directly on the screen. For more information
about the options possible, see section A.2.

The output of the program can be written to a file or written directly to standard
output.

The program generates a simple output file which contains information about:

1. the number of helices found

2. the length of every helix and between which residues the helix lies

3. the coordinates of the Cαs included in a found helix and information about what
type of residue the carbon belongs to

4. a list of which helices are detected as close to which other helices and also the
shortest distance and the angle between them

For more information about the format, see section A.2.1.
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A.2 Reference manual

The program is a command line program and is used as follows:

HelixFinder [-e n] [-d n] [-r n] [-m n] [-x n] [-sotpavh] filename

Where the options available are the following:

-e n: n is the energy level used when the DSSP algorithm tries to detect H-bonds be-
tween Cα and O (the default value is 0.51). A higher energy level gives a more
strict detection of helices.

-d n: n is the largest allowed distance the two closest points on two helices are allowed
to be apart (the default value is 15 ångströms).

-r n: n is the minimum number of residues needed in a helix for it to be considered
when detecting closeness. No default value is set.

-m n: n is the minimum number of residues allowed between two helices that might be
detected as close. That means that if two helices are separated by fewer than z
residues on a chain, they will not be detected as close (the default value is 0).

-x n: n is the maximum number of residues allowed between two helices that might be
detected as close. That means that if two helices are separated by more than n
residues on a chain, they will not be detected as close. No default is set.

-s: makes the program generate a RasMol Script file and a new PDB-file. These files
shows in which areas helices where detected and which helices where detected as
close. The PDB file is named the same as the original PDB file but with a suffix
of ” fake.pdb” and the script file uses the PDB file name but with a suffix of
” script.spt”.

-o: returns result of function to file instead of to standard output. File name is same as
input file but with ’ result.txt’ appended at end.

-t: selects how many of the closeness tests that should be used in a run. The values is
an integer between 1 and 4 and indicates how many of the relaxations to use. 1
means that only the closes distance tests is used.

-p: sets the program to use the projection limitation tests, to reduce possibilities for
when helices are detected close, by comparing the length of the helix with its
projection on the other helix. If the projection is below 50 % of the helix length,
it will not be detected. The used percentage value can be changed with the option
-a.

-a: sets the percentage of overlap for the projection of a helix onto another helix that
should be used if the test in -p is used. If -p is not set, the value will be ignored.
The default value is 50.
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-v: verbose mode, gives feedback while the program is running.

-h: displays a help message with information about the options possible.

A.2.1 Output

The program provides the result of the run either as a printout at the end of the program,
or in a file named after the PDB file, but with a suffix of ” result.txt”. In addition one
can get a number of script files and a generated PDB file, to allow for visualizing the
result in the protein visualizing program RasMol.

Result format

The result of the analysis can either be written to a file or displayed directly to standard
output. The result contains a section about the helices detected and a section describing
the closeness of the protein. The file contains comments where each line with a comment
starts with a hash sign (#), to make it easy to parse.

The file starts with the number of helices, followed by a section for each helix, with
a number (which is used later to reference for the close helices), the length of the helix,
the residue number from the PDB file and a listing of all residues with the coordinates
of the Cαs.

Following the listing of the helices, the section of what helices are detected as close is
listed. That list consist of a pair of references to the number for each helix, the calculated
minimum distance between the helices, the angle between them and the number of
residues between the helices. In this list, a number of duplicates will be present, with
only the order of the helix numbers swapped.

If the helices are in different chains, the value for residues between helices will be set
to −1.

Each section is labelled in upper case. The labels are HELIXCOUNT, for the number
of helices, HELICES, for the listing of helices and PAIRS for the helix pair information.

A shortened example is shown in section A.3.

Scripts

If the option of getting script files is chosen, two files are generated:

PDB file A faked PDB file, with only the atom coordinate data remaining and with
some extra data added to enable showing axes and closeness data visually in Ras-
Mol, using the script file generated.

script file A RasMol script for displaying what the program has calculated, showing the
detected helices in different colors, and then gives the possibility to step through
all helices that are detected as close. It is possible to step through the helices one
by one, showing all helices that are close as well as the axis of each helix and the
points of where the closest distance was calculated.

The files can be used in RasMol to visualize the result of a HelixFinder run.
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A.3 Example of result

Here an example of the output format is provided, with the majority of the residues
listed in the helix section removed.

# Number of helices:

HELIXCOUNT

16

# Helix number, number of residues, residue interval

# followed by the residue type and its alpha-C coordinates.

HELICES

1 14 : 17 - 31

TYR 17.072 12.523 19.569

[...]

ASP 16.793 28.542 7.672

2 9 : 43 - 52

LEU 9.678 12.420 30.889

[...]

ALA 3.182 21.761 32.436

# Helix pairs (references to above), closest distance,

# angle between helix axis, residues between helices

# and test detecting the pair.

PAIRS

1 2 11.590 0.168 11 1

2 1 11.590 0.168 11 1

A.4 Compiling program

HelixFinder is a program written in C consisting of 15 files, as listed below in table A.1.
In addition to the files listed, the GNU Scientific Library [36] is needed to be able to
compile the program.

Table A.1: The files the HelixFinder program consists of

helixFinder.c findHelixInfo.h outputFunctions.h

hydrogenFunctions.h xyzVector.h datastructures.h

readPdb.c findHelices.c findAxes.c

findCloseness.c outputFunctions.c hydrogenFunctions.c

datastructures.c xyzVector.c hfHelp.c
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The source code will be available for download from GitHub as a git repository, at
the link https://github.com/helixfinder/HelixFinder.git.

No make file or configuration files are included in the download.
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B
Result parse example

T
his is an example of looking at a large set of PDB files and running and doing
some analysis of all files at once. It is some bash commands in combination
with a simple python file allowing for running the program on multiple files
at the same time and creating a simple output. The format of the output is

created to fit the needs ot the LATEXpackage TikZ, so that plots can be generated directly
into the report.

With the assumption that all files are downloaded into one single folder, it is possible
to get the result for all files with one command. On a machine with the shell program
bash the following command does this:

$ f i nd . −name ”∗ . pdb” −depth 1 −exec h e l i x f i n d e r −o ’{} ’ \ ;

The result of the operation will generate result files for all PDB files in the folder the
program is run from. By applying a small script to the result files of the HelixFinder
run, the interesting data from the result files can then be parsed by using the following
bash command (assuming the only .txt files in that folder are the result files):

$ f i nd . −name ”∗ . txt ” −exec . / g e t r e s u l t . py ’{} ’ \ ; > summary . txt

On the next page is the program listing of the rudimentary python script get result.py
used to parse multiple result files. The program reads one result file and prints the angle
and distance for each unique helix pair to standard output.
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#!/ usr / bin /env python
import sys

i f len ( sys . argv ) > 1 :
f i l ename = sys . argv [ 1 ]
f i l e = open( f i l ename )
text = f i l e . read ( )
f i l e . c l o s e ( )
l i n e s = text . s p l i t ( ”\n”)
p ro t e in = f i l ename . s p l i t ( ” ” , 1 ) [ 0 ] . s p l i t ( ”/ ”) [−1]

else :
sys . e x i t (0 )

l = l i n e s . pop (0 )
while l != ”PAIRS” :

l = l i n e s . pop (0 )

pa i r s = set ( )

for l in l i n e s :
e = l . s p l i t ( )
i f len ( e ) == 4 :

i f e [ 2 ] == ”nan” or e [ 3 ] == ”nan” :
continue

e l i f e [ 0 ] > e [ 1 ] :
p a i r s . add ( ( e [ 1 ] , e [ 0 ] , e [ 2 ] , e [ 3 ] ) )

else :
p a i r s . add ( ( e [ 0 ] , e [ 1 ] , e [ 2 ] , e [ 3 ] ) )

while len ( p a i r s ) > 0 :
print ”%s %s %s ” % ( pa i r s . pop ( ) [ 2 : ] + ( prote in , ) )
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Program information

T
his appendix contains a listing of all files in the program and some more in-
formation about the content of the files, as an addition to the information
provided in chapter 4. Mainly it lists the functions shared as well as file size
of each file.

helixFinder

The file helixFinder.c is the main file for the program and contains the main function for
the program. Here the parsing of the commands is done and all other major functions
are called from the main function.

hfHelp

The file hfHelp.c contains help functions for displaying short help when faulty input is
given, and a longer help for when help is requested.

datastructures

The files datastructures.h and datastructures.c contain the data structures used in the
program, where the main structures are described in chapter 4. In addition, functions
for manipulating the structures are provided as well as for reading all data.

xyzVector

The files xyzVector.h and xyzVector.c contain data structures and functions for doing
vector operations as well as a vector data structure for 3 dimensional vectors. Besides
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a function for setting the values of a vector, the following functions are provided in
xyzVector.h:

vectorAdd Function for calculating the sum of two vectors.

vectorSub Function for subtracting a vector from another vector.

vectorDot Function for calculating the scalar product for two vectors.

vectorNorm Function for calculates the norm of a vector.

vectorDistance Functions for calculates the distance between two vectors.

vectorMult Function for scaling a vector, with a given float value.

vectorDiv Function for dividing a vector with a given float value.

hydrogenFunctions

The files hydrogenFunctions.h and hydrogenFunctions.c contains functions for calculat-
ing the location of the hydrogen atom as well as the hydrogen bond as described in the
DSSP algorithm.

outputFunctions

The files outputFunctions.h and outputFunctions.c contains the functions for writing the
output data of the program. The following functions are provided in outputFunctions.h:

printPDBlines Function for printing file in PDB format, with only the atom coordi-
nate information from the original PDB file as well as new atom coordinates for
representing the helix axes and the closeness points.

printHelixScript Function for printing the part of the RasMol script that visualizes
the helices.

printClosenessScript Function for printing the part of the RasMol script that visual-
izes the axes and the closeness distance points.

printOutput Function for printing the result file of the program.

findHelixInfo

The file findHelixInfo.h is the header file for the files readPdb.c, findAxes.c, findClose-
ness.c and findHelices.c. The file describes the following functions:

read pdb Function for reading and parsing the PDB file. This function is implemented
in the file readPdb.c.

56



APPENDIX C. PROGRAM INFORMATION

findHelices Function for finding the helices of the read PDB file according to the im-
plementation of the DSSP algorithm. This function is implemented in the file
findHelices.c.

setMinHelixSize Function for setting the minimum length of a helix for it to be con-
sidered. The function overrides a global variable in the file findHelices.c.

calcAxes Function for calculating the axis of each helix as described by the algorithm
rotfit. The function is implemented in the file findAxes.c.

calcHelixCloseness Function for calculating the distance between helices and detect
if they are close, based on the different tests described in the report. This function
is implemented in the file findCloseness.c.

setMinChainDist Function for setting a value for minimum number of residues be-
tween helices on the chain for them to be considered for closeness. The function
overrides a global variable in the file findCloseness.c.

setMaxChainDist Function for setting a value for maximum number of residues be-
tween helices on the chain for them to be considered for closeness. The function
overrides a global variable in the file findCloseness.c.

setMaxProc Function for setting a value for the percentage value used for the projec-
tion length tests, if it is activated. The function overrides a global variable in the
file findCloseness.c.
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Proteins used for scatter plots

T
his appendix contains a listing of all proteins used in the usage examples of
the program HelixFinder, in section 5.3. In total it is 47 proteins used and
they are identified using the advanced filtering option at http://www.rcsb.org
with the following combined search criteria:

1. X-ray resolution at a maximum of 1.25 Å

2. SCOP classification of all alpha proteins

3. Only one chain per protein

4. A sequence identity of 50 %

Proteins

The PDB ID and the molecule name for all 47 proteins. Of these, 1JNI did not generate
any result because of too short helices.

3BVU Alpha-mannosidase 2

2P5K Arginine repressor

2V7F RPS19E SSU ribosomal S19E

2V9V Selenocysteine-specific elongation
factor

2NSZ C-terminal MA3 domain

2CIW Chloroperoxidase

2FBA Glucoamylase GLU1

2EUT Cytochrome c peroxidase

1XMK adenosine deaminase

1TUK Nonspecific lipid-transfer 2G

1Y6X Phosphoribosyl-ATP pyrophos-
phatase

1XQO 8-oxoguanine DNA glycosylase
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1T8K Acyl carrier

1TQG Chemotaxis cheA

1TU9 Hypothetical PA3967

1RWH Chondroitin AC lyase

1J0P Cytochrome c3

1QV1 Obelin

1LWB Putative secreted

1H12 Endo-1,4-beta-xylanase

1N40 Cytochrome P450 121

1LB3 Ferritin light chain 1

1M15 Arginine kinase

1LS1 Signal recognition particle

1L9L Granulysin

1MC2 Acutohaemonlysin

1M1Q Small tetraheme cytochrome c

1JNI Diheme cytochrome C NAPB

1K8U S100A6

1GKM Histidine ammonia-lyase

1KWF Endoglucanase A

1JFB Nitric-oxide reductase cytochrome
P450 55A1

1E29 Cytochrome C549

1I2T Hyd

1G4I Phospholipase A2

1I8O Cytochrome C2

1I27 Transcription factor IIF

1EXR Calmodulin

1C75 Cytochrome C-553

1MUN Adenine glycosylase

1A6M Myoglobin

1NKD Rop

2PVB Parvalbumin

1BKR Spectrin beta chain

2ERL Mating pheromone ER-1

1CTJ Cytochrome C6

1YCC Cytochrome C
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