
DF

Deep-learning-accelerated Bayesian
inference for state-space models

Master’s thesis in Mathematics

Elias Hölén Hannouch
Oskar Holmstedt

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020

Deep-learning-accelerated Bayesian inference for
state-space models

Elias Hölén Hannouch
Oskar Holmstedt

DF

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology
Gothenburg, Sweden 2020

Deep-learning-accelerated Bayesian inference for state-space models
Elias Hölén Hannouch
Oskar Holmstedt

© ELIAS HÖLÉN HANNOUCH, OSKAR HOLMSTEDT 2020.

Supervisor: Adam Andersson, Smartr
Supervisor: Umberto Picchini, Department of Mathematical Sciences
Examiner: Moritz Schauer, Department of Mathematical Sciences

Master’s Thesis 2020
Department of Mathemathical Sciences
Division of Applied Mathematics and Statistics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by David Frisk
Gothenburg, Sweden 2020

iv

Deep-learning-accelerated Bayesian inference for state-space models
Elias Hölén Hannouch
Oskar Holmstedt
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Bayesian inference is an important statistical tool for estimating uncertainties in
model parameters from data. One very important method is the Metropolis-Hastings
algorithm, which allows for parameter inference when analytical solutions are in-
tractable. The only requirement is that the likelihood function can be evaluated.
However, it is a computationally expensive algorithm, as it is usually run for several
thousand iterations. This is especially true for inference in state-space models, where
the likelihood is computed via Bayesian filtering, which is a costly operation in and
of itself. We propose a new method for doing Bayesian inference via Metropolis-
Hastings for state-space models by replacing the standard likelihood computation
with a neural network. The network is trained on data generated by a much shorter
earlier run of Metropolis-Hastings.

We show, both qualitatively and quantitatively, that our method produces com-
parable results to the traditional method for several models. Moreover, our results
indicate that the performance of our method is consistent as the dimensionality of
the state-space model increases.

Finally, we show that our method is much more computationally efficient than
the traditional method for large runs. We investigate at what point our method
becomes the preferable alternative and find that the threshold occurs at quite small
runs, both in terms of computational time and desired output size.

Keywords: Bayesian inference, MCMC, Metropolis-Hastings, state-space models,
Bayesian filtering, surrogate likelihood, deep learning

v

Acknowledgements
Many thanks to our supervisors Adam Andersson of Smartr and Umberto Picchini
of Chalmers for their support and feedback throughout the project. They truly went
the extra mile for us. We would also like to thank the people at Smartr for welcoming
us to their workplace. Furthermore, we must also thank both the Department of
Mathematical Sciences and AI Innovation of Sweden for allowing us to use their
computational resources. Finally, we extend our thanks to friends and family who
have helped us through this strange time.

Elias Hölén Hannouch and Oskar Holmstedt, Gothenburg, June 2020

vii

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xv

1 Introduction 1

2 Bayesian Inference 3
2.1 The Bayesian framework . 3
2.2 Metropolis-Hastings . 5

2.2.1 Adaptive Metropolis-Hastings algorithm 7
2.2.2 Using Metropolis-Hastings for Bayesian inference 8

2.3 Bayesian filtering . 9
2.3.1 State-space models . 10
2.3.2 Bayesian filtering equations 13
2.3.3 Kalman filter . 14
2.3.4 Extended Kalman filter . 15
2.3.5 Particle filter . 17

3 Models 23
3.1 Stochastic differential equations . 23
3.2 The Ornstein-Uhlenbeck process . 24
3.3 A linear spring-mass system . 25
3.4 A cubic spring-mass system . 27

4 Artificial neural networks 31
4.1 Feedforward neural network . 31
4.2 Activation function . 32
4.3 Loss function . 32
4.4 Stochastic gradient descent . 32
4.5 Adam optimiser . 33
4.6 Hyperparameter optimisation . 34

5 Method 37
5.1 Metropolis-Hastings using Bayesian filters 37
5.2 Overview of the AAMH algorithm . 39

ix

Contents

5.2.1 Generating and pre-processing the training data 39
5.2.2 Training the neural network 40
5.2.3 Parameterization of the training region 40
5.2.4 Metropolis via the mixed method 42

5.3 Performance metrics . 45
5.3.1 Effective sample size . 45
5.3.2 Wasserstein distance . 45

5.4 Experiment setup . 46

6 Results 49
6.1 Ornstein-Uhlenbeck model . 49

6.1.1 The CMH algorithm . 49
6.1.2 Data pre-processing and training the neural network 50
6.1.3 The MMH algorithm . 50

6.2 Hyperparameter optimisation . 54
6.3 Linear spring-mass model . 54

6.3.1 Varying the training data sizes 55
6.3.2 Varying the Mahalanobis confidence levels 56
6.3.3 Varying the state-space dimensionality 56
6.3.4 Varying the number of model parameters 57

6.4 Cubic spring-mass model . 60
6.4.1 Using the extended Kalman filter 61
6.4.2 Using the bootstrap filter . 61

7 Discussion 65
7.1 Ornstein-Uhlenbeck model . 65
7.2 Linear spring-mass model . 65
7.3 Cubic spring-mass model . 66

8 Conclusion 67

Bibliography 69

A Appendix 1 I
A.1 Lemmas concerning Gaussian distributions I
A.2 Optimal importance distribution . II
A.3 Description of the log-likelihood function III
A.4 Description of the training loss . IV
A.5 Hyperparameter optimisation results IV

x

List of Figures

2.1 Demonstration of Bayes’ theorem. 5
2.2 Example of a Metropolis-Hastings run. 10
2.3 Dependency graph of a state-space model. 11
2.4 Example of a linear dynamical system. 12
2.5 Example of a nonlinear dynamical system. 13

3.1 Sample path of an Ornstein-Uhlenbeck process. 25
3.2 Schematics of the linear spring-mass system. 28
3.3 Sample path of the linear spring-mass system. 29

5.1 Flow chart of the AAMH algorithm. 39
5.2 Illustration of the neural network structure. 41
5.3 Exemplification of Mahalanobis distances. 42
5.4 The experiments setup for performance assessment. 47

6.1 The results from the CMH algorithm on the OU-model. 51
6.2 The training data before and after pre-processing on the OU-model. . 52
6.3 The results of the AAMH algorithm on the OU-model. 53
6.4 The results of the AAMH algorithm on the LSM-model. 55
6.5 The performance metrics over training data sizes. 56
6.6 The performance metrics over confidence levels. 57
6.7 The performance metrics measures over state-space dimensionality. . 58
6.8 The points of indifference for the KF. 59
6.9 The AAMH algorithm with varying number of considered parameters. 60
6.10 The results of running AAMH (EKF) on the CSM-model 61
6.11 The point of indifference results for the AAMH algorithm with EKF

for the CSM model. 62
6.12 The Wasserstein distances for the EKF and the BF over state-space

dimensionality. 63
6.13 The results of running AAMH (BF) on the CSM-model. 63
6.14 The point of indifference results for the AAMH algorithm with BF

for the CSM model. 64

A.1 Surface plots of the log-likelihood function of the OU model. III
A.2 The logarithmic loss over every 100th epoch for the OU-model. IV
A.3 The result of the TPE hyperparameter optimisation algorithm. V

xi

List of Figures

xii

List of Tables

6.1 The model parameters used for simulating the OU-model observation. 50
6.2 Parameters used by the CMH algorithm on the OU-model. 50
6.3 Parameters for the neural network for the OU-model. 54
6.4 The run statistics of the AAMH algorithm for the OU-model. 54
6.5 The model parameters used for simulating the LSM-model observation. 55
6.6 Parameter values for increasing number of parameters. 57
6.7 Parameter setups for different numbers of parameters considered. . . 60
6.8 The model parameters considered for the CSM model. 61
6.9 The estimated optimal number of particles over state-space dimension. 62

xiii

List of Tables

xiv

List of Algorithms

1 Metropolis-Hastings (MH) . 7
2 Adaptive Metropolis-Hasting (AMH) 9
3 Kalman filter (KF) . 15
4 Extended Kalman filter (EKF) . 16
5 Sequential importance sampling (SIS) 20
6 Sequential importance resampling (SIR) 20
7 Bootstrap Filter (BF) . 21
8 Classic Metropolis-Hastings using Bayesian filter (CMH) 38
9 Mixed Metropolis-Hasting using surrogate log-likelihood (MMH) . . . 43
10 Accelerated adaptive Metropolis-Hastings (AAMH) 44

xv

List of Algorithms

xvi

1
Introduction

A powerful tool for assessing model uncertainties in a probabilistic way is Bayesian
statistics. Bayesian inference enables uncertainty quantification for unknown pa-
rameters θ of a model, given observed data y of that model. The information in
the data is encoded via the likelihood function L(θ|y). It can be used to update
the experimenter’s prior knowledge of the parameters via Bayes’ theorem. The re-
sulting quantity is the posterior distribution of the unknown parameters. This can
sometimes be difficult to compute for various reasons. For instance, it requires a
normalizing constant which is often unknown and may be difficult to approximate.

When we want to sample from a posterior distribution with a difficult or unknown
algebraic form, we can instead use the Metropolis-Hastings algorithm (MH). It is a
Markov Chain Monte Carlo (MCMC) method, which iteratively samples from a
Markov chain, and converges in distribution to the sought posterior distribution.

In every step of the algorithm we need to compute the likelihood function [1].
However, while the likelihood function is central in obtaining this posterior distri-
bution, computing it can be challenging for complex models. Hence the notion
of a surrogate likelihood, which acts as an approximate and computationally more
tractable replacement of the likelihood.

In this report the application is within the framework of Bayesian parameter esti-
mation in probabilistic state-space models. State-space models describe the dynamics
of an unobservable hidden state coupled with an observable measured state. These
kind of models are used in a wide range of disciplines, including object tracking,
biochemistry, and finance [2, 3, 4]. We use synthetic data simulated from several
different theoretical models.

In order to compute the likelihood function of a state-space model, we need to
use Bayesian filtering. The filters used in this report are the Kalman filter (KF),
the extended Kalman filter (EKF) and the bootstrap filter (BF). These are computa-
tionally expensive and do not scale well with the dimensionality of the state-space.
This is especially true for the bootstrap filter, which is a so-called particle filter.

The traditional approach for doing Bayesian parameter inference in this setting
is to use the MH algorithm. In each iteration the likelihood is either approximated
or computed exactly via a filter. Typically, you want to run the MH algorithm for
a lot of iterations in order to get good results. Due to the complexity of the filters,
this becomes very computationally heavy.

To alleviate this problem we propose a new algorithm for doing Bayesian infer-
ence in such environments, wherein deep learning is used to train an artificial neural
network to approximate the likelihood function. Deep learning can be used to per-
form both regression and classification among other things. There are plenty of

1

1. Introduction

different neural network architectures specialized for different problems. The kind
of network used in this report is called a fully connected feedforward neural network,
or a multilayer perceptron, and it is the most commonly used network for regression
[5].

Similar studies have been made wherein alternative methods were used to approx-
imate the likelihood function, for instance using Gaussian processes [6, 7]. Moreover,
deep learning have been used before in the context of Bayesian inference to learn
the posterior distribution directly [8], or to learn the likelihood function [9].

Broadly, the thesis aims to explore if deep learning can be used to accelerate the
MH algorithm without sacrificing performance, with regards to accuracy and effi-
ciency. To this end, we consider different state-space models, both linear and non-
linear, and compare the results and computational times between our new method
and the traditional method.

Specifically, we look at how the accuracy and efficiency of the method depends
on the dimensionality of the state-space and the amount of training data used for
the neural network. Moreover, we investigate at what point it becomes beneficial to
use our method instead of the traditional one, both in terms of desired sample size
and computational time.

The project is limited in its scope when it comes to the tested models, filters
and network architectures. Furthermore, all data used is synthetic and produced by
ourselves. This has the benefit of us knowing the true values of the parameters that
we are trying to estimate, but it could have been of interest to test the methods on
data from a real life experiment. Finally, time constraints also limited how far we
were able to push the method.

The outline of the report is as follows. We begin in Chapter 2 by covering the
basics of Bayesian inference and the specific elements of it that we use. Next, the
models that we use for our experiments are presented in Chapter 3. Chapter 4 con-
tains a brief introduction to the kind of neural network that we deploy. In Chapter
5, we give a walk-through of our deep-learning-accelerated Metropolis-Hastings al-
gorithm, and present the experiments used to test it. The results of our experiments
are detailed in Chapter 6 and discussed in Chapter 7. Finally, in Chapter 8 we draw
some conclusions from our results and also suggest some future work on the topic.

2

2
Bayesian Inference

In this chapter we present the theory of Bayesian inference that is used in our
experiments. We begin with a short summary of the Bayesian framework. Then,
we introduce the important Metropolis-Hastings algorithm, which allows us to do
Bayesian inference for difficult problems. Finally, we will also present elements of
Bayesian filtering.

2.1 The Bayesian framework
The core of Bayesian inference is Bayes’ theorem. Let A and B be events, satisfying
P(B) 6= 0. It holds that

P(A|B) = P(B|A)P(A)
P(B) . (2.1)

It relates the conditional probability P(A|B) of observing A conditioned on B to
the conditional probability P(B|A) and the marginal probabilities P(A) and P(B).
The analogue of (2.1) for probability densities is

fX|Y (x|y) = fY |X(y|x)fX(x)
fY (y) , (2.2)

where X and Y are random variables. Equation (2.2) also holds for probability mass
functions and cumulative distribution functions.

Consider a model that depends on some parameters θ ∈ Rd. In a Bayesian
framework, we consider θ to be a random variable, instead of a fixed constant as in
the frequentist approach. We are interested in the distribution of the parameters θ
conditioned on observed data y from the model. This can be computed with Bayes’
theorem

p(θ|y) = p(y|θ)p(θ)
p(y) = L(θ|y)p(θ)

p(y) . (2.3)

Before conducting any experiments we have a distribution p(θ) which we believe
holds for the parameters. This is called the prior distribution. The prior may
come from an intuition about the model or knowledge from previous studies. After
observing the data, we update our prior according to Bayes’ theorem, giving us the
posterior distribution p(θ|y).

The function p(y|θ) is called the likelihood function and is often denoted L(θ|y).
We note that the order of θ and y has changed. The reason is simply a matter
of change in perspective. The likelihood L(θ|y) is considered a function of θ for a

3

2. Bayesian Inference

fixed y, describing the probability density of observing the fixed data for a variable
choice of parameters.

Equation (2.3) describes a density. By definition it must integrate to 1. The
normalising constant is the marginal distribution of the data, also known as the
evidence. It can be computed as p(y) =

∫
L(θ|y)p(θ)dθ. Often it is enough to

know the likelihood and prior [1, chapter 2], and in that case we can omit the
evidence and simply write

p(θ|y) ∝ L(θ|y)p(θ).

How we choose the prior is a significant part of Bayesian inference. A smart
choice of prior can result in a posterior distribution with a known analytical form.
Furthermore, in some cases we can choose the prior in such a way that the posterior
will be of the same form. Such distributions are called conjugating distributions,
and we say that the prior is a conjugate prior to the model.

For instance, if we have independent identically distributed Gaussian data x =
(x1, . . . , xn), with known variance σ2, and want to estimate the mean µ, then choos-
ing a Gaussian prior, with mean µ0 and variance σ2

0, will in turn yield a Gaussian
posterior with mean µ1 and variance σ1 given by

µ1 =
(

1
σ2

0
+ n

σ2

)−1 (
µ0

σ2
0

+ nx̄
σ2

)
, σ2

1 =
(

1
σ2

0
+ n

σ2

)−1

,

where x̄ is the sample mean [10, chapter 3]. Figure 2.1 shows how the posterior
distribution results from the interaction between the prior and the likelihood for
this example with a specific choice of parameters.

However, in most cases the posterior distribution will not have a known analytical
form. For those scenarios we can use numerical methods to estimate the posterior
or to sample from it. These include several different Monte Carlo methods.

In contrast to the frequentist approach to statistical inference, Bayesian inference
is primarily aimed at estimating distributions instead of point estimates for the
parameters of interest. In the frequentist framework, the parameters are considered
fixed. They can then be estimated by point estimators, which are random variables
dependent on the random data. If we are interested in quantifying the uncertainty of
our estimates, we can compute the standard error of the estimator. If the estimator
has a known distribution or if it converges in distribution to a known asymptotic
distribution, this allows us to form confidence intervals, giving us a measure of
the uncertainty in our estimations. However, the posterior distribution obtained in
Bayesian inference gives a more complete picture of the parameter uncertainty [11].

Even though the strength in Bayesian inference lies in creating a posterior dis-
tribution for the parameters, we are sometimes also interested in point estimates.
There are multiple choices of point estimates, but the most common are maximum
a posteriori (MAP), posterior median and posterior mean (also know as minimum
mean squared error or MMSE). All three of these minimize the posterior expected
value of different loss functions. The first one means the point with highest proba-
bility density in the posterior distribution, also known as the mode. The latter two
are simply the median and mean of the posterior distribution, respectively.

4

2. Bayesian Inference

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5
p

0

0.5

1

1.5

2

L

10
-16

prior

posterior

likelihood

Figure 2.1: Demonstration of how the posterior is related to the prior and the like-
lihood. In this example, we have Gaussian data X ∼ N (3, 12), and use a conjugate
prior µ ∼ N (2, 0.32). After an observation of 25 independent samples, the prior is
updated by Bayes’ theorem. The resulting posterior is N (2.8, 0.172).

Finally, when we have the posterior distribution of the parameters we can also
compute the predictive posterior distribution

p(y∗|y) =
∫
P (y∗|θ)p(θ|y)dθ.

It gives us the distribution of a new observation y∗ from the model, conditioned on
the observed data y [1, chapter 2].

2.2 Metropolis-Hastings
In the previous section we mentioned that when the posterior distribution is not
available analytically, we can use numerical methods to estimate it instead. One such
method is the Metropolis-Hastings algorithm (MH), which can be used to sample
from the posterior.

MH is a Markov chain Monte Carlo (MCMC) method for sampling from a dis-
tribution. It allows us to sample from distributions for which the closed form is
unknown, or hard to compute. The only requirement is that we know that the
target distribution, p(x), is proportional to some known function f(x), i.e.

p(x) ∝ f(x). (2.4)

As all densities must integrate to 1, the proportionality constant is
∫
f(x)dx,

where the integration is taken over the entire domain of f . There are multiple
reasons why sampling from such a distribution can be difficult. First of all, the
normalizing constant can be very difficult to compute or unobtainable. Secondly,

5

2. Bayesian Inference

even if the normalizing constant can be computed efficiently it is not guaranteed
that the resulting distribution is something which we know how to sample from
directly.

The Metropolis-Hastings algorithm bypasses these difficulties and instead itera-
tively produces a Markov chain which, under some conditions, asymptotically con-
verges in distribution to the target distribution p(x) as its stationary distribution.
The method is presented in Algorithm 1 [12, 13].

The algorithm starts by assigning an initial x0 and setting t = 0. At each
consecutive iteration a new value x∗ is sampled from a so-called proposal distribution
g(x∗|xt). We either want to accept or reject this new proposal depending on how
likely it is to belong to the target distribution. To this end, we compute an acceptance
probability given by

α = min
(

1, f(x∗)
f(xt)

g(xt|x∗)
g(x∗|xt)

)
. (2.5)

The acceptance probability consists of two ratios. The first one is the ratio between
the posterior density of the new and previous sample. The normalizing factor in the
target distribution is not needed because

f(x∗)
f(xt)

= f(x∗)/
∫
f(x)dx

f(xt)/
∫
f(x)dx

= p(x∗)
p(xt)

.

Thus, the acceptance probability gets larger if the proposed x∗ has higher density
than the previous sample, and smaller if it has lower density. The second ratio is
taken between the proposal density for transitioning from the new sample to the
previous one, and vice versa. This punishes the proposal for moving to regions from
where it would be more difficult to come back from. Note that if g is a symmetric
distribution, then this ratio will always be equal to 1.

The new proposal is accepted with probability α. This can be done by sampling
from the uniform distribution on the unit interval, u ∼ U(0, 1), and comparing the
value to the acceptance probability. If u ≤ α, then the proposal is accepted, and we
set xt+1 := x∗. Otherwise, it gets rejected, and we keep the previous value, i.e. we
set xt+1 := xt. The step counter t is then increased, and the algorithm repeats. The
algorithm does not have any stopping criteria, rather it stops after a fixed number,
TMH, of iterations.

This procedure defines a Markov chain, in which in each step a new point is
proposed, based on the previous point, and is either accepted or rejected. The chain
converges asymptotically to a unique stationary distribution which is equal to the
target distribution. In other words, the distribution of the state xt at iteration t
converges to the target distribution p(x) as t→∞.

Thus, once the chain has converged sufficiently close to the target distribution,
the method can be used to approximately sample from it. It should however be
noted that subsequent samples will not be independent. If independent samples are
desired, one can for example pick every jth sample for some j dependent on the auto-
correlation of the chain. The period before the chain has converged sufficiently close
to the target distribution is called the burn-in period. If all states from the burn-in
period are discarded, the empirical distribution of the chain can be considered as an
estimate of the target distribution.

6

2. Bayesian Inference

In terms of user input, the burn-in period will be affected by the choice of initial
sample x0. The more unlikely the initial sample is to belong to the target distribu-
tions the longer it will take for the algorithm to approach stationarity. Furthermore,
the rate of convergence depends mainly on the shape of the proposal function. In
general, the closer the proposal distribution is to the target distribution the better.
Slow convergence happens particularly when the order of magnitude of the covari-
ance of the target distribution is unknown, where a too large or small proposal
function can severely inhibit the convergence. We will also present an MH algo-
rithm which uses a proposal function g which adapts its shape during the course of
the algorithm to alleviate this issue.

Algorithm 1 Metropolis-Hastings (MH)
Input: x0, f(x), g(x′|x), TMH
Output: (xt)TMH

t=1
1. Initialization

(a) Set initial sample x0.
(b) Set t := 0.

2. Proposal
(a) Sample a proposal x∗ ∼ g(x∗|xt).
(b) Compute the acceptance probability α := min

(
1, f(x∗)

f(xt)
g(xt|x∗)
g(x∗|xt)

)
.

3. Acceptance or rejection
(a) Draw a sample u ∼ U(0, 1).
(b) If u ≤ α, then accept x∗ and set xt+1 := x∗.
(c) If u > α, then reject x∗ and set xt+1 := xt.

4. Next step
(a) Set t := t+ 1.
(b) If t < TMH then return to step 2.
(c) If t = TMH then break.

2.2.1 Adaptive Metropolis-Hastings algorithm
In the previous section we mentioned that the burn-in period of the Metropolis-
Hastings algorithm is the number of samples until the algorithm has sufficiently
converged to the stationary distribution. During this period, the shape of the dis-
tribution of accepted samples may change dramatically. If the initial sample x0 is
unlikely to come from the stationary distribution, then the proposal function may
need to be larger to allow for the chain to converge within a reasonable time-frame.
However, the draw-back is that the proposal may be too wide to propose points in a
narrow stationary distribution. This leads to lower acceptance rates and thus more
auto-correlation in the chain.

Algorithm 2 is an adaptive Metropolis-Hasting (AMH) algorithm which is proven
to asymptotically converge to the target distribution, while being able to adapt the
proposal distribution to ensure a higher acceptance rate [14].

7

2. Bayesian Inference

We specify the proposal distribution to be a multivariate Gaussian distribution
with covariance Σt, centered around the latest accepted proposal xt, as

gΣt(x∗|xt) = N (x∗|xt,Σt).

Note that the proposal function is symmetric and can now be removed from the
calculation of the acceptance probability. In addition to choosing an initial sample
x0, we also choose an initial covariance matrix Σ0 and a time tA at which to start the
adaptive process. For the first tA iterations we keep the initial covariance matrix.
Then, starting at time step tA, we compute a new covariance matrix based on the
chain of accepted proposals x0, . . . ,xt up until that point

Σt := sd cov(x0, . . . ,xt) + sd ε Id, (2.6)

where sd is a constant dependent on the dimension d of the parameter space. A
suggested rule of thumb is sd = 2.42/d [14]. A small diagonal matrix sdεId is added
to avoid eventual numerical instability, where 0 < ε� 1. The sample covariance is
computed as

cov(x0, . . . ,xt) = 1
t

t∑
i=0

(xi − x̄t)T (xi − x̄t),

where x̄t = 1
t+1

∑t
i=0 xi is the sample mean of the chain up to that point.

At each subsequent time step the new mean vector and covariance matrix can be
computed recursively according to the following formulas

x̄t = 1
t+ 1 (tx̄t−1 + xt) , (2.7)

Σt = t− 1
t

Σt−1 + sd
t

(
tx̄t−1x̄Tt−1 − (t+ 1)x̄tx̄Tt + εId

)
, (2.8)

which greatly reduces the computational complexity [14].

2.2.2 Using Metropolis-Hastings for Bayesian inference
For our purposes the target distribution will be the posterior distribution p(θ|y) of
the parameters θ given some observed data y. As seen in section 2.1, the posterior
is proportional to the likelihood times the prior,

p(θ|y) = L(θ|y)π(θ)
p(y) ∝ L(θ|y)π(θ).

We can thus use MH to sample from the posterior distribution, as we do not need
to know the normalizing factor p(y). We let θ be our x and L(θ|y)π(θ) be our f
as described in Equation (2.4) [1]. An example of this is shown in Figure 2.2.

When working with likelihood functions, it is often convenient to consider the
logarithm of the likelihood function, `(θ|y) = logL(θ|y), which we call the log-
likelihood function. The reason is that the likelihood function can have an extremely
large range. This is in part because the likelihood function is often a product of
probability densities. The large range in values can cause computational issues, as

8

2. Bayesian Inference

Algorithm 2 Adaptive Metropolis-Hasting (AMH)
Input: x0,Σ0, f, tA, sd, ε, TMH
Output: (xt)TMH

t=1
1. Initialization

(a) Set initial sample x0 and covariance Σ0.
(b) Set t := 0.

2. Proposition
(a) Sample a proposal x∗ ∼ gΣt(x∗|xt).
(b) Compute the acceptance probability α := min

(
1, f(x∗)

f(xt)

)
.

3. Acceptance or rejection
(a) Draw a sample u ∼ U(0, 1).
(b) If u ≤ α then accept x∗ and set xt+1 := x∗.
(c) If u > α then reject x∗ and set xt+1 := xt.

4. Covariance
(a) Set t := t+ 1.
(b) If t < tA, let Σt := Σt−1
(c) If t = tA, compute Σt := sd cov(x0, . . . ,xt) + sdεId.
(d) If t > tA, compute Σt recursively according to (2.8).

5. Next step
(a) If t < TMH then return to step 2.
(b) If t = TMH then break.

likelihoods may range from from smaller than the machine epsilon to larger than
the maximum floating point number. Using the log-likelihood function significantly
shrinks the range of values. Algorithms 1 and 2 can be reformulated to work with the
log-likelihood. The acceptance probability expressed in terms of the log-likelihood
is given by

logα := min (0, `(θ∗|y)− `(θt|y) + log π(θ∗)− log π(θt)) , (2.9)

and to determine if the proposal is accepted or not, we check if log u ≤ logα.
Finally, we note that when using MH for Bayesian inference it is important that

any proposal not within the support of the prior is rejected. Theoretically this
is ensured by the fact that for such proposals π(θ) = 0, yielding an acceptance
probability of α = 0. However, when working on the log-scale, this will yield an
undefined logα. Numerically, this is not an issue as it can be set to −∞, effectively
guaranteeing rejection.

2.3 Bayesian filtering
In this section we present the topic of Bayesian filtering. It is the process of estimat-
ing the states of a dynamic system, conditioned on observed noisy measurements of
those states. In this report we use three different kinds of filters: the Kalman filter,
the extended Kalman filter, and the Bootstrap filter. The Kalman filter is an exact
solution to the Bayesian Filtering equations for a linear dynamical system. The ex-
tended Kalman filters is an approximate Gaussian filter that extends to non-linear

9

2. Bayesian Inference

0 50 100 150 200 250 300

t

0

0.5

1

1.5

2

2.5

3

3.5

2.2 2.4 2.6 2.8 3 3.2 3.4

0

200

400

600

800

1000

1200

1400

Figure 2.2: MH run, with the target distribution being the posterior of µ for
Gaussian data, using a conjugate prior. The set up is the same as in the example
shown in Figure 2.1. The proposal distribution is U(µk − 0.5, µk + 0.5). In the
left-hand figure the trajectory of the chain is plotted, for the first 300 iterations.
The burn-in period is marked by a dotted line. Note the short periods in which the
function is constant. This equates to proposals being rejected. In the right-hand
plot, the histogram of 104 samples from MH, where the burn-in has been removed,
is shown. Compare this histogram to the true posterior in Figure 2.1.

dynamical systems. Finally, the bootstrap filter is a particle filter, and can be used
for non-linear systems and when the transition model is poorly approximated by a
Gaussian distribution, for example if it is multimodal or if it is not smooth.

2.3.1 State-space models

Discrete time filtering relies on so-called probabilistic state-space models. The general
form for such a model is

x0 ∼ p(x0), (2.10a)
xk ∼ p(xk|xk−1), k = 1, . . . , T, (2.10b)
yk ∼ p(yk|xk), k = 1, . . . , T. (2.10c)

We call x and y the hidden and measured states, respectively. Only the measured
states are observed, whereas the hidden states are unknown. At each time step, xk
and yk are vectors in RN and RM , respectively. We will use the notation x0:k =
(x0, . . . ,xk) to mean all states from time steps 0 to k. T is the final time step. Note
that y0 is not defined since x0 represents an initial state.

The distribution (2.10a) is the prior density of x0. It describes the initial state
of the system. The distribution (2.10b) is called the transition or dynamic model,
and describes the dynamics of the hidden states. The distribution (2.10c) is called
the measurement model and describes the distribution of the measured state given
the corresponding hidden state.

10

2. Bayesian Inference

Figure 2.3: Graph representation of a state-space model with dependencies out-
lined. The values x0, . . . , xT represent the hidden states and y1, . . . , yT represent
the measured states. We see that xk and yk are directly dependant on xk−1 and xk,
respectively.

State-space models are Markovian, meaning that the following properties hold:

p(xk|x0:k−1,y1:k−1) = p(xk|xk−1), (2.11a)
p(xk−1|xk:T ,yk:T) = p(xk−1|xk), (2.11b)
p(yk|x1:k,y1:k−1) = p(yk,xk). (2.11c)

Equation (2.11a) says that the distribution of xk conditioned on all previous hidden
and measured states, x0:k−1 and y1:k−1, only depends on the latest hidden state,
xk−1. This is similar to the traditional Markov property, with the inclusion that it
is also independent of the measured states. Similarly, equation (2.11b) states that
the distribution of xk−1 conditioned on all future hidden and measured states only
depends on the next hidden state. Finally, equation (2.11c) states that the distri-
bution of the measured state yk conditioned on all previous hidden and measured
states as well as the current hidden state, only depends on the current hidden state
[1, chapter 4]. Figure 2.3 shows a graph representation of the dependencies in a
state-space model.

In general, state-space models depend on some parameters θ. We elect not to
write out explicitly the conditioning on θ throughout this section, but all distribu-
tions presented should be regarded as implicitly conditioned on the parameters of
the model.

There are many different forms of state-space models. Among others, they include
the very popular Hidden Markov models, which are discrete-valued. However, we
will look exclusively at continuous-valued models with additive Gaussian noise. For
such models, the distributions (2.10b) and (2.10c) can be expressed as the recurrence
relations

xk = f(k − 1,xk−1) + qk−1, (2.12a)
yk = h(k,xk) + rk, (2.12b)

where the functions f : R×RN → RN and h : R×RN → RM are called transition and
measurement functions, respectively. The noise terms qk−1 ∼ N (0,Qk−1) and rk ∼
N (0,Rk) are zero-mean multivariate Gaussian random variables with covariance
matrices Qk−1 and Rk, respectively.

11

2. Bayesian Inference

0 10 20 30 40 50 60 70 80 90 100

k

-2

-1.5

-1

-0.5

0

0.5

1

x
Hidden state

Measured state

Filtered mean

Figure 2.4: Linear dynamical system with x0 = 0, P0 = 0, A = H = 1, Qk−1 =
0.12, and Rk = 0.52. The hidden states are shown in blue solid line, the measured
states are shown in red points. The filtered means from the KF are shown in gray
dotted line.

These kind of systems are sometimes referred to as dynamical systems. If either f
or h is nonlinear, we say that it is a nonlinear dynamical system, and if they are both
linear, we say that it is a linear dynamical system. In the linear case the equations
(2.12a) and (2.12b) simplify to

xk = Ak−1xk−1 + qk−1, (2.13a)
yk = Hkxk + rk, (2.13b)

where Ak−1 ∈ RN×N is called transition matrix and Hk ∈ RM×N is called measure-
ment matrix [1, chaper 4].

Two examples of one-dimensional state-space models are presented in Figures
2.4 and 2.5. In both cases the number of time steps is T = 100. The first model,
depicted in 2.4, is a linear dynamical system with A = H = 1, Q = 0.12 and
R = 0.52. This transition model describes a simple Gaussian random walk. The
hidden and measured states are shown on top of another, in blue solid line an red
points, respectively.

The second one, shown in 2.5, is a nonlinear dynamical system with f(x) =
x+ e−x, h(x) = ex, Q = 0.12 and R = 102. The same color coding was used for this
case, but the hidden and measured states have been split up into two separate plots
with different scales.

In both cases, the filtered means are also displayed in gray dotted line. These
are Bayesian point estimates for the hidden states, and can be obtained by solving
the Bayesian filtering equations, either exactly or approximately.

12

2. Bayesian Inference

0 20 40 60 80 100

k

0

1

2

3

4

5

x

Hidden state

Filtered mean

0 20 40 60 80 100

k

-20

0

20

40

60

80

100

120

y

Measured state

Figure 2.5: Nonlinear dynamical system with x0 = 0, P0 = 0, f(x) = x + e−x,
h(x) = ex, Q = 0.12 and R = 102. In the left-hand figure the hidden states are
shown in blue solid line and the filtered means are shown in gray dotted line. The
measured states are shown in red points in the right-hand figure.

2.3.2 Bayesian filtering equations
Given an observation y1:T of a state-space model, an obvious problem is to estimate
the hidden states x0:T . This can be done by solving the Bayesian filtering equations.
They are recursive formulas given by

p(xk|y1:k−1) =
∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1, (2.14)

p(xk|y1:k) = p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1)dxk

. (2.15)

Equation (2.14) gives us the so-called prediction distribution. It describes the
distribution of the next hidden state conditioned on all previous measured states.
The formula can be derived by marginalizing and by using the Markov property
(2.11a). If we also condition on the current measured state as in (2.15), we get
the so-called filtering distribution. It can be derived using Bayes’ theorem and the
Markov property (2.11c). In the linear case these have exact solutions given by the
Kalman filter. For nonlinear systems we can use approximate solutions to them,
such as the extended Kalman filter or particle filters. As a point estimate for the
hidden state at time k, we can use the mean of the filtering distribution [1, chapter
4].

Sometimes the distribution of interest is the marginal distribution p(y1:T). This is
relevant if you want to do Bayesian inference with MH, as this becomes the likelihood
function p(y1:T |θ) when we explicitly condition on the parameters of the model. It
can be obtained by filtering. First, it is decomposed in the following manner

p(y1:T) =
T∏
k=1

p(yk|y1:k−1). (2.16)

13

2. Bayesian Inference

Then, each contribution to this product can be computed in a similar manner to
the prediction distribution, by

p(yk|y1:k−1) =
∫
p(yk|xk)p(xk|y1:k−1)dxk. (2.17)

Again, in the linear case this has a closed form solution, otherwise we can use
approximate filters [1, chapter 12].

2.3.3 Kalman filter
The Kalman filter is the solution of the Bayesian filtering equations (2.14) and (2.15)
for a linear dynamical system (2.13a)-(2.13b), with Gaussian prior x0 = N (m0,P0).
It gives us the following exact posterior distributions

xk|y1:k−1 ∼ N (m̃k, P̃k) (2.18a)
xk|y1:k ∼ N (mk,Pk) (2.18b)

yk|y1:k−1 ∼ N (Hkm̃k,Sk) (2.18c)

where m̃k,mk, P̃k,Pk and Sk are calculated iteratively according to Algorithm 3.
The algorithm can be derived by using two fundamental lemmas concerning joint

and conditional distributions of multivariate Gaussian random variables. They are
included as Lemma 1 and 2 in Appendix A.1.

The first two steps (2.19a) and (2.19b) are called the prediction steps. They give
us the mean m̃k and covariance P̃k of the prediction distribution (2.18a). In (2.19a),
the next state is predicted by applying the deterministic part of the transition model
to the previously filtered mean.

The last four steps (2.19c)-(2.19g) are called the update steps or filtering steps.
The vector vk computed in (2.19c) is called the innovation and measures the dif-
ference between the observed measured state yk and the expected measured state
given the predicted mean. The matrix Sk is the measurement covariance or equiv-
alently the covariance of the innovation vk. In (2.19e), we compute the so-called
optimal Kalman gain Kk, which determines how much the innovation will affect the
filtering. In the next two steps (2.19f) and (2.19g), it is used to update the predicted
mean and covariance. This gives us the mean mk and covariance Pk of the filtering
distribution (2.18b) [1, chapter 4].

If the transition function is an affine transformation f(xk−1) = Ak−1xk−1 + uk−1
instead of a linear, we can still use the KF. We only need to replace step (2.19a)
with m̃k = Ak−1mk−1 + uk−1.

The marginal distribution p(y1:T) (or the likelihood p(y1:T |θ)) can be computed
as p(y1:T) = ∏T

k=1N (yk|Hkm̃k,Sk). Note that this computation is exact and not
an estimate.

Each iteration of KF involves several matrix multiplications and one matrix inver-
sion. The fastest known algorithms for both of these problems have a computational
complexity of O(N2.376), however in most implementations the time complexity is
O(N3). Thus, the complexity for filtering an observation y1:T of length T isO(TN3).
In other words, the complexity of KF has cubic growth with the state-space dimen-
sionality [15].

14

2. Bayesian Inference

In figure 2.4 an example of KF is shown. The true hidden states are shown in blue
solid line, whereas the filtered estimates are shown in gray dotted line. The model
that is filtered is a simple Gaussian random walk model described in section 2.3.1.
For this simple one-dimensional case, equations (2.19a)-(2.19g) can be simplified to

Predict m̃k = mk−1,

P̃k = Pk−1 +Q,

Update mk = m̃k + P̃k

P̃k +R
(yk − m̃k),

Pk = P̃k −
P̃ 2
k

P̃k +R
.

Algorithm 3 Kalman filter (KF)
Input: m0,P0,y1:T
Output: m̃1:T ,m1:T , P̃1:T ,P1:T ,S1:T ,

1. Initial state and covariance m0,P0
2. For k = 1, . . . , T

(a) Predict mean
m̃k = Ak−1mk−1 (2.19a)

(b) Predict covariance
P̃k = Ak−1Pk−1AT

k−1 + Qk−1 (2.19b)
(c) Innovation vector

vk = yk −Hkm̃k (2.19c)
(d) Innovation covariance

Sk = HkP̃kHT
k + Rk (2.19d)

(e) Kalman gain
Kk = P̃kHT

kS−1
k (2.19e)

(f) Update mean
mk = m̃k + Kkvk (2.19f)

(g) Update covariance
Pk = P̃k −KkSkKT

k (2.19g)

2.3.4 Extended Kalman filter
For a non-linear system (2.12a)-(2.12b), the Bayesian filtering equations do not have
a closed form solution. However, under certain assumptions we can use a filter called
the extended Kalman filter (EKF). It gives an approximate solution to the Bayesian
filtering equations, by using local linearization techniques to apply the same steps
as in the KF.

The method is presented in Algorithm 4. The results are approximate Gaussian
posterior distributions of the same form as (2.18a)-(2.18c). The derivation of the

15

2. Bayesian Inference

EKF is similar to the one made for the KF, except we utilize approximate Gaussian
joint distributions given by Approximation 1 in Appendix A.1, instead of the exact
lemmas used to derive the KF. These approximations are constructed by first order
Taylor expansions of the transition and measurement functions around the estimated
posterior means of the previous iteration.

Comparing the steps of the EKF (2.20a)-(2.20g) with the KF, we see that the
major differences is that in the prediction step (2.20a) and in the computation of
the innovation vector (2.20c), states are propagated via the nonlinear functions f
and h instead of via linear transforms. Moreover, the matrices A and H have been
replaced by the Jacobian matrices Fx(mk−1) and Hx(m̃k) in the computations of
the covariances, (2.20b) and (2.20d), and the Kalman gain (2.20e).

Just like for the KF, the computational complexity of the matrix operations in
EKF is O(N3). However, the evaluation of the functions f and h, as well as the
Jacobian matrices Fx and Hx, can potentially be of higher complexity. Thus, the
best case complexity of EKF is O(TN3) [15].

An example of EKF is visualized in Figure 2.5. The model is described in section
2.3.1. In this one-dimensional case the Jacobian matrices are reduced to just the
derivatives. We get f ′(x) = 1− e−x and h′(x) = ex.

Algorithm 4 Extended Kalman filter (EKF)
Input: m0,P0,y1:T
Output: m̃1:T ,m1:T , P̃1:T ,P1:T ,S1:T

1. Initial state and covariance m0,P0
2. For k = 1, . . . , T

(a) Predict mean
m̃k = f(mk−1) (2.20a)

(b) Predict covariance
P̃k = Fx(mk−1)Pk−1FT

x (mk−1) + Qk−1 (2.20b)
(c) Innovation vector

vk = yk − h(m̃k) (2.20c)
(d) Innovation covariance

Sk = Hx(m̃k)P̃kHT
x (m̃k) + Rk (2.20d)

(e) Kalman gain
Kk = P̃kHT

x (m̃k)S−1
k (2.20e)

(f) Update mean
mk = m̃k + Kkvk (2.20f)

(g) Update covariance
Pk = P̃k −KkSkKT

k (2.20g)

16

2. Bayesian Inference

2.3.5 Particle filter
If either the transition or measurement model is not approximated well by a Gaussian
approximation, then the EKF will perform badly. In such cases we can use a particle
filter. Particle filters are Monte Carlo methods in which the basic idea is to generate
new samples of the hidden states and weigh them based on how close to the observed
data y1:T they are. Thus, we will be able to produce Monte Carlo approximations
to the distributions mentioned above.

Imagine that we want to compute the expected value of a function g(x) of a
random variable x, given some observed data y. The Monte Carlo approximation
of this is

E(g(x)|y) =
∫

g(x)p(x|y)dx ≈ 1
n

n∑
i=1

g(ξi),

where ξi ∼ p(x|y), for i = 1, . . . , n. If the distribution p(x|y) is hard to sample
from, we can use a technique called importance sampling where we instead sample
from an importance distribution q(x|y). The samples are then weighed in the Monte
Carlo approximation to account for that they come from another distribution. The
approximation is then

E(g(x)|y) =
∫

g(x)p(x|y)dx =
∫

g(x)p(x|y)
q(x|y)q(x|y)dx ≈

≈ 1
n

n∑
i=1

g(ξi)
p(ξi|y)
q(ξi|y) =

n∑
i=1

wig(ξi),

where ξi ∼ q(x|y) and wi = 1
n
p(ξi|y)
q(ξi|y) , for i = 1, . . . , n. Although we avoid sampling

from p(x|y), we still need to evaluate this density, which might also be hard. To
avoid this, we use Bayes’ theorem to get

E(g(x)|y) =
∫

g(x)p(x|y)dx =
∫

g(x) p(y|x)p(x)∫
p(y|x′)p(x′)dx′

dx =

=
∫

g(x)p(y|x)p(x)
q(x|y) q(x|y)dx∫ p(y|x′)p(x′)

q(x′|y) q(x′|y)dx′
≈

1
n

∑n
i=1 g(ξi)

p(y|ξi)p(ξi)
q(ξi|y)

1
n

∑n
j=1

p(y|ξj)p(ξj)
q(ξj |y)

where ξi ∼ q(x|y), for i = 1, . . . , n. By letting vi = p(y|ξi)p(ξi)/q(ξi|y) and defining
the importance weights as wi = vi/

∑n
j=1 vj, we get

1
n

∑n
i=1 g(ξi)

p(y|ξi)p(ξi)
q(ξi|y)

1
n

∑n
j=1

p(y|ξj)p(ξj)
q(ξj |y)

=
∑n
i=1 vig(ξi)∑n

j=1 vj
=

n∑
i=1

wig(ξi).

Since this holds for any function g, another interpretation of the result is that we
form an empirical approximate distribution to the posterior distribution

p(x|y) ≈ p̂(x|y) =
n∑
i=1

wiδξi
(x),

where δξi
= δ(x− ξi) is the Dirac delta function centered in ξi.

17

2. Bayesian Inference

For a general state-space model on the form (2.10a)-(2.10c), importance sampling
can be performed sequentially to get Monte Carlo approximations to the Bayesian
filtering equations (2.14)-(2.15). The method is called sequential importance sam-
pling (SIS) and is shown in Algorithm 5. It is a particle filter. We consider n particles
(ξ(i)
k)ni=1 propagating over time k = 0, . . . , T . For each particle and each time step

there is an associated weight w(i)
k . These produce the following approximation to

the filtering distribution

p(xk|y1:k) = p̂(xk|y1:k) ≈
n∑
i=1

w
(i)
k δξ(i)

k

(xk).

The algorithm starts by sampling the initial states of the particles ξ(i)
0 ∼ p(x0)

from the prior distribution. The initial weights are uniform. For each subsequent
time step, we sample from the importance distribution q(x0:k|y1:k), via the construc-
tion

q(x0:k|y1:k) = q(xk|x0:k−1,y1:k)q(x0:k−1|y1:k−1).
Thus, we can simply propagate each particle according to the conditional importance
distribution q(xk|ξ(i)

0:k−1,y1:k). The new weights are computed by the recursive for-
mula

v
(i)
k = w

(i)
k−1

p(yk|ξ(i)
k)p(ξ(i)

k |ξ
(i)
k−1)

q(ξ(i)
k |ξ

(i)
0:k−1,y1:k)

, i = 1, . . . , n,

and then normalized so they sum to 1, i.e w(i)
k = v

(i)
k /

∑n
j=1 v

(j)
k [1, chapter 7].

If we want to approximate the marginal distribution p(y1:T) (or the likelihood
p(y1:T |θ)), we can do so by inserting

p(yk|y1:k−1) ≈ p̂(yk|y1:k−1) =
n∑
i=1

v
(i)
k ,

into equation (2.16), where v(i)
k are taken before normalization has been performed

[1, chapter 12]. This approximation is obtained by Monte Carlo integrating

p(yk|y1:k−1) =
∫
p(yk|xk)p(xk|y1:k−1)dxk =

=
∫
p(yk|xk)p(xk|xk−1)p(xk−1|y1:k−1)dxk−1:k.

Intuitively, we can think of SIS as sampling new solutions to the transition model,
that are guided by the measured states y1:T via the importance distribution. The
paths of the particles are then weighed, based on how likely they are to produce y.

SIS have some issues, the largest being something called particle degeneracy.
This happens when the particles have weights that are near zero, which makes
the approximation worse. To alleviate this problem we introduce the sequential
importance resampling algorithm (SIR), presented in Algorithm 6. At the end of
an iteration, we resample n times with replacement from the empirical distribution
on the discrete set {ξ(i)

k }ni=1 with probabilities given by the weights w(1)
k , . . . , w

(n)
k .

Thus, particles with low weights are likely to be discarded, and particles with high
weights are likely to be picked more than once. After this has been done the weights

18

2. Bayesian Inference

must be reset uniformly, to account for the resampling. Resampling can be done
either at each step, periodically or when needed.

There are two things that must be chosen in a particle filter: the number of
particles and the importance distribution. It is common to choose a Markovian
importance distribution, by which we mean that q(xk|x0:k−1,y1:k) = q(xk|xk−1,y1:k).
Taking q(xk|xk−1,y1:k) = p(xk|xk−1,yk) gives us the optimal importance distribution
in terms of variance of the importance weights [16, chapter 3]. For more on the
optimal importance distribution, see Appendix A.2.

In Algorithm 7 we present the bootstrap filter (BF). It is a variation of SIR, for
a particularly simple importance distribution, q(xk|xk−1,y1:k) = p(xk|xk−1). This is
the state transition density and it is independent of y1:k. This choice also simplifies
the weight formula to be just the measurement density p(yk|xk). Since the impor-
tance distribution does not take the observed data into account, the particles are
essentially propagated blindly. This leads to more unstable approximations. There-
fore, resampling is done at each step and more particles are usually required than
with other particle filters. However, this is compensated by the relative simplicity
of the algorithm [1, chapter 7].

Choosing the number of particles can be a difficult task. It is clear that as we
increase the number of particles, the approximations get better. However, this leads
to an increased complexity. In general, the number of particles required grows expo-
nentially with the dimension N of the system, giving particle filter a computational
complexity of O(λN), for some λ > 0 [15]. In practice, the number of particles
depends highly on the given model and is often tuned manually.

When using particle filters for likelihood computation in MH, it has been sug-
gested that the number of particles should be chosen so that the standard deviation
of the log-likelihood estimate should be in the range [0.5, 1.5]. This would give an op-
timal balance between computational time for the particle filter and the acceptance
rate of MH [17].

19

2. Bayesian Inference

Algorithm 5 Sequential importance sampling (SIS)
Input: y1:T , n
Output: (ξ(i)

0:T)ni=1, (w
(i)
0:T)ni=1,

1. Draw n initial samples (ξ(i)
0)ni=1 from the initial prior distribution.

ξ
(i)
0 ∼ p(x0), i = 1, . . . , n. (2.21)

2. Set initial weights uniformly, w(i)
0 = 1

n
, i = 1, . . . , n.

3. For k = 1, . . . , T
(a) Propagate samples according to the importance distribution.

ξ
(i)
k ∼ q(xk|ξ(i)

0:k−1,y1:k), i = 1, . . . , n. (2.22)

(b) Compute weights according to the weight formula

v
(i)
k = w

(i)
k−1

p(yk|ξ(i)
k)p(ξ(i)

k |ξ
(i)
k−1)

q(ξ(i)
k |ξ

(i)
0:k−1,y1:k)

, i = 1, . . . , n. (2.23)

(c) Compute the normalized weights w(i)
k = v

(i)
k∑n

i=j
v

(j)
k

, i = 1, . . . , n.

Algorithm 6 Sequential importance resampling (SIR)
Input: y1:T , n
Output: (ξ(i)

0:T)ni=1, (w
(i)
0:T)ni=1,

1. Draw n initial samples (ξ(i)
0)ni=1 from the initial prior distribution.

ξ
(i)
0 ∼ p(x0), i = 1, . . . , n. (2.24)

2. Set initial weights uniformly, w(i)
0 = 1

n
, i = 1, . . . , n.

3. For k = 1, . . . , T
(a) Propagate samples according to the importance distribution.

ξ
(i)
k ∼ q(xk|ξ(i)

0:k−1,y1:k), i = 1, . . . , n. (2.25)

(b) Compute weights according to the weight formula

v
(i)
k = w

(i)
k−1

p(yk|ξ(i)
k)p(ξ(i)

k |ξ
(i)
k−1)

q(ξ(i)
k |ξ

(i)
0:k−1,y1:k)

, i = 1, . . . , n, (2.26)

(c) Compute the normalized weights w(i)
k = v

(i)
k∑n

j=1 v
(i)
k

, i = 1, . . . , n.

(d) Resample n times with replacement from the discrete distribution on
{ξ(i)

k }ni=1 with probabilities given by the weights w(1)
k , . . . , w

(n)
k .

(e) Reset the weights uniformly, w(i)
k = 1

n
, i = 1, . . . , n.

20

2. Bayesian Inference

Algorithm 7 Bootstrap Filter (BF)
Input: y1:T , n
Output: (ξ(i)

0:T)ni=1, (w
(i)
0:T)ni=1,

1. Draw n initial samples (ξ(i)
0)ni=1 from the initial prior distribution.

ξ
(i)
0 ∼ p(x0), i = 1, . . . , n. (2.27)

2. Set initial weights uniformly, w(i)
0 = 1

n
, i = 1, . . . , n.

3. For k = 1, . . . , T
(a) Propagate samples according to the state-transition model.

ξ
(i)
k ∼ p(xk|ξ(i)

k−1), i = 1, . . . , n. (2.28)

(b) Compute weights according to the measurement model

v
(i)
k = p(yk|ξ(i)

k), i = 1, . . . , n, (2.29)

(c) Compute the normalized weights w(i)
k = v

(i)
k∑n

j=1 v
(i)
k

, i = 1, . . . , n.

(d) Resample from the discrete distribution on {ξ(i)
k }ni=1 with probabilities

given by the weights w(1)
k , . . . , w

(n)
k .

(e) Reset the weights uniformly, w(i)
k = 1

n
, i = 1, . . . , n.

21

2. Bayesian Inference

22

3
Models

As stated above, the purpose of this project is to do Bayesian parameter inference
in probabilistic state-space models of the form given by (2.12a)-(2.12b). In this
chapter we present the models that we use for our experiments. The models are all
derived from discretizations of stochastic differential equations, but exhibit different
properties.

3.1 Stochastic differential equations
Stochastic differential equations (SDE) describe the dynamics of a continuous-time
system with random perturbations. There are many different definitions of SDEs,
but the most famous one is the Itô formulation. The general form is

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (3.1)

where Wt is the standard Wiener process in RN . The function b : R × RN → RN

is called the drift coefficient and the function σ : R × RN → RN×N is called the
diffusion coefficient. Equation (3.1) is convenient notation for the integral equation

Xt = Xt0 +
∫ t

t0
b(s,Xs)ds+

∫ t

t0
σ(s,Xs)dWs. (3.2)

Here, the first integral is a Lebesgue integral and the second one is an Itô integral.
By a solution to (3.1) we mean a stochastic process Xt satisfying the integral

equation (3.2). We call such a solution an Itô diffusion. It exists if the functions b
and σ fulfill some conditions, for example linear growth and Lipschitz with regards
to the spatial variable, uniformly in time [18].

In some special cases there exists closed form analytical solutions to (3.1). How-
ever, for most SDEs this is not the case and numerical approximations are required.
The most basic numerical approximation method is the Euler-Maruyama method.
The Euler-Maruyama approximation of (3.1) reads

xk = xk−1 + b(tk−1,xk−1)∆tk−1 + σ(tk−1,xk−1)∆Wk−1, (3.3)

where ∆tk−1 = tk − tk−1 and ∆Wk−1 = Wk −Wk−1 ∼ N (0,∆tk−1I). In the ODE
setting σ = 0, the Euler-Maruyama method simplifies to the Euler method [19].

We recognise (3.3) as a transition model of the form (2.10b). Moreover, if we as-
sume the diffusion coefficient matrix σ to be independent of Xt, we get the transition
model of a nonlinear dynamical system (2.12a).

23

3. Models

To get a full state-space model, we include a general measurement model with
additive noise. The result is

xk = xk−1 + b(tk−1,xk−1)∆tk−1 + σ(tk−1)∆Wk−1,

yk = h(k,xk) + rk,

where our transition function is f(k − 1,xk−1) = xk−1 + b(tk−1,xk−1)∆tk−1, and
the transition noise is qk−1 = σ(tk−1)∆Wk−1 ∼ N (0,σ(tk−1)σT (tk−1)∆tk−1). The
measurement function h can be any function and the measurement noise is rk ∼
N (0, Rk). We limit ourselves to SDEs where b and σ are independent of t and we
only consider constant time steps ∆t.

3.2 The Ornstein-Uhlenbeck process
The first model we consider is a one-dimensional Ornstein-Uhlenbeck (OU) process.
It is the simplest model that we work with. The SDE that describes such a process
is

dXt = −β(Xt − α)dt+ σdWt, (3.4)

where β > 0, α ∈ R and σ > 0 are constants. It has the exact solution

Xt = Xt0e
−β(t−t0) + α(1− e−β(t−t0)) + σ

∫ t

t0
e−β(t−s)dWs.

The solution consists of a deterministic part and an Itô integral. The expected value
of the solution is E(Xt) = Xt0e

−β(t−t0) + α(1 − e−β(t−t0)), which corresponds to the
solution in the deterministic case. We see that the process converges in expected
value to α. It is therefore called a mean reverting process, as the further away it
is from the steady state α the stronger it is pulled towards it. The parameter β
determines the rate of mean reversion.

Another parameterization of the same model, with γ = αβ, is

dXt = −βXtdt+ γdt+ σdWt. (3.5)

If we discretize this equation using the Euler-Maruyama method we get

xk = xk−1 − βxk−1∆t+ γ∆t+ σ∆Wk−1. (3.6)

Coupling this with a simple measurement model yk = xk + rk, rk ∼ N (0, R), we get
a state-space model. It is not quite a linear dynamical system, as the deterministic
part of the transition model is an affine function. However, given some adjustments
the Kalman filter can be applied to this kind of system as well.

In our experiments, the unknown parameters are β, γ and σ. The variance R of
the measurement noise is considered fixed. A sample path of the Ornstein-Uhlenbeck
process is shown in Figure 3.1. The parameters are γ = 2, β = 0.1, σ = 0.01. The
number of time steps is T = 100 and the step length is ∆t = 1. The measurement
noise had the variance R = 0.12. The blue graph represents the hidden states,
whereas the red graph represents the measured states.

24

3. Models

0 20 40 60 80 100
k

6

8

10

12

14

16

18

20

x,
y

x
y

Figure 3.1: Sample path of an Ornstein-Uhlenbeck process, with γ = 2, β = 0.1,
σ = 0.1, T = 100 and ∆t = 1. The hidden state is shown in blue and the measured
state is shown in red.

3.3 A linear spring-mass system

The second model we consider is a particular instance of the linear dynamical sys-
tem, that can easily be scaled to higher dimensions. We call this model the linear
spring-mass (LSM) system. The model describes the motion ofM masses connected
sequentially by springs. Their movement is determined by the following ODE

mip̈i + (ci + ci+1)ṗi + ki(pi − pi−1) + ki+1(pi − pi+1) = 0, i = 1, . . . ,M, (3.7)

where pi is the position of the ith mass relative to its steady state. The chain of
masses is connected to fix walls at each end. Mathematically, this is expressed as
p0 = pM+1 = 0. The parameters of the model are the masses m1, . . . ,mM , stiffness
constants k1, . . . , kM+1 and damping constants c1, . . . , cM+1, all of which are assumed
positive. A graphical representation of the system is presented in figure 3.2.

By letting x = (p1, . . . , pM , ṗ1, . . . , ṗM)T , we can rewrite the second-order equa-
tion as a first-order equation

ẋ = Ax,

where

A =
[
0M×M IM×M
A21 A22

]
, (3.8)

25

3. Models

and

A21 =


−k1+k2

m1
k2
m1

k2
m2

.

. kN

mN−1
kM

mM
−kM +kM+1

mM

 , A22 =


− c1+c2

m1 . . .
− cM +cM+1

mM

 .

If we add a noise term, we get a stochastic differential equation

dXt = AXtdt+ σdWt. (3.9)

The diffusion coefficient matrix σ is assumed to be constant and of the form

σ =
[
σ1IM×M 0M×M
0M×M σ2IM×M

]
, (3.10)

where σ1, σ2 ≥ 0 are the variances of the noise on the positions and velocities,
respectively.

The formal solution to (3.9) is

Xt = eA(t−t0)Xt0 + σ
∫ t

t0
eA(t−s)dWs.

Note that eA is the matrix exponential function. The solution is similar to the solu-
tion (3.2) for the one-dimensional OU process. In fact, (3.9) describes a multivariate
OU process with stationary mean 0.

If we assume that all parameters of the same type are equal, i.e. the masses
mi = m for i = 1, . . . ,M , and the stiffness constants ki = k and the damping
constants ci = c for i = 1, . . . ,M + 1, we get a simplified model where

A21 = k

m


−2 1
1

. 1
1 −2

 , A22 = −2c
m

IM×M . (3.11)

We see that there are multiple choices of m, k and c which give equivalent systems.
Therefore, in this case we consider the masses to be known and equal to 1.

Discretizing (3.9) using the Euler-Maruyama method and adding a linear mea-
surement model with additive noise gives us a linear dynamical system

xk = (I + A∆t) xk−1 + σ∆Wk−1,

yk = xk + rk,

where σ∆Wk−1 ∼ N (0,σ2∆t) and rk ∼ N (0,R). We choose R = RI to be a
constant diagonal matrix. In Figure 3.3 a sample path of the LSM system is shown.

26

3. Models

3.4 A cubic spring-mass system
The linear spring-mass system (3.7) can be generalized by adding a cubic term. We
call this new model the cubic spring-mass (CSM) system. The new equation is

mip̈i + (ci + ci+1)ṗi + hi(pi − pi−1) + hi+1(pi − pi+1) = 0, i = 1, . . . , N, (3.12)

where hi(p) = kip− lip3. The nonlinear functions hi replaces the stiffness constants
of each spring in the linear model. The coefficients ki fill the same role as the stiffness
constants ki in the linear model. However, the cubic terms decrease the effective
stiffness of the springs. If all the coefficients li are zero, then the model reduces to
the linear model. Using the same reparameterization as for the linear spring-mass
system, we get a first order equation ẋ = b(x), where

b(x) =



xM+1
...

x2M
− 1
m1

(h1(x1) + h2(x1 − x2) + (c1 + c2)xM+1)
− 1
m2

(h2(x2 − x1) + h3(x2 − x3) + (c2 + c3)xM+2)
...

− 1
mM−1

(hM−1(xM−1 − xM−2) + hM(xM−1 − xM) + (cM−1 + cM)x2M−1)
− 1
mM

(hM(xM − xM−1) + hM+1(xM) + (cM + cM+1)x2M)


(3.13)

or written differently

b(x) = Ax +



0
...
0

1
m1

(l1x3
1 + l2(x1 − x2)3)

1
m2

(l2(x2 − x1)3 + l3(x2 − x3)3)
...

1
mM−1

(lM−1(xM−1 − xM−2)3 + lM(xM−1 − xM)3)
1

mM
(lM(xM − xM−1)3 + lM+1x

3
M)


, (3.14)

where A is the same matrix as for the linear spring-mass system, given by (3.8).
Analogous to the linear spring-mass system, we turn the ODE into an SDE by

adding a noise term of the same form

dXt = b(Xt) + σdWt. (3.15)

As opposed to the linear spring-mass system, this equation does not have a closed-
form solution. We must therefore use numerical methods to solve it. After dis-
cretization and adding a measurement model we get a nonlinear dynamical system

xk = xk−1 + b(xk−1)∆t+ σ∆Wk−1,

yk = xk + rk.

27

3. Models

Figure 3.2: Schematics of the system described by (3.7). M masses with mass
m1, . . . ,mM connected sequentially by springs with stiffness constants k1, . . . , kM+1
and damping constants c1, . . . , cM+1.

In order to apply the EKF to an observation of this system, the Jacobian matrix
of the transition and measurement functions are needed. The full transition function
is f(x) = x + b(x)∆t. Its Jacobian matrix is

Fx(x) = I + A∆t+
[
0M×M 0M×M
B(x) 0M×M

]
∆t,

where

B(x) = 3


1

m1
(l1x2

1 + l2(x1 − x2)2) − l2
m1

(x1 − x2)2

− l2
m2

(x2 − x1)2
. . .

. . .

. . .
. . . − lM

mM−1
(xM−1 − xM)2

− lM
mM

(xM − xM−1)2 1
mM

(lM (xM − xM−1)2 + lM+1x2
M)

 .

The chosen measurement function is the identity map h(x) = x, and its Jacobian is
simply Hx(x) = I.

Again, for our experiments we consider a simplified version of the model where
all parameters of the same type are equal, i.e. mi = m for i = 1, . . . ,M , ki = k,
li = l, ci = c for i = 1, . . . ,M + 1. Furthermore, we consider the mass, and the
covariances as known and fixed. The final parameters of the model are k,l and c.

28

3. Models

0 100 200 300 400 500
t

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

x

0 100 200 300 400 500
t

−4

−2

0

2

4

y

(a)

0 100 200 300 400 500
t

−6

−4

−2

0

2

4

6

x

0 100 200 300 400 500
t

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

y

(b)

Figure 3.3: Sample path of the linear sping-mass system with k = 5, c = 0.1,
m = 1, σ1 = 0, σ1 = 10, R = 1, M = 4, T = 500 and ∆t = 0.01. The left-hand
plots of Figure 3.3a and Figure 3.3b show the positions and velocities of the masses,
respectively. Each graph represents one of the 4 masses. The right-hand plots show
the corresponding noisy measurements. 3.3b

29

3. Models

30

4
Artificial neural networks

An artificial neural network is a model mainly used for regression and classification.
The network is a structure made up of individual nodes and associated weights
and biases which forwards input, and outputs a response value. It is sometimes
thought of as a simplistic digital model for the biological neural activities of the
brain. According to the universal approximation theorem, for any given tolerance
level there exist a neural network which can approximate a given continuous function
f on a compact subset of Rn with an absolute error smaller than this tolerance level.

Most commonly, a neural network will initially have randomised weights and
biases. To properly map the input on the desired output, the network must be
trained with some optimisation algorithm. This is called deep learning. For this
project, we consider a feedforward neural network trained using the Adam optimiser,
a stochastic gradient descent algorithm. It is the most commonly used network for
regression purposes.

4.1 Feedforward neural network

In a feedforward neural network, the input is propagated through a number of layers.
Each layer is the composition of an affine transformation and a nonlinear so-called
activation function. We consider neural networks with vector inputs.

For a neural network with L ≥ 1 number of layers of sizes n1, . . . , nL, each layer
i ∈ {1, . . . , L} has a weight matrix Wi ∈ Rni×ni−1 and a bias vector bi ∈ Rni

associated with it. Each layer also has an associated activation function fi : Rni 7→
Rni which enables nonlinear relations to be approximated. The output vectors from
each layer are known as activations ai ∈ Rni and are defined as

ai := Fi(ai−1) = fi(Wiai−1 + bi),

where the functions Fi are called layer maps. Note that the first activations are
defined via the input x ∈ Rn0 to the first input layer a0 := x. The output from the
neural network can thus be defined as

y := (FL ◦ . . . ◦ F1)(x).

We define the composition of the layer maps F := FL ◦ . . . ◦ F1 as the neural
network function, which maps the input to the output.

31

4. Artificial neural networks

4.2 Activation function
As previously mentioned, the network makes use of activation functions at every
layer. The simplest activation function is the identity function. This function simply
propagates the linear relationships formed in the layer. For the neural network to
learn nonlinear relations, nonlinear activation functions are required. We utilise the
most commonly used activation function, the rectifier activation function (ReLU)

f(x) = max(0,x), (4.1)

which simply maps the output element-wise onto itself for positive contributions and
zero elsewhere. Most activation functions are continuous and differentiable almost
everywhere, which is required for the gradient calculation in the backpropagation
algorithm. The gradient is used during the stochastic gradient descent which aims
to minimise the loss described by a certain loss function.

4.3 Loss function
Consider a training set Ξ of tuples on the form (x, y) of corresponding input x and
output y. There are various different loss functions, each with their own particular
use. In this work, we utilise the mean smoothed L1 loss function over this set as

C(Ξ) := 1
|Ξ|

∑
(x,y)∈Ξ

L1;smooth(x, y), (4.2)

where L1;smooth is defined as

L1;smooth(x, y) :=


1
2 |y −F(x)|, if |y −F(x)| ≥ 1,
|y −F(x)|2 − 1

2 , if |y −F(x)| < 1.
(4.3)

The mean smoothed L1 loss has the advantage of not having quadratic scaling of
the errors, which can cause issues with outputs of varying sizes [20]. However, it is
differentiable near the center as opposed to regular L1 loss.

4.4 Stochastic gradient descent
Stochastic gradient descent (SGD) is a family of algorithms for updating the weights
and biases in a neural network in an effort to minimise a loss function. These
algorithms are greedy, which means that they take locally optimal steps at each
stage. When learning, SGD makes iterative updates to the weights and biases in the
directions derived from the gradient of the loss function. The method for updating
the direction is decided by the optimiser.

Consider the set of all weights and biases

ω := (W1, . . . ,WL,b1, . . . ,bL). (4.4)

32

4. Artificial neural networks

The backpropagation algorithm produces the estimates recursively for the gradi-
ent gt at iteration step t, defined as

gt := ∂C

∂ω
. (4.5)

The stochasticity is introduced through considering subsets of the data, often
referred to as minibatches. The gradients are calculated for different subsets of Ξ
and the average gradient is obtained, which is more robust in training. The optimiser
then proceeds to form an update direction from the gradient gt with the learning
rate η and updates the weights and biases, for a given number of epochs. An epoch
is defined as the amount of times all minibatches have been used to make an update
step. In this report we use the Adam optimiser.

4.5 Adam optimiser
The Adam optimiser is an adaptive optimisation scheme which utilises the moving
averages of the gradient estimated at each iteration [21]. It makes use of the first
and second moments in proportion to the specification parameters 0 ≤ β1 ≤ 1 and
0 ≤ β2 ≤ 1 respectively. For the gradient gt at iteration t, the first and second
moments, mt and vt are updated according to

mt := β1mt−1 + (1− β1)gt, (4.6)
vt := β2vt−1 + (1− β2)g2

t . (4.7)

Note that g2
t is produced as an element-wise multiplication of two gt. Note also

that mt and vt are biased estimators of gt and g2
t . We correct these biases with the

following update

m̂t := mt

1− βt1
, (4.8)

v̂t := vt
1− βt2

. (4.9)

Consider using the learning rate η and a small constant ε, to avoid division by
zero, whereafter the parameters are updated according to

ωt := ωt−1 − η
m̂t√
v̂t + ε

. (4.10)

The parameters β1 and β2 along with η decide how much the most recent gradient
should be taken into consideration. In saddle points and other difficult regions with
regards to convergence, it may be good to have high values of β1 and β2 along with
a small η. There are some known default values which work in most situations but
it is also possible to make hyperparameter optimisation, where the best values are
deduced for the specific neural network structure and datasets considered.

33

4. Artificial neural networks

4.6 Hyperparameter optimisation
In our hyperparameter optimisation scheme we consider the Tree Parzen Estimator
[22]. It is a greedy algorithm based on the notion of expected improvement.

Define the space of hyperparameters as X and denote an element x in this set as a
choice of hyperparameters. We define a fitness function f : X → R which we aim to
maximise. A sound fitness function is the negative of the L1;smooth produced by the
neural network. Proceed by introducing the probability of producing fitness value y
by considering a hyperparameter x ∈ X as a function of the history H, via pH(y|x).
The history H contains all previously considered hyperparameters {xi}ni=1 and their
corresponding fitness values {f(xi)}ni=1. Define a threshold y∗H as a function of the
history H such that P (y < y∗H) = γ, for some quantile γ ∈ (0, 1).

Consider the definition of the Expected Improvement measure for history H

EIH(x) =
∫
R

max(y∗H − y, 0) pH(y|x)dy.

This measure estimates the expectation of producing a fitness value above y∗H as a
function of a hyperparameter choice x ∈ X and our history H. However, we now
utilise Bayes’ theorem (2.1) to obtain

pH(y|x) = pH(x|y)p(y)
pH(x) ,

where we define

pH(x|y) =

lH(x) if y < y∗H,

gH(x) if y ≥ y∗H.

The function lH(x) is the density formed from the observations {xi}ni=1 such that
f(xi) < y∗H and gH(x) is the density formed from the remaining ones. The distribu-
tions lH and gH are fitted to the data H using user-selected family of distributions.
Available distributions are uniform, log-uniform and categorical. For the specifics
regarding the implementation, see [23].

We derive the marginal distribution of x via

pH(x) =
∫
R
pH(x|y)p(y)dy =

∫ y∗H

−∞
pH(x|y)p(y)dy +

∫ ∞
y∗H

pH(x|y)p(y)dy

= lH(x)
∫ y∗H

−∞
p(y)dy + gH(x)

∫ ∞
y∗H

p(y)dy = γlH(x) + (1− γ)gH(x).

Using Bayes’ formula (2.1), we rewrite the expression as

EIH(x) =
∫
R

max(y∗H − y, 0) pH(y|x) dy =
∫
R

max(y∗H − y, 0) pH(x|y)p(y)
pH(x) dy

=
∫ y∗H

−∞
(y∗H − y) lH(x)p(y)

pH(x) dy = lH(x)
pH(x)

∫ y∗H

−∞
(y∗H − y)p(y) dy

= γy∗HlH(x)− lH(x)
∫ y∗H
−∞ yp(y) dy

γlH(x) + (1− γ)gH(x) ∝x
(
γ + gH(x)

lH(x) (1− γ)
)−1

.

34

4. Artificial neural networks

This suggests that to obtain the x ∈ X with regards to history H we should max-
imise lH(x) and minimise gH(x). On each iteration, the value x∗ which maximises
the derived expression is obtained and added,alongside the estimated fitness value
f(x∗), to H. Note also that the choice of prior distribution p(y) is less important
for the convergence [22]. The algorithm thus iteratively maximises EIH(x), which
works as surrogate model for maximising f(x).

35

4. Artificial neural networks

36

5
Method

In this chapter, we present a deep-learning-accelerated adaptive Metropolis-Hastings
algorithm (AAMH) in which the log-likelihood is partly replaced by a neural network
driven surrogate log-likelihood function. It is presented in a setting of probabilistic
state-space models, but the general methodology is not restricted to this setting.
First we present a version of the AMH algorithm where the log-likelihoods are es-
timated by a Bayesian filter, which we refer to as the classic method or classic
Metropolis-Hastings (CMH). Then we present a scheme where the AMH algorithm
utilises a neural network which has trained on the proposed parameters and their as-
sociated log-likelihoods from an initial run using the aforementioned classic method.
We refer to this as the mixed method or mixed Metropolis-Hastings (MMH).

5.1 Metropolis-Hastings using Bayesian filters
Consider parameter inference for some unknown parameters of a state-space model.
Define the model parameters of interest as θ ∈ Rd, and an associated prior πΘ with
supp(πΘ) = Θ ⊆ Rd. Consider an observation y1:T generated from this model, with
the true parameters θ̃ ∈ Θ.

We are interested in using the AMH algorithm to sample from the resulting
posterior distribution p(θ|y1:T). During the algorithm, we must estimate the log-
likelihood value `(θ∗|y1:T) for every proposed parameter θ∗ ∈ Θ. For this purpose,
we propose three different Bayesian filters, each of which can be used to estimate
the log-likelihood via the general expression from (2.16) as

`(θ|y1:T) = log
(

T∏
k=1

p(yk|y1:k−1,θ)
)

=
T∑
k=1

log p(yk|y1:k−1,θ). (5.1)

The KF and the EKF estimate these values via an exact and an approximate
Gaussian density respectively, as

p(yk|y1:k−1,θ) ≈ N (yk|Hkm̃k, Sk), for k ∈ {1, . . . , T},

where Hk, m̃k, and Sk are quantities computed by the filter. The BF approximates
the expressions p(yk|y1:k−1) via Monte Carlo approximation

p(yk|y1:k−1,θ) ≈ 1
n

n∑
i=1

p(yk|ξ(i)
k ,θ), for k ∈ {1, . . . , T},

where ξ(i)
k denotes the ith particle at time k.

37

5. Method

As is explained in the AMH, Algorithm 2, one must provide an initial covariance
guess Σ0 and also a first sample guess θ0. The algorithm parameters sd and ε
presented in Section 2.2.1, are set to sd = 2.42/d and ε = 10−8. We also have the
parameters TC and ta, specifying the number of posterior samples to be produced
and the iteration at which the proposal function adaptation starts, respectively. The
method is presented it in Algorithm 8.

The algorithm returns the sampled posterior points (θk)TC
k=0. The last instance of

the covariance matrix ΣTC
is also returned since continuing the sampling can then

be done without going through another burn-in period. Note that during the run
we are also generating and outputting the collections of proposal (θ(t))TC

t=0 and their
associated log-likelihood values (`(θ(t)|y1:T))TC

t=0, which can then be used as training
data for fitting a surrogate log-likelihood. θ(k) is the proposal from iteration k of
the algorithm.

Algorithm 8 Classic Metropolis-Hastings using Bayesian filter (CMH)
Input y1:T , TC ,θ0,Σ0, ta
Output (θt)TC

t=0, (θ(t))TC
t=0, (`(θ(t)|y1:T))TC

t=0,ΣTC

1. Initialization
(a) Set initial sample θ0 and covariance Σ0
(b) Set t := 0.
(c) Calculate `(θ0|y1:T) according to (5.1).

2. Proposal
(a) Sample a proposal θ(t+1) ∼ gΣt(θ∗|θt).
(b) Calculate the associated log-likelihood `(θ(t+1)|y1:T) according to (5.1).
(c) Calculate the logarithm of the acceptance rate α according to (2.9)

logα := min
(
0, `(θ(t+1)|y1:T)− `(θt|y1:T) + log πΘ(θ(t+1) − log πΘ(θt)

)
.

3. Acceptance or rejection
(a) Draw a sample u ∼ U(0, 1).
(b) If log u ≤ logα then accept θ(t+1)

i. Set θt+1 := θ(t+1).
ii. Set `(θt+1|y1:T) := `(θ(t+1)|y1:T).

(c) If log u > logα then reject θ(t+1)

i. Set θt+1 := θt.
ii. Set `(θt+1|y1:T) := `(θt|y1:T).

4. Covariance
(a) Set t := t+ 1.
(b) If t < a, let Σt := Σt−1.
(c) If t = ta, calculate Σt := sd cov(θ0, . . . ,θt) + sdεId.
(d) If t > ta, calculate Σt recursively according to (2.8)

5. Next step
(a) If t < TC then return to step 2.
(b) If t = TC then break.

38

5. Method

Metropolis algorithm
via classical method

Data pre-
processing

Metropolis algorithm
via mixed method

Training Parameterization

,

,
,

Figure 5.1: Flow chart of the AAMH algorithm. An initial run using CMH pro-
duces the data Ξ, which is pre-processed to produce the training data Ξ̃. The
training data is used to parameterise a space Ω, centered around the data, and to
train the neural network. Then the algorithm proceeds with MMH, in which the
neural network acts as a surrogate log-likelihood estimator for proposals θ∗ ∈ Ω,
except for θ∗ /∈ Ω when a Bayesian filter is used.

5.2 Overview of the AAMH algorithm
We are now ready to present our proposed method. We call it the accelerated
adaptive Metropolis-Hasting algorithm (AAMH). The AAMH algorithm begins with
an initial run of CMH, where the log-likelihood function `(θ|y1:T) is estimated using
a Bayesian filter, see Algorithm 8. This produces a training data set Ξ of proposed
parameters and associated log-likelihoods. The data set Ξ is then pre-processed,
producing the training data set Ξ̃. A neural network is then trained on Ξ̃ and works
as a function approximator F(θ) of the log-likelihood for θ ∈ Ω.

We introduce the region Ω as an approximation of the space that the training
data set Ξ̃ spans. The region Ω is realised through a parameterization of the training
data set Ξ̃, along with a classification scheme for determining if θ ∈ Ω. Outside of
this region the log-likelihood is computed by Bayesian filtering.

The AAMH then proceeds with an adjusted AMH algorithm, which utilises a
mixed surrogate log-likelihood function presented in (5.4). This is called the mixed
Metropolis-Hastings (MMH) and is presented in Algorithm 9.

The whole procedure is presented in Algorithm 10. A visual overview of the steps
of the method is presented in Figure 5.1. Note that it is the full algorithm, including
the creation of the training data and fitting of the neural network, which is referred
to as AAMH, whereas the MMH only refers to the subroutine of running MH with
a surrogate log-likelihood.

We will now present the method in detail. First,we describe how the data is gener-
ated. Then we describe the training of the neural network and the parameterization
of the training data set. Lastly, we present the mixed method.

5.2.1 Generating and pre-processing the training data
We generate the training data Ξ through an initial run of CMH described in Algo-
rithm 8. Since we are using an adaptive proposal distribution, the proposals become
gradually more distributed according to the stationary distribution as the algorithm
goes on. The proposals along with their associated log-likelihoods are stored as tu-
ples (θ∗, `(θ∗|y)) ∈ Ξ. Note that this includes both rejected and accepted proposals.

39

5. Method

The run is sufficiently long for the algorithm to converge to the stationary dis-
tribution and to produce enough proposed parameters to constitute a training data
set. The required size of the data set might depend on how correlated the data is,
the dimension of Θ and the quality of the data (for example when using very few
particles in the BF).

Since the proposed parameters and log-likelihood values in Ξ constitutes raw
data, it needs to be processed. The first step involves removing the burn-in period
of the algorithm. The burn-in period can, in the unimodal case, be visually deduced
as the point in the algorithm where the trajectory plot has seemingly converged to
a relatively narrow strip. If the burn-in period accounts for the first tb iterations
of the CMH algorithm, the corresponding proposals θ(1), . . . ,θ(tb) are removed from
the data set.

The second step involves removing any outliers. We consider two kinds of outliers.
The first is proposals outside of Θ. These are removed as they will be rejected by
the prior distribution πΘ, regardless of their associated log-likelihood value. The
second one is proposals with extremely large negative log-likelihood values. These
are removed by systematically removing a set percentage of the most negative log-
likelihood values from the training data. In the end, we are left with a processed
training data set Ξ̃, which will be fed to the neural network.

5.2.2 Training the neural network
In the field of neural network, many times the design is a matter of intuition. In our
case, we aimed to impose certain properties to the neural network and we present a
design which takes some of the following properties in mind.

We first note that the dimension d of the domain Θ (which is also the input
dimension to F), is the number of dimensions to span. To properly account for
the interaction between all components, the neural network may need to be larger
for larger dimensions. Secondly, the state-space dimension N may lead to a more
complex and informative log-likelihood, which means that the function F may need
to learn to represent a more rapidly changing relationship.

These points leads us to consider a neural network design which increases in size
according to Figure 5.2. The input size is d. The size of the hidden layers are given
by b10

√
N dc, where b·c is the floor operation. The output size is one-dimensional

since it aims to approximate the univariate log-likelihood function.
The network is trained on the data set Ξ̃ using the Adam optimizer. The proposals

and log-likelihood values are mean centered and normalized, which often have a
positive impact on the training of the neural network.

5.2.3 Parameterization of the training region
The AMH algorithm utilises a Gaussian proposal distribution which has support on
the whole of Rd. This means that there is a chance of proposing parameters far
outside the region spanned by the training data set Ξ̃. The neural network will not
extrapolate well outside of this region. If log-likelihood values are systematically
poorly estimated outside of this region, the AMH may diverge or get stuck.

40

5. Method

ReLU ReLU

Figure 5.2: Illustration of the neural network structure considered in the project.
The number of nodes in each layer is listed as ni and the activation function (if any)
as fi for i = 1, . . . , 4. The values N and d denotes the state-space dimensionality of
the observation y, and the number of parameters in Θ respectively.

We want to define a region Ω that roughly covers the data set. To this end,
we assume that all the proposals come from one single multivariate Gaussian dis-
tribution with mean µΩ and covariance ΣΩ. These are estimated by the sample
mean and sample covariance, respectively. The data set Ξ̃ contains a subset of the
proposals originating from different multivariate Gaussian distributions, since the
proposal function gΣ changes during the course of the AMH. However, assuming that
the AMH have converged to the stationary distribution, the distribution should be
approximately Gaussian.

The Mahalanobis distance is a metric that measures how far a point is from the
mean of a Gaussian distribution. It is defined as

D(θ∗) = (θ∗ − µΩ)TΣ−1
Ω (θ∗ − µΩ). (5.2)

Under the Gaussian assumption the Mahalanobis distance is χ2
d-distributed with

d levels of freedom [24]. We can determine if a proposal θ∗ belongs to the distribution
N (µΩ,ΣΩ) with confidence level p by checking if

D(θ∗) ≤ χ2
d(p), (5.3)

where χ2
d(p) is the pth quantile of the χ2

d distribution. We define Ωp = {θ ∈
Rd|D(θ) ≤ χ2

d(p)}. This describes an ellipsoid centered in µΩ and with shape
determined by ΣΩ. By increasing p, we increase the size of the ellipsoid. In the
limiting case of p = 1, we get Ωp = Rd. See Figure 5.3 for an exemplification of the
parameterization of Ωp.

41

5. Method

-4 -2 0 2 4 6 8

-4

-2

0

2

4

6

8

0
.7

0.7

0.9

0.9

0
.9

0.99

0
.9

9

0.99

0
.9

9
0.999

0
.9

9
9

0.999

0
.9

9
9

0.9
99

0.7

0.75

0.8

0.85

0.9

0.95

Figure 5.3: Exemplification of Mahalanobis distances. The ellipsoids define the
region Ωp based on some confidence level p and a 2D training data set Ξ̃.

5.2.4 Metropolis via the mixed method

We define the mixed surrogate log-likelihood ˆ̀(θ|y) function, which utilises F only
for θ ∈ Ωp, according to

ˆ̀(θ|y) :=
{
F(θ) if θ ∈ Ωp,
`(θ|y) otherwise. (5.4)

The AMH algorithm is now continued using the surrogate log-likelihood ˆ̀(θ|y).
The adaptive covariance is started using ΣTC

from the previous run and the proposal
function is centered around the last accepted proposal θTC

. We call this the mixed
Metropolis-Hastings, and it is presented in Algorithm 9.

The mixed method utilises the surrogate log-likelihood ˆ̀(θ|y) which calls on the
neural network for proposals in Ωp. For this to be effective, it presupposes that
the region Ωp corresponds well to the stationary distribution, in other words the
posterior distribution. The contrary would imply that the algorithm leaves the
region Ωp and thus stops using the neural network as a surrogate log-likelihood.
The crucial feature of the AAMH algorithm is thus that, whenever θ∗ ∈ Ωp, we
compute the surrogate log-likelihood via deep learning prediction, rather than using
the possibly expensive filtering procedure.

The MMH is run until a satisfactory number, TM , of posterior samples are ob-
tained. The chain produced by the MMH can be merged with the chain from the
previous run of the CMH, to produce the final output of the AAMH (θt)TM +TC

t=0 .

42

5. Method

Algorithm 9 Mixed Metropolis-Hasting using surrogate log-likelihood (MMH)
Input y, TC , TM ,θTC

, `(θTC
|y),ΣTC

, µΩ,ΣΩ, p,F
Output (θt)TM +TC

t=TC

1. Initialization
(a) Set t := TC .
(b) Set θt := θTC

and Σt := ΣTC
.

(c) Set ˆ̀(θt|y1:T) := `(θTC
|y1:T).

2. Proposal and classification
(a) Sample a proposal θ(t+1) ∼ gΣt(θ∗|θt).
(b) Calculate the Mahalanobis distance of θ(t+1) (5.2)

D(θ(t+1)) = (θ(t+1) − µΩ)TΣ−1
Ω (θ(t+1) − µ).

(c) Determine if θ(t+1) ∈ Ωp with confidence level p (5.3)

D(θ(t+1)) ≤ χ2
d(p).

3. Log-likelihood estimation
(a) Calculate the associated surrogate log-likelihood

ˆ̀(θ(t+1)|y1:T) :=
{
F(θ(t+1)) if θ(t+1) ∈ Ωp,

`(θ(t+1)|y1:T) otherwise.

(b) Calculate the logarithm of the acceptance rate α according to (2.9)

logα := min
(
0, `(θ(t+1)|y1:T)− `(θt|y1:T) + log πΘ(θ(t+1))− log πΘ(θt)

)
.

4. Acceptance or rejection
(a) Draw a sample u ∼ U(0, 1).
(b) If log u ≤ logα then accept θ(t+1)

i. Set θt+1 := θ(t+1).
ii. Set ˆ̀(θt+1|y1:T) := ˆ̀(θ(t+1)|y1:T).

(c) If log u > logα then reject θ(t+1)

i. Set θt+1 := θt.
ii. Set ˆ̀(θt+1|y1:T) := ˆ̀(θt|y1:T).

5. Covariance
(a) Set t := t+ 1.
(b) Calculate Σt recursively according to (2.8).

6. Next step
(a) If t < TM + TC then return to step 2.
(b) If t = TM + TC then break.

43

5. Method

Algorithm 10 Accelerated adaptive Metropolis-Hastings (AAMH)
Input: y1:T , TC , TM , ta, tb,θ0,Σ0, p, λ
Output: (θk)TM +TC

k=0
1. Initial classic AMH run

(a) Start an initial run of CMH, presented in Algorithm 8, for TC itera-
tions, with initial sample θ0, covariance Σ0 and adaptation start time
ta.

(b) Save the proposals (θ(k))TC
k=0 and the log-likelihoods (`(θ(k)|y))TC

k=0 in Ξ.
Save also the chain of posterior samples (θk)TC

k=0 and the final proposal
covariance ΣTC

.
2. Process data set

(a) Remove the burn-in period, 0, . . . , tb, from the data set Ξ.
(b) Remove proposals outside of Θ from Ξ.
(c) Remove a percentage, λ, of proposals with the most negative log-

likelihood values from Ξ.
3. Train neural network

(a) Train a neural network F on the processed data set Ξ̃.
4. Parameterise Ωp

(a) Compute µΩ and ΣΩ via the sample mean and covariance on the pro-
posals in Ξ̃.

(b) Define Ωp = {θ ∈ Rd|D(θ) ≤ χ2
d(p)}.

5. Final mixed AMH run
(a) Start a final run of MMH, presented in Algorithm 9, for TM iterations,

starting at time TC , with initial sample θTC
and covariance ΣTC

, using
the surrogate log-likelihood defined by F and Ωp.

(b) Concatenate the sampled posterior points from the classic and mixed
method into (θk)TM +TC

k=0 .

44

5. Method

5.3 Performance metrics
To ensure that the algorithm produces satisfactory result we need to estimate its
efficiency and accuracy. The efficiency is with regards to the number of samples
produced per time second. However, not every sample can be considered indepen-
dent in the output from MH. Thus, it’s imperative to determine the effective sample
size. The performance is assessed using the Wasserstein distance, also known as the
earth movers distance, which measures the similarity between two distributions.

5.3.1 Effective sample size
The effective sample size (ESS) is defined as the number of samples that can be
considered independent in a set of samples. The formula can vary, but is often
defined as

ESS = n

1 + 2∑K
k=1 ρ(k)

, (5.5)

where n is the total number of sample. The function ρ is defined as the autocorrela-
tion of the samples from the posterior at time lag k. The upper limit K is defined at
the point where the autocorrelation no longer exceeds the empirically derived value
0.05 [12]. If we divide the ESS by the sample size n, we get the ESS ratio.

5.3.2 Wasserstein distance
Assume that µ and ν are two probability measures on a so-called Polish metric
space (χ, d). For technical details we refer to [25]. The Wasserstein distance (WD)
of order p between µ and ν is then defined as

Wp(µ, ν) :=
(

inf
γ∈Π(µ,ν)

∫
χ×χ

d(x, y)pdπ(x, y)
) 1

p

, (5.6)

where the collection Π(µ, ν) is the set of all joint probability measures on χ×χ and
the marginals are µ and ν respectively, see [25]. It measures the average distance
that points from one distribution are moved in order to transform it into the other
distribution, when considering the optimal movement scheme which minimises the
distance d. For empirical distributions, the special caseW1 measure is often referred
to as the earth mover’s distance. This specific case can be defined as an optimisation
problem, a special case of the optimal transport problem [26].

Consider that we have samples are P and Q, both of size n, from the distributions
P and Q, respectively. We wish to determine the optimal flows fij ∈ [0, 1], from
points i = 1, . . . , n to points j = 1, . . . , n. The distance dij between points i and j are
calculated beforehand. We consider the empirical distributions generated by each
sample. Each point have the same probabilistic weight, which we set to wi = n−1

and wj = n−1 for all i and j. The optimization problem can then be expressed as

45

5. Method

minimise
n∑
i=1

n∑
j=1

fijdij (5.7a)

subject to fij ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ n, (5.7b)
n∑
j=1

fij ≤ wi, 1 ≤ i ≤ n, (5.7c)

n∑
i=1

fij ≤ wj, 1 ≤ j ≤ n, (5.7d)

n∑
i=1

n∑
j=1

fij = 1. (5.7e)

For the empirical distributions given by the sets P and Q, the Wasserstein dis-
tance can be calculated via the expression

EMD(P,Q) =
∑m
i=1

∑n
j=1 fijdij∑m

i=1
∑n
j=1 fij

, (5.8)

where fij, i, j = 1, . . . , n are solutions to the optimization problem (5.7a)-(5.7e).

5.4 Experiment setup
In this section we present the setup that we use for our experiments. We wish to
compare the results from using AAMH to the results from using only CMH. First, we
want to check that our method generates a posterior distribution which is similar
to the one produced by CMH. Secondly, we want to compare the computational
efficiency of the two methods.

To check the accuracy of our method we use the Wasserstein distance. We esti-
mate the WD from two posterior distributions produced using the CMH. This works
as a benchmark for how much the posterior distribution varies inherently. Then,
we estimate the WD between posterior distributions produced by CMH and MMH.
Furthermore, we use the effective sample size to check that the sampling proce-
dure of MMH is of the same quality as CMH. Again, this is done by calculating
a benchmark ESS from CMH and comparing this to the ESS of MMH. To ensure
that all calculations are done using the same conditions, we run them from the same
start point where the initial CMH is sufficiently close to the stationary distribution.
All of our experiments are run several times, in order to generate averages of the
performance metrics. See Figure 5.4 for a visualisation of the experiments setup.

Once we have ensured that our method is accurate, we want to compare the
computational efficiency of the two methods. To this end we measure the time that
it takes for both the CMH and AAMH to produce a posterior sample of the same
size. Moreover, we measure the time it takes to reach different ESS for each method,
in order to see when the AAMH becomes preferable to only running CMH.

46

5. Method

classic method
generates data

classic method
produces posterior

classic method
produces posterior

mixed method
produces posterior

Benchmark

Benchmark

Our method

Our method

Figure 5.4: The experiments setup for performance assessment. First we run CMH
until it has converged sufficiently close to the stationary distribution and generated
training data for the neural network, which we train. Then the CMH is run twice
from this point and the MMH once. The ESS values and WD values are calculated
according to the graph to ensure that we get an assessment of both the efficiency
and accuracy of our method as compared to a benchmark value.

These experiments are made for the LSM and CSM models, see sections 3.3 and
3.4. For the LSM model we use KF to calculate the log-likelihood, whereas for the
CSM model we use both EKF and BF. The parameters that we vary are the state-
space dimensionality N , the number of model parameters d, the confidence level p
of the Mahalanobis classifier and the amount of training data.

47

5. Method

48

6
Results

We begin by presenting exemplifying results of the accelerated adaptive Metropolis-
Hastings algorithm (AAMH) using the Ornstein-Uhlenbeck model (OU) as a proof
of concept. We then proceed by applying the method on the linear spring-mass
model (LSM) where we test, among other things, how the state-space dimensionality
affects the accuracy and efficiency. The same analysis is done for the cubic spring-
mass model (CSM), where we utilise both the extended Kalman filter (EKF) and
the bootstrap filter (BF).

6.1 Ornstein-Uhlenbeck model
Here we present the results of running the AAMH algorithm for the OU-model
described in section 3.2. The purpose is to give a proof of concept for the method, for
a well-known model. We first present the results from running the CMH algorithm,
presented in Algorithm 8. The neural network is then trained on the pre-processed
training data. Lastly, we proceed with running the MMH algorithm, presented in
Algorithm 9.

6.1.1 The CMH algorithm
Consider an observation y1:T of the OU-model, simulated using the model parame-
ters presented in Table 6.1. For the posterior distribution we consider the parameters
of interest θ = (γ, β, σ). The prior distribution πΘ is a truncated multivariate nor-
mal distribution, with its defining parameters presented in Table 6.2. The mean is
chosen so that the prior is not centered around the true model parameters, and the
covariance is chosen large enough for the prior to be considered uninformative.

The CMH algorithm is given an initial sample θ0 close to the true model pa-
rameters θ̃ = (γ̃, β̃, σ̃) and an initial narrow and diagonal proposal covariance Σ0
before the adaptation begins. These two properties are likewise found in Table 6.2.
We run the CMH algorithm for TC = 105 iteration steps, where the log-likelihood
values are estimated using the KF, and present the histogram and trajectory plots in
Figure 6.1. We see that the chain reaches stationarity quickly, and that the method
produces empirical posteriors centered around values close to the true ones.

49

6. Results

Table 6.1: The model parameters used to simulate the observation y1:T . The
parameters T and ∆t denotes the number of time steps and their lengths in the Euler-
Maruyama method (3.6). The value R is the standard deviation of the measurement
noise in the model. We consider γ, β and σ to be unknown quantities.

parameters γ̃ β̃ σ̃ T ∆t R
values 2 0.1 0.1 100 1 0.1

Table 6.2: Parameters used for the CMH algorithm on the OU-model. The region
Θ is the support of the prior distribution πΘ. The parameters Σπ and µπ denotes
the covariance and the mean of the prior distribution. The parameters Σ0 and θ0
denotes the initial proposal function covariance and the initial posterior sample.

parameters Θ µπ Σπ θ0 Σ0

values (−∞,∞)× [0,∞)2 10 · θ̃ 103 · diag(θ̃) 2 · θ̃ 10−1 · diag(θ̃)

6.1.2 Data pre-processing and training the neural network

Since the stationary distribution is reached quickly, we have a lot of high quality
data at our disposal, stored in Ξ. However, we make a generous burn-in cutoff at
tb = 104 iteration points. We also remove all negative σ values as they are not
within the support Θ. In Figure 6.2 we can see that the proposal parameters and
log-likelihood values are narrowed down greatly. We now have a training data set Ξ̃
consisting of the proposal parameter and log-likelihood pairs.

We proceed to parameterize the region Ξ̃, producing the region Ωp. We set the
confidence level to to p = 0.999. Since we have a lot of training data points, the data
is of such good quality that we may set such a high confidence level, without risk
of diverging. We define the neural network differently for this model than the one
specified by Figure 5.2, instead we present the properties in Table 6.3. The neural
network is trained on Ξ̃.

6.1.3 The MMH algorithm

We now run the MMH algorithm. The algorithm is run for a subsequent TM = 105

iterations. The run statistics for both the CMH algorithm and the MMH algorithm
(which make up the AAMH algorithm) are presented in Table 6.4. We see that the
rate of accepted proposals in both methods are similar, and that the mean posterior
values align well. Both methods perform almost as fast in this one-dimensional case.

The comparative results of the initial TC = 105 iterations using the CMH al-
gorithm and the subsequent TM = 105 iterations using the MMH algorithm are
presented in Figure 6.3. We see that the empirical posterior distributions align very
well. However, this is only the case in a one-dimensional system. Next, we will test
higher-dimensional models. However, before exploring the more complex models we
perform a hyperparameter optimization for our neural network.

50

6. Results

0 200 400 600 800 1000
iteration

1.5

2.0

2.5

3.0

3.5

4.0

classic method posterior gamma

(a)

0 200 400 600 800 1000
iteration

0.08

0.10

0.12

0.14

0.16

0.18

0.20

classic method posterior beta

(b)

0 200 400 600 800 1000
iteration

0.1

0.2

0.3

0.4

0.5

sig
m

a

classic method posterior sigma

(c)

0 20000 40000 60000 80000 100000
time step

1.5

2.0

2.5

3.0

3.5

4.0

ga
m

m
a

classic method posterior convergence

(d)

0 20000 40000 60000 80000 100000
time step

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

be
ta

classic method posterior convergence

(e)

0 20000 40000 60000 80000 100000
time step

0.1

0.2

0.3

0.4

0.5

sig
m

a

classic method posterior convergence

(f)

1.2 1.4 1.6 1.8 2.0 2.2
gamma

0

1

2

3

4

5

de
ns

ity

classic method posterior gamma

(g)

0.06 0.07 0.08 0.09 0.10 0.11
beta

0

20

40

60

80

de
ns

ity

classic method posterior beta

(h)

0.05 0.10 0.15 0.20 0.25 0.30
sigma

0

2

4

6

8

10

12

14

de
ns

ity

classic method posterior sigma

(i)

Figure 6.1: The results of using the CMH algorithm on the OU-model. The
marginal values of the parameters γ, β, and σ are plotted separately. In Figures
6.1a, 6.1b and 6.1c, we see the trajectory of the first 103 sampled posterior points.
In Figures 6.1d, 6.1e and 6.1f, we see the corresponding plots for all 105 posterior
points. In Figures 6.1g, 6.1h and 6.1i, we see the marginal posterior distributions of
all TC = 105 posterior points.

51

6. Results

1.0
5

2.4
2

gamma

0.0

0.5

1.0

1.5

2.0

2.5

0.0
5
0.1

2

beta

0

10

20

30

40

0.0
0

0.3
9

sigma

0

1

2

3

4

5

6

proposal parameters before burn-in

(a)

1.0
5

2.4
2

gamma

0.0

0.5

1.0

1.5

2.0

2.5

0.0
5

0.1
2

beta

0

10

20

30

40

50

0.0
0

0.3
9

sigma

0

1

2

3

4

5

6

7

proposal parameters after burn-in

(b)

0 2000 4000 6000 8000 10000
iteration

4

6

8

10

12

lo
g-

lo
g-

lik
el

ih
oo

d

proposal log-log-likelihoods before burn-in

(c)

20000 40000 60000 80000 100000
iteration

600

500

400

300

200

100

lo
g-

lik
el

ih
oo

d

proposal log-likelihoods after burn-in

(d)

Figure 6.2: The training data before and after pre-processing on the OU-model. In
Figures 6.2a and 6.2b we see the marginal distributions of the proposed parameters
in the training data sets Ξ and Ξ̃ respectively. In Figure 6.2c we see the logarithm
of the absolute log-likelihood values in Ξ. In Figure 6.2d we see the log-likelihood
values in Ξ̃.

52

6. Results

0 40000 90000 140000 190000
time step

1.4

1.6

1.8

2.0

2.2

ga
m

m
a

both methods posterior convergence comparison

(a)

0 40000 90000 140000 190000
time step

0.06

0.07

0.08

0.09

0.10

0.11

be
ta

both methods posterior convergence comparison

(b)

0 40000 90000 140000 190000
time step

0.05

0.10

0.15

0.20

0.25

0.30

sig
m

a

both methods posterior convergence comparison

(c)

1.2 1.4 1.6 1.8 2.0 2.2
gamma

0

1

2

3

4

5

de
ns

ity

both methods posterior distributions concatenated

(d)

0.06 0.07 0.08 0.09 0.10 0.11
beta

0

20

40

60

80

de
ns

ity

both methods posterior distributions comparison

(e)

0.05 0.10 0.15 0.20 0.25 0.30 0.35
sigma

0

2

4

6

8

10

12

de
ns

ity

both methods posterior distributions comparison

(f)

1.2 1.4 1.6 1.8 2.0 2.2
gamma

0

1

2

3

4

5

de
ns

ity

mixed method
classic method

both methods posterior distributions comparison

(g)

0.06 0.07 0.08 0.09 0.10 0.11
beta

0

20

40

60

80

de
ns

ity

mixed method
classic method

both methods posterior distributions comparison

(h)

0.05 0.10 0.15 0.20 0.25 0.30 0.35
sigma

0

2

4

6

8

10

12

14

de
ns

ity

mixed method
classic method

both methods posterior distributions comparison

(i)

Figure 6.3: The results of the AAMH algorithm on the OU-model. In Figures
6.3a, 6.3b and 6.3c, we see the sampled posterior points from the CMH algorithm
concatenated with the points from the MMH algorithm. Note that the burn-in phase
is excluded. The concatenated posterior distributions are plotted in Figures 6.3d,
6.3e and 6.3f. In Figures 6.3g, 6.3h and 6.3i, the posterior distribution of the points
from the CMH algorithm are plotted above the distribution of the points from the
MMH algorithm.

53

6. Results

Table 6.3: Parameters for the neural network for the OU-model. The values n0,
n1, n2, and n3 are the sizes of each layer. The parameters β1, β2 and η are the
moment scaling parameters and the learning rate respectively, used by the Adam
optimiser. These values were selected from empirical testing.

properties n0 n1 n2 n3 β1 β2 η epochs
values 3 100 100 1 0.999 0.999 0.0005 100.000

Table 6.4: The run statistics of the AAMH algorithm for the OU-model.

Algorithm acceptance rate mean posterior values time per sample
CMH 0.2464 (1.74, 0.0864, 0.133) 2.908 ms per sample
MMH 0.2800 (1.74, 0.0862, 0.133) 2.883 ms per sample

6.2 Hyperparameter optimisation
To ensure that the training of the neural network always performs well and does not
get stuck at local optima we wish to optimise the hyperparameter choices.

We run the hyperparameter optimization for the LSM-model for the parameters
(β1, β2, η) ∈ X in the Adam optimiser, see Section 4.5. We define the prior distribu-
tion of β1 and β2 as uniform distributions between 0.9 and 1, and between 0.99 and 1
respectively. The prior distribution of the learning rate η is defined as a log-uniform
distribution between log(10−5) and log(10−1).

The TPE algorithm is iterated for 104 steps while defining the fitness function f as
the negative loss function of the neural network. The training data Ξ̃ is constituted
of an initial run using the CMH algorithm with the parameters in Table 6.5. We set
the number of epochs to a constant 104, and the state-space dimension as N = 10.
The optimal values derived are β1 = 0.990, β2 = 0.996 and η = 5.406 · 10−4. See
Appendix A.5 for a presentation of the hyperparameter optimisation results.

6.3 Linear spring-mass model
We wish to examine the performance of the AAMH algorithm when considering
a linear model, wherein the log-likelihood estimation using the KF is replaced by
our surrogate log-likelihood. The primary interest is to see how the efficiency and
accuracy is affected by the state-space dimensionality. We also examine the effect
of varying the training data size, the classification confidence level, and the number
of parameters considered for the posterior distribution.

For the linear model, we consider the LSM-model presented in Section 3.3. During
these tests, we consider only the stiffness and damping constants k and c, while
setting the masses to constant values m = 1. We also consider all stiffness constants
to be equal as well as all damping constants. See Table 6.5 for the model parameters
θ̃ = (k̃, c̃) considered, as well as the other parameters of the observation.

The prior πΘ is defined on Θ := (0,∞)2 and is a truncated multivariate normal
distribution. To ensure fast convergence, we allow the initial guesses θ0 to the
CMH algorithm to be very close to the true model parameters θ̃, and the covariance

54

6. Results

Table 6.5: The model parameters used in the LSM-model. The parameters k and
c are the stiffness and damping coefficients, and m is the mass. The parameters σ1
and σ2 refer to the system noise exerted on the positions and velocities, respectively.
The parameter R is the measurement noise. N is the state-space dimensionality.

parameters k c m T ∆T σ1σ2 R N
values 5 0.1 1 100 0.01 0 0.1 1 6

4.6 4.8 5.0 5.2 5.4 5.6 5.8
k

0.0

0.5

1.0

1.5

2.0

2.5

mixed method
classic method

both methods posterior distributions comparison

(a)

0.05 0.10 0.15 0.20 0.25
c

0

2

4

6

8

10

12

14
mixed method
classic method

both methods posterior distributions comparison

(b)

Figure 6.4: Results of the AAMH algorithm on the LSM-model. Figures 6.4a and
6.4b compares the results of the CMH algorithm with TC = 1000 and the MMH
algorithm with TM = 1000. The model parameters are presented in Table 6.5.

matrix for the proposal function Σ0 to be very narrow. In Figure 6.4 we see an
exemplified run of the whole procedure described in Algorithm 10. The estimated
average effective sample ratios of parameters k and c are 1.16 and 1.13. Since these
values are similar, we need only consider one parameter as a representative for both
ratios, namely parameter k. However, the Wasserstein distances (WDs) are still
calculated while considering both parameters.

6.3.1 Varying the training data sizes
We have demonstrated that the AAMH algorithm can produce satisfactory results
for the linear model. However, we wish to investigate how many training data points
are required by the neural network to produce good results.

For the LSM-model with state-space dimension N = 10, we run the CMH algo-
rithm for TC = 1000 iterations, while considering the model parameters in Table 6.5.
The burn-in period is set to tb = 800, and the size of the training data is varied from
K = 15 to K = 200. The training data is randomly selected without replacement
from Ξ̃. Then the MMH algorithm is run with confidence level p = 0.9999, for a
subsequent TM = 1000 number of points.

The average WD and effective sample ratio, over 10 runs, associated to the CMH
and the MMH algorithms are calculated according to the experiment setup presented
in Figure 5.4. The results are presented in Figure 6.5.

55

6. Results

25 50 75 100 125 150 175 200
training size

0.06

0.08

0.10

0.12

0.14

ef
fe

ct
iv

e
sa

m
pl

e
ra

tio

effective samples ratio over training size
mixed method: k
classic method: k

(a)

25 50 75 100 125 150 175 200
training size

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

wa
ss

er
st

ei
n

di
st

an
ce

wassterstein distance over training size
mixed method
classic method

(b)

Figure 6.5: The performance metrics over training data sizes. Figure 6.5a illus-
trates the ratio of effective samples per iteration against the training data size for
the MMH. Figure 6.5b likewise illustrates the WD against the training data size for
the MMH. The shaded regions are the standard deviations of the metrics. In both
figures, the benchmark CMH algorithm metrics are also plotted.

6.3.2 Varying the Mahalanobis confidence levels
The MMH algorithm performs increasingly well when there is more training data
available. However, in cases where there is insufficient data available, the neural
network might make valid log-likelihood approximations only in small subsets of Ωp.

We wish to assess how the Mahalanobis confidence level p can be utilised to vary
the certainty of the neural network in its defined region. We set a small training
size K = 50 and vary the confidence levels between p = 0, 1 − 10−1, . . . , 1 − 10−40.
In Figure 6.6 we present the ESS ratio and the WD as functions of the confidence
levels.

6.3.3 Varying the state-space dimensionality
We previously demonstrated that the MMH algorithm produces similar performance
metrics as the CMH algorithm both with regards to accuracy and efficiency.

However, we wish to examine how well the performance is preserved when the
state-space dimensionality is increased. We run the experiment described in Figure
5.4 while varying the state-space dimension as N = 2, 4, . . . , 20. Figure 6.7a shows
the ESS ratio as a function of the dimensionality, and Figure 6.7b shows the WD.

We also assess how the overall computational times differ based on the state-space
dimensionality. In Figure 6.7c are the computational times of different parts of the
program as a function of the dimensionality. We compare a full run of CMH with
TC = 3000 to a run of AAMH, which includes an initial CMH run with TC = 1000,
training of neural network and a final MMH run with TM = 2000. The burn-in
period is tb = 900.

We see that the AAMH is more efficient than only running CMH for large runs.
However, the AAMH algorithm is initially less efficient due to the required training

56

6. Results

40 35 30 25 20 15 10 5 0
confidence p as log(1 - p)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ef
fe

ct
iv

e
sa

m
pl

e
ra

tio

effective samples ratio over confidence
mixed method: k
classic method: k

(a)

40 35 30 25 20 15 10 5 0
confidence p as log(1 - p)

0.1

0.0

0.1

0.2

0.3

0.4

wa
ss

er
st

ei
n

di
st

an
ce

wassterstein distance over confidence
mixed method
classic method

(b)

Figure 6.6: The performance metrics when varying the confidence levels. In Figure
6.6a, we see the ESS ratio as a function of log(1−p). In Figure 6.6b, we see the WD
against log(1 − p). The confidence levels p span logarithmically from p = 1 − 1−40

to p = 0.

Table 6.6: The parameter values which we use in the scheme where we vary the
number of considered model parameters in the LSM-model.

k1 k2 k3 k4 c1 c2 c3 c4
5 7.5 10 12.5 0.1 0.2 0.3 0.4

period for the neural network. We consider the conditions under which the AAMH
algorithm performs more efficiently than simply using the CMH algorithm. The
computational times of the two methods are calculated as functions of ESS, for
varying state-space dimensionalities. We denote the point at which the ESS per
second is overtaken by the AAMH as the point of indifference. Again, we have that
the CMH algorithm is run for TC = 3000 iterations while the AAMH algorithm is
run for TC = 1000 and TM = 2000 iterations, with tb = 900.

The test is performed 10 times per each considered state-space dimension and we
present a selection of these graphs in Figures 6.8a and 6.8b. Furthemore, we plot
the points of indifference against the state-space dimensionality in Figure 6.8c.

6.3.4 Varying the number of model parameters
We have so far only considered a system with only two model parameters, namely k
and c. However, we wish to see how the AAMH algorithm performs when we increase
the number of considered parameters θ to our posterior distribution p(θ|y).

Begin by considering the linear model with three masses in total, which means
that y1:T ∈ R6×T . This implies that the system has stiffness constants k1, k2, k3, k4
and damping constants c1, c2, c3, c4. The number of considered parameters are varied
between 2, 4, 6 and 8. See Table 6.7 for a scheme of how the considered parameters
are used to define the system. The values considered are presented in Table 6.6.

57

6. Results

2 4 6 8 10 12 14 16 18 20
state-space dimensionality

0.08

0.09

0.10

0.11

0.12

ef
fe

ct
iv

e
sa

m
pl

e
pe

r i
te

ra
tio

n
ra

tio

mixed method: k
classic method: k

effective sample per iteration ratio over dimensionality

(a)

2 4 6 8 10 12 14 16 18 20
state-space dimensionality

0.002

0.001

0.000

0.001

0.002

0.003

0.004

0.005

wa
ss

er
st

ei
n

di
st

an
ce

mixed method
classic method

wasserstein over state-space dimensionality

(b)

2 4 6 8 10 12 14 16 18 20
state-space dimensionality

0

50

100

150

200

250

tim
e

(s
ec

on
ds

)

CMH (generates data)
CMH (produces posterior)
neural network training
MMH (produces posterior)

times over state-space dimensionality

(c)

Figure 6.7: In Figure 6.7a, the ESS ratio over state-space dimensionality is plot-
ted. In Figure 6.7b, the WDs between the posteriors using the CMH and MMH
algorithms over state-space dimension are plotted. In Figure 6.7c, we see the total
computational time for different parts against the dimensionality. The time for a
full CMH run with TC = 3000 is shown in dashed blue line. The time for generating
training data via CMH with TC = 1000 is shown in solid orange line. The time to
train the neural network is shown in dotted green line and the time for running the
final MMH with TM = 2000 is shown in dash-dot line. To compare the full AAMH
run to the full CMH run, add together the latter three graphs.

58

6. Results

0 50 100 150 200
effective sample size

0

5

10

15

20

25

30

35

av
er

ag
e

tim
e

(s
ec

on
ds

)

AAMH algorithm
CMH algorithm
point of indifference

time over effective sample size (N = 2)

(a)

0 50 100 150 200 250 300
effective sample size

0

50

100

150

200

250

av
er

ag
e

tim
e

(s
ec

on
ds

)

AAMH algorithm
CMH algorithm
point of indifference

time over effective sample size (N = 20)

(b)

2 4 6 8 10 12 14 16 18 20
state-space dimensionality

40

60

80

100

120

140

160

180

ef
fe

ct
iv

e
sa

m
pl

e
siz

e

20

40

60

80

100

tim
e

(in
 se

co
nd

s)

points of indifference over dimensionality (parameter k)

effective sample size
computational time

(c)

Figure 6.8: In Figures 6.8a and 6.8b, we see the points of indifference plotted for
varying state-space dimensions. The CMH algorithm spends some time in the burn-
in phase (producing no effective samples) and then increases linearly. The AAMH
algorithm has a training phase after the burn-in phase and then has a linear increase
in time taken per effective sample, but with a lower slope. In Figure 6.8c we see the
computational times and ESS at the points of indifference are plotted for varying
state-space dimensionality.

59

6. Results

Table 6.7: The different parameter setups when increasing the number of consid-
ered parameters. Note that we wish to preserve as much symmetry as possible.

position 1 2 3 4
2 parameters k1, c1 k1, c1 k1, c1 k1, c1
4 parameters k1, c1 k1, c2 k2, c1 k2, c2
6 parameters k1, c1 k2, c3 k3, c2 k1, c1
8 parameters k1, c1 k2, c2 k3, c3 k4, c4

2 3 4 5 6 7 8
number of parameters considered

0.0

0.1

0.2

0.3

0.4

wa
ss

er
st

ei
n

di
st

an
ce

mixed method
classic method

same amount of training data points

(a)

2 3 4 5 6 7 8
number of parameters considered

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

wa
ss

er
st

ei
n

di
st

an
ce

mixed method
classic method

increasing amount of training data points

(b)

Figure 6.9: The results of the AAMH algorithm with an increase in the considered
model parameters for the posterior distribution. In Figure 6.9a, the neural network
uses 100 training data points. In Figure 6.9b, the neural network uses an increasing
number of points to train on, namely 100, 500, 5000 and 9000 training data points.

First, we run the experiment with TC = 1000, tb = 900 and TM = 2000 while
training on the same amount of 100 data points. The resulting WDs are presented
in Figure 6.9a, where it is visible that the algorithms performs worse for more
considered parameters. Since the domain of the log-likelihood function grows in
dimension by the number of considered parameters, the neural network will require
more data points to approximate it.

Thus, we proceed by running the experiment for TC = 10.000 while considering
tb = 9900, 9500, 5000, 1000. This means that the neural network trains on K =
100, 500, 5000, 9000 points respectively for 2, 4, 6 and 8 parameters. The results are
presented in Figure 6.9b.

6.4 Cubic spring-mass model
We wish to see how the AAMH algorithm performs when considering a nonlinear
model. Consider the cubic model presented in Section 3.4. The log-likelihood must
be estimated using either the EKF or the BF. We begin by using the EKF and
assess the performance when increasing the state-space dimension. Thereafter, we
proceed by doing the same test while considering the BF.

60

6. Results

Table 6.8: The model parameters considered for the CSM-model. The model
parameters are k, l and c. The parameter m is the mass. The parameters T and
∆t are the step length and step size respectively. The parameters σ1 and σ2 are the
system noise exerted on the positions and velocities, respectively. The parameter R
is the measurement noise and N is the state-space dimensionality.

parameters k l c m T ∆t σ1 σ2 R N
values 5 0.1 0.1 1 100 0.01 0 0.01 1 6

4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
mixed method
classic method

posterior marginal distribution

(a)

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
l

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 mixed method
classic method

posterior marginal distribution

(b)

0.05 0.10 0.15 0.20
c

0

2

4

6

8

10

12

14

16
mixed method
classic method

posterior marginal distribution

(c)

Figure 6.10: The results from the AAMH model on the CSM-model with the EKF.
In Figures 6.10a, 6.10b and 6.10c, we see the comparative posterior distributions of
both methods. Both methods produce very similar looking posterior distributions.

6.4.1 Using the extended Kalman filter
In light of the same issues as in the LSM, we consider a constant m = 1 for all
masses. Consider the model parameters θ̃ = (k̃, l̃, c̃) presented in Table 6.8. We run
the whole AAMH procedure with TC = 1000, tb = 900 and thus K = 100 along
with TM = 2000, presenting the results in Figure 6.10. We see that the posterior
distributions align well, while noting that there is an inherent deviation from the
true parameter value of l̃ = 0.1.

Consider the tests presented in Section 6.3.3. We run the AAMH algorithm while
varying the state-space dimension from N = 4, 6, . . . , 18, 20 and calculate the points
of indifference at which it outperforms only using CMH. As previously mentioned, we
use TC = 1000, tb = 900 and TM = 2000 for the AAMH. The points of indifference
as a function of the dimensionality is plotted in Figure 6.11, as well as the total
computational times of the different parts of AAMH. Figure 6.12a presents the WD
against the dimensionality using the EKF for the CMH.

6.4.2 Using the bootstrap filter
We proceed to consider the BF for estimating the log-likelihood values in the CSM
model. We consider the same setup as in the previous section, but we need a plan for
increasing the number of particles used as a function of the state-space dimension.

61

6. Results

4 6 8 10 12 14 16 18 20
state-space dimensionality

30

40

50

60

70

80

ef
fe

ct
iv

e
sa

m
pl

e
siz

e

points of indifference over dimensionality (parameter k)

50

60

70

80

90

tim
e

(in
 se

co
nd

s)

effective sample size
computational time

(a)

4 6 8 10 12 14 16 18 20
state-space dimensionality

0

25

50

75

100

125

150

175

tim
e

(s
ec

on
ds

)

CMH (generates data)
CMH (produces posterior)
neural network training
MMH (produces posterior)

times over state-space dimensionality

(b)

Figure 6.11: The efficiency results of the AAMH algorithm with the EKF for the
CSM model. In Figure 6.11a we see the computational times and ESS at the points
of indifference for varying state-space dimensionalities. In Figure 6.11b, we see the
computational times of the CMH algorithm compared to the parts of the MMH
algorithm.

Table 6.9: For 20 number of y and 20 number of evaluations of `p(θ̃|y) for the
standard deviation estimation using particle filter with p number of particles. An
optimal number of particles is accepted when σ̂ < 1.

dimension 4 6 8 10 12 14 16 18 20
particles 2 3 6 12 19 23 33 38 45

In Section 2.3.5 we present a scheme for selecting the number of particles by
checking for which number the standard deviation of the estimated log-likelihood
is less than at least 1.5. For our test, we choose the number of particles so that
the standard deviation is less than 1. The standard deviation is computed over 20
log-likelihood evaluation of the same observation. This is done for the state-space
dimenionalities N = 4, 6, . . . , 18, 20. This procedure is in turn done for 20 different
simulated observations y1:T from the CSM model, to get an average number of
particles needed. The estimated number of particles needed for each dimensionality
is presented in Table 6.9.

We run the same tests as for the EKF, using the BF instead. The same model
parameters as the ones presented in Table 6.8 are used. In Figure 6.13, we present
the posterior distribution for the case N = 20, both with the classic method and the
mixed method. In Figure 6.14 we present the points of indifference, and the total
times for the AAMH algorithm. In Figure 6.12b the WD is plotted.

62

6. Results

4 6 8 10 12 14 16 18 20
state-space dimensionality

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

wa
ss

er
st

ei
n

di
st

an
ce

mixed method
classic method

wasserstein over state-space dimensionality (EKF)

(a)

4 6 8 10 12 14 16 18 20
state-space dimensionality

0.1

0.0

0.1

0.2

0.3

0.4

wa
ss

er
st

ei
n

di
st

an
ce

mixed method
classic method

wasserstein over state-space dimensionality

(b)

Figure 6.12: The WD for the EKF and the BF over state-space dimensionality,
plotted in figures 6.12a and 6.12b respectively.

4.6 4.8 5.0 5.2 5.4 5.6
k

0.0

0.5

1.0

1.5

2.0

2.5

mixed method
classic method

posterior marginal distribution

(a)

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
l

0

2

4

6

8

10

12

14 mixed method
classic method

posterior marginal distribution

(b)

0.000 0.025 0.050 0.075 0.100 0.125 0.150
c

0

5

10

15

20

25

mixed method
classic method

posterior marginal distribution

(c)

Figure 6.13: The results from the AAMH model on the CSM-model with the BF.
In Figures 6.13a, 6.13b and 6.13c, we see the comparative posterior distributions of
both methods. Both methods produce similar looking posterior distributions, but
of lesser quality than those produced by the EKF in Figure 6.10.

63

6. Results

4 6 8 10 12 14 16 18 20
state-space dimensionality

0

10

20

30

40

50

ef
fe

ct
iv

e
sa

m
pl

e
siz

e

0

20

40

60

80

100

tim
e

(in
 se

co
nd

s)

points of indifference over dimensionality (parameter k)

effective sample size
computational time

(a)

4 6 8 10 12 14 16 18 20
state-space dimensionality

0

20

40

60

80

100

120

140

tim
e

(s
ec

on
ds

)

CMH (generates data)
CMH (produces posterior)
neural network training
MMH (produces posterior)

times over state-space dimensionality

(b)

Figure 6.14: The point of indifference results for the AAMH algorithm with BF
for the CSM model. In Figure 6.14a, the computational times and ESS at the points
of indifference are plotted for varying state-space dimensionalities. In Figure 6.11b,
we see the computational times for the full CMH run and for the parts of the AAMH
run.

64

7
Discussion

In this chapter we discuss our results. First, we briefly mention the results concerning
the Ornstein-Uhlenbeck model. Then we discuss the tests on the LSM model, where
we test both the applicability and limits of our method. Lastly, we proceed with
discussing the results of the CSM model, where we utilise both the EKF and BF.

7.1 Ornstein-Uhlenbeck model
In Figure 6.3, we illustrate the preliminary results where a neural network driven
surrogate log-likelihood can be used to produce a satisfactory posterior distribution
on a simple one-dimensional model without considering the efficiency. It is clear
from this figure that the empirical posterior produced by the MMH is qualitatively
very similar to that of the CMH.

In Table 6.4 we see that the MMH algorithm performs the log-likelihood calcu-
lations almost as slowly as the CMH algorithm. This is because the KF is very fast
for one-dimensional systems. Thus, the neural network can’t compete.

7.2 Linear spring-mass model
We then proceed to the case of the LSM model, which allows for any even state-space
dimensionality. First, we show, in Section 6.3.1, that the quality of the sampling is
sensitive to the quantity of training data to the neural network. However, Figure
6.5 shows that that once a sufficient amount of data is obtained, the algorithm
works in a satisfactory manner. The amount of data required to get good results
is surprisingly small. The method then preserves both the ESS ratio, as well as
produces a posterior distribution within a reasonable Wasserstein distance to those
produced by simply using the KF.

We also explore, in Section 6.3.2, the case when the amount of training data is
scarce, and we want some measure of how good the neural network is at estimating
the log-likelihood. In Figure 6.6 we show that the resulting posterior distributions
become increasingly better the more we let the KF calculate the log-likelihood. This
suggest that the less data we have, the more conservative we need to be with the
choice of the confidence level p in order to maintain accurate results. This leads to
a more computationally heavy MMH, but in return the initial CMH for generating
the training data is shorter.

Figure 6.4 shows qualitatively that the method works well for the LSM model.
Quantitaviely, we show in Section 6.3.3 that the posterior produced by the AAMH

65

7. Discussion

has comparable performance metrics to that of just running CMH. Additionally, this
accuracy is consistent as the dimensionality is increased.

Moreover, it is clear from Figure 6.7c that the AAMH produces a large posterior
sample at a much shorter time than only running the CMH. We see that the bulk
of the computational time of the AAMH consist of generating the training data.
This is also the only part that has a non-neglible increase in computational time
with increasing dimensionality. It is not clear at first how the computational time
associated with generating the training data would affect the overall efficiency of
the method. Therefore, we test how the efficiency is affected by the state-space
dimensionality. The result presented in Figure 6.8 gives the indication that the
computational time until the point of indifference is reached increases with the state-
space dimensionality. This is not surprising since the computational time taken by
the initial CMH has a polynomial increase (since it utilises the KF). However, the
results suggests that the point of indifference occurs at gradually lower number of
effective samples as the state-space dimensionality increases.

Finally, in Section 6.3.4, we see that the amount of data required is dramatically
increased by the number of considered parameters for the posterior distribution, as
shown by Figure 6.9. This is reasonable, since in order to span any space with an
increasing dimensionality, while preserving the same frequency of points, the amount
of points required increases exponentially.

7.3 Cubic spring-mass model
For the nonlinear CSM model, the same tests are done with both the EKF and
the BF. Comparing Figures 6.10 and 6.13, we see that the AAMH produces good
results using both the EKF and the BF. It should be noted that the dimensionality
in Figure 6.10 is 6, whereas it is 20 in Figure 6.13, which might affect the difference
in performance. Moreover, Figure 6.12a show that AAMH with the EKF has very
good performance metrics.

Looking at Figures 6.11a and 6.14a we see similar trends. Both the time and
ESS of the indifference points increase with the dimensionality. This differs from
the LSM model, where the ESS of the indifference point decreased. Whether we
use the EKF or BF, it is clear from Figures 6.11b and 6.14b that the AAMH is
preferable to only the CMH for large runs.

Important to note is that the mixed method which is trained on data generated by
the BF as opposed to the EKF produces systematically worse posterior distributions
(compare Figures 6.12a and 6.12b). This could be due to a number of factors, but
the number of particles considered for each state-space dimensionality might not
have been high enough.

In Table 6.9 we present the estimated optimal number of particles to be used by
the BF. The number of needed particles for each dimensionality is surprisingly low.
However, the number of calculations done to estimate the standard deviation may
be too few, thus causing us to underestimate the number of required particles. It is
still interesting to note that our method produces serviceable results using the BF,
even when using very few particles, as the log-likelihoods used for the training are
stochastic in this case.

66

8
Conclusion

Our goal of with thesis is to develop a deep-learning-accelerated Metropolis-Hastings
algorithm which works for Bayesian estimation for state-space models. The purpose
is to combat the increase in time complexity brought by an increase in state-space
dimensionality. Traditional log-likelihood estimators such as the KF, the EKF and
the BF all scale badly with the dimensionality. It is also important that the output
of our method maintains the same quality as that of the traditional method.

Our results show that both the effective sample size and the shape of the posterior
distribution can be preserved with our proposed algorithm, the AAMH. We have
demonstrated this for both a linear and a non-linear model. Moreover, the perfor-
mance is consistent for varying state-space dimensionality. Most importantly, our
method is much more computationally efficient than the traditional method when
considering larger sample sizes. This gain in computational time only increases with
increasing state-space dimensionality.

The number of experiments and the size of experiments were limited by time
constraints. Given more time, we would have liked to push our method even further
into higher dimensions. The trend says that the initial runs would take longer, but
the gain in efficiency once the neural network has been trained would increase.

In future work, to fortify our results it is imperative to check how much our
method actually improves on the information contained in the training data. More-
over, it would be interesting to try to recreate our results for more complex models,
specifically models that require particle filters. The CSM model could namely be
filtered using only the EKF. It would also be of interest to investigate models where
the posterior distribution is inherently multimodal, which means that the algorithm
would visit many different regions. To solve for the problem of the algorithm falling
outside of Ω as it tries to visit another mode, the neural network could perhaps be
retrained on a set of new proposals. This could potentially increase the performance
even further. Another aspect of this idea is that it could help if the original training
set is not particularly coincident with the stationary distribution, which can happen
if the burn-in or the number of iterations in the initial run is too short.

Finally, the network we use considers only one observation. If a network could
be trained to predict the log-likelihood of an arbitrary observation and parameter
choice, that would be very beneficial. In that case the input to the network would
consist of long sequential data, possibly with variable length, and parameters. This
would necessitate the use of other network architectures, such as a recurrent neural
network, that could utilize the temporal nature of the data. As the networks would
need to be larger, more training data would be needed. Hopefully, this would be
offset by the fact that the networks would generalize to new observations.

67

8. Conclusion

68

Bibliography

[1] Simo Särkkä. Bayesian Filtering and Smoothing. USA: Cambridge University
Press, 2013.

[2] Yaakov Bar-Shalom, X.-Rong Li, and Thia Kirubarajan. Estimation with Ap-
plications to Tracking and Navigation: Theory, Algorithms and Software. Jan.
2004.

[3] Andrew Golightly and Darren Wilkinson. “Bayesian parameter inference for
stochastic biochemical network models using particle Markov chain Monte
Carlo”. In: Interface focus 1 (Dec. 2011), pp. 807–20.

[4] Yong Zeng and Shu Wu. State-space models: Applications in economics and
finance. Jan. 2013, pp. 1–347.

[5] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press,
2015.

[6] Christopher C. Drovandi, Matthew T. Moores, and Richard J. Boys. “Acceler-
ating pseudo-marginal MCMC using Gaussian processes”. In: Computational
Statistics & Data Analysis 118 (2018), pp. 1–17.

[7] Samuel Wiqvist, Umberto Picchini, Julie Lyng Forman, Kresten Lindorff-
Larsen, andWouter Boomsma. “Accelerating delayed-acceptance Markov chain
Monte Carlo algorithms”. In: arXiv preprint arXiv:1806.05982 (2018).

[8] Stefan T. Radev, Ulf K. Mertens, Andreass Voss, Lynton Ardizzone, and Ull-
rich Köthe. “BayesFlow: Learning complex stochastic models with invertible
neural networks”. In: arXiv preprint arXiv:2003.06281 (2020).

[9] George Papamakarios, David Sterratt, and Iain Murray. “Sequential Neu-
ral Likelihood: Fast Likelihood-free Inference with Autoregressive Flows”. In:
Proceedings of Machine Learning Research. Ed. by Kamalika Chaudhuri and
Masashi Sugiyama. Vol. 89. Proceedings of Machine Learning Research. PMLR,
Apr. 2019, pp. 837–848.

[10] Howard Raïffa and Robert Schlaifer. Applied statistical decision theory. Studies
in managerial economics. Division of Research, Graduate School of Business
Adminitration, Harvard University, 1961.

[11] Francisco J. Samaniego. A Comparison of the Bayesian and Frequentist Ap-
proaches to Estimation. Springer Series in Statistics. Springer New York, 2010.

[12] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of
Markov Chain Monte Carlo. CRC press, 2011.

[13] Wilfred K. Hastings. “Monte Carlo sampling methods using Markov chains
and their applications”. In: Biometrika 57.1 (Apr. 1970), pp. 97–109.

[14] Heikki Haario, Eero Saksman, and Johanna Tamminen. “An adaptive Metropo-
lis algorithm”. In: Bernoulli 7.2 (Apr. 2001), pp. 223–242.

69

Bibliography

[15] Corey Montella. “The Kalman Filter and Related Algorithms: A Literature
Review”. In: (May 2011).

[16] Branko Ristic, Sanjeev Arulampalam, and Neil Gordon. Beyond the Kalman
Filter: Particle Filters for Tracking Applications. Artech House, 2003.

[17] Michael K. Pitt, Ralph dos Santos Silva, Paolo Giordani, and Robert Kohn.
“On some properties of Markov chain Monte Carlo simulation methods based
on the particle filter”. In: Journal of Econometrics 171.2 (2012). Bayesian
Models, Methods and Applications, pp. 134–151.

[18] Bernt Øksendal. Stochastic Differential Equations: An Introduction with Ap-
plications. Hochschultext / Universitext. Springer, 2003.

[19] Desmond Higham. “An Algorithmic Introduction to Numerical Simulation of
Stochastic Differential Equations”. In: SIAM Review 43 (Sept. 2001), pp. 525–
546.

[20] R. Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference on Com-
puter Vision (ICCV). 2015, pp. 1440–1448.

[21] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: International Conference on Learning Representations (Dec. 2014).

[22] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. “Algorithms
for Hyper-Parameter Optimization”. In: Proceedings of the 24th International
Conference on Neural Information Processing Systems. NIPS’11. Granada,
Spain: Curran Associates Inc., 2011, pp. 2546–2554.

[23] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D.
Cox. “Hyperopt: a Python library for model selection and hyperparameter op-
timization”. In: Computational Science & Discovery 8.1 (July 2015), p. 014008.

[24] Roy De Maesschalck, Delphine Jouan-Rimbaud, and Désiré L. Massart. “The
Mahalanobis distance”. In: Chemometrics and Intelligent Laboratory Systems
50.1 (2000), pp. 1–18.

[25] Cédric Villani. Optimal Transport: Old and New. Grundlehren der mathema-
tischen Wissenschaften. Springer Berlin Heidelberg, 2008.

[26] Nicolas Bonneel, Michiel Panne, Sylvain Paris, and Wolfgang Heidrich. “Dis-
placement Interpolation Using Lagrangian Mass Transport”. In: ACM Trans.
Graph. 30 (Dec. 2011), p. 158.

70

A
Appendix 1

A.1 Lemmas concerning Gaussian distributions
Presented here are two important lemmas concerning multivariate Gaussian distri-
butions. They are, among other things, used to derive KF and EKF [1].
Lemma 1. Let x,y be two random variables with distributions

x ∼ N (m,Q)
y|x ∼ N (Hx,R)

then their joint distribution is(
x
y

)
∼ N

((
m

Hm

)
,

(
Q QHT

HQ HQHT + R

))
.

Lemma 2. Let x,y be two random variables with joint distribution(
x
y

)
∼ N

((
a
b

)
,

(
A C
CT B

))

then we have the following conditional distribution

x|y ∼ N (a + CB−1(y− b),A−CB−1CT).

Finally, we also present a Gaussian approximation used to derive the EKF.
Approximation 1. Let x,y be two random variables with distributions

x ∼ N (m,Q),
y|x ∼ N (g(x),R),

where g is a non-linear function. The linear approximation based Gaussian approx-
imation to the joint distribution of x and y is(

x
y

)
∼ N

((
m

g(m)

)
,

(
Q QGT

x (m)
Gx(m)Q Gx(m)QGT

x (m) + R

))
,

where Gx is the Jacobian of g.

I

A. Appendix 1

A.2 Optimal importance distribution
In order to use particle filters we need to sample from an importance distribution
q(xk|x0:k−1,y1:k). This distribution can be chosen differently, but the optimal im-
portance distribution with regards to variance of the importance weights is

q(xk|x0:k−1,y1:k) = p(xk|xk−1, yk).

We want to derive this distribution for a linear dynamical system.
Theorem 1. For a linear dynamical system the optimal importance distribution is

p(xk|xk−1,yk) = N (xk|mk,Pk), (A.1)

where

mk = Ak−1xk−1 + Qk−1HT
k (HkQk−1HT

k + Rk)−1(yk −HkAk−1xk−1),
Pk = Qk−1 −Qk−1HT

k (HkQk−1HT
k + Rk)−1HkQk−1.

Proof. We have that xk|xk−1 ∼ N (Ak−1xk−1,Qk−1) and yk|xk ∼ N (Hkxk,Rk).
Moreover, yk|xk = yk|xk,xk−1. Thus, by Lemma 1 we get(

xk
yk

)
|xk−1 ∼ N

((
Ak−1xk−1

HkAk−1xk−1

)
,

(
Qk−1 Qk−1HT

k

HkQT
k−1 HkQk−1HT

k + Rk

))
.

Furthermore, Lemma 2 give us that

xk|xk−1,yk ∼ N (mk,Pk),

where

mk = Ak−1xk−1 + Qk−1HT
k (HkQk−1HT

k + Rk)−1(yk −HkAk−1xk−1),
Pk = Qk−1 −Qk−1HT

k (HkQk−1HT
k + Rk)−1HkQk−1.

We can compare this result to KF. The mean mk and variance Pk can be com-
puted in a similar fashion to the prediction and update steps of KF

Predict m̃k = Ak−1xk−1,

P̃k = Qk−1,

Update vk = yk −Hkm̃k,

Sk = HkP̃kHT
k + Rk,

Kk = P̃kHT
kS−1

k ,

mk = m̃k + Kkvk,
Pk = P̃k −KkSkKT

k .

The difference lies in the prediction step. As we assume that the previous value
is known the equations are not recursive and we do not need to bring with us the
variance of the previous estimated distribution.

II

A. Appendix 1

If we have a nonlinear dynamical system, we can use local linearization techniques
similar to how the EKF is derived. This gives us an approximation of the optimal
importance distribution on the same form as in (A.1), but with mk and Pk given
by

Predict m̃k = f(xk−1),
P̃k = Qk−1,

Update vk = yk − h(m̃k),
Sk = Hx(m̃k)P̃kHT

x (m̃k) + Rk,

Kk = P̃kHT
x (m̃k)S−1

k ,

mk = m̃k + Kkvk,
Pk = P̃k −KkSkKT

k .

A.3 Description of the log-likelihood function
We simulate an observation y1:T from the OU-model given the model parameters
(γ̃, β̃, σ̃) := (2, 0.1, 0.01). Let S be a grid of values γ, β and σ, defined within
the open set (−2, 6) × (0, 0.2) × (0, 0.1). The log-likelihood values `(y1:T |γ, β, σ)
are then estimated using the Kalman filter for each parameter triplet in the grid
(γ, β, σ) ∈ S.

Figure A.1 shows the surface plots of the log-likelihood function over the parame-
ters (γ, β, σ) ∈ S, while keeping one parameter equal to the model parameter value
which gave rise to y. We see a tendency of the log-likelihood function to quickly
diverge to negative infinity when leaving the region closest to the model parameters
(γ̃, β̃, σ̃).

beta

0.00
0.05

0.10
0.15 ga

mma

2
0

2
4

lo
g-

lik
el

ih
oo

d

30000

20000

10000

Constant sigma

beta

0.00
0.05

0.10
0.15 sig

ma

0.00
0.02

0.04
0.06

0.08

lo
g-

lik
el

ih
oo

d

40000

30000

20000

10000

Constant gamma

gamma

2
0

2
4 sig

ma

0.00
0.02

0.04
0.06

0.08

lo
g-

lik
el

ih
oo

d

500000

400000

300000

200000

100000

Constant beta

Figure A.1: Surface plots of log-likelihood `(y1T
|γ, β, σ) for (γ, β, σ) ∈ S, while

keeping one of the parameters constant. The constant parameter is set to the true
value of the parameter, in other words setting exclusively γ := γ̃, β := β̃, or σ := σ̃).

III

A. Appendix 1

0 200 400 600 800 1000
epochs

7

6

5

4

3

2
Lo

g(
M

SE
)

Logarithmic MSE over epochs
validation loss (during training)
training loss (during training)
test loss (after training)

Figure A.2: The logarithmic loss over every 100th epoch for the OU-model. The
training data is split up into 70% training data, 15% validation data, and 15% test
data. We see that the Adam optimiser manages to bypass two major saddle points.

A.4 Description of the training loss
The loss function from training the neural network on the data generated by the
Ornstein-Uhlenbeck model is presented in Figure A.2. The data is presented in
Section 6.1. We see that the loss function bypasses two saddle points, the latter of
which stretches for a long time before being improved. We also see that there is
very little indication of over-fitting since the validation loss remains stable.

A.5 Hyperparameter optimisation results
For the hyperparameter optimisation in Section 6.2, the convergence results are
presented in Figure A.3. We see that the convergence plots focus on very clear
regions, suggesting that β1 > 0.9 and β2 > 0.99 is preferable for the Adam Optimiser,
see Section 4.5. The learning rate η also focuses on values around log η ≈ −9.

There is a tendency for the training to get stuck in local minimum, which by
increasing β1 above the default 0.9 improves the performance of the training. See
Appendix A.4 for a presentation of how the loss function in the OU-model case.
Note that the loss reaches saddle points which are later resolved by the adaptive
nature of the Adam optimiser. In general, higher values of β1 and β2 are associated
with more focus on getting out of saddle points and other difficult regions.

IV

A. Appendix 1

order of ascending fitness value
0.90

0.92

0.94

0.96

0.98

1.00

be
ta

 1

beta 1 TPE optimisation

order of ascending fitness value
0.990

0.992

0.994

0.996

0.998

1.000

be
ta

 2

beta 2 TPE optimisation

order of ascending fitness value

10

8

6

4

2

lo
g

le
ar

ni
ng

 ra
te

log learning rate TPE optimisation

0.90 0.92 0.94 0.96 0.98 1.00
beta 1

0

10

20

30

40

50

60

de
ns

ity

beta 1 TPE optimisation

0.990 0.992 0.994 0.996 0.998 1.000
beta 2

0

100

200

300

400

500

de
ns

ity

beta 2 TPE optimisation

12 10 8 6 4 2
log learning rate

0.0

0.1

0.2

0.3

0.4

0.5

de
ns

ity

log learning rate TPE optimisation

Figure A.3: The result of the TPE hyperparameter optimisation algorithm. Fig-
ures A.3a, A.3b and A.3c present the convergence plots of the parameter values in
ascending order with regards to their associated fitness value. Figures A.3d, A.3e
and A.3f present the marginal distributions of the samples parameter choices.

V

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Bayesian Inference
	The Bayesian framework
	Metropolis-Hastings
	Adaptive Metropolis-Hastings algorithm
	Using Metropolis-Hastings for Bayesian inference

	Bayesian filtering
	State-space models
	Bayesian filtering equations
	Kalman filter
	Extended Kalman filter
	Particle filter

	Models
	Stochastic differential equations
	The Ornstein-Uhlenbeck process
	A linear spring-mass system
	A cubic spring-mass system

	Artificial neural networks
	Feedforward neural network
	Activation function
	Loss function
	Stochastic gradient descent
	Adam optimiser
	Hyperparameter optimisation

	Method
	Metropolis-Hastings using Bayesian filters
	Overview of the AAMH algorithm
	Generating and pre-processing the training data
	Training the neural network
	Parameterization of the training region
	Metropolis via the mixed method

	Performance metrics
	Effective sample size
	Wasserstein distance

	Experiment setup

	Results
	Ornstein-Uhlenbeck model
	The CMH algorithm
	Data pre-processing and training the neural network
	The MMH algorithm

	Hyperparameter optimisation
	Linear spring-mass model
	Varying the training data sizes
	Varying the Mahalanobis confidence levels
	Varying the state-space dimensionality
	Varying the number of model parameters

	Cubic spring-mass model
	Using the extended Kalman filter
	Using the bootstrap filter

	Discussion
	Ornstein-Uhlenbeck model
	Linear spring-mass model
	Cubic spring-mass model

	Conclusion
	Bibliography
	Appendix 1
	Lemmas concerning Gaussian distributions
	Optimal importance distribution
	Description of the log-likelihood function
	Description of the training loss
	Hyperparameter optimisation results

