

Dynamic fault generator for simulating
gracefully degradable components

Master’s thesis in Embedded Electronic System Design

TONY AKIKI

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND GOTHENBURG UNIVERSITY
Gothenburg, Sweden 2016

Dynamic fault generator for simulating gracefully
degradable components

A tool that generates events to predict and inject
permanent faults that could appear on a gracefully
degradable adaptive system during its life time

TONY AKIKI

Department of Computer Science and Engineering
Chalmers University of Technology and Gothenburg University

Gothenburg, Sweden 2016

Dynamic fault generator for simulating gracefully degradable components
A tool that generates events to predict and inject permanent faults that will appear
on a gracefully degradable adaptive system during its life time
TONY AKIKI

©Tony Akiki, 2016.

Supervisors: Prof.Dr. Ioannis Sourdis & PhD candidate Stavros Tzilis, Computer
Science and Engineering Department, Chalmers University of Technology
Examiner: Prof.Dr. Per Larsson-Edefors, Computer Science and Engineering De-
partment, Chalmers University of Technology

Department of Computer Science and Engineering
Chalmers University of Technology and Gothenburg University
SE-412 96 Gothenburg
Telephone +46 (0)31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Dynamic fault generator for simulating gracefully degradable components
A tool that generates events to predict and inject the permanent faults that will
appear on a gracefully degradable adaptive system during its life time
TONY AKIKI
Department of Computer Science and Engineering
Chalmers University of Technology and Gothenburg University

Abstract
Transistors dimensions are scaling down according to Moore’s Law making inte-
grated circuits much prone to failures. To help study the reliability of such complex
systems, the aim of this thesis is to develop a high-level tool that inject faults dy-
namically on a gracefully degradable adaptive system during its lifetime. Our devel-
oped tool operates in closed-loop with the rest of the experimental setup, receiving
feedback parameters that have an influence on the prediction routine, such as the
components’ utilization rates. Additionally, the tool is able to consider transistor
wearout effects in the fault prediction routine, such as Negative Bias Temperature
Instability (NBTI).

Furthermore, we were able to examine different degradable aspects of com-
plex systems using different fault scenarios. For instance we studied the capacity
degradation over time of the 3-D stacked DRAM Hybrid Memory Cube (HMC) and
found that the remaining memory capacity after 10 years is around 86% considering
normal failure rates and around 77% considering pessimistic failure rates. We also
studied the degradation of a reconfigurable processor array in terms of number of
operating processors over time for array sizes 8-by-7 and 4-by-8, and determined the
best array size given the failure rate and expected mission time.

Keywords: Reliability, runtime management, permanent faults, transistor aging,
fault modelling, graceful degradation, reconfigurablity, lifetime extension.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2

1.2.1 Thesis Objectives . 2
1.3 Limitations . 3
1.4 Thesis Outline . 4

2 Background 5
2.1 Reliability Analysis . 5
2.2 Lifetime Extension Strategies . 7
2.3 Graceful Degradation . 8
2.4 Negative-Bias Temperature Instability 9

3 Component Models 11
3.1 Component with Homogeneous Modules 11
3.2 Component Supporting Frequency Scaling 13
3.3 Memory . 14
3.4 Heterogeneous Component . 16
3.5 Reconfigurable m-by-n Processor Array 18
3.6 3D-stacked DRAM Hybrid Memory Cube 21
3.7 Components Summary . 23

4 Tool Implementation 25
4.1 Porting of Useful Modules . 25

4.1.1 Upgrade to Operate in Closed-Loop 26
4.1.2 Upgrade to Predict Events Dynamically 28

4.2 Integration with the Experimental Setup 28
4.3 NBTI Implementation . 29
4.4 Implementation of Reliability Models 33

4.4.1 Component with Homogeneous Modules 33
4.4.2 Component Supporting Frequency Scaling 34
4.4.3 Memory . 34
4.4.4 Heterogeneous Component . 35

vii

Contents

4.4.5 Reconfigurable m-by-n Processor Array 35
4.4.6 3D-stacked DRAM Hybrid Memory Cube 36

4.5 Implementation Summary . 36

5 Evaluation and Experiments 39
5.1 Analysis of the Basic Tool . 39
5.2 Evaluation of the Ported Basic Modules 41
5.3 Comparison between the Basic EG and the DEG Prediction Routine 43
5.4 NBTI Calibration Process and Results 44
5.5 HMC Evaluation . 46
5.6 Processor Array Evaluation . 48
5.7 Chapter Summary . 50

6 Summary and Conclusions 53
6.1 Thesis Summary . 53
6.2 Thesis contributions . 54
6.3 Possible areas for future research . 55

Bibliography 57

A Appendix I
A.1 User Guide . I

viii

List of Figures

1.1 Basic event generator . 1
1.2 Dynamic event generator block diagram 2

2.1 Illustration of the bathtub curve [29] 6
2.2 Component operating in the full-fledged mode vs one degraded mode 8
2.3 Comparison between static and dynamic NBTI, reproduced from [26] 9

3.1 Component with n homogeneous modules 12
3.2 Markov chain for n modules working in parallel 13
3.3 Markov chain for component supporting frequency scaling n = prede-

fined number of frequency reduction before total failure c = coverage
factor . 14

3.4 Memory with 8 identical regions of 512KB 15
3.5 Markov chain for memory component of 4MB able to operate with a

least 512KB . 16
3.6 Block diagram of the heterogeneous componenent 17
3.7 Markov chain of the heterogeneous componenent 18
3.8 4-by-4 processor array . 19
3.9 4-by-4 processor array after failure of some parts 19
3.10 Markov chain of 2-by-2 processor array 20
3.11 HMC System Diagram from [11] . 21
3.12 HMC architectural design . 22
3.13 Routers Architecture . 22

4.1 Fault generation procedure for the constant λ 26
4.2 The closed-loop flow . 27
4.3 Exchanged parameters between the DEG and the reconfiguration

module . 29
4.4 Long-term prediction model verification [18] 30
4.5 λNBTI in funtion of ∆Vth . 32

5.1 Probability density function using the Java basic version 40
5.2 Distribution function using the Java basic version 40
5.3 Probability density function using Java vs C++ 42
5.4 Distribution function using Java vs C++ 42
5.5 Processor array evaluation using the basic EG vs DEG 43

ix

List of Figures

5.6 Processor array evaluation using the basic EG vs DEG and taking
into consideration the NBTI effect . 44

5.7 NBTI impact on Heterogeneous component 46
5.8 HMC capacity degradation in time 47
5.9 Processor array degradation with baseline failure rates 49
5.10 Processor array degradation with scaled down failure rates 49
5.11 Processor array degradation with scaled up failure rates 50

x

List of Tables

4.1 Model parameters . 31

5.1 NBTI calibration results . 45
5.2 Fault rates used in the HMC simulations 47
5.3 Fault rates used in the processor array simulations 48

xi

List of Tables

xii

1
Introduction

The complexity of embedded systems has grown very fast in the last decades. As
the transistor dimensions are shrinking, the defect densities of system components
increase and conventional testing becomes harder and more expensive. Scaling these
complex systems makes them sensitive, and one of the greater challenges is the reli-
ability of a system built with different hardware components, which are furthermore
prone to aging effects. To help study the reliability of such systems, this master
thesis aims to develop a tool that injects permanent faults that will appear on a
gracefully degradable adaptive system during its lifetime.

1.1 Motivation
The motivation of this master thesis comes from existing works on lifetime esti-
mation of multicore systems, lifetime management, lifetime extension and graceful
degradation of multiprocessor system-on-chip (MPSoC) components. In general,
researching the effect of permanent faults on modern adaptive MPSoCs requires
flexible and consistent methodologies for predicting (or injecting) these faults. Pre-
vious studies proposed runtime optimization algorithms for the management of a
gracefully degradable adaptive MPSoC [1][2][4][5][6][8][10]. In this context, an event
generator (EG) was developed in [2] to inject the permanent faults that will appear
on the MPSoC during its lifetime, based on a set of parameters (mainly the fault
rate of each component).

Event
Generator

System
Components

Failure rates

Events.txt

Figure 1.1: Basic event generator

This EG shown in Figure 1.1 is a basic tool that predicts events which are
injected afterwards in the experimental setup. This is a good baseline to build
on since the prediction algorithm is designed and implemented. However, it works
in open-loop which is not realistic enough because it injects in advance a set of

1

1. Introduction

events without taking into account system parameters about the system state or
configuration which can vary over time, either because of workload fluctuations or
the impact of runtime decisions or the non-uniform, over time, impact of aging
effects.

1.2 Problem Statement

Our goal is to improve the EG by building a dynamic event generator (DEG) that
works in closed-loop with the reconfiguration module as shown in Figure 1.2 taking
into consideration several indications that will be discussed later in this thesis. This
solution is aimed to be more realistic, introducing to the system parameters such
as Negative-Bias Temperature Instability (NBTI), and being aware of each compo-
nent use (utilization rate or duty cycle) through the system reconfiguration module.
These parameters serve as a feedback. Whenever system parameters change, e.g.
after applying a new system configuration, the DEG inputs will be updated accord-
ingly, affecting the prediction of the next permanent fault.

Dynamic
Event

Generator

System
Components

Failure rates
(static information)

Initial
Configuration

Aging effects
Information

(NBTI)

Event signature
(time, location, type)

Reconfiguration
module

New system
configuration

Figure 1.2: Dynamic event generator block diagram

The following subsection will list the main objectives of the thesis based on the
above problem statement.

1.2.1 Thesis Objectives
The purpose of the project is to design an advanced tool taking into consideration
these main objectives:

2

1. Introduction

• Upgrade the basic event generator (EG) to work in closed-loop with the rest
of the experimental setup, that is, a dynamic event generator (DEG), and
make use of information provided by the system configuration. The predicted
permanent faults are based on parameters that change during the system’s
lifetime such as the duty cycles of the components.

• Come up with more sophisticated fault models for various components of an
adaptive, degradable system, like reconfigurable processors, processors that
support frequency scaling and 3D-stacked DRAMHybrid Memory Cube (HMC).
For each of the examined components, a set of possible permanent faults are
defined and a list of degraded modes of operation are determined based on
these possible faults.

• Explore the NBTI aging effect and incorporate its properties as input param-
eters to the DEG. Further improve the previously implemented “dynamic”
failure rates to account for the increased accuracy of input data when predict-
ing the occurrence of permanent faults.

• Test extensively the developed DEG by verifying it against conventional re-
liability models such as a component with an exponential distribution as de-
scribed in [9], against experiments concerning system lifetime for gracefully
degradable components performed with the old EG [1], and against a low-
level NBTI simulation.

• Use the developed DEG tool to evaluate and analyze the degradation of com-
plex systems over time, such as the HMC and reconfigurable processor array,
at different failure rates and design decisions.

These objectives will be brought up to discussion in Chapter 5 and Chapter 6. At
that point we will discuss the results and elaborate on the achievements.

1.3 Limitations

The DEG is flexible to be used with any kind of fault model. We will be limited to
a well defined set of fault models for various components of an adaptive, degradable
system. These components are presented in the list below.

• Component with homogeneous modules
• Component supporting frequency scaling
• Memory with a controller able to isolate regions of the memory whenever a

permanent fault occurs
• Heterogeneous component
• Reconfigurable m-by-n processor array
• 3D-stacked DRAM Hybrid Memory Cubes

The tool’s infrastructure will allow modeling of other components not in the list
with minimal effort, as long as their reliability model (faults which can occur and
degraded modes of the component) is known.

One aging effect which will be integrated in the DEG is the aforementioned
NBTI. Other aging effects could be considered like the Hot Carrier Injection (HCI)
or Time-Dependent Dielectric Breakdown (TDDB) for future upgrade of the tool
faults prediction routine.

3

1. Introduction

The DEG operates in closed-loop with the experimental setup discussed in [1].
As the name indicates, this event generator works dynamically and the system con-
figuration is updated at a specific frequency. We will limit the prediction precision of
this tool by calling a new system configuration whenever an event occurs. A higher
accuracy in the events prediction could be achieved if a new system configuration is
called whenever a relevant parameter is modified, e.g. the workload of the system
components. But this will not be considered in this thesis.

Lastly, our DEG will be able to inject faults in discrete time intervals of the sys-
tem lifetime. However, depending on the accuracy requirements of each experiment,
this interval can be defined to be arbitrarily short.

1.4 Thesis Outline
In this Section we briefly present the organization for the rest of the report.

Chapter 2 includes the theoretical background required to understand the con-
tents of the thesis. We will highlight the traditional reliability analysis from liter-
ature. Thereafter, we will discuss relevant works related to the lifetime extension
strategies of reliable systems, and how to design reliable systems from unreliable
components. Furthermore, we provide a definition of graceful degradation and we
finish up by presenting information about the aforementioned NBTI aging effect.

Chapter 3 presents the proposed graceful degradation models for various degrad-
able components. For each of these components a brief description will be given and
a list of possible events (permanent faults) that can appear on that component will
be discussed. Beyond that, a Markov chain will show the degraded modes and
how faults lead to them, and what are the degraded aspects of the system in each
degraded mode.

Chapter 4 explains and justifies the main decisions throughout the design and
implementation phases. With a good theoretical background from Chapter 2 and
well defined models from Chapter 3, a good platform is sufficient to build on our
design. We will present the theoretical construction of the event prediction based
on the fault rate λ. In addition, we will explain how components and their various
possible faults are modelled in the tool.

Chapter 5 discusses the experimental results and evaluates them. The DEG
main functionality will be verified against conventional reliability models and exper-
iments done with the basic EG [1]. The results of the new experiments produced
by the DEG will be studied comparatively with the old ones using the basic EG
and useful conclusions will be drawn. Likewise, the NBTI module will be calibrated
using low-level NBTI experiments. Furthermore, the developed DEG will be used
to evaluate different system degradations.

Finally, Chapter 6 summarizes and concludes the thesis. We will begin by
recapitulating what is included in each chapter. Subsequently, we will summarize
the thesis contributions and revisit the thesis objectives defined in Section 1.2.1 and
state our achievements. Finally, we will draw conclusions from the work and list
possible future prospects and suggest how the tool could be upgraded.

4

2
Background

This chapter provides the reader with a broad theoretical background, enough to un-
derstand the work done in this thesis. Section 2.1 summarizes traditional reliability
analysis, on which the event generator (EG) is based. Section 2.2 discusses recently
developed lifetime extension strategies to substantiate the claim that self-awareness
is a useful property for modern adaptive systems. Section 2.3 gives a definition of
"graceful degradation" and explains how standalone components can tolerate the
occurrence of permanent faults and keep functioning. Lastly, Section 2.4 explores
the Negative-Bias Temperature Instability (NBTI) aging effect and defines a way to
incorporate its properties to the dynamic event generator (DEG).

2.1 Reliability Analysis

When systems are critical during mission time, it is required to perform some anal-
ysis to attain deeper knowledge of their survival properties. Fortunately, reliability
analysis has been well established [9], and in this section we will review the basics
needed to understand the rest of this report. The reliability R(t) of a component is
defined as the probability that its lifetime X is greater than t. In other terms, the
reliability is the probability of a component to be functional during a specified time
interval of duration equal to t. In fact, the reliability R(t) of a hardware (HW) com-
ponent has an exponential distribution function with a failure rate λ as parameter,
and is represented in Equation 2.1.

R(t) = P (X > t) = e−λt (2.1)

Accordingly, the probability of failure F (t) of a HW component until time t can be
expressed by Equation 2.2, and it is known as the distribution function.

F (t) = P (X ≤ t) = 1−R(t) = 1− e−λt (2.2)

In reality, a hardware component has a higher failure rate in the infant and wear-out
phases as shown in the Bathtub curve in Figure 2.1. In this work we will consider the
useful life period, and assume that the failure rate is constant as it is demonstrated
in [9] for a HW component with exponential distribution function.

5

2. Background

Figure 2.1: Illustration of the bathtub curve [29]

The DEG’s main purpose is to generate and inject permanent faults that will
appear on a gracefully degradable adaptive system during its life time. We based
our approach on the basic event generator [1], according to which the probability
that a fault occurs in an interval ∆t is:

P (fault in ∆t) =
∫ t+∆t

t
λ(S)dS (2.3)

However, if λ(t) is constant :

P (fault in ∆t) = λ.∆t (2.4)

Alongside with any functional unit, it is impossible to design a component without
a single point of failure. Generally, these single points of failure are :

• the control signals which make up very low percentage of the total circuit, but
their failure produces critical faults,

• the infrastructural circuitry, such as the clock tree,
• and some part of any protected circuit, such as the voter of a triple modular

redundancy (TMR) system.
Therefore, in the implementation part we must take that into consideration and
generate such permanent faults with fatal criticality that cause complete failure.
On the other hand, we will introduce permanent faults with lower criticality related
to the functional units. In case these faults happen, they degrade different aspects of
the component and place it in degraded mode of operation. These levels of criticality
differ by the fault rate λ of their corresponding generators.

The DEG uses quantization of time to predict if a permanent fault has oc-
curred at time t when the non-decreasing function

∫ t
0 λ(S)dS reaches a certain pre-

6

2. Background

calculated threshold E [1]. The threshold E in the fault prediction is an exponen-
tially distributed number that is obtained by generating a uniformly distributed
random number y ∈ [0, 1] and plugging it in −ln(1− y). Observe that the threshold
E is a number independent of λ. The failure rate λ will decide how fast we will reach
this threshold E. The higher the failure rate λ, the faster the fault prediction system
will attain the threshold E and generate a permanent fault in the corresponding
time-stamp t. Furthermore, the DEG will be more realistic by varying the fault
rate according to dynamically changing conditions, such as the component temper-
ature and utilization rate. Furthermore, we will integrate an important aging effect,
NBTI, that will be discussed in detail in Section 2.4. These factors will be added as
parameters of λ(t) and will certainly affect the fault prediction routine.

2.2 Lifetime Extension Strategies

As the transistor dimensions are being scaled down and the number of transis-
tors on a die is increasing exponentially, the defect densities of system components
also increase. Indeed, the oxide wearout effects tend to reduce the lifetime of the
component due to high operating temperature [14] and the big number of transis-
tors on a simple chip increases the power density with risk of creating thermal hot
spots that lead to less reliable components [28]. Furthermore, with the presence
of process variation, neighboring transistors behave differently as they might have
different threshold voltages due to the random number of dopant atoms implanted
[19]. Undoubtedly, the new challenge is to build reliable systems from components
with delays that are non-uniformly distributed, both in space and in time due to
the increase of leakage current.

Many strategies to extend the lifetime of a chip multiprocessor (CMP) has been
discussed in literature. Most researchers examine the dynamic thermal (DTM)
and reliability management (DRM) techniques to improve the performance while
expecting lifetime extension. Some of these techniques have been discussed widely
[14]. In contrast, the same article [14] considers a proactive approach to reliability
named "Maestro", relying on low level sensors to manage and control the aging of
the CMP. Maestro schedules dynamically the jobs to be done on the CMP in such a
way preventing the weakest module to execute stressful workload. On one hand, this
method avoids permanent failures induced by a single weak core. On the other hand,
the same strategy ensures lifetime extension by improving the ability of the CMP to
execute heavy workloads in the presence of aging effects. Other potential strategies
and solutions have been discussed in [15] to improve the reliability of systems from
unreliable components. One of these solutions is to include the test functionality as
a part of the hardware to detect dynamically errors and isolate faulty components.
These solutions must work together to substantiate the claim that modern systems
should take care of themselves and extend their lifetime.

The above strategies try to ensure that CMPs degrade as gracefully as possible,
a concept which will be defined in the following Subsection 2.3.

7

2. Background

2.3 Graceful Degradation

Graceful degradation (henceforth GD) is the transition to a lower state of some
system aspect as a response to the occurrence of an event that prohibits the mani-
festation of the fully fledged system behavior [16].

GD has been explored with the help of a runtime manager of an adaptive
MPSoCs [1][3] in order to extend the lifetime of the system and prevent a total
failure. Indeed, several solutions have been discussed, and the proposed algorithms
implementing a runtime manager for GD were presented and evaluated in terms of
complexity and quality of the delivered service [1][3][4][5].

Besides, another study shows the possibility of GD in a multiprocessor array
[10]. The authors proposed an algorithm for reconfiguration considering that the
multiprocessor array is partitioned into substitutable units at the granularity of
pipeline stages. This algorithm aims to isolate defective units and connect fault-free
units to form working processors.

In the context of this thesis, an event is a permanent fault generated by the
DEG which affects the functionality of the component. Due to GD the component
no more run with the same properties and some of its aspects will be degraded.
These aspects could be performance (e.g. system speed, throughput), functionality
(e.g. amount of total work done, precision of results), and energy consumption.
However this transition to lower-performance system mode will prevent the system
from catastrophic failures. Figure 2.2 shows an example of a component consisting
of 4 working processors in its full-fledged mode. To complete 12 identical tasks, the
system needs 3 time slots if we consider that each task demands one time slot to be
done.

Process 1

Tasks

Process 2

Process 3

Process 4

Output

(a) full-fledged

Process 1

Process 2

Process 3

Process 4

Output

(b) degraded

Figure 2.2: Component operating in the full-fledged mode vs one degraded mode

Due to a permanent fault on the 4th processor, a graceful degradation takes
place. The system will keep functioning with the remaining processors, and the tasks
assigned to the faulty processor will be rescheduled to be achieved on the remaining
3 processors. As a consequence, the same 12 tasks require now at least 4 time slots
to be executed, if the tasks of the failed processor are rescheduled equally between

8

2. Background

the remaining processors. In this degraded mode the same number of tasks will be
achieved with fewer processors, the system will perform less and has now a lower
throughput.

Apart from the performance degradation represented in Figure 2.2, we can have
functional degradation, by dropping the tasks processor 4 was executing instead of
rescheduling them.

2.4 Negative-Bias Temperature Instability

Negative-Bias Temperature Instability (NBTI) is the most serious oxide wearout
mechanism that occurs at the transistor level [19]. With technology scaling, the
oxide gate becomes thinner and the number of transistors per chip increases, leading
to higher power densities and operating temperature. Accordingly, NBTI became
worse especially with higher operating temperature [23] [24]. Consequently, NBTI
should be taken into consideration when studying the reliability of a system, as it
affects the CMOS lifetime [17] [19] [23] [24].

0 1 2 3 4

2

1.5

1

0.5

0

Time(s)

N
u

m
b

e
r

o
f

in
te

rf
ac

e
 t

ra
p

s

x 10^13

Continuous stress

Stress

Stress

Relaxation

Relaxation

x 10^5

Figure 2.3: Comparison between static and dynamic NBTI, reproduced from [26]

NBTI arises in p-channel MOS transistors when a negative voltage (Vgs = −Vdd)
is applied to the PMOS oxide gate under high temperatures. This is known as the

9

2. Background

stress phase. Interface traps are generated at the Si− SiO2 interface. These traps
are electrically active physical defects [26]. As a consequence, the threshold voltage
increases as more traps develop, the gate leakage raises, and the drive current in the
PMOS is reduced causing the transistor to switch slower. As the transistor becomes
slower, this leads to a degradation in the system performance. Beyond that, at
some point this delay causes the clock period to be violated which causes reliability
issues potentially leading to total failure of the system. The NBTI phenomenon
could be produced by either negative bias conditions or elevated temperatures [24],
but became worse with the combination of these two effects. However, if the stress
voltage is removed (Vgs = Vdd), parts of the interface traps are resolved helping the
NBTI degradation to partially recover. This is known as the recovery phase. The
NBTI can have an impact on electronic circuits in two different ways:

• Static NBTI: when the PMOS is constantly under stress
• Dynamic NBTI: when the PMOS go alternatively from stress to recovery phase
Figure 2.3 shows the number of interface traps for two cycles of periodic stress

and recovery with t0 = 105 seconds (≈ 1.16 days) and the measurement data are from
[26]. On the other hand, the same figure emphasizes that a static stress produces an
increasing number of interface traps. However, during dynamic circuit operation, it
is more probable to suffer from dynamic NBTI rather than static NBTI. Therefore
we will implement the NBTI effect in its dynamic flavor, and this will be explained
later in Section 4.3.

10

3
Component Models

In the previous chapter, we provided a theoretical background in order for the reader
to understand how we can deal with permanent faults and extend the components
lifetime by degrading some of the system aspects. For instance, after each permanent
fault, the component can lose performance, precision or functionality, and might not
behave the same way the original one did.

Indeed, in order to implement fault models, we have first to identify what
are the permanent faults that can appear in the component and second, develop a
good understanding of the degradation aspects and consequences of faults on these
aspects. In this chapter, we take the following steps:

• describe all the HW components which the dynamic event generator (DEG)
will be able to deal with, and their organisation/architectural design,

• list all the events that can occur on each component,

• list the degraded modes for the component possibly by presenting their re-
spective Markov chain,

• and finally discuss the degradation aspects and how each fault affects the
original behavior of the component.

3.1 Component with Homogeneous Modules

To begin with, the simplest component is the one with homogeneous modules. This
component consists of a number of identical modules which perform the same func-
tionality and have the same reliability properties. Failure of any of the modules
means that the component can keep functioning with the rest. We assume that a
fault in one module cannot cause faults in any other module, or the control signals.
Alongside the modules, there are control signals and interface circuitry with the
rest of the system. A fault in these parts renders the whole component useless as
this block is a single point of failure. This component is represented in Figure 3.1
showing n identical modules operating in parallel.

11

3. Component Models

Module 1

Module 2

Module n

Control
signals &
interface
circuitry

Figure 3.1: Component with n homogeneous modules

Each fault tolerant system consists of several fault containment regions. A fault
containment region aims at preventing faults and errors from propagating from one
module to another module ensuring that modules fail independently of each other.
In this component there are n+ 1 fault containment regions:

• n representing the blue modules in Figure 3.1,
• and one representing the whole component including the red part in Figure

3.1, since a fault in the red part disables the whole component
Therefore the reliability of the system is the product of the reliability of the modules
and the reliability of the interface and control signals.

Rsys(t) = Rmodules(t).Rinterface(t) (3.1)

Beyond that, the possible events that can occur on this component are:
• Permanent fault on the control signal and interface circuitry with high criti-

cality, which renders the whole component useless whenever it occurs.
• Permanent faults with lower criticality that could appear on each of the mod-

ules. After each permanent fault, the corresponding module will be shut down
and the whole component will work in a degraded mode with one module fewer
than before.
The degraded modes of this component are shown using the Markov chain in

Figure 3.2. Anytime a permanent fault with low criticality appears on a module,
the component will still work if at least one module is working along with the
interface and control signals. Note that by low criticality, we mean that this kind of
faults cannot lead to failure unless the component is at the lowest level of graceful
degradation.

12

3. Component Models

n
working

n-1
working

n.λmodules

n-2
working

(n-1).λmodules (n-2).λmodules

Failure

λmodules

 ...

λcritical

λcritical

λcritical

Figure 3.2: Markov chain for n modules working in parallel

However, after each permanent fault, the two different degradation aspects are:
• result precision,
• and/or performance,

depending on the application in question. If for example, this component is used for
telecommunications, and each module is responsible to transmit certain frequencies,
the degraded component will drop some packets of the voice data rather than clos-
ing the connection. Therefore, the voice quality delivered has less precision and is
gracefully degraded to lower levels. On the other hand, if this component is respon-
sible to do calculations with the aid of all the modules, after each permanent fault
the remaining tasks will be divided to be done on the remaining modules, thus the
job will need more time to be done. In this way the performance degrades as more
time is needed to perform the same number of tasks.

3.2 Component Supporting Frequency Scaling
The next component we will discuss is the component that supports frequency scal-
ing. The various parts of this component are irrelevant and its functionality cannot
be degraded – it either works or does not. However, when (due to aging or due
to a timing fault detected with testing), it cannot run at the intended frequency,
it can work at a lower clock frequency to keep functioning at a slower speed. This
frequency reduction can be performed a predefined number of times n before the
component is considered entirely failed.

This component consists of n + 1 fault containment regions each representing
the same component operating at different frequencies. The possible events that
can occur on this component are:

• Permanent fault for the uncovered events with high criticality, which renders
the whole component useless whenever it occurs. These faults affect the func-
tionality of the component. Once they have happened the component cannot
be repaired.

• Permanent faults with lower criticality that affect the speed of various parts
with a coverage factor c. These faults causes the whole circuit to function

13

3. Component Models

slower. As a consequence, to repair the component functionality after each
permanent fault, the operating frequency will be lowered. When the number
of frequency reduction reach the predefined number of time n, the component
will end up in the "Failure" state.
Usually, the coverage factor c is the probability that a fault is covered by the

fault tolerant mechanism, thus detected and repaired. In this case the fault tolerant
mechanism is the frequency scaling. However, we don’t have the ability to detect
this type of faults, and by "coverage factor" we mean the percentage of faults that
can be repaired by this mechanism. So in this context c is not about ability to
detect faults, but is only with respect to ability to repair them. Accordingly, 1− c is
the probability that a fault is non-covered, therefore whenever such fault happens,
the component fails. The degraded modes of this component are shown using the
Markov chain in Figure 3.3.

Freq 0 Freq 1

c.λ

Freq 2

c.λ c.λ

Freq n

c.λ

 ...
Failure

c.λ

(1-c).λ

(1-c).λ

(1-c).λ

(1-c).λ

Figure 3.3: Markov chain for component supporting frequency scaling
n = predefined number of frequency reduction before total failure
c = coverage factor

Each time a permanent fault appears on this component, the main aspect that is
affected is the performance. Due to reduction of the clock frequency, the component
will run slower and cannot perform as well as before. The same tasks still can be
done but they will need more time to be achieved.

3.3 Memory
Another interesting component to discuss is the memory that operates as following.
A test routine is periodically applied to the memory of certain size (say, 4MB). When
a permanent fault is detected in one or more memory bits, the controller is able to
isolate regions of the memory, by fixing specific bits of the address bus to a constant
value. In this manner, memory capacity is halved. The minimum size required

14

3. Component Models

for the memory to be usable is 512KB. Note that there are less wasteful memory
fault tolerance techniques, but we chose this one for simplicity in demonstrating
the abilities of the tool. This component is represented in Figure 3.4 showing eight
identical regions each of 512KB.

As we managed to divide the memory into eight identical regions of 512KB each,
this component consists of eight fault containment regions physically. However,
the simple fault tolerance mechanism that we chose in order to demonstrate the
DEG function, is wasteful and sacrifices more regions of the memory than it has to.
Accordingly, a fault appearing in one of the eight regions sacrifices other regions and
the fault propagates by disabling half of the active regions. The underlying model
we use in the DEG can be used with a better fault tolerance mechanism, by changing
the reconfiguration routine every time a fault happens, in order to implement a more
efficient strategy. The possible events that can occur on the memory component are:

• Permanent fault for the uncovered events with high criticality, which renders
the whole component useless whenever it occurs. One such example of these
faults is when a memory controller which is responsible for the flow of data
in and out of the memory, became non responding turning this component
unusable.

• Permanent faults with lower criticality with coverage c that could appear on
certain region of the memory. These non-critical faults are specific memory
bits being corrupted. In order to tolerate such faults, the memory size will be
halved when a fault occurs to reach the last stage of having only one working
region. Beyond that, any kind of faults will lead to total failure.

512 KB 512 KB

512 KB 512 KB

512 KB 512 KB

512 KB 512 KB

Figure 3.4: Memory with 8 identical regions of 512KB

Note that the coverage factor c has the same meaning as discussed in section
3.2. The degraded modes of this component are shown using the Markov chain in
Figure 3.5.

15

3. Component Models

4Mb 2Mb

c.λ

1Mb

c.λ c.λ

512Kb Failure

λ

(1-c).λ

(1-c).λ

(1-c).λ

Figure 3.5: Markov chain for memory component of 4MB able to operate with a
least 512KB

Due to reduction of the memory size after each permanent fault, the degradable
aspect is the memory capacity. Accordingly, the system that uses the memory loses
performance because of the lower memory capacity. The same tasks still can be
done but they will need more time to be achieved.

3.4 Heterogeneous Component

The next component to discuss is a component which is composed of heterogeneous
modules, with different reliability properties and the failures of which result in dif-
ferent degraded or failed modes. As an example, we will consider the following
potential core of a multicore System on a Chip represented by Figure 3.6. The
operations that are performed by the floating point and integer units, in the nor-
mal (full-fledged) component functionality are well-defined. The degraded modes
resulting from failures of various units will be defined in this section.

This component consists of nine fault containment regions in total as follows:

• 8 for the cache as described in the previous section,

• 1 for the floating point unit,

• 1 for the integer unit,

16

3. Component Models

Floating
point
unit

Integer
unit

C
om

m
on

/essen
tial

circuitry
L1 cache

Figure 3.6: Block diagram of the heterogeneous componenent

The degraded modes of this component are shown using the Markov chain in
Figure 3.7. The possible events that can occur on this heterogeneous component are
defined below with their respective degradation modes:

• Permanent fault on the control signal and interface circuitry with high criti-
cality, which renders the whole component useless whenever it occurs.

• Permanent faults with lower criticality that could appear on the integer unit.
In the case where we have just one integer unit, a permanent fault on this mod-
ule will render it useless and it will be shut down. At this point any integer
operation, could still be performed using the floating point unit. Undoubtedly,
a floating point unit performing both integer and floating operations will be
more busy. Therefore, the utilization rate of this unit will be higher. Conse-
quently, the performance of the component will degrade and the fault rate of
the floating point will increase affected by higher duty cycle.

• Similarly, permanent faults could appear on the floating point unit. Likewise,
operations requiring floating point unit could be done on the integer unit.
However, precision will be sacrificed beside the performance issues discussed
in the previous point. This degradation is possible only for tasks that can
tolerate this precision loss, e.g. tasks of a program that uses the approximate
computing paradigm. As well the integer unit performing both floating point
and integer operations will have higher fault rate and be more likely to fail
due to its busier state.

• Permanent faults with lower criticality with coverage c that could appear on
the cache. The cache of the component degrades in the same way as the
memory component described in the previous subsection.

• Permanent fault for the uncovered events with high criticality, which renders
the cache unit useless whenever it occurs.

17

3. Component Models

All working
(4Mb)

Degraded
(Int unit fails/

4Mb)

Failure
Degraded

(2Mb)

λcache

λcache

Degraded
(1Mb)

Degraded
(512Kb)

λcache λcache

Degraded
(Int unit fails/

2Mb)

λint

Degraded
(Int unit fails/

1Mb)

λcache

λint

Degraded
(Int unit fails/

512Kb)

λcache

λint

Degraded
(FP unit fails/

4Mb)

Degraded
(FP unit fails/

2Mb)

Degraded
(FP unit fails/

1Mb)

Degraded
(FP unit fails/

512Kb)

λcache
λcache λcache

λCritical + λcache

Figure 3.7: Markov chain of the heterogeneous componenent

This component can be extended with more functional units of any type, which
have already been described in the previous sections and that degraded modes will
exist accordingly.

3.5 Reconfigurable m-by-n Processor Array
The next component to be discussed is the reconfigurable m-by-n processor array,
with m being the number of different substitutable units that one processor contains
and n being the total number of processors. An array of processors is modified to
support reconfigurability as follows: Each processor of the array is divided into a
number (say 4) of substitutable units as shown in Figure 3.8. Reconfigurable inter-
connections are added between the parts, such that allow any part of one processor
to be connected with any (fitting) part of another processor. The various pieces
are laid out in such a way as to form an array, the rows of which are the different
processors, and the columns are groups of identical processor parts. When pieces

18

3. Component Models

of different processors fail, the remaining pieces can be thus connected to form a
working processor as shown in the degraded mode in Figure 3.9.

A1

A2

A3

A4

In
te

rc
o

n
n

ec
ti

o
n

B1

B2

B3

B4

In
te

rc
o

n
n

ec
ti

o
n

C1

C2

C3

C4

D1

D2

D3

D4

In
te

rc
o

n
n

ec
ti

o
n

Processor 1

Processor 2

Processor 3

Processor 4

Figure 3.8: 4-by-4 processor array

In this example, we consider that B1, C2, D3, C4, and D4 are faulty. After reconfig-
uration, processors 1 and 2 could still operate because no interconnection has failed,
thus rearrangement to achieve graceful degradation is possible.

A1

A2

A3

A4

In
te

rc
o

n
n

ec
ti

o
n

B1

B2

B3

B4

In
te

rc
o

n
n

ec
ti

o
n

C1

C2

C3

C4

D1

D2

D3

D4

In
te

rc
o

n
n

ec
ti

o
n

Processor 1

Processor 2

Processor 3

Processor 4

Figure 3.9: 4-by-4 processor array after failure of some parts

For this component we want to take into account the following kinds of faults:
• Faults that cause a substitutable unit to fail
• Faults that cause the interconnect infrastructure between two columns to fail.

In this case, we assume that there is a dedicated connection between substi-
tutable units of the same row, and if the interconnect fails, only this default
connection is possible.

Accordingly, this component consists of m∗n fault containment regions representing
the different substitutable units, and m− 1 fault containment regions representing
the interconnect infrastructures.

19

3. Component Models

1.1.1.1

0.1.1.1 Failure

1.0.1.1

1.1.0.1

1.1.1.0

λB1

1.1.1.1
Inter
fails

0.0.1.1

0.1.1.0

0.1.1.1
Inter
fails

λB1

λA2 + λB2

1.0.0.1

1.0.1.1
Inter
fails

Failure

λB2

λA1

1.0.0.1

1.1.0.0

1.1.0.1
Inter
fails Failure

λB2

1.1.1.0
Inter
fails

λB1

0.1.1.0

Failure

λA2

0.1.1.1
Inter
fails

1.0.1.1
Inter
fails

1.1.0.1
Inter
fails

1.1.1.0
Inter
fails

Failure

2 processors 1 processor 0 processor

Figure 3.10: Markov chain of 2-by-2 processor array

The degraded modes for arrays of practical size are too many to be possible
to enumerate. However, what can generally happen is that we have 0 to n working
processors. Undoubtedly, for each processor we lose we will lose performance as this

20

3. Component Models

processor is shutdown. However, based on how many interconnects these reconfig-
ured processors (as the one shown in Figure 3.9) use, they will be slower and less
energy efficient than the original processors operating without the use of intercon-
nections. A Markov chain of the degraded modes for a 2*2 processor array could
be present to give a better idea of possible degradation modes as shown in Figure
3.10. The name of each state in the Markov chain has the pattern x.x.x.x which
represents if the parts A1.B1.A2.B2 have failed or not. 1 represents a functional
part whereas 0 represents a defective one. Note that in the case of 2-by-2 processors
array only one interconnect is used for reconfigurability.

3.6 3D-stacked DRAM Hybrid Memory Cube

The last component to be discussed is the 3D-stacked DRAM Hybrid Memory Cube
(henceforth HMC). Multi-core processor performance are limited by "the memory
wall" [11]. The three dimensional stacked DRAM architecture is a revolutionary
design that reduces the distance that signals travel. As a consequence, the HMC is
a memory die with improved latency, bandwidth, power and density [11].The HMC
system diagram is shown in Figure 3.11. In this section we will take a brief look at
this design in order to implement it in the DEG and study the graceful degradation
aspects.

Figure 3.11: HMC System Diagram from [11]

As shown in Figure 3.12, the HMC in question consists of 8 stacked DRAM layers.
Each layer contains 32 partitions, and each partition consists of 2 banks. Each 8
partitions are combined together to form a memory vault that is controlled by a
vault controller implemented on the logic layer. So in total there are 32 vaults,
and each vault contains 16 banks. The layers are connected using through-silicon
via (TSV) technology and fine-pitch copper pillar interconnect. If we consider one
vault, their partitions are connected using 32*8 = 256 TSV’s plus 32 TSV’s for the
error-correcting code (ECC).

21

3. Component Models

DRAM
8 layers

Logic Layer
(32 controllers)

Vault

Partition

TSV

Figure 3.12: HMC architectural design

This vault could tolerate 2 faulty TSV’s, otherwise will be considered faulty.
At the bottom of the DRAM stacked layers exists one logic layer consisting of 32
controllers, and each of them is connected to its respective vault. Besides, there are
4 routers as shown in Figure 3.13. Each router is linked to one core from one side,
and linked to 8 controllers from the other side. These routers are joined through
links. In total there are 6 links.

R1 R0

R3R2

Link

Router

Processor 0

Processor 1

Processor 2

Processor 3

C
P

U

8 controllers

8 controllers

8 controllers

8 controllers

Figure 3.13: Routers Architecture

The fault containment regions for the HMC component are:
• 4 for the routers,
• 6 for the links,

22

3. Component Models

• 32 for the controllers,
• 512 for the banks,
• and 9216 for the TSV’s.

In total there are 9770 different fault containment regions.
A controller on which an event happens, is disabled and the cube continues to

function in a degraded mode losing 1/32 of its original capacity. While a permanent
fault that appears on one router will render the 8 controllers useless, respectively
their 8 vaults. In this case we lose 1/4 of the total original capacity. Furthermore,
a permanent fault that appears on one bank will render the neighbour bank as well
useless and will be both deactivated losing 2/512 of the total capacity. However,
a permanent fault that appears on a link between two routers doesn’t necessarily
isolate it. There is possibility for a core to address one router by performing multiple
hops, in other words getting to the destination through other routers. Referring to
Figure 3.13, if core 0 wants to send a request to router R2 and the link between R0
and R2 is broken, it is possible to send the request with two hops, by going from
R0 to R1 and from R1 to R2 if the used links are reliable. The main degradable
aspect for the HMC component is the memory capacity. However, the performance
of the HMC can degrade, e.g. in the case when we have faulty links or routers, more
hops have to be made for a specific request (read/write) which takes more time for
a memory access.

3.7 Components Summary
In this chapter we presented the following fault tolerant components that degrade
gracefully:

• Component with homogeneous modules
• Component supporting frequency scaling
• Memory component
• Heterogeneous component
• Reconfigurable m-by-n processor array
• 3D-stacked DRAM Hybrid Memory Cube

The degraded modes were shown with the aid of a Markov chain when it is possible
or the main considerations were enumerated like in the case for the HMC.

Furthermore, we discovered that depending on the component, a non-critical
fault can lead to a degradation in some aspects of the system. Such aspects could
be loss of performance, result precision, energy efficiency, and memory capacity.

Finally, we defined fault containment regions for each component and based
on these we defined a number of events that can happen. Each of these events has
its own event generator, and the implementation of these event generators will be
discussed in details in the next chapter.

23

3. Component Models

24

4
Tool Implementation

Chapter 4 contains the main decisions throughout the design and implementation
phases. With a theoretical background from Chapter 2 and well defined models from
Chapter 3, a good platform is sufficient to build on our design. We will present the
construction of the event prediction based on the fault rate λ and the exponentially
distributed threshold E. Also, we will explain how components and their various
possible faults are modelled in the tool. Section 4.1 defines the useful modules to port
from the basic event generator, and how we upgraded the core structure to operate in
closed-loop and to predict events dynamically. Section 4.2 discusses the integration
of the dynamic event generator (DEG) using a reconfiguration module as an interface
between the tool and the rest of the experimental setup. Section 4.3 explores the
negative bias temperature instability (NBTI) effect implementation with the help of
an abstract probabilistic model which does not need low-level information. Section
4.4 discusses the implementation of the reliability models defined in Chapter 3.
Lastly, Section 4.5 summarizes the main points of this chapter. A user guide in
appendix A.1 presents instructions about how to use the tool, for anyone that will
do so in the future.

4.1 Porting of Useful Modules
Before the design and implementation phases for the DEG, a deep analysis of the
basic event generator (EG) helps to understand the main functionality. This is a
good baseline to build on, and some of the modules are useful to port rather than
re-design and implement. In addition, the basic EG was implemented in JAVA
language using object-oriented technique which makes developing of high quality
software much easier. Accordingly, we decide to keep the main structure of the
event generator by porting the useful modules and classes into C++ language which
supports object oriented programming too. Most of these classes are needed to
become the foundation of the DEG. Note that generator is an instance of the class
lamdaSeries when it is not used as the name of the tool. The main classes, to
generate an event are:

• Chip: This class populates the components with their respective generators.
• HWComponent: This class contains all the information needed to populate

the generators with the requested λ type.
• lamdaSeries: This class generates different fault scenarios and contains a

function that decides if an event occurs at a specific time.
• methods: This class contains the function that generates a random limit for

25

4. Tool Implementation

all the generators. Whenever that limit is reached, an event arises.
In fact, almost all the tool modules were ported to C++ language and were upgraded
to meet our specifications. Even though we will probably not use all of the fault
scenarios in our simulations, these functions were ported to the C++ tool version
for future studies. Some of the different fault scenarios that vary in time and space
are shortly described as follow;

• Baseline: This scenario creates constant failure rates equal for each time slot
in the simulation. The climbing function toward the threshold E is a SUM
function of the λ rates for each time slot. Thus, the constant failure rates
scenario will produce a linearly increasing function toward the limit threshold
E as shown in Figure 4.1.

∫λ(S)dSλ(t)

t1

E

Figure 4.1: Fault generation procedure for the constant λ

• Peaks: The fault rate function λ has peaks in specific periods of time due
to stressful workload or high temperature. During these peaks, λ is higher
meaning more probable failure.

• Fatal: This scenario is pessimistic with the presence of faults that could
disable the components completely, therefore they have high fault rates. There
are still faults that do not disable the component completely.

• Bathtub: This scenario represents fault rates following a bathtub curve.
There is high probability of failure during infant and wear-out phases as illus-
trated in Figure 2.1.
Considering the basic EG, the different fault scenarios were the way of sim-

ulating systems with variable temperature and workload features. However, the
upgrades we made to the DEG make these scenarios obsolete, since now the tool is
dynamic and can adapt the fault rates according to the actual values. The baseline
scenario is the most convenient one that will be used in our simulations, because
our target is to implement a DEG that works in closed-loop with the experimental
setup. Furthermore, the fault rates λ will not be constant during the simulation
lifetime, they can be dynamically modified according to configuration information
(temperature, workload). This point will be discussed in detail in Section 4.2.

4.1.1 Upgrade to Operate in Closed-Loop
We have discussed previously in Section 1.2 that our goal is to implement a tool in
C++ language that operates in closed-loop with the rest of the experimental setup.

26

4. Tool Implementation

The purpose of closing the loop is to get feedback from the components since we
want to study their reliability and inject the predicted events by the DEG.

Start

Apply initial
configuration

Maximum lifetime
reached?

End of
simulation

No

Call the
reconfiguration

module

Possible graceful
degradation?

No

End of simulation
(Failure)

Yes

Get new system configuration
(NBTI duty cycle, operating

temperature and components
utilization rates)

Yes

No

Increment
the time

Event?

apply new
configuration
and update
parameters

Yes

Report the
event

signature

Figure 4.2: The closed-loop flow

These events have effects on the location they appear. They could degrade the
component aspect(s) or declare it as failed. Once an event is produced a new system
configuration will update the DEG parameters changing the predicting process. The

27

4. Tool Implementation

closed-loop flow is illustrated in Figure 4.2. A simulation starts with static initial
configuration defining the components with their failure rates. Temperatures and
duty cycles for all components are passed to the DEG, since these parameters are
needed in predicting the next fault. After this point, if we have not reached the
end of simulation time, the DEG keeps testing if an event is produced by any of
the generators.Whenever a generator produces event, the event signature is reported
and the reconfiguration module is called. At this point if a graceful degradation is
possible, a new system configuration is requested. This new system configuration
contains the parameters that are relevant for fault prediction. These parameters are
the operating temperature and the duty cycles for each component. A component
with a high duty cycle means that it is stressed by a high workload, and the failure
rate of its corresponding generator should increase. However, if we are on the last
graceful degradation and no more fault could be tolerated, the simulation ends and
reports that the system has failed.

4.1.2 Upgrade to Predict Events Dynamically
Undoubtedly, a tool that operates in closed-loop with the experimental setup is
supposed to take new parameters dynamically as well report events immediately
whenever they occur. The basic event generator produces events beforehand as
shown in Figure 1.1. However, in order to predict events dynamically, we considered
the following:

• We take into account changing parameters in real time. Thus, we get new
fault-relevant parameters from the reconfiguration module and modify our
fault rates accordingly. Right now our fault rates are updated whenever an
event occurs. However the frequency of reading these parameters and updating
the fault rates could be defined to be at maximum (every time step) which
increases both the prediction accuracy and complexity of the tool.

• The DEG should check if the threshold limit E for every generator is reached
every time step. For this purpose we create a variable named current[i][j]
that added the failure rates λ’s for each generator in time. Note that ’i’ and
’j’ are indexes to identify the component and the generator respectively. Each
time step and for every generator we update the current[i][j] by adding the
corresponding failure rate λ, and check if current[i][j] ≥ limit[i][j]. If this
condition is satisfied, an event occurs and the corresponding signature (time,
location, type) is reported dynamically to the reconfiguration module.

4.2 Integration with the Experimental Setup
The reconfiguration module is the interface between the DEG and the rest of the
experimental setup. This module is responsible to report any event that occurs on
any component to the system manager. Figure 4.3 shows the exchanged parameters
between the DEG and the reconfiguration module. The parameters that the DEG
provides to the reconfiguration module are:

• event signature (time, location, type of the fault) whenever it occurs, and
• the generators status.

28

4. Tool Implementation

In contrast, the reconfiguration module provides the DEG with parameters that
affect the prediction process. These parameters are :

• the traditional utilization rate,
• the steady-state-temperature, and
• the NBTI duty cycle λNBTI for each operating component.

DEG
Reconfiguration

module

Event signature (time, location, type of fault)

Generator status

The traditional utilization rate

The steady-state-temperature

The NBTI duty cycle

Degradable
system

New system
 configuration

Figure 4.3: Exchanged parameters between the DEG and the reconfiguration mod-
ule

A mock reconfiguration module has been implemented, providing customizable ran-
dom values for the relevant parameters listed above, for debugging/testing purposes
and for cases for which a reconfiguration module has not been provided. The steady-
state-temperature Ti and the NBTI duty cycle λNBTI parameters serve as inputs to
calculate the threshold voltage degradation ∆Vth and this will be discussed further
in Section 4.3. Concerning the traditional utilization rate, this parameter gives a
reasonable awareness of the component workload and the expected lifetime.

Furthermore, the reconfiguration module runs various algorithms for deciding
the next system configuration and the specifics about the algorithms are irrelevant
to the DEG, the only relevant part being the resulting configuration. For instance,
it is essential for the m-by-n processor array to get feedback from the reconfigura-
tion module to be aware of possible reconfigurations. This part is implemented in
the reconfiguration module and it is integrated within the DEG to be able to run
simulations. The evaluation of the reliability results will be discussed in Chapter 5.

4.3 NBTI Implementation
The NBTI effect is implemented using the dynamic version as stated in Section 2.4,
because it is more likely to have alternating stress relaxation phases. We based our
implementation on the long-term ∆Vth predictive degradation model as discussed in
[25]. This model has been verified with the dynamic short-term variation (stress/re-
laxation cycles) in [18] and it is illustrated in Figure 4.4. The result shows that this
predictive model matches well with the upper bound of the short-term model with
a difference within 5% for different values of NBTI duty cycle α.

The absolute value of the threshold voltage degradation is a function of time
and it is exponentially dependent on the operating temperature T, supply voltage

29

4. Tool Implementation

Vdd and NBTI duty-cycle as reported in Equation 4.1 [25],

|∆Vth,t| ≈

√
K2
vαTclk

1− β1/2n
t

2n

(4.1)

where βt is the fraction parameter of the recovery [18] expressed in Equation 4.2,and
t the time.

βt = 1−
2ε1te +

√
ε2C(1− α)Tclk

2tox +
√
Ct

(4.2)

C is dependent on the temperature [27], k is the Boltzmann’s constant, T0 another
constant parameter, and T the operational temperature for the component.

C = T−1
0 exp(−Ea/kT) (4.3)

Kv has dependence on electrical field and supply voltage [25]

kv =
(
qtox
εox

)3
K2Cox(Vgs − Vth)

√
Cexp

(2Eox
E0

)
(4.4)

Figure 4.4: Long-term prediction model verification [18]

The NBTI duty cycle is different than the utilization rate and is defined in
Equation 4.5 considering that the stress cycles are the NBTI stress period and that
the recovery cycles are the relaxation period [28].

α = StressCycles

StressCycles+RecoveryCycles
∗ 100 (4.5)

30

4. Tool Implementation

Tclk is the time period of one stress-recovery cycle and since the ∆Vth is not sensitive
to the switching frequency for a value above 100 Hz [25], in our simulation we set
Tclk = 100 Hz.

The values of the technology parameters are represented in Table 4.1 with their
corresponding description and units [27] and to match with the 32 nm node, we
considered the corresponding values for tox, Vgs and Vth.

All the functions and parameters described above serve to calculate the thresh-
old voltage degradation ∆Vth in time for one specific transistor. In order to go from
transistor level to logic circuit level, many considerations have been made.

Symbol Value Unit Description
ε1 0.9 backdiffusion constant
ε2 0.5 backdiffusion constant
te = tox 1.1 nm oxide thickness
T0 1.1 s/nm2 constant parameter
Ea 0.49 eV the activation energy of hydrogen species
k 8.6173324E-5 eV/Kelvin the Boltzmann’s constant
q 1.60217662E-19 Coulombs electron charge
ε0 8.854187817E-12 F.nm−1 vacuum permittivity
εox 3.9 x ε0 F.nm−1 the oxide permittivity

K 7.5 (C−0.5nm−2.5) a parameter used in literature to minimize
the overall error against measurement

Cox
εox

tox
F.nm−2 the oxide capacitance

Vgs 0.9 V supply voltage
Vth 0.16 V threshold voltage
Eox (Vgs − Vth)/tox V.nm−1 the vertical electrical field
E0 0.08 V.nm−1 technology dependent parameter

n 1
6

time exponent parameter
for the H2 diffusion species

Table 4.1: Model parameters

To implement the NBTI formula, temperature T is one of the parameters
needed. Many temperature modeling tools (like HotSpot [12]) could produce heat
and temperature maps for the whole chip, but require synthesized designs. However,
our models do not have such low-level information. Therefore, the DEG will work
with estimated steady-state-temperature for each component in the system. The
set of estimated temperature Ti is produced by the reconfiguration module which is
not part of this thesis. A new steady-state-temperature value is generated for each
component in the system whenever a fault occurs in any of the generators.

The NBTI duty cycle α in Equation 4.5 is the other parameter needed in our
implementation. Our assumption is that, when a component is idle, its transistors
get in the recovery phase. Regarding the stress phase, this factor depends on work-
load of the component. As the temperature, the NBTI duty cycle in our tool will
be approached in component granularity. Once more, the reconfiguration module is
responsible to provide the DEG a typical duty cycle Di for each component. Like-

31

4. Tool Implementation

wise the temperature, a new NBTI duty cycle value is generated whenever a fault
occurs in any of the generators according to the new system configuration.

Above all, each component consists of millions of transistor that do not behave
the same due to process variation caused by fabrication [21] [22]. Accordingly,
a certain threshold voltage degradation of X% can cause a fault on a particular
transistor but not on the others. Furthermore, transistors that are on the critical
path or in regions on the die with high activity and workload are more probable to
create faults. Similarly, this fine-grain information is not available to us, therefore
we decided to work probabilistically. Accordingly, our goal is to implement a much
more abstract predictive model, which does not need all the low-level information
mentioned above. Unfortunately, this tool will trade ease of use for precision and
we cannot expect it to be as precise as low-level tools. Indeed, we convert the
threshold voltage degradation ∆Vth into failure rates λ and implement it in our
DEG to generate faults caused by the NBTI phenomenon.

Vth degradation (V)

λ(NBTI)

BA

Figure 4.5: λNBTI in funtion of ∆Vth

Our probabilistic model is shown in Figure 4.5 and described using two thresh-
old voltage degradation points, A% and B% defined as follows:

• Threshold A: All threshold voltage degradations below this value have no
chance of generating faults due to NBTI. Even the worst transistor in the
system can tolerate a threshold voltage degradation up to A%. Below this
lower bound we consider that the failure rate λNBTI = 0.

• Threshold B: This level of degradation is so severe that there will almost
certainly be NBTI-caused faults. Whenever this upper bound is reached, the
failure rate of the corresponding NBTI generator has to be high enough to
assure causing a fault. For example setting λNBTI = 1 means that an event
will occur within the next few simulation steps.

32

4. Tool Implementation

• Degradation between A and B: For all other values of Vth degradation,
the appearance of faults is almost deterministic, but in this region the rate
should be increasing in a manner as realistic as possible as ∆Vth grows. In
fact, the transistors initial threshold voltage values are usually assumed to
follow a Gaussian distribution, meaning that any further ∆Vth degradation
will constitute vulnerable a larger fraction of the total component transistors
than the previous one, thus the fault rate should have a near-exponential
behavior. The challenge is to find the corresponding exponential function
describing λNBTI = f(∆Vth) and we are looking for the correct parameters of
this distribution.

The calibration process will be presented in Section 5.4 and the results will be
verified and discussed.

4.4 Implementation of Reliability Models

In this section we elaborate on the most important design decisions and explain how
the models presented in Chapter 3 were transformed into actual fault-prediction
routines. The implementation of the different reliability models is based on the
DEG core structures and they are broadly implemented having the same simulation
flow as presented in Section 4.1, but also realize the differences between the various
components. The design decisions will help to understand the implementation of
each reliability model and if necessary, further details will reveal how we managed to
satisfy the required features. Since we have different reliability models, the modules
had to be adapted to each others’ functionality in order to operate properly.

4.4.1 Component with Homogeneous Modules
This component consists of n identical modules operating in parallel plus the neces-
sary control signals and interface circuitry. In order to implement this fault tolerant
component we need 2n+ 1 event generators.

• One critical event generator to predict the permanent faults that could occur
on the control signals and the interface circuitry with a fault rate λcritical.
Whenever this generator produces an event, all of the 2n + 1 generators will
be deactivated to stop generating events as the component fails.

• n event generators, one for each module with a fault rate λmodules.
• n NBTI event generators, one for each module with a fault rate λNBTI . Each
nth NBTI generator is tied to the normal nth generator. If a fault occurs on
the nth module due to the NBTI effect or due to the normal degradation, both
event generators will be disabled to stop generating events on that module.

Whenever all the modules fail or when a critical fault takes place, the component will
be in Failure mode, and no further degradation could be performed. The failure
rate for the control signals and interface circuitry λcritical, and the failure rate of
each modules λmodules are subjected to adjustments by incorporating the utilization
rate of each component. Note that components with higher workload have a higher
probability to fail. Regarding the failure rate λNBTI , it changes dynamically in time

33

4. Tool Implementation

as a function of the threshold voltage degradation ∆Vth. This part is discussed in
details in Section 4.3 and it is similar for all the reliability models.

4.4.2 Component Supporting Frequency Scaling

In accordance to what is discussed in Section 3.2, to implement the component
that supports frequency scaling with n frequency levels before total failure, we need
2(n+ 1) + 1 event generators in total:

• One critical event generator to predict the permanent faults that could occur
on the component and cannot be repaired by scaling the frequency with a fault
rate (1− c).λ. Whenever this generator produces an event, all the generators
will be deactivated to stop generating events as the component fails.

• n+ 1 event generators, each one representing the module working at a specific
scaled frequency plus the original frequency with a fault rate c.λ.

• n+1 NBTI event generators, one for each module with a fault rate λNBTI . Each
nth NBTI generator is tied to the normal nth generator. If a fault occurs on
the nth module due to the NBTI effect or due to the normal degradation, both
event generators will be disabled to stop generating events on that module.

In the start of component operation, three generators are activated and the rest are
disabled:

• 1 critical event generator,
• 1 normal event generator, and
• 1 NBTI event generator

The normal and NBTI event generators correspond to the component operating
at the normal frequency. Whenever a fault occurs and a degradation is possible,
these two event generators are deactivated, and the next two (normal + NBTI)
generators corresponding to the next scaled frequency are activated to be able to
produce events. Whenever we reach the predefined number n of tolerable faults,
or when a fatal event is produced, the component will be in Failure mode, and
no further degradation could be done. Regarding the NBTI generators, the first
one operating under normal frequency has the threshold voltage points A and B
as discussed in Section 4.3. When the next NBTI generators are activated, these
threshold voltage points increase when we move to a lower frequency. Note that
we adopted the shifting method of the points A and B, because when a component
works under lower frequency it can tolerate more gate delays which means higher
threshold voltage degradation.

4.4.3 Memory

The memory component is implemented in a generic way. However we considered a
specific memory of 4MB in the description above to clarify the implementation. In
this particular example, we will need:

• One critical event generator to predict the permanent faults that could occur
on the memory that render the whole memory unusable so they cannot be
tolerated by degrading capacity with a fault rate (1− c) · λ,

34

4. Tool Implementation

• 8 event generators, each one responsible to predict a permanent fault in a
region of 512KB with a failure rate c · λ.

• and 8 NBTI event generators, one for each module with a fault rate λNBTI .
Each nth NBTI generator is tied to the normal nth generator. If a fault occurs
on the nth module due to the NBTI effect or due to the normal operation, both
event generators will be disabled to stop generating events on that module.
In addition, the two nth generators (normal and NBTI) are either activated or
deactivated together.
The NBTI effect has an impact on the read stability of static random-access

memory (SRAM) cells [26]. We considered that this component is an SRAM and
that’s why we considered faults that could occur due to NBTI effect. Otherwise these
NBTI generators have to be turned off. In the beginning, all of the 16 generators
are activated. Whenever a permanent fault occurs in one region, the number of
generators activated will be reduced to half (half normal, half NBTI generators).
Accordingly, at the last stage of graceful degradation, two such event generators
related to 512KB will be predicting events. At that point whenever a permanent
fault occurs the memory component will be shut down. Note that at any point in
time, if the fatal event generator produces an event, the memory component will be
denoted as faulty.

4.4.4 Heterogeneous Component
Accordingly, to what is discussed in Section 3.4, to implement the imbalanced com-
ponent several event generators will be used:

• The L1 cache will be implemented in the same way we implemented the mem-
ory component in the Section 4.4.3. However the event generator predicting
the uncovered faults in the cache unit will be merged with the generator pre-
dicting faults on the essential circuitry. Hence, the fault rate of this generator
will be higher than the one in Section 3.4 in order to cover the fault predictions
of the essential circuitry.

• One ordinary event generator with low criticality to predict faults that could
appear on the integer unit with fault rate λint. As discussed before, if the
floating point unit failed, the fault rate of the integer unit will be affected and
be λ′int > λint.

• Likewise one event generator with low criticality to predict events on the float-
ing point unit with fault rate λFP . Also, like the integer unit behavior, if the
integer unit fails, the fault rate of the floating point will change to λ′FP > λFP .

• Two NBTI event generators tied one to the integer unit and one to the floating
point with fault rate λNBTIint and λNBTIf loat respectively.

Regarding the integer and floating point units, any generator tied to them that
produces a fault, will shutdown the unit and deactivate all the generators attached
to it.

4.4.5 Reconfigurable m-by-n Processor Array
To implement the m-by-n processor array in the DEG we will consider these steps:

35

4. Tool Implementation

• populate m · n event generators to predict faults that could appear on each
substitutable unit (SU) with its corresponding fault rate λSU(i).

• m · n NBTI event generators, one for each substitutable unit with a fault rate
λNBTI .

• m−1 event generators to predict permanent faults on the interconnect infras-
tructure with a fault rate of λinterconnect.

• m−1 NBTI event generators to predict permanent faults affected by the NBTI
phenomenon on the interconnect infrastructure with a fault rate of λNBTI .

Note that λNBTI is a function of ∆Vth that differs from a module to the other as
discussed previously. Whenever a fault occurs on a specific part, all the generators
related to the parts (normal + NBTI) that belong to the same processor will be
disabled and stop predicting events. Furthermore, the reconfiguration routine will
be called in order to search for possible graceful degradation. If the reconfiguration
module reactivates any disabled functioning part, its generator will be reactivated.
Naturally, the system reconfiguration will keep track of all the working parts.

4.4.6 3D-stacked DRAM Hybrid Memory Cube
The 3D-stacked DRAM hybrid memory cube (HMC) is described in Section 3.6. Ac-
cordingly, to implement the HMC component, we will need several event generators
presented in the list below:

• 4 event generators to predict permanent faults that could appear on the 4
different routers.

• 6 event generators to predict permanent faults that could appear on the 6
links connecting the routers.

• 32 event generators corresponding to the 32 controllers.
• As mentioned before, each vault contains 16 banks. In total we have 16 banks
· 32 vaults = 512 banks. Accordingly, we need 512 event generators to predict
permanent faults that could appear on these banks.

• Each vault consists of 288 TSV’s. In total we have 288 TSV’s · 32 vaults
= 9216 TSV’s in one 3D memory die. Accordingly, we have to populate
9216 different event generators to predict permanent faults on each of these
TSV’s. As revealed before, each vault could tolerate 2 faulty TSV’s before
being considered failed.
The processors that use the HMC can have NBTI failures, and these generators

can be modeled in a similar manner as in any other NBTI-prone component. Re-
garding the HMC, we will not explore the NBTI effect on this component. However,
we are interested in studying the capacity degradation over time due to faults that
appear on different parts. This result will be discussed in Chapter 5.

4.5 Implementation Summary
In this chapter we defined the ported modules from the basic event generator (EG),
and upgraded the tool to operate in closed-loop as well to predict events dynamically.

Furthermore, the NBTI effect was modeled in high level of abstraction using a
well defined probabilistic predictive model.

36

4. Tool Implementation

In addition, each component was implemented according to its particular char-
acteristics. In the next chapter we will present the experimental results on these
components to evaluate the tool.

37

4. Tool Implementation

38

5
Evaluation and Experiments

This chapter presents a set of experiments which aim to evaluate the implemented
dynamic event generator (DEG). We will first study the basic event generator (EG)
and do some analysis by producing probability density and distribution function
graphs similar to literature to verify that the core of the tool’s implementation
functions as expected. The second section is to evaluate the ported modules and
test their integrity. For this purpose we compare the basic Java modules with
the ported C++ ones by running the same scenarios on both environments. The
third section is to compare the basic EG and the DEG by showing how dynamic
parameters affect the event prediction process. The fourth section explores the
Negative-Bias Temperature Instability (NBTI) calibration using a low-level tool as
reference and verifies the NBTI impact on a heterogeneous component. In the fifth
section we evaluate the HMC and draw a graph for the capacity in time using two
different scenarios to observe the impact of failure rates on the memory capacity
degradation. The sixth section evaluates the graceful degradation in the processor
array component. For that purpose, we considered two different processor arrays
with three different failure rates scenarios. The experiment compares the number
of operating processors in time for both processor arrays. The last section gives a
summary of this chapter.

These experiments have two purposes:
• verify the correct function of the tool as described in Section 5.1 to 5.4
• use it to examine different failure scenarios in complex systems and make

observations as shown in Section 5.5 and 5.6

5.1 Analysis of the Basic Tool

In order to understand and analyze the basic tool, we draw the probability den-
sity function and the distribution function considering different fault rates per day.
Therefore, we generated a simple component and tied one event generator to it, with
a specific failure rate λ . The simulation lifetime is 1000 days in steps of one day,
and one million iterations of the experiment are enough to predict the probability
of failure during this time. Figure 5.1 represents the probability density function of
the same component with failure rates λ = (0.004 / 0.006 / 0.008) faults/day. We
add to the graph a theoretical curve in black for λ = 0.006 faults/day to evaluate
the experimental curve in red and we see that they match well.

39

5. Evaluation and Experiments

0 100 200 300 400 500 600 700 800 900 1000

Time (days)

0

1x103

2x103

3x103

4x103

5x103

6x103

7x103

8x103

9x103
N

um
be

r
of

 fa
ul

ts
 (

in
 o

ne
 m

ill
io

n
ru

ns
)

theoretical curve

Figure 5.1: Probability density function using the Java basic version

0 100 200 300 400 500 600 700 800 900 1000

Time (days)

0

1

2

3

4

5

6

7

8

9

10

N
um

be
r

of
 fa

ul
ts

 u
nt

il
t (

in
 o

ne
 m

ill
io

n
ru

ns
)

#105

Figure 5.2: Distribution function using the Java basic version

40

5. Evaluation and Experiments

The shape of the curves with different λ’s match the definition of the probability
density equation 5.1 for a component with an exponential distribution as described
in [9].

f(t) = λe−λt (5.1)

Higher values of λ mean a sharper decrease toward later points in time. Thus, with
high values of λ, faults cluster in early stages. On the contrary, low values of λ give
a smoother distribution as the case for λ = 0.004 faults/day. Using equation 5.1 is
straightforward to conclude the distribution function represented in equation 5.2 as
described in [9], and draw the corresponding graph shown in Figure 5.2.

f(t) = 1− e−λt (5.2)

Once more, our plots matched the definition in [9]. Higher failure rates λ mean
sharper rise toward later points in time. Thus, most of the one million components
tested failed during their lifetime with λ = 0.006 or λ = 0.008. However, when λ
= 0.004, we don’t reach a saturation and not all the components have failed the
reliability test. Please note that these failure rates λ don’t reflect the reality of
failure rates for the electronic components, but they were chosen for experimental
purpose.

5.2 Evaluation of the Ported Basic Modules

Once the basic modules were ported to C++ language, it was required to evaluate
the basic functionality and test the integrity. At this stage, no upgrade was done to
the tool functionality other than porting it to another language. We used one of the
results acquired in the first simulation and tried to run the same simulation with
exactly the same configuration. In the same way, the simulation lifetime is 1000
days, and one million iterations are used to draw the probability density function
and the distribution function considering a failure rate of 0.008 faults/day.

41

5. Evaluation and Experiments

0 100 200 300 400 500 600 700 800 900 1000

Time (days)

0

1x103

2x103

3x103

4x103

5x103

6x103

7x103

8x103

9x103
N

um
be

r
of

 fa
ul

ts
 (

in
 o

ne
 m

ill
io

n
ru

ns
)

C++ ported version
Java basic version

Figure 5.3: Probability density function using Java vs C++

0 100 200 300 400 500 600 700 800 900 1000

Time (days)

0

1

2

3

4

5

6

7

8

9

10

N
um

be
r

of
 fa

ul
ts

 u
nt

il
t (

in
 o

ne
 m

ill
io

n
ru

ns
)

#105

C++ ported version
Java basic version

Figure 5.4: Distribution function using Java vs C++

42

5. Evaluation and Experiments

Both Figure 5.3 and 5.4 show how matching are the results, and the curves
overlap showing a successful result.

5.3 Comparison between the Basic EG and the
DEG Prediction Routine

In this section we did several experiments to compare the basic EG against the DEG.
For that purpose, we considered a 4-by-8 processor array component consisting of
8 processors of 4 substitutable units each. We considered the failure rate of each
part to be λSU = 0.0007 faults/day without taking into consideration the faults that
can occur on the interconnects. The simulation time is 1000 days and we run 100
iterations to observe the number of operating processors over time. Figure 5.5 shows
a comparison between the basic EG and the DEG without taking into consideration
any NBTI effect. In this case the DEG has advantage on its opponent by knowing
two different dynamic pieces of information that are used to predict events more
accurately and they are:

• information about the hardware configuration showing which part is working,
failed or deactivated, and

• information about utilization rate of the processor array.

0 100 200 300 400 500 600 700 800 900 1000

Time (days)

2

3

4

5

6

7

8

N
um

be
r

of
 o

pe
ra

tin
g

pr
oc

es
so

rs

DEG
EG with utilization rate = 0.5
EG with utilization rate = 1
EG with utilization rate = 0.75
EG average result

Figure 5.5: Processor array evaluation using the basic EG vs DEG

43

5. Evaluation and Experiments

0 100 200 300 400 500 600 700 800 900 1000

Time (days)

2

3

4

5

6

7

8
N

um
be

r
of

 o
pe

ra
tin

g
pr

oc
es

so
rs

DEG (plus NBTI effect)
EG with utilization rate = 0.5
EG with utilization rate = 1
EG with utilization rate = 0.75
EG average result

Figure 5.6: Processor array evaluation using the basic EG vs DEG and taking into
consideration the NBTI effect

Figure 5.6 shows how the shape of the DEG curve differs even more when taking
into consideration the NBTI effect. In this case the DEG predicts events using four
dynamic pieces of information that the basic EG doesn’t use and these parameters
are:

• information about the hardware configuration showing which part is working,
failed or deactivated,

• utilization rate of the processor array,
• the steady-state-temperature of the processor array, and
• the NBTI duty cycle which along with the previous parameter is used to

calculate the failure rate of the NBTI generator.
Regarding the basic EG, these pieces of information cannot be updated at runtime.
However, we allowed it to determine a specific value for the utilization rate of the
processor array in the beginning of the simulation and we vary it to be 0.5, 0.75, or
1.0. These values are chosen to represent the spectrum used by the DEG, in which
the utilization rate varies between 0.5 and 1.0. Furthermore, we plot the EG average
result for the three different utilization rates.

5.4 NBTI Calibration Process and Results
In this section we will discuss NBTI calibration process for the probabilistic model
defined in Section 4.3. Furthermore, we will explore the NBTI impact on a hetero-
geneous component.

44

5. Evaluation and Experiments

Our model is presented in Section 4.3 and illustrated in Figure 4.5. The chal-
lenge is to find the corresponding exponential function describing λNBTI = f(∆Vth)
and to define the threshold point A and B. Accordingly, we managed to calibrate
our high-level predictive model for NBTI degradation using a reference result of
lower-level tools [20]. The calibration means determining the parameters of the
exponential function (coefficient, base, exponent) and the two thresholds. This cal-
ibration serves to integrate the NBTI effect in a particular scenario for a specific
component.

The reference low-level tool in our case uses Monte Carlo simulations that treat
each transistor independently. That means that a fault on one transistor has no effect
on other transistors. Regarding the experiment setup, we based it on a homogeneous
component of 300 million transistors. We considered that each NBTI generator is
responsible to predict errors on a specific area of the component containing several
transistors. Thus, when an NBTI generator produces a fault, certain areas of our
component are shut down. As a consequence, we project the faults we observe on
the active area of the component to the whole area.

The main goal of this experiment is to showcase a methodology for calibrating
our high-level predictive model for NBTI degradation, using as reference results
of lower-level tools by obtaining as close results as possible when having the same
scenarios for the NBTI effect. The values shown in Figure 4.5 are results of the
calibration.

Scenario Reference DEG Unit Deviation
T=363K, α = 0.75, t = 3years 0.8229 0.804 faults/3E+8 transistors -2.3%
T=383K, α = 0.75, t = 3years 1.08 1.273 faults/3E+8 transistors +17.8%
T=403K, α = 0.75, t = 3years 1.5 1.542 faults/3E+8 transistors +2.8%
T=363K, α = 0.95, t = 3years 0.835 1.502 faults/3E+8 transistors +79.8%

Table 5.1: NBTI calibration results

Table 5.1 contains the calibration results for the NBTI effect with respect to
the reference low-level simulation under different scenarios. We ran 250 simulations
as this is the number of simulations in the reference experiment and draw a mean
value for each scenario. When varying the temperature to be 363K, 383K, and 403K
under a fixed NBTI duty cycle αNBTI = 0.75, we could calibrate the DEG to have
reasonable deviation from low-level results. However, with high NBTI duty cycle
αNBTI = 0.95, we get a significant difference between the reference tool and the
DEG. The result of the reference tool considering the same temperature T = 363K
and an operating time of t = 3 years shows that the number of faults per 300
millions transistors for α = 0.75 is 0.8229 and for α = 0.95 is 0.835. These
numbers are very close. However, according to the literature on which we based
our models implementation [25][28], there is an exponential dependence between
degradation and duty cycle, so we think that this result in the reference simulation
is unexpected and not in line with this trend.

To sum up our goal is not to compare the tools and define which one is more
accurate, rather than showing the possibility that our tool could be calibrated to

45

5. Evaluation and Experiments

produce results comparable to lower-level tools which utilize much more fine-grain
information.

0 100 200 300 400 500 600 700 800 900 1000

Time (days)

0

5%

10%

15%

20%

25%

30%

35%

40%

P
er

ce
nt

ag
e

of
 fa

ile
d

co
m

po
ne

nt
s

without NBTI effect
taking NBTI efect in consideration

Figure 5.7: NBTI impact on Heterogeneous component

To explore the NBTI impact, we considered an heterogeneous component with
a floating point unit, integer unit and a cache divided into 8 regions 512KB each
as the one discussed in Section 3.3 plus the circuitry. The utilization rates for each
part were randomized and we run the simulation for 10,000 components and see how
many components fail after 1000 days. We considered two different scenarios: taking
or not taking into account the faults that the NBTI generators could produce. The
results are shown in Figure 5.7. The graph shows that after almost 3 years the NBTI
effect will result in 10% more components failing. Furthermore, with NBTI not only
we have more failures, but they start becoming more later in time, indicating the
impact of the aging effect.

5.5 HMC Evaluation

To study the capacity degradation over time of the 3-D stacked DRAM Hybrid
Memory Cube (HMC), we considered running two different scenarios. One with
normal failure rates λnomral(i) for the different parts and one with more pessimistic
failure rates λpessimistic(i). The considered failure rates for both scenarios are shown
in Table 5.2.

46

5. Evaluation and Experiments

Part Baseline λ [faults/day] Pessimistic λ [faults/day]
Bank 100 · 24 · 10−9 150 · 24 · 10−9

TSV 35 · 24 · 10−9 50 · 24 · 10−9

Link 40 · 24 · 10−9 60 · 24 · 10−9

Router 400 · 24 · 10−9 600 · 24 · 10−9

Controller 50 · 24 · 10−9 100 · 24 · 10−9

Table 5.2: Fault rates used in the HMC simulations

The capacity of the HMC is determined by the total fault free operating banks.
The size of each bank is bounded to the current technology being 16 MB. Each vault
contains 2 banks in each layer. Thus there are 16 banks in each vault as shown in
Figure 3.12. As a HMC is composed by 32 vaults, the total capacity in the fault-free
case is 16 MB·16·32 = 8 GB. With a number of 100 iterations and a simulation life
time of 10 years in steps of one month we deduced the mean value of the capacity
for each month during the simulation. At any specific time in order to know the
capacity of the HMC it is enough to be aware of the number of fault free operating
banks. Thus,

Capacity = No. of fault free banks

total No. of banks
· 8GB (5.3)

0 1 2 3 4 5 6 7 8 9 10

Time (years)

75

80

85

90

95

100

C
ap

ac
ity

 d
eg

ra
da

tio
n

(%
)

Pessimistic failure rates
Normal failure rates

Figure 5.8: HMC capacity degradation in time

Figure 5.8 illustrates the capacity degradation percentage considering the two
scenarios presented in 5.2. With the normal failure rates for the different parts,

47

5. Evaluation and Experiments

the HMC remaining capacity after 10 years is 85.8% ≈ 6.86 GB. However, for the
pessimistic scenario, the remaining capacity after 10 years is 76.53% ≈ 6.12 GB.
Furthermore, considering the pessimistic failure rates, the red curve has a sharp
decreasing slope whereas for the normal failure rates, the blue curve has smoother
decreasing slope.

5.6 Processor Array Evaluation

In this section we will evaluate the graceful degradation algorithm of the proces-
sor array component. To do that we considered two different processor arrays to
compare:

• 4-by-8 processor array consisting of 8 processors of 4 substitutable units each,
and

• 8-by-7 processor array consisting of 7 processors of 8 substitutable units each
The reconfigurability incurs some area penalty, which grows with the number of
SUs per processor, because we have more interconnection elements between these
substitutable units as shown in Figure 3.8. This is why the coarser-grained 4-by-8
processor array has more processors (eight) than the finer-grain, which has seven.
Furthermore, we set the failure rates of each substitutable unit in such a way that
the total failure rates of the two processor arrays are equal.

Scenarios 4-by-8 processor array 8-by-7 processor array
baseline λpart (faults/day) 0.0007 0.0004
scaled down λpart (faults/day) 0.00042 0.00024
scaled up λpart (faults/day) 0.000933333 0.000533333

Table 5.3: Fault rates used in the processor array simulations

To evaluate these two processor arrays, we ran 100 simulations considering the
scenarios shown in Table 5.3 and observe the number of operating processors over
time.

Figure 5.9 shows the processor array degradation using the baseline failure
rates whereas Figure 5.10 shows the degradation with failure rates scaled down by
a factor of 3/5 compared to the baseline scenario, and Figure 5.11 uses scaled up
failure rates by a factor of 4/3 compared to the baseline ones. Note that for the
purpose of these simulations, we did not consider the failure of the interconnects
between the columns as described in Section 3.5. The trend of all the graphs is
similar disregarding the failure rates. We could clearly see that after a specific point
in time, the 8-by-7 processor array has higher number of operating processors than
the 4-by-8 processor array. This flipping point is inversely proportional with respect
to the failure rates of the parts.

48

5. Evaluation and Experiments

0 100 200 300 400 500 600 700 800 900 1000

Time (days)

2

3

4

5

6

7

8
N

um
be

r
of

 o
pe

ra
tin

g
pr

oc
es

so
rs

Figure 5.9: Processor array degradation with baseline failure rates

0 100 200 300 400 500 600 700 800 900 1000

Time (days)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

N
um

be
r

of
 o

pe
ra

tin
g

pr
oc

es
so

rs

Figure 5.10: Processor array degradation with scaled down failure rates

49

5. Evaluation and Experiments

0 100 200 300 400 500 600 700 800 900 1000

Time (days)

1

2

3

4

5

6

7

8
N

um
be

r
of

 o
pe

ra
tin

g
pr

oc
es

so
rs

Figure 5.11: Processor array degradation with scaled up failure rates

We can conclude that the 8-by-7 processor array is preferable to operate un-
der long period as this architecture provides more processors for higher operating
duration when the failure rates are high. If the failure rates were lower, the 4-by-8
processor array would be preferable even for longer times. However if the mission of
this processor array is short, the 4-by-8 architecture has almost one extra processor
than the other architecture considering the different tested failure rates.

The fact that the 8-by-7 architecture is better for long period operation comes
from the flexibility that this type of processor array provides. Indeed, this archi-
tecture has more columns and each permanent fault removes a smaller part of the
system. Furthermore, having higher number of parts, the reconfiguration algorithm
will easier find a way to build processors from unused parts.

Summing up, both the failure rates and the maximum lifetime in the experiment
are indicative (the rates, in fact, are too high), but the bottom line is that for every
failure rate (depending on the technology) the tool can be used to perform a similar
analysis and motivate a decision about which of the reconfiguration granularities is
better for a particular mission time.

5.7 Chapter Summary

In this chapter we verified that the tool works as intended by evaluating the ported
basic modules, by comparing the basic EG fault prediction process versus the DEG
one, and by exploring the NBTI calibration and impact.

50

5. Evaluation and Experiments

Furthermore, we used the DEG to make useful observations about the graceful
degradation of two complex systems, processor array and HMC.

In the next chapter we will draw conclusions based on these experiments and
the rest of the thesis.

51

5. Evaluation and Experiments

52

6
Summary and Conclusions

Integrated circuit device scaling is causing reliability problems. However, reconfig-
urable components along with run-time support give the opportunity to deal with
permanent faults by degrading one or more system aspects instead of failing [1] [2]
[3]. In this manner graceful degradation assures a recovery mode and extends the
lifetime of the system. Another serious problem in modern CMOS technology is the
oxide wearout mechanisms that occur at the transistor level [7]. One such aging
mechanism is the effect of Negative-Bias Temperature Instability (NBTI) and it is
considered as one of the major reliability concerns of any component and should
be taken into account in realistic reliability studies. Our goal was to upgrade an
existing basic tool that generates faults and integrate it in closed-loop with the rest
of the experimental setup to study reliability of degradable systems. Furthermore,
we incorporate the most important aging effect NBTI in the tool and integrate the
duty cycle parameter in our methods that predict events to get more precise results
that reflect reality.

This Chapter will summarize and conclude the thesis and will lastly open up
new horizons for future researchers. Section 6.1 summarizes the previous chapters,
while Section 6.2 discusses the main findings and contributions. Finally Section 6.3
list the possible future prospects.

6.1 Thesis Summary
Chapter 1 reveals the motivation that comes from existing works on runtime opti-
mization algorithms for the management of a gracefully degradable adaptive MPSoC
[1] [2] [3]. The problem was to implement a tool that works in closed loop with the
experimental setup in order to inject faults dynamically, and update parameters
every time the configuration changes. In this Chapter we set the thesis objectives
and mention the limitations.

In Chapter 2 we focus on presenting the theoretical background and define
notions from literature related to our work. Furthermore we discuss relevant works
related to the lifetime extension strategies and give a definition of the NBTI effect.

Chapter 3 presents the models for various degradable components in order to
set them up in the dynamic event generator DEG and study their reliability. We
give a brief description for each component and list the possible faults that can
occur on it during its lifetime. Moreover, we define what are the degradable aspects
whenever a fault occurs and reveal the possible degraded modes.

Chapter 4 focuses on the design and implementation of the DEG tool. The

53

6. Summary and Conclusions

main decisions in the design are justified and how we managed to upgrade the tool
to operate in closed loop and predict events dynamically. Since a reconfiguration
module is not available for every scenario we studied, we also implemented a mock
version of the reconfiguration module, to be used for debugging and verification of
our tool, and in the cases such a complete module was not available. Regarding
the NBTI implementation, we show how we managed to go from transistor level to
logic circuit level and reveal the design decisions made. Moreover, we discussed the
design and implementation of all the reliability models defined in Chapter 3.

Chapter 5 consists of the experiments done to evaluate the implemented DEG
tool. We analyzed the basic EG tool, then we compared the ported DEG modules
with the basic tool and showed that they match. Then we compared the basic
EG with the DEG showing how dynamic parameters affect the faults prediction
routine. Furthermore, we showed how robust and flexible our tool is by calibrating
it to another low-level NBTI prediction method and studying the NBTI impact on an
heterogeneous component. Then we studied the HMC capacity in time considering
two different scenarios. Finally, we evaluate the processor array graceful degradation
in time using two different types of processor arrays.

6.2 Thesis contributions

In this section we highlight the contributions of this work and go back to the thesis
objectives stated in Section 1.2.1 to show how we achieved what we set out to do.
The results are listed as follow:

• The upgrade of the basic tool to work in closed-loop with the rest of the exper-
imental setup optimized the tool and made it more accurate when predicting
faults using different reliability models. As the duty cycle and NBTI parame-
ters received from the reconfigurations module change during time, they gave
a higher precision when estimating the different failure rates of the generators.

• The variety of the sophisticated fault models implemented in the DEG reflects
the generality of this tool and shows how easy it is to study the reliability of
any adaptive degradable system and draw results and conclusions. However,
in this work we study a limited number of various components after designing
their fault models and defining their graceful degradation modes.

• The DEG is flexible as we can study some degradable aspects of the system in
time, and draw results. For instance we used the tool to study the degradation
capacity of the HMC in time, and we observed that the remaining capacity
after 10 years is 85.8% for the normal failure rates.

• We used the DEG tool to evaluate the graceful degradation of the processor
array and we observed that for a given fault rate and mission time, the tool
can be used to decide which reconfiguration granularity is best.

• The incorporation of the NBTI aging effect in our high-level DEG tool, shows
the possibility that we can calibrate the DEG with the use of experiments done
with low-level tools. Note that we developed a predictive model that doesn’t
need low-level information but of course is not as precise as the lower-level
models. This incorporation opens the door in front of future upgrades of the

54

6. Summary and Conclusions

DEG by adding other wear-out effects in order to get higher precision in the
fault prediction method.

6.3 Possible areas for future research
This study has arrived to the implementation of a robust and flexible tool (DEG)
that predicts faults dynamically. This tool is an upgraded version of its predecessor
the basic event generator. The possible areas for future research are the following:

• Further generalization of the tool, allowing for easy extension to components
others than the ones presented in this thesis.

• The DEG could be even further upgraded by incorporating other oxide wear-
out effects like Time-Dependent Dielectric Breakdown (TDDB) or Hot Carriers
that can improve the faults prediction.

• The NBTI module could be calibrated by using as reference results from any
sophisticated low-level tools. We managed to do the calibrating to be applied
to a specific component. A refinement of the NBTI predictive model and
better (more generic) calibration, implies that the tool can be used for any
component without effort.

55

6. Summary and Conclusions

56

Bibliography

[1] S. Tzilis, I. Sourdis, Chalmers University of Technology, Department of Com-
puter Science and Engineering, Computer Engineering (Chalmers), Institutio-
nen för data- och informationsteknik, Datorteknik (Chalmers) and Chalmers
tekniska högskola. A runtime manager for gracefully degrading SoCs. 2014, .
DOI: 10.1109/DFT.2014.6962106.

[2] S. Tzilis. Graceful degradation of adaptive multiprocessor systems on a chip.
128.2015.

[3] S. Tzilis, I. Sourdis, V. Vasilikos, D. Rodopoulos, D. Soudris, Runtime Manage-
ment of Adaptive MPSoCs for Graceful Degradation. to be published in CASES
2016, Pittsburgh, October 2-7 2016

[4] M. Glaß, M. Lukasiewycz, C. Haubelt and J. Teich. Incorporating graceful
degradation into embedded system design. 2009, .

[5] M. Imai, T. Nagai and T. Nanya. Pair and swap: An approach to grace-
ful degradation for dependable chip multiprocessors. 2010, . DOI: 10.1109/D-
SNW.2010.5542608.

[6] R. Rodrigues and S. Kundu. On graceful degradation of chip multiprocessors
in presence of faults via flexible pooling of critical execution units. 2011, . DOI:
10.1109/IOLTS.2011.5993813.

[7] V. G. Rao and H. Mahmoodi. Analysis of reliability of flip-flops un-
der transistor aging effects in nano-scale CMOS technology. 2011, . DOI:
10.1109/ICCD.2011.6081439.

[8] G. Smaragdos, D. A. Khan, I. Sourdis, C. Strydis, A. Malek and S.
Tzilis. A dependable coarse-grain reconfigurable multicore array. 2014, . DOI:
10.1109/IPDPSW.2014.20.

[9] N. Storey. Safety-Critical Computer Systems 1996.
[10] V. Vasilikos, G. Smaragdos, C. Strydis, I. Sourdis, Chalmers University

of Technology, Department of Computer Science and Engineering, Com-
puter Engineering (Chalmers), Institutionen för data- och informationsteknik,
Datorteknik (Chalmers) and Chalmers tekniska högskola. Heuristic search
for adaptive, defect-tolerant multiprocessor arrays. ACM Transactions on
Embedded Computing Systems (TECS) 12(1s), pp. 1-23. 2013. . DOI:
10.1145/2435227.2435240.

[11] J. Jeddeloh and B. Keeth. Hybrid memory cube new DRAM architecture in-
creases density and performance. 2012, . DOI: 10.1109/VLSIT.2012.6242474.

[12] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron and
M. R. Stan. HotSpot: A compact thermal modeling methodology for early-

57

Bibliography

stage VLSI design. IEEE Transactions on very Large Scale Integration (VLSI)
Systems 14(5), pp. 501-513. 2006. . DOI: 10.1109/TVLSI.2006.876103.

[13] C. Bolchini, M. Carminati, M. Gribaudo and A. Miele. A lightweight and open-
source framework for the lifetime estimation of multicore systems. 2014, . DOI:
10.1109/ICCD.2014.6974677.

[14] S. Feng, S. Gupta, A. Ansari and S. Mahlke. "Maestro: Orchestrating lifetime
reliability in chip multiprocessors," in Anonymous 2010, . DOI: 10.1007/978-3-
642-11515-8_15.

[15] S. Borkar. Designing reliable systems from unreliable components: The chal-
lenges of transistor variability and degradation. IEEE Micro 25(6), pp. 10-16.
2005. . DOI: 10.1109/MM.2005.110.

[16] T. Saridakis Design patterns for graceful degradation. ; 2009.
[17] W. Wang, S. Yang, S. Bhardwaj, R. Vattikonda, S. Vrudhula, F. Liu and Y.

Cao. The impact of NBTI on the performance of combinational and sequential
circuits. 2007, . DOI: 10.1145/1278480.1278573.

[18] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu and Y. Cao. The impact
of NBTI effect on combinational circuit: Modeling, simulation, and analysis.
IEEE Transactions on very Large Scale Integration (VLSI) Systems 18(2), pp.
173-183. 2010. . DOI: 10.1109/TVLSI.2008.2008810.

[19] N. H. E. Weste and D. M. Harris. Integrated Circuit Design (4th, Global ed.)
2011.

[20] Testing degradation due to NBTI, internal CE division document.
[21] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari and J. Tor-

rellas. VARIUS: A model of process variation and resulting timing errors for
microarchitects. IEEE Transactions on Semiconductor Manufacturing 21(1),
pp. 3-13. 2008. . DOI: 10.1109/TSM.2007.913186.

[22] K. Agarwal and S. Nassif. Characterizing process variation in nanometer
CMOS. 2007, . DOI: 10.1145/1278480.1278582.

[23] N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Imai and T. Hori-
uchi. The impact of bias temperature instability for direct-tunneling ultra-thin
gate oxide on MOSFET scaling. 1999, . DOI: 10.1109/VLSIT.1999.799346.

[24] D. K. Schroder and J. A. Babcock. Negative bias temperature instability: Road
to cross in deep submicron silicon semiconductor manufacturing. Journal of
Applied Physics 94(1), pp. 1. 2003. . DOI: 10.1063/1.1567461.

[25] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao and S. Vrudhula. Pre-
dictive modeling of the NBTI effect for reliable design. 2006, . DOI:
10.1109/CICC.2006.320885.

[26] S. Kumar, C. Kim and S. Sapatnekar. Impact of NBTI on SRAM read stability
and design for reliability. 2006, . DOI: 10.1109/ISQED.2006.73.

[27] W. Wang, V. Reddy, A. T. Krishnan, R. Vattikonda, S. Krishnan and Y. Cao.
Compact modeling and simulation of circuit reliability for 65-nm CMOS tech-
nology. IEEE Transactions on Device and Materials Reliability 7(4), pp. 509-
517. 2007. . DOI: 10.1109/TDMR.2007.910130.

[28] D. Zoni and W. Fornaciari. A sensor-less NBTI mitigation methodology for
NoC architectures. 2012, . DOI: 10.1109/SOCC.2012.6398329.

[29] B. W. Johnson. Design and Analysis of Fault-Tolerant Digital Systems 1989.

58

A
Appendix

A.1 User Guide
To facilitate the use of the DEG, we introduce a configuration module named "con-
fig.cpp" containing all of the simulation parameters that could be modified by the
user, and serves as initial configuration for the system. This file contains the follow-
ing variables:

• g_total_components is the total number of components.
• g_BAL, g_FREQ, g_MEM, g_FLOAT_INT, g_PROC_ARRAY,

g_HMC represent how many balanced, frequency scaling, memory, float_integer,
processor array, and HMC components respectively we have in a specific sim-
ulation.

• g_sim_length defines the simulation time in number of steps.
• g_fileIndex_limit defines the number of iterations we want to run in one

simulation with the same initial configuration.
• g_print_option is a display parameter; whenever it is set to 1 the output

will be printed in console, otherwise in files.
Furthermore, for every reliability model there is a set of parameters that assign the
fault rates for all the generators plus the corresponding generic parameters. For
example for the balanced component with homogeneous parts there is a variable
named g_bal_modules that assigns the number of modules to be implemented for
this kind of components. Similarly for the m-by-n processor array, m and n could
be preset by the user using g_m_array and g_n_array variables.

I

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Thesis Objectives

	Limitations
	Thesis Outline

	Background
	Reliability Analysis
	Lifetime Extension Strategies
	Graceful Degradation
	Negative-Bias Temperature Instability

	Component Models
	Component with Homogeneous Modules
	Component Supporting Frequency Scaling
	Memory
	Heterogeneous Component
	Reconfigurable m-by-n Processor Array
	3D-stacked DRAM Hybrid Memory Cube
	Components Summary

	Tool Implementation
	Porting of Useful Modules
	Upgrade to Operate in Closed-Loop
	Upgrade to Predict Events Dynamically

	Integration with the Experimental Setup
	NBTI Implementation
	Implementation of Reliability Models
	Component with Homogeneous Modules
	Component Supporting Frequency Scaling
	Memory
	Heterogeneous Component
	Reconfigurable m-by-n Processor Array
	3D-stacked DRAM Hybrid Memory Cube

	Implementation Summary

	Evaluation and Experiments
	Analysis of the Basic Tool
	Evaluation of the Ported Basic Modules
	Comparison between the Basic EG and the DEG Prediction Routine
	NBTI Calibration Process and Results
	HMC Evaluation
	Processor Array Evaluation
	Chapter Summary

	Summary and Conclusions
	Thesis Summary
	Thesis contributions
	Possible areas for future research

	Bibliography
	Appendix
	User Guide

