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Abstract

In today's society, communication plays a vital role. The mobile data tra�c has

experienced a tremendous increase in recent years and it is expected to continue on the

same path. Therefore, methods that support high data rates with small spectral footprints

are highly appealing. A powerful such, is to utilize multiple antennas at the transmitter-

and the receiver side. By doing so, one gets to choose between utilizing spatial selectivity,

in order to increase reliability, or to use multiplexing and hence increase the rate.

A common performance metric is the channel capacity, the largest rate of information

that can be exchanged at an arbitrary low probability of error. However, this metric

is asymptotic in the blocklength and it may therefore be questionable whether it is an

accurate metric or not in the packet based networks of today. Instead, one may argue that

a more suitable metric would be the maximal rate for a given blocklength and probability

of error.

This thesis investigates communication over a Rayleigh block-fading channel when

multiple antennas are utilized under the assumption that neither the transmitter nor the

receiver has any channel state information but knows the statistical properties of the

channel perfectly. The channel capacity is characterized in terms of bounds which are

shown to be tight for SNR as low as 0 dB. Non-asymptotic bounds are also presented

and it is shown that the maximal achievable rate is not monotonically increasing in the

coherence block but that there is a rate-maximizing coherence block for a given blocklength

and probability of error. These bounds also give insight in how costly it is to learn

a fading channel and when the lack of time-frequency selectivity becomes detrimental.

Furthermore, the maximal achievable rate is compared to diversity-exploiting schemes

that are in use today. This illustrates for what degree of channel selectivity, diversity-

exploiting schemes are close to optimal, and when instead the available spatial degrees of

freedom should be used to provide spatial multiplexing.
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CONTENTS

Nomenclature

Variables

x Deterministic scalar

X Random scalar

x Deterministic vector

X Random vector

X Deterministic matrix

X Random matrix

Ia Identity matrix of size a× a
C Covariance matrix

Λ(X) Diagonal matrix consisting of the eigenvalues of X

Σ(X) Diagonal matrix consisting of the singular values of X

Constants

nt Number of transmit antennas

nr Number of receive antennas

T Coherence block

n Blocklength

L Selectivity branches

ρ Average SNR at a receive antenna

ε Block error rate

Functions

Cerg(ρ) Ergodic capacity

Γ(β) The Gamma function

Γα(β) Multivariate complex gamma function

ψ(β) The Digamma function

det (V (X)) The determinant of a Vandermonde matrix X

M(t) Moment generating function

Cout,ε(ρ) ε-outage capacity

R∗(n, ε) Maximal achievable rate for �xed n and ε

fX(x) Probability density function of the scalar random variable, X

fX(X) Probability density function of the random matrix, X
PX Probability measure of X
Pr {X} Probability of the event X

EX [·] Expected values with respect to X

[a]+ The maximum of a and 0
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1 INTRODUCTION

1 Introduction

1.1 History

Wireless communication plays an important role in today's society. Among other things it has
connected the world by enabling the use of cellphones, layed the foundation for GPS and made it
possible to gather information from other planets. The original idea of wireless communication
dates back to the pre-industrial age where the signalling was made by, for example, smoke, light
or �ags and even till this day, we are using, for example, smoke, when a new pope is elected.
Wireless communication, as we know it today, was not invented until 1896 when Guglielmo
Marconi, an Italian physicist, made the �rst analogue wireless radio transmission, for which
he, in 1909, was rewarded the Nobel Prize. After this discovery, the development of wireless
communication systems took o� and a rapid evolution have been ongoing ever since.

In 1948, Claude E Shannon published his famous work, A Mathematical Theory of Com-
munication, laying the foundation of information theory [1]. One of the contributions was the
derivation of the Channel Capacity which is the largest rate at which information can be trans-
mitted over an unreliable channel with arbitrarily low error rate. Since channel capacity is the
ultimate limit on the rate of reliable communication, the interest of �nding it for all possible
scenarios is clear and for several channels of practical interest, capacity is indeed known. How-
ever, capacity is an asymptotic quantity, requiring the use of codes with very long blocklength
to be approached. In real life though, communication is done with �nite, sometimes short,
blocklengths. In this regime, arbitrarily low error rates can not be guaranteed and the relevant
quantity is instead the maximal achievable rate for a given error rate and blocklength.

The �nite blocklength regime is, until this day, not completely understood although the
subject has raised new interest in the last years due to the work by Polyanskiy et. al. where
tools for �nding converse- and achievability bounds on the maximal achievable rate are pro-
vided [2]. These tools have been successfully utilized for several channels and setups of interest
such as the single-input-single-output (SISO) Gaussian channel [2], Multiple-input-multiple-
output (MIMO) Rayleigh quasi-static channel [3] [4] and for the SISO Rayleigh block-fading
channel [5].

Another approach to unveil the performance of communication systems in the �nite block-
length regime is to derive the random coding error exponent (RCEE), which characterizes the
exponential decay of the error probability as a function of the rate and the blocklength [6].
Unfortunately, the RCEE does not tell the whole story in the �nite blocklength regime since
it is useful only for codewords greater than about 200 symbols [7, pp 18.].

The aim of this thesis is to characterize the maximal achievable rate in the �nite blocklength
regime for a MIMO setup in a Rayleigh block-fading environment when neither the receiver
nor the transmitter have any information about the fading coe�cients but knows the statistics
of the channel perfectly, the so called noncoherent setting. Under these assumptions, to the
extent of the authors knowledge, there are no closed form expressions for neither the capacity
nor the maximal achievable rate.

Lower bounds on the non-coherent capacity in the Rayleigh block-fading environment are
reported in [8] where independent and identically distributed (iid) Gaussian inputs was used and
in [9] where unitary space time modulation (USTM) was used as the signal input. Furthermore,
the output pdf induced by some input distribution was expressed in terms of hypergeometrical
functions in [10]. The output pdf can then be used to evaluate the information density and
hence the mutual information. An upper and a lower bound on the maximal achievable rate
for the Rayleigh block-fading channel is reported for SISO in [5].
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1.2 Contributions 1 INTRODUCTION

1.2 Contributions

In this thesis, bounds on the maximal achievable rate and the channel capacity in the Rayleigh
block-fading channel are presented for a MIMO setup with equal number of transmit- and
receive antennas. The extension to the con�guration of di�erent number of transmit- and
receive antennas is straightforward. A new upper bound on the noncoherent capacity, based
on a high SNR assumption, in the MIMO Rayleigh block-fading channel is presented. The lower
bound presented is equivalent to the one reported in [9] but has proven to be more numerically
stable. The bounds on the non-coherent capacity are proven to be tight for signal to noise ratios
(SNR) as low as 0 dB. Furthermore, two upper bounds are presented on the maximal achievable
rate. One is tight for fast-fading channels while the other is tight for slow-fading channels.
A lower bound on the maximal achievable rate is also derived. Diversity-exploiting space-
time block codes (STBC) that are employed today are compared to the optimal performance.
This illustrates for what degree of channel selectivity, diversity-exploiting schemes are close to
optimal, and when instead the available spatial degrees of freedom should be used to provide
spatial multiplexing.

1.3 Organization

The thesis is organized as follows. Chapter 2 provides an introduction to the tools and quan-
tities that are utilized throughout the thesis. The aim of this chapter is to review some
fundamental properties of the wireless channel and the information theoretic tools needed in
later chapters. Chapter 3 explains the assumptions that are made throughout the thesis. In the
Chapter 4, an upper and a lower bound on the channel capacity are derived. The �fth chapter
focuses on the maximal achievable rate and derives two upper bounds and one lower bound
on this quantity. Lower bounds on the rates achievable with STBC's are derived in Chapter
6. In Chapter 7, numerical results are presented. Chapter 8 consists of a discussion based on
the results and the last part, Chapter 9, concludes the thesis. There are several appendices
included, which contain the detailed mathematical derivations of some of the results.
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2 THEORY

2 Theory

The purpose of this Chapter is to do a review of important channel parameters, introduce
information theoretic tools and to present performance metrics relevant to the communication
problem for di�erent scenarios. If the reader is familiar to the concepts in wireless communica-
tion and blockfading as well as the fundamentals of information theory, this Chapter may be
skipped.

2.1 The channel

When communicating over a wireless channel, one of the main challenges is to mitigate the
fading. The fading is usually associated to two di�erent phenomenons; large- and small-scale
fading. Large scale fading occurs on the order of several wavelengths and is caused by for
example buildings, while the small-scale fading occurs on the order of a wavelength. In this
thesis, only small-scale fading will be considered, which occurs mainly due to the receiver being
in motion and to multipath propagation.

If the receiver is moving, the received signal will experience frequency dispersion due to
Doppler shift. The Doppler spread is a measure of the spectral broadening and is de�ned as
the band of frequencies, around the carrier frequency, where the Doppler shifts are signi�-
cant [11]. The Doppler spread is inversely proportional to the channels coherence time which is
a statistical measure of how long the channel remains invariant. If the symbol time is short in
comparison to the coherence time, the channel is slow fading otherwise it is called fast fading.

When a signal travels di�erent paths, the receiver will be receiving signals over some time.
This time is called the channels delay spread and is de�ned as the time between the �rst and last
signi�cant received signal component. Its frequency dual is called the coherence bandwidth, the
smallest frequency band for which the channel remains invariant. If the symbol time is larger
than the delay spread, the multipath components will not interfere with the next sample. This
is equivalent as to say that if the signal bandwidth is smaller than the coherence bandwidth
there will be no dispersion, this is called �at fading. If the signal bandwidth is larger than the
coherence bandwidth, the signal experiences frequency selective fading [11].

A model that is commonly adopted for wireless fading without line-of-sight (LOS) is the
Rayleigh fading model. It is based on the assumption that there are a large number of indepen-
dent signals taking di�erent paths with random amplitude and phase. By this assumption, the
channel fading may be modelled as a zero-mean circular complex Gaussian random variable
(rv) [11, pp 36.]. Also, a common method of modelling the noise at the receiver such as thermal
noise etc., is by adding white Gaussian noise to the received signal.

Important concept throughout the thesis is non-coherent- and coherent communication.
In the former, neither the transmitter nor the receiver has channel state information (CSI)
but knows the statistics of the channel perfectly while in the latter, the receiver have full
knowledge of the channel realization while the transmitter have the same knowledge as in the
non-coherent case. In non-coherent communication, there is a need of estimating the channel
in order to mitigate the e�ect of fading. This can be done in several ways, for example by
sending deterministic sequences called pilots [12]. If the channel's coherence time is not much
larger than the symbol time, intuitively, there is going to be a signi�cant decrease in exchanged
information between transmitter and receiver due to the need of frequently having to estimate
the channel.

As previously discussed, it is the Doppler spread that dictates the coherence time. However,
to simplify the model, a Rayleigh block-fading channel will be assumed, originally proposed
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2.2 Information theoretical tools 2 THEORY

in [13]. This model assumes a �xed coherence time for which the channel remains invariant
where after it changes to a new independent realization. Although this is a very simpli�ed
model of reality, it captures the big picture of the fading, not least under the commonly adopted
Clarke's spectrum [14], and yields results close to the continuous-time fading model [15].

The concept of selectivity is now easily understood by considering a codeword spanning
several coherence times or coherence bandwidths. Since each realization of the channel is
independent of the others, time-selectivity may be utilized by proper interleaving. Analogously,
frequency selectivity may be exploited by transmitting over several frequencies separated in
frequency by at least the coherence bandwidth. We de�ne a coherence block, T as the number
of symbols that can be transmitted before the channel changes. The coherence block may be
de�ned in time, frequency or both. A codeword of length n will experience L = n/T coherence
blocks during a transmission. The number of coherence blocks, L, will be referred to as the
number of selectivity branches. Furthermore, when multiple antennas are utilized, a third
type of selectivity is introduced; spatial selectivity. Spatial selectivity o�ers the user to choose
between using diversity exploiting schemes to increase the reliability or to use multiplexing
in order to increase the information rate. There is a fundamental trade-o� between diversity
gain and multiplexing gain. This trade-o� is presented for the coherent Rayleigh block-fading
channel in [16] where it is shown that the optimal trade-o� depend only on the number of
transmit- and receive antennas. For the non-coherent Rayleigh block-fading channel, it has
been shown that the penalty to pay is precisely the number of unknown channel coe�cient [17].
However, in today's standards, such as LTE, a point of operation is chosen with a �xed error
rate rather than aiming for as low error target as possible. It has been shown that from a
performance perspective, there is basically no decision to be made but one should always go
for multiplexing [18].

2.2 Information theoretical tools

The fundamental challenge in communication is to extract information from an observation,
which may be viewed as a random variable, Y . The di�erential entropy of a random variable,
Y , is a measure of the uncertainty in a random variable and is given as [19]

h(Y ) , −
∫
S

fY (y)log (fY (y)) dy (1)

where S is the support set of the random variable and fY (y) is the probability density function
(pdf). A very useful measure, based on entropy, is the mutual information of two random
variables, X and Y , given as [19]

I (X;Y ) , h(Y )− h(Y |X). (2)

This is interpreted as the shared information between X and Y . The mutual information may
also be seen from another point of view, by considering the information density, a random
variable, given as [20]

i(x; y) , log

(
fX,Y (x, y)

fX(x)fY (y)

)
. (3)

This quantity will be useful when deriving bounds on the maximal achievable rate. The mutual
information is given as the expected value of the information density. Also, a measure of the
similarity between two probability measures, PX and PY will be useful. This is called the
relative entropy and given as[19]

D (PX‖PY ) =

∫
fX(x)log

(
fX(x)

fY (y)

)
dx. (4)
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2.2 Information theoretical tools 2 THEORY

As previously stated, the aim of communication is to extract information out of an observed
symbol and determine what was originally transmitted. The largest information rate, at van-
ishing error rates and large blocklengths, one could hope for is called the channel capacity [1].
For a memoryless channel, the capacity, C, is given as [21]

C = max
PX
{I (X;Y )} (5)

where PX is an arbitrary probability measure on X. For the coherent setting, there are mainly
two di�erent measures of capacity; ergodic- and ε-outage capacity. The ergodic capacity applies
in fast fading scenarios, i.e. when the codeword experiences a large number of fades. For the
Rayleigh fading channel the MIMO ergodic capacity is given as [21]

Cerg = EH

[
log

(
det

(
I +

ρ

nt
HHH

))]
(6)

where ρ is the average SNR at each receive antenna and H is the channel fading matrix. The
outage capacity is the counterpart to the ergodic capacity; it is the relevant capacity measure
in a slow fading scenario, i.e. when the codeword experiences a small number of fades. The ε-
outage capacity is based on the probability that the target rate is larger than the instantaneous
capacity [11, pp. 187]

Pout(R) , Pr

{
log

(
det

(
I +

ρ

nt
HHH

))
< R

}
. (7)

The ε-outage capacity, Cout,ε, is given as the largest rate, R, for which the outage probability
is less than ε [11, pp.188]

Cout,ε = sup
R
{R : Pout(R) ≤ ε} . (8)

In the case of a Rayleigh block-fading channel, the codeword experiences L independent
fadings during a transmission which can be seen as parallel channels. Hence, the outage
probability has to be modi�ed as [11, pp. 198]

Pout(R) , Pr

{
L∑
l=1

log

(
det

(
I +

ρ

nt
HlHH

l

))
< R

}
. (9)

As aforementioned, the capacities in (6), (8) and (9) assumes perfect CSI at the receiver. In the
noncoherent setting, the capacity for the Rayleigh block-fading channel is, to the extent of the
authors knowledge, not known. A lower bound have been presented by Rusek et al. under the
assumption of independent and identically distributed (iid) Gaussian inputs [8]. Marzetta and
Hochwald have presented a lower bound based on the unitary space time modulation (USTM)
input distribution [9], which has been proven to be the input distribution that achieves capacity
in the regime of large SNR [13].

Although the channel capacity is the ultimate limit of reliable communication, it is in
today's packet oriented systems questionable whether the capacity is a relevant performance
metric or not when the packet size is small. The reason is that capacity is an asymptotic
measure which may be written as

C = lim
n→∞

lim
ε→0

R∗(n, ε) (10)

where R∗(n, ε) is the maximal achievable rate for a given blocklength, n, and error target, ε.
For large packets, however, the capacity is a reasonable performance metric. Since wireless
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2.2 Information theoretical tools 2 THEORY

communication is packet oriented rather than stream oriented, one would instead consider
R∗(n, ε) to be the performance metric of interest. To the extent of the authors knowledge,
there are no closed form expressions for R∗(n, ε) in the non-coherent setting.

To characterize communication in the �nite blocklength regime, there are mainly two dif-
ferent approaches; by using the Random coding error exponent (RCEE) or by �nding bounds
on R∗(n, ε). The RCEE gives a bound on the error as a function of a given blocklength and
rate [6]. Studies of the RCEE in the coherent Rayleigh block-fading channel have shown that,
unlike the capacity in (6), the coherence block plays an important role in the RCEE; the longer
the coherence block, the larger the exponent and the smaller the block error probability [22].
Abou-Faycal and Hochwald has shown that the same result applies for the non-coherent set-
ting [23]. Interestingly, in the same paper, it is shown that the input distribution that max-
imizes the RCEE has the same product distribution as the non-coherent capacity achieving
distribution [23].

For the method of bounding R∗(n, ε), Polyanskiy et al. recently presented several tools
for �nding achievability- and converse bounds in the �nite blocklength regime [2]. In this
thesis, an achievability bound called the Dependence Testing (DT) bound will be utilized to
derive a lower bound on R∗(n, ε). The bound sequentially tests messages and return the �rst
message whose likelihood exceeds a pre-determined threshold. The DT-bound holds for any
input distribution and is given as [2, Thm. 17]

ε ≤ EX,Y
[
e
−
[
i(X;Y )−log(M−1

2 ]
+
)]

(11)

where i(X;Y ) is the information density, introduced earlier, and M is the cardinality of the
codebook. In order to derive an upper bound on R∗(n, ε), a converse bound called the Meta-
Converse (MC) bound will be utilized. It is based on the Neyman-Pearson lemma which states
that the likelihood ratio test is the optimal test between two hypothesis [24, pp. 89]. The
shorthand for the bound is given as [2, Thm. 30]

M ≤ inf
QY

sup
x∈F

1

β1−ε(x,QY )
(12)

where F is the space of input signals ful�lling some power constraint, QY is an arbitrary
output distribution independent of x, M is the cardinality of the codebook and β1−ε(x,QY ) is
the minimum probability of error under the hypothesis QY if the probability of error under PX
is not greater than ε.

One may also obtain an upper bound on R∗(n, ε) by making use of Fano's inequality as [19,
Thm 2.10.1].

R∗(n, ε)) ≤ R̄(n, ε) ,
C(ρ) + Hb(ε)

n

1− ε
(13)

where C(ρ) is the non-coherent capacity and Hb(x) is the binary entropy function de�ned as

Hb(x) = −xlog(x)− (1− x)log(1− x). (14)

However, as previously mentioned, there are no closed form expressions for the non-coherent
capacity under the Rayleigh-blockfading assumption. Therefore, to upper bound R∗(n, ε) using
(13), we also need to have an upper bound on the capacity.
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3 ASSUMPTIONS

3 Assumptions

Throughout the thesis, it will be assumed that the channel follows a Rayleigh block-fading
channel without memory. This model assumes that the channel is constant over a coherence
block of T consecutive symbols after which it changes to a new independent realization. The
coherence block, T , can be thought of as a block of symbols transmitted in time, frequency or
in a time-frequency block, for which the channel remains invariant.

The channel, H, will be modelled as a matrix with entries iid CN (0, 1). At the receiver side,
the entries of the thermal noise matrix, W, will also be modelled with entries iid CN (0, 1) and
independent of H. This is a realistic channel model for systems using some form of time-division
multiplexing or frequency hopping [9].

We will consider a MIMO setup, consisting of nt transmit antennas and nr receive antennas
that communicates in a non-coherent setting. It will be assumed that T ≥ nr + nt i.e.,
the number of symbols in a coherence block is larger than the total number of antennas.
Furthermore, it has been shown that using nt > nr or nt > T

2
does not provide any capacity

gain in the high SNR regime [25]. Hence, it will be assumed that nt ≤ min{nr, T2 }. The
case of large-MIMO systems, i.e., T ≤ nr + nt, is treated in [26] where it is shown that the
capacity-achieving distributions are not the same for large SNR in the two cases, i.e., USTM
is not capacity achieving for large-MIMO systems.

A codeword will be assumed to consist of n symbols, transmitted over L consecutive co-
herence blocks, T , making the length of the codeword, n = LT symbols. For each coherence
block, the channel input-output relation is modelled as

Yl =

√
ρ

nt
XlHl + Wl, l = 1, . . . , L (15)

where each of the matrices above is given as

Y =

Y11 . . . Y1nr
...

. . .
...

YT1 . . . YTnr

 , X =

x11 . . . x1nt
...

. . .
...

xT1 . . . xTnt


H =

H11 . . . H1nr
...

. . .
...

Hnt1 . . . Hntnr

 , W =

W11 . . . W1nr
...

. . .
...

WT1 . . . WTnr


(16)

and ρ can be thought of as the SNR at each receive antenna. Finally, the communication over
each codeword is assumed to be power limited as

1

L

L∑
i=1

tr{XlX
H
l } ≤ Tnt. (17)
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4 CAPACITY BOUNDS

4 Capacity bounds

The focus of this chapter is to derive upper- and lower bounds on the channel-capacity of a
non-coherent Rayleigh block-fading channel. The bounds will thereafter be used for deriving
an upper bound on the maximal achievable rate given in (13).

4.1 Capacity upper bound

This section aims to generalize the capacity upper bound that was attained in [5] for the SISO-
case in the high SNR-regime by using duality. This method of upper bounding the capacity has
previously been used in e.g., the non-coherent additive white Gaussian noise (AWGN) channel
and in the optical direct-detection channel [27][28].

Since the channel is assumed to be block-memoryless the ergodic channel capacity is given
by (5) as

C(ρ) =
1

T
sup
PX

I (X;Y) (18)

where the normalization by T is carried out since the channel needs to be utilized T times in
order to transmit X. The supremum in (18) is taken over all probability measures on X that
satis�es the cost constraint

EPX

[
tr
{
XXH

}]
≤ Tnt (19)

We start by noting that the mutual information in (18) can be upper bounded by

I (X;Y) = D(PX,Y‖PXPY)

=

∫
X,Y

fX,Y(X,Y)log

(
fX,Y(X,Y)

fX(X)fY(Y)

)
dXdY

=

∫
X,Y

fY |X(Y|X)fX(X)log

(
fY |X(Y|X)fX(X)

fX(X)fY(Y)

qY(Y)

qY(Y)

)
dXdY

=

∫
X

fX(X)

[∫
Y

fY |X(Y |X)log

(
fY|X(Y |X)

qY(Y)

qY(Y)

fY(Y)

)
dY

]
dX

= EPX

[
D(PY|X‖QY

]
−D(PY‖QY)︸ ︷︷ ︸

≥0

≤ −EPY [log (qY(Y))]− h(Y |X).

(20)

Here, qY(Y) is an arbitrary probability density function of Y. Using (20) in (18), the capacity
can be upper-bounded as

C(ρ) ≤ 1

T
sup

PX:EX[tr{XXH}]≤Tnt

{
inf
QY
{−EY[log (qY(Y))]} − h(Y|X)

}
. (21)

To limit the search space, we will choose qY(Y) heuristically rather than �nding the in�mum.
By relaxing the constraints on PX, we end up with the Lagrangian

L(PX, λ) = −EY[log(qY(Y))]− h(Y|X) + λ
(
Tnt − EX

[
tr
{
XXH

}])
(22)

and the capacity upper-bound is now given by the dual problem

C(ρ) ≤ 1

T
inf
λ≥0

sup
PX

{L(PX, λ)} . (23)

8



4.1 Capacity upper bound 4 CAPACITY BOUNDS

To evaluate (23), we need to choose a suitable output probability distribution, QY. We empha-
size the fact that for T ≥ nr+nt, the input distribution that achieves capacity in the high SNR
regime is the scaled unitary isotropic distribution (id) [13]. Such an input may be constructed
by letting � be a unitary id matrix i.e., a matrix for which

f�(Φ) = f�(QHΦ) ∀Q : QHQ = I

��
H = �

H
� = I

(24)

where f�(Φ) denotes the probability density function of the random matrix �, which is de�ned
over the set of unitary matrices. Now, we take X distributed as follows

X = �D, � ∈ CT×nt ,D ∈ Rnt×nt . (25)

where D is diagonal and denotes the scaling. By using (25) in (15), we can rewrite the input-
output relation as

Y =

√
ρ

nt
�DH + W, D =

√
T Int . (26)

Now, we need to choose the output distribution qY(Y). We express the output matrix by
its singular value decomposition (SVD) according to

Y = U�VH (27)

where U ∈ CT×T and V ∈ Cnr×nr are unitary matrices and � ∈ RT×nr is a diagonal matrix
containing the singular values of Y. Heuristically, we choose U and V to be independent of each
other and isotropically distributed on their corresponding manifolds. They are also assumed
to be independent of �. The rationale behind choosing QY this way is that it resembles the
USTM distribution at high SNR.

In order to �nd the pdf of the output, we want to do a mapping of the distribution of Y
onto the distribution in the coordinates of the SVD as

QY → PU,�,V

∣∣∣∣dUdΣdV

dY

∣∣∣∣ = PUP�PV

∣∣∣∣dUdΣdV

dY

∣∣∣∣ (28)

where the last equality follows because U, � and V are independent. The last term is the
Jacobian of the transformation. By assumption, U and V are unitary id. Furthermore, to
make the SVD unique, we constrain the diagonal elements of U to be real and non negative.
Also, since � has rank nr, we are only interested in the the �rst nr columns of U which we
denote by Ũ ∈ CT×nr . Since Ũ is unitary, it is an element of a constrained Stiefel manifold [25]

SC(T, nr) =
{

A ∈ CT×nr
∣∣AHA = Inr ,Aii ∈ R+

}
, i = 1, . . . , nr (29)

and is isotropically distributed over this. Hence, in the probability space of all matrices be-
longing to SC(T, nr), the pdf of the matrix Ũ is given by

fŨ(Ũ) =
1

Vol(SC(T, nr))
. (30)

By the same reasoning, V belongs to a Stiefel manifold de�ned as

S(nr, nr) =
{

A ∈ Cnr×nr
∣∣AHA = Inr

}
(31)

and exactly as in (30) we get

fV(V) =
1

Vol(S(nr, nr))
. (32)

9



4.1 Capacity upper bound 4 CAPACITY BOUNDS

4.1.1 Distribution of singular values

Now we take a closer look at the singular values of Y. Following the same strategy as in [26],
we note that � will have rank nr, see (33). Furthermore, if we assume for a moment that
no additive noise is present, then Y will have rank nt and the singular values can be viewed

as the singular values from a matrix with entries iid CN
(

0, ρT
nt

)
. This suggests that in the

high SNR-regime, the smallest nr − nt singular values only carries information about W and
as a consequence, they are the singular values from a matrix with entries iid CN (0, 1). Since
W is independent of both the channel and the input matrix, the nr − nt singular values is
independent of the �rst nt singular values. Therefore, � can be viewed as

� =



σ1

. . .
σnt

σnt+1

. . .
σnr

0 · · · · · · · · · · · · 0
...

...
0 · · · · · · · · · · · · 0


=

�1

�2

0

 (33)

where �1 is independent from �2.

To derive the distribution of the singular values, we introduce the complex Wishart matrix
which is the product of two complex Gaussian matrices. This is done since the eigenvalues of
a Wish(nt, nr,C), where C is the covariance of the Gaussian matrix, are in fact the squared
singular values of the Gaussian matrix it is constructed from. To derive the distribution of
the singular values of the Gaussian ensemble, we perform a random transformation on the
distribution of the eigenvalues of a Wishart matrix. Here we introduce λi as the i:th eigenvalue
of the Wishart matrix. Furthermore, � will denote a diagonal matrix with all the eigenvalues
on the diagonal.

The joint pdf, f�(λ1, . . . , λnt), of the ordered, strictly positive, eigenvalues of a complex
Wish(nt, nr,C) matrix, where nt ≤ nr, is given in [29] as

f�(λ1, . . . , λnt) =
πm(m−1)det (C)−nr

Γnt(nt)Γnt(nr)

nt∏
i=1

λnr−nti

nt∏
i<j

(λi − λj)2

∫
U(nt)

etr{−C−1EΛEH}dE (34)

where EΛEH is the eigen-decomposition of W (nt, nr,C) and the integral is over the unitary
group of size nt.

Now, for the special case when the elements of the Gaussian matrix are independent, i.e.
C = cInt for some constant c, the integral in (34) may be solved easily. For example, for �1 we
have c = ρT/nt, and the integral can be written as [30, pp. 22]∫

U(nt)

e−C−1EΛEH

dE =

∫
U(nt)

e−
1
c
tr{EΛEH}dE

= e−
1
c
tr{Λ}

= e−
1
c

∑nt
i=1 λi

(35)

also, the determinant in the numerator can be expressed as

det (C)−nr = det (cInt)
−nr

= c−ntnr .
(36)

10



4.1 Capacity upper bound 4 CAPACITY BOUNDS

Plugging these two simpli�cations into (34) results in the eigenvalue-distribution

f�(λ1, . . . , λnt) =
πm(m−1)c−ntnr

Γnt(nt)Γnt(nr)
e−

1
c

∑nt
i=1 λi

nt∏
i=1

λnr−nti

nt∏
i<j

(λi − λj)2. (37)

Since we are interested in the singular values, {σi}nti=1, of the Gaussian matrix, i.e. the square
root of the eigenvalues, {λi}nti=1, of the Wishart matrix, the transformation that is to be made
is

λi = σ2
i , i = 1, . . . , nt (38)

and the joint pdf of {σi}nti=1 is given as [31, Pg. 216-220]

f�(σ1, . . . σnt) =
f�(λ1, . . . , λnt)

det (J)

∣∣∣∣
λi=σ2

i

, i = 1, . . . , nt (39)

where J is the Jacobian of the transformation whose determinant is given by

det (J) = det (diag (2σ1, · · · , 2σnt)) = 2nt
nt∏
i=1

σi. (40)

Finally, the joint pdf of the singular values, {σi}nti=1, can be written as

f�(σ1, . . . σnt) =
2ntπnt(nt−1)

Γnt(nr)Γnt(nt)c
ntnr

e−
1
c

∑nt
i=1 σ

2
i

nt∏
i=1

σ
2(nr−nt)+1
i

∏
i<j

(σ2
i − σ2

j )
2 (41)

Using (41), we conclude that the singular values in �1 follows the distribution in (41) with
c = ρT

nt
. The same goes for �2 if we do the substitutions c = 1, nt = nr and nr = T and instead

of i starting at 1 in the summation and product, it would start at nt + 1.

4.1.2 The square case

Now, for simplicity, we investigate the square case, assuming the same number of transmit-
and receive antennas i.e., nt = nr. For this scenario, �1 contains all the singular values of
Y and is full rank. We have the following distributions for the matrices in the singular value
decomposition coordinates

fŨ(Ũ) =
1

Vol(SC(T, nr))
=

Γnr(T )

πnr(T−1)

f�(σ1, . . . σnt) =
2nrπnr(nr−1)

Γnr(nr)
2βn2

r
e−

1
β

∑nr
i σ2

i

nr∏
i=1

σi
∏
i<j

(σ2
i − σ2

j )
2, β =

ρT

nr

fV(V) =
1

Vol(S(nr, nr))
=

Γnr(nr)

(2πnr)nr

JT,nr(σ1, . . . σnt) =

(
nr∏
i=1

σ
2(T−nr)+1
i

∏
i<j

(σ2
i − σ2

j )
2

)−1

(42)

where the Jacobian follows from [25]. Plugging this into (20), we get

11



4.1 Capacity upper bound 4 CAPACITY BOUNDS

I (X;Y) ≤ −EY[log(qY(Y))]− h(Y|X)

= −EŨ,�,V

[
log(fŨ(Ũ)f�(σ1, . . . σnt)fV(V)JT,nr(σ1, . . . σnt)

]
− h(Y|X)

= −EŨ

[
log(fŨ(Ũ)

]
− E�[log(f�(σ1, . . . σnt))− log (JT,nr(σ1, . . . σnt))]− EV[log(fV(V))]− h(Y|X)

= log
(
Vol(SC(T, nr))Vol(S(nr, nr))

)
− log

(
2nrπnr(nr−1)

Γnr(nr)
2βn2

r

)
+ E�

[
1

β

nr∑
i=1

σ2
i

]

+ E�

[
log

(∏nr
i=1 σ

2(T−nr)+1
i

∏
i<j(σ

2
i − σ2

j )
2∏nr

i=1 σi
∏

i<j(σ
2
i − σ2

j )
2

)]
− h(Y|X)

= log

(
πnr(T−1)

Γnr(T )

(2πnr)nr

Γnr(nr)

Γnr(nr)
2βn

2
r

2nrπnr(nr−1)
)

)
+ E�

[
1

β

nr∑
i=1

σ2
i

]
+ E�

[
log

(
nr∏
i=1

σ
2(T−nr)
i

)]
− h(Y|X)

= log

(
πnrTβn

2
rΓnr(nr)

Γnr(T )

)
+

1

β

nr∑
i=1

E�
[
σ2
i

]
+ E�

[
nr∑
i=1

log
(
σ

2(T−nr)
i

)]
− h(Y|X)

= log

(
πnrTβn

2
rΓnr(nr)

Γnr(T )

)
+

1

β

nr∑
i=1

E�
[
σ2
i

]
+ (T − nr)

nr∑
i=1

E�
[
log
(
σ2
i

)]
− h(Y|X)

(43)

Now we need to evaluate h(Y|X) and in order to do so, we use the fact that the columns
in Y given X are Gaussian and independent. The pdf of Y |X is given as

fY|X(Y|X) =
1

πnrTdet
(
ρ
nt

XXH + IT
)nr e−tr

{
YH
(
ρ
nt

XXH+IT

)−1
Y

}
. (44)

From this, the conditional entropy is given as

h(Y|X) = −
∫

X,Y

fX,Y(X,Y)log
(
fY |X(Y |X)

)
dYdX

= nr

nt∑
i=1

EX

[
log

(
1 +

ρ

nt
‖Xi‖2

)]
+ nrT log(πe)

(45)

where Xi is the ith column of X. Substituting (45) in (43), we obtain

I (X;Y) ≤ log

(
βn

2
rΓnr(nr)

enrTΓnr(T )

)
+

1

β
E�

[
nr∑
i=1

σ2
i

]
︸ ︷︷ ︸

A

+(T − nr)
nr∑
i=1

E�
[
log
(
σ2
i

)]
︸ ︷︷ ︸

B

− nr
nr∑
i=1

EX

[
log

(
1 +

ρ ‖Xi‖2

nr

)]
.

(46)

Note that, since the {σi}nri=1 are singular values of Y, we have that

A = E�

[
nr∑
i=1

σ2
i

]
= EY

[
T∑
i=1

nr∑
j=1

|Yi,j|2
]

= EX
[
EY |X

[
tr
{
YHY

}]
|X
]
.

(47)
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4.1 Capacity upper bound 4 CAPACITY BOUNDS

Since the squared singular values of Y are the eigenvalues of the matrix YHY, we start
from this matrix and try to simplify it, following the same principles as in [25]. We let Z ∈
CT×nr where each entry is iid CN (0, 1). We can now express the distribution of the matrix,(
YHY |X

)
∈ Cnr×nr , as

(
YHY

∣∣X) (d)
= ZH

(
ρ

nt
XXH + IT

)
Z (48)

where (d) means that the equality holds in distribution. Now we express X in (25) as

X = �D

=
[
�1 �2

] [D
0

]
(49)

where �1 ∈ CT×nt is the same as in (25) and �2 ∈ CT×(T−nt) is a matrix that makes � ∈ CT×T

unitary. We can now write (48) as

(
YHY |X

) d
= ZH

([
�1 �2

] [√ ρ
nt
D

0

] [√
ρ
nt
DH 0

] [
�

H
1

�
H
2

]
+ IT

)
Z

= ZH

�diag

(
ρ

nt
‖X1‖2 , · · · , ρ

nt
‖Xnt‖

2 , 0, · · · , 0
)
�

H + ��
H︸︷︷︸

IT

Z

= ZH
�︸︷︷︸

d
=ZH

(
diag

(
ρ

nt
‖X1‖2 , · · · , ρ

nt
‖Xnt‖

2 , 0, · · · , 0
)

+ IT

)
�

HZ︸︷︷︸
(d)
=Z

.

(50)

Further, decompose Z as

Z =

[
Z1

Z2

]
, Z1 ∈ Cnt×nr Z2 ∈ C(T−nt)×nr (51)

and express (50) as (
YHY

∣∣X) d
=
[
ZH1 ZH2

] [D̃ 0
0 IT−nt

] [
Z1

Z2

]
= ZH

1 D̃Z1 + ZH
2 Z2

(52)

where D̃ = diag
(
ρ
nt
‖X1‖2 + 1

)
, i = 1, · · · , nt. Hence, we have decomposed the matrix into

two Wishart matrices, the �rst containing the transmitted information plus noise and the
second containing only information about the noise.

We are interested in the nr non-zero singular values of Y and will make use of the notation
(Z1)i,∗ and (Z1)∗,i to denote the i:th row and the i:th column of Z1 respectively. Starting from
(46), we write

nr∑
i=1

E�
[
σ2
i

]
= EX

[
EY|X

[
tr
{
YHY

}
|X
]]

= EX

[
EZ

[
tr
{
ZH

1 D̃Z1

}
+ tr

{
ZH

2 Z2

}]]
= EX

[
EZ

[
nt∑
i=1

(
ρ

nt
‖Xi‖2 + 1

)
(Z1)i,∗(Z1)H

i,∗ +
nr∑
i=1

(Z2)H
∗,i(Z2)∗,i

]]

= EX

[
nt∑
i=1

(
ρ

nt
‖Xi‖2 + 1

)
EZ1

[
‖(Z1)i,∗‖2 |X

]
+

nr∑
i=1

EZ2

[
‖(Z2)∗,i‖2]] .

(53)
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4.1 Capacity upper bound 4 CAPACITY BOUNDS

Now, since (Z1)i,∗ ∈ C1×nr and (Z2)∗,i ∈ C(T−nt)×1 are vectors with i.i.d CN (0, 1) elements,
their norm follow the gamma distribution as

‖(Z1)i,∗‖2 ∼ Gamma(nr, 1) ‖(Z2)∗,i‖2 ∼ Gamma(T − nt, 1) (54)

which gives that
EZ1

[
‖(Z1)i,∗‖2] = nr, EZ2

[
‖(Z2)∗,i‖2] = T − nt. (55)

Substituting (55) into (53), we get

EX

[
nt∑
i=1

(
ρ

nt
‖Xi‖2 + 1

)
EZ1

[
‖(Z1)i,∗‖2]+

nr∑
i=1

EZ
[
‖(Z2)∗,i‖2]] = nrEX

[
nt∑
i=1

(
ρ

nt
‖Xi‖2 + 1

)]
+(T−nt).

(56)
Substituting this expression into (46) we get

I (X;Y) ≤ log

(
βn

2
rΓnr(nr)

enrTΓnr(T )

)
+

1

β

(
nrEX

[
nt∑
i=1

(
ρ

nt
‖Xi‖2 + 1

)]
+ (T − nt)

)

+ (T − nr)
nr∑
i=1

E�
[
log
(
σ2
i

)]
︸ ︷︷ ︸

B

−nr
nr∑
i=1

EX

[
log

(
1 +

ρ ‖Xi‖2

nr

)]
.

(57)

Next, we will simplify B in (57) which may be expressed as

E�

[
nr∑
i=1

log
(
σ2
i

)]
= E�

[
log

(
nr∏
i=1

σ2
i

)]
= EX

[
EY |X

[
log
(
det
(
YHY

))
|X
]] (58)

and by using the decomposition in (52), we obtain

EX

[
EZ1,Z2 |X

[
log
(

det
(
ZH

1 D̃Z1 + ZH
2 Z2

))]]
. (59)

Noting that both of the matrices in the determinant is Hermitian and that the sum of two
Hermitian matrices is also Hermitian, we can use the property

log (det (A)) = tr {logm(A)} (60)

where A is Hermitian and logm(·) denotes the matrix logarithm de�ned as [32, pp. 525]

logm(A) = Ulog (Λ(A)) UH (61)

where UΛ(A)UH is the eigen-decomposition of A and the log operates on each of the diagonal
elements in Λ(A). By utilizing (60) in (59) we can write

EX

[
EZ1,Z2 |X

[
log
(

det
(
ZH

1 D̃Z1 + ZH
2 Z2

))]]
= EX

[
tr
{
EZ1 |X

[
EZ2 |X

[
logm

(
ZH

1 D̃Z1 + ZH
2 Z2

)]]}]
(62)

Now, looking in detail at the diagonal of the matrix summation inside the logarithm, the
diagonal of the �rst multiplication is given as

ZH
1 D̃Z1 =

D̃1 |(Z1)1,1|2 + · · ·+ D̃nt |(Z1)nt,1|
2

. . .
D̃1 |(Z1)1,nr |

2 + · · ·+ D̃nt |(Z1)nt,nr |
2

 .
14



4.1 Capacity upper bound 4 CAPACITY BOUNDS

Since (Z1)i,j ∼ CN (0, 1), each diagonal entry is distributed as the sum of nt scaled Gamma(1, 1)
random variables. Analogously, we consider the diagonal of the second product as

ZH
2 Z2 =

‖(Z2)∗,1‖2

. . .
‖(Z2)∗,nr‖

2


where each diagonal element is distributed as a Gamma(T −nt, 1) random variable. Hence, the
diagonal entries of (48), denoted {κii}nri=1, are given according to

∑nt
j=1 D̃j |(Z1)j,i|2 + ‖(Z2)∗,i‖2

for i = 1, . . . , nr. Hence, each diagonal entries are iid as the sum of nt + 1 Gamma distributed
random variables. The pdf of each of the diagonal element is given as [33]

fκii(a) =
nt∏
i=1

(
1

ξi

) ∞∑
k=0

δka
T+k−1e−a

Γ(T + k)
(63)

where

ξi =

{
1 + ρ

nt
‖Xi‖2 if i = 1, . . . , nt

1 if i = nt + 1

δk+1 =
1

k + 1

k+1∑
i=1

iγiδk+1−i, k = 0, 1, . . .

γi =
nt∑
j=1

(
1− 1

ξj

)i
i

.

(64)

For the SISO case (nt = nr = 1), the matrix logarithm is just an ordinary logarithm and
we have

EX

 nr∑
i=1

Eκii|X

log

ZH
1 D̃Z1 + ZH

2 Z2︸ ︷︷ ︸
a


ii

|X

 = EX

[∫ ∞
0

log (a) fκii(a)da

]

= EX

[
1

ξ

∞∑
k=0

δk
Γ(T + k)

∫ ∞
0

log (a) aT+k−1e−ada

]

= EX

[
1

1 + ‖X‖2

∞∑
k=0

δkψ(T + k)

]
(65)

where ψ(·) denotes the digamma function. Now the dual problem in (23) can be completely
stated. For the SISO case, one can use (65) to obtain an expression for the upper bound of the
mutual information stated in (20) as

I (X;Y ) ≤ log

(
β

eTΓ(T )

)
+

EX
[
‖X‖2]+ T − 1

β
+ (T − 1)EX

[
1

1 + ‖X‖2

∞∑
k=0

δkψ(T + k)

]
− EX

[
log
(
1 + ‖X‖2)]

= log

(
β

eTΓ(T )

)
+
T − 1

β︸ ︷︷ ︸
cSISO(ρ)

+EX

[
1

β

(
‖X‖2)+

T − 1

1 + ‖X‖2

∞∑
k=0

δkψ(T + k)− log
(
1 + ‖X‖2)] .
(66)
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4.1 Capacity upper bound 4 CAPACITY BOUNDS

For simplicity, we de�ne fSISO(X) : RT×1 → R as

fSISO(X)
4
=

(
1

β

(
‖X‖2)+

T − 1

1 + ‖X‖2

∞∑
k=0

δkψ(T + k)− log
(
1 + ‖X‖2)) . (67)

By substituting (67) and cSISO(ρ) in (23), we end up with the SISO dual problem

C(ρ) ≤ 1

T
inf
λ≥0

sup
PX

{
cSISO(ρ) + EX

[
fSISO(X)

]
+ λ

(
T − EX

[
XXH

])}
=
cSISO(ρ)

T
− 1

T
inf
λ≥0

sup
PX

{
EX
[
fSISO(X) + λ

(
T − ‖X‖2)]}

≤ cSISO(ρ)

T
− 1

T
inf
λ≥0

sup
‖X‖

{
fSISO(X) + λ

(
T − ‖X‖2)}

4
= USISO(ρ).

(68)

The last inequality can be understood from the fact that the expectation of a function of a rv
is never larger than the maximum value taken by the function over the support of the rv.

For the MIMO-case, the procedure used in the SISO case gets complicated due to the
matrix logarithm. It is possible to bound the expression in (62) rather than computing it
exactly. Unfortunately, though, this bound is not very tight. In fact, with increasing T , the
bound exceeds the coherent capacity. For the complete derivation and illustrations, refer to
appendix A. We will now try to evaluate (47) in another way.

Again, utilizing that the columns of Y |X ∼ CN (0,C) where C = IT + ρ̃XXH and ρ̃ = ρ/nt,
we write

EX
[
EY |X

[
log
(
det
(
YYH

))
|X
]]

= EX
[
EZ |X

[
log
(
det
(
ZCZH

))
|X
]]

(69)

where the entries of Z are iid CN (0, 1). We notice that (69) is derived in closed form in [34,
Lemma 2] where the moment generating function (mgf) is utilized. From [34, Eq. 98] we have
the mgf as

M(t) = EZ |X

[
etlog(det(ZCZH)) |X

]
= EZ |X

[
det
(
ZCZH

)t |X]
=

1

det (Ω)
∏nr

l=1 l!

∫
ξ1,...,ξnr

(
nr∏
i=1

ξti

)
det (�) det (�) dξ1, . . . dξnr .

(70)

where Ω is a vandermonde matrix containing the extended eigenvalues of the covariance matrix,
C, given as

Ω =



1 λ1 λ2
1 · · · λT−1

1

1 λ2 λ2
2 · · · λT−1

2
...

...
...

. . .
...

1 λnt λ2
nt · · · λT−1

nt

1 λ′nt+1 λ′2nt+1 · · · λ′T−1
nt+1

...
...

...
. . .

...
1 λ′T λ′2T · · · λ′T−1

T


∈ RT×T . (71)

The matrix, �, is also a Vandermonde matrix containing the singular values of ZCZH and is
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4.1 Capacity upper bound 4 CAPACITY BOUNDS

given as

� =


1 ξ1 ξ2

1 · · · ξnr−1
1

1 ξ2 ξ2
2 · · · ξnr−1

2
...

...
...

. . .
...

1 ξnr ξ2
nr · · · ξnr−1

nr

 ∈ Rnr×nr (72)

and the matrix, � is given as

� =



1 λ1 λ2
1 · · · λT−nr−1

1 λT−nr−1
1 e−ξ1/λ1 · · · λT−nr−1

1 e−ξnr/λ1

1 λ2 λ2
2 · · · λT−nr−1

2 λT−nr−1
2 e−ξ1/λ2 · · · λT−nr−1

2 e−ξnr/λ2
...

...
...

...
...

...
1 λnt λ2

nt · · · λT−nr−1
nt λT−nr−1

nt e−ξ1/λnt · · · λT−nr−1
nt e−ξnr/λnt

1 λ′nt+1 λ′2nt+1 · · · λ′T−nr−1
nt+1 λ′T−nr−1

nt+1 e−ξ1/λ
′
nt+1 · · · λ′T−nr−1

nt+1 e−ξnr/λ
′
nt+1

...
...

...
...

...
...

1 λ′T λ′2T · · · λ′T−nr−1
T λ′T−nr−1

T e−ξ1/λ
′
T · · · λ′T−nr−1

T e−ξnr/λ
′
T


∈ RT×T .

(73)

We will consider � as a block matrix given as

� =

[
Υ G
C B

]
, Υ ∈ Rnr×(T−nr),G ∈ Rnr×nr ,C ∈ R(T−nr)×(T−nr),B ∈ R(T−nr)×nr . (74)

For the expression in (70) to be valid, the eigenvalues of C must be distinct. This is not
the true in our case since the eigenvalues, Λ(C), are obtained as

C = IT + ρ̃XXH

= IT + ρ̃ΦD2ΦH

= Φ
(
IT + ρ̃D2

)︸ ︷︷ ︸
Λ(C)

ΦH
(75)

where D = diag
(
‖x1‖2 , . . . , ‖xnt‖

2 , 0, . . . , 0
)
. Hence the eigenvalues are given as

Λ(C) = diag
(
1 + ‖x1‖2 , . . . , 1 + ‖xnt‖

2 , 1, . . . , 1
)
. (76)

Obviously, the T − nt last eigenvalues are not distinct. Therefore, the determinants involving
the eigenvalues of C in [34, Eq. 98] will evaluate to zero. This is cirumvented by letting Λ′ =
diag

(
1 + ‖x1‖2 , . . . , 1 + ‖xnt‖

2 , 1 + εnt+1, . . . , 1 + εT
)
and instead use this in the computation

of the moment generating function (mgf) in [34, Eq. 98] and take the limit. Note that the
limit only a�ects C and B in �. Now, we write the mgf as

M(t) = lim
εnt+1→0,...,εT→0

1

det (Ω)
∏nr

l=1 l!

∫
ξ1,...,ξnr

(
nr∏
i=1

ξti

)
det (�) det (�) dξ1, . . . dξnr

=
1∏nr
l=1 l!

∫
ξ1,...,ξnr

(
nr∏
i=1

ξti

)(
lim

εnt+1→0,...,εT→0

det (�)

det (Ω)

)
det (�) dξ1, . . . dξnr

(77)

and evaluate the limit by iteratively applying L'hopitals rule, see Appendix B.

After taking the limit, we use the mgf in (77) to derive the expected value of (76) as

EY |X
[
log
(
det
(
YYH

)
|X
)]

=
d

dt
M(t)

∣∣∣∣
t=0

=
(−1)

(T−1)(T+4)
2

−T−nr−1∏nr−1
l=1 l!

∏nr
i=1(1− λi)T−nrdet (V(Λ(C)))

d

dt
det (A)

∣∣∣∣
t=0

(78)
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where det (V (·)) denotes the determinant of a Vandermonde matrix and A is given in appendix
B. The derivative of the determinant of A may be expressed by the determinant chain-rule as
the sum of nr determinants as [32, pp 471.]

d

dt
det (A) =

nr∑
i=1

det
(

Ãi

)
(79)

where Ãi is an nr×nr matrix where the ith column is di�erentiated at t = 0 and the remaining
elements are the elements from A evaluated at t = 0. The entries of Ãi for t = 0 are

(Ãi)k,l =



λT−nr−1+l−1
k Γ(l)−

T−nr∑
d=1

T−nr∑
q=1

(
(C′)

−1
d,q λ

d−1
k

(
T − q − nr

q

)

×
T−q−1∑
j=0

Γ(T − nr − j)Γ(j + l)

Γ(q + 2nr)
− Γ(T − q − nr + l)

)
, l = i

λT−nr−1+l−1
k Γ(l) (log (λk) + ψ(l))−

T−nr∑
d=1

T−nr∑
q=1

(
(C′)

−1
d,q λ

d−1
k

(
T − q − nr

q

)

×
T−q−1∑
j=0

Γ(T − nr − j)Γ(j + l)ψ(i+ l)

Γ(q + 2nr)
− Γ(T − q − nr + l)ψ(T − q − nr + l)

)
, l 6= i

.

(80)

Hence, we have that

E�

[
nr∑
i=1

log
(
σ2
i

)]
=

(−1)(
(T−1)(T+4)

2
−T−nr−1)∏nr−1

l=1 l!
∏nr

i=1(1− λi)T−nr︸ ︷︷ ︸
cB

EX

∑nr
i=1 det

(
Ãi

)
det (V(Λ(C)))

 . (81)

Substituting (81) into (57), we get the mutual information upper bound as

I (X;Y) ≤ log

(
βn

2
rΓnr(nr)

enrTΓnr(T )

)
+

1

β

(
nrEX

[
nt∑
i=1

(
ρ

nt
‖Xi‖2 + 1

)]
+ (T − nt)

)

+ (T − nr)cBEX

∑nr
i=1 det

(
Ãi

)
det (V(Λ(C)))

− nr nt∑
i=1

EX

[
log

(
1 +

ρ ‖Xi‖2

nt

)]

= log

(
βn

2
rΓnr(nr)

enrTΓnr(T )

)
(T − nt)

β︸ ︷︷ ︸
cMIMO(ρ)

+ EX

nr
β

nt∑
i=1

(
ρ

nt
‖Xi‖2 + 1

)
+

(T − nr)cB
∑nr

i=1 det
(

Ãi

)
det (V(Λ(C)))

− nr
nt∑
i=1

log

(
1 +

ρ ‖Xi‖2

nt

)
(82)

For simplicity, we de�ne fMIMO(X) : RT×nt → R as

fMIMO(X)
4
=
nr
β

nt∑
i=1

(
ρ

nt
‖Xi‖2 + 1

)
+

(T − nr)cB
∑nr

i=1 det
(

Ãi

)
det (V(Λ(C)))

−nr
nt∑
i=1

log

(
1 +

ρ ‖Xi‖2

nt

)
.

(83)
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By substituting (83) and cMIMO(ρ) in (23), we end up with the MIMO dual problem

C(ρ) ≤ 1

T
inf
λ≥0

sup
PX

{
cMIMO(ρ) + EX

[
fMIMO(X)

]
+ λ

(
ntT − EX

[
tr
{
XXH

}])}
=
cMIMO(ρ)

T
− 1

T
inf
λ≥0

sup
PX

{
EX
[
fMIMO(X) + λ

(
ntT − tr

{
XXH

})]}
≤ cMIMO(ρ)

T
− 1

T
inf
λ≥0

sup
‖Xi‖

{
fMIMO(X) + λ

(
ntT −

nt∑
i=1

‖Xi‖2

)}
, i = 1, · · · , nt

4
= UMIMO(ρ).

(84)

The last inequality can be understood from the fact that the expectation of a function of a rv
is never larger than the maximum value taken by the function over the support of the rv.

4.2 Capacity lower bound

To lower bound the capacity, a straightforward approach is to simply assume an input distri-
bution, PX, derive the corresponding output distribution and evaluate the mutual information.
This would result in a lower bound of the capacity since the supremum in (18) is ignored. As
stated in Section 4.1, the input distribution that attains capacity in the high SNR regime is the
scaled unitary id called USTM. Furthermore, as mentioned in Section 2, the distribution that
maximizes the RCEE is also very similar to the USTM distribution. With these arguments, we
assume USTM as the input distribution with the belief that the lower bound will be tight for
high SNR. This is in fact the distribution that is used in [9] to obtain the output distribution.
Unfortunately, this result is not numerically stable for T ≈ 35 and larger at an SNR of 6 dB.
This is not acceptable for the purpose of the thesis since we are also interested in the slow
fading scenario.

We will obtain a lower bound on the capacity by assuming USTM as the input distribution
i.e. X =

√
T�. The approach is the same as in the method used by Hassibi and Marzetta [9]

but the methodology of evaluating the expectation in (88) is di�erent from [9, Eq. (12)] and
the results are more numerically stable. We start by observing that, under USTM, (Y |X) ∼
CN (0, IT + ρ̃T ) where ρ̃ = ρ/nt. By using Woodbury's matrix identity [32, pp. 124], we write
the conditional p.d.f. as in [13, Eq. (11)]

fY |X(Y |X) =
1

πnrT
e−tr{YHY}

det (Int + ρ̃T )nr
e−tr{YH

�((ρ̃T )−1+Int )
−1
�

HY} (85)

This implies that

fY(Y) =
1

πnrT
e−tr{YHY}

det (Int + ρ̃T )nr
E�
[
etr{YH

�((ρ̃T )−1+Int )
−1
�

HY}
]

(86)

Now, we consider the eigenvalue decomposition of YYH

YYH = U
(

� 0nr×(T−nr)
0(T−nr)×nr 0(T−nr)

)
︸ ︷︷ ︸

�

UH (87)

where U ∈ CT×T is unitary and Σ is a diagonal matrix containing the singular values of Y. We
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let Λ , ((ρ̃T )−1Int + Int)
−1 and proceed as follows

E�
[
etr{YH

�Λ�HY}
]

= E�
[
etr{�UH

�Λ�HU}
]

(a)
= E�

[
etr{��Λ�H}

]
=

1

|S(T, nt)|

∫
S(T,nt)

etr{∆�Λ�H}d�

(88)

where (a) follows because � d
= UH

�. The integral on the RHS resembles the Itzykson-Zuber
integral [35] with the di�erence of the integral being over a the Stiefel manifold S(T, nt) instead
of the unitary group U(T ) , S(T, T ). By letting �̃ = [� �⊥] where �⊥ is chosen such that �̃
is unitary we may write the integral as∫

S(T,nt)

etr{��Λ�H}d� =
1

|U(T − nt)|

∫
U(T )

etr{��Λ�H}d�̃. (89)

The Itzykson-Zuber integral is valid only for distinct eigenvalues of the two matrices � and Λ.

Therefore, we let �ε , diag
([
σ2

1 · · ·σ2
nr εnr+1 · · · εT

]T
)
and Λ′ε , diag

([
λ+ ε′1 · · ·λ+ ε′nt ε′nt+1 · · · ε′T

]T
)

and write (89) as∫
U(T )

etr{��Λ�H}d�̃ = lim
εnt+1→0,...,εT→0

lim
ε′1→0,...,ε′nt→0

lim
ε′nt+1→0,...,ε′T→0

∫
U(T )

etr{�ε�̃Λ′ε�̃
H}d�̃ (90)

The integral on the RHS now resembles the Itzykson-Zuber integral and is evaluated in ap-
pendix C. The result, for nt = nr, is given as

∫
U(T )

etr{��Λ�H}d�̃ =
|U(T )|

∏T
i=T−nt+1 Γ(i)∏nt

i=1(λ)T−nt
∏nt−1

i=1 i!

1∏T−nr−1
j=1 j!

∏nr
i=1 σ

T−nt
i

det
(
Ã
)
eλtr{�}∏T−nr−1

j=1 j!

det (V(�))

(91)
where σi is the ith diagonal element of �, V(·) denotes the Vandermode matrix and the matrix
Ã, is given as

Ã =
[
σ

(nt−l)
k γ̃(T + l − 2nt, λσk)

]
1≤l,k≤nt

∈ Rnt×nt . (92)

where γ̃(a, x) = 1
Γ(a)

∫ x
0
ta−1e−tdt denotes the regularized incomplete gamma function. Finally,

substituting (91) into (86), we obtain the output pdf as

fY(Y) =
(1 + ρ̃T )nt(T−nt−nr)Γnt (T )

πnrT (ρ̃T )nt(T−nt)Γnt (nt)

e−(1+ρ̃T )−1tr{Σ}det
(

Ã
)

det (Σ(T−nr))
∏nr

i<j(σi − σj)
. (93)

The capacity lower bound may now be obtained from (18), (85) and (93) as

L(ρ) ,
1

T
E[i (X;Y)] (94)

20



4.2 Capacity lower bound 4 CAPACITY BOUNDS

where i (X;Y) is the information density given by

i (X;Y) , log

(
fY |X(Y |X)

fY(Y)

)

= log

(
(ρ̃T )nt(T−nt)

(1 + ρ̃T )(nt(T−nt−nr)+nrnt)
Γnt (nt)

Γnt (T )

)
+ log

det
(
Σ(T−nt)

)
det (V (Σ))

det
(

Ã
)


− tr

{
YH

(
ρ

nt
XXH + IT

)−1

Y

}
+ (1 + ρ̃)−1 tr

{
YHY

}
(a)
= cnt,T − tr

{
WHW

}
+ (1 + ρ̃)−1 tr

{
YHY

}
+ log

det
(
Σ(T−nt)

)
det (V (Σ))

det
(

Ã
)



(95)

where in (a), we have used that nt = nr, cnt,T = (nt (T − nt)) log
(

ρT
nt+ρT

)
+ log

(
Γnt (nt)

Γnt (T )

)
and

the matrix W have iid CN (0, 1) entries.
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5 Bounds on the maximal achievable rate

This section presents the methods used to obtain the upper-and lower bounds on the maximal
achievable rate, R∗(n, ε). First, two upper bounds are derived where one is mainly interesting
in the fast-fading scenario. The other upper bound is realistic for a typical initial transmission
where the sender do not know anything about the channel and transmits from each antenna
with equal power. Thereafter, a lower bound on R∗(n, ε) is derived.

5.1 Rate upper bound

To obtain an upper bound on the maximal achievable rate, we will use the bounds presented
in (13) and (12). The former is given as

R∗(n, ε) ≤ R̄(n, ε) ,
C(ρ) + Hb(ε)

n

1− ε
(96)

Where H(ε) is the binary entropy function de�ned in Section 2 and C(ρ) is the non-coherent
capacity. Since the capacity, C(ρ), is not known in closed form it will be replaced by the upper
bound from Section 4.1. Since (96) is based on the non-coherent capacity, it will, for large T
converge towards the ergodic capacity. This is intuitive since the non-coherent capacity can
be seen as a measure of the penalty in estimating the channel if it is compared to the ergodic
capacity. However, as T grow large, the penalty becomes smaller and smaller and the non-
coherent capacity converges to the ergodic capacity. However, for large T i.e., in a slow fading
fading scenario, the codeword sees, in the extreme case, only one realization per transmission
and the capacity should be zero since the error rate can not be arbitrarily �xed. This upper
bound does not catch this behaviour and therefore, the upper bound on R∗(n, ε) is loose for
the slow-fading scenario.

One way to get an idea of how R∗(n, ε) performs in the slow-fading regime is to use the
channel dispersion, a measure of the variance between the channel capacity and the maximal
achievable rate [2]. Using the channel dispersion together with the capacity, Polyanskiy derives
a second order approximation of R∗(n, ε) in the limit n → ∞ for the scalar coherent fading
channel using the Meta-converse bound in (12) [36]. In our case, however, we have a codeword
power constraint and the power might be allocated di�erently over coherence blocks. This
makes us unable to use the central limit theorem as is done in [36]. Instead, we introduce an
additional contraint on the input distribution to follow the USTM distribution. This means
that the resulting upper bound is suboptimal and will be valid only for orthogonal signaling
where the power is uniformly allocated over the antennas. This is a realistic scenario for initial
transmission. Since we are mainly interested in the slow-fading scenario, even though it is
valid for all T , we will strengthen the validity of this bound by comparing its agreement to
the outage capacity which is the common performance metric in this regime. If they agree, we
conclude that the outage capacity is indeed a good performance metric for �nite blocklengths
and if they do not agree, it is an indicator that it is not.

The Meta-converse bound in (12) is repeated below for convinence

log (M) ≤ inf
QY

sup
X∈F
−log (β1−ε(X, QY)) (97)

where β1−ε(X, QY), for γ ≥ 0, can be lower bounded by [2, Eq. 106]

β1−ε(X, QY) ≥ sup
γ≥0

1

γ

(
Pr

{
fY |X(Y |X)

qY(Y)
≤ γ

}
− ε
)

(a)
= e−γ (Pr {i (X;Y) ≤ γ} − ε)

(98)
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where in (a) we are using the monotonicity of the logarithm inside the probability to write it
wrt the information density. Using (98) in (97) and dividing by the blocklength, n, we get the
bound on R∗(n, ε) as

R̄(n, ε)
(b)

≤ inf
QY

sup
γ≥0

{
−log

(
e−γ (Pr {i (X;Y) ≤ γ} − ε)

)}
(c)

≤ sup
γ≥0
{γ − log (Pr {i (X;Y) ≤ γ} − ε)}

(99)

where in (b), the supremum over the input is not present due the choice of the inputs following
the USTM distribution, which makes the distribution of i(X,Y) under PY|X=X independent of
X. In (c), we have chosen the arbitrary output distribution, QY, to be the output distribution
produced by the USTM distribution on the input given in (93). Since the codeword might
span several fadings, the information density need to be adjusted accordingly. The length of
the transmitted codeword is given by n = LT where T is the number of symbols in a coherence
block and L is the number of di�erent selectivity branches that the codeword experiences during
transmission. Hence, in order to obtain the lower bound on the maximal achievable rate, we
need to take into consideration that the channel is also changing L times during the codeword.
We are interested in

i(XL;YL) , log

(
fYL |XL(YL |XL)

fYL(YL)

)
(100)

where YL is the sequence of L received matrices and XL is the sequence of L transmitted
matrices. To evaluate (100), {Xl}Ll=1 are chosen to be iid according to the scaled isotropic
distribution introduced in Section 4.1. This input distribution will, for each l, result in the
output distribution, fY(Y), given in (93) in Section 4.2. Since the transmitted messages are iid
and the channel is memoryless, we may write

fYL(YL) =
L∏
l=1

fY(Yl). (101)

Furthermore, conditioned on Xl, the columns of the output Yl for l = 1, . . . , L are independent
and Gaussian. Therefore, the joint pdf of all the received messages is

fYL |XL(YL|XL) =
L∏
l=1

fY |X(Yl |Xl) (102)

where the pdf, fY |X(Yl |Xl), is given in (44) for each l. From (101) and (102), the total
information density in (100) can now be written as

i(XL;YL) = log

(
L∏
l=1

(
fYl |Xl(Yl |Xl

fYl(Yl)

))

=
L∑
l=1

i(Xl;Yl)

(103)

where the information density for each l = 1, . . . , L is given in (95).
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5.2 Rate lower bound

To compute the lower bound on R∗(n, ε), a bound, introduced in section 2, called Dependence
Testing (DT) bound will be utilized. This way of computing the lower bound on the maximal
achievable rate has already been applied successfully in the SISO case [5]. The bound states
that for any input distribution, PX, there exists a code with M codewords and an average
probability of error no larger than

ε ≤ E

[
e
−
{
[i(X;Y)−log(M−1

2 )]
+
}]

(104)

where i(X;Y) is the information density de�ned in section 2. As in the upper bound on R∗(n, ε),
a codeword spans several coherence blocks and hence, the information density in (104) need
to be adjusted accordingly. This was done for the case of USTM as the input distribution
in section 5.1 and it will be reused in the DT-bound. Hence, by replacing the information
density in (104) with the expression in (103), everything that is needed for the DT-bound is
known. Note that since M is the cardinality of the codebook, it is related to the information
(measured in nats) byM = ek where k is the information that is transmitted. The lower bound
on R∗(n, ε) is obtained by solving

R(n, ε) , max

{
log(M)

n
: M does not satisfy (104)

}
. (105)
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6 Space-Time Block Codes

In this section, we will derive bounds on the rate of two space-time block codes, STBC, that
are employed in today's communication systems. This, along with the bounds derived in
the pervious section, will give some insight in how close to the optimal performance one is
operating. Two di�erent setups, 2× 2 and 4× 4, will be considered. In the former, the STBC
will be assumed to follow the well known Alamouti scheme which achieves full diversity order
of four and rate one [37]. This is the optimal scheme in terms of outage probability when
the power is radiated isotropically [11, pp. 193]. In the latter case, it has been proven that
there are no complex STBC that achieves full diversity [38]. Instead, we will assume an STBC
that is employed in LTE-A called space-frequency block code plus frequency switched transmit
diversity, SFBC+FSTD, which achieves a diversity order of eight at rate one [39, pp. 164].

As a performance metric, the outage capacity for both of the STBC's will also be presented.
The outage capacity for the Alamouti scheme is given by

CAla
out,ε = sup

{
R : PALA

out (R) ≤ ε
}

(106)

where Pout(R) is the outage probability de�ned as

PALA
out (R) = Pr

{
1

L

L∑
l=1

log

(
1 +

ρ

nt
tr
{
HHH

})
< R

}
(107)

where H is a 2 × 2 matrix with entries iid CN (0, 1). The outage capacity is similar for the
SFBC+FSTD scheme. In Section 6.2, it is shown that the SFBC+FSTD scheme transform
a 4 × 4 MIMO channel with coherence time T into two parallel 2 × 4 MIMO channels with
coherence time T/2. Hence, the performance of this code will be exactly the same as the
performance of the Alamouti code used on a 2 × 4 MIMO channel with coherence time T/2.
The outage capacity is given as

CFSTD
out,ε = sup

{
R : PFSTD

out (R) ≤ ε
}

(108)

where Pout (R)FSTD is the outage probability de�ned as

PFSTD
out (R) = Pr

{
1

L

L∑
l=1

log

(
1 +

ρ

nt
tr
{
HHH

})
< R

}
(109)

where H is a 2× 4 matrix with entries iid CN (0, 1).

6.1 Alamouti lower bound

In this section, a �nite blocklength lower bound for the Alamouti scheme will be derived. The
bound is based on the DT bound that has been discussed in the foregoing sections. In Section
5.2, the lower bound was derived under the assumption of USTM, i.e. orthogonal inputs with
uniform power allocation. The Alamouti scheme also utilizes orthogonal transmission with
equal power allocation and is therefore a subset of the USTM family. Throughout this section,
it will be assumed that nt = nr = 2 and T/nt ∈ N.

The aim from here will be to derive an expression for the information density as was done
for the USTM case in 5.2. We start by constructing two orthogonal vectors that follow the
Alamouti scheme. Let

X̄ =

√
ρT

nt
� (110)
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where � ∈ CT×1 and is uniformly distributed over the unit hyper-sphere in CT . From this, the
second input vector is constructed according to the Alamouti scheme as

X̃ =
[
−X̄∗2 X̄∗1 −X̄∗4 X̄∗3 · · ·

]T
(111)

and the input matrix becomes
X =

[
X̄ X̃

]
∈ CT×2. (112)

As in (85), the conditional output pdf may be expressed as

fY |X(Y |X) =
1

πnrTdet (XXH + IT )nr
e

tr

{
YH
(
ρ
nt

XXH+IT

)−1
Y

}

=
1

πnrTdet
(
ρ
nt

XXH + IT
)nr e−tr{YYH}ec1tr{YHΦΦHY}

(113)

where c1 = 1
1+ 1

ρT
nt

and Φ = 1√
ρT
nt

X is unitary. The unconditional output pdf is now given as

fY(Y) =
1

πnrTdet
(
ρ
nt

XXH + IT
)nr e−tr{YYH}E�

[
ec1tr{YHΦΦHY}

]
. (114)

Let y1, y2, φ1, φ2 be the columns of Y and Φ respectively. Also, note that φ1 ⊥ φ2. The
trace in (114) may now be written as

tr
{

YHΦΦHY
}

= tr
{

YH
(
φ1φ

H
1 + φ2φ

H
2

)
Y
}

= tr
{
yH

1

(
φ1φ

H
1 + φ2φ

H
2

)
y1

}
+ tr

{
yH

2

(
φ1φ

H
1 + φ2φ

H
2

)
y2

}
= |〈y1,φ1〉|2 + |〈y2,φ2〉|2 + |〈y1,φ2〉|2 + |〈y2,φ1〉|2

. (115)

Note that φ2 =
[
−φ∗12 φ∗11 −φ∗14 φ∗13 · · ·

]
. We write

〈yi,φ2〉 = y∗i1(−φ∗12) + y∗i2(φ∗11) + y∗i3(−φ∗14) + y∗i4(φ∗13)

= φ∗11y
∗
i2 + φ∗12(−y∗i1) + φ∗13y

∗
i4 + φ∗14(−y∗i3)

= 〈φ1, ỹi〉
(116)

where ỹi =
[
y∗i2 −y∗i1 y∗i4 −y∗i3 · · ·

]
for i = 1, 2. By utilizing (116) in (115), we write

tr
{

YHΦΦHY
}

= tr
{
yH

1 φ1φ
H
1 y1

}
+ tr

{
ỹH

1 φ1φ
H
1 ỹ1

}
+ tr

{
yH

2 φ1φ
H
1 y2

}
+ tr

{
ỹH

2 φ1φ
H
1 ỹ2

}
= tr

{
φH

1

(
ỸỸH

)
φ1

}
(117)

where Ỹ =
[
y1 ỹ1 y2 ỹ2

]
∈ CT×4.

Now, considering the eigenvalue decomposition ỸỸH = U�UH, we may write the expectation
in (114) as

E�
[
ec1tr{YH

��
HY}
]

= EΦ1

[
ec1tr{ΦH

1 U�UHΦ1}
]

= EΦ1

[
ec1tr{ΦH

1�Φ
H
1}
]

= EΦ1

[
e�Φ1c1ΦH

1

] (118)

where, � = diag (σ1, σ1, σ2, σ2, 0, · · · , 0) ∈ CT×T . From (118), it can be seen that the Alamouti
scheme transforms a 2×2-MIMO channel into a 1×4 SIMO channel. If we now let � =

[
Φ1 �⊥

]
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belong to the unitary group, U(T ), and let Λ = diag (c1, 0, · · · , 0) ∈ RT×T , we may write the
expectation in (118) as

E�
[
ec1tr{YHΦΦHY}

]
=

1

|U(T − nt)| |S(T, nt)|
E�
[
e∆�Λ�H

]
(119)

which resembles the Itzykson-Zuber integral that has been solved in appendix C. We get

1

|U(T − nt)| |S(T, nt)|

∫
U(T )

etr{��Λ�H}d�̃

=
1

|U(T − nt)| |S(T, nt)|
|U(T )|

∏T
i=T−nt+1 Γ(i)∏nt

i=1 λ
(T−nt)
i

∏nt−1
i=1 i!

∏T−nr−1
j=1 j!︸ ︷︷ ︸

cT,nt

1∏nr
i=1 σ

T−nt
i

det (A)

det (V (�))
.

(120)

Where the matrix, A is given in the appendix. The only di�erence from the scenario in appendix
C is that the non-zero eigenvalues in � are not distinct. To make the eigenvalues distinct, let
� = diag (σ1 + ε1, σ1, σ2 + ε2, σ2), denote the i:th entry of � as δi and evaluate the limit as

1

|U(T − nt)| |S(T, nt)|

∫
U(T )

etr{��Λ�H}d�̃ = cT,nt lim
ε1→0,ε2→0

1∏nr
i=1 δ

T−nt
i

det (A)

det (V (�))

= cT,nt
1∏nr

i=1 σ
T−nt
i

det (A1)

(σ1 − σ2)2

, Ω

(121)

where the matrix A1 is a block matrix given as

A1 =

(
A11 A12

A13 A14

)
(122)

and each of the sub-matrices are given as

• A11 =∈ Rnt×nr where (A11)ij =

{
eλσjσ

(nt−i)
j for i = 1, · · · , nt if j even

eλσj
(
λσnt−ij + (nt − i)σnt−i−1

j

)
for i = 1, · · · , nt if j odd

• A13 ∈ R(T−nt)×nr where (A13)ij =

{
σT−nt−ij for i = 1, · · · , T − nt if j even

(T − nt − i)σT−nt−i−1
j for i = 1, · · · , T − nt if j odd

• A14 ∈ R(T−nt)×(T−nr) where (A14)i,j =

{
0 if i ≤ nr − nt
diag ((T − nr − j)!) , j = 1, · · · , T − nr if i > nr − nt

and A12 ∈ Rnt×T is given as

A12 =



(
λT−nt−1

)(nt−1) (
λT−nt−2

)(nt−1) · · · λ(nt−1) 0(
λT−nt−1

)(nt−2) (
λT−nt−2

)(nt−2) · · · λ(nt−2) 0
...

...
...

...
...(

λT−nt−1
)(1) (

λT−nt−2
)(1) · · · λ(1) 0(

λT−nt−1
)(0) (

λT−nt−2
)(0) · · · λ(0) 0

 (123)

Hence, the output pdf is given as

fY(Y) =
Ωe−tr{YYH}

πnrTdet
(
ρ
nt

XXH + IT
)nr . (124)
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Finally, the information density for each selectivity branch, under PY |X, is given as

iALA(Xl; Yl) = log

(
fY |X(Y |X)

fY(Y)

)
= tr

{
YlY

H
l

}
− tr

{
YH
l

(
ρ

nt
XlX

H
l + IT

)−1

Yl

}
− log (Ω)

= tr
{

YlY
H
l

}
− tr

{
WH
l Wl

}
− log (Ω)

(125)

where Wl ∈ CT×2 with entries iid CN (0, 1). From the block-memoryless assumption, the total
information density to be used in the DT bound is given as

iALA(XL; YL) =
L∑
l=1

iALA(Xl; Yl) . (126)

6.2 SFBC+FSTD lower bound

As mentioned in the introduction, there is no equivalent to the Alamouti scheme in the 4× 4
case. Instead, we focus on the SFBC+FSTD scheme, that is used in the LTE downlink, which
transmits symbols according to

X =


X1 X2 0 0
0 0 X3 X4

−X∗2 X∗1 0 0
0 0 −X∗4 X∗3

 . (127)

Note that antenna 1 and 3, together, is following the Alamouti scheme, the same goes for
antenna 2 and 4.

Now, let Φ1 =
[
Φ11 Φ12 Φ13 Φ14 · · ·

]
∈ CT/2 and Φ2 =

[
Φ21 Φ22 Φ23 Φ24 · · ·

]
∈

CT/2 be independent and uniformly distributed over the unit sphere in CT/2. Also de�ne
Φ̃1 =

[
−Φ∗12 Φ∗11 −Φ∗14 Φ∗12 · · ·

]
and Φ̃2 =

[
−Φ∗22 Φ∗21 −Φ∗24 Φ∗23 · · ·

]
. Let T/nt ∈ N

and let the complete codeword be given as

X =
√
T


Φ11 Φ12 0 0 Φ13 Φ14 0 0 · · ·
0 0 Φ21 Φ22 0 0 Φ23 Φ24 · · ·
−Φ∗12 Φ∗11 0 0 −Φ∗14 Φ∗13 0 0 · · ·

0 0 −Φ∗22 Φ∗21 0 0 −Φ∗24 Φ∗23 · · ·


T

︸ ︷︷ ︸
,�

(128)

The output pdf is given in (114) and as in the previous section, we need to compute

tr
{

YHΦΦHY
}

=
4∑
i=1

tr
{
yH
i

(
φ1φ

H
1 + φ2φ

H
2 + φ̃1φ̃

H
1 + φ̃2φ̃

H
2

)
yi

}
=

4∑
i=1

(
|yi,φ1|2 + |yi,φ2|2 +

∣∣∣yi, φ̃1

∣∣∣2 +
∣∣∣yi, φ̃2

∣∣∣2) . (129)

By performing similar steps as in (116), (128) can be written as

tr
{

YHΦΦHY
}

=
4∑
i=1

(
tr
{(
yodd
i

)H (
φ1φ

H
1

)
yodd
i

}
+ tr

{(
ỹodd
i

)H (
φ1φ

H
1

)
ỹodd
i

}
+tr

{
(yeven

i )H (φ2φ
H
2

)
yeven
i

}
+ tr

{
(ỹeven

i )H (φ1φ
H
1

)
ỹeven
i

}) (130)
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where
yodd
i =

[
yi1 yi2 yi5 yi6 yi9 yi10 · · ·

]T ∈ CT/2

yeven
i =

[
yi3 yi4 yi7 yi8 yi11 yi12 · · ·

]T ∈ CT/2

ỹodd
i =

[
y∗i2 −y∗i1 y∗i6 −y∗i5 y∗i10 −y∗i11 · · ·

]T ∈ CT/2

ỹeven
i =

[
y∗i4 −y∗i3 y∗i8 −y∗i7 y∗i12 −y∗i11 · · ·

]T ∈ CT/2

. (131)

By collecting the received vectors, we can express (130) as the sum of two traces according to

tr
{

YHΦΦHY
}

= tr
{(

Yodd
)H (

φ1φ
H
1

)
Yodd

}
+ tr

{
(Yeven)H (φ2φ

H
2

)
Yeven

}
(132)

where Yodd =
[
yodd

1 ỹodd
1 yodd

2 ỹodd
2 yodd

3 ỹodd
3 yodd

4 ỹodd
4

]
and similarly for Yeven. By

the independency between Φ1 and Φ2, the expectation in (114) may now be expressed as

E�
[
etr{c1YHΦΦHY}

]
= EΦ1

[
e
c1tr

{
(Yodd)

H
(φ1φH

1)Yodd
}]

EΦ2

[
ec1tr{(Yeven)H(φ2φH

2)Yeven}
]

(133)

where c1 = 1
1+ 1

ρT
nt

. Hence, the output pdf factorizes into two independent parts, each of which

corresponds to the output of a 2×4 noncoherent MIMO channel with coherence time T/2. De-

note the eigenvalues of
(

Yodd
(
Yodd

)H
)
by Λodd = diag

(
λodd

1 , λodd
1 , λodd

2 , λodd
2 , λodd

3 , λodd
3 , λodd

4 , λodd
4

)
and similarly for Yeven (Yeven)H. From here, each of the expectations in (133) can be evaluated
analogously as in the Alamouti case in the previos section with the di�erence that nt = 2,
nr = 4 and L = n/ (T/2).

The �rst expectation on the RHS in (133) results in

EΦ1

[
e
c1tr

{
(Yodd)

H
(φ1φH

1)Yodd
}]

, Ωodd (134)

where Ωodd is given in (121) and similarly for the second expectation. Hence, the output pdf
is given by

fY(Y) =
ΩoddΩevene−tr{YYH}

πnrTdet
(
ρ
nt

XXH + IT
)nr (135)

and the information density for each selectivity branch, under PY |X, is given as

iFSTD(Xl; Yl) = log

(
fY |X(Y |X)

fY(Y)

)
= tr

{
YlY

H
l

}
− tr

{
YH
l

(
ρ

nt
XlX
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l + IT

)−1

Yl

}
− log

(
ΩoddΩeven

)
= tr

{
YlY

H
l

}
− tr
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WH
l Wl
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− log

(
ΩoddΩeven

)
. (136)

From the block-memoryless assumption, the total information density to be used in the DT
bound is given as

iFSTD(XL; YL) =
L∑
l=1

iFSTD(Xl; Yl) . (137)
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7 Results

The aim of this chapter is to graphically present the bounds derived in chapter 4, 5 and 6. The
�gures will only be motivated, for a thorough analysis, see chapter 8.

7.1 Tightness of capacity bounds

In this secion, the capacity bounds derived in Section 4.1 and 4.2 are illustrated. The bounds
are plotted for SNR's of 0 dB and 6 dB. The bounds are illustrated for coherence blocks, T in
the interval [nr + nt, 35]. This is the most interesting regime since, with larger T , estimating
the channel becomes less penalized and the bounds converges to the coherent capacity. In
�gure 1, the bounds are shown for a SISO setup. Figure 2 shows the bounds for a 2x2 MIMO
setup and �gure 3 illustrates the bounds for a 3x3 MIMO setup.
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(a) Capacity bounds for SISO setup at 0 dB.
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(b) Capacity bounds for a SISO setup at 6 dB.

Figure 1: Capacity bounds for SISO.
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(a) Capacity bounds for a 2x2 setup at 0 dB.
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(b) Capacity bounds for a 2x2 setup at 6 dB.

Figure 2: Capacity bounds for 2x2 MIMO.
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(a) Capacity bounds for a 3x3 setup at 0 dB.
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(b) Capacity bounds for a 3x3 setup at 6 dB.

Figure 3: Capacity bounds for 3x3 MIMO.

7.2 Tightness of Rate Bounds

We will, in this section, illustrate the characteristics of the maximal achievable rate, R∗(n, ε),
in the �nite blocklength regime. The considered scenarios are the supposed to re�ect the
two cases of using small- and large blocklengths respectively. The scenario of short blocks
consists of nSmall = 168 bits while the large messages are chosen to consist of nLarge = 10000
bits. Since today's communication systems rather chooses an operation point in terms of
block error probability instead of aiming for making it as low as possible, we will consider
ε = 10−3 [18]. This is a realistic operation point in for example tra�c applications [40, pp. 70].
The illustrations are made for setups with two and three antennas at both the receiver and the
transmitter at an SNR of 6 dB.

The coherent capacity, the blue curve, is included in all of the �gures as a measure of
how close one can communicate to the channel's fundamental limit. Also, as discussed in
Section 2, for slow-fading scenarios i.e., large T (small L), the ε-outage capacity is the relevant
performance metric. Therefore, it is also included, the black dashed curve, to give a feeling for
how close to the fundamental limit of communication the maximal achievable rate is performing
in the slow-fading regime.

The bounds on the maximal achievable rate as a function of the coherence time is shown
for small blocklengths, nSmall, in �gure 4a and 4b and for large blocklengths, nLarge, in �gure
5a and 5b.
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(a) 2x2-MIMO at 6 dB and n = 168.
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(b) 2x2-MIMO at 6 dB and n = 10000.

Figure 4: Bounds for the maximal achievable rate
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(a) 3x3-MIMO at 6 dB and n = 168.

10000 5000  2000  1000   100    20    10     6
Coherence interval T

   1    2    5   10  100  500 1000
0

1

2

3

4

5

Time-frequency diversity branches L (log scale)

B
it
/
ch
a
n
n
el

u
se

DT−USTM

MC−USTM
Cout,ε

CergFano Bound

(b) 3x3-MIMO at 6 dB and n = 10000.

Figure 5: Bounds for the maximal achievable rate

7.3 STBC performance

The results presented in this section emphasizes the performance of diversity exploiting STBC's
that are in use today under the same setup as in [18]. Speci�cally, the blocklength is equal
to 168 bits (an LTE resource block) and the SNR is �xed to 6 dB. The STBC lower bounds
that are illustrated are the ones introduced in Section 6. Two scenarios are illustrated; control
signaling and ultra reliable communication. The former is appropriate for the exchange of
short packages and the error rate is set to ε = 10−3. Ultra reliable communication is relevant
for transmission of critical information e.g., in tra�c-safety applications and the error rate is
set to ε = 10−5 [40].

In �gure 6, the control signaling scenario is illustrated while the scenario utilizing ultra
reliable communication is shown in �gure 7. The upper- and lower bounds on the maximal
achievable rate from Section 5 is presented as a solid red and black curve respectively. The
STBC that is considered in each scenario and setup, is shown as the solid blue curve. The
outage capacity for for each signaling scheme (USTM and the STBC) is also shown in the
�gures as a black and blue dashed curve respectively.
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(a) Bounds for a 2x2 setup with control signaling.
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(b) Bounds for a 4x4 setup with control signaling.

Figure 6: Bounds for control signaling.
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(a) Bounds for a 2x2 setup with ultra reliable com-

munication.
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(b) Bounds for a 4x4 setup with ultra reliable com-

munication.

Figure 7: Bounds for ultra reliable communication.
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8 Discussion

In this thesis, bounds in order to characterize the maximal achievable rate in the �nite block-
length regime has been presented. The �rst upper bound that was presented is based on the
channel capacity which is not known and had to be bounded. These are illustrated in Sec-
tion 7.1 for several antenna setups and SNR. These bounds are based on the assumption that
USTM is used as the input distribution, which is justi�ed by it being the capacity achieving
distribution in the high SNR regime. This can be seen in the �gures of Section 7.1 by compar-
ing a �xed setup at di�erent SNR, i.e., the upper and lower bound approaches each other for
higher SNR. However, it can be seen that for SNR as low as 0 dB, the bounds are still tight.
If one is to go much lower than this, other assumptions on the input distributions may yield
better results. A further remark is that the bounds become tighter for an increased number of
antennas.

The illustrations are all plotted for coherence blocks in the interval of [nt + nr, 35]. The
reason for this is that the fast-fading regime, small T , is the most interesting. Namely, for
small T , the impact of the non-coherency becomes signi�cant; the channel varies to fast and
the channel estimation occupies a lot of the information exchange which decreases the rate.
If one instead increase the coherence block, the curves will converge towards the coherent
capacity. This is due to the slow variations of the channel and hence, the occupied bits for
channel estimation becomes insigni�cant.

The rate bounds are presented in Section 7.2. There are two capacity curves included,
ergodic- and outage capacity. The ergodic capacity is included just to give an upper bound
of how fast one would possibly be able to communicate. The outage capacity is included as
a performance metric to be compared to the maximal achievable rate. The magenta colored
curve is the upper bound that is based on the non-coherent channel capacity. This curve is
a general upper bound on the maximal achievable rate. The second upper bound, based on
the meta converse bound in Section 5.1, is not as general since it assumes USTM as the input
distribution. This distribution includes all orthogonal signaling with uniform power allocation
across the antennas and is a realistic bound for initial transmission.

The illustrations are shown for 2 × 2- and 3 × 3-MIMO for an SNR equal to 6 dB and
an error target ε = 10−3. The left column displays the performance in the short blocklength
regime, n = 168 bits, while the right column does the same for large blocklengths, n = 10000.

From the �gures, it is clear that the maximal achievable rate, R∗(n, ε) is not monotonic in
the coherence block, T , but there is an optimal coherence block T ∗ (or equivalently, an optimal
number L∗ = n/T∗ of time-frequency selectivity) that maximizes it for a speci�c n, ε, SNR and
antenna setup.For T ≤ T ∗ (or L ≥ L∗) the channel is fast fading and the cost of estimating
the channel overcomes the gain due to time-frequency selectivity. On the other hand, when
T ≥ T ∗, the channel is slow fading and the limited time-frequency selectivity decreases the
performance. A similar observation was reported in [5] for the single-antenna case.

If the outage capacity would be considered as the performance metric in the �nite block-
length regime, it can be seen that it provides an accurate approximation of R∗(n, ε) only for
large T , i.e., when the fading channel is essentially constant over the duration of the packet
(quasi-static scenario). In the fast fading regime, the Fano's based bound provides a fairly ac-
curate approximation of R∗(n, ε) only for very short T . By comparing the two columns, we note
that the outage capacity and Fano's based bound becomes better approximations of R∗(n, ε)
when the blocklength increases. This comes as no surprise since the maximal achievable rate
goes towards the channel capacity by increasing the blocklength. Since the two curves are on
top of each other, the USTM input distribution is nearly optimal which is expected since we
have already seen that it is nearly optimal at SNR equal to 6 dB in Section 7.1. Also, the gap
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between the Meta-converse and the DT bound is small even for short messages.

In the last Section, 7.3, R∗(n, ε) is compared to STBC's that are in use today. For 2 × 2-
MIMO, the Alamouti scheme, with diversity order 4 and no rate gain, is used for comparison.
As no generalization of the Alamouti scheme exists beyond 2×2 con�guration [38], we consider
instead the SFBC+FSTD scheme, which provides diversity gain 8 and no rate gain, that is
used in LTE.

In the �gures, the MC upper bound and the DT lower bound is again depicted. The outage
capacity is again included as a performance metric. Furthermore, the two additional curves
in blue corresponds to the speci�c STBC. The solid blue curve is the DT lower bound for
the corresponding scheme and the dashed blue curve corresponds to the outage capacity for
the scheme. The left column illustrates the performance of a control signaling scenario, i.e.,
ε = 10−3 while the right column illustrates the performance of ultra reliable communication
with ε = 10−5. All of the �gures in this section are plotted for n = 168 and SNR equal to 6
dB.

If outage capacity is used as the performance metric, then a diversity scheme such as the
Alamouti code is nearly optimal when the channel provides limited selectivity in time and
frequency (L ≈ 1). However, if the channel provides signi�cant time-frequency selectivity,
then one should use the antennas in multiplexing mode. For example, in �gure 6a, for the
case L = 14, the gap between the Alamouti scheme and the outage optimal scheme is about
0.5 bit/channel use and the gap increases as L grows larger. This observation is one of the
key contributions in [18]. In the other regime, where L is large and T is small, the cost of
learning the channel becomes signi�cant. Therefore, large multiplexing gains are not feasible
and the gap to optimality of the Alamouti scheme decreases. For example, by compairing the
DT-USTM lower bound to the DT-Alamouti, the throughput reduction due to the use of the
Alamouti scheme is about 0 bit/channel use for L = 1; 0.25 bit/channel use for L = 12 and
0.18 bit/channel use for L = 42.

A similar comparison is shown in �gure 6b for 4 × 4-MIMO. The SFBC+FSTD scheme
provides diversity gain 8 and no multiplexing gain. As shown in the �gure, the gap between
the MC upper bound and the DT lower bound is small, allowing for a precise characterization
of R∗(n, ε). In contrast, the gap between the DT-USTM and the DT-FSTD lower bound is
large, suggesting that using all 8 antennas to provide diversity gain is suboptimal also when
the time-frequency selectivity is limited.

In �gure 7a and 7a, we consider a scenario of ultra reliable communication, ε = 10−5.
Compared to the case of control signaling, ε = 10−3, the gap between the optimal schemes and
the diversity-based schemes (Alamouti for 2×2-MIMO and SFBC+FSTD for 4×4-MIMO) gets
smaller. This comes as no surprise, as the higher reliability requirement makes the exploitation
of transmit diversity advantageous.
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9 CONCLUSION

9 Conclusion

This thesis has analyzed the fundamental limits of the Rayleigh block-fading channel under
an average-power constraint. For the channel capacity, an upper and a lower bound has been
presented and proved to be tight for SNR down to 0 dB. The upper bound presented is new while
the lower bound is the same as in [9] but more numerically stable. The maximal achievable
rate has been characterized in terms of bounds; two upper- and one lower bound. One of
the upper bounds, the one based on the channel capacity, and the lower bound is general
while the second upper bound is valid for orthogonal and initial transmission, i.e., uniform
power allocation across antennas. The maximal achievable rate has been compared to common
performance metrics of today, such as outage capacity, and it has been concluded that in some
regimes, these metrics are accurate while in other, they are not. Furthermore, the maximal
achievable rate has been compared to diversity-exploiting schemes that are in use today. It
was shown that neither diversity- nor multiplexing-exploiting schemes are universally optimal
for a 2× 2 con�guration while in a 4× 4 setup, the results suggests that all 8 antennas should
be used for multiplexing.
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A Appendix A

Starting from (57), the only term left to evaluate is

EPX

[
EPY |X

[
log
(
det
(
YHY

))
|X
]]
. (A.1)

Using the decomposition in (52) and the concavity of the logarithm, we use Jensen's inequal-
ity [19, Thm. 2.6.2] to write (A.1) as

EPX

[
tr
{
EPZ1 |X

[
EPZ2 |X

[
logm

(
ZH

1 D̃Z1 + ZH
2 Z2

)]]}]
≤ EPX

[
logm

(
EPZ1 |X

[
EPZ2 |X

[
ZH

1 D̃Z1 + ZH
2 Z2

]])]
(A.2)

Since each element in the decomposition, κij, is a sum of the product of scaled iid complex
standard Gaussian random variables, the expectation will be zero for all κij, i 6= j. Hence,
the expectation of the decomposition on the right hand side of (A.2) is a diagonal matrix and
the matrix logarithm can be thought of as taking the scalar logarithm of each entry on the
diagonal which follows the same pdf as in (63) [33]. The expectation of κii can be obtained as

EPκii|X [κii] =

∫ ∞
0

yfκii(y)dy

=
nt∏
i=1

(
1

ξi

) ∞∑
k=0

δk
Γ(T + k)

∫ ∞
0

yT+k+1−1e−ydy

=
nt∏
i=1

(
1

ξi

) ∞∑
k=0

δk
Γ(T + k + 1)

Γ(T + k)

=
nt∏
i=1

(
1

ξi

) ∞∑
k=0

(k + T )δk.

(A.3)

Hence, the original expression in (A.1) can be bounded as

EPX

[
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[
log
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(
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))
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]]
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[
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(A.4)
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Substituting (A.4) into the bound on the mutual information in (57), we obtain

I(X;Y) ≤ log
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2
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(A.5)

For simplicity, we de�ne fMIMO(X) : RT×nt → R as

fMIMO
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1
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(A.6)

Hence, the mutual information is bounded as

I(X;Y) ≤ cMIMO(ρ) + nrEPX

[
fMIMO

Jensen (X)
]
. (A.7)

Finally, substituting (A.7) in (23) results in the following capacity upper bound
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4
= UMIMO

Jensen (ρ)

(A.8)

The last inequality can be understood from the fact that the expectation of a function of a rv
is never larger than the maximum value taken by the function over the support of the rv.

In �gure 8, the upper bounds in (68) and (A.8) are compared at two di�erent, relatively
large, SNR in a SISO setup, note that the results for MIMO are also valid for SISO. Even
though both of the expressions are valid upper bounds of the capacity, (68) seem to be much
tighter. The culprit for the bad performance of (A.8) is the usage of Jensen's inequality in
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(A.2). In �gure 9, (A.8) is plotted with the upper bound obtained by the result from (84). It
can be seen that the upper bound in (A.8) is very loose also for MIMO.
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Figure 8: Comparison of (68) and (A.8) for a SISO setup.

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

4.5

5

Coherence interval T

B
it
/
ch
a
n
n
el

u
se

UJensen
MIMO (ρ)

UMIMO(ρ)

Cerg(ρ)

(a) Upper bound at 6 dB

0 10 20 30 40 50 60
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Coherence interval T

B
it
/
ch
a
n
n
el

u
se

UJensen
MIMO (ρ)

UMIMO(ρ)

Cerg(ρ)

(b) Upper bound at 10 dB

Figure 9: Comparison of upper bounds using (A.8) and (84).
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In this appendix, we evaluate the limit in the expression for the moment generating function

M(t) =
1∏nr
l=1 l!

∫
ξ1,...,ξnr

(
nr∏
i=1

ξti

)(
lim

εnt+1→0,...,εT→0

det (Γ)

det (Ω)

)
det (Ξ) dξ1, . . . dξnr (B.1)

The denominator in (B.1) is the determinant of the Vandermonde matrix in (71). It may be
written as [32, ch. 4.3]

lim
εnt+1→0,...,εT→0

det (Ω) = lim
εnt+1→0,...,εT→0

∏
1≤i<j≤T

λj − λi . (B.2)

Now, consider taking the limit of εj for j = T , then we have
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Do the same for j = T − 1. We get

lim
εnt+1→0,...,εT−1→0

∏
1≤i<j≤T−2

(λj − λi)
∏

1≤i≤T−2

(λT−1 − λi)(1− λT−1)
∏

1≤i≤T−2

(1− λi)

(a)
= lim

εnt+1→0,...,εT−2→0

∏
1≤i<j≤T−2

(λj − λi)
∏

1≤i≤T−2

(1− λi)

(
lim

εT−1→0

∏
1≤i≤T−2

−(λT−1 − λi)

)

= lim
εnt+1→0,...,εT−2→0

∏
1≤i<j≤T−2

(λj − λi)
∏

1≤i≤T−2

(1− λi)

( ∏
1≤i≤T−2

−(1− λi)

)
= lim

εnt+1→0,...,εT−2→0

∏
1≤i<j≤T−2

(λj − λi)
∏

1≤i≤T−2

−(1− λi)2

(B.4)

where (a) follows from di�erentiating once w.r.t. λT−1. Letting j = T − 2 gives
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where (a) follows from di�erentiating twice w.r.t. λT−2. Continuing this for j = T−3, . . . , nr+1
gives us
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We go through similar steps for the numerator in (B.1). The task is to make sure that the
matrix, C have distinct rows. We will take the limit by applying L'hopital's rule to the T − nr
lower rows, starting with the T :th row. Note that for this row, we may just take the limit as it
is without di�erentiating. For the T − 1 row we need to di�erentiate once, for the T − 2 row,
we need to di�erentiate twice and so on. After the limit is carried out Γ′ is given as

Γ′ =

[
Υ′ D′

C′ B′

]
(B.7)

where
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This results in a moment generating function given as
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where in (a) we have used an identity for determinants of block-matrices [32, pp. 475] and that
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In (b) we observed that C′ is a lower triangular matrix and its determinant is given as det (C′) =∏T−nr−1
i=1 i!. In (c) we used [34, Lemma 1] where A is given as
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∫ ∞
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(B.10)

where in (d) we have used the de�nition of the gamma function and that Γ(l) = (l − 1)! for
l ∈ Z.
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In this appendix, the Itzykson-Zuber integral is evaluated for the case of non-distinct eigenval-
ues. The integral is given as ∫

U(T )

etr{��Λ�H}d� (C.1)

where � ∈ U(T ). Let � , diag
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i=T−nt+1 Γ(i)∏nt
i=1 (λi)

(T−nt)∏nt−1
i=1 i!

det (A2)

det (V (�ε))

.

(C.2)
Here A =

(
eλ
′
iδj
)
i,j
∈ RT×T . The matrix A1 is given by (A1)i,j =

(
eλ
′
iδj
)
, i = 1, · · · , nt, j =

1, · · · , T and (A1)i,j = δT−ij , i = nt+1, · · · , T, j = 1, · · · , T . The matrix A2 is given by (A2)i,j =(
δnt−ij eλδj

)
, i = 1, · · · , nt, j = 1, · · · , T and (A1)i,j = δT−ij , i = nt + 1, · · · , T, j = 1, · · · , T . The

two limits are carried out by iterative use of L'hopital's rule similarly as in appendix B. The
last inequality is also carried out by the use of L'hopital's rule and we get∫

U(T )

etr{��Λ�H}d�̃ =
|U(T )|

∏T
i=T−nt+1 Γ(i)∏nt

i=1 λ
(T−nt)
i

∏nt−1
i=1 i!

1∏T−nr−1
j=1 j!

∏nr
i=1 σ

T−nt
i

det (A3)

det (V (�))
. (C.3)

The matrix A3 is a block matrix given as

A3 =

(
A31 A32

A33 A34

)
(C.4)

where

• A31 ∈ Rnt×nr where (A31)ij = eλσjσ
(nt−i)
j for i = 1, · · · , nt and j = 1, · · · , nr.

• A33 ∈ R(T−nt)×nr with (A33)ij = σ
(T−nt−i)
j for i = 1, · · · , T − nt and j = 1, · · · , nr.

• A34 ∈ R(T−nt)×(T−nr) where (A34)i,j =

{
0 if i ≤ nr − nt
diag ((T − nr − j)!) , j = 1, · · · , T − nr if i > nr − nt

and A32 ∈ Rnt×T is given as

A32 =



(
λT−nt−1

)(nt−1) (
λT−nt−2

)(nt−1) · · · λ(nt−1) 0(
λT−nt−1

)(nt−2) (
λT−nt−2

)(nt−2) · · · λ(nt−2) 0
...

...
...

...
...(

λT−nt−1
)(1) (

λT−nt−2
)(1) · · · λ(1) 0(

λT−nt−1
)(0) (

λT−nt−2
)(0) · · · λ(0) 0

 (C.5)
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where (λa)(b) , dbλa

dλb
. In this thesis, a scenario of special interest is the square case, i.e., nt = nr,

for which the determinant of A3 may be computed with the identity [32, pp. 475]

det (A3) = det (A34) det
(
A31 − A32A−1

34 A33

)
= det

([
σ

(nt−l)
k γ̃(T + l − 2nt, λσ

2
k)
]

1≤l,k≤nt

)
eλtr{Σ2}

T−nt−1∏
j=1

j!.
(C.6)

where γ̃(a, x) = 1
Γ(a)

∫ x
0
ta−1e−tdt denotes the regularized incomplete gamma function.
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