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Sequence classification applied to user log data
An approach to identify characteristics of user sessions in a music streaming service
Sofia Edstrom, Josefin Ondrus

Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

Applying machine learning techniques to sequential user log data can provide in-
sights about users that can guide companies towards making decisions that improve
user experience. Recurrent neural networks have been proven to work well in combi-
nation with sequential data and recent research suggests that incorporating residual
connections in recurrent structures outperforms standard recurrent structures. In
this thesis, we show that residual recurrent neural networks can be applied to user
log data from a complex domain in order to identify regularities in user behavior. To
our knowledge, no research have been conducted with these model structures in do-
mains other than text and image classification. A proof of concept is implemented in
collaboration with Spotify where this approach is used to identify how users behave
when they save music in the music streaming service. By conducting experiments
with different models, we show that models with increased input complexity slightly
outperform models with lower input complexity in the artificial classification task
defined in this thesis. We also show that results from a more complex model can be
analyzed and provide valuable insights. However, we conclude that the approach is
ineffective and needs more developement in order to become sufficient.

Keywords: sequence classification, user log data, residual learning, recurrent neural
networks.
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1

Introduction

As the field of computer science has evolved, so have the methods of user research
[1]. Today, cloud services and the declining cost of hardware enable storing of and
computing with large data sets [2]. The combination of large amounts of user data,
cheap computing hardware and cloud services, have driven the trend towards the use
of machine learning techniques in a variety of settings. Applying machine learning
techniques to user log data is one possibility that can provide insights about users,
which can guide companies towards making decisions that improve user experience

[1].

Examples of research on the subject of user log data in combination with machine
learning are adaptive unix interfaces, resource use prediction and e-commerce prod-
uct recommendations [3, 4, 5]. In previous research, the techniques used and exper-
iments conducted vary depending on the context and the definition of the problem.
Most studies within the area aim to predict future user actions or are focused on
giving suggestions based on similar users. However, there is a limited amount of
research that analyzes application usage, and few documented data sets built upon
user logs.

This thesis investigates whether machine learning can be applied to user logs to
identify how users behave when they save music in a music streaming service. This
is done by applying state-of-the-art sequence classification methods [6, 7], on a data
set consisting of sequences constructed by user logs generated by users of the Spotify
music streaming service.

Recurrent neural networks have been demonstrated to work well on sequential data.
Furthermore, recent experiments suggest that incorporating residual connections
in recurrent structures outperforms standard recurrent structures [8]. In this the-
sis, experiments are conducted on five different architectures of recurrent neural
networks, where four of them have residual connections incorporated. These exper-
iments are conducted in a supervised setting, using a data set consisting of user logs.

The purpose of this thesis is to further explore the possibilities of using machine
learning in combination with user log data to provide insights about application
usage. By using the approach described in this thesis, we extend the work presented
by Wang and Tian on residual connections in recurrent structures [6]. By presenting
performance measurements of models trained on user log data, this work aims to
contribute to research in the field of sequential learning. Moreover, we contribute
to Spotify’s user research by investigating the results of the experiments and by
analyzing the data’s effect on model performance.
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1.1 Aim

The aim of the thesis is to investigate whether residual recurrent neural networks
are suitable to use for user logs to gain insight into application usage. This is done
by implementing a proof of concept using sampled real-world anonymized log data,
with a feature space consisting of of both numerical and categorical features, gath-
ered from users of the Spotify application. The goal of the thesis is to identify how
users behave in the Spotify application when they save music. In this thesis we aim
to answer two questions:

e Do the models perform well on the types of data collected from the user logs?

o Can we find indicative features and session characteristics to describe applica-
tion usage?

1.2 Scope

A recently conducted study of the effectiveness of recurrent neural networks in se-
quence classification is “Recurrent Residual Learning for Sequence Classification”
by Wang and Tian [6]. The study presents experiments conducted with six different
recurrent architectures in different classification tasks. Because of the well docu-
mented experimental setup and recent progress in the field presented, the paper was
used as a base for the experiments in this thesis. Moreover, the work by Wang and
Tian is extended by performing further experiments with recurrent architectures on
a newly introduced artificial classification task described in section 3. The experi-
ments are conducted in a supervised setting using a data set constructed of user logs.

There is limited research on user log data in the field of machine learning. A lot of
the research within the area investigates models to predict future user actions given
a part of a sequence. Frequently used methods in previously conducted research
include Hidden Markov Models [4], Boosting Decision Trees [9], and recurrent neu-
ral networks [10]. With inspiration from earlier research in combination with our
academic expertise and interest, we limit this thesis to only cover recurrent neural
networks.

As stated in section 1.1, the aim of this thesis is to investigate if residual recur-
rent neural networks for sequence classification are suitable to use in combination
with a data set constructed from user logs. Since Spotify expressed interest in this
research and since we could not locate any public collections of user logs, the data
used in the experiments is based entirely on user logs from Spotify. Moreover, the
objective of the classification task is defined and scoped in collaboration with Spotify.

The problem of this thesis, described in section 3, is formulated as a classifica-
tion task of entire sequences. However, as the class label is known through some of
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the events, although censored, it should be considered a constructed classification
problem. This implies that the classification in itself is not important, but only
serve the purpose of exploring the existence of underlying patterns in the data and
measuring the performance of model architectures.

1.3 Related research

To our knowledge there exists no previous research tackling the problem of classify-
ing entire sequences of data based on user logs similar to those described in section
3.1. These user log sequences differ from other types of sequences studied in the field
of sequence classification in that they consist of time-dependent data with a feature
space of mixed feature types, i.e. data with both numerical and categorical features.
Other user log sequences studied typically involve data with a feature space of only
a subset of those feature types.

Previous state-of-the-art research in sequence classification has not considered mixed
feature types [7, 11]. Moreover, there exists research on suitable models (mainly dif-
ferent kinds of recurrent neural networks) for predicting future elements of sequences
of such data, but not for classifying entire sequences of it [9, 10].

1.3.1 Applications on similar data

Some of the research on anomaly detection and business process monitoring applies
event sequence prediction to data of mixed feature types [9, 10].Xie and Coggeshall
solve two sequence prediction problems related to patient hospital visit records by
using a stochastic gradient boosting decision tree [9], and Tax et al. have solved
several prediction problems related to business process instances using recurrent
neural networks [10]. However, the above mentioned research has aimed to predict
future events in a sequence, not to classify entire event sequences.

1.3.2 Sequence classification

Recurrent neural networks (RNNs), and specifically variants of RNNs with Long
Short-Term Memory (LSTMs), are effective tools for solving problems with sequen-
tial data [7]. Wang and Tian explore the possibility of incorporating residual con-
nections in RNNs and propose different models in line with this idea: a Residual
RNN, Skip-Connected LSTM:s, and a Hybrid Residual LSTM [6]. They compare
their results to state-of-the-art models for sequence classification and conduct several
experiments supporting the effectiveness of the new models. However, the classifi-
cation is applied to one dimensional, atomic representations of textual and image
based data, not to sequences of mixed feature types.
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1.4 Thesis Outline

The thesis is outlined as follows. In section 2, a detailed account of the theoretical
background on which our approach is based is presented. In section 3, our approach
for investigating application usage by classifying sequences constructed by user logs
is described in detail. Further, a presentation of the user log data and the methods
used for evaluation and result analysis is given. Section 4 describes and discusses
the experiments and the results. A comparison of the performance of the different
model architectures is presented. The section also includes results from the different
methods of analysis and discusses key findings. In section 5, conclusions based on
the work in this thesis are drawn and suggestions for future work are given.
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Background

In this section, a detailed description of the theoretical background on which our
approach is based is given. Some fundamental concepts of artificial neural networks
are described, followed by more detailed descriptions of recurrent structures and
residual learning. In order to provide context to the data used in the experiments,
the concept of the Spotify application and some background on the user log data is
presented.

2.1 Spotify user data

Spotify is a music streaming service available on a wide range of platforms in 60
markets across the world!. The service offers features such as searching for, brows-
ing, and playing music, videos and podcasts. It allows its users to manage their own
content library by, for example, saving music, creating playlists and adding music to
them. Spotify has more than a hundred million monthly active users, which together
account for a large amount of user sessions per day. The amount of user sessions,
derived from event log data generated by user actions performed in the application,
ensures that Spotify can provide enough data to build a sufficiently large data set.

A user session can be defined as a sequence of consecutive events derived from
a single user. Such sessions are created by exploring a set of event logs, mapping the
events in them to users, and chronologically ordering the events into a sequence. An
event log is a record over either user actions performed in the application or events
happening as a result of such actions. An event log can consist of information that
is relevant for a specific feature or is interesting to inspect for a specific reason, for
example information about a song that was streamed or when in-app navigation
occurred. Which kinds of events are included in a user session depend on which set
of event logs the session is derived from.

2.2 Classification models

Classification is the problem of learning the underlying function that maps some fea-
ture set x to some class label y. A classifier is a model that has learned this function
by adjusting the parameters of the function and that can map new instances with
the feature set = to a class label. There are many different types of classification

lwww.spotify.com
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models. Examples are decision trees, rule-based classifiers, support vector machines
and artificial neural networks. A type of artificial neural networks that handle se-
quences of input particularly well is recurrent neural networks (RNNs). Because of
this characteristic, RNNs were used in the experiments presented in this thesis, and
are consequently described in this section.

2.2.1 Artificial neural networks

Given an input vector z € R", some weight parameters W, and activation func-
tions ¢, a neural network produces an output vector § € RM. When using a neural
network as a classifier, it is common that M is the finite number of classes defined
for the set of instances and that each element in y represents a different class. The
softmaz function is commonly used as activation function in the final layer of the
network. The function transforms the input from the previous layer to a probability
distribution that produces an output vector §. The output vector contains proba-
bilities that sum up to one. The instance then usually gets assigned the class label
of the highest probability. An example of a simple feed forward neural network with
two hidden layers can be seen in Figure 2.1.

Figure 2.1: A feed forward artificial neural network with two hidden layers. The
squares represent input and output vectors, the circles are neurons with activation
function ¢ and W is the weight parameters of layer [.

The process of learning the weight parameters W of a neural network is often divided
into two categories: supervised and unsupervised learning. If the labels of the
instances are unknown, the neural network has to be trained in a unsupervised
setting. On the other hand, if the labels of the instances are known, supervised
learning can be applied and is often preferred.

6
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2.2.1.1 Backpropagation and gradient descent

When training a neural network classifier in a supervised setting, the objective is to
adjust the parameters of the network such that the difference between the predicted
labels ¢ and the true labels y is as small as possible. A common training algorithm
is the backpropagation algorithm, which can be described as an iterative process
of finding parameters that minimizes the difference between the labels [12, 13]. In
combination with an optimization algorithm, for example gradient descent, the pa-
rameters are adjusted to find the minimum error of the network. A function defining
this error is called the loss function, £, which is a function of § and y. The objective
of backpropagation is to find parameters that minimizes the function £(g,y).

There are different loss functions, and their suitability varies depending on the acti-
vation function of the output layer. For softmax, the cross entropy loss function is
commonly used. The cross entropy loss can be seen in Equation 2.1, where N is the
number of instances and M is the number of different classes in the training data.

1
E(g;y) - _N Z Z Yn,m 1Og gn,m (21)

neN meM

The general approach is to update the weights W, in layer [, of the network by
making corrections AW, based on a learning rate n and the gradient g of £. The
weights in layer [ + 1 is updated accordingly:

Wi = Wi+ AW, (2.2)

where
AW, = —ng,. (2.3)

The gradients of the weight parameters are calculated by propagating backwards
through the network, from the output layer to the weights of the input layer, using
the chain rule of differentiation. The algorithm then minimizes the error by searching
the function space of the loss function L, following its gradient by updating the
weights, to find a local minimum.

2.2.2 Recurrent neural networks

The fundamental idea of RNNs is that they share weights through multiple time
steps, that allow the information to persist from the input throughout the network
[7]. RNNs are often illustrated as neural networks with loops, which when unfolded,
resemble a chain-like structure as can be seen in Figure 2.2. This architecture makes
them suitable for sequential input, as each loop corresponds to one element of the
sequence being processed through the network. During the propagation a hidden
state vector and an output vector are generated at each iteration. Each iteration
can be seen as a time step ¢, where the hidden state at time step ¢ is produced by
the previous time step and input x;. In sequence classification tasks, only the last

output is of interest, creating a so called “many-to-one” structure as can be seen in
figure 2.2.
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Figure 2.2: An unfolded representation of a recurrent neural network with a
“many-to-one” structure. The rectangles represent input and output vectors, the
circles are neurons with activation function ¢ and U, W and V are the shared
weight parameters.

In Figure 2.2, the input sequence is represented by = = {- -+ , 2,1, 24, x;41}, where
x; € R™. The input weights and the inter-state weights are denoted by W and U,
respectively, and are shared across time steps. The weight parameters V' between
the hidden state and the output state are also shared across steps. However, in this
"many-to-one" structure the output is only calculated when the entire sequence has
been propagated.

The hidden state h; € R™ and the output ¢; at time step ¢ is produced by the
previous hidden state and the input at time step t as follows:

he = y(W -2y + by + U - hy_y + by) and

Ut = G2V - hy + by). 24

The hidden state activation function ¢, is often a nonlinear function such as tanh,
@2 often softmax, and b is the respective layer’s corresponding bias vector. In sub-
sequent sections the bias vectors b will be omitted from the equations for legibility.

2.2.2.1 Backpropagation through time

The backpropagation in a recurrent neural network largely resembles that in a reg-
ular neural network. As in regular backpropagation, the parameters are adjusted in
the search for a local minimum of the loss function £. The difference is that the
gradients need to be calculated for the weights at each time step, since the hidden
weigh parameters W and U are shared across time steps, and later time steps depend
on earlier ones.
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Looking at an unfolded recurrent network, the weights can be updated as in 2.2 by
recursively computing the gradients for the different layers. The difference is that
when calculating AW and AU, the total sum of the gradients from all the time
steps is used instead of just the local ones.

When optimizing deep structures, like recurrent neural networks, using gradient
based learning algorithms with a fixed parameter value for the learning rate n can
be problematic and result in exploding or vanishing gradients. In 1994, this was
discussed by Bengio et al. in [14], where they show that there is a tradeoff between
efficient learning and remembering long time dependencies.

Different methods have been introduced to tackle the problem of vanishing gra-
dients in deep structures. One way is to use alternative gradient based learning
algorithms as opposed to the standard gradient descent. One example is AdaDelta,
which adjusts the learning rate based on previous gradients [15]. To tackle the prob-
lem of exploding gradients it is common to use gradient clipping [16].

Another approach that has been shown as effective when learning long term depen-
dencies is to help the network to remember information from previous time steps
by incorporating connections between the time steps. Such a structure is called the
Long Short-Term Memory, where so called gates are incorporated, alongside the
hidden layer of the network. Another is to use identity mappings called residual
connection, between the layers.

2.2.3 Long Short-Term Memory

A popular variant of an RNN is the Long Short-Term Memory (LSTM), which was
first introduced by Hochreiter and Schmidhuber in 1997 [17]. In LSTMs, the archi-
tecture and concept of shared weights from the standard recurrent neural network
still persist. However, a memory cell state is incorporated in the structure, enabling
the network to learn long term dependencies, which have been proven to be effective
when working with longer sequences.
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Figure 2.3: The structure of an LSTM unit.

In an LSTM structure the hidden state is not only produced by the weight pa-
rameters and the previous hidden state, but also by a cell state, C; € R™. The
LSTM regulates which information to keep in long term memory, and which infor-
mation to forget, through the cell state. Three internal gate signals are affecting
the cell state and the hidden state. These signals are called the input, output and
forget gates, and are denoted as 7;, o, and f;, respectively 2.5. The expression
hy, Cy = LST M (x4, hy—1, Cy—1) will be used when referring to h; and C; produced by
a LSTM unit.

fi=oWs-2,+Us- hyq)
iw=o0W; -z, +U; - hy_q)

Cy = tanh(We - 2, + Ue - hy_y)
op=0(Wsy-x¢+ U, hi_1)

Cy = fi x oy +1ip x C

hy = oy X tanh(Cy).

(2.5)

In 2.5, - is the dot product, x is the element-wise product and o(z) = 1/(1 +
exp(—x)) is the sigmoid function. Here there are different weight parameters W
and U for each hidden layer in the LSTM unit. Note that there are no weight
parameters after the internal hidden layers.

10
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2.2.4 Residual neural networks

In 2015, He et al. introduced identity (skip) connections called residual connections,
to enhance information flow in deep architectures for image recognition [8]. These
residual connections between layers are meant to ensure direct propagation of sig-
nals, which in turn prevents the gradient from vanishing during training.

Similar to the cell state C; of an LSTM unit, a residual network persists the in-
formation from previous layers [ by passing this information to a future layer [ + 1
with a more clear signal. A residual unit does this pass without modifying the signal
at all, generating h;; with the following transformation:

hizr = dra(Wi - i) + hy, (2.6)

where h; is the direct output from the previous hidden layer, W; are the weight
parameters between the previous layer and the current layer [+ 1 and ¢, is the ac-
tivation function. Note that the weight parameters W, are not shared and can vary
between the different layers. Also note that in 2.6 there are no inter-state weights,
since the function describes a residual layer in a feed forward neural network, not in
a recurrent neural network.

The use of residual connections was proved to be an effective method in the deep
architectures used by He et al.[8]. Also Liao and Poggio discuss the concept of time-
invariant neural networks with shared weights in combination with residual con-
nections and found them to work well [18]. Furthermore, Wang and Tian explores
the possibility of time-variant recurrent neural networks with residual connections
[6]. They conduct experiments with multiple architectures that indicate that it is a
successful concept.

2.2.5 Residual recurrent neural networks

The concept of residual recurrent neural networks is to add residual connections
between the different time steps in a recurrent neural network structure. The prop-
agation through the residual connections in a residual RNN differs somewhat from
the one in a feed forward residual neural network. In the latter case, the output
from the previous layer is propagated through the residual connections to the next
layer. In the former case, it is the hidden state h;_; from the recurrent unit that
gets propagated directly to the next state. This forces a direct transfer between
every two consecutive time steps.

11
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Y+l
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hH—l
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Figure 2.4: An unfolded representation of a residual recurrent neural network. A
dashed line represents a residual signal from the previous time step. The
rectangles represent input and output vectors, the circles are neurons with
activation function ¢ and U, W and V are the shared weight parameters.

In Figure 2.4, the residual connections in an unfolded recurrent neural network are
visualized as dashed green lines between the different time steps. The input weights,
inter-state weights and output weights are denoted as W, U, and V', respectively,
and are shared across time steps. The t** element z; in the sequence, together with
the hidden state signal from the previous time step, is used as input. The activation
function of the hidden layer, often the tanh function, is denoted by ¢;. The activa-
tion function in the output layer, which in classification tasks often is the softmax
function, is denoted by ¢5. The function produces the output ;.

In a residual recurrent neural network, the signal from the previous hidden state
is passed to the next time step, affecting h;. Similar to the residual function 2.6,
the previous hidden state h;_; is added to the output of the current hidden unit:

hy = (W -2, 4+ U - hy—1) + hyy

G = 0oV - ). (27)

2.3 Evaluation

When evaluating a classifier, it is of interest to measure the generalization capability
of the model. This is done in order to get an understanding of how well it represents
the underlying class distributions, i.e. how well it would classify new instances
with unknown class. There are some common metrics and techniques which can
be used to estimate how well a model performs on new instances and compare the
performance of different models.

12
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2.3.1 DMetrics

Common metrics to use when evaluating supervised classification tasks are precision
and recall [19]. The metrics can be used to determine how well a binary classifier
performs on a specific task, given the true class labels and the predicted class labels
for a set of instances. The metrics use the different outcomes that are listed in
the confusion matrix in Table 2.1. When combining precision and recall, one can
calculate accuracy, F-score, or shift the weights of the two metrics to let one affect
the result more than the other, if needed. The metrics are defined as:

o TP
precision = TP FP
and
1 TP
recall = —————
TP+ FN’

where precision is the proportion of true positives among all positive instances, and
recall is the proportion of true positives among all instances classified as positive.
precision and recall are defined relatively to a specific class and it is commonly the
positive class.

Accuracy

The accuracy is the proportion of correctly classified instances and does not re-
quire the precision and recall metrics. However, it does require the total amount of
correct predictions. It measures how well the model performs in the classification
task, and is often used as a statistical measurement for different types of classifiers.
It is defined as:

TP+TN
TP+TN+ FP+ FN

(2.8)

Accuracy =

F-score

The Fjp score is used to calculate the weighted average of precision and recall. It
generates a measured score between 1 and 0, where 1 is a perfect score. For g =1,
precision and recall are weighted equally, and the F' score is equal to the harmonic
mean. For positive real values where 8 < 1, precision is weighted higher than recall.
In these scenarios, a [-value of 0.5 is the most commonly used.

precision - recall

Fy=(1+5)- (2.9)

(8% - precision) + recall

13
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Table 2.1: Confusion matrix of the possible outcomes of a binary classifier.

assigned class
positive negative
positive | true positive (7P) | false negative (F'N)
negative | false positive (FN) | true negative (TN)

actual class

2.3.2 The hold out method

The purpose of a classifier is to find an underlying distribution, given a set of sam-
ples from that distribution. To successfully find that distribution, it is important
that the classifier avoids to fit to noise or variance of the samples. If the classifier
does not avoid this, it has lost its generality, which results in unwanted behavior
and erroneously made predictions when classifying new instances.

The behavior when a model fits to the training data’s noise or variance is referred to
as overfitting. There are some common techniques to avoid this unwanted behavior
and ensure a proper estimate for model performance. One such technique is called
the hold out method. It is based on withholding a subset of the samples during the
training procedures, and later use these samples to test the classifier. This procedure
provides an unbiased estimate of how well the classifier performs on new instances
of unknown class, which can help achieve model generality.

The hold out method is not only used for testing the classifier, but also for detect-
ing when to stop the training in order to prevent overfitting. The method includes
dividing the set of sample instances into tree subsets used for training, validation
and testing the classifier.

The training set is used during model training. It is usually the largest set, to
ensure that the model has enough sample instances to succeed in its generalization.
The validation set is also used during model training, but not to adjust model pa-
rameters based on the predictions of it. Instead, the validation set is used to get an
estimate of model generality during the training procedure.

By validating the model performance in intervals, it is possible to estimate when
the model is overfitting. An indication of overfitting is that validation accuracy de-
creases while training accuracy increases. When the validation accuracy decreases,
the training is stopped and the weight parameters are retrieved from the iteration
when the validation accuracy was the highest. The test set is used to get a final
estimate of the model performance, and should never be seen by the model before
the evaluation is made.
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Approach

This section contains a comprehensive explanation of the approach used to answer
the two questions defined in section 1.1. First, we investigate if there exist under-
lying patterns and regularities in the sessions where users save music. This is done
by classifying sequences of user logs and measuring the performance of the differ-
ent models on these sequences. Next, we search for indicative features and session
characteristics which we interpret in order to gain insights about application usage.
The overall method consisted of four main steps:

1. To define and model a user session in such a way that it includes all relevant
information provided by different user logs.

2. To construct a suitable data set for supervised learning based on these session
sequences.

3. To apply appropriate models for sequence classification on this data set to
determine if the results indicate the existence of underlying patterns in the
users’ sessions.

4. To search for indicative features and session characteristics to describe appli-
cation usage by investigating model input sensitivity and feature relevance.

3.1 Modeling a user session

In the Spotify application, a user session is defined as the session of activity from
when user activity is detected, until no activity takes place for a 30 minutes period.
During that time, a user performs a number of actions, referred to as active events.
Some of these active events can result in that the application perform a number of
passive events. Both passive and active events indicate that the application is being
used. An example of an active event that results in a passive event is a a press on
the play button of an album. The pressed button results in a series of passive events
during which the application is playing content from that album. During this time,
the user may or may not perform active events. Hence, a user session is a series
of events that can be both sequential and parallel. Even though events can occur
in parallel, a user session is modeled as a sequence of ordered events that can be
both active and passive, s = [s1, S, ..., s7|. In the sequence s, event s; starts before
si+1, and sy is the last event that occurred before a 30 minute period of no recorded
events.
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There are four different categories of events: stream, navigation, playlist-addition
and library-modification. The event categories originate from six different event
logs. A stream event occurs every time audio content is played, a navigation event
occurs when a user performs in-app navigation, a playlist-addition event happens
when content is added to a playlist, and library-modification occurs when content is
added to or removed from a user’s library. An example session sequence k, where a
user performs some actions and listens to four songs can be seen below.

stk = [navigation, navigation, stream, stream, stream, playlist-addition, stream|

Each event contains some general information about the event, such as the duration
of the event and a timestamp of when the event took place. Each event also has
a set of specific details which varies depending on which category of event it is.
Examples of event category specific details are which page was navigated to in a
navigation, or which type of content that was played in a stream. To make use of all
information available in the event logs, both the general and event category specific
data is encapsulated in the feature vector. This is achieved by modeling each event
category as a vector with the dimension of the number of features for that event
category. In table 3.1, the dimensions of the four different event categories are listed.

Table 3.1: Number of event category specific features

Event category ‘ Feature quantity

stream 13

navigation 1
playlist-addition 3
library-modification 2

3.2 Data set construction

A data set suitable for supervised learning was constructed from a set of sampled
user sessions, which are described in 3.1. This data set consists of a set of instances,
where each instance k has the form of a tuple (z*®), y*)). Here, £ is a sequence of
ordered elements z;, all of equal dimension. The element dimension was determined
by the total number of distinct features across the sequences. Each sequence has a
corresponding class label y®), which was determined based on the goal of the proof
of concept. That is, identifying how users behave in the Spotify application when
they save music.
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The first step was to assign labels to each session, s, based on events that directly
indicated that a user saved music. The existence of save events in a session deter-
mined if it would be classified as a session during which a user saved music. If s®*)
contained at least one such event, that session was classified as “positive”. If s(*)
did not contain any of the events, it would be classified as “negative”. All sessions
were classified using this procedure, making it possible to later transform the clas-
sifications to class labels y.

Before constructing the instance sequences x, all events that directly indicated that
music was saved were removed from the sessions. This since we wanted to search for
underlying patterns in the user behavior before and after the users saved music, not
search for the actual events directly. As the class labels were based exclusively on
these events, this should be considered an artificial classification problem. However,
the belief was that if a classifier performs well (significantly better than chance),
there are underlying patterns in the user sessions. These patterns can then be at-
tempted to be interpreted in order to gain additional insights about application
usage.

With the event categories e as basis, a combined feature space for each event x;
was defined by the concatenation of all features. The result was a total of 20 differ-
ent features, including the event category e itself, and three other general features.
Note that information about event category specific features was only available in
events of that specific category. Since the data provided was real-life data, some
sequences had missing or corrupt values, which needed to be handled. Further-
more, many of the features were categorical, and required some preprocessing to
function as input to a neural network. The numerical features also required some
preprocessing, such as scaling the values to an appropriate range.

3.2.1 Preprocessing and feature representation

The data preprocessing steps consisted of imputing missing values, feature scaling
and one-hot encoding categorical features. The preprocessed result of the sequences
was matrices, where each row was represented by an event z;. These events were
in turn represented by a feature vector consisting of one-hot encoded categorical
features and scaled numerical features. An overview of the different types of features
and their respective quantity in the feature space are displayed in table 3.2.

Table 3.2: Quantities of different feature types in the data set.

Feature type \ Quantity

event category € {stream, navigation,

library-modification} 1
categorical 9
time tracking 1
numerical 9

Since the sessions were constructed from real-world event log data, some values were
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initially missing. Less than half of the features had missing values, where the pro-
portion of such values was between 0.2% and 12.1%, depending on feature. One
of the reasons as to why values were corrupt or missing is that sometimes not all
information gets successfully or correctly recorded in an event. Missing and cor-
rupt values were handled differently depending on the feature type. In the sessions,
missing values of numerical features generally indicated zero, and were therefore
imputed with “0” in the feature vectors. The time tracking feature, TIMESTAMP
was guaranteed to always be present, and was therefore not affected by this basic
approach. Corrupt or missing categorical values were replaced by the category “un-
known”. The categorical features sometimes had outlier values, for example search
strings or identifiers. The outliers were reinterpreted as new categories, for example
search or identifier.

Feature scaling was performed by normalizing the numerical features. That is, all
numerical values were rescaled in the range [0, 1], where the smallest value was re-
place by zero and the largest value was replace by one. This because it is suggested
that neural networks converge faster when the data is distributed in the vicinity of
the output. All the numerical values except the TIMESTAMP feature were normalized
feature-wise across all sequences to preserve the relationships between the values.
To preserve the relative time between the events in a sequence, the TIMESTAMP
feature was normalized sequence-wise.

The values of categorical features needed to be numerical in order to be repre-
sented in the input feature vector of a neural network. The categorical values are
nominal, and were therefore converted into a one-hot encoded vector per feature. A
one-hot encoded vector is a one-of-r representation of a value of a nominal feature
that can take on r unique values. For every event, one of the r elements in the
vector is set to “1” to indicate the active value, while the rest of the elements are
set to zero to indicate passive values. A one-hot encoded example of the categorical
feature EVENT CATEGORY is presented in equation 3.1.

stream — [1,0, 0]
navigation — [0, 1, 0] (3.1)
library-modification — [0, 0, 1]

The final representation of a session sequence z*) was on the form of a 20-dimensional
feature space with a total of 227 dimensions. This feature space contained all the
information gathered from the original sessions. Each sequence z*) had a corre-
sponding one-dimensional label y*)| representing the class of sequence k. The clas-
sifications previously assigned to the sessions were transferred to the corresponding
sequence such that y*) = 1 if the class of sequence k was positive and y* = 0 if
the class was negative. An example sequence matrix can be seen in Figure 3.1.
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s - N—————

x 0,1,0,...,0,0,1,...,0.01,...,0.237

*211,0,0,...,0,0,1,...,0.06, ...,0.121

Xr 1,0,0,...,0,1,0,...,0.07,...,0.£

Figure 3.1: An example sequence x of length T represented by T feature vectors,
where x; corresponds to event i.

3.3 Sequence classification

Related research mentioned in section 1.3 has shown that recurrent neural networks
are suitable tools not only for sequence classification in general, but that they also
work well on distributions that originate from log data similar to the one described in
section 3.1. However, some of the weaknesses of simple recurrent structures appear
when applying them on longer sequences, where they are struggling with long time
dependencies and problems as vanishing or exploding gradients can appear during
training.

Different strategies to handle these limitations of simple recurrent neural networks
are presented in section 2, such as incorporating connections between time steps, in
order to remind the network of previous information. Examples of such structures
are the Long Short-Term Memory network (LSTM) and residual recurrent neural
networks (RRN). In [6], Wang and Tian take advantage of the two approaches and
introduce LSTM structures with residual connections. Based on their results, it
seems that these succeed well in the classification task, hence it is the approach
chosen for solving the classification task of user log sessions.

It is not clear from previous experimental results, which of the model types are best
suited for solving the classification problem of the user sessions. Previous experi-
ments conducted with these model architectures have been with either categorical
or numerical feature spaces. However, to take advantage of all the information pro-
vided in the user logs, the sequences constructed from the log sessions have a feature
space of mixed categorical and numerical features. Hence, we perform experiments
with all three architectures that take advantage of both LSTM units and the resid-
ual connections.

Two of the architectures are LSTMs with residual connections between the hid-

den states, referred to as Skip Connected LSTMs (SC-LSTM). What differentiate
them is the number of hidden states the residual connections are skipping. In SC-
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LSTM-I, the residual signal is passed directly to the next time step. In the other
version, SC-LSTM-P, the residual signal skips p > 1 time steps before being added
to the hidden state. The respective definitions of the two models are presented in
Equation 3.2. Their respective abstract architectures are illustrated in Figure 3.3.
Note that in SC-LSTM-P, the residual connections are not present in every time
step, but rather in the time steps 1,1 +p,1+2p,..., 1+ L%jp, for p > 0.

ht+p = tanh(ct+p> X Ot+p + ht (32)

The third version of the architectures that take advantage of both LSTM units and
residual connections, is a hybrid of the two called the Hybrid residual LSTM (HRL).
HRL is two networks that run in parallel throughout an entire sequence, whose
independent signals are then combined before propagating them to the classification
layer. This combined signal is obtained as the mean of the two hidden states hIEN
and hESTM | which can be seen in Equation 3.3. An abstract visualization of the
hybrid is presented in 3.3.

AT = (R 4 BESTM) (3.3)
Two additional models, which do not combine LSTM units and residual connections,
are used in the experiments as well. This is to get an understanding of the effects
of the combination of the two techniques. The first is a “vanilla” LSTM, which is
described in detail in section 2.2.3. In the “vanilla” LSTM, both the cell state C}
and the hidden state h; is the input to the LSTM unit in time step t+1. The second
model is an RRN, described in section 2.2.5, where h; is the sum of the output from
the hidden unit at time step ¢t and the previous hidden state h;,_;. Equation 2.7
provides a definition of A; in an RRN.

A total of five models are used in the experiments of this thesis. The properties
that apply to all models are the recurrent structure and the final layer. All models
except HRL only have one single hidden unit. The general architecture of the mod-
els can be seen in 3.2. Abstract illustrations of each of the models can be seen in
Figure 3.3.
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Figure 3.2: The general architecture which was applied to all classifiers used to
solve the task. The hidden unit A varies depending on the model type.
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Figure 3.3: The architectures of the models.
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3.4 Experiment design and evaluation

To answer the two questions in section 1.1, two different types of experiments were
carried out. The first consisted of evaluating performance for different classifiers on
a number of data set versions with varying feature space. In the second experiment,
model input sensitivity and feature relevance was measured by iteratively removing
features from the full feature space.

3.4.1 Model performance experiment

To answer question one in section 1.1, the five different model architectures defined
in section 3.3 were trained and evaluated on four different versions of the data set.
The approach was to increase the feature space and measure model performance on
more descriptive versions of the data set. The four versions were designed to give an
understanding of how well the different architectures performed with different kinds
of features.

The first version, designed to work as a baseline, consisted of simple atomic events.
Forming a one-dimensional feature space, the EVENT CATEGORY feature was used to
construct the sequences, with no information about time or other possibly indicative
information. With this structure, the input vectors was much like the text and pixel
based data used in previous experiments on these model architectures [6].

The remaining three versions were defined as follows. The second version of the
data set was defined by all the categorical features available, including the feature
from the atomic version. The feature space of version three was defined by the cat-
egorical features together with a time tracking feature. The fourth version version
included the full feature space, that is, categorical, time tracking and numerical
features.

If a model outperformed its baseline on a more descriptive version of the data, it was
reported as capable of of processing different types of information. For example, if
the results improved when the feature TIMESTAMP was included as a feature in (),
it was concluded that the model could process time-dependent multidimensional
categorical data. Moreover, if the results continued to improve when numerical fea-
tures were incorporated, this was interpreted as an indication that the model could
also handle time-dependent, multidimensional sequences with both categorical and
numerical data. Consequently, the classification results on the multiple data set
versions are indications as to whether the models performed well on sequential data
constructed by user log events.

To evaluate the classification performance of a model, the test accuracy was mea-
sured according to equation 2.8. The accuracy was determined by using the hold-out
method and calculating the percentage of correctly classified instances in a test set
containing only sequences not previously seen by the model. The number of in-
stances in the test set was a fourth of the total number of instances in the entire
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data set.

3.4.2 Feature relevance experiment

The second suite of experiments was conducted in order to answer the second ques-
tion in section 1.1, and to investigate model input sensitivity. This time, the feature
space was decreased, while the classification accuracy was measured. During these
experiments, the model architecture that seemed to be performing best during the
previous experiments was used. Its classification accuracy on the full feature space
version of the data set was used as baseline.

One classifier was trained and tested on 19 different versions of the data set. Each
version corresponded to the removal of one single feature, resulting in a feature
space of 19 dimensions. The class label prediction results were then compared to
that of the full feature space. Further result analysis, described in section 3.5.2, was
conducted with those features whose removal caused the most significant change in
classification results.

3.5 Result analysis

A number of different tests were conducted to analyze the results from the exper-
iments, in order to provide answers to the questions in section 1.1. This included
analyzing the effect of different feature types on model performance, hypothesis test-
ing to determine significant differences between the models, and detecting indicative
values of features by comparing distributions of feature values between sessions with
different predicted class labels.

3.5.1 Model performance analysis

To analyze if any of the model architectures in the experiments performed statisti-
cally significantly better than the others, the non-parametric Friedman’s Test was
used [20]. The model architecture was the independent variable of the test, the dif-
ferent data set versions was the samples, and the classification accuracy of a model
on a data set version was the dependent variable. A visual representation of the
statistical test setup is presented in table 3.3.

model
LSTM RRN SC-LSTM-1 SC-LSTM-P HRL
data set Atomic acc acc acc acc acc
version ECD acc acc acc acc acc
TECD acc acc acc acc acc
PCD acc acc acc acc acc

Table 3.3: Setup for Friedman’s Test.
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To analyze whether the classification results across the different data set versions are
statistically significantly different, the non-parametric statistical McNemar’s Test
was conducted. 2x2 contingency tables were constructed, one for each possible
combination of two versions of the data set. The values a, b, c and d in table 3.4 are
the comparison of the predicted labels from the models on two different data set
versions, where a is the number of instances labeled correctly in both versions, b is
the number of instances labeled erroneously in version 1 but correctly in version 2,
¢ is the number of instances labeled correctly in version 1 but erroneously in version
2 and d is the number of instances labeled erroneously in both versions.

data set version 1
correct  wrong

data set
version 2

correct a b
wrong ¢ d

Table 3.4: Contingency table of predicted labels on two different data set
versions.

By performing a hypothesis test for the data set version pairs, a statistically signif-
icant difference was either determined or not. The null and alternative hypotheses
are formulated in 3.4. The null hypothesis hq states that the probability that a
session label is predicted erroneously in the first version is equal to the probability
that the session is being predicted erroneously in the second version. If the null
hypothesis was rejected, the difference in class label predictions made on the two
versions was determined as statistically significant.

ho = pp = De

hl “ Dy 7£ Pc (34)

Error analysis of the models was performed by creating a confusion matrix reporting
true positives, true negatives, false positives and true negatives, and then inspect-
ing the session sequences in the different categories. In order to get an indication
of where the models fail to predict the correct label, both the false negative and
false positive sessions were compared against both categories of correctly predicted
sessions. The comparison was made by inspecting the average values of a number
of variables for the erroneously predicted sessions, and testing if they are similar or
different to the ones of the correctly predicted sessions. Among the variables covered
are session length (number of events), duration, number of occurrences of a specific
event category, and the number of addition events.
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In [6], Wang and Tian experienced that some of their models did not perform well on
short sequences, but that the performance improved with increased sequence length.
To investigate the effect of the sequence length, an experiment was conducted with
a version of the data set where the events in a session were replaced by a constant
value. The classification result was then compared to those on the other versions of
the data set. In addition, the relationship between classification accuracy and the
sequence length was investigated by partitioning the test set into batches based on
length, and then reporting the accuracy as a function of sequence length.

3.5.2 Feature relevance analysis

In order to find which features are important for the model to successfully pre-
dict session labels, experiments with different features removed from the full feature
space data set were conducted, as described in section 3.4.2. McNemar’s Test was
used to determine if a removed feature caused a significant change in label predic-
tion results. This was done by comparing the labels predicted by the model when
a feature was removed to those predicted on the full feature space. The test was
repeated for all removed features. The results were used as a measure of both model
input sensitivity and to understand which features are relevant when classifying the
sessions.

If a removed feature caused a statistically significant change in classification re-
sults, further analysis of feature values by inspecting the classification outcome in
the full feature space case was performed. If the feature was numerical, the dis-
tributions of feature values of positively predicted sessions were compared to those
of negatively predicted sessions. If the feature was categorical, the occurrences of
the feature values of positively predicted sessions were recorded and compared to
those of the negatively predicted sessions. The comparisons were summarized and
plotted, and were used to analyze which values of the relevant features that were
associated with, and indicative for, the respective classes.
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Experiments

In this section, the conducted experiments, along with the data set versions used,
are described. Moreover, model parameters and experimental setup are reported.
Finally, the results and analysis from the different experiments are presented.

4.1 Data

In all experiments, the same training, validation and test partitioning of the data set
was used. This ensured that the model was trained, validated and tested using the
same instances independent of experiment or data set version. How the sequences
were modeled is described in Section 3.1, and a detailed explanation of how the data
set was constructed is given in Section 3.2. The general properties of the data set
are presented in Table 4.1.

Table 4.1: Properties of the data set.

Total number of instances: 31774

Training partition: 0.5625
Validation partition: 0.1875
Test partition: 0.25

Instances labeled positive: 15887
Instances labeled negative: 15887

4.1.1 Data set versions for evaluating model performance

The first suite of experiments, described in more detail in section 4.2, was conducted
with four different representations of the data. The versions are described in Table
4.2, and are listed below:

1. Atomic version (Atomic), where an event is represented by one categorical
feature.

2. Multidimensional categorical version (CF), where an event is represented by
all categorical features.

3. Time-dependent multidimensional categorical version (TCF), where data set
version 2 is extended to include the TIMESTAMP feature. The feature represents
the relative time between the first event and the current event in each sequence.

4. Full feature space version (FF), where an event is represented by all the fea-
tures available, including the numerical ones.

27



4. Experiments

Table 4.2: Different representations of the data set used in the experiments.

Version | Abbr.  Feature kinds Number of Input vector
features size
1 Atomic categorical 1 3
2 CF categorical 10 217
3 TCF categorical, time 11 218
4 FF categorical, time, 20 227
numerical

4.2 Experimental setup

The implemented training module, and all the classifiers experimented with, were
written in Python. The source code used as a basis, implemented by Wang and
Tian [6], is publicly available at the publishing service of the University of Illinois'.
Several changes were made to the source code, where the most significant ones al-
lowed us to use multidimensional input vectors. A Python library called Theano?
was used in combination with two NVIDIA Tesla K80 graphical processing units,
for parallel tensor calculations.

The cross entropy loss, defined in equation 2.1, was used as loss function, since
it is commonly recommended when using softmax as activation function in the last
layer. We use AdaDelta [15], which is a gradient based optimization algorithm. It is
used in combination with backpropagation through time. A gradient clipping value
of 1.0 was applied to avoid exploding gradients [16].

All experiments were performed using equal settings. That is, all static parame-
ter settings were kept constant during the training of all models, across all datasets.
The hold out method with a validation frequency of 10 epochs was used. When no
improvements in validation accuracy were recorded for hundred epochs, early stop-
ping was performed. The number of hidden units was set to 600, which resulted in
weight matrices U and W having dimensions of input vector size x 600. The sizes
of the different input vectors can be seen in Table 4.2. The number of instances in
the training, validation and test sets can be seen in Table 4.1.

Since neural networks are complex structures with many parameters to optimize,
the training time usually is relatively long. Therefore a method called mini-batch
gradient was used, which is known to speed up training without compromising the
classification performance too much. A mini-batch size of 16 instances per mini-
batch was applied. The training time varied between 2 and 4 minutes per epoch,
depending on the hidden state dimension and type of model. The algorithm usually
converged after 200 epochs, and then ran for another hundred epochs according to
the early stopping procedure. The parameter and training settings were decided af-

Thttps://publish.illinois.edu/yirenwang/home/emnlp16source/
2http://deeplearning.net /software /theano
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ter some initial training trials. The settings used were chosen because they enabled
the network to converge with adequate results within a reasonable time frame.

4.3 Results

This section presents the results from the model performance experiments and fea-
ture relevance experiments. Key findings and the significance of results are demon-
strated and commented on.

4.3.1 Model performance

To investigate the model architecture’s effect on classification accuracy for different
versions of the data set, we evaluated all combinations of models and data set ver-
sions. The results per model and data set version are presented in Table 4.3. In
addition, a small test on model stability was conducted with the SC-LSTM-I model.
The model was trained and evaluated a few times on the same data set version,
which resulted in classification accuracy scores with a variance of 0.023%.

According to the outcome of the Friedman’s Test, no model architecture performed
significantly better than the others. However, the SC-LSTM-I model was initially
observed to perform slightly better on some of the data set versions. This lead to
the use of this model when measuring if there was a significant difference in model
performance between the data set versions.

To test the difference in model performance on different data set versions, we com-
pared all versions using McNemar’s test and a Bonferroni corrected significance level
of % = 0.01. This showed us that the label prediction outcome for the classifier
when trained on the atomic (baseline) version of the data set was significantly worse
than when trained on all other versions. However, no significant difference was
measured between any of the other versions of the data set.

Table 4.3: Classification accuracy for the model experiments. Performances of
each model are shown for each version of the data set.

Model | Atomic  CF TCF FF
LSTM 76.11%  80.55%  80.65%  81.03%
RRN 75.77%  81.03% 80.87% 81.07%

SC-LSTM-I | 76.25% 81.13% 80.74% 81.28%
SC-LSTM-P | 76.04%  80.38%  80.54%  80.97%
HRL 76.36% 80.92%  80.77%  80.54%
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4.3.2 Feature relevance

In order to investigate model input sensitivity and feature relevance, a number
of experiments, with one feature removed from the feature space at a time, were
conducted. As mentioned in Section 4.3.1, the model used in these experiments
was SC-LSTM-I, since it initially seemed to perform slightly better than the other
models. The classification accuracy, precision, and recall were measured in all ex-
periments. The measured values were then compared to the ones measured for the
full feature version of the data set.

The resulting differences in classification performance for the removed features are
presented in Table 4.4. The rightmost column shows if the removal of a feature
caused a significant change in classification outcome compared to the outcome of
the full feature space, based on the p-value. To point out statistical significance,
McNemar’s test was used in combination with a Bonferroni corrected significance
level of % = 0.0025. The features with most impact on the classification outcome
were the PAGE, MS__ PLAYED and SHUFFLE features, with impact in decreasing order.

Table 4.4: Difference in classification performance for feature relevance
experiments. The differences are calculated with respect to the performance of the
SC-LSTM-I architecture trained with the FF data set version.

Removed Feature \ Precision  Recall ~Accuracy p-value significant

page -3.08%  -1.75%  -2.63%  1.08e-12 Yes
ms_ played -2.83%  4+2.12%  -1.08%  2.10e-04 Yes
shuffle -0.79%  -1.49%  -1.06%  2.25e-04 Yes
source start -1.60%  +0.15% -0.97% 0.002 Yes
ms_tot est 2.07% +1.31%  -0.85% 0.003 No
n_seekfwd +0.27%  -2.45% -0.77% 0.006 No
n_stutter -1.54%  +0.73%  -0.72% 0.009 No
media_ type 2.27%  +2.25%  -0.65% 0.014 No
bitrate +0.14% -1.92%  -0.64% 0.019 No
product -1.30%  +0.78%  -0.54% 0.033 No
content_ type +0.45% -2.13%  -0.53% 0.043 No
n_seekback +1.10%  -3.19% -0.55% 0.047 No
reason_ start -0.19%  +0.15%  -0.45% 0.116 No
n_ tracks -1.69%  +1.79%  -0.43% 0.127 No
timestamp -1.31%  +1.21%  -0.39% 0.144 No
operation -1.09%  +0.99%  -0.33% 0.209 No
duration +1.40%  -3.04% -0.31% 0.241 No
reason_end -0.17%  -0.08%  -0.14% 0.597 No
ms_ latency -0.73% 4+0.93%  -0.11% 0.653 No
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4.4 Analysis and discussion

In this section the results from Section 4.3 are analyzed and discussed in more detail.
Topics explored are the lack of performance difference between model architectures,
the effect of an increased feature space on performance, how the models handle time-
dependent mixed feature types, and the effect of sequence length on performance.
Characteristics of values of the features that were determined relevant in Section
4.3.2 are presented along with possible interpretations of the cause of them.

4.4.1 Model performance

As can be seen in Table 4.3, all models performed roughly equal on the various
data set versions. This indicates that the choice of recurrent model architecture
was not of crucial importance for the classification task in this thesis. However, the
lack of significant difference in classification results between models was surprising,
since the results from Wang and Tian’s experiments show greatly varying classifi-
cation accuracy scores for the different architectures [6]. A possible explanation is
that their experiments compare the performance of different model architectures on
data sets that consist of sequences with long-term dependencies. They test if the
new architectures they introduce handle such dependencies better than other state-
of-the-art models, and point out significant improvements. The lack of significant
difference between the models in our classification results could be explained by the
lack of long-term dependencies. However, due to the scope of this thesis, we have
not investigated weather the user logs in our data set demonstrate such long-term
dependencies, hence we will not draw any conclusions regarding how well the differ-
ent model architectures handle them.

Table 4.3 shows that there is an observable tendency towards increased classification
accuracy when extending the data set with more features. This was particularly no-
ticeable from the atomic version to the other versions of the data set. In addition,
there was a small, but statistically significant, difference in label prediction outcome
between the atomic version and the other data set versions. The increased clas-
sification accuracy, and change in label prediction outcome, show that the models
perform well on a high dimensional feature space of categorical data. However, the
models’ prediction outcomes did not change significantly when expanding the data
set feature space with timestamp and numerical features.

Despite the increased accuracy, we cannot fully state that the models perform well
on time-dependent mixed feature types. This because no significant change in label
prediction outcome was detected when adding timestamp and numerical features to
the feature space. However, according to the results from the feature relevance ex-
periment presented in Table 4.4, one of the numerical features caused a significant
change in prediction outcome compared to that of the full feature space version.
This contradicts the results of the model performance experiments. A possible ex-
planation could be that the timestamp and numerical features might correlate with
each other, or the other features, in a way that does not change the label prediction
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outcome when they are added to the feature space. We also suspect that other
feature scaling approaches than the one used in this thesis could increase the effect
of some of the numerical features. Regarding the effect of the TIMESTAMP feature, a
possible explanation could also be that it is not relevant for classification, since users
likely express unequal levels of activity throughout sessions. However, the feature
might have changed the outcome significantly if the task would have been to predict
future events given subparts of user logs.

4.4.2 Sequence length

We investigated the impact of sequence length by training and evaluating a SC-
LSTM-I model with a data set containing no other information than the number of
events per session. The classification accuracy of the model was measured to 69.90%.
The results can be seen in Figure 4.1. The model classification accuracy in the length
experiment was significantly worse than that in the experiment with the atomic data
set version. The latter resulted in a classification accuracy of 76.25%. These results
show that the sequence length is relevant for the classifier, but not solely conclu-
sive. In order to decrease the impact of sequence length on classification accuracy
one approach could be to introduce multilayered hidden states. These additional
hidden layers, which might enable them to capture other dependencies, could de-
crease the impact of sequence length by increasing the impact of other dependencies.

The experiments on the impact of the sequence length showed that length was
important for the classification outcome. As can be seen in Figure 4.1, both pre-
cision and recall for the negative class decrease as sequence length increases. For
the positive class, the trend is the opposite, i.e. both precision and recall increase
with sequence length. This is not surprising, since true positive sessions in general
had more events than true negative sessions, as can be seen in Figure 4.2. Based
on the average sequence lengths we can observe that the sequences that are falsely
classified as positive have a length more similar to the true positives than to the true
negatives. The length differences are observed in the incorrectly classified negatives
too, where the sequence lengths are more similar to the true negatives than to the
positives.

4.4.3 Feature relevance

We investigated the impact of the different features by removing one feature from
the full feature space at a time, to identify which were relevant. The results can
be found in Table 4.4. They show that the most relevant features, i.e the features
that changed the label prediction outcome significantly, were PAGE, MS_ PLAYED,
SHUFFLE and SOURCE__START.

We could observe additional interesting details from Table 4.4, such as a the fea-
ture MS_ PLAYED being relevant despite its numerical feature type. We also notice
that the TIMESTAMP feature seems unexpectedly irrelevant. Possible reasons are
discussed in more detail in section 4.4.1. The fact that the classification accuracy
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Figure 4.1: Precision and recall in proportion to session length ranges.
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Figure 4.2: Proportion of positive and negative classes in proportion to session
length ranges.

1a
—— proportion of positive sessions in length range
—— proportion of negative sessions in length range

0.8 |

0.6 1

0.4 1

02

DU T T T

T T T T T
1.5 610 11-15 16-20 21-25 26-35 36-45 45-65 B6-120 ==120
length range

decreased in all feature removal experiments surprised us. The negative overall dif-
ference in accuracy was expected, since information was withheld. However we also
expected that some model variance, in combination with the removal of possibly less
relevant features, would result in some accuracy increase.
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Further investigations of the features PAGE, MS_ PLAYED, SHUFFLE and SOURCE__START
were conducted. We analyzed the occurrence of different values, and distributions
of values, to find session characteristics of the two classes.

PAGE

We studied the different values of the PAGE feature, and present the most com-
mon values with respect to the model’s predictions. This was done by investigating
the proportion of total amount of page views, and focusing on the pages that were
exclusively in one of the predicted classes. In addition to this, we also looked at
the pages where the proportion of the total amount of page views differed the most
between the two predicted classes.

When examining the pages with the highest proportion of page views that occurred
exclusively in one of the predicted classes, we found both expected and unexpected
occurrences. It is clear that the page for adding songs to a playlist is the page with
the strongest association to a single class, namely the positive class. This is not sur-
prising, but we want to point out that there are sessions where this page is visited,
but no songs are added. Hence, those sessions get incorrectly labeled. Overall, it
seems that visiting different playlist pages is associated with the positive class. This
is probably because it indicates that the user is actively browsing playlists and mak-
ing changes to hir music library. We also want to point out that the more common
case, when a user saves music to hir music library without adding it to a playlist, is
not bound to a specific page as when saves are made to playlists. However, we can
observe that certain pages, where it is possible to save music to the music library,
are stronger associated to the positive class than other similar pages. A somewhat
strange observation is that the majority of the pages associated with the negative
class are pages concerning concerts. We are having a hard time understanding why,
and leave further investigations to Spotify.

When examining the pages where the proportion of the total amount of page views
differed the most between the two predicted classes, we found some additional asso-
ciations. We noticed a tendency towards that sessions where users open the context
menu are associated with the positive class. Similar to the playlists case mentioned,
it is possible that this indicates that the users are actively using more rare features.
Hence, they are overall more inclined to save music. We also observed that the
connect/playback page is more associated with the negative class. We were not not
surprised by this, since the page allows users to play music from another device than
the one they are controlling the music from. This could indicate that users are lis-
tening through external speakers. Using external speakers increases the possibility
of several people listening, leading to a likely decrease in application engagement
due to social activity.
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MS_PLAYED

Figure 4.3 shows that the negatively classified sessions generally had a larger average
of ms played per streaming event than the sessions classified as positive, which agrees
with the distributions of ms played per streaming event for the true classes. This
could be an indication that sessions during which users are more selective of their
music have more skipped songs than other sessions. Something else that can affect
the value of MS_ PLAYED feature is the actual length of the song played. However,
it does not seem likely that sessions where users listen to shorter songs are more
prone to include saves.

Figure 4.3: Average of ms_ played per session in the two predicted classes. For
the positive class, the mean was 0.01152 and the variance was 0.00006. For the
negative class, the mean was 0.01552 and the variance was 0.00019.
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SHUFFLE

In Figure 4.4 a tendency towards that the shuffle feature is activated more often
for the negative sessions than for the positive sessions can be observed. This could
perhaps be explained by the same reasoning as for the MS__ PLAYED feature, i.e that
a session in shuffle mode indicates that a user is less selective, and therefore less
likely to save music. However, the difference between the predicted classes is not as
noticeable for the SHUFFLE feature as it is for the MS_PLAYED feature.
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Figure 4.4: Proportion of streaming events with shuffle activated per session in
the two classes, 0 means that shuffle never was activated, 1 means it was always
activated.
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SOURCE__START

It is not that surprising that the SOURCE__START feature is relevant. The fea-
ture holds information about from where in the application a user started playing
a song. As with the PAGE feature, the SOURCE__START feature indicates where in
the application a user navigates, which we previously have concluded as relevant
information. By observing the differences of occurring values of SOURCE__ START
between the two predicted classes, we have noticed some regularities. First, it is
clear that sessions where recommended music is played are overrepresented in the
positively predicted class. An explanation could be that a tendency to listen to
recommended music indicates a will to explore music outside the library. Moreover,
sessions classified as negative contain more streams from pages with no personalized
content, such as top lists and playlists created by other users.
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Conclusion and future work

In this thesis we have investigated the possibility of combining machine learning
with data from user logs, in order to gain insights about application usage. This
was done through a proof of concept implemented in collaboration with Spotify, a
music streaming service, where the task was to identify how users behave in the
application when they save music. Through different experiments we were able to
show that it is possible to identify limited characteristics of usage, and that it is
possible to do so using recurrent neural networks (RNNs). We also show that RNNs
with residual connections (RRNs) perform at least as well as RNNs without residual
connections.

By modeling the problem as a supervised classification problem, and using state-
of-the-art model architectures for sequential learning, we were able to confirm that
RRNs can handle a high dimensional feature space of categorical data. We also
show that models with increased categorical input complexity have a tendency to
perform better than models with lower categorical input complexity in the clas-
sification task. The experimental results also indicate that additional numerical
features can be added to the categorical feature space in order to increase classifi-
cation accuracy. However, we suspect that the numerical features require different
preprocessing techniques than the ones chosen, and suggest this as possible future
work.

By further analyzing the classification results we were able to find indicative feature
values and session characteristics that, to a limited extent, describe patterns found
by the classifier. The method of analysis included further experiments to determine
feature relevance. This was followed by an exploration of the most relevant features,
comparing differences and similarities of feature values and session characteristics
between the two classes. Note that no attempts were made to locate sequential
patterns such as reoccurring sub-sequences of certain elements, although is is a po-
tential extension of our work. The findings show some regularities in sessions where
users save music in the application. One such finding is that certain application
pages were only represented in sessions classified as positive, which did not always
correspond to the representation of pages in the actual positive sessions. Another
finding is that the average ms played was higher among sessions classified as negative.

Future work could include further research with different preprocessing techniques

for mixed data types. It could be beneficial for model performance if, for example,
the numerical features were standardized instead of normalized, i.e. scaled to have
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zero mean and unit variance. Furthermore, different methods could be explored to
investigate the pattern found by the RRN. One possibility is to gather cell activa-
tion statistics [11] in order to investigate if it is possible to locate sequential patterns
such as reccurrent sub-sequences.

Despite fairly good classification results, it is not obvious that using such com-
plex models as RNNs was as effective in our setting as initially expected. We are
unsure whether the order of events in a sequence is of as great importance as origi-
nally anticipated, since no key findings support that assumption, and no attempts at
detecting recurrent sub-sequences of events were made. Even though a small scale
test with a linear classifier resulted in worse classification accuracy than that of the
RNNs, the performance gain is not necessarily worth the time consuming process of
trying to understand the underlying model of a complex classifier.

It is highly questionable whether the use of a classifier to discover patterns in ar-
tificially labeled data was a suitable method. Given the results, and the lacking
analysis of the importance of the sequential order of events, it is clear that the ap-
proach used in this thesis was not as suitable as estimated. It is likely that most
of the findings presented could have been discovered in a simpler way by statistical
analysis and feature selection between the classes of the labeled data. To investigate
the usefullness of a classifier in this setting, we could have compared the patterns
found by the RNNs to what could be found by statistical analysis. If the classifier
had discovered patterns that the plain statistics had missed, it could have been a
possible indication that the classifier indeed was necessary, but as it is, we do not
have support for such a claim.
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