
JEFF and STEVE: Allocator and Analysis Tool
The Tales of The Compacting Allocator JEFF and His Friend
STEVE, The Malloc Benchmarking and Analysis Tool
Master of Science Thesis in Computer Science

MIKAEL JANSSON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, April 2015

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

JEFF and STEVE: Allocator and Analysis Tool
The Tales of The Compacting Allocator JEFF and His Friend STEVE,
The Malloc Benchmarking and Analysis Tool

MIKAEL JANSSON

© MIKAEL JANSSON, April 2015.

Examiner: KOEN LINDSTRÖM CLAESSEN

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden April 2015

3

Abstract

Jeff is a compacting allocator and Steve is an allocator benchmarking tool.
Steve can be used to benchmark any application with any allocator. Steve
records memory traces of an application during execution and uses those traces
to benchmark any number of allocators for which there are drivers. Therefore,
the performance in actual use cases is measured. Also, as a consequence, the
user does not need access to source code to the application or allocators to be
tested. Users can easily write their own allocator drivers to extend Steve with.
Compared to the tested allocators in this report, Jeff performs similar or better
in terms of speed, but similar or worse in memory.

Contents

Acknowledgements . 7
Ethical Considerations . 8

1 Introduction 9
1.1 Thesis Statement and Contributions 10
1.2 Definitions . 11
1.3 Challenges . 11
1.4 Efficiency . 12
1.5 Related Work . 12

2 Allocator Types 14
2.1 Buddy Allocator . 14
2.2 Pool Allocator . 15
2.3 Arena Allocator . 15
2.4 Garbage Collector . 16

3 Method 17
3.1 Assumptions . 18
3.2 Hypothesis . 18
3.3 Development Environment . 18
3.4 Testing . 18

4 Design 20
4.1 Design Background . 20
4.2 Allocator Design . 20

4.2.1 Free In More Detail . 21
4.2.2 Compacting . 21

4.3 Allocator Algorithm . 22
4.3.1 Initialization . 22
4.3.2 Allocation Request . 22
4.3.3 Free Block . 22
4.3.4 Compact Heap . 23

4.4 Benchmark Tool Design . 23

5 Simulating Application Runtime 24
5.1 Gathering Memory Access Data 24
5.2 Translating Memory Access Data to Ops 25

5.2.1 Linear Scan . 26
5.2.2 Save CPU at the Expense of Memory 26
5.2.3 More on Lifetime . 27

4

CONTENTS 5

5.2.4 Performance Optimization of Lifetime Calculation 27
5.3 Lifetime Visualization . 28
5.4 Lifetime Calculation . 30

6 Jeff: The Compacting Allocator 33
6.1 Overview . 33
6.2 Implementation . 33

6.2.1 rminit . 33
6.2.2 rmmalloc . 35
6.2.3 rmfree . 36
6.2.4 rmcompact . 36
6.2.5 rmdestroy . 38

6.3 Testing . 38
6.3.1 Real-World Testing . 38

6.4 Profiling . 39
6.5 Automatic Testing . 39

7 Steve: The Benchmark Tool 43
7.1 Modules . 43
7.2 Allocator Driver Usage . 44
7.3 Driver Modes . 46

7.3.1 peakmem . 46
7.3.2 allocstats . 46
7.3.3 memplot . 46

7.4 Tested Allocators . 47
7.4.1 rmmalloc (Jeff) . 47
7.4.2 jemalloc (v1.162 2008/02/06) 47
7.4.3 dlmalloc v2.8.6 . 48
7.4.4 tcmalloc (gperftools-2.1) 48

8 Results 49
8.1 Limitations . 49
8.2 Input Data . 49
8.3 Keys To Read Charts and Tables 50

8.3.1 Drivers . 50
8.3.2 Charts . 50
8.3.3 Tables . 50

8.4 Results . 51
8.4.1 StarOffice . 51
8.4.2 sqlite . 54
8.4.3 ls . 56
8.4.4 tar with bzip2 compression 57
8.4.5 latex . 60
8.4.6 opera . 62

9 Conclusions 64
9.1 Speed . 64
9.2 Memory . 65
9.3 Discussion . 65
9.4 Limitations and Future Work . 66

6 CONTENTS

9.4.1 Jeff: Limitations . 66
9.4.2 Jeff: Future Work . 66
9.4.3 Steve: Limitations . 67
9.4.4 Steve: Future Work . 67

10 References 68

11 Appendix 69
11.1 Tools . 69

11.1.1 memtrace-run.sh and translate-memtrace-to-ops.py . . . 69
11.1.2 translate-ops-to-histogram.py 69
11.1.3 translate-ops-to-locking-lifetime.py 69
11.1.4 run_memory_frag_animation.sh 69
11.1.5 run_allocator_stats.sh 70
11.1.6 run_graphs_from_allocstats.py 70

11.2 Allocator driver API . 70
11.2.1 user_init(heap_size, heap, name) 71
11.2.2 user_destroy() . 71
11.2.3 user_handle_oom(size, op_time) 71
11.2.4 user_malloc(size, handle, op_time, memaddress) 72
11.2.5 user_free(ptr, handle, op_time) 72
11.2.6 user_lock(ptr) . 72
11.2.7 user_unlock(ptr) . 72
11.2.8 user_highest_address(fullcalc) 73

CONTENTS 7

Acknowledgements

Thanks to Anders Höckersten and Peter Wallman at Opera for brainstorming,
and to Kristian Wiklund for comments and suggestions. Thanks to my super-
visor Koen Lindström Claessen at Chalmers University, my friends and family
for being understanding during all the time I’ve spent on this thesis.

Mikael Jansson Chalmers, April 2015

8 CONTENTS

Ethical Considerations

No ethical problems were identified during the course of the work. The nature
of the work does not include any experiments nor studies on humans or animals.

Chapter 1

Introduction

Computer systems can be generalized to be composed of two things: data,
and code operating on said data. In order to perform useful calculations, real-
world applications accept user data which often varies in size. To accommodate
the differences, memory is requested dynamically (at runtime) using a memory
allocator. The basic interface to the allocator consists of the two functions
malloc(size) and free(pointer): the application gives malloc a size and retrieves
a pointer to a chunk of memory guaranteed to be at least size bytes. The
operation free(pointer), on the other hand, gives the memory back to the system.

The allocator in turn calls out to the operating system-provided memory
mapping function, providing the allocator with one or more pages of memory.
The page is the smallest unit of memory available to the operating system from
the processor and its memory mapping unit (MMU), and in the architectures
widely used today (x86, x86_64, ARMv7, PPC) the default size is 4 KB, and
can on some architectures be increased.

On operating systems where application memory is protected from other
applications’ memory, meaning no application can overwrite any other appli-
cation’s memory, the page addresses are virtual and therefore a kernel-space1

look-up table mapping virtual (page) address to physical memory is required,
such that each process has its own look-up table. Since the processor needs to
keep track of each page and to which part of memory it is mapped, the resulting
look-up table will be very large if a small page size is used. These can then be
written to disk (swapped out) when system memory becomes full and the pages
are not in use by the application owning the page, based on a recently-used
algorithm. The algorithm varies depending on operating system and use case.
In the worst case, the last page in a series of requested pages is largely unused,
causing 4096-1 bytes to go to waste. Keeping the page size small lowers this
waste, which is also known as internal fragmentation. Increasing the page size
can be tempting to speed up the lookup table, but this comes at the cost of
fragmentation. In some architectures, the operating system can increase the
page size (so-called "huge pages" in Linux terminology, other operating systems
use different names).

A very simple user-space2 allocator would do little more than malloc() re-
turning the pages and have free() do nothing at all. Clearly this causes large

1The operating mode of the operating system where the kernel and hardware drivers run.

9

10 CHAPTER 1. INTRODUCTION

amounts of memory to be wasted, since no memory would actually be released
to the system. Eventually, the system would run out of memory.

Therefore, an allocator needs to be more clever about managing memory.
At the very minimum it needs to associate metadata with each allocated block
in order to later free the blocks. The metadata is there in order for free() to
know where the memory chunk was allocated from. Moreover, the allocators
I’ve tested keep one or more pools of memory split up in different size ranges,
such as "small blocks", "medium-sized blocks" and "large blocks". By analyzing
the runtime requirements of various applications, the most commonly use cases,
such as a specific block size dominating all other requests, can be optimized for
speed, space or both. The pool(s) are used because of the fact that applications
often allocate data of particular sizes.

If the allocator can group together all e.g. 8-byte chunks into one or more
pages, it will be easier to return the page to the operating system when all
blocks are freed. Lookup can also be more efficient, since the allocator can use
offsets to find a suitable free block, instead of iterating through a list of free
blocks.

1.1 Thesis Statement and Contributions

The purpose of this thesis is to design and implement an allocator with the
following interface that can move around allocated blocks of memory:

handle_t malloc(size_t n);

void *lock(handle_t h);

void unlock(handle_t h);

void free(handle_t h);

The purpose of the lock/unlock operations is to introduce indirection for
memory access that gives the allocator the ability to move data blocks around
when not in use (unlocked state), specifically by compacting the heap cope with
fragmentation problems.

In Chapter 2 I present an overview of the allocator I compare my work with.
Method and Design are in Chapters 3 and 4.

I have developed a method of simulating runtime behaviour of applica-
tion using heuristics and show that it is possible to test performance of lock-
ing/unlocking allocators without access to source code. This is done in Chapter
5.

I show that randomized testing in large volume is a useful technique for
finding problems in complex data structures, such as an allocator. This is done
in Chapter 6.

I have collected a variety of applications that can be modified to use the
different allocation interface for benchmarking purposes. This is done Chapter
7. The results from benchmarking the allocators, can be found in Chapter 8
which is finally discussed in Chapter 9.

2The operating mode of the operating system where normal applications run.

1.2. DEFINITIONS 11

1.2 Definitions

� Opaque type: A way of hiding the contents of an object (data structure)
from application code, by only providing a pointer to the object without
giving its definition. Commonly used where the object is only meant to
be modified from the library.

� Valgrind: A debugging tool used to detect memory leaks and memory
overwriting in applications, by emulating the target CPU.

� mmap(): A system call for applications to ask the operating system for
one or more memory pages (often 4KB) and map it into the application’s
virtual address space.

� sbrk(): Similar to mmap(), but works by extending the application’s data
segment size instead of asking for virtual memory, and is limited by the
maximum data size of the application.

� Internal fragmentation: The amount of memory wasted inside a block.

� External fragmentation: The amount of memory wasted by allocator
metadata.

� Memtrace: File created by Valgrind’s memcheck tool (see Chapter 7)
that contains triplets of (op, address, size). See the appendix for the full
definition.

� Op: Any memory operation: new, free, load, store, modify, lock, unlock.
Generally, load, store and modify is generalized to access. These are some-
times abbreviated to N for new, F for free, A for access, L for load, U for
unlock.

� Opsfile: File created by translate-memtrace-to-ops.py (part of Steve,
see Chapter 7), contains one operation per line. See the appendix for the
full definition.

� Block: A chunk of allocated memory.

� Lifetime: The number of total operations, thus indirectly the time, be-
tween a New and a Free op for a specific block.

� Header: An internal data structure containing the metadata about a
block. It is also used as an opaque handle for use by the client code.

1.3 Challenges

There are many trade-offs when writing an allocator, which I’ll describe in the
following section.

Allocators are often optimized for a specific use-case or task, while still
performing well in the average case. In fact, some allocators are designed with
the explicit goal of being best on average.

A very simple allocator would simply request one or more pages from the
operating system and return in to the user. It would be very fast, but not

12 CHAPTER 1. INTRODUCTION

very efficient since a large part of the page would be unused for any allocation
requests smaller than the page size.

By splitting up allocations in parts exactly the size of the requested block
(plus metadata) and storing information about freed blocks in a list, there would
be little wasting of memory. On the other hand, because of the efficiency re-
quirement, pages would only be requested when there were no blocks of the
correct size and therefore the entire free list must be searched for a suiting
block before giving up and requesting a page.

Multi-threaded applications that allocate memory need to work without the
allocator crashing or corrupting data. As in all concurrency situations, care
needs to be taken to do proper locking of sensitive data structures, while not
being so coarse such that performance suffers. I do not address the issue of
locking.

Another challenge is to make the allocator work efficiently for various mem-
ory sizes. I focus on small-memory systems, where space-efficiency is important,
and I’ve made the trade-off (where applicable) that slower is better if it saves
memory. It is currently in use at TLab West Systems AB on an embedded
computer with a total of 512 KB RAM.

1.4 Efficiency

Around 2007 at Opera, a company that produces a web browser for desktop
computers, embedded computer systems and phones, memory fragmentation
became a problem after repeatedly loading and unloading web pages. Large
web pages load many small resources, specifically images, that create holes in
memory when freed. After a few page loads, it is no longer possible to load
any more pages because there are no continuous blocks of memory large enough
to fit a web page in. It happened frequently on small-memory devices, such as
early smart phones and feature phones with 4-8 MB RAM.

Because of said fragmentation, large enough blocks can eventually not be
allocated, even though the total amount of free memory is greater than the
requested block size. This goes against the findings by Johnstone & Wilson
(1998), where in the average case, the level of fragmentation is good enough.
However, for Opera, "good enough" was insufficient. By making a custom
allocator with the signature outlined in the hypothesis, they hoped to solve the
fragmentation problem in the specific situations that occur in a web browser.
Another use case for the allocator was for an in-house custom programming
language, where the allocator’s purpose was to be used as a garbage collector.
This did not happen, however, because of delays in finishing the thesis.

1.5 Related Work

Closely related to a compacting allocator is the garbage collector, which is pop-
ular in managed languages that do not run directly on hardware. In particular,
the Java Virtual Machine (JVM) includes different garbage collector (GC) fla-
vors depending on the task at hand. As of version 5, there are four variants
(Sun Microsystems, 2006) with different characteristics that can be picked de-
pending on the type of application written. Each GC flavor can be configured.

1.5. RELATED WORK 13

Configuration settings, including setting GC flavor, can be done at runtime via
command line parameters to the JVM.

All JVM GCs use generations, in which objects are allocated and later moved
if they survive a garbage collection. This is mainly done as an optimization
to execution time since different collection strategies can be used for "young"
objects and "old" objects (i.e. the ones that have survived a set number of
collections). A generation is implemented as separate memory areas, and there-
fore, areas that are not full waste memory. Also, application code is unaware
of when collection occurs, generations is also a means of reducing the time the
application is paused, if the collection cannot happen simultaneously with ap-
plication execution. Pausing in general is a problem GCs try to solve, see Jones
& Lins (1997).

In my thesis, I give control over pausing to the application that can decide
at its own discretion when the most appropriate time is for heap compacting.
In the optimal case, where a simple bump-the-pointer technique can be used,
i.e. increase the heap pointer for the next chunk of memory, allocation will be
very quick, at the expense of compacting having to occur frequently. This is
a deliberate trade-off, based on the assumption that there will be idle time in
the application where compacting is more appropriate. Generations would be
of no benefit in this scenario. In the worst case, however, blocks on the heap are
locked at compacting time. These blocks cannot be moved and therefore a free
list needs to be maintained, causing allocation to be slower. Being able to move
these blocks to a location where they cause less harm is left as future work.

Chapter 2

Allocator Types

In this chapter I’ll describe the most common styles of allocator implementation
strategies.

2.1 Buddy Allocator

The most common allocator type is the buddy allocator3, and many allocators
are built on its principles, or at least incorporate them in some way: start
with a single block and see if the requested chunk fits in half of the block. If
it does, split the block into two and repeat, until no smaller block size would
fit the request. The allocator described in this paper does away with merging
blocks directly on free, by moving free blocks together and coalescing them in
the compacting step.

Figure 2.1: The free list in a buddy allocator

Over time, there will be more and more items of size 2𝑛, stored on a free list
for that block size, as shown in Figure 2.1 Each pair of split-up blocks is said to
be two buddies. When two buddy blocks are free, they can be joined. A block
of the next larger size (𝑛+1) can be created from these two blocks. The merge
repeated until the largest block, i.e. 2𝑘. In the worst case, this causes 2𝑛 − 1

3http://en.wikipedia.org/wiki/Buddy_memory_allocation

14

http://en.wikipedia.org/wiki/Buddy_memory_allocation

2.2. POOL ALLOCATOR 15

bytes of overhead per block, also known as internal fragmentation. Still, this
commonly used algorithm has shown to be good enough in many cases and is
often incorporated as one strategy of an allocator.

All blocks must have metadata associated with them. The minimum amount
of information is the length of the block, in order for free() to know where the
block ends. For convenience, this is often stored in memory just before the block
itself. The metadata could also be stored elsewhere, e.g. a lookup table S(addr)
that gives the size of the block starting with addr.

The metadata associated with the block is normally not accessible by user
code (unless queried using allocator-specific debugging code, when available)
and adds to external fragmentation. It is the fragmentation between the user
blocks (hence external), i.e. any overhead caused by information required by
the allocator, but not the user code.

Conceptually, the buddy allocator is a very simple allocator to use and im-
plement, but not the most efficient because of internal fragmentation.

2.2 Pool Allocator

Certain applications use a large amount of objects of the same size that are
allocated and freed continuously. This information can be used to create spe-
cialized pool allocators for different object sizes, where each pool can be easily
stored in an array of 𝑁 *𝑠𝑖𝑧𝑒𝑜𝑓(𝑜𝑏𝑗𝑒𝑐𝑡) bytes, allowing for fast lookup by malloc
and free. For example, in an action computer game where both the player and
the enemies shoot projectiles with weapons, said projectiles must be kept track
of by means of an object in memory. In a game where there could potentially
exist a very large amount of projectiles in action at the same time, an equal
amount of allocation and freeing is done, often randomly. In order to optimize
usage of system memory, all allocation of projectile objects would be contained
to the same pool of memory. A very simple such allocator would be a simple
list of objects and the allocator could just return the index to the next unused
block, leading to malloc and free that both have 𝑂(1) in time complexity with
very little overhead and fragmentation. The usual strategies for growing the list
apply, such as doubling the size of the list when all items in the list are used.

2.3 Arena Allocator

Code with data structures that are related to each other can be allocated from
the same arena, or memory region, for example a document in a word processor.
Instead of allocating memory from the system, the allocator requests data from
a pre-allocated larger chunk of data (allocated earlier from the system). The
main point of this type of allocator is quick destruction of all memory related to
the working data (i.e. the document), without having to traverse each individual
structure associated with the document to avoid memory leaks from not properly
freeing all memory. In applications where a document/task has a well-defined
set of objects associated with it, with relatively short lifetime of the document,
but many documents created/destroyed over the total application lifetime, there
is a large speed benefit to be had from making the free operation faster.

16 CHAPTER 2. ALLOCATOR TYPES

2.4 Garbage Collector

A garbage collector is an allocator that automatically provides memory for data
as needed. There is no need to explicitly ask for memory from the allocator,
nor to free it when done. Instead, the garbage collector periodically checks for
which objects are still in use by the application (alive). An object is is anything
that uses heap memory: a number, a string, a collection, a class instance, and
so on. There are several techniques for finding alive objects and categorizing
objects depending on their lifetime in order to more efficiently find alive objects
at next pass. This is described in detail by Jones & Lins (1987).

At any point in time, a garbage collector can move the object around if
necessary, therefore any object access is done indirectly via a translation. User
code does not keep a pointer to the block of memory that the object is located
in, but instead this is done with support in the programming language runtime.

A garbage collector, because of the indirect access to memory, can also move
objects around in a way that increases performance in different ways. One way is
to move objects closer together that are often accessed together, another way is
to move all objects closer to each other to get rid of fragmentation, which would
decrease the maximum allocatable object size. A normal allocator cannot do
memory defragmentation, or any other memory layout optimization, because
memory is accessed directly, which would invalidate the pointer used by the
application code.

Chapter 3

Method

The method I used for designing and implementing the allocator (Jeff) is an
iterative design process based on experimental designs and verification thereof,
along with theoretical calculations using pen and paper. In particular, the
compact operation went through several iterations in my sketch book before I
arrived at the final version. For other parts, I used the profiling tools found in
GCC to measure bottlenecks and gradually improve the code until there were
no obvious bottlenecks left. A bottleneck in this case is a piece of code that
gets called many times and is slow. I’ve aimed to write the code to execute
reasonably quick, given the algorithm in use.

Thanks to the rigorous testing framework in place, I could readily modify
code without fearing malfunction since the tests would pick up any errors. A
limitation of testing is that it can never prove correctness, only absence of the
bugs the testing framework was designed to find. The testing framework is
described in more detail in Chapter 6.

Steve is the name of the benchmark tool that I designed to test algorithms for
Jeff and to compare Jeff to other allocators. In Steve, I’ve developed heuristics
for calculating locking/unlocking based on runtime data of unmodified applica-
tions. The tool for doing so grew from a small script into a larger collection of
tools related to data collection, analysis and benchmarking.

Data for use by Jeff, and other allocators, is collected by various parts of the
benchmark tool. The types of data used are:

� raw memtrace, from running unmodified applications in my modified Val-
grind tool

� ops file, by mapping memory access data to objects

� locking ops file, as above, with lock/unlock operations in place

� benchmark output, by running allocators against ops files

The benchmark output is used to both produce graphs of allocator perfor-
mance and can together produce internal rankings between the allocators.

This is described in greater detail in Chapters 5, 7 and Section 8.2.

17

18 CHAPTER 3. METHOD

3.1 Assumptions

� A1: An allocator with little extra increase in memory usage compared to
the requested memory by the client application is efficient in space.

� A2: An allocator that has a small and preferably constant execution time
is efficient in time.

3.2 Hypothesis

� H1: An allocator that performs heap compaction can be efficient in both
time and space, compared to other commonly used allocators. By making
the malloc and free operations fast and the compact operation relatively
slow and calling it when the system is idle it is possible to achieve this. On
memory-restrained and slow computer systems, such as embedded systems
with as little as 512 KB RAM and a 50 MHz CPU, it is important to be
efficient in both time and space.

What are the space and time requirements of Jeff compared to other popular
allocators? Is Jeff a viable alternative to other popular allocators in real-world
situations?

I aim to answer these questions in the report in Chapter 8 where I display
both graphs and runtime numbers, and in Chapter 9 where I assemble the results
from the allocators I’ve measured.

3.3 Development Environment

The main development system is a Linux-based system (32-bit Ubuntu 13.04),
but could likely be adapted to other UNIX-like systems, such as OS X. Porting it
to 64-bit systems requires changing the manual type casting from and to integer
types that assumes a pointer will fit in a 32-bit integer.

The allocator is written in C, and the benchmark tool (Steve) consists of

mostly Python code with Cython4 (a Python framework for interfacing in C
and compiling Python into C code) for tight inner loops such as the memtrace
to ops calculation, plus some Bash scripts for glueing it all together. The data is
plotted in graphs and there is also a tool that creates an animation of memory
allocations as they happen in memory.

Parallel with allocator development, I wrote tests using Google’s C++ test-
ing framework, googletest5, to make sure no regressions were introduced during
development. More on that in Section 3.4.

3.4 Testing

All applications should be bug-free, but for an allocator it is extra important
that there are no bugs since an allocator that does not work properly could cause
data corruption. In the best case, this causes the application using the allocator

4http://cython.org

5http://code.google.com/p/googletest/

http://cython.org
http://code.google.com/p/googletest/

3.4. TESTING 19

to malfunction by crashing on execution. In the worst case, an application doing
data processing by reading data into buffers allocated on the heap, doing one or
more computations and then writing the data back to disk, would completely
destroy the data without the user knowing an error had occurred.

Luckily, an allocator has a small interface for which tests can be easily writ-
ten. In particular, randomized unit testing is easy, which gives good coverage.

I decided to use googletest since it was easy to set up and use, and the results
are easy to read. It’s similar in style to the original Smalltalk testing framework
SUnit6 (later popularized by Java’s JUnit7). During the development of the
allocator I wrote tests and code in parallel, similar to test-driven development
in order to verify that each change did not introduce a regression. Of the ap-
proximately 2500 lines of code in the allocator, about half are tests. In addition
to randomized unit testing there are consistency checks and asserts that can be
turned on at compile-time.

In the unit tests, the basic style of testing is to initialize the allocator with
a randomly selected heap size and then run several tens of thousands of alloca-
tions/frees and make sure no other data was touched. This is done by filling the
allocated data with a constant byte value based on the address of the returned
handle. Many bugs were found this way, many of them not happening before
thousands of allocations were made.

6http://en.wikipedia.org/wiki/SUnit

7http://en.wikipedia.org/wiki/JUnit

http://en.wikipedia.org/wiki/SUnit
http://en.wikipedia.org/wiki/JUnit

Chapter 4

Design

The implementation of the allocator (Jeff) is described in detail in Chapter 6,
and the implementation of the benchmark tool (Steve) is described in detail in
Chapter 7.

4.1 Design Background

To get started with my allocator, I started implementing a buddy allocator
since the basics of the buddy allocator is used in the allocators I’ve included
in my comparison, (Evans 2006). Since a buddy allocator’s two main modes of
operation are splitting and joining blocks, care needs to be taken that these two
operations are as quick as possible.

During development, I quickly realized the fact that picking the wrong data
structure for storing the block list made splitting and joining operations slow
and error-prone.

I therefore discarded the buddy allocator prototype and started on the actual
allocator that was to be the end result, with lessons learned from the prototype
incorporated into the design phase.

4.2 Allocator Design

I assume that there will be idle time when the application is not doing any
other processing. The functions malloc() and free() should perform their work
as quickly as possible. If possible, any processing that doesn’t have to be done
immediately, should be done in the application’s idle time. An example of such a
task is compacting. Moreover, since I have the freedom to move objects around
in memory transparently for client code, any logic in free/malloc that handles
memory layout, e.g. for optimization purposes (either space or time efficiency)
should be handled in the idle time to as a high extent as possible.

From this, we arrive at my original idea of a quick malloc, a quick free and a
slow compact, the latter performing any batch processing postponed from free
and malloc. I envisioned this as a malloc that would basically grow the top
pointer of the malloc-associated heap: store information about the requested
block size, increase the top pointer and return the block. The free operation
would mark the block as not in use anymore. Eventually, the top pointer would

20

4.2. ALLOCATOR DESIGN 21

reach the end of the heap, at which point the compact operation would go
through the heap and reclaim previously freed memory and reset the top pointer
to end of allocated memory leaving the freed memory as a large block of memory
ranging to the end.

However, that idea turned out incorrect because blocks can be locked at the
time of compact. Recall that locking a block gives the client code the actual
pointer to memory, and unlocking the blocks invalidates the pointer. Therefore,
the worst-case scenario is that a block at the very top of the heap is locked when
the compact operation is invoked. Even though all unlocked free blocks are
coerced into a single free block, a locked block at or close to the top would make
subsequent malloc calls to fails. Therefore, a free list needs to be maintained
even though it might be the case for real-world applications that the worst case
seldom occurs. I have not studied the frequency of this happening in this report.

4.2.1 Free In More Detail

When an allocation request comes in, the size of the request is checked against
the top pointer and the end of the heap. A request that fits is associated with
a new handle and returned. If there is no space left at the top, the free list is
searched for a block that fits.

Freeing a block marks it as unused and adds it to the free list, for malloc
to find later as needed. The free list is an index array of 23..𝑘-sized blocks
with a linked list at each slot. All free blocks are guaranteed to be at least 2𝑛,
but smaller than 2𝑛+1, bytes in size. The blocks can then be reused in malloc
directly, or merged together all at once in the compacting operation. This is
unlike the buddy allocator where blocks are merged directly on free. (See future
work in Section 9.4.2 for a brief discussion on merging directly on free.)

Figure 4.1: Example slots in free list.

An example free blockslots list is given in Figure 4.1.

4.2.2 Compacting

Compacting uses a greedy Lisp-2-style compacting algorithm (Jones & Lins
(1997)), see Section 4.3.4 for a step-by-step version and Section 6.2.4 for an
explanation with figures. In short, blocks are moved closer to bottom of the
heap if possible, otherwise the first block (or blocks) to fit in the unused space

22 CHAPTER 4. DESIGN

is moved there. The first case happens if there are no locked blocks between
the unused space and next used (but not locked) block, simply moving the
memory blocks and updating pointers is enough. A quick operation that leaves
no remaining holes. If however there are any locked blocks between the unused
space and the next used block, obviously only blocks with a total length of less
than or equal the size of the unused space can be moved there. The algorithm
is greedy and takes the first block that fits. More than one adjacent block that
fits within the unused space will be moved together. In the case that there are
no blocks that fit the unused space and there is a locked block directly after,
scanning is restarted beginning with the block directly following the last free
block found. The process is continued until there are no unused blocks left or
top of memory is reached.

4.3 Allocator Algorithm

4.3.1 Initialization

1. We’re passed a heap of a given size from the client

2. Set boundaries of the header list growing down from top of heap

3. Initialize the free block slot list

4.3.2 Allocation Request

1. Request a new header to associate with the block

1. If built with unused header list, grab the first one in list
and relink root

2. Else, scan the header list for unused header. If not avail-
able, move bottom down one header.

3. If bottom clashes with space occupied by a block, fail.

2. If there is available space for the allocation request, use it and asso-
ciate with the block.

3. Else, find a free block within the free block slot list:

1. Search in the slot associated with the 𝑙𝑜𝑔2-size of the re-
quest for a free block.

2. If not found: repeat the previous step in higher slots until
top is reached. If there are still no blocks found, fail.

4. Split the block as needed, insert the rest into the free block slots and
return the rest.

4.3.3 Free Block

1. Mark the header as free

4.4. BENCHMARK TOOL DESIGN 23

2. Overwrite the block with a free memory block structure pointing to
the header location, with the struct’s memory member pointing to
NULL.

3. Insert the block into the appropriate location in the free block slots
list.

4.3.4 Compact Heap

1. Sort the header list items’ next pointers in memory order.

2. Starting from bottom of the heap: while there are unoccupied spaces
in the rest of the heap or compacting has reached its time limit, do
the following.

3. Scan for the first unlocked8 memory block.

4. If there are no locked blocks between the unoccupied space and the
first unlocked memory block, move the memory by the offset between
locked and unused memory.

5. If there are any locked blocks in-between, move only as much mem-
ory as will fit into the unlocked space. Create a free block of the rest
of the memory inside the unoccupied space.

6. Restart from point 2.

7. Merge all adjacent free blocks and mark the headers not in used as
unused.

8. Rebuild the free block slots by scanning the free header blocks and
inserting them at the appropriate locations in the list.

4.4 Benchmark Tool Design

Manually modifying applications to adhere to Jeff’s allocation interface is error-
prone and time consuming, and moreover it is not certain that the chosen ap-
plication is a good candidate for demonstrating performance since it might not
stress the allocator. The number of requests could be small and the total mem-
ory usage could be low.

Measuring Jeff requires a rewrite of the application needing to be tested,
to use the new malloc interface. The simple solution to do so is to emulate
a regular malloc, i.e. directly lock after malloc. But that would make the
compact operation no-op since no blocks can be moved. It is also not obvious
which applications would make good candidates. Automating the modifications,
if possible, would save much time. Finally, source code to the applications would
be required for manual adaptions, which is not always available. I have therefore
not done any manual adaptions of an application.

The specifics of how data is collected can be found in Chapters 5 and 7.

8Only unlocked memory blocks can be moved. Clients have references to locked blocks
which therefore cannot be changed.

Chapter 5

Simulating Application

Runtime

As described in the introduction, it is not a practical solution to rewrite appli-
cations to use the new API. Therefore, I automated the task of finding approx-
imate locking behaviour of applications. One way of doing that is to simulate
an application, which requires at the minimum the application’s memory access
patterns, i.e. when the application reads from and writes to memory.

5.1 Gathering Memory Access Data

Simply getting malloc/free calls is trivially done by writing a malloc wrapper and
make use of Linux’ LD_PRELOAD technique for preloading a shared library,
to make the applications use a custom allocator that can do logging, instead
of the system allocator. This requires the application to use the system malloc
and free to work, since calls to a custom allocator within the application cannot
be captured. By pointing a special environment variable (LD_PRELOAD) to the
location of a shared library prior to executing the application, any symbols
missing from the main application (which in the normal case is, among others,
malloc and free) are searched for in that library, and only afterwards are the
system libraries are searched. This is called dynamic linking, where symbols
in the application are linked together at runtime, as opposed to static linking,
where all symbols must exist in the application binary.

Unfortunately is is not enough to simply get the calls to malloc and free.
To get statistics on memory access patterns one needs to essentially simulate
the computer system the application runs in. Options considered were TEMU9

from the BitBlaze10 project, but because it would not build on my Linux system,
I evaluated Valgrind11 and concluded that the support for instrumentation in
Valgrind met my requirements.

Valgrind was originally a tool for detecting memory leaks in applications on
the x86 platform via emulation and has since evolved to support more hardware
platforms and providing tools for doing other instrumentation tasks. Provided
with Valgrind an example tool, Lackey, that does parts of what I was looking
for but lacks other parts. Instead I ended up patching the memcheck tool12

to capture load/store/access operations and log them to file, if they were in

24

5.2. TRANSLATING MEMORY ACCESS DATA TO OPS 25

the boundaries of lowest address allocated to highest address allocated. This
will still give false positives when there are holes (lowest is only decreased and
highest is only increased, i.e. only keeping a range of lowest..highest of used
memory) but reduces complexity of tracking memory. It does not affect the
end result, except for taking longer time to filter out false positives. Memory
access is then analyzed offline. Note that it will only work for applications that
use the system malloc/free. Any applications using custom allocators must be
modified to use the system allocator, which generally means changing a setting
in the source code and recompiling.

This is how the modified Valgrind that produces memtraces files, memtrace
translation and locking calculation fits together:

#!/bin/bash

theapp=$1

if [[! -d "$theapp"]]; then

mkdir $theapp

fi

shift

echo "$*" >> ${theapp}/${theapp}-commandline

../../valgrind/vg-in-place --tool=memcheck $* 2>&1 > \

/dev/null | grep ’^>>>’ > ${theapp}/${theapp}

python -u ../steve/memtrace-to-ops/translate-memtrace-to-ops.py \

${theapp}/${theapp}

python -u \

../steve/memtrace-to-ops/translate-ops-to-locking-lifetime.py \

${theapp}/${theapp}

See also Figure 7.1.

Beware that running larger applications through the memory access-logging
Valgrind takes very long time, about 30 minutes on an Intel Core i3-based system
to load http://www.google.com in the web browser Opera13.

5.2 Translating Memory Access Data to Ops

The basis of all further data analysis is a memtrace, a file with the output
produced by the patched memcheck tool in the following format:

>>> op address size

9http://bitblaze.cs.berkeley.edu/temu.html

10http://bitblaze.cs.berkeley.edu/

11http://valgrind.org

12https://github.com/mikaelj/rmalloc/commit/a64ab55d9277492a936d7d7acfb0a3416c098e81

(2014-02-09: "valgrind-3.9.0: memcheck patches")

13http://www.opera.com

http://www.google.com
http://bitblaze.cs.berkeley.edu/temu.html
http://bitblaze.cs.berkeley.edu/
http://valgrind.org
https://github.com/mikaelj/rmalloc/commit/a64ab55d9277492a936d7d7acfb0a3416c098e81
http://www.opera.com

26 CHAPTER 5. SIMULATING APPLICATION RUNTIME

where op is one of N, F, L, S, M for New, Free, Load, Store and Modify,
respectively and size is how many bytes are affected by the operation (always 0
for F). The operation New has an address and size associated, and it’s therefore
possible to map memory access (L, S, M) to a specific pointer. This is done by
creating a unique identifier and mapping all keys from address to address+size
to that identifier. On free, conversely, all mappings in that address range are
removed. At each access a list of tuples <id, access type, address, size> is
recorded.

The output file (opsfile) has the following format:

<handle> <op> <address> <size>

This is done by the tools memtrace-run.sh and translate-memtrace-to-ops.py.
It took some effort to figure out the best way to perform the translation, how-
ever. I’ll discuss the effort below.

5.2.1 Linear Scan

My initial attempt was to scan through the entire list each time for each op-
eration. The problem is that Python is very slow and uses too much memory,
which my laptop with 4 GB of RAM and an intel Core i3 CPU can’t handle -
this only works for small-ish outputs. This because the list of handles is checked
for each memory access, i.e. a ∼ 2000 entries list for each memory access (∼
500 MB), quickly becomes unusable. I tried various approaches, such as moving
the code to Cython (formerly known as Pyrex), which translates Python code
into C and builds it as a Python extension module (a regular shared library),
but only doing that did not markedly speed things up.

5.2.2 Save CPU at the Expense of Memory

I eventually tried a mapping on the start and end addresses, where each access
address would be decremented towards start and incremented towards end. Each
address is checked against against a mapping from address to handle. If the value
(i.e. the memory handle) of the mapping is the same, I know that memory
access belongs to a specific handle. That is even slower than iterating through
2000 elements, because the hash has to be checked on average one lookup per
allocated byte in the memory area, even though the time complexity is similar:
O(n*m + c) - the constant makes it slower, assuming hash lookup is O(1) i.e.
c.

Finally, I came up with a brute-force solution: hash all addresses within
the requested memory area, from start to end, mapping each address to the
corresponding memory handle. The complexity is O(m), but blows up with a
MemoryError at about 2 GB data read (out of 12 GB in total) My server with
8 GB RAM has swap enabled, but by default Ubuntu 10.04 LTS doesn’t over-
commit memory. Setting /proc/sys/vm/overcommit_memory to 1 effectively
enables swap for application memory allocation. Using a 32-bit system to allo-
cate data larger than 4GB doesn’t work. I installed a 64-bit Ubuntu LiveCD
on a USB stick and did post-processing from that end. Now I could success-
fully translate a memory trace run to an ops file, given a computer with a large
amount of RAM.

5.2. TRANSLATING MEMORY ACCESS DATA TO OPS 27

5.2.3 More on Lifetime

The lifetime calculation could be more elaborate. For now the calculation is
fairly naive in that it only checks for long-lived object lifetime ranges, but it
could also be setup to scan for "sub-lifetimes", i.e. module-global. My guess is
that it would look like the histogram data in Figure 5.1 below, but located in the
middle. Calculating that would mean that start and end points for calculating
lifetime would be sliding, such that end is fixed and start moves towards end, or
the other way around, where start is fixed and end moves towards start. Storing
each value takes up lots of memory and analyzing the end-result by hand takes
a very long time since one’d have to look at each histogram. I’ve implemented
a simpler version of this, described below in Section 5.4.

5.2.4 Performance Optimization of Lifetime Calculation

Recall from definitions, Section 1.2, that lifetime is defined as number of ops on
own handle divided by ops for all other handles, for the given handle’s lifetime.
For example, let’s say handle A is created at time 0, handle B is created at time
10 and handle C is created at time 20. They all live until time 100 and each
have 100 ops, evenly divided throughout their lifetimes. The lifetimes of the
handles are:

� A: 100 / (100 + 100) = 50%

� B: 100 / (90 + 100) = 53%

� C: 100 / (80 + 89) = 59%

Each handle is mapped to a tuple <own, others>, and for each operation
either own or others is incremented, until the handle is freed, at which point
it’s moved to the set of inactive handles. This means going through all handles
for each operation, which for smaller datasets is OK. Even removing duplicates
(two successive ops on the same handle) is quadratic O(m*n) (m = ops, n =
live handles) takes too long time.

Instead, keep a counter of ops so far (ops_counter) and for each handle,
store the triple (handle id, # own ops, ops_counter at handle new) and in-
crease the number of own ops correspondingly. When the handle is freed, calcu-
late the "other ops" value as others_ops = current ops_counter - own - saved
ops_counter An example example with each line defined as ops counter | set of
alive | set of dead, action:

20 | {(a 5 0) (b 2 5) (c 10 7) (d 3 17)} | {}, (death b) =>

20 | {(a 5 0) (c 10 7) (d 3 17)} | {(b 2 20-5-2=13)}, (death a) =>

20 | {(c 10 7) (d 3 17)} | {(b 2 13) {a 5 20-5-0=15}, (death d) =>

20 | {(c 10 7) (d 3 17)} | {(b 2 13) (a 5 15) (d 3 20-17-3=0)},

(new e) =>

25 | {(c 10 7) (d 3 17) (e 5 20)} | {(b 2 13) (a 5 15) (d 3 0)},

(new f) =>

28 | {(c 10 7) (d 3 17) (e 5 20) (f 3 25)} |

{(b 2 13) (a 5 15) (d 3 0)}, (death e) =>

28 | {(c 10 7) (d 3 17) (e 5 20) (f 3 25)} |

{(b 2 13) (a 5 15) (d 3 0) (e 5 28-20-5=3}

28 CHAPTER 5. SIMULATING APPLICATION RUNTIME

At the end, any remaining live handles (due to missing frees) are moved to
the dead set.

This algorithm is O(m) + O(n), down from (Om*n).

5.3 Lifetime Visualization

A block with a lifetime close to the total number of operations is considered to
have a long lifetime and therefore created in the start of the application. The
macro lifetime of a block is the relation between all ops within its lifetime and
the total ops count of the application. A block with a small macro lifetime
therefore is an object that has a short life span, whereas a block with a large
macro lifetime is an object with a large life span. Typically a large value for
macro lifetime means it’s a global object and can be modelled as such.

A coarse locking lifetime based on the macro lifetime, with a threshold of
50%, is calculated at memtrace-to-ops translation time, as described in Section
5.2 above. The threshold value 50% is based on the assumption that any object
that has more than half of all memory accesses in one iteration of a loop is the
primary object on which the loop operates.

Based on the relation between ops accessing the block in question and ops
accessing other objects the access pattern of the object can be modeled. For
example, if an object has 100 ops within its lifetime, 90 of them its own and 10
others, chances are it’s an inner loop where the object is locked from its creation
to its destruction. Similarly, an object that is accessed few times during its
lifetime, compared to all others, would be locked as-needed. Calculating lifetime
requires a full opsfile, including all access ops.

It turns out that for some (larger) applications, lifetimes of short-lived ob-
jects are highly clustered, as seen in Figure 5.1. This is calculated by the tool
translate-ops-to-histogram.py as described in Section 5.4 below and visu-
alised here.

5.3. LIFETIME VISUALIZATION 29

Figure 5.1: This shows the number of objects within a specific lifetime. Short-
lived objects dominate.

By removing the short-lived objects, we can get a better understanding of
the distribution of the other objects in Figure 5.2.

Figure 5.2: Limited to blocks with a lifetime between 1% and 100%

And conversely, if we want to see the distribution of the short-lived objects

30 CHAPTER 5. SIMULATING APPLICATION RUNTIME

only, as in Figure 5.3.

Figure 5.3: Limited to blocks with a lifetime between 0% and 2%

5.4 Lifetime Calculation

Coarsely grained lifetime calculation is done automatically when the raw mem-
trace is translated into ops, as described above in Section 5.2. The method I’ll
describe in the following section is more refined but takes more time to calcu-
late. Like the coarse calculation, it is also automatic. All steps from measuring
memory access patterns, through simulating allocator performance for that spe-
cific app, down to creating graphs displaying memory and speed performance,
are automatic.

The algorithm works as follows: when a block is initially created, a threshold
value (life), is set to zero and will either increase or decrease depending on the
operations that come between the new operation and the free operation. A
memory access op for the current block increases life by 1, and conversely,
another block’s operation (regardless of type) decreases life by 0.5. Life is not
capped in the upper range but has a lower limit of 0. When life is higher than
0, the current operation’s lock status is set, otherwise cleared.

The value was chosen by testing different input parameters against random
data, and the graphs that looked best were verified against the smaller applica-
tion memtraces. This is the algorithm used, with different values for percent,
float speed and sink speed:

let life = 0

let lifetime = empty array

let number of points = 1000

for i from 0 to number of points:

5.4. LIFETIME CALCULATION 31

let operation belongs to current handle = random() < percent

if operation belongs to current handle:

life = life + float_speed

else:

if life >= sink_speed:

life = life - sink_speed

lifetime.append(life)

The results are shown in Figure 5.4.

Figure 5.4: Simulated lifetime calculations by varying the values of input
parameters.

Clockwise from upper left corner, we see that lock status (i.e. life > 0) varies
if the current handle is less than 30% of the ops, and if it’s less than 50%, it’ll
diverge towards always being locked -- which is sound, since any object that
is accessed so often is likely to be locked during its lifetime. With sink equal
to or larger than float, a jagged graph is produced where the current object is

32 CHAPTER 5. SIMULATING APPLICATION RUNTIME

constantly locked/unlocked. A real-world application would want to lock the
object once per tight loop and keep it locked until done, instead of continuously
locking/unlocking the handle inside the loop. The time under the graph where
lifetime is non-zero is one iteration of the loop.

When all ops have been processed, they are written out to a new file that in
addition to the regular ops also contains detailed locking information. Since the
number of objects is large and the calculation is independent of other objects,
the process can be broken down into smaller tasks. This is done using the
Python multiprocessing module. By recording start and stop indices (based
on the New or Free ops, respectively) into the input list, the list of start indices
can be broken down into smaller parts to maximize usage of multi-core systems.
To saturate the CPU, the tools automatically pick the number of cores plus two
as the number of worker threads.

In the case of no corresponding Free operation for the block, no lifetime
calculation is done, i.e. it is assumed to be unlocked. This is a limitation of the
calculation based on the observation of applications that have a large amount
of objects that are never explicitly freed. An implicit free could be inserted at
the point of the last memory access, but it is not implemented.

The fine grained calculation of this method is slower (O(m*n), where m
is the number of handles and n is the total number of operations), but inter-
sperses lock/unlock instructions throughout the lifetime of an object, instead
of forcing the object to be locked its entire lifetime. The more fine-grained
locking/unlocking, specifically unlocking, the more efficiently compacting can
be performed.

Hand tuning an application with lock/unlock inserted at the most appro-
priate locations as determined by manual static analysis and knowledge of the
application and comparing it to the approximated lifetime calculation, is not
done in this report, and would be a good subject for future work.

Chapter 6

Jeff: The Compacting

Allocator

6.1 Overview

In order to achieve compacting, memory must be accessed indirectly. This is
the signature:

void rminit(void *heap, size_t heap_size);

handle_t rmmalloc(size_t nbytes);

void rmfree(handle_t *handle);

void *lock(handle_t handle);

void unlock(handle_t handle);

void compact(uint32_t compact_time_max_ms);

handle_t is an opaque type. To get the actual memory pointed to at by the
handle, call lock() on it to obtain a normal pointer to memory. During the time
a block pointed out by a handle is locked, the compact operation is not allowed
to move it. If it could be moved, the pointer obtained by the client code would
no longer be valid. This also puts certain limitations on the compactor, since
it needs to deal with possibly locked blocks. Client code needs to be adapted
to this allocator, such that memory is always appropriately locked/unlocked as
needed. The compacting operation is discussed in more detail in Section 6.2.4.

6.2 Implementation

In the previous sections I described the general functionality. This section will in
more details describe how each of the key parts work, including memory layout
and performance metrics.

6.2.1 rminit

Recall the signature:

void rminit(void *heap, size_t heap_size);

33

34 CHAPTER 6. JEFF: THE COMPACTING ALLOCATOR

heap is the client-supplied heap of size heap_size. Jeff is self-contained
within the heap and requires no additional storage except for stack space.

Internal structures are initialized:

� Boundaries (g_memory_bottom, g_memory_top)

� Header blocks (g_header_root, g_unused_header_root)

� Free block slots (g_free_block_slots)

I’ll go through each one of them below, and their uses will be clarified as I
touch upon them later in the other parts of the allocator.

Boundaries (g_memory_bottom/g_memory_top)

Bottom of memory is the bottom of the heap and top is the highest used memory
address. Compacting resets the top to the highest used memory address.

Header blocks (g_header_root and g_unused_header_root)

Linked lists of all headers and the root of all unused headers.
The opaque type handle_t is a pointer to a header_t structure:

typedef struct header_t {

void *memory;

uint32_t size;

uint8_t flags;

struct header_t *next;

#if JEFF_MAX_RAM_VS_SLOWER_MALLOC == 0

struct header_t *next_unused;

#endif

};

This is the minimum amount of memory used by a block. Assuming a 32-bit
system, memory is 4 bytes, size is 4 bytes and flags is 1 byte. The header itself
is a linked list (next) that can be sorted in memory order in the compact step,
since the handles themselves cannot be moved as they’re used (in disguise) by
the client code. Flags can have one of the following values:

� Free (0)

� Unlocked (1)

� Locked (2)

� Weakly locked (4) (not implemented)

A weakly locked block can be treated as unlocked in the compacting phase so
it can be reclaimed. Care needs to be taken by the client code since compacting
invalidates the pointer to memory.

The array of header items grows down from the top of the client-supplied
heap. New handles are searched for starting at g_header_top and down until
g_header_bottom. If there is no free header when requested and there is no

6.2. IMPLEMENTATION 35

overlap between existing memory (including the newly requested size in case
of a malloc), g_header_bottom is decreased and a fresh handle is returned. If
g_header_bottom and g_memory_top are the same, NULL is returned to signal
an error.

The optional member next_unused is a compile-time optimization for speed-
ing up the O(n) find header operation to O(1) at the expense of memory.
g_unused_header_root is set to the header that is newly marked as unused
and the next pointer is set to the old unused header root. Setting memory to
NULL indicates an unused header.

g_header_root points to the latest used header. At compact time, it’s
sorted in memory order.

Free block slots (g_free_block_slots)

As touched upon earlier, this contains the memory blocks that have been freed
and not yet merged into unused space by a compact operation:

typedef struct free_memory_block_t {

header_t *header;

struct free_memory_block_t *next; // null if no next block.

} free_memory_block_t;

When a block is freed, a free_memory_block_t is stored in the first bytes.
Therefore, the minimum block size is 8 bytes, assuming a 32-bit system. The
header field stores the actual information about the block. By checking header->memory
against the address of the free_memory_block_t instance, we know if it’s a valid
free memory block. The next field points to the next block in the same size
range.

There are 𝑙𝑜𝑔2(ℎ𝑒𝑎𝑝_𝑠𝑖𝑧𝑒) (rounded up) slots. Freeing a block of size 472
bytes means placing it at the start of the linked list at index 9 and hanging
the previous list off the new block’s next pointer, i.e. a stack, and is rebuilt at
compact time. Adding a free block takes constant time.

6.2.2 rmmalloc

Minimum allocatable size is sizeof(free_memory_block_t) for keeping infor-
mation about the block for the free list. I’ll go through the process of allocation
step by step.

There are two cases: either there is space left after top of the memory for a
header and the requested memory, in which case the fast path is taken where
a header is allocated, g_memory_top is bumped and the header is associated
with the newly created memory and returned to the client. Allocating a header
means searching the header array for an unused block, or if the optimization
described above is enabled, following g_unused_header_root. If no header is
found, g_header_bottom grows downward if there is space, but there are always
two headers left for compacting (more on that in the section on compacting).

In the other case, there is no space left after g_memory_top and the free
block list must be scanned for an appropriate block. This is the most complex
part of alloc/free.

The time complexity of the first case with the aforementioned optimization is
O(1), or O(n) (in terms of number of handles in the system) in the unoptimized

36 CHAPTER 6. JEFF: THE COMPACTING ALLOCATOR

case. In the second case where memory can’t grow up, the time complexity is
worst case O(n) (in terms of the number of blocks of the specific size) and best
case O(1).

Find free block

Calculate the index 𝑘 = 𝑙𝑜𝑔2(𝑠𝑖𝑧𝑒)+1 into the free block slots list. As explained
earlier, the free block slot list has a stack (implemented as a singly linked list)
hanging off each slot, such that finding a suiting block will be a fast operation.
The exeption is for requests of blocks in the highest slot have to be searched in
full, since the first block found is not guaranteed to fit the size request, as the
slot k stores free blocks 2𝑘−1 ≤ 𝑛 < 2𝑘 and there is no larger 𝑘+1 slot to search
in.

In the normal case the free block list is looked up at k for a suiting block. If
the stack is empty, k is increased and the free block list again is checked until a
block is found. Finally, if there was no block found, the actual index 𝑙𝑜𝑔2(𝑠𝑖𝑧𝑒)
is searched for a block that will fit. Remember that the blocks in a specific slot
can be 2𝑘−1 ≤ 𝑛 < 2𝑘 and therefore there could be free blocks in slot k that are
large enough for the request. When a block is found, it’s shrunk into two smaller
blocks if large enough, one of the requested size and the remainder. Minimum
required size for a block to be shrunk is having one extra header available and
that the found block is sizeof(free_memory_block_t) bytes larger than the
requested size. Otherwise, the block is used as-is causing a small amount of
internal fragmentation. The remainder of the shrunk block is then inserted into
the tree at the proper location.

Returns NULL if no block was found.

Shrink block

Adjusts size of current block, allocates a new header for the remainder and
associates it with a free_memory_block_t and stores it in the shrunk block.

6.2.3 rmfree

Mark the block as unused.

6.2.4 rmcompact

The compacting operation consists of setup, compacting and finish.
Start with sorting all memory headers by pointer address, such that g_root_header

points to the lowest address in memory and by following the next pointer until
NULL all blocks can be iterated. All blocks have a header associated with them,
regardless of flags. This step only has to be done once each call to rmcompact().

Actual compacting is done in passes so it can be optionally time limited,
with a granularity of the time it takes to perform a single pass, so it is not a
hard limit. Also, the sorting in the beginning and the free block list rebuilding
in the end is not included in the time constraint.

One pass of moving blocks around

1. Get closest range of free headers (or stop if no headers found)

6.2. IMPLEMENTATION 37

1. If block directly after free header is locked, set a max size
on unlocked blocks.

2. Get closest range of unlocked headers (respecting max size if set)

1. No blocks found and limitation set on max size: if free
blocks were passed searching for unlocked blocks, try again
from the block directly after the free headers, else stop.

2. Set adjacent flag if last free’s next is first unlocked

3. Calculate offset from free area to unlocked area

4. Squish free headers into one header and associate memory with the
header

5. Move unlocked blocks to free area

1. Move data

2. Adjust used header pointers

6. Adjacent: relink blocks so unlocked headers are placed before what’s
left of free area, and free area pointing to header directly following
previous position of last unlocked header’s next header:

Initial configuration with blocks Unlocked 1-4, Free 1-2, Rest:

Move all used blocks back (i.e. to the left), relink free blocks:

Squish free blocks:

7. Non-adjacent: similar to adjacent, except blocks can’t just be simply
memmov’ed because of the locked blocks. Instead, only the blocks
that fit in the free space can be moved:

Initial configuration with blocks Free 1-3, Locked 1-2, Unlocked 1-3,
Rest:

Create free block 6 in the area where the used blocks are now:

Either: a) Block U3 is too large to fit in the free area:

38 CHAPTER 6. JEFF: THE COMPACTING ALLOCATOR

Or: b) Block U3 fits in the free area.

Then, Either: a) With a new block Free 5 with left-overs from Free
1-3 and F6 from the space between U1-U3 and Rest:

Or: b) Unlocked 3 fits, but not enough size to create a full block F5 --
instead extend size of Unlocked 3 with 0 < n < sizeof(free_memory_block_t)
bytes:

8. Continue to next round, repeating until time limit reached or done
(if no time limit set)

Finishing

At the end of the compacting, after the time-limited iterations, finishing calcu-
lations are done: calculate the highest used address and mark all (free) headers
above that as unused, adjust g_header_bottom and finally rebuild the free block
slots by iterating through g_header_root and placing free blocks in their des-
ignated slots.

6.2.5 rmdestroy

Doesn’t do anything - client code owns the heap passed to rminit().

6.3 Testing

As described in Chapter 3, unit testing is utilized where applicable.

6.3.1 Real-World Testing

Since the allocator does not have the interface of standard allocators client code
needs to be rewritten. The two major problems with this is that it requires
access to source code, and rewriting much of the source code. This is where
Steve (Chapter 7) is useful.

6.4. PROFILING 39

6.4 Profiling

The GNU profiling tool gprof 14 was used to find code hotspots, where the two
biggest finds were:

� log2()

� header_find_free()

In the spirit of first getting things to work, then optimize, the original log2()
implementation was a naive bitshift loop. Fortunately, there’s a GCC exten-
sion __builtin_clz() (Count Leading Zeroes) that is translated into efficient
machine code on at least x86 that can be used to write a fast log2(n) as
sizeof(n)*8 - 1 - clz(n). The hotspots in the rest of the code were evenly
distributed and no single point was more CPU-intense than another, except in
header_find_free(). As described above, there’s a compile-time optimization
that cuts down time from O(n) to O(1), which helped cut down execution time
even more at the expense of higher memory usage per block.

More details and benchmarks in Chapter 7.

6.5 Automatic Testing

I’ve introduced bugs in the functions called from the allocator interface to see
if the testing framework would pick them up. The idea is to introduce small
changes, so-called off-by-one errors, where (as the name suggest) a value or code
path is changed only slightly but causes errors. Below is a list of example bugs
that the automatic tests found, and could later be fixed. Automatic testing is
useful.

Function free_memory_block_t *block_from_header(header_t *header):

return (free_memory_block_t *)((uint8_t *)header->memory +

header->size) - 1;

Fuzzed

return (free_memory_block_t *)((uint8_t *)header->memory +

header->size);

Function uint32_t log2_(uint32_t n):

return sizeof(n)*8 - 1 - __builtin_clz(n);

Fuzzed

return sizeof(n)*8 - __builtin_clz(n);

Function inline bool header_is_unused(header_t *header):

40 CHAPTER 6. JEFF: THE COMPACTING ALLOCATOR

return header && header->memory == NULL;

Fuzzed

return header && header->memory != NULL;

Function inline void header_clear(header_t *h):

h->memory = NULL;

h->next = NULL;

Fuzzed (1)

//h->memory = NULL;

h->next = NULL;

Fuzzed (2)

h->memory = NULL;

//h->next = NULL;

Function header_t *header_new(bool insert_in_list, bool

spare_two_for_compact)

...

header->flags = HEADER_UNLOCKED;

header->memory = NULL;

...

if ((header->next < g_header_bottom || header->next >

g_header_top) && header != g_header_root) {

...

Fuzzed (1)

...

//header->flags = HEADER_UNLOCKED;

header->memory = NULL;

...

if ((header->next < g_header_bottom || header->next >

g_header_top) && header != g_header_root) {

...

Fuzzed (2)

...

6.5. AUTOMATIC TESTING 41

header->flags = HEADER_UNLOCKED;

header->memory = NULL;

...

if ((header->next < g_header_bottom || header->next >

g_header_top)) {

...

Function header_t *block_free(header_t *header)

block->next = g_free_block_slots[index];

g_free_block_slots[index] = block;

Fuzzed

g_free_block_slots[index] = block;

block->next = g_free_block_slots[index];

Function free_memory_block_t

*freeblock_shrink_with_header(free_memory_block_t, header_t *,

uint32_t)

h = header_new(/*insert_in_list*/true, /*force*/false);

Fuzzed (1)

h = header_new(/*insert_in_list*/false, /*force*/false);

Fuzzed (2)

h = header_new(/*insert_in_list*/true, /*force*/true);

Function header_t *freeblock_find(uint32_t size)

int target_k = log2_(size)+1;

Fuzzed

int target_k = log2_(size);

Function rmcompact(int maxtime)

uint32_t used_offset = header_memory_offset(free_first,

unlocked_first);

...

header_t *free_memory = header_new(/*insert_in_list*/false,

/*force*/true)

42 CHAPTER 6. JEFF: THE COMPACTING ALLOCATOR

Fuzzed (1)

uint32_t used_offset = header_memory_offset(free_first,

free_last);

Fuzzed (2)

header_t *free_memory = header_new(/*insert_in_list*/true,

/*force*/true)

14http://www.gnu.org/software/binutils/

http://www.gnu.org/software/binutils/

Chapter 7

Steve: The Benchmark Tool

Steve is a benchmark tool for collecting and visualizing runtime memory access
and allocation patterns in arbitrary applications that use the system malloc,
without access to source code, and performing tests without running the actual
application.

Figure 7.1: Architectural diagram of Steve

Multiple statistics files can be fed to the grapher for doing comparisons
between different allocators on the same input data set.

7.1 Modules

Steve is a collection of modules:

� translate-memtrace-to-ops.py

� translate-ops-to-histogram.py

� translate-ops-to-locking-lifetime.py

43

44 CHAPTER 7. STEVE: THE BENCHMARK TOOL

� run_allocator_stats.sh, run_allocator_stats_payload.sh

� run_memory_frag_animation.sh

� run_graphs_from_allocstats.py

� run_memory_frag_animation_plot_animation.py

For a detailed description, see the appendix.

7.2 Allocator Driver Usage

Steve does, in essence, two tasks: visualize memory and plot benchmark data.
The framework allows for easy extension with more tools.

� run_memory_frag_animation.sh: create an animated memory allocation
visualisation.

� run_graphs_from_allocstats.py: create benchmarks based on one or
many allocator statistics inputs (generated by run_allocator_stats.sh)

The tools are described in more detail in the next section.
All alloc drivers are linked to the same main program and have the same

command line parameters:

� --peakmem opsfile

Prints out theoretical heap size allocated as reported by the
allocator driver. --allocstats passes this data to benchmark
data files for later processing by the graphing tool.

Parameters:

– opsfile - operations file created by translate-memtrace-to-ops.py.

� --allocstats opsfile resultfile killpercent oplimit peakmemsize

theoretical_heap_size

Generates a file in JSON format in the following format. Header:

driver = "jemalloc"

opsfile = "result.program-ops"

heap_size = 13544700

theoretical_heap_size = 4514900

opmode = ’allocstats’

alloc_stats = [

Then, per line a dictionary with the following keys:

{’op_index’: <sequene number>,

’free’: <bytes: integer>,

’used’: <bytes: integer>,

’overhead’: <bytes: integer>,

’maxmem’: <bytes: integer>,

’current_op_time’: <microseconds: integer>,

’oom_time’: <microsecond: integer>,

’optime_maxmem’: <microsecond: integer>,

7.2. ALLOCATOR DRIVER USAGE 45

’op’: <operation <- N, F, A, L, U: char>,

’size’: <bytes: integer>

}

Parameters:

– opsfile: Operations file created by translate-memtrace-to-ops.py.

– resultfile: Statistics output file, convention is to use file stem
of opsfile (without "-ops") and append "-allocstats"

– killpercent: Optionally rewind and randomly free killpercent
(0-100) of all headers at EOF (end-of-file), to simulate an
application that destroys and creates new documents. The
value 100000 means no rewinding or killing takes place, i.e.
just one round of the data gathered by running the appli-
cation to be benchmarked.

– oplimit: Which operation ID (0..total ops count) to write
allocation stats for. The special value 0 is for writing the
original header. Typically the driver application is called in
a for loop from 0 to the number of operations, i.e. number
of lines in the opsfile.

� --memplot opsfile [heap_size]

For each operation, call out run_memory_frag_animation_plot_animation.py
to create a PNG of the heap at that point in time. The driver
application only needs to be run once.

Parameters:

– opsfile - operations file created by translate-memtrace-to-ops.py.

– (optional) heap_size - maximum heap size to use

These are not called directly, but instead called from by the modules de-
scribed below.

At startup the mode of operation of the allocator driver is set to one of these.
All modes perform follow the same basic flow:

1. Allocate heap according to specified heap size or use predefined size
(currently 1 GB). If heap allocation fails, decrease by 10% until
success.

2. Allocate and initialize colormap as 1
4 of heap size. (more on colormap

later)

3. Initialize driver.

4. Initialize randomness with compile-time set seed.

5. Open opsfile.

6. Run mode’s main loop.

7. Save statistics created by mode’s main loop.

8. Destroy driver.

The main loop follows the same basic structure:

46 CHAPTER 7. STEVE: THE BENCHMARK TOOL

1. Scan a line of the ops file and put in the variables handle, op, address
and size.

2. Switch on op:

� Op is N (New): Call user_malloc with the size. On OOM, call
user_handle_oom and call user_malloc again if successfully
handled. Make sure that there was no OOM on the final malloc.
Retrieve the highest address in use by user_highest_address().
Store object pointer (that may or may not be a directly acces-
sible memory address) and memory address (if available) from
malloc along with size in hash tables keyed on the handle id.

� Op is F (Free): Retrieve the object pointer and call user_free.

� Op is L (Lock): Retrieve the object pointer and all user_lock.

� Op is U (Unlock): Retrieve the object pointer and all user_unlock.

Access (load, store, modify) operations are not handled in the loop
since their use is limited to calculating lifetime statistics and locking
behaviour.

3. Exit on EOF.

7.3 Driver Modes

In this section, I’ll describe the specifics on the three main loops (peakmem,
allocstats, memplot) and then the tools that use them.

7.3.1 peakmem

Find the largest amount of memory during the driver’s lifetime for a specific
opsfile, as calculated by the highest address+size of a block minus the start
address of the heap. This number is used as a theoretical maximum heap size
to measure the amount of overhead incurred by the allocator, used by the module
run_allocator_stats.sh.

7.3.2 allocstats

The purpose is to allow for the driver application to run several rounds of the
application data, as explained above, to do a rough simulation of an application
creating and destroying documents. It stores timing info for new and free and
adds rewinding of the input file and random free of a certain percentage, if
requested, of the allocated objects on opsfile EOF.

Used by the module run_allocator_stats.sh.

7.3.3 memplot

At each operation, a colormap is updated with all known objects. In order to
retrieve the physical memory address they are locked (throuh user_lock) and
the pointer is registered.

7.4. TESTED ALLOCATORS 47

Colormap is 1
4 the size of the heap size, such that each 4-byte word maps

onto a byte. The colormap is initially filled with white (for overhead), with a new
operation painted as red and free painted as green. The heap is correspondingly
filled with HEAP_INITIAL (0xDEADBEEF) initially, and newly created blocks are
filled with HEAP_ALLOC (0xBEEFBABE) and blocks that are just about to be freed
are filled with HEAP_FREE (0xDEADBABE).

Now, by scanning the heap for values that are not in the set HEAP_INITIAL,
HEAP_ALLOC nor HEAP_FREE, it can be concluded that this is overhead (i.e.
allocator-internal structures). Paint the corresponding memory location in the
colormap with white (for overhead). It also adds non-optional rewinding to run
until OOM.

7.4 Tested Allocators

The allocator often used by Linux and elsewhere in the open-source world
is Doug Lea’s Malloc dlmalloc, that performs well in the average case. For
FreeBSD, Poul-Henning Kamp wrote an allocator that he aptly named pkhmal-
loc. dlmalloc aims to be good enough for most single-threaded use cases and
is well-documented, therefore attractive to anyone in need of an allocator. It
does not perform optimally in multi-threaded applications because of the coarse
(operation-level) locking. Other allocators are designed to be used in a mutli-
threaded application where locking is performed on a finer level, not blocking
other threads trying to use the allocator at the same time.

In fact, at Opera, dlmalloc was used internally to better tune allocator char-
acteristics for memory-constrained devices, where all available memory was re-
quested at startup and then used by the internal malloc.

All allocators’ new and free calls mapped to the corresponding function call.
Handle OOM is a no-op except for Jeff. No allocators use mmap.

7.4.1 rmmalloc (Jeff)

Maps all user_... calls to the corresponding calls in Jeff. For the compacting
version, user_handle_oom always performs a full compact, and on the non-
compacting version, user_handle_oom is a no-op.

The workings of Jeff is described earlier in this paper.

7.4.2 jemalloc (v1.162 2008/02/06)

jemalloc is an allocator written by Jason Evans, originally written for a custom
development environment circa 2005, later integrated into FreeBSD for its multi-
threading capabilities and later further adapted in 2007 for use by the Firefox
project to deal with fragmentation issues. It’s since been adapted for heavy-
duty use in the Facebook servers15. As of 2010, it still performs better than the
system-provided allocators in MacOS, Windows and Linux.16

15https://github.com/jemalloc/jemalloc/wiki/History

16http://www.quora.com/Who-wrote-jemalloc-and-what-motivated-its-creation-and-implementation

https://github.com/jemalloc/jemalloc/wiki/History
http://www.quora.com/Who-wrote-jemalloc-and-what-motivated-its-creation-and-implementation

48 CHAPTER 7. STEVE: THE BENCHMARK TOOL

7.4.3 dlmalloc v2.8.6

dlmalloc is an allocator written by Doug Lea and is used by the GNU standard
C library, glibc. The source code states the following about its goal:

This is not the fastest, most space-conserving, most portable, or
most tunable malloc ever written. However it is among the fastest
while also being among the most space-conserving, portable and
tunable. Consistent balance across these factors results in a good
general-purpose allocator for malloc-intensive programs.

7.4.4 tcmalloc (gperftools-2.1)

gperftools17 is written by Google and includes a profiling/benchmark frame-
work/tools. It is used by, among others, Google Chrome, MySQL and WebKit
Fang (2012), which in turn is used by many other projects such as Apple’s
Safari. It includes the allocator tcmalloc.

17http://code.google.com/p/gperftools/

http://code.google.com/p/gperftools/

Chapter 8

Results

8.1 Limitations

Both tcmalloc and jemalloc perform poorly with mmap() disabled, and in some
cases they did not manage to finish allocation simulation. In those cases the
allocators are omitted from the results table. The first thing Steve does is to
calculate the maximum heap size used by the allocator for an application, by
starting from the theoretical heap size for an ideal allocator and increasing that
value until no OOMs occur. If the limit on that increase is reached, the allocator
is marked as did not finish.

8.2 Input Data

Measuring an allocator must be done in conjunction with input data. These are
the applications tested

� Opera v12.018: load http://www.google.com and exit.

� StarOffice (LibreOffice) 4.0.2.219: open a blank word processor document
and exit.

� sqlite 2.8.17 (Ubuntu 13.04’s default version)20: load 17 MB phpBB321

SQL data.

� ls 8.20 (Ubuntu 13.04’s default version)22: display the /bin directory.

� latex 3.1415926-2.4-1.40.1323: paper.tex (96 lines, 2.6 KB).

� GNU tar 1.27.1 (Ubuntu 13.04’s default version)24: compressing the con-
tents of the Valgrind 3.9.0 source distribution (87 MB).

49

http://www.google.com

50 CHAPTER 8. RESULTS

The results are presented in charts and tables. I’ll describe what they mean
first, then give the results.

8.3 Keys To Read Charts and Tables

8.3.1 Drivers

� rmmalloc: Jeff without compacting

� rmmalloc-c: Jeff with compacting

� rmmalloc-c-m: Jeff with compacting and maximum memory tweak

8.3.2 Charts

There are two types of charts, one of performance in time and one of performance
in space.

Speed chart.

� X axis: A counter that is increased by one at each new, free, lock and
unlock operation.

� Y axis: The execution time of the operation, on a log10 -scale.

Size chart.

� X axis: Same as above.

� Y axis: The maximum allocatable amount of memory relative to the max-
imum heap size at each point in time, by running the application to that
point, trying a maximum allocation and then restarting the application,
continuing to to the next point.

8.3.3 Tables

Scoring explained:

� Let 𝐴1..𝐴𝑛 be all allocators.

� Let 𝑂1..𝑂𝑚 be all operations in the application currently being measured.

� Let 𝑆𝑖𝑗 where 𝑖 = 1..𝑛, 𝑗 = 1..𝑚 be the score for the allocator 𝑖 at operation
𝑗, such that 𝑆𝑖𝑗 ∈ 0..𝑛, where 0 is the best result and n is the worst.

� Let 𝑃𝑖 ∈ 0..1.0 be the penalty of any allocator 𝑖 ∈ 𝐴1..𝐴𝑛, defined as
𝑃𝑖 =

1
𝑛*𝑚

∑︀𝑚
𝑗=1 𝑆𝑖𝑗 , where 0 is best and 1.0 is worst.

18http://www.opera.com

19http://www.libreoffice.org

20http://www.sqlite.org

21http://www.phpbb.com - a bulletin-board system

22http://www.gnu.org/software/coreutils/

23http://www.latex-project.org

24https://www.gnu.org/software/tar/

http://www.opera.com
http://www.libreoffice.org
http://www.sqlite.org
http://www.phpbb.com
http://www.gnu.org/software/coreutils/
http://www.latex-project.org
https://www.gnu.org/software/tar/

8.4. RESULTS 51

� Let 𝐵𝑖 ∈ 𝐴1..𝐴𝑛 be the number of times the allocator 𝑖 has performed
best.

� Let 𝑊𝑖 ∈ 𝐴1..𝐴𝑛 be the number of times the allocator 𝑖 has performed
worst.

Space table, sorted in descending order with best first.

� Driver: Name of the driver

� Penalty (c): As given above.

� Penalty (w): Score weighted by the distance to the lowest scoring allo-

cator. Let 𝑏 be the best performing allocator, then 𝑆𝑤𝑖𝑗 =
𝑆𝑖𝑗−𝑆𝑏𝑗

𝑆𝑏𝑗
where

𝑏 is the best performing allocator.

� Best: Ratio of 𝐵𝑖

𝑛 ∈ 0..1.0.

� Worst: Ratio of 𝑊𝑖

𝑛 ∈ 0..1.0.

Speed table, same sorting as the space table. In addition to the fields in
speed table (applied to size, instead of speed), these fields are defined:

� Average: Average speed of all operations for a given allocator.

� Median: Median speed of all operations for a given allocator.

Penalty (c) can be considered to be the average internal ranking of an allo-
cator, whereas penalty (w) shows the average internal weighted by the distance
to the best allocator. Therefore, penalty (w) gives the reader a clue on the
allocator’s absolute performance, and it is also less smoothed out by simply
averaging. An example of this can be seen in Table 8.1 below.

All tables are sorted by penalty (c).

8.4 Results

The results are very interesting in that there’s a variation between the allocators,
which of course is expected, but also between the different applications tested,
each with a unique memory usage patterns. Two separate patterns can be
discerned when it comes to speed, with Figures 8.1, 8.2, 8.3 in one group and
8.4, 8.5, 8.6 in the other.

Something else to note is that jemalloc performs badly, very likely because
of the limitation to only use sbrk() for requesting memory from the operating
system.

8.4.1 StarOffice

Command line used: soffice

Simulated using full lockops.

52 CHAPTER 8. RESULTS

Figure 8.1: Soffice results. Poor performance of jemalloc.

The chart in Figure 8.1 clearly shows the space performance of the tested
allocators, whereas the speed chart is harder to read because of the similar
speeds and the number of allocators tested. Tables 8.1 and 8.2 are particularly
useful here.

Speed

Driver Penalty (c/w) Best Worst Average Median

rmmalloc 23% / 18.30% 30.00% 3.22% 209 ns 171 ns

rmmalloc-c 23% / 15.80% 27.29% 1.69% 205 ns 178 ns

tcmalloc 25% / 54.76% 34.07% 6.44% 286 ns 164 ns

jemalloc 47% / 1378.68% 0.34% 10.00% 9751 ns 228 ns

dlmalloc 54% / 87.60% 8.14% 11.86% 372 ns 370 ns

rmmalloc-c-m 75% / 205.50% 0.17% 66.78% 562 ns 483 ns

Table 8.1: Speed measurements for soffice

8.4. RESULTS 53

Space

Driver Penalty (c/w) Best Worst

tcmalloc 0% / 0.00% 100.00% 0.00%

dlmalloc 28% / 1.42% 0.00% 0.00%

rmmalloc-c-m 29% / 4.36% 0.00% 0.00%

rmmalloc 46% / 6.80% 0.00% 0.00%

rmmalloc-c 62% / 9.08% 0.00% 0.00%

jemalloc 83% / 78.88% 0.00% 100.00%

Table 8.2: Space measurements for soffice

As explained above, the penalty number by itself can be misleading. For
example, in Table 8.1 we see that e.g. both rmmalloc and rmmalloc-c have
the same penalty (c), but they differ in other metrics. Which metric is more
important depends on the application at hand. For certain applications, it might
be important that it performs predictably, in which case an allocator that has
a high best and a high worst is a bad choice.

The space metrics in Table 8.2 paints a clearer picture with two outliers, one
in tcmalloc performing better than all other allocators, and jemalloc performing
worse than all other allocators.

54 CHAPTER 8. RESULTS

8.4.2 sqlite

Command line used: sqlite < gkk_styrkelyft_se.sql

Simulated using full lockops.
Results in Figure 8.2, Table 8.3 and Table 8.4.

Figure 8.2: Sqlite results.

Again, bad performance of jemalloc in both measurements.

Speed

Driver Penalty (c/w) Best Worst Average Median

jemalloc 14% / 4726.79% 74.00% 5.60% 30152 ns 0 ns

rmmalloc-c 30% / 5718.10% 10.20% 1.40% 236 ns 245 ns

rmmalloc 38% / 8647.63% 6.00% 1.40% 262 ns 257 ns

tcmalloc 42% / 13830.88% 4.80% 28.40% 434 ns 250 ns

dlmalloc 48% / 10978.71% 4.20% 1.00% 286 ns 272 ns

rmmalloc-c-m 75% / 25289.42% 0.80% 62.20% 464 ns 442 ns

Table 8.3: Speed measurements for sqlite

8.4. RESULTS 55

Space

Driver Penalty (c/w) Best Worst

tcmalloc 0% / 0.00% 100.00% 0.00%

rmmalloc-c-m 24% / 8.14% 0.00% 0.00%

rmmalloc 41% / 13.22% 0.00% 0.00%

dlmalloc 42% / 9.59% 0.00% 0.00%

rmmalloc-c 58% / 18.02% 0.00% 0.00%

jemalloc 83% / 82.16% 0.00% 100.00%

Table 8.4: Space measurements for sqlite

The speed table 8.3 is slightly confusing with regard to jemalloc, but can
easily be understood if examined along with the corresponding graph. In fact,
it performs rather well, up until the point where it fails to work at all. This
also skews the other allocator’s penalty (w) numbers, which have to be viewed
in relation to the base line which is jemalloc. Adjusting the number, we instead
get the following penalty (w) numbers:

� jemalloc 100

� rmmalloc-c: 120

� rmmalloc: 183

� tcmalloc: 292

� dlmalloc: 232

� rmmalloc-c-m: 530

As for the space table 8.4, rmmalloc-c-m which performed badly in speed
instead performs best when it comes to space. A better compromise between
the two is rmmalloc-c, performing well in both space in time.

56 CHAPTER 8. RESULTS

8.4.3 ls

Command line used: ls /bin

Simulated using full lockops.
Results in Figure 8.3, Table 8.5 and Table 8.6.

Figure 8.3: ls results.

The memory chart shows how memory allocation and memory use are split
up in ls. First, it allocates data (op 0-40), then it operates on the data, does
more allocation of "simpler" data sizes (a request that takes less time to serve,
possibly by being of a size that can be handed out from a small objects pool
or similar), followed by more data operations and finally a small allocation
operation, most likely a free. Again, jemalloc did not survive past the initial
allocation operations.

8.4. RESULTS 57

Speed

Driver Penalty (c/w) Best Worst Average Median

jemalloc 16% / 1406.11% 73.75% 10.62% 20404 ns 0 ns

rmmalloc-c 35% / 25452.74% 14.38% 3.12% 752 ns 776 ns

rmmalloc 35% / 19559.69% 4.38% 2.50% 713 ns 724 ns

tcmalloc 42% / 22475.24% 2.50% 18.12% 1840 ns 799 ns

dlmalloc 51% / 39241.38% 5.00% 5.62% 1007 ns 897 ns

rmmalloc-c-m 68% / 56677.64% 0.00% 60.00% 982 ns 1022 ns

Table 8.5: Speed measurements for ls

Space

Driver Penalty (c/w) Best Worst

tcmalloc 0% / 0.00% 100.00% 0.00%

rmmalloc-c-m 24% / 5.83% 0.00% 0.00%

rmmalloc 41% / 9.35% 0.00% 0.00%

dlmalloc 42% / 6.00% 0.00% 0.00%

rmmalloc-c 58% / 12.74% 0.00% 0.00%

jemalloc 83% / 82.75% 0.00% 100.00%

Table 8.6: Space measurements for ls

Starting with the speed table we see similarly to previous measurements
where jemalloc failed early, that the absolute results are skewed but the internal
order is still correct. Good performance of rmmalloc but also of tcmalloc which
has differing results. As for memory efficiency, tcmalloc stands out after which
the results for rmmalloc and dlmalloc are very similar. rmmalloc-c-m fares
slightly better, but is on the other hand very time consuming. This might not
be a trade-off the client code can make.

8.4.4 tar with bzip2 compression

Command line used: tar cjf /tmp/valgrind-3.9.0.tar.bz2 /tmp/valgrind-3.9.0

Simulated using full lockops.

Results in Figure 8.4, Table 8.7 and Table 8.8.

58 CHAPTER 8. RESULTS

Figure 8.4: tar cjf results.

For the linearly growing allocation pattern used in tar, rmalloc-c-m does not
fare well with its exponential algorithm. The others are segmented, with dlmal-
loc coming out as the fastest, followed by rmmalloc. As for memory efficiency,
dlmalloc is the clear winner here.

Speed

Driver Penalty (c/w) Best Worst Average Median

dlmalloc 15% / 5.73% 50.96% 0.00% 233 ns 235 ns

rmmalloc-c 26% / 12.71% 23.06% 0.00% 257 ns 258 ns

rmmalloc 26% / 12.06% 23.19% 0.00% 256 ns 256 ns

jemalloc 50% / 100.08% 2.79% 0.37% 1228 ns 365 ns

rmmalloc-c-m 79% / 15087.61% 0.00% 99.63% 36592 ns 34975 ns

Table 8.7: Speed measurements for tar

8.4. RESULTS 59

Space

Driver Penalty (c/w) Best Worst

dlmalloc 0% / 0.00% 99.93% 0.00%

rmmalloc-c-m 19% / 5.15% 0.07% 0.00%

rmmalloc 39% / 10.49% 0.00% 0.00%

rmmalloc-c 59% / 15.74% 0.00% 0.00%

jemalloc 80% / 79.89% 0.00% 100.00%

Table 8.8: Space measurements for tar

There are no real surprises in speed in Table 8.7, since the graphs are easy
to interpret directly. Here it’s important to note that even though the space
numbers in Table 8.8 look good enough for the rmmalloc allocator (and vari-
ants), it’s still performs a lot worse than dlmalloc. It is not sufficient to look
only at the numbers.

60 CHAPTER 8. RESULTS

8.4.5 latex

Command line used: latex paper.tex

Simulated using full lockops.
Results in Figure 8.5, Table 8.9 and Table 8.10 (tcmalloc did not finish).

Figure 8.5: latex results.

A very simple linear allocation pattern, where we clearly see the time in-
efficiency of rmalloc-c-m because of its exponential search. It does however
fare well when it comes to space. Even rmalloc-c which has fairly good per-
formance in time still has a exponential tendency whereas dlmalloc is mostly
linear. Here’s a case where the trade-off might not be worth it, especially since
dlmalloc performs better in both areas.

8.4. RESULTS 61

Speed

Driver Penalty (c/w) Best Worst Average Median

dlmalloc 1% / 1.54% 93.49% 0.00% 167 ns 152 ns

jemalloc 23% / 65.43% 4.65% 0.03% 621 ns 224 ns

rmmalloc-c 46% / 122.33% 1.13% 0.00% 523 ns 428 ns

rmmalloc 47% / 124.81% 0.73% 0.00% 530 ns 417 ns

rmmalloc-c-m 79% / 189701.98% 0.00% 99.97% 372546 ns 268695 ns

Table 8.9: Speed measurements for latex

Space

Driver Penalty (c/w) Best Worst

dlmalloc 0% / 0.00% 99.93% 0.00%

rmmalloc-c-m 19% / 0.72% 0.03% 0.00%

rmmalloc 39% / 1.60% 0.00% 0.00%

rmmalloc-c 59% / 2.40% 0.03% 0.00%

jemalloc 80% / 80.00% 0.00% 100.00%

Table 8.10: Space measurements for latex

No surprises here since the graphs are easy to read for this test case.

62 CHAPTER 8. RESULTS

8.4.6 opera

Command line used: opera
Due to memory/CPU constraints, I was not able to perform a locking data

calculation. The results are therefore without any locking/unlocking, which
means that any compacting operations are optimal (no locked blocks).

Results in Figure 8.6, Table 8.11 and Table 8.12.

Figure 8.6: Opera results.

We see the same characteristics as in the LaTeX test above, except for the
ranges where no allocation operations happen. jemalloc performs well speed-
wise but badly in available space.

8.4. RESULTS 63

Speed

Driver Penalty (c/w) Best Worst Average Median

dlmalloc 4% / 1.75% 83.19% 0.00% 239 ns 233 ns

jemalloc 26% / 125.39% 9.37% 0.03% 1000 ns 372 ns

rmmalloc-c 44% / 124.86% 2.82% 0.00% 752 ns 632 ns

rmmalloc 44% / 132.46% 4.62% 0.00% 779 ns 704 ns

rmmalloc-c-m 79% / 310598.14% 0.00% 99.97% 861988 ns 687897 ns

Table 8.11: Speed measurements for opera

Space

Driver Penalty (c/w) Best Worst

dlmalloc 6% / 0.36% 89.20% 0.00%

rmmalloc-c-m 19% / 2.88% 0.03% 0.00%

rmmalloc 35% / 5.88% 0.00% 0.00%

rmmalloc-c 57% / 8.82% 10.76% 0.00%

jemalloc 80% / 78.51% 0.00% 100.00%

Table 8.12: Space measurements for opera

Again, skewed results because of jemalloc. By far fastest and most space-
efficient is dlmalloc in this type of scenario.

Chapter 9

Conclusions

9.1 Speed

Calculate the penalty for the fields penalty, best, worst and average per applica-
tion, which gives each allocator a sum of penalties for each field. By taking the
average of these penalties, we can tell the position of each allocator. Allocators
that did not finish are given the maximum penalty 5.

This is summarized in Table 9.1 below, and we can make a final scoring of
the allocators:

1. rmalloc-c (Jeff: compacting)

2. rmalloc (Jeff: plain)

3. dlmalloc

4. jemalloc

5. tcmalloc

6. rmalloc-c-m (Jeff: compacting, maxmem)

Speed

Driver Penalty Best Worst Average Average penalty

rmalloc 12 14 2 7 8.8

rmalloc-c 8 9 2 5 6.0

rmalloc-c-m 27 27 20 22 24.0

dlmalloc 12 11 6 8 9.3

jemalloc 8 9 11 23 12.8

tcmalloc 23 22 24 23 23.0

Table 9.1: Positions of allocators for speed

64

9.2. MEMORY 65

9.2 Memory

Calculated the same way as speed. Because of the extra indirection layer, there
will always be more memory used per allocated block. Summary in Table 9.2
below with scoring of the allocators:

1. dlmalloc

2. rmalloc-c-m (Jeff: compacting, maxmem)

3. rmalloc (Jeff: plain)

4. rmalloc-c (Jeff: compacting)

5. tcmalloc

6. jemalloc

Memory

Driver Penalty Best Worst Average penalty

rmalloc 13 10 0 7.6

rmalloc-c 21 7 0 9.3

rmalloc-c-m 7 7 0 4.6

dlmalloc 7 3 0 3.3

jemalloc 27 9 6 14.0

tcmalloc 15 13 10 12.6

Table 9.2: Positions of allocators for memory

9.3 Discussion

Important to note when making a decision on which allocator to use.is that
tcmalloc was not able to finish all tests. Most of the tested allocators were
designed to use mmap() for memory allocation along with sbrk() which likely
skewed the results. In particular jemalloc performs badly, which could be caused
by it being optimized for mmap().

Noteworthy is that dlmalloc still performs better than Jeff with compacting
and specific support for maximum available memory. It is possible that fitting
Jeff’s interface on top of an existing tested and quick allocator, e.g. dlmalloc,
would have given better runtime characteristics in both space and time. Jeff is
a very simplistic implementation of a buddy-style allocator without any pools
for small objects and similar techniques found in most modern allocators.

Another conclusion to be drawn from the graphs is that there are cases
where a fairly naive allocator, such as Jeff, still performs almost as well as a
more complex allocator, such as dlmalloc. There might be cases where the
trade-off in code size versus memory efficiency and speed might be worth it, e.g.
when the amount of code storage media is limited, again, common in embedded
systems with only kilobytes of code ROM.

66 CHAPTER 9. CONCLUSIONS

Jeff still does perform quite well, which means the idea itself could be ex-
panded on in the future. Due to time constraints, larger applications that are
more similar to real-life situations could not be tested since the lockops calcu-
lation took too long time. Speed and memory characteristics could very well
differ for such an application, especially if it were to run for a longer time.

9.4 Limitations and Future Work

9.4.1 Jeff: Limitations

In order to keep the code simple, I made two decisions in the beginning:

� The allocator does not align memory of allocated chunks to boundaries.
On older computer architectures, accessing non-aligned memory will cause
an access violation. In newer architectures, the code runs with a small
speed penalty.

� No thread-safety. This means that the behaviour of calling any functions
exposed by the allocator from different threads at the same time is unde-
fined, and will likely cause data corruption.

9.4.2 Jeff: Future Work

Features

� Add a callback when moving a locked block, for simpler compact operation
and client code so that memory does not have to be locked/unlocked
manually. Instead, they could be locked during their entire lifetime. On
the other hand, there is a risk that it would lead to the lookup table being
on the client side instead of in the allocator. Depends on use case.

� Use bits of pointer to memory block, if size is limited. In practice, a
special-purpose allocator such as Jeff will likely work with less than the
full 32 bits. (For example, limiting to max 1 GB heap gives two extra bits
for flags.)

� Weak locking

� Introduce a mature generation for blocks that have been locked for n
compactions. This would require application co-operation in updating
any references to the block.

Implementation Optimizations

� Similar to the earlier point, reduce next_unused to store offset into a heap
array. This limits the maximum number of live blocks to 2𝑠𝑖𝑧𝑒𝑜𝑓(𝑛𝑒𝑥𝑡_𝑢𝑛𝑢𝑠𝑒𝑑_𝑜𝑓𝑓𝑠𝑒𝑡),
which might not be an issue. It could be a compile-time setting.

� Automatic merge with adjacent previous/next block in free/new. This
would however cause the free list slots contain too large blocks for its
index.

� Quick free block find overwrites itself, issue #1 in the Github rmalloc issue
tracker.

9.4. LIMITATIONS AND FUTURE WORK 67

9.4.3 Steve: Limitations

As noted in the discussion, the only mechanism for retrieving data from the
system for the tested allocators is using sbrk(). Moreover, there are no hand-
tuned reference applications, where optimal locking/unlocking is manually in-
serted. This was not done because of time constraints, but would be interesting
to do in the future to establish a baseline to which other allocators could be
compared.

9.4.4 Steve: Future Work

Simplification

� Simplify running tests, specifically setting CORES, ALLOCATOR and KILLPERCENT.

� Load allocators as shared libraries instead of linking to plot.cpp.

� Restart simulation

� Don’t use part files, if possible.

Features

� Reintroduce colormap for calculating theoretical free size from overhead
marked in the colormap.

� Measure how large part of the total number of blocks are locked at com-
pacting time.

� Investigate stack-based behaviour of computation (and thus allocation)
for a possibly more realistic heuristic for calculating locking.

Chapter 10

References

� Garbage Collection - Algorithms for Automatic Dynamic Memory Man-
agement (Richard Jones, Rafael Lins, 1997, WILEY PRESS)

� Analysis on Dynamic Memory Allocation (Wenbin Fang, May 2012)

� The Memory Fragmentation Problem: Solved? (Mark S. Johnstone, Paul
R. Wilson, 1998)

� A Scalable Concurrent malloc(3) Implementation for FreeBSD (Jason Evans,
April 2006) - http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/
jemalloc.pdf

� Memory Management in the Java HotSpot Virtual Machine (Sun Mi-
crosystems, April 2006) - http://www.oracle.com/technetwork/java/
javase/memorymanagement-whitepaper-150215.pdf

68

http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf
http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf

Chapter 11

Appendix

The report and the source code in its entirety can be found on GitHub, http:
//github.com/mikaelj/rmalloc

11.1 Tools

11.1.1 memtrace-run.sh and translate-memtrace-to-ops.py

Generates memtrace data from an application run, and translates memtrace
data to ops file, respectively, as described in section 5.2.

11.1.2 translate-ops-to-histogram.py

To visualize and experiment with different ways of calculating lifetime I have a
small application that takes as input an ops file (created by translate-memtrace-to-ops.py),
to visualize macro lifetime in different intervals. This is described in Section 5.3.

11.1.3 translate-ops-to-locking-lifetime.py

translate-memtrace-to-ops.py produces coarse locking that is quick to cal-
culate, since it simply looks at the macro lifetime of an object and keeps it
locked during its entire lifetime. This is done instead of locking and unlocking
throughout the object lifetime.

11.1.4 run_memory_frag_animation.sh

Syntax:

ALLOCATOR=path/to/alloc_driver \

./run_memory_frag_animation.sh opsfile

Example:

ALLOCATOR=./drivers/plot_dlmalloc \

./run_memory_frag_animation.sh result.soffice-ops

Output:

69

http://github.com/mikaelj/rmalloc
http://github.com/mikaelj/rmalloc

70 CHAPTER 11. APPENDIX

result.soffice-ops-animation.avi

The tool calls the memplot mode described above and calls ffmpeg to gen-
erate an animation of the heap image sequence produced by the alloc driver for
the given ops file.

11.1.5 run_allocator_stats.sh

Run:

CORES=2 ALLOCATOR=./drivers/plot_dlmalloc \

./run_allocator_stats.sh result.soffice-ops

Generates:

result.soffice-ops.allocstats

11.1.6 run_graphs_from_allocstats.py

From data created by run_allocator_stats.

Single

Run:

python run_graphs_from_allocstats.py result.soffice-ops

Generates:

plot-<driver>-<opsfile>.png

Multiple

Run:

python run_graphs_from_allocstats.py soffice \

result.soffice-ops-dlmalloc \

result.soffice-ops-rmmalloc [...]

Generates:

soffice.png

11.2 Allocator driver API

This gives the essentials of a program’s memory usage -- allocation, access and
free -- and can be processed by other tools.

Testing an allocator is done with a driver application by implementing an
interface that calls the appropriate functions of the allocator and linking to a
library. The functions to implement are:

11.2. ALLOCATOR DRIVER API 71

bool user_init(uint32_t heap_size,

void *heap,

char *name);

void user_destroy();

bool user_handle_oom(int size,

uint32_t *op_time);

void *user_malloc(int size,

uint32_t handle_id,

uint32_t *op_time,

void **memaddress);

void user_free(void *handle,

uint32_t handle_id,

uint32_t *op_time);

void *user_lock(void *handle);

void user_unlock(void *handle);

void *user_highest_address(bool full_calculation);

All functions to be implemented by the driver have a user_ prefix and the
driver code is linked together with plot.cpp to form the binary.

11.2.1 user_init(heap_size, heap, name)

bool user_init(uint32_t heap_size, void *heap, char *name)

Initialize the allocator with the given parameters. Since the heap is passed
onto the driver, any mmap functionality must be disabled and only sbrk -style
allocation is possible. The driver must set name to a string that can be used as
a part of a filename, e.g. an alphanumeric string like "dlmalloc".

A driver initializes its own sbrk-equivalent with heap and heap_size and
initializes the allocator itself if needed. As large amount as possible of the
allocator’s runtime data structures should be stored in this heap space.

11.2.2 user_destroy()

void user_destroy()

Clean up internal structures. The heap given to user_init is owned by the
framework and does not have to be freed.

11.2.3 user_handle_oom(size, op_time)

bool user_handle_oom(int size, uint32_t *op_time)

Handle an out-of-memory situation. size is the number of bytes requested
at the time of OOM. op_time is an out variable storing the time of the actual
OOM-handling code (such as a compact operation), not considering the code
before or after. For convenience, Steve defines macros for time measuring. A
typical implementation where OOM is actually handled looks like this:

bool user_handle_oom(int size, uint32_t *op_time)

{

TIMER_DECL;

TIMER_START;

72 CHAPTER 11. APPENDIX

bool ok = full_compact();

TIMER_END;

if (op_time)

*op_time = TIMER_ELAPSED;

return ok;

}

op_time can also be NULL, as shown in the example, in which case time must
not be stored. Return value is true if the OOM was handled, false otherwise.

11.2.4 user_malloc(size, handle, op_time, memaddress)

void *user_malloc(int size, uint32_t handle, uint32_t *op_time, void

**memaddress)

Perform a memory allocation and return a pointer to the allocated memory,
or NULL on error. op_time is the same as above. handle is an identifier for this
allocation request as translated from the memtrace, unique for this block for the
lifetime of the application being benchmarked. It can be used as an index to a
map in case the driver wants to store information associated with this particular
block. Finally, *memaddress can be used to store the memory address at the
time of the allocation, in case the allocation function is using indirect accessing
via a handle (e.g. Jeff). In that case, the handle is returned by user_malloc()
and the memory address stored in *memaddress. If memaddress is NULL no data
should be written to it, but if it is not NULL, either the address or NULL should
be stored in *memaddress.

11.2.5 user_free(ptr, handle, op_time)

void user_free(void *, uint32_t handle, uint32_t *op_time)

Like user_malloc.

11.2.6 user_lock(ptr)

void *user_lock(void *)

This locks a block of memory: map a handle to a pointer in memory, and
mark the block as in use. It can no longer be moved since the client code now
has a reference to the memory referred to by this handle, until user_unlock()
or user_free() is called on the handle. Its input value is the return value of
user_malloc().

11.2.7 user_unlock(ptr)

void user_unlock(void *)

This unlocks a block of memory, i.e. marking the block of memory as no
longer being in use. Any memory operation is free to move this block around
in memory. Its input value is the return value of user_malloc().

11.2. ALLOCATOR DRIVER API 73

11.2.8 user_highest_address(fullcalc)

void *user_highest_address(bool full_calculation)

What is the highest address allocated at this time? NULL if not available. If
full_calculation is false a less exact calculation is acceptable if it’s quicker.

	Acknowledgements
	Ethical Considerations
	Introduction
	Thesis Statement and Contributions
	Definitions
	Challenges
	Efficiency
	Related Work

	Allocator Types
	Buddy Allocator
	Pool Allocator
	Arena Allocator
	Garbage Collector

	Method
	Assumptions
	Hypothesis
	Development Environment
	Testing

	Design
	Design Background
	Allocator Design
	Free In More Detail
	Compacting

	Allocator Algorithm
	Initialization
	Allocation Request
	Free Block
	Compact Heap

	Benchmark Tool Design

	Simulating Application Runtime
	Gathering Memory Access Data
	Translating Memory Access Data to Ops
	Linear Scan
	Save CPU at the Expense of Memory
	More on Lifetime
	Performance Optimization of Lifetime Calculation

	Lifetime Visualization
	Lifetime Calculation

	Jeff: The Compacting Allocator
	Overview
	Implementation
	rminit
	rmmalloc
	rmfree
	rmcompact
	rmdestroy

	Testing
	Real-World Testing

	Profiling
	Automatic Testing

	Steve: The Benchmark Tool
	Modules
	Allocator Driver Usage
	Driver Modes
	peakmem
	allocstats
	memplot

	Tested Allocators
	rmmalloc (Jeff)
	jemalloc (v1.162 2008/02/06)
	dlmalloc v2.8.6
	tcmalloc (gperftools-2.1)

	Results
	Limitations
	Input Data
	Keys To Read Charts and Tables
	Drivers
	Charts
	Tables

	Results
	StarOffice
	sqlite
	ls
	tar with bzip2 compression
	latex
	opera

	Conclusions
	Speed
	Memory
	Discussion
	Limitations and Future Work
	Jeff: Limitations
	Jeff: Future Work
	Steve: Limitations
	Steve: Future Work

	References
	Appendix
	Tools
	memtrace-run.sh and translate-memtrace-to-ops.py
	translate-ops-to-histogram.py
	translate-ops-to-locking-lifetime.py
	run_memory_frag_animation.sh
	run_allocator_stats.sh
	run_graphs_from_allocstats.py

	Allocator driver API
	user_init(heap_size, heap, name)
	user_destroy()
	user_handle_oom(size, op_time)
	user_malloc(size, handle, op_time, memaddress)
	user_free(ptr, handle, op_time)
	user_lock(ptr)
	user_unlock(ptr)
	user_highest_address(fullcalc)

