
Proof Editor for Natural Deduction

Bachelor’s thesis in Computer science and engineering

FREDDY ABRAHAMSSON, THERESE ANDERSSON,

AXEL FORSMAN, LO RANTA, MICHAEL ÅKESSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Bachelor’s thesis 2021

Proof Editor for Natural Deduction

FREDDY ABRAHAMSSON,
THERESE ANDERSSON

AXEL FORSMAN,
LO RANTA,

MICHAEL ÅKESSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Proof Editor for Natural Deduction
FREDDY ABRAHAMSSON, THERESE ANDERSSON, AXEL FORSMAN,
LO RANTA, MICHAEL ÅKESSON

© FREDDY ABRAHAMSSON, THERESE ANDERSSON, AXEL FORSMAN,
LO RANTA, MICHAEL ÅKESSON 2021.

Supervisor: Ana Bove, Department of Computer Science and Engineering
Examiner: Thierry Coquand, Department of Computer Science and Engineering

Bachelor’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Screenshot of Logan, with a proof of ∀x (P (x) → Q(x)),∀xP (x) ` ∀xQ(x)

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Proof Editor for Natural Deduction
FREDDY ABRAHAMSSON, THERESE ANDERSSON, AXEL FORSMAN,
LO RANTA, MICHAEL ÅKESSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In this thesis, we present Logan, a proof editor for constructing Fitch-style proofs
in first-order logic. This proof editor is intended to be used by students who are
taking a course in logic. Compared to other available proof editors Logan aims to be
easier to use, both when it comes to getting started and in the continued use of the
proof editor. Logan also aims to be more helpful by giving feedback and hints to
aid the students in their learning. User testing was conducted on a small sample
size of students to evaluate Logan from a usability and user experience perspective
to find potential issues. As a result, some usability problems were identified and
remedied. The plan is to introduce Logan as a tool in the next instance of the
course DAT060/DIT202 Logic in computer science at University of Gothenburg and
Chalmers University of Technology. If realized, the deployment of Logan can be seen
as beta-testing on a larger sample size of students than the conducted user testing.
Thus potential missed bugs can be identified and fixed in future development of
Logan.

Keywords: Proof editor, Natural deduction, First order logic, PureScript.

v

Sammandrag
I den här rapporten presenterar vi Logan, en beviseditor för att konstruera bevis med
fitch form i första ordningens logik. Den här beviseditorn är gjord för att användas
av studenter som läser en kurs i logik. Jämfört med andra tillgängliga beviseditors
så försöker Logan vara mer lättanvänd, både vad gäller att komma igång och i den
fortsatta användningen av beviseditorn. Logan erbjuder också användarna mer hjälp
i form av återkoppling och ledtrådar för att främja deras inlärning. Användartester
i en liten skala på studenter gjordes för att utvärdera Logans användbarhet och
användarupplevelse för att hitta potentiella problem. Under dessa upptäcktes några
problem relaterade till användbarhet som löstes därefter. Planen är att introducera
Logan som ett verktyg i nästa omgång av kursen DAT060/DIT202 Logic in computer
science vid Göteborgs Universitet samt Chalmers Tekniska Högskola. Om detta
blir realiserat så kommer driftsättningen av Logan kunna ses som en betatestning
på en större skala av studenter jämfört med de genomförda testerna. Därigenom
kan potentiella buggar som har missats bli identifierade och åtgärdade för vidare
utveckling av Logan i framtiden.

Nyckelord: Beviseditor, Naturlig deduktion, Första ordningens logik, PureScript.

vi

Acknowledgements
We would like to thank our supervisor Ana Bove for proposing this project as well as
providing stellar support and feedback during the whole process. We would like to
acknowledge the students who took their time to help us evaluate our product and
provide us with suggestions for improvements. Also, a big thank you to our families
and friends, for all the support and understanding.

Freddy Abrahamsson, Therese Andersson, Axel Forsman, Lo Ranta, Michael Åkesson
Gothenburg, June 2021

vii

Glossary

DOM Document Object Model. Representation of a Web page as nodes. 27
DSL Domain-specific Language. 3, 5–7

GUI Graphical User Interface. 3, 6

Kanban is a method for managing, among other things, a development process
where progress is visualized using cards on a board. 17

LEM Law of Excluded Middle. 11

MT Modus Tollens. 11

natural deduction is a proof calculus where step-by-step application of inference
rules is used to derive conclusions from premises. 1

PBC Proof By Contradiction. 11

TUI Text-based User Interface. 3, 6

ix

Glossary

x

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Purpose . 1
1.2 Benefits of Using a Proof Editor . 2
1.3 Currently Available Software . 2

1.3.1 Types of Interface . 3
1.3.2 Target Audience . 6

1.4 Choice of Programming Language . 6
1.5 Limitations . 7

2 Theory 9
2.1 Propositional Logic . 9
2.2 Predicate Logic . 10
2.3 Natural Deduction . 11

2.3.1 Automated Natural Deduction 15
2.4 Usability and User Experience . 15

3 Methods 17
3.1 Developing Logan . 17
3.2 Evaluating Logan . 17

4 Results 23
4.1 Application . 23

4.1.1 Representation of a Proof . 23
4.1.2 Validation of Proofs . 25
4.1.3 Implementation of the Web Application 26
4.1.4 The Final Product . 27

4.2 User Tests . 31
4.2.1 Basic Functionality . 31
4.2.2 Constructing Proofs . 35
4.2.3 Interviews . 36
4.2.4 Usability Improvements . 38

5 Discussion 41

xi

Contents

5.1 The Final Product . 41
5.2 The User Testing . 41
5.3 Future Work . 44

6 Conclusion 47

Bibliography 49

xii

List of Figures

1.1 Screenshot of fitch-checker, running at https://proofs.openlogicproject.
org/. In this particular screenshot, a proof of the sequent R,R →
U ` U is shown. 3

1.2 Screenshot of the Conan editor, available at https://github.com/
nonilole/Conan. In this particular screenshot, a proof of the sequent
R,R → U ` U is shown. 4

1.3 Proof editors such as Alfa and Lean have textual interfaces. This
is a screenshot of Lean, showing an incorrect proof of the sequent
∀x∀y (x = g(y) → f(x) = y) ` ∀x f(g(x)) = x. 5

1.4 Agda has a textual interface, here seen in the EMACS editor. The
screenshot shows a hole, the goal and what is in scope. From the
types it is clear that a is the only thing in scope that could fit into
this hole and represent the goal A. 5

2.1 The proof rules for propositional logic as defined in Logic in computer
science [3]. 12

2.2 A simple proof in natural deduction, proving the sequent R,R → U ` U . 13
2.3 Proof of the sequent A ∧B → C,A ∨D,B ∨ E,¬(D ∨ E) ` C. Note

the use of boxes which make up the arguments for ∨-elimination on
rows 10 and 16. 13

2.4 Additional inference rules for predicate logic. 14
2.5 Proof of the sequent ∀x (P (x) → Q(x)),∀xP (x) ` ∀xQ(x). 15

3.1 Test case 1: P ∧ Q,R ` Q ∧ R. It is indeed possible to construct a
proof of this using natural deduction, but the specific proof outlined
here is not correct. The rule that is applied on the third line should
be ∧e2, and the operands to ∧i on line 4 should be flipped. 19

3.2 Test case 2: P → (Q → R) ` P ∧ Q → R. This is provable using
natural deduction, but there are some minor details that are wrong
in this particular proof. On line 7 the introduction rule is applied to
no arguments at all, but it should be applied to the entire subproof
spanning lines 2-6. Furthermore, when going from line 6 to 7 the
participants must close the proof box. By default new rows are added
in the current proof box, but by pressing the Shift and Enter keys
simultaneously the new row will be inserted after closing the current
proof box. 20

xiii

https://proofs.openlogicproject.org/
https://proofs.openlogicproject.org/
https://github.com/nonilole/Conan
https://github.com/nonilole/Conan

List of Figures

3.3 Test case 3: Q → R ` P ∨Q → P ∨R. This proof contains no errors,
but it will test the participants intuition when it comes to using nested
proof boxes. They are expected to use some rules they have not used
in the previous tests. 20

3.4 Test case 4: P ∧ ¬Q → R,¬R,P ` Q. The errors in this proof are
that there is a redundant implication arrow on the first line, and on
line 9 the rule is applied to line 88 instead of line 8. The proof editor
will always open a new box when an assumption is introduced, but in
this proof there is no box. The proof editor will open the box but the
participants will not have closed it if they simply entered the proof as
it is written here. 21

4.1 Definition of the Rule type and a few of its constructors. 24
4.2 Definition of the ProofRow, Scope, Proof and ND along with the type

signature for the function runND which performs the actual validation. 24
4.3 Definitions for the Variable, Term, Formula and FFC types used to

represent different parts of a formula. 25
4.4 Type signatures for the proofRef and boxRef functions along with

parts of the definition of the applyRule function. 26
4.5 Screenshot of the editor, showing a proof of the sequent R,R → U ` U . 28
4.6 Screenshot of Logan with an error message. The output from ∧i does

not match the formula on line 3. 29
4.7 Screenshot of Logan, showing an explanation for the →e rule, which

the user has already tried to use. Since there is an error present in the
proof, the last line is not highlighted in green, even though it matches
the conclusion. 30

4.8 The interface of Logan at the time of user tests. 32
4.9 The rule field of the editor with buttons for each rule. When a button

is clicked a help text about the rule replaces the text below the buttons. 33
4.10 Time in seconds taken to complete each task in observation 1. Task 2,

adding a premise, took a long time for most users. 34
4.11 User ratings for visual design and ease of finding information. 39

xiv

List of Tables

2.1 The logical connectives present in propositional logic, with their sym-
bolic representations and example sentences. 10

2.2 The derived proof rules used in this project, as presented in [3]. . . . 12

4.1 Instructions for testing basic functionality. 32

xv

List of Tables

xvi

1
Introduction

Logic is one of the most important tools for reasoning about computer software and
its correctness, making it an important subject for students in the field of computer
science.

In addition to theoretical studies, students need to learn practical applications of
logic, such as proving theorems or checking software for correctness. One important
technique that students will encounter during university courses in logic is natural
deduction. Natural deduction is a system for proving formulas in both propositional
and predicate logic. It uses inference rules, based on the syntactic structure of logical
formulas, to infer conclusions from existing formulas, called premises. More details
about logic and the theory behind natural deduction can be found in chapter 2.

1.1 Purpose

The main goal of this project is to develop a proof editor for natural deduction in
both propositional and predicate logic. In the editor, the user should be able to
construct proofs step by step, starting with a set of premises and then applying
predefined rules to reach some conclusion.

In order to help students learn natural deduction, the editor will provide some
assistance such as highlighting errors where they occur and showing information
about what went wrong. Concretely, the four goals of the project are

• The proof editor should not require any set-up or installation.

• The proof editor should have an intuitive and easy to use interface and method
of user input.

• The proof editor should give feedback when a mistake is made.

• The proof editor should be structured in a way that aids in making correct
proofs.

1

1. Introduction

1.2 Benefits of Using a Proof Editor

As students are learning natural deduction, they are frequently asked to construct
proofs as exercises, as part of their coursework and as part of their exams [1]. Usually,
the students will construct their proofs using pen and paper, as it is a simple and easily
accessible method. This method, however, relies on the students’ own competence of
the subject as no feedback is provided while the proof is constructed. A student who
struggles with an inference rule will not be corrected when constructing the proof,
with an increased risk of the rule being used incorrectly. Errors like these might not
be discovered until the student is ultimately assessed on their competence of natural
deduction. Even worse would be if the student is not tested on any rules they do
not understand, in which case the error will not be discovered and remedied. If
the student had constructed their proofs using a proof editor, the editor could have
informed the student that the rule is applied wrongly, and provide the much-needed
feedback.

In addition to the feedback, a proof editor can also help the students by providing
hints on which steps to take when stuck. For propositional logic, proofs can be
constructed automatically, which means that the editor can create a complete proof
behind the scenes and use that to point the user in the right direction [2]. In predicate
logic, there is a limitation on the level of assistance that can be provided by software
due to the undecidability of predicate logic [3]. However, it is still possible to validate
each step of a proof in predicate logic and provide feedback to the students.

1.3 Currently Available Software

Using proof editors to write machine checked proofs is not a novel idea. There
already exists a number of general-purpose proof editors such as Agda [4], Coq [5],
Alfa [6] and Lean [7], and more niche editors such as Conan [8] and fitch-checker [9].

General-purpose proof editors such as Agda can be used to write and check very
sophisticated proofs. They come with a lot of functionality and features that allow a
user to encode their proofs very efficiently and precisely. This level of abstraction
leads to a higher threshold when it comes to the efficiency of the user. To write
proofs in Agda it is required that the user is already familiar with e.g functional
programming, and preferably also dependent type theory.

A user that is only interested in constructing proofs of a certain kind might be better
off using a more niche editor that is designed specifically for those types of proofs.
As an example, Conan only offers construction of proofs using natural deduction and
does not implement any of the general features and abstractions that Agda does. A
user will learn to use Conan very quickly and can start writing proofs faster.

2

1. Introduction

1.3.1 Types of Interface
The interfaces with which a user interacts with an editor is usually one of two kinds.
One kind is that of a Graphical User Interface (GUI) and the other is that of a
Text-based User Interface (TUI).

As can be seen in figures 1.1 and 1.2, both fitch-checker and Conan are GUI based
interfaces. The upside of having such an interface is that the learning curve is not
as steep since the user has more visual elements to help guide the learning process.
There is no need to study syntax or remember specific commands [10].

Figure 1.1: Screenshot of fitch-checker, running at https://proofs.
openlogicproject.org/. In this particular screenshot, a proof of the sequent
R,R → U ` U is shown.

Proof editors such as Alfa and Lean have textual interfaces where proofs are con-
structed in a Domain-specific Language (DSL), see figure 1.3. The upside of using
a DSL is that the proofs can become very compact and short. The meaning of

3

https://proofs.openlogicproject.org/
https://proofs.openlogicproject.org/

1. Introduction

Figure 1.2: Screenshot of the Conan editor, available at https://github.com/
nonilole/Conan. In this particular screenshot, a proof of the sequent R,R → U ` U
is shown.

4

https://github.com/nonilole/Conan
https://github.com/nonilole/Conan

1. Introduction

the components of a proof can become more intuitive as the language is tailored
specifically for the domain.

Figure 1.3: Proof editors such as Alfa and Lean have textual interfaces. This is
a screenshot of Lean, showing an incorrect proof of the sequent ∀x∀y (x = g(y) →
f(x) = y) ` ∀x f(g(x)) = x.

Another example of a textual interface can be seen in figure 1.4. Agda, as well as
Coq, is a proof assistant. Conan and Fitch assist a user by checking the validity
of a proof, but e.g. writing proofs in the DSL of Agda and Coq can be done in an
environment where users are assisted much more by the editor. For example Agda
can make suggestions of how to complete proofs, show information of conclusions
that are currently available and help write the actual code. This requires learning
not only a DSL but also a set of commands to interact with the environment. The
learning curve is steeper, but once a user has grasped all the knowledge of how to
construct proofs using the editor, the efficiency in constructing proofs is much higher.

Figure 1.4: Agda has a textual interface, here seen in the EMACS editor. The
screenshot shows a hole, the goal and what is in scope. From the types it is clear
that a is the only thing in scope that could fit into this hole and represent the goal A.

5

1. Introduction

1.3.2 Target Audience
GUI-based editors are well suited for people who are in the process of learning natural
deduction. Since the user does not need to remember all the rules or be familiar
with a language-specific syntax, these editors provide an accessible way of creating
proofs. This does not mean that TUI-based editors are not good, but that having to
also learn a DSL before being able to actually learn natural deduction costs more
time. If time is not a scarce resource, the initial investment of learning to use a proof
assistant such as Agda might be more beneficial. The knowledge can later be used
to write more extensive proofs.

1.4 Choice of Programming Language

As one of the goals described in section 1.1 is that the editor should not require
any installation or setup, the form of a web application is suitable. The term web
application is very broad and is applicable to many different types of applications,
but in this case, the term refers to a website where everything is executed in a
web browser. The website does not need to communicate with a server to fulfil its
purpose.

Simple websites can be created with only HTML documents, but for more sophis-
ticated interactive functionality (such as that of a proof editor), scripting support
is required. There are many alternatives when it comes to programming languages
that provide this.

JavaScript1 is frequently used to develop web applications [11] and merits considera-
tion. As described in [12], JavaScript is considered the “Language of the Web” but
despite its evident popularity, there are some bad parts to JavaScript. The semantics
are sometimes not what a developer might expect, so reasoning about what a piece
of code means is not always trivial. Furthermore, JavaScript is dynamically typed,
meaning that there is no static analysis that guarantees that a program is type-safe
and that it will not crash at runtime. There may be a bug in a program that goes
undetected until the piece of code that the bug resides in is actually executed.

An alternative to JavaScript is PureScript2. PureScript is a strongly typed, purely
functional programming language, whose type system and syntax is heavily influenced
by the functional language Haskell. A functional language is one that uses the domain
of mathematics to describe a computation. A purely functional language is one
in which side effects are tracked by the type system. Examples of side effects are
writing to and reading from files or raising and handling exceptions. In contrast
to JavaScript, PureScript is statically typed. After statically determining that a
program is type-safe, PureScript code is transpiled to an equivalent JavaScript
program that can be run by a browser.

1https://developer.mozilla.org/en-US/docs/Web/JavaScript
2https://www.purescript.org/

6

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.purescript.org/

1. Introduction

Another language common in web development is Elm3. Elm is a DSL that was
designed specifically for implementing graphical user interfaces for the web [13]. Like
PureScript, Elm is purely functional. However, while Elm is a DSL for creating
websites and simple web applications, PureScript is designed to be a general-purpose
programming language for developing any kind of application. Elm is transpiled to
JavaScript code, just like PureScript.

An alternative that is not a functional language is TypeScript4. TypeScript is a
sequential language like C, C] and Java, to name a few. A sequential program is
defined by a series of statements that are executed in sequence. TypeScript is a
superset of JavaScript, which means that any JavaScript program is also a TypeScript
program. TypeScript gives the developer the additional ability to annotate a program
with type information that is statically verified before execution.

The language chosen for the implementation of this proof editor is PureScript. The
choice was motivated by the group’s prior knowledge of Haskell, and the more
expressive type system which helps ensure correctness.

1.5 Limitations
The editor will provide a certain level of assistance, but it will not offer automated
proof construction where a conclusion can be derived automatically from a set of
premises. Since the editor targets students learning natural deduction, we believe
that the focus should be on the reasoning process rather than providing sample
solutions.

The set of inference rules available in the editor and the presentation of the proofs
will be taken from the book Logic in Computer Science [3], which makes the editor
most suited for use by students taking a course that follows this book.

3https://elm-lang.org/
4https://www.typescriptlang.org/

7

https://elm-lang.org/
https://www.typescriptlang.org/

1. Introduction

8

2
Theory

The first part of this chapter will give an introductory explanation of propositional
and predicate logic, two branches of symbolic logic. Whereas logic is the study of
valid rules of inference as a whole, symbolic logic makes use of symbols to capture the
logical ideas [14]. Section 2.1 covers the simplest symbolic logic—the propositional
logic, with section 2.2 considering the more general predicate logic. After that, in
section 2.3, we go over natural deduction which is one way of explaining which
logical inferences are valid and why. We remind the reader that we will be using
the notation from Logic in Computer Science [3]. The remainder of this chapter
will then be concerned with the theory behind usability and user experience design,
which is used to design usable products.

2.1 Propositional Logic
Propositional logic is a symbolic language that is built by declarative sentences that
are either true or false, but not both [15]. These sentences are called propositions.
Examples of propositions are: “It is raining,” “It is sunny,” and “Patricia uses her
umbrella.” These example sentences all make clear statements about something
which is either true or false; we can talk about the truth value of the proposition. To
further strengthen our understanding of what it means to be declarative, let us look
at two examples of sentences that are not propositions: The sentence “Go tie your
shoes son!” is imperative because it is giving an instruction, while “What time is it?”
is interrogative by questioning. No truth values are involved or can be applied to
these kind of sentences. For convenience, we shall denote a proposition by a string
of lowercase symbols, e.g. we may denote the propositions above as follows:

r , “It is raining,”
s , “It is sunny,”
p , “Patricia uses her umbrella.”

Propositions can either be atomic or compound. Atomic propositions are sentences
that cannot be further broken down, like r, s or p. Compound propositions are
sentences that have other sentences joined together in a compositional way using
logical operators called connectives. The sentences which are joined together can be

9

2. Theory

either atomic propositions or compound propositions themselves. A simple example
of a compound proposition is “It is sunny and Patricia uses her umbrella.” One
common set of connectives that are involved in propositional logic, which is the set
that we will use, is shown in table 2.1.

Table 2.1: The logical connectives present in propositional logic, with their symbolic
representations and example sentences.

Name Symbol Example of a declarative sentence
Negation ¬r It is not raining.
Conjunction r ∧ p It is raining and Patricia uses her umbrella.
Disjunction r ∨ s It is raining or it is sunny.
Implication r → p If it is raining, then Patricia uses her um-

brella.

2.2 Predicate Logic
The statements we have looked at so far have all been simple. Now let us look at a
more complex statement such as

Every parent is older than some child. (2.1)
Propositional logic will not help in the reasoning here because it is not possible
to deconstruct the proposition into elementary propositions composed by logical
connectives—through the lens of propositional logic, it must then itself be an elemen-
tary proposition. This does however not tell us anything about when this proposition
is true, only that it is either true or it is false. We need a way to represent, for
example, the relationship “older than” and the fact that it is true for every parent.
Predicate logic, also known as first-order logic, is an extension of propositional logic
where predicates, variables, quantifiers and functions are added to represent more
expressive declarative sentences. When doing this, we will talk about objects, living
in a specific domain.

First, we introduce terms. These are either variables, constants, or functions applied
to other terms. Variables are used to denote an unknown object in the domain,
represented with characters like x. Functions also allow for referring to objects in
the domain, by for example f(x), and are used to map objects to each other, such
as “the child’s mother”. A predicate, on the other hand, is a formula which takes
one or more terms and produces a truth value. In other words, a predicate captures
the properties of objects living in the domain. Finally, there are also quantifiers in
predicate logic. There exists (∃) indicates the existence of an object with a certain
property, and for all (∀) indicates that a certain property applies to all objects in a
domain. Using all of the concepts we just introduced, we can convert sentence 2.1
into

∀y [P (y) → ∃z [C(z) ∧O(y, z)]]
where P (y) means y is a parent, C(z) means z is a child and O(y, z) means y is older
than z.

10

2. Theory

2.3 Natural Deduction
One way of constructing proofs in logic is to use a method called natural deduction.
In natural deduction, one starts with a set of premises and a conclusion to be proven.
We denote this as a sequent, φ1, φ2, . . . , φn ` ψ where φk represents a premise and ψ
is the conclusion we want to prove.

In order to reach the conclusion, we apply inference rules which allow us to prove
new formulas from existing formulas. As an example, we have the rule for implication
elimination, known also as modus ponens. Given a statement φ → ψ and the
statement φ, modus ponens allows you to deduce ψ. This rule is written in the
following way

φ φ → ψ → e
ψ

Other rules, such as the implication introduction rely on assumptions, which are
assumed to be valid in a limited scope within the proof, represented by a box, and
conclusions drawn from these assumptions. Outside of the box, the assumption
cannot be used as an argument for inference rules. These boxes can then be used as
arguments for various inference rules, such as implication introduction. The rule,
written as

φ
...
ψ

→ i
φ → ψ

says that given an assumption φ and a formula ψ, proven within the scope of φ, one
can deduce φ → ψ.

It is possible to use different sets of inference rules to create a complete set that allows
all valid proofs to be proven. In this paper we follow the book Logic in computer
science [3]; its set of rules is displayed in figure 2.1. It is also possible to derive new
rules, such as Modus Tollens (MT), double negation introduction (¬¬e), Proof By
Contradiction (PBC) and the Law of Excluded Middle (LEM). The derived rules
used in this project are shown separately in table 2.2. Combining these rules, one
can construct both simple proofs, such as the one in figure 2.2, and more complex
proofs where we combine several different rules as shown in figure 2.3.

With the introduction of predicates, we need some additional inference rules which are
shown in figure 2.4. Apart from formulas and boxes starting with assumptions, these
rules also use boxes that start with the introduction of new variables. These variables
can be either a fresh variable, on which no assumptions are made, or variables
introduced along with an assumption. Just like assumptions in propositional logic,
the introduced variables are only available within the limits of the box that they
open. A box starting with a fresh variable is used in the for all-introduction rule,

11

2. Theory

Introduction rules: Elimination rules:

φ ψ
∧i

φ ∧ ψ

φ ∧ ψ ∧e1
φ

φ ∧ ψ ∧e2
ψ

φ ∨i1φ ∨ ψ

ψ ∨i2φ ∨ ψ
φ ∨ ψ

φ
...
χ

ψ
...
χ

∨eχ

φ
...
ψ

→ i
φ → ψ

φ φ → ψ → e
ψ

φ
...
⊥

¬i¬φ

φ ¬φ ¬e⊥

⊥ ⊥e
φ

¬¬φ ¬¬e
φ

Figure 2.1: The proof rules for propositional logic as defined in Logic in computer
science [3].

Table 2.2: The derived proof rules used in this project, as presented in [3].

Name Rule
Modus tollens

φ → ψ ¬ψ
MT¬φ

Double negation intro
φ

¬¬i¬¬φ
Proof by contradiction

¬φ
...
⊥

PBC
φ

Law of excluded middle
LEM

φ ∨ ¬φ

12

2. Theory

1. R premise
2. R → U premise
3. U → e, 1, 2

Figure 2.2: A simple proof in natural deduction, proving the sequent R,R → U ` U .

1. A ∧B → C premise
2. A ∨D premise
3. B ∨ E premise
4. ¬(D ∨ E) premise
5. A assumption
6. D assumption
7. D ∨ E ∨i1, 6
8. ⊥ ¬e, 4, 7
9. A ⊥e, 8
10. A ∨e, 2, 5–5, 6–9
11. B assumption
12. E assumption
13. D ∨ E ∨i2, 12
14. ⊥ ¬e, 4, 13
15. B ⊥e, 14
16. B ∨e, 3, 11–11, 12–15
17. A ∧B ∧i, 10,16
18. C → e, 1, 17

Figure 2.3: Proof of the sequent A ∧ B → C,A ∨D,B ∨ E,¬(D ∨ E) ` C. Note
the use of boxes which make up the arguments for ∨-elimination on rows 10 and 16.

13

2. Theory

Introduction rules: Elimination rules:

x0
...

φ [x0/x]
∀x i∀xφ

∀xφ
∀x e

φ [t/x]

φ [t/x]
∃x i∃xφ

∃xφ
x0 φ [x0/x]

...
χ

∃x eχ

= it = t
t1 = t2 φ[t1/x] = e

φ[t2/x]

Figure 2.4: Additional inference rules for predicate logic.

which says that if we introduce a variable x0 and deduce φ [x0/x], within the scope
of x0, then we can use this box to prove ∀xφ. Here the notation φ [x0/x] means φ
with all occurrences of x substituted with x0. The ∀-introduction rule is written as

x0
...

φ [x0/x]
∀x i∀xφ

A variable introduced along with an assumption allows us to use exists-elimination
which says that given a formula ∃xφ, a variable x0, introduced with the assumption
φ[x0/x], and a conclusion χ, proven within the scope of x0, we can deduce χ. The
variable x0 may not occur in χ, nor outside the box, which ensures that this rule is
sound. Symbolically, it is written in the following way

∃xφ
x0 φ [x0/x]

...
χ

∃x eχ

Using the rules listed in table 2.4 in combination with the rules from table 2.1, we
can construct proofs for sequents which contain predicates, such as ∀x (P (x) →
Q(x)), ∀xP (x) ` ∀xQ(x), as shown in figure 2.5.

14

2. Theory

1. ∀x (P (x) → Q(x)) premise
2. ∀xP (x) premise
3. x0 fresh
4. P (x0) ∀e, 2
5. P (x0) → Q(x0) ∀e, 1
6. Q(x0) → e, 4, 5
7. ∀xQ(x) ∀i, 3–6

Figure 2.5: Proof of the sequent ∀x (P (x) → Q(x)),∀xP (x) ` ∀xQ(x).

2.3.1 Automated Natural Deduction

For the purpose of providing hints to the user, we implement the algorithm for
automated natural deduction by Bolotov, Bocharov, Gorchakov, et al. [2]. We give a
brief overview here but refer to the original article for details. For simplicity, it uses
the minimal set of inference rules, which is different from what is described above.
The goal-directed searching procedure for a proof proceeds by at each iteration first
checking the reachability of the current goal, which can be either a contradiction or
some formula. If reached, a corresponding introduction rule is applied. Otherwise,
the algorithm searches for an elimination rule to apply. If no such possible elimination
rule is found, however, then the structure of the current goal is considered in order
to push new goals and potentially add new assumptions. Backtracking is used to
explore branching paths, e.g. if the current goal is a∨ b we try to prove either of a, b
and ¬(a∨ b). To prevent looping a marking scheme is used. Finally, if at some point
we are searching for a contradiction and no more elimination rules are applicable
then a new goal gets generated such as to make the exhausted derivation form a
so-called Hintikka set, which we know would be satisfiable (and so the goal would be
unreachable).

2.4 Usability and User Experience

General guidelines exist that can be followed and applied to implement better prod-
ucts and one common variant of this is usability design. The term usability is a
qualitative attribute that focuses mainly on how usable a product is, referring to
that it is easy to learn, can be used effectively, and that it is enjoyable from a user
experience perspective [16]. Objective reasoning about the usability of a product
may be done in different ways depending on the product in question or its user. Does
the program need to be highly productive at work or is it a learning tool for students
that should be motivating and helpful at the same time? Removing any subjective
reasonings like individual preferences about the usability of a product, there are six
main goals [16] that every interactive product should have:

15

2. Theory

Effectiveness refers to if a product is doing what it is supposed to do and whether
the user can perform expected actions and complete them.

Efficiency relates to speed and whether the product helps users perform actions
quickly and sustain a higher level of productivity.

Safety can be seen as how tolerant a product is regarding errors that may arise.
Users should be safe from performing unwanted actions and if they accidentally
perform such an action, safety mechanisms should be in place for error recovery.

Utility focuses on whether the product has the necessary and correct functionality
that is needed when using the product.

Learnability refers to how easily new users can learn to use the product.

Memorability is related to the learnability goal. When a user has learned how to
use a product, how easy is it to remember how to use it?

These goals are a good place to start from when reasoning about what functionality
and features are needed in a product. The usability goals can also help formulate
questions to be used as self-checks by developers or in user testing to assess how well
a product works.

Another set of goals that is helpful to identify and specify in order to design a good
product is user experience goals. While the usability goals are more divisible and
in some sense more objective, the user experience goals are more about the holistic
experience and the subjective feelings and reactions of a user.

The International Organization for Standardization (ISO) defines user experience as
a user’s perceptions and responses that result from the use and/or anticipated use of
a system, product or service. ISO defines usability as the extent to which a system,
product or service can be used by specified users to achieve its specified goals with
effectiveness, efficiency and satisfaction in a specified context of use [17].

From these definitions, it can be reasoned that usability deals with users as a group
while user experience deals with users as individuals. To design for usability one has
to understand the intended audience as a group, identifying their common needs.
To design for user experience one has to try to identify the reactions and emotions
people in the target group have in common, and what elements contribute to evoking
certain feelings for a user. Elements that affect the user experience include attention,
pace, play, interactivity, conscious and unconscious control, style of narrative, and
flow [16].

16

3
Methods

The following chapter gives an overview of the development and evaluation of Logan.
The actual implementation is presented in detail in chapter 4.

3.1 Developing Logan
The development of Logan was done in an entirely remote setting, with the team
meeting twice per week over video chat. The development of the code was broken
into tasks that were coordinated using a Kanban board, where each task was given a
card. These cards were then sorted into different columns for upcoming, ongoing
and finished tasks, giving the team an overview of the progress. Code modules were
continuously submitted for peer-reviewing within the group before being accepted
into the main branch of the project repository.

3.2 Evaluating Logan
To get insights into how well the proof editor performs in terms of usability and user
experience, user tests were employed.

The participants of the user study were students who had previously taken the course
Logic in Computer Science at University of Gothenburg or Chalmers University of
Technology, with various backgrounds from programs in Computer Science. All the
students had some prior experience of using a terminal in their studies, but only one
of them had used a proof editor for logic before, and they stated that the extent
of their usage had been limited. Three students had constructed proofs in natural
deduction within the last year, while the rest had done so within the last two years.

The study consisted of five participants since Nielsen and Landauer have shown
that the proportion of identified usability problems in a usability test with five
participants is likely to be over 75 percent [18]. While the number of new problems
identified initially increases rapidly, after testing five participants the likelihood of
identifying additional issues decreases significantly.

The tests were constructed using the discount usability engineering method. This
method was invented by Jakob Nielsen in the early 90s [19] and emphasizes the use

17

3. Methods

of informal basic usability testing methodologies that are cheap, fast and easy to
perform. Many such methodologies exist, and in this study the think-aloud protocol
was used. The think-aloud protocol is a method where participants are asked to
verbalize their thoughts and feelings while performing some task. Collecting this
additional data in the form of a participant’s thoughts and emotions contributes to
understanding their cognitive process. The ambition was to use this extra information
to understand why some design decisions were good or bad.

The study itself was qualitative rather than quantitative. A qualitative study
emphasizes careful test design to gather as much information as possible from
each test, while a quantitative study has participants perform more tests with
less data collected from each test. Both methods have their advantages, but a
quantitative study is more time consuming and requires a more careful selection
of test users, to make sure they are representative of the target audience. Data
gathering methods used in this study were making observations during the tests and
performing interviews with open-ended questions. To gather data the participants
were observed during the test and interviewed with open-ended questions afterwards.
Open-ended questions let the participants explore their answers themselves, which
often results in more data gathered. As the tests were scheduled to be done in
the middle of the COVID-19 pandemic, the tests were performed remotely. The
advantages of this format are that the testers use their own equipment and are
working in their own environment to test the proof editor, just like they would if
they were using it to learn natural deduction [16].

Each test was performed by two moderators, whose task was to guide the tester
through the user test. The participants shared their screens and spoke with the
moderators during the test. The tests were recorded to let the moderators spend
their attention on observing the test users rather than on taking notes.

Each test consisted of the following steps: First, a participant was asked some simple
general questions that are relevant to the study. This initial discussion was meant
to ease the tension of the tester and let the moderators get a deeper understanding
of the participant. After this, the participant got a link to a website that hosted
the editor. The moderators provided simple instructions, intended to assess the
basic functionality of the editor, such as “Can you add a premise?”. The participant
then completed the task while the moderators observed their behavior with the
participant executing the think-aloud protocol. Lastly, the participants were sent
a file containing natural deduction proofs, illustrated in figures 3.1, 3.2, 3.3 and
3.4. Some proofs are correct while others contain errors that the participants were
meant to identify and fix using the proof editor. The participants were given finished
problems to solve with Logan as the study intended to test the usability of the proof
editor, not the natural deduction competence of the participants.

At the end of the tests, the participants answered questions related to the user
experience of using the editor to get additional data that could have been missed by
the moderators. The observation focused on identifying potential issues related to the
main usability and user experience goals. The functionality of the editor was tested

18

3. Methods

throughout the observation to see if something was missing or was injudicious, which
corresponds and is related to effectiveness and utility. The moderators checked if
some functionality was not easily grasped, missed or could be improved when seeing
it from a user perspective. Learnability and memorability was tested by identifying
if the basic functionality was easily learned by the users and if they could use what
they had learned to navigate and write proofs in the editor for the first time. The
users were exposed to functionality during the early part of the testing which is
needed in later parts when writing down the proofs listed in figures 3.1, 3.2, 3.3
and 3.4. The intention was to identify if the basic functionality is easily grasped in
the earlier stage, and at the same time test memorability when the test user will
need to use the knowledge gathered in the earlier part of the testing process. Lastly,
efficiency was tested throughout the process by studying if the users were learning
to navigate and construct proofs in the editor in a reasonable time. No specific time
limits were set, it was up to the moderators to judge from their experience what
constituted a reasonable time.

The last part that contained an interview with open-ended questions, was used to
gather data relating to the user experience of the tester and the interface design of
the editor. The intention during this part was to strengthen and clarify the observed
feelings and emotional aspects of the user during the testing process. Moderators
might miss details or be biased in how they perceive an observed scenario and thus,
to minimize inaccurate conclusions, this part was considered necessary.

After the data was gathered, it was analyzed by the moderators and used to evaluate
the usability and user experience of Logan. Usability issues were presented to the
project members, where a discussion was held, triaging what issues needed to be
improved upon. Potential issues were ordered by severity, where later fixes focused
on the most severe ones. The details of the particular solutions for how an individual
issue was remedied can be found in subsection 4.2.4.

1. P ∧Q premise
2. R premise
3. Q ∧e1 1
4. Q ∧R ∧i 2, 3

Figure 3.1: Test case 1: P ∧ Q,R ` Q ∧ R. It is indeed possible to construct a
proof of this using natural deduction, but the specific proof outlined here is not
correct. The rule that is applied on the third line should be ∧e2, and the operands
to ∧i on line 4 should be flipped.

19

3. Methods

1. P → (Q → R) premise
2. P ∧Q assumption
3. P ∧e1 2
4. Q ∧e2 2
5. Q → R → e 1, 3
6. R → e 5, 4
7. P ∧Q → R → i

Figure 3.2: Test case 2: P → (Q → R) ` P ∧ Q → R. This is provable using
natural deduction, but there are some minor details that are wrong in this particular
proof. On line 7 the introduction rule is applied to no arguments at all, but it should
be applied to the entire subproof spanning lines 2-6. Furthermore, when going from
line 6 to 7 the participants must close the proof box. By default new rows are added
in the current proof box, but by pressing the Shift and Enter keys simultaneously
the new row will be inserted after closing the current proof box.

1. Q → R premise
2. P ∨Q assumption
3. P assumption
4. P ∨R ∨i1 3
5. Q assumption
6. R → e 1, 5
7. P ∨R ∨i2 6
8. P ∨R ∨e 2, 3–4, 5–7
9. P ∨Q → P ∨R → i 2–8

Figure 3.3: Test case 3: Q → R ` P ∨Q → P ∨R. This proof contains no errors,
but it will test the participants intuition when it comes to using nested proof boxes.
They are expected to use some rules they have not used in the previous tests.

20

3. Methods

1. P ∧ ¬Q →→ R premise
2. ¬R premise
3. P premise
4. ¬Q assumption
5. P ∧ ¬Q ∧i 3 , 4
6. R → e 1, 5
7. ⊥ ¬e 6, 2
8. ¬¬Q ¬i 4-7
9. Q ¬¬e 88

Figure 3.4: Test case 4: P ∧ ¬Q → R,¬R,P ` Q. The errors in this proof are
that there is a redundant implication arrow on the first line, and on line 9 the rule
is applied to line 88 instead of line 8. The proof editor will always open a new box
when an assumption is introduced, but in this proof there is no box. The proof editor
will open the box but the participants will not have closed it if they simply entered
the proof as it is written here.

21

3. Methods

22

4
Results

In this chapter, we give a description of Logan and present the results from our user
tests. The entire source code for Logan is publicly available in a GitHub repository1,
with a live version hosted on GitHub Pages2.

4.1 Application
As mentioned in section 1.5 this project aims to develop a proof editor to be used
together with the book Logic in Computer Science [3] and will use the set of inference
rules presented in tables 2.1, 2.2 and 2.4.

4.1.1 Representation of a Proof
Internally, inference rules are represented as an algebraic data type with separate
data constructors for each rule. Each constructor takes a number of arguments,
enclosed in the Maybe type, corresponding to the number of arguments the rule can
be applied on. Individual formulas are represented by the line number on which they
occur, while boxes are represented as a two-tuple with the numbers of the first and
last line of the box. Figure 4.1 shows the Box type and a few of the constructors of
the Rule type.

A Proof is represented as an Array of ProofRow where each row contains a formula
or a fresh variable, along with the justifying inference rule and an error which is
present if the rule application fails for any reason. There is also a List of Scope
which implements a stack of scopes to keep track of available rows and boxes with
each scope corresponding to a box in the proof. The code for these types is displayed
in figure 4.2. In order to avoid having to store variable contexts, shadowing by way of
a fresh variable is disallowed. For a pedagogical tool, this has the benefit of avoiding
generated error messages such as ‘Expected x0, got x0,’ where one x0 shadowed the
other.

Formulas are represented using the recursive data type Formula, with propositions
being represented as predicates with no terms, as shown in 4.3. The type FFC (Formu-

1https://github.com/datx02-21-16/datx02
2https://datx02-21-16.github.io/datx02/

23

https://github.com/datx02-21-16/datx02
https://datx02-21-16.github.io/datx02/

4. Results

type Box = Tuple Int Int

data Rule
= Premise
| Assumption
| AndElim1 (Maybe Int)
...
| OrElim (Maybe Int) (Maybe Box) (Maybe Box)
...
| ExistsElim (Maybe Int) (Maybe Box)
...

Figure 4.1: Definition of the Rule type and a few of its constructors.

type ProofRow
= { formula :: Maybe FFC

, rule :: Maybe Rule
, error :: Maybe NdError
}

type Scope
= { lines :: Set Int

, boxes :: Array Box
, boxStart :: Maybe Int
, vars :: Map Variable Int
}

type Proof
= { rows :: Array ProofRow

, scopes :: List Scope
}

newtype ND a
= ND (State Proof a)

runND :: forall a. Maybe FFC -> ND a -> Tuple Boolean Proof
runND conclusion (ND nd) = ...

Figure 4.2: Definition of the ProofRow, Scope, Proof and ND along with the type
signature for the function runND which performs the actual validation.

24

4. Results

newtype Variable
= Variable String

data Term
= Var Variable
| App String (Array Term)

data Formula
= Predicate String (Array Term)
| Not Formula
| And Formula Formula
| Or Formula Formula
| Implies Formula Formula
| Forall Variable Formula
| Exists Variable Formula

data FFC
= FC Formula
| VC Variable

Figure 4.3: Definitions for the Variable, Term, Formula and FFC types used to
represent different parts of a formula.

laFieldContent) with constructors FC (FormulaContent) and VC (VariableContent),
which is used to allow the introduction of fresh variables.

For substitutions and unification, we implement the definitions and routines from [15].
In our implementation, the data type Variable stores only the textual representation
of variables, instead of making use of interning or generation numbers to influence
equality. While conceptually simpler, it does have some drawbacks: For example,
say that we have the two quantified formulas ∃xP (x, z) and ∃y P (y, x) and we wish
to find a necessary substitution {z/x} to make them equivalent. Currently, we first
need to find a unique variable u, by concatenating all involved variables, before
trying to unify the set {P (x, z), (P (y, x){u/x}){x/y}}. This is necessary because
the bound and unbound x variables would otherwise be considered equal.

4.1.2 Validation of Proofs

To validate the proofs, each line is added into the state of an ND (NaturalDeduction),
the definition of which can be seen in figure 4.2. The complete proof is then validated
using the runND function which uses runState to check for any errors and compare
the formula on the last row to the entered conclusion.

When adding a ProofRow to a proof, the row is validated using the applyRule
function, part of which is shown in figure 4.4. applyRule validates a rule application
by performing the following steps:

25

4. Results

1. Use the functions proofRef and boxRef to fetch the formulas from any rows
or boxes being referenced by the rule.

2. Pattern match the referenced formulas against the formulas that the rule can
be applied on.

3. Compare the result of applying the rule on the argument with the input
formula.

If any of the steps fail, the function will throw an appropriate error that gets stored
in the row, causing runND to return false when validating the proof.

proofRef :: Maybe Int -> ExceptT NdError ND FFC

boxRef :: Maybe Box -> ExceptT NdError ND (Tuple FFC FFC)

applyRule :: Rule -> Maybe FFC -> ExceptT NdError ND FFC
applyRule rule formula = do

{ rows, scopes } <- get
case rule of

Assumption -> except $ note BadFormula formula
AndElim1 i -> do

a <- proofRef i
case a of

FC (And x _) -> pure $ FC x
_ -> throwError $ InvalidArg BadAndE

ImplIntro box -> do
(Tuple a b) <- boxRef box
case a, b of

FC f1, FC f2 -> pure $ FC $ Implies f1 f2
_, _ -> throwError $ InvalidArg ArgNotFormula

...

Figure 4.4: Type signatures for the proofRef and boxRef functions along with
parts of the definition of the applyRule function.

Once the validation is finished, runND returns a tuple with a Boolean indicator of
whether the conclusion has been proven.

4.1.3 Implementation of the Web Application
The user interface in Logan is implemented as a web application in Halogen [20],
which is a component-based framework, written entirely in PureScript. The choice
of using Halogen was influenced by the choice to use PureScript as the programming
language for the logic engine. Using a different language to implement the graphical
interface would have meant that the two sides of the application, the website and
the logic engine, would need some way of communicating. If the graphical interface
is written in PureScript it is enough to use normal function application to invoke

26

4. Results

the logic engine.

In Halogen, each DOM element is represented as a PureScript function. Static
elements can be represented with a single rendering function, while more complex
components, requiring dynamic behavior, are implemented as their own Component
type. In addition to the rendering, the components let the developer specify state,
accepted data input to the component, internal actions in the component and queries
it can respond to. In components the rendering function states the appearance of
the component in a declarative manner. It gets called whenever the state changes,
causing Halogen to carry out the necessary modifications to the DOM. The actual
interface is put together by nesting elements and components inside each other, just
like a static HTML page in which all elements are placed in a tree structure.

The main component in the Logan interface is the proof component which is rendered
as the main panel in the interface. This component maintains a state with the target
conclusion and all rows of the proof, each of which in turn contains text fields for
rules and formulas, which are themselves components. Whenever the user changes
the input, an ND is built from the new state and validated via the runND function
as described in subsection 4.1.1. The returned values are then used to print error
messages or show the success indicator if the proof is complete.

4.1.4 The Final Product
Logan can be used to construct proofs as shown in figure 4.5. Once the conclusion
has been reached, a green frame is shown to indicate that the proof is finished. Boxes
are delimited by a black frame from the initial assumption to just below the final
line.

If the user makes a mistake, such as feeding an invalid argument to a rule, the editor
will highlight the fields where the error occurs and display a message, explaining
what the error is. Error messages can be shown for the following reasons

• A line reference or box reference cannot be parsed.

• The user references something which is out of scope.

• A formula or rule cannot be parsed.

• The user makes a reference to a line where a box is expected or vice versa.

• The user tries to refer to a box where the referenced lines are not the borders
of the same box.

• A formula does not match the output from the rule application on the same
line.

• A user tries to apply an inference rule on a which does not match the expected
pattern.

27

4. Results

Figure 4.5: Screenshot of the editor, showing a proof of the sequent R,R → U ` U .

28

4. Results

• A new premise is introduced in the middle of a proof.

As long as there are errors in the proof, the editor will not show the green border
around the conclusion, even if it has been reached. Examples of error messages can
be found in figures 4.6 and 4.7.

Figure 4.6: Screenshot of Logan with an error message. The output from ∧i does
not match the formula on line 3.

The editor can also explain the available rules. By clicking the buttons to the right
of the proof, the user can see the syntax of each rule and get a brief explanation, as
shown in figure 4.7. By clicking the ‘Manual’ and ‘Shortcut’ buttons, the user can
get more detailed instructions and see a list of available syntax shortcuts, such as
writing ‘im’ to get an implication arrow.

One noteworthy thing is that boxes in the proof were chosen to be tied to Assumption-
or Fresh-rule applications, which is different from how e.g. Conan does it, where
boxes are a separate thing that the user can press a button to create anywhere in
the proof. Our behavior can be argued to be more streamlined since an assumption

29

4. Results

Figure 4.7: Screenshot of Logan, showing an explanation for the →e rule, which
the user has already tried to use. Since there is an error present in the proof, the
last line is not highlighted in green, even though it matches the conclusion.

30

4. Results

cannot go anywhere except at the start of a box. Thus, having the box be created
automatically with the assumption detracts less from the user’s flow.

In order to be able to give the user rudimentary hints on how to get started on
a proof, in case they ever get stuck, we implemented an algorithm for automated
natural deduction, as described in section 2.3.1. As described the algorithm can
prove sequents in predicate logic, but we have only implemented it for propositional
logic. For simplicity, when generating hints the editor only looks at the user-inputted
premises and conclusion, and not any of the proof rows that the user may have
already filled in. The proof editor will then solve the sequent itself behind the scenes,
reconstruct the structure of boxes and tell the user what assumptions were made
up to the first PBC. This was motivated by the rules requiring assuming arbitrary
formulae - i.e. not necessarily subformulas of previously proved rows - being deemed
the hardest given the infinite search space. The path to a proof requiring only, say,
the ∧/→-rules, on the other hand, is easier because each step may be done by only
enumerating what rules can possibly be applied given the formulae that have already
been proved.

4.2 User Tests
User tests were performed a few weeks before the end of the project, which meant
that some functionality was not yet in place. The interface at the time of testing is
presented in figure 4.8. There are no rules for predicate logic included in this interface
because at this time one could only use Logan to construct proofs in propositional
logic.

4.2.1 Basic Functionality
In this section, we first present an overview of how basic functionality in Logan worked
for the users and then go into detail about the users’ experience while performing
specific tasks.

The basic functionality of the editor as defined by the tasks in table 4.1 overall
worked fairly well for the users. There was no task that was impossible for the users
to accomplish, even though certain difficulties were encountered by some. All users
found the manual and shortcuts popups when clicking the appropriate buttons, but
which one they used the most differed from user to user. The users all turned to the
manual or shortcuts once they had encountered problems, not before. When using
the manual or shortcuts they did not read it through but opted to scroll through it,
scanning for relevant information to the problem at hand or search using the browser
shortcut Ctrl + f.

One difficulty that occurred and affected the users during this part of the testing was
related to the buttons and rule field, see figure 4.9. The buttons seemed to confuse
and lead the users in the wrong direction when they started to explore the editor.
Many users thought that these buttons would have some functionality relating to

31

4. Results

Figure 4.8: The interface of Logan at the time of user tests.

Table 4.1: Instructions for testing basic functionality.

Task Description
1 Can you add a big capital letter A as a conclusion?
2 Can you add a big capital letter B as a premise?
3 Can you add a new empty row?
4 Can you remove a row?
5 Can you add an assumption with the formula C?
6 Can you remove the assumption with the formula C?
7 Can you change the conclusion to A ∧ B?
8 Remove all the numbered rows if you haven’t done it yet and then

write two premises. One as the letter A, the other as letter B.
9 Can you apply the and introduction rule on the two premises A and

B?

32

4. Results

applying or inputting rules in a proof. They clicked the buttons multiple times and
seemed to not understand what happened when they clicked or what the intended
purpose of the buttons was.

Figure 4.9: The rule field of the editor with buttons for each rule. When a button
is clicked a help text about the rule replaces the text below the buttons.

33

4. Results

Ta
sk
1
Ta
sk
2
Ta
sk
3
Ta
sk
4
Ta
sk
5
Ta
sk
6
Ta
sk
7
Ta
sk
8
Ta
sk
9

0

50

100

150

200

250
T
im

e
ta
ke
n
to

co
m
pl
et
e
ta
sk

in
se
co
nd

s

Basic functionality test

Person 1
Person 2
Person 3
Person 4
Person 5

Figure 4.10: Time in seconds taken to complete each task in observation 1. Task
2, adding a premise, took a long time for most users.

Most users experienced some difficulties with adding a premise, which is reflected in
the time it took them to complete this task, see figure 4.10. They tried to click on
the ‘Premise’ button in the rule field, expecting that this would enable them to add
a premise somehow. Some also searched for a way to add a premise by clicking in
the area to the left of the turnstile symbol. In the end, all but one user had to use
the manual in order to find out how a premise could be added to the proof.

The shortcuts used to insert a new row and delete a row seemed to be intuitive to
use for the users. These actions were done reflexively by most and the users reported
that the actions felt natural to them. Two users accessed the shortcuts popup to find
out about these commands without trying anything on their own first. It seemed
like they were trying to find a button to press before looking it up. The other users
all guessed and got it right by themselves. However, they did not all get it right
on the first try. Some tried to drag the row away to remove it or press the Delete
button on their keyboard before trying the correct command.

While adding and deleting assumptions was not too difficult for the users to accom-
plish, some users still tried pushing the ‘Ass.’ button expecting to be able to use it
to add an assumption. Most users noticed that you can copy the label of the button
but some missed the period in ‘Ass.’ and did not immediately understand why this
did not work.

34

4. Results

Changing the conclusion to one which included the symbol ∧, was completed reason-
ably fast by all users except one. All users intuitively understood that the conclusion
field can be clicked on to edit it. Most users tried typing in ‘and’ and got pleasantly
surprised by the capabilities of the proof editor to parse the word and output the
correct symbol. Some users consulted the manual or shortcut popups to find the
correct keyword for inputting the symbol. User 3, who took a longer time than the
others, seemed to misunderstand the task and wasted time on adding new rows in
the proof and trying to apply rules to get to the conclusion until they realized that
the task was simply to update the conclusion in the conclusion field.

Even in the last task of the test, some users still kept clicking buttons when they were
trying to apply the ∧i rule. One user looked in the shortcut popup for information
on how to write a rule only to find keywords for generating specific symbols and
nothing about the rules, which added a bit of confusion. Others understood quickly
that they could use the knowledge of generating the ∧ symbol they had used in an
earlier task and append the letter ‘i’ to write the corresponding rule.

It was observed throughout the testing that there were some differences between how
the users chose to interact with the interface, using either the mouse or keyboard.
Some always used the mouse to move between fields while typing in the formulas
and rules, while others used Tab to do this. A few users seemed to look for buttons
as their first instinct when trying to figure out how to accomplish a task. These
users were the same ones that used the mouse to navigate.

4.2.2 Constructing Proofs
After having gone through the basic functionality testing, users did not seem to
experience further difficulties when performing the second part of constructing
natural deduction proofs of the given sequents. No task was impossible to complete
and clear improvements were observed when constructing these proofs using the
knowledge gathered in the previous part. The users started to navigate freely,
understanding more and more how to use the editor and apply inference rules.
During the construction of proofs, the users had to use symbols and inference rules
they had not encountered in the basic functionality testing. This presented no
problem, however, with users either guessing the commands or quickly looking them
up in the manual or shortcut popups.

The commands to input symbols seemed easy for the users to remember. Most
users only needed to look them up at most once in order to be able to use them in
their proofs. Some symbols had multiple commands available, and there were some
variations in which one the user picked. For example, some users used ‘neg’ as a
shortcut to write the ¬ symbol while others used ‘not’ instead.

At the time of testing, there were some inconsistencies in how many letters were
used in each command. Some symbols had commands consisting of two letters while
others used three letters. One user said that this made it more difficult to remember
the commands since they did not follow a common pattern. This user sometimes lost

35

4. Results

flow when writing due to expecting a two-letter command to work when a three-letter
command was needed.

The feedback that the editor gives in the form of error messages and color-coding
seemed to work well for the users. When a user made a mistake the editor underlined
a part of the row in red to show the error and displayed a message and the users
reacted to this and fixed the mistakes. However, it seemed that users mostly noticed
the red color and did not pay much attention to the error messages. One user
remarked on the fact that the editor underlined the rule when the formula and the
output from applying the rule to its argument did not match. They felt like this was
leading them to believe something was wrong with the rule when in fact the rule
was not really the problem.

Test case 4, see figure 3.4, introduced a problematic situation. The assumption row
would introduce a new box which would have users keep adding lines inside that box
until the end and then have to go back and try to amend this “mistake”. As was
suspected, this proved somewhat complicated for the users to accomplish. This test
was designed specifically to explore the possible difficulties users could encounter due
to the fact that the Shift + Enter command, which at this point only worked to close
a box when at the last row of the box. If one attempted to close a box with Shift
+ Enter while in the middle of the box a new row inside the box appeared instead.
Few users discovered the drag-and-drop functionality that would enable them to
drag rows out of the box to amend the mistake easily. Most ended up closing the
box at the last inputted row, then rewrote the last rows of the box outside of the box
before deleting those rows from inside the box. This way of solving their mistake
seemed to distract from the users’ flow and annoy them slightly. Many users tried
to use the Shift + Enter command in the middle of the box multiple times before
resorting to this more roundabout fix. The results of this test gave a clear indication
that this was a usability issue that needed to be addressed.

4.2.3 Interviews
During the interviews, the users were asked to rate the visual design on a scale from
one to five, where one represents the least appealing and five the most. An overview
of the ratings can be found in figure 4.11. One user rated the design as a five, with the
motivation that they had no problems with it - it was clean, clearly divided and had
no clutter. The other users rated the design between three and four but gave similar
comments as the user that gave the design a top grade. Something that lowered
their rating according to some users was the error messages that were displayed from
the start. The issues with these were that the message did not display properly, but
also that the users questioned why they were there at all. They reasoned that when
they first start using the editor they have not made any mistakes yet and they are
already aware that they need to fill in the fields in order to build a proof and thus
do not need to be alerted of empty fields. One user thought the placeholder text was
impossible to read, due to being a light grey on a white background. Another one
said that a dark mode would have been appreciated to feel more comfortable while
using the editor.

36

4. Results

On the same scale, users were asked to rate the ease of finding necessary information
in order to be able to navigate and use the proof editor. These ratings can be found
in figure 4.11. Here all the users tested agreed that they could find the necessary
information but that it could be made even easier. Their ratings were all between
three and four. Some thought the manual and shortcuts had too much information
in one place, and that searching for the relevant information could be made easier by
introducing some navigational tools or separating out some information to another
place. Another suggestion was to split the shortcuts popup into two, one with
shortcuts for different actions and one with how to type the symbols. One user also
said that they would prefer if a popup with just the symbols could be accessed with
a command such as Ctrl + h to avoid having to use the mouse while typing the
proofs.

During the tests, some difficulties the users encountered were observed and noted
by the moderators. To find out more about each person’s user experience the
participants were asked what they had felt was the most difficult during the test.
Their answers corroborated what had been already noted but also added some new
insight. As was noted during testing: Adding premises was difficult, the rules buttons
were confusing, closing the assumption boxes was not intuitive, and it was hard to
discover the drag-and-drop functionality. The new information was mainly that some
users said they had problems getting started, they had trouble understanding how
to input formulas and rules and remembering the commands for symbols and rules.
One said as a beginner you might not know or remember the names of the rules and
symbols and that could make it difficult to input them using the commands.

Users were then asked to talk about the positive aspects of using Logan. They said
they liked that it was fast and that using it helped them clearly structure their proofs
and avoid mistakes. For catching mistakes they said it was especially helpful that
each step is validated so that they get immediate feedback during the construction
of a proof. Some also enjoyed the possibility to use their keyboard for most user
interaction.

While we had already asked about difficulties they had when using Logan we also
wanted to know some more about what they felt were the negative aspects - things
they disliked or found annoying. Here the interviewees could mention minor things
that could be easily be missed during observations but which still impacted their
user experience.

Among the things mentioned was that the way to go about deleting a row did not
feel intuitive. The user described that if they had their cursor in the rule field and
the row was empty they could still not delete it by pressing Backspace. They had to
move the cursor to the formula field in order for this to work. They also mentioned
that they would have liked to have a button to delete a row and that this should
work even with non-empty rows.

Another user mentioned that they want to be able to use →-elimination to conclude
bottom from a formula and the negation of the same formula, with the motivation

37

4. Results

that ¬p could be interpreted as p → ⊥. In Logan this is done using ¬e.

An accessibility problem was brought up by a user who said that they could not read
the placeholder text in the input fields due to the placeholders having a light grey
color on a white background. The same user also said they much prefer dark mode
interfaces in applications.

One user had stumbled on a problem with assumption boxes during testing. They
said if they open a box by writing ‘Ass.’ in the rule field of a row and then later go
back and edit this rule field again this will break the box and you will have to move
everything back into the box if this was done by mistake, the rows will not get back
into the box again automatically if you type in ‘Ass.’.

Towards the end of the interview, the users were given the opportunity to suggest
improvements to consider for future versions of Logan. Several users suggested
adding functionality for exporting their proofs in some format suitable for handing
in to an assignment.

Other suggestions were adding an undo button, improving the navigation of the man-
ual by adding chapters or some search functionality, adding support for constructing
proofs in different logic systems such as minimal or intuitionistic logic, making the
information about how to input symbols more easily accessible - for example by
enabling a popup that could be displayed when a user pressed Ctrl + h or adding
a constantly displayed box with this information somewhere in the interface, and
adding information about the shortcut for each rule in the help text that comes up
when a rule button is clicked.

Perhaps the most important question for the evaluation of how well Logan performed
was asked last: Would you consider using Logan in your studies? The interviewees
all said that if this editor had been available to them when they took an introductory
course in logic they would have used it. One of the users added the condition that
an export functionality would have to be present. The interviewees said they could
see themselves using the editor to practice constructing proofs during the course,
check their solutions before handing in assignments to catch careless mistakes they
might have made and to create a digital version of their proofs for handing in to the
assignments.

4.2.4 Usability Improvements
Usability issues that were identified during the testing process were grouped by
severity, with priority given to implementing fixes for the most urgent ones that
affected the functionality of the proof editor. Many suggestions for improvements
were noted by the test users such as adding a dark mode setting or export of proofs
written in the editor to a suitable format like PDF or plain text. These suggestions
are more quality of life improvements and because of time constraints, a decision
was made to fix more urgent issues that impact the functionality of the editor and
leave minor inconveniences for later stages. Below is a summary of the fixes that

38

4. Results

0 1 2 3 4 5

Visual Design

Ease of Finding Information

Rating

Person 1
Person 2
Person 3
Person 4
Person 5

Figure 4.11: User ratings for visual design and ease of finding information.

were implemented after the user tests:

• Let users input premises beside the turnstile symbol.

This fix aimed at providing a solution for the difficulties users had when adding
a premise. It was not intuitive enough that each premise needed to be added
manually by writing ‘pr’ in the rule field. Users seemed to hover their mouse
beside the turnstile symbol, looking for an input field.
Solution: Added a text field waiting for user input to the left of the turnstile
symbol, indicating that premises can be inserted there.

• Make rule buttons more clear.

This relates to the users’ initial pressing of rule buttons, expecting functionality
that could be used when constructing proofs.
Solution: The rule column header text ‘Rules’ was changed to ‘About the
rules’, while also adding relevant pictures with accompanying text, to clarify
and explain what they do.

• Add a button for creating a row.

This new button provides a solution for the users’ presupposition of adding
rows with a button. Users seemed to hover their mouse initially beside already
generated rows in the editor, trying to find some functionality to add new rows
while learning how to use the editor.
Solution: Added a clickable button to add a new row in current proof.

• Add a clear button.

The addition of the clear button aimed to fix a usability issue that was identified
by the moderators of the testing process. When users were finished constructing
a proof of a sequent and were supposed to start with a new proof, they had
different methods of resetting to an initial state. One user refreshed the browser

39

4. Results

window, while others removed each row of a proof until the editor contained
only empty rows. This is inconvenient and functionality that clears the state
of the editor should be implemented.
Solution: A clear button that deletes the current proof and puts the editor in
the initial state with an empty proof.

• Add button for creating a new row and jumping outside the current box.

The third new button clarifies how to jump outside of a box. Using the
command Shift + Enter to do so is not intuitive if the user has not already
found the manual or shortcut section.
Solution: To clarify and add more possibilities of using this command, a
button for the action of jumping outside of a box was added.

• Shift + Enter should always jump out of the box.

When hitting Shift + Enter inside a box while not being on the last row, it
would add a new row inside the current box instead of jumping out of the box.
Solution: Made Shift + Enter work as expected.

• Change the placeholder text to be more visible.

It was an issue that the initial placeholder text in the input fields of the proof
editor was not visible enough. Namely, the premise, conclusion, formula and
rule fields were affected. The text color was initially not specified, causing
it to be rendered in a light gray color. This did not affect the developers,
and thus it was hard to identify as an issue. During the testing process, one
user however could not read the text due to the low contrast against the
background, while other users did not seem to complain. After investigation,
it was concluded that different web browsers render the proof editor input
fields with different contrast and colorfulness. Firefox was the web browser
that seemed to render the gray color of the text as almost white, while other
web browsers like Microsoft Edge or Chrome used a darker tone.
Solution: Changed the placeholder text color to a more suitable color that
works for a range of web browsers.

• Consistent keyboard shortcuts for symbols.

One user noted an inconsistency where the shortcuts for generating symbols
consisted of either two or three letters. As already discussed in subsection 4.2.2,
this inconsistency affected the users’ flow when writing proofs. Even though
only one user suggested this improvement, the developers of the project agreed
that this fix was important.
Solution: A change was made by updating all keyboard shortcuts for symbols
to use two letters.

40

5
Discussion

In this chapter, we discuss the resulting product of this project, the proof editor
Logan, as well as the approach and the results of our user testing. We also present
some suggestions for future work.

5.1 The Final Product
While Logan works well for large screens, there is an issue with smaller screens, such
as those on laptops, where not all of the interface can be seen at the same time. This
does not make the proof editor unusable but could deter from the usability of Logan
for those students who primarily use a laptop in their studies. For mobile devices
Logan does not work at all, in that some user interface elements are too large and
spill out into the margins on cell phone sized displays. We argue that this is not a
big issue, since most, if not all, students have access to a desktop either at home or
at campus and are thus able to use Logan.

5.2 The User Testing
Evaluating our proof editor with the students lead to interesting insights and sugges-
tions from a user perspective. Functionality that makes sense to us, the developers,
may not make sense to regular users, since we have been involved from the beginning
both with the design and implementation. This can lead to incorrect assumptions
about users in general and how the editor is going to be used. The conducted user
testing identified some major issues that needed to be resolved, where some would
probably be identified by the developers eventually, while others may have remained
undiscovered. These major issues found during the user testing have been addressed
already, see subsection 4.2.4. While we believe that the implemented solutions fix
these issues we cannot be sure without further user testing. Additional motivation
for more iterations of user testing is that any changes made to Logan could introduce
new problems, needing to be identified.

The appreciation of the visual design was fairly high, which seems to be in accord
with what is indicated by the literature; target users are accepting of fairly simple
designs in scientific applications as long as the functionality is there [21].

41

5. Discussion

A possible explanation for why the users seemed to focus on the colored error
indications, rather than the error messages, is that the error messages are too long
to read or not worded plainly enough. It could also be that the users only needed a
quick reminder that they were wrong to realize themselves what went wrong. Other
possible factors that could cause this behavior could be the placement or size of the
messages. The usefulness and possible improvements of the error messages should
probably be explored further in future user tests.

The fact that it had been a while since most users had last constructed proofs in
natural deduction could possibly affect their ability to use the editor. While there
were noticeable differences between the users in the time it took to complete each
task relating to the basic functionality of the editor in table 4.1, these differences
do not seem related to how long ago they last constructed proofs. The user who
took the longest time to complete task 2, adding a premise, also had the most recent
experience in writing natural deduction proofs. It could be argued that comparing
the times could be irrelevant to this study anyway since none of the users was
currently taking an introductory course in logic and thus this mostly compares their
ability to recall and get back into proof construction. No matter how fast any one of
the users was, it could still be the case that currently not taking a course in logic
negatively affected their speed and ease of use. However, the time taken to complete
a task can still be of interest to see if any particular task seemed to take longer for all
users. One such task that stands out is adding a premise. This was a disappointing
result to see since adding a premise is generally the first thing a user will do and
thus something that should be made as easy and fast as possible. With the version
of Logan that was tested, instead of the instant gratification that was aimed for,
the users were initially confused and frustrated. This problem was addressed in an
update to the editor that enabled the adding of premises in the same manner as
adding a conclusion, since during testing this was a task none of the users had a
problem with and which was accomplished fast as seen in the results for task one in
figure 4.10. Further user testing should be done to find out if this was effective in
amending the problem.

The outcomes of discount methods for usability testing depend on the moderators’
ability to observe users and interpret results. Both moderators conducting the
observations and interviews had theoretical knowledge about usability testing in
general, but no experience of using these methods in a practical setting. The intention
was to have a set script that each user would follow, without interference from the
moderators. However, during the testing process, instead of going from one phase
to another, spontaneous probing attempts and discussions were initiated by the
moderators before the transition between phases which may have impacted the result.
As an example, during one test, after a user completed the basic functionality tasks
listed in table 4.1, a discussion was initiated where moderators accidentally explained
how the editor works when the user was amazed how the editor could input the
symbol ∧ by typing in ‘and’. Discussions like these should occur when the testing is
already done because it may skew the result. This kind of situation could be seen as
a consequence of a lack of practical experience when performing an observation.

42

5. Discussion

Using inexperienced moderators could also result in some parts of the observations
being misinterpreted or missed completely. It is hard to know whether this was the
case and, if so, to what extent this affected the result of the user study. Efforts to
counteract this possibility were made by recording the user tests to be able to go
back and look at them multiple times, and by conducting interviews to be able to
hear what the users themselves had to say about their experience.

The testers were all volunteers, most of whom had a personal relationship with
someone in the project group. This could influence the results, since testers may
have held back on criticism or given a better rating due to wanting to please their
friends. The one test user who did not have any personal relationship with anyone in
the project group gave similar criticism and rating, but we can still not discount the
possibility that personal relationship could have influenced the results. The fact that
all volunteered could mean that the selection was not representative of the target
group. It could be argued that someone who volunteers for testing probably has
more interest in trying new things and maybe has greater patience than the average
student.

Aside from the possibility that the ratings could be influenced by personal relation-
ships, the ratings themselves are quite subjective and it could be argued that it is
hard to ascribe meaning to the results. To try to gain more insight than just the
number itself could give, we also asked the testers for the motivation of their rating.
From their motivations, it became clear that there were subjective views on what
a certain rating entailed. Sometimes their reasoning could be similar but they still
ended up giving different ratings and sometimes their ratings would be the same but
their motivations were focusing on different aspects.

To construct proofs by typing in a given partially finished example is probably not
how users generally will work with Logan. More usability problems may be found
when users explore and use the proof editor on their own.

Observations performed remotely have the advantage that the testers can use their
own equipment and be in their own environment, as noted in section 3.2. The
context of use, i.e. the actual conditions in which a product is used, is important
to take into consideration because it may affect the result. One could argue that
using remote capabilities, where testers can be in their own environment at home
instead of in a laboratory setting, adds a sense of comfort and security. However,
the awareness of being observed and recorded can still affect how the users behave
during testing. The users may feel nervous and change their behavior which could
result in different scenarios occurring during the testing, than if they would use the
proof editor without being observed. It was not uncommon during the tests that
the participants were apologetic and said “I am sorry” or “I am not sure what to do
here, I am sorry” which is a behavior that could imply nervousness.

43

5. Discussion

5.3 Future Work

Although the editor has been deemed to meet the minimum requirements, as will
be discussed in chapter 6, there is always room for improvement. If the editor is
used to construct natural deduction proofs as part of an assignment, it would be
convenient for the user to be able to export a proof to LaTeX markup for further
editing or directly to a PDF, as mentioned previously. Since the current version of
Logan lacks the export functionality, the user would have to first construct the proof
using the editor and then copy the proof manually using pen and paper or a text
editor in order to produce a document for submission.

Something that has been overlooked in the process of developing Logan is how well it
works for students with disabilities, e.g. students who are color blind or students that
use a screen reader. Accessibility and inclusiveness design is something that should
probably be investigated in the future through targeted user testing or heuristic
evaluations to ensure that Logan can be used by all students.

Logan can currently only be used to construct proofs in propositional and predicate
logic. In the future, this could be extended to other logic systems such as minimal
or intuitionistic logic.

There is not yet any support for mobile devices. This could be implemented to reach
an even wider audience.

In addition to technical features, one could also work on making the process of
learning natural deduction more appealing through methods such as gamification.
While our work on the editor has focused mostly on instant feedback and ease-of-use
these are only some of the aspects of the idea of gamification that has seen an
increase in popularity in recent years [22]. Defined as “[the use of] game-based
mechanics, aesthetics and game thinking to engage people, motivate action, promote
learning, and solve problems”, Llorens-Largo, Gallego-Durán, Villagrá-Arnedo, et al.
concluded that the fun, motivation and progressiveness components of video games
are some of the key factors when incorporating gamification to enhance education.
An example of this is Duolingo, which is a language learning tool that has successfully
applied gamification in its app [23]. This begs the question of whether gamification
could bring advantages even to the field of symbolic logic. A study implementing
Duolingo in a Spanish class setting cited the accessibility and persistence of the app
as two of its main strengths, with many students completing more lessons than those
required for the class. Perhaps in our case, having an effortless way of inputting
sequents from coursebook exercises would amount to an easy way to lower the barrier
for doing more proofs.

Furthermore, another more closely related example is the logical game Polymorphic
Blocks [24] which encodes natural deduction as a puzzle game. When evaluating the
ease-of-use of Polymorphic Blocks Lerner, Foster and Griswold pitched a group of
people using only pen-and-paper to prove sequents - who were given a 30 minute
lecture and better help - versus one only using the game, and found that the second

44

5. Discussion

group were consistently faster. This shows that the puzzle game being more fun and
engaging spurred learning. However some caveats are that while the game did not
teach symbols, it also performed unification and substitution application for the users,
meaning the users did not have to learn these concepts. This is further justification
for why it would be interesting to see a game-inspired progression system retrofitted
on top of our editor or similar, which has a more efficient and subjectively more “fun”
interface than pen-and-paper while lacking many other facets of gamification.

45

5. Discussion

46

6
Conclusion

Examining Logan against the minimum requirements from section 1.1, we conclude
that it does meet all of them. The proof editor allows the user to construct natural
deduction proofs by applying inference rules in both propositional and predicate
logic, and at the same time validate a given proof.

In addition to the minimum requirement of allowing the user to construct a proof,
four goals were set up for the project in section 1.1. When comparing Logan to these
goals, we can conclude the following.

• It is built as a web application, making it easily accessible on any platform
with access to a modern web browser.

• The interface has a clear resemblance to the way natural deduction proofs are
presented in [3].

• It provides feedback to the user by showing error messages describing any
errors made.

• In the user testing all users managed to construct correct proofs with the aid
of the available information in the proof editor.

The limited user testing conducted suggest that Logan works fairly well for stu-
dents, and the plan is to introduce it as a tool in the upcoming instances of the
course DAT060/DIT201 Logic in computer science at University of Gothenburg and
Chalmers University of Technology. This presents an opportunity to further evaluate
how useful Logan is and find more usability problems that can be addressed in future
updates of Logan.

47

6. Conclusion

48

Bibliography

[1] Department of Computer Science and Engineering, Chalmers. (2020). “DAT060
/ DIT202 Logic in computer science”, [Online]. Available: https://chalmers.
instructure.com/courses/10148 (visited on 04/29/2021).

[2] A. Bolotov, V. Bocharov, A. Gorchakov, and V. Shangin, “Automated first
order natural deduction”, Jan. 2005, pp. 1292–1311.

[3] M. Huth and M. D. Ryan, Logic in computer science: modelling and reasoning
about systems. Cambridge University Press, 2018.

[4] U. Norell, Towards a practical programming language based on dependent type
theory. Citeseer, 2007, vol. 32.

[5] Y. Bertot and P. Castéran, Interactive theorem proving and program devel-
opment: Coq’Art: the calculus of inductive constructions. Springer Science &
Business Media, 2013.

[6] T. Hallgren. (Oct. 26, 2020). “Beviseditorn alfa”, [Online]. Available: https:
//cth.altocumulus.org/~hallgren/Alfa/ (visited on 03/31/2021).

[7] L. de Moura. (2021). “Lean”, [Online]. Available: https : / / leanprover .
github.io/ (visited on 03/31/2021).

[8] E. Björnsson, F. Johansson, J. Liu, J. Olsson, H. Ly, and A. Widbom, “Proof
editor for natural deduction in first-order logic the evaluation of an educational
aiding tool for students learning logic”, B.S. thesis, 2017.

[9] OpenLogicProject. (2019). “Natural deduction proof editor and checker”, [On-
line]. Available: https://github.com/OpenLogicProject/fitch-checker
(visited on 03/31/2021).

[10] J.-W. Chen and J. Zhang, “Comparing text-based and graphic user interfacesfor
novice and expert users”, 2007. [Online]. Available: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC2655855/pdf/amia-0125-s2007.pdf (visited
on 04/29/2021).

[11] W3Techs. (Apr. 7, 2021). “Usage statistics of javascript as client-side pro-
gramming language on websites”, [Online]. Available: https://w3techs.com/
technologies/details/cp-javascript/ (visited on 04/07/2021).

[12] D. Crockford, JavaScript: The Good Parts: The Good Parts. O’Reilly Media,
Inc., 2008.

49

https://chalmers.instructure.com/courses/10148
https://chalmers.instructure.com/courses/10148
https://cth.altocumulus.org/~hallgren/Alfa/
https://cth.altocumulus.org/~hallgren/Alfa/
https://leanprover.github.io/
https://leanprover.github.io/
https://github.com/OpenLogicProject/fitch-checker
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655855/pdf/amia-0125-s2007.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655855/pdf/amia-0125-s2007.pdf
https://w3techs.com/technologies/details/cp-javascript/
https://w3techs.com/technologies/details/cp-javascript/

Bibliography

[13] E. Czaplicki and S. Chong, “Asynchronous functional reactive programming
for guis”, ACM SIGPLAN Notices, vol. 48, no. 6, pp. 411–422, 2013.

[14] B. Russel and A. N. Whitehead, Principia Mathematica. Cambridge University
Press, Jan. 1927, isbn: 9780521067911.

[15] C.-L. Chang and R. C.-T. Lee, Symbolic logic and mechanical theorem proving.
Academic press, 2014.

[16] H. Sharp, Y. Rogers, and J. Preece, Interaction design: beyond human-computer
interaction. Wiley, 2019.

[17] “Ergonomics of human-system interaction — Part 210: Human-centred de-
sign for interactive systems”, International Organization for Standardization,
Geneva, CH, Standard, Mar. 2019.

[18] J. Nielsen, Why you only need to test with 5 users. [Online]. Available: https:
//www.nngroup.com/articles/why-you-only-need-to-test-with-5-
users/.

[19] ——, “Applying discount usability engineering”, IEEE software, vol. 12, no. 1,
pp. 98–100, 1995.

[20] (2021). “Github - purescript-halogen/purescript-halogen”, [Online]. Available:
https://github.com/purescript-halogen/purescript-halogen (visited
on 03/26/2021).

[21] J. Tidwell, “The patterns”, in Designing interfaces, 2nd ed. O’Reilly Media,
Inc., pp. 8–23.

[22] F. Llorens-Largo, F. J. Gallego-Durán, C. J. Villagrá-Arnedo, P. Compañ-
Rosique, R. Satorre-Cuerda, and R. Molina-Carmona, “Gamification of the
learning process: Lessons learned”, IEEE Revista Iberoamericana de Tecnologias
del Aprendizaje, vol. 11, no. 4, pp. 227–234, 2016.

[23] P. Munday, “The case for using duolingo as part of the language classroom
experience”, RIED: revista iberoamericana de educación a distancia, vol. 19,
no. 1, pp. 83–101, 2016.

[24] S. Lerner, S. R. Foster, and W. G. Griswold, “Polymorphic blocks: Formalism-
inspired ui for structured connectors”, in Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, 2015, pp. 3063–3072.

50

https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://github.com/purescript-halogen/purescript-halogen

	List of Figures
	List of Tables
	Introduction
	Purpose
	Benefits of Using a Proof Editor
	Currently Available Software
	Types of Interface
	Target Audience

	Choice of Programming Language
	Limitations

	Theory
	Propositional Logic
	Predicate Logic
	Natural Deduction
	Automated Natural Deduction

	Usability and User Experience

	Methods
	Developing Logan
	Evaluating Logan

	Results
	Application
	Representation of a Proof
	Validation of Proofs
	Implementation of the Web Application
	The Final Product

	User Tests
	Basic Functionality
	Constructing Proofs
	Interviews
	Usability Improvements

	Discussion
	The Final Product
	The User Testing
	Future Work

	Conclusion
	Bibliography

