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Abstract

A three-species model for steady-state negative corona discharge has been considered, with
focus on geometries occurring in electrostatic precipitators and automotive spray painting.
The model incorporates electrons as well as positive and negative ions, which are subject to
ionization and attachment reactions. By using the three-species model it is possible to resolve
the ionization region, which is not the case in one-species models for corona discharge, although
these are commonly used in applications. In this work, we present an approach to solve the
three-species problem by decomposing the domain into a one- and three-species part. This
is based on that electrons and positive ions exclusively reside in the ionization region, which
typically has a small spatial extent. It is an efficient approach as the one-species model is
significantly less computationally demanding than the three-species model. The approach is
implemented by coupling a structured finite-volume Newton solver for the one-species model
and an unstructured finite-volume solver for the three-species model. The implemented solver
is validated by considering a one dimensional test case with coaxial cylinders.

The usefulness of the implemented solver is illustrated by solving the three-species problem
for a range of geometries of interest to electrostatic precipitators and automotive spray painting.
Specifically, we consider electrostatic precipitators with wires that are arranged between parallel
plates. The results for these geometries are then used to perform coupled electrostatic-, fluid-
and particle-simulations to determine the particle collection efficiency, which is a performance
measure for an electrostatic precipitator. Regarding automotive spray painting, we consider
two dimensional analogs of the ABB G1 rotary spray bell. We indicate that the results from
three-species simulations can be used to parametrize boundary conditions for a one-species
solver. This could be a way to efficiently incorporate results from the three-species model in
simulations that optimize the spray painting process.

Keywords: negative corona discharge, three-species model, domain decomposition, finite-
volume discretization, electrostatic precipitator, automotive spray painting.
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Chapter 1

Introduction

The modeling of ionization phenomena in air plays an important role both in simulations of
spray painting in the automotive industry [17] and the analysis of electrostatic precipitators
[11, 19, 6, 14, 4]. In the application involving painting, charge that is created by ionization
attaches to paint droplets which are guided to the car body by means of an applied voltage.
The principle for electrostatic precipitators is similar, although that in this case, the intention
is to remove polluting particles from a gas-flow. Reasons to optimize these systems can clearly
be connected to the possibility to reduce environmental impact.

In this thesis, we consider models for ionization phenomena that contain either one or three
types of charge carriers. These are referred to as single- and three-species models, respectively.
Whereas single-species models commonly are used in application-oriented industrial codes, a
three-species treatment is necessary to resolve the physical processes that are involved in the
ionization. Note that the three-species model is significantly more computationally demanding
than the one-species model, which may be one of the reasons for why it is used to a smaller
extent.

To present the objective of this thesis, we consider a geometry consisting of sharp objects
that are held at a negative potential in relation to some grounded surface. This represents the
situation in the previously mentioned applications. For such a configuration it is known that in
regions with weak electric fields, the three-species model essentially reduces to a single-species
model. This indicates that the three-species problem in the full domain could be solved by
using a model that only admits multiple charge carriers locally. Hence, the computational
efficiency would be increased as there are more efficient techniques for the one-species problem
than for the three-species problem. More precisely, we will in this thesis address the possibility
to solve the three-species problem by using domain decomposition and hence split the problem
into a globally one-species and locally three-species part.
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1.1 Models for ionization phenomena

Here, we give a brief description of the one- and three-species models.

1.1.1 The three-species model

In the three-species model we have three different charge carriers; namely electrons, in com-
bination with a positive ion as well as a negative ion. The three-species model is commonly
considered for gases of pure oxygen, and the ions can in that case be represented by O+

2 and
O−

2 [22, 8, 23, 3, 28, 25, 1, 27, 10]. In air, one may instead consider the positive and negative
ions as average representations of a slightly wider range of species. These charge carriers are
associated with charge densities ρe, ρp and ρn, which satisfy the transport equations:

∇ · (µeρe∇φ) = kiρe − kaρe,

∇ · (µpρp∇φ) = kiρe,

and
∇ · (µnρn∇φ) = kaρe,

where φ is the electrostatic potential. In these equations, ki and ka are reaction rates, and
µe, µp, and µn are mobilities, which depend on the electric field. Keeping the positive and
negative oxygen ions as notation for the ions in our model, the reaction rates correspond to
the ionization reaction:

e+O2 → 2e+O+
2 ,

and the attachment reaction:
e+O2 +M → O−

2 +M,

where M is an uncharged species. In addition to these equations, φ should satisfy the Poisson
equation:

−∆φ =
1

ε0
(ρe + ρp + ρn).

Regarding boundary conditions, we note that a typical geometry consists of a sharp object
ΓE and some surface Γ0, between which one applies a negative potential difference. Using this
notation; there are five boundary conditions:

φ = 0 on Γ0,

φ = −VE on ΓE,

ρn = 0 on ΓE,

ρp = 0 on Γ0,

0 = γµpρp + µeρe on ΓE,

where γ is the second Townsend Ionization Coefficient.
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Figure 1.1: Geometry with coaxial cylinders, i.e. an inner cylinder with radius ri which is
surrounded by an outer cylindrical shell, with radius ro. The inner cylinder is held at a
negative potential, −VE, compared to the outer cylindrical shell, which is grounded.

1.1.2 The one-species model

In the three-species model, positive ions and electrons exclusively reside in a small region,
referred to as the corona or ionization region, in the close vicinity of ΓE. To illustrate this, we
consider a geometry with coaxial cylinders, where the inner cylinder has radius ri = 1.35 mm,
the outer cylinder has radius ro = 5 cm and the applied voltage corresponds to VE = 26 kV.
This configuration is schematically illustrated in Figure 1.1. The charge densities for electrons
as well as positive and negative ions are shown in Figure 1.2. Based on this, we see that the
dimensions of the region where more than one charge carrier is present only extends a few
millimeters from the inner cylinder. Outside this region, the reaction terms vanish and the
system can to a high degree of accuracy be described by:

∇ · (µρ∇φ) = 0 and −∆φ = ρ/ε0,

3



Figure 1.2: Absolute values of charge densities for electrons as well as positive and negative
oxygen ions, as a function of the radial distance, in a geometry with coaxial cylinders. The
radius of the inner cylinder is ri = 1.35 mm and the radius of the outer cylinder is ro = 5 cm.
The applied voltage is VE = 26 kV.

where ρ denotes the total charge density, which is dominated by the contribution from negative
ions. This is a one-species model and needs a boundary condition for the negative ion charge
density at ΓE, which is non-trivial to obtain. Hence, in models that are based solely on a
one-species description one must make use of empirical criteria [2, 7, 18] to obtain boundary
conditions. For example, such boundary condition can be based on the Kaptzov hypothesis,
which states that the electric field at ΓE is equal to the threshold field-strength for corona
discharge. This is a common approach in industrial solvers. Unfortunately, it is neither a
numerically nor mathematically stable approach.
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1.1.3 A note on reaction rate-, mobility- and secondary emission-
coefficients

As shown in [8], the coefficients that are used for reaction rates and mobility constants vary sig-
nificantly between different studies. Experimental data for reaction rates an mobility constants
has e.g. been gathered by Eliasson and Kogelschatz [5], and Raju [24]. For the calculations in
this thesis, we have primarily used the data that was gathered by Eliasson and Kogelschatz.
Also, we have considered coefficients for pure oxygen, as this yields slightly better stability
properties than if the coefficients for air are used. The coefficients are functions of E/N , where
E is the electric field strength and N is the number density for neutral particles. Recall that
N = 2.46 · 1025 m−3 at normal temperature and pressure. Here, E/N is expressed in the unit
Townsend [Td], for which 1 Td = 10−21 Vm2. Spline approximations of the reaction rate and
electron mobility coefficients are shown in Figure 1.3. Regarding the ion mobilities, we use
µp = µn = 2.0 · 10−4 m2/Vs. Finally, the secondary emission coefficient is taken to γ = 0.01.

1.2 Numerical challenges with the one- and three-species

models

The main challenge in solving the equations for either the one-species or three-species model
lies in the treatment of the nonlinearities of the equations. For both problems, there is a
nonlinear coupling between the charge-densities and the electric field. For the three-species
model, the reaction terms also have a strong dependence on the electric field and vary several
orders of magnitude in a small part of the domain. To find the steady-state solution, an
initial approximation of the solution is chosen, and then used to generate a sequence of linear
problems, e.g. by means of Picard iteration or Newtons method. The approximation is updated
until it has converged within some reasonable level of accuracy. Here, it should be noted that
the use of Newtons method yields better convergence properties, which makes it preferable,
provided that the resulting linear problems are feasible.

For the one-species problem, the Newtons method results in linear problems that can be
solved by means of iterative linear solvers; as is necessary for large scale simulations. For the
three-species model, on the other hand, the sparsity pattern of the Jacobian matrix is more
problematic. Since the problem is reaction dominated in parts of the domain; the coupling be-
tween the electron charge density and the remaining charge densities causes large off-diagonal
terms. As stated by the Scarborough criterion, iterative linear solvers are guaranteed to con-
verge if the matrix is diagonally dominant; but may otherwise fail. On the practical level; the
options are to modify the Jacobian, tailor efficient preconditioning schemes, or use non-iterative
linear solvers, e.g LU-solvers. The first option comes at the price of slower convergence with
respect to the number of iterations and the third option is only viable for smaller systems due
to the scaling of the computational cost. Preconditioning might be viable but there is a sharper
threshold to obtain a working solution. By using a domain decomposition approach, on the
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Figure 1.3: Coefficients for reaction rates, ki and ka, as well as the electron mobility µe,
according to experimental data collected by Eliasson and Kogelschatz [5]. Here, we use the
unit Townsend [Td] for E/N , where E is the electric field strength and N is the number density
of neutral particles.

other hand, it is still possible to use the third option for the local solvers at the same time as
the problems associated with the scaling of the computational cost are avoided.

1.3 Outline

This thesis is divided into five primary parts, describing numerical schemes, their implemen-
tations, and finally a selected number of applications. The first part, in Chapter 2 describes a
finite-volume discretization for a structured single-species Newton solver in three dimensions.
This is an existing code in the in-house multi-physics solver IBOFlow [16, 15], which has been
developed at the Fraunhofer Chalmers Centre. We also describe the implementation of a two
dimensional unstructured finite-volume solver for the three-species model. This is an extension
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of a two dimensional solver that uses cylindrical coordinates ((r,z)-coordinates) [10]. This is
followed by Chapter 3, which treats the coupling between three-species solvers and the global
Newton solver. We describe the treatment of boundary conditions, interpolations between dif-
ferent meshes, and modifications of the Newtons method. Then, in Chapter 4, we validate the
implemented solvers and make performance evaluations. Finally, two Chapters are devoted to
applications. In Chapter 5, we analyze the three-species problem for geometries of interest to
electrostatic precipitators, as well as some multipole geometries, which are relevant to automo-
tive spray painting. Regarding Chapter 6, we make a more in depth detour into the application
with electrostatic precipitators. We couple the solutions that were obtained in Chapter 5 to
a fluid solver and trace trajectories of particles; leading to predictions of collection efficiencies
for electrostatic precipitators.
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Chapter 2

Finite volume solvers for the one- and
three-species model

In this chapter, we present the one- and three-species solvers that will be used as global and
local solvers, respectively, in the implementation of domain decomposition for the three-species
problem. As a global solver, we will use the three dimensional structured finite volume Newton
solver that was mentioned in the introductory outline in Section 1.3. Here, we will present
its discretization, and discuss the mesh structure as well as the implementation of boundary
conditions, which is of interest to the presentation in Chapter 3. Regarding local solvers,
we will describe the implementation of a two dimensional unstructured finite volume solver
in cartesian coordinates. This solver is an extension of a similar solver in cylindrical (r,z)-
coordinates [10] and has been developed in this work. We will present its discretization and
discuss the modifications that were necessary due to complications because of the transition
to cartesian coordinates.

2.1 A structured finite volume solver using Newtons

method for the one-species model

Here, we introduce concepts related to the discretization of a structured finite volume Newton
solver for the one-species model.

2.1.1 Definition of mesh structure and discretized quantities

The discretization for the Newton solver utilizes an octree mesh, as is implemented in the
in-house multi-physics code IBOFlow, at the Fraunhofer Chalmers Centre [16, 15]. A two
dimensional illustration, i.e. a quad-tree counterpart, of such mesh is given in Figure 2.1. In
the octree mesh, space is partitioned into cells which may be refined by subdivision into eight
smaller cells. This can be described as a tree-structure, where the level of a leaf is defined by
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Figure 2.1: Two dimensional illustration of a structured grid, which introduces notation for
a cell P and its neighbors E, W , N and S as well as the corresponding faces e, w, n and s.
Adjacent cells may vary by one level of refinement, such as the cells that share the face denoted
by f . When interpolating face values for non-matching faces, a stencil containing the points
marked by (∗) is used.

the number of refinements that were used upon its creation. By subdividing different cells a
different number of times, it is possible to obtain a mesh with varying resolution in different
parts of the domain.

To discretize various quantities, we use cell-centered values. The value corresponding to
a generic cell is denoted by φP for the potential and by ρP for the charge density. In the
finite volume method, we need to interpolate face values and gradients. This is performed by
using cell-centered values from adjacent cells. As is indicated in Figure 2.1, the adjacent cells
associated with a cell P are denoted by E (east), W (west), N (north), S (south), T (top, not
shown), and B (bottom, not shown). Furthermore, the faces that are shared with these cells
are denoted by e, w, n, s, t, and b, respectively.

In the discussion of discretizations, we need to consider the possibility that adjacent cells
have different size. More exactly, a pair of adjacent cells are allowed to differ in refinement level
by one subdivision, which admits for the existence of non-matching faces. This is exemplified
in Figure 2.1. To express face values and gradients on a non-matching face f , a wider stencil
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must be used compared to if the faces match. In the figure, the cell-centered values that are
used to interpolate the face value are marked by (∗). With this pointed out, we may continue
the presentation with the assumption that adjacent faces are matching, and note that the
principles for the non-matching case are similar, although the stencil is slightly different.

Figure 2.2: Two dimensional illustration of a structured grid with a circular immersed bound-
ary. The cells that either are inside or have centers that are less than half the cell size away
from the immersed boundary are labeled interior- (I), mirroring- (M) and extrapolation cells
(E), respectively.

2.1.2 Immersed boundary conditions

The boundary conditions on geometric structures in the domain are implemented by using the
mirroring immersed boundary method [16, 15]. To describe this method, which is second order
accurate, we consider a circular boundary as is shown in Figure 2.2. Assume that this boundary
is associated with a Dirichlet boundary condition Φbc for a quantity Φ (either the potential or
the charge density), that is defined on the cell-centers. According to the mirroring immersed
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boundary method, cells that either are inside or have centers that are less than half the cell size
away from the immersed boundary are labeled as interior-, mirroring- or extrapolation cells.
Interior cells lie inside the immersed boundary, with cell-centers that have a larger distance to
the immersed boundary than one and a half cell size. The remaining cells that fit the above
description are labeled as mirroring cells or extrapolation cells, depending on if their cell-center
lies inside or outside the immersed boundary.

The equation for an interior point is implemented as a diagonal element with the right hand
side equal to Φbc. For mirroring cells one defines a point by mirroring the cell center in the
boundary, along the normal. Denoting the value at the cell-center of the mirroring cell by ΦP

and the value at the mirrored point by Φmirror, it should hold that:

Φbc =
ΦP + Φmirror

2
. (2.1)

Clearly, Φmirror does not in general correspond to a value at a cell-center, but can be expressed in
terms of cell-centered quantities by using trilinear interpolation. Regarding extrapolation cells,
the closest point on the immersed boundary is mirrored in the cell-center of the extrapolation
cell. If ΦP denotes the value at the cell-center of the extrapolation cell and Φextrapolation is the
value at the point that has been extrapolated by mirroring, it should hold that:

ΦP =
Φbc + Φextrapolation

2
, (2.2)

where Φextrapolation is expressed by interpolation of cell-centered quantities.
In addition to Dirichlet boundary conditions, we may also have Neumann conditions. At a

cell that is inside the domain, but with a face at the boundary, this yields a relation between the
cell-centered value and the value at the mirror point of the cell-center through the boundary.
This can then be used to express the face value at the boundary solely in terms of quantities
inside the domain.

2.1.3 Finite volume discretization of Newtons method for the single-
species model

Let (φ,ρ) be an approximation to the solution in the one-species model and assume that (δφ,δρ)
is such that (φ+ δφ,ρ+ δρ) solves the equations. By integrating both sides of the equation for
the potential over the volume of the cell P , we get:

−
∫
V

∆(φ+ δφ) dV =

∫
V

1

ε0
(ρ+ δρ) dV, (2.3)

which by using Gauß theorem can be written as:

−
∫
∂V

∇(φ+ δφ) · dS =

∫
V

1

ε0
(ρ+ δρ) dV. (2.4)
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Hence, we obtain that:

−
∫
∂V

∇δφ · dS −
∫
V

1

ε0
δρ dV =

∫
∂V

∇φ · dS +

∫
V

1

ε0
ρ dV. (2.5)

The flux integrals involving ∇φ are evaluated by using a central difference approximation for
∇φ · n which is multiplied by the area of the face, where n denotes the outward normal. The
volume integral with respect to the charge density is evaluated by multiplying the cell-centered
value by the volume of the cell. If we, for notational simplicity, assume that the mesh is
isotropic with cubic cells of side length L, we obtain:

(6δφP − δφE − δφW − δφN − δφS − δφT − δφB)− L2 1

ε0
δρP =

(φE + φW + φN + φS + φT + φB − 6φP ) + L2 1

ε0
ρP ,

after dividing by all common factors of L, which defines a system of linear equations.
In addition to the Poisson equation, we have the transport equation for ρ, which takes the

form:

0 =

∫
V

∇ · (µ(ρ+ δρ)∇(φ+ δφ)) dV =

∫
∂V

µ(ρ+ δρ)∇(φ+ δφ) · dS, (2.6)

where the last step follows from Gauß theorem. By rearranging this, we obtain that:∫
∂V

µδρ∇φ · dS +

∫
∂V

µρ∇δφ · dS = −
∫
∂V

µρ∇φ · dS, (2.7)

provided that we only keep terms up to linear order in (δφ,δρ). Here, expressions involving the
gradient of the potential and its correction are evaluated in the same way as in the discussion
of the Poisson equation, which results in a discretization of the form:

δρe(φE − φP ) + δρw(φW − φP ) + δρn(φN − φP ) + δρs(φS − φP )+

δρt(φT − φP ) + δρb(φB − φP ) + ρe(δφE − δφP ) + ρw(δφW − δφP )+

ρn(δφN − δφP ) + ρs(δφS − δφP ) + ρt(δφT − δφP ) + ρb(δφB − δφP ) =

−ρe(φE − φP )− ρw(φW − φP )− ρn(φN − φP )− ρs(φS − φP )−
ρt(φT − φP )− ρb(φB − φP ),

where we have divided by all common factors of L and µ. The remaining part is to express
the face values of ρ and δρ in terms of cell-centered quantities. Here, the interpolation will be
performed using the Normalized Variable Diagram, which is described in Section 2.1.4.

2.1.4 Interpolation of face values for ρ by using the Normalized
Variable Diagram

The face value for the charge density corresponding to an arbitrary face f will be denoted by
ρf . We will use the Normalized Variable Diagram to express the face value in terms of a stencil
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consisting of three points. This formalism includes a wide range of interpolation schemes with
different orders of accuracy [12, 13]. Generally it can be stated that a well designed interpolation
scheme should be conservative, monotonous, and yield matrices that are diagonally dominant.
As the equations under consideration may have solutions that exhibit steep gradients, the use
of higher order schemes demands the use of limiters to meet these standards.

To define the Normalized Variable Diagram we label the cells that share f as donor cell D
and acceptor cell A, where the labeling is determined by the flow direction at f . In addition
to this, we have the upwind U cell, which is the cell that is on the opposite side of the donor
cell as compared to the acceptor cell. With these cells defined, normalized coordinates are
introduced according to:

ρ̃ =
ρ− ρU
ρA − ρU

. (2.8)

Note that ρ̃U = 0 and that ρ̃A = 1. Now, using the normalized coordinates, ρ̃f can be expressed
as a function of ρ̃D, which defines an interpolation scheme. With the calculated value for ρ̃f ,
one may evaluate:

β =
ρ̃f − ρ̃D
ρ̃A − ρ̃D

, (2.9)

which can be rewritten as:
ρf = (1− β)ρD + βρA. (2.10)

Hence, the dependence on the upwind cell has been absorbed into the coefficient β, which is
calculated explicitly. Note that it must hold that β ∈ [0,1], or the interpolation may fail to
be monotonous and the solution will exhibit oscillations. It is hence necessary to enforce that
ρ̃D ≤ ρ̃f ≤ 1. Regarding interpolation schemes, we have the first order upwind scheme, for
which ρ̃f = ρ̃D. Among higher order schemes, we have second order upwinding (ρ̃f = 3ρ̃D/2),
Fromm’s method (ρ̃f = 1/4 + ρ̃D) and the QUICKEST-scheme (ρ̃f = 3/8 + 3ρ̃D/4).

2.2 Two dimensional unstructured finite volume solver

for the three species model

Here, we introduce concepts related to the discretization of an unstructured finite volume solver
in cartesian coordinates, for the three species model. In contrast to the solution procedure
that was presented for the one-species problem in Section 2.1, we will make an uncoupled
treatment of the Poisson equation and charge densities. This means that we may describe the
discretization for the Poisson equation and charge densities separately as is done in Sections
2.2.3 and 2.2.4.

2.2.1 Definition of mesh structure and discretized quantities

The unstructured solver uses a two dimensional mesh with triangular elements, as is illustrated
in Figure 2.3. Solution quantities are defined on the centers of the triangles, which are referred
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Figure 2.3: Showing triangles that introduce notation for an unstructured mesh. The edges
for the triangle P are denoted by fi, where i = 1, 2 or 3. Furthermore, the triangle sharing
the edge fi is denoted by Nfi .

to as cell-centers. For a triangle, labeled P , we denote its edges by f and the adjacent triangle
sharing a given edge f by Nf . Furthermore, |f | denotes the length of the edge f and |T |
denotes the area of the triangle T .

2.2.2 Interpolation to edges

In the finite volume scheme for the three-species model on an unstructured mesh, the electric
field, the mobility constants as well as the charge densities, will need to be evaluated at the
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edges of the triangles. This is slightly more complicated than in the structured case as the
cell-centers of adjacent triangles have a more arbitrary relation to the location and orientation
of a shared edge. To accommodate this, we use linear interpolation of the form:

Φf = (1− If )ΦP + IfΦNf
, (2.11)

with an interpolation coefficient If that is given by:

If =
d(P,f)

d(P,f) + d(Nf ,f)
. (2.12)

Here, Φ is a cell-centered quantity and d(·,·) denotes the shortest distance between a cell-center
and an edge.

For edge values of gradient vectors, the same interpolation is used, provided that the gradi-
ents have been evaluated at the cell-centers. To evaluate cell-centered gradients, we use Greens
formula: ∫

∂T

f dy − g dx =

∫
T

(
∂f

∂x
+
∂g

∂y

)
dxdy. (2.13)

Hence, the cell-centered gradient of Φ, can be expressed as:

∇Φf =
1

|T |

(
Φf1∆y1 + Φf2∆y2 + Φf3∆y3
−Φf1∆x1 − Φf2∆x2 − Φf3∆x3

)
, (2.14)

which makes use of the edge values of Φ. Here ∆xi and ∆yi are the changes in the coordinates
when traversing between the endpoints of an edge in a counter-clockwise direction. Finally,
note that this formula also has applications when defining edge-values at boundaries with
Neumann boundary conditions for Φ.

2.2.3 Discretization for the Poisson equation

To discretize the Poisson equation, we integrate the equation over a triangle T :

−
∫
T

∆φ dV =

∫
T

1

ε0
ρ dV. (2.15)

By using the divergence theorem and approximating the involved integrals using discretized
quantities, we obtain that:

−
∑
f

∇φf · nf |f | =
1

ε0
ρP |T |. (2.16)

Here, it is the evaluation of ∇φf · nf , which poses the largest challenge. This occurs since the
line passing through the cell-centers of adjacent triangles is not necessarily collinear with the
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normal nf of the shared edge. Because of this, ∇φf ·nf is split into an implicit and explicit part,
and the potential is found by an iterative procedure. More exactly, ∇φf ·nf is decomposed as:

∇φf · nf =
|Df |
|df |

(φNf
− φP ) +Rf · ∇φf (2.17)

where df is the vector from P to Nf . Furthermore, the terms Df and Rf are defined as:

Df =
|f |df
df · nf

and Rf = |f |nf −Df . (2.18)

In this representation, the term involving Df is treated implicitly, and Rf is treated explicitly.
To evaluate Rf , the gradient of the potential from the previous iteration is evaluated on the
edge, as was described in Section 2.2.2.

To summarize, the Poisson equation is discretized according to:

−
∑
f

|Df |
|df |

(φNf
− φP ) =

∑
f

Rf · ∇φf +
1

ε0
ρP |T | (2.19)

where implicit terms are on the left hand side and explicit terms are on the right hand side.
Regarding boundary conditions, Dirichlet boundary conditions are implemented by modi-

fying the evaluation of ∇φf · nf at the edges f that correspond to a Dirichlet boundary. In
that case, the potential has a prescribed value φbc on the edge and ∇φf · nf is given by:

∇φf · nf =
φbc − φP

d(P,f)
. (2.20)

In addition to this, homogenous Neumann boundary are implemented by imposing that ∇φf ·
nf = 0 in (2.16).

2.2.4 Discretization of a transport equations

In this section, we discuss the discretization of the transport equations for electrons as well as
positive ions and negative ions. Observe that the transport equations for the charge densities
can be written on the generic form:

∇ · (µi∇φρi) = Si(E)ρe, (2.21)

where i is an index for the charge density and µi, Si(E) is the corresponding mobility and
reaction rate coefficient. Depending on which species that is considered, we may either have
that Si(E) equals ki, (ki − ka) or ka.
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In the discretization, we will solve for updates (δρe,δρn,δρp) of the current approximation
of the solution (ρe,ρn,ρp). In this notation; integration of a transport equation over a triangle
T and application of the divergence theorem yields:∫

∂T

µiδρi∇φ · dS −
∫
T

Si(E)δρe dV =

−
∫
∂T

µiρi∇φ · dS +

∫
T

Si(E)ρe dV,

after rearranging the terms so that the terms in the left hand side are treated implicitly and
the terms in the right hand are treated explicitly. The discretized version of the above equation
is given by: ∑

f

µifδρif∇φf · nf |f | − Si(E)δρeP |T | =

−
∑
f

µifρif∇φf · nf |f |+ Si(E)ρeP |T |.

In this expression, the edge values of the charge densities are expressed using the Normalized
Variable Diagram and gradients are interpolated according to Section 2.2.2. Regarding values
for reaction rates, these are first interpolated to the edges and then back to the cell-centers.
This serves to increase stability by widening the stencil and hence compensate for inaccuracies
that may appear in the calculation of the electric field in a single cell.

As was mentioned in the introduction to this thesis, the coupling of the charge densities
through the reaction term yields a sparsity pattern with large off-diagonal elements. Hence,
one may argue that it is favorable to drop the coupling between the charge densities and make
a fully uncoupled treatment of the problem. This works in cylindrical coordinates as is shown
in [10]. In cartesian coordinates, however, an uncoupled treatment was experienced to lead to
instability for the test case in Chapter 4. Hence, the three-species solver in cartesian coordinates
will generally demand the use of non-iterative linear solvers. Additionally, in order to favor
stability a relaxation parameter ω is introduced and the equations are modified according to:∑

f

µifδρif∇φf · nf |f | − ωSi(E)δρeP |T | =

−
∑
f

µifρif∇φf · nf |f |+ Si(E)ρeP |T |.

This is motivated by the fact that the reaction rates have a strong dependence on the electric
field strength, which typically is known to rather low accuracy during the initial part of the
solution process. To see that this modification is admissible it should be noted that the correct
solution to the transport equations corresponds to that the right hand side becomes zero, and
as long as this can be ensured, it does not matter if the matrix that is defined by the left hand
side is altered. Typically, we take ω ∈ [0.1, 1], depending on the problem at hand.
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Figure 2.4: Showing the ghost upwind triangle (labelled U) which is obtained by reflecting the
acceptor triangle (A) in the cell-center of the donor triangle (D) along the line connecting the
cell-centers of the acceptor and donor triangle.

2.2.5 Interpolation of face values for ρi and the unstructured solver

As stated in the previous section, the Normalized Variable Diagram is used to interpolate edge
values for the charge densities. For an unstructured mesh, the acceptor and donor cell can be
defined similarly as in the structured case. For the upwind cell, on the other hand, it is more
difficult to make a definition based on a neighboring triangle. This is avoided by introducing
a ghost-triangle, as is shown in Figure 2.4. The ghost triangle is constructed by mirroring
the acceptor triangle in the cell-center of the donor triangle, along the line that connects the
acceptor and donor cell-centers.

It is necessary to interpolate the value of the charge density to the cell-center of the ghost-
triangle. This is performed by using a central-differencing approach, based on the gradient in
the donor cell:

∇ρiD · d̂f =
ρiA − ρiU

2|df |
, (2.22)
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where d̂f is a unit-vector in the direction of df . By using the value of ρiU , it is possible to
define ρ̃iA, ρ̃iU , ρ̃iD and ρ̃if in the same way as for the structured case. On the other hand, as
the value in the upwind triangle is interpolated, to favor stability, an artificial Courant number
c is introduced and ρ̃if is transformed according to:

ρ̃if → (1− c)ρ̃if + cρ̃iD. (2.23)

The value of ρ̃if is then limited according to ρ̃iD ≤ ρ̃if ≤ 1 and ρ̃if ≤ ρ̃iD/c, and finally used
to define β as in the structured case.

2.3 Convergence criteria

As the solution process is iterative, it is necessary to have a termination criterion for when a
solution of sufficient accuracy has been found. Here, we will use the total relative update ∆l2

in l2 norm, which for the Newton solver can be defined as:

∆2
l2 =

||∆ρ||2l2
||ρ||2l2

+
||∆φ||2l2
||φ||2l2

(2.24)

and as:

∆2
l2 =

||∆ρp||2l2
||ρp||2l2

+
||∆ρe||2l2
||ρe||2l2

+
||∆ρn||2l2
||ρn||2l2

, (2.25)

for the three-species solver. Here, a ∆ proceeding a solution quantity refers to the difference
in the solution between consecutive iterations.
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Chapter 3

A domain decomposition approach

This chapter presents a domain decomposition approach to the three-species problem. To give
an overview of the approach, we consider the geometry with a pair of coaxial cylinders that is
shown in Figure 3.1, for which the inner cylinder is held at a lower potential compared to the
outer cylinder. This divides space into an ionization region and a region where the one-species
model is valid. Similarly, we will in our approach apply a three-species solver to a domain that
is slightly larger than the ionization region. The goal is to use the local three-species solver to
set boundary conditions for the charge density in a single-species solver that operates in the
full domain so that the one-species solution assumes the same behavior as the three-species
solution, outside the ionization region.

We will consider two different approaches to set the boundary condition for the charge-
density for the single-species solver. The first approach is to use the three-species solution
to solve the one-species problem to the physical boundary of the domain and set a boundary
condition there. The second approach is to introduce an artificial boundary that surrounds
the ionization region on which the charge density from the three-species solver is used as a
boundary condition. The former approach has the benefit that the boundary condition for the
single-species charge density and potential can be set on the same boundary. On the other
hand, corona-phenomena are highly directional in complicated geometries. Hence, setting a
boundary condition for the charge density at the physical boundary demands that the mesh
for the one-species solver can resolve this directionality at the length-scale of this boundary.
This favors the use of an artificial boundary inside the domain as it admits for the use of a
coarser mesh in the single-species solver.

3.1 The coupling of global and local solvers

With the notation that was introduced in Figure 3.1, we intend to solve the equations:

∇ · (µρ∇φglobal) = 0 and −∆φglobal = ρtotal/ε0,

20



Figure 3.1: Illustration of a geometry with coaxial cylinders, with radii ri and ro. Ω denotes
the region between the two cylinders and Ω̃ extends slightly beyond the ionization region close
to the inner cylinder, which occurs if the the inner cylinder is kept at a certain negative voltage
compared to the outer cylinder.

in the full domain Ω. Furthermore, we want to solve:

∇ · (µeρe∇φlocal) = kiρe − kaρe,

∇ · (µpρp∇φlocal) = kiρe,

∇ · (µnρn∇φlocal) = kaρe,

and

−∆φlocal =
1

ε0
(ρe + ρp + ρn),

in Ω̃, which encloses the ionization region. To make this set of equations yield the three-species
solution in the full domain, we must in addition to the ordinary boundary conditions in the
models, impose the following:
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1. The charge density ρtotal must satisfy:{
ρtotal = ρe + ρp + ρn inside Ω̃

ρtotal = ρ inside Ω\Ω̃.

2. The potentials must satisfy:

φlocal = φglobal on Ω◦ ∩ ∂Ω̃.

3. The one-species charge density ρ must satisfy:

ρ = ρn on Ω◦ ∩ ∂Ω̃.

As the solution procedure for the solvers in Chapter 2 is iterative, we will satisfy the boundary
conditions by making interleaved iterations with the global and local solvers, using the solution
that is not updated to set boundary conditions. To satisfy (1), we will use the charge density
from the local solver when we assemble the residual in the Newton algorithm in the region Ω̃.
Furthermore, as we do not want ρ to affect the potential inside Ω̃, we modify the discretization
in this region. The details for this are given in Section 3.2. To satisfy (2), we interpolate the
solution in the global solver to the boundary of the local solver and set a Dirichlet boundary
condition as described in Section 3.3. Finally, to satisfy (3), we either set a boundary condition
for the charge density at the physical boundary or at an artificial boundary that extends into
the domain. In the former case, we use the method of characteristics to solve the one-species
problem to the boundary ΓE. The details will be given in Section 3.4. Regarding the latter
case, we refer to Section 3.5.

3.2 Modification of the Newton algorithm

To avoid ρ from affecting the potential in the ionization region, the discretization of the equation
for the potential in (2.5) is replaced by:

−
∫
∂V

∇δφ · dS =

∫
∂V

∇φ · dS +

∫
V

1

ε0
ρtotaldV. (3.1)

When we consider applications, the local solver will use a mesh that is an annulus and we
introduce a radial cut-off rc such that we use this alternative discretization for cells with
centers that are closer than rc, to the center of the annulus. Note that rc must be chosen to
be sufficiently large so that the defined volume includes the ionization region.
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3.3 Interpolation of charge densities and the electric

field

Interpolation must be performed when setting boundary conditions by using solution quantities
from different meshes. In the global solver, the potential is interpolated to the boundary of the
local solver. This is performed by using trilinear interpolation [16, 15], first to the nodes and
then to the point of interest. A motivation for this procedure is that it results in a continuous
interpolant at the nodes (as well as faces) of the cells, which would not be the case if e.g. face
values were used to interpolate the potential.

In the local solver, the charge density as well as the magnitude of the electric field may
need to be interpolated. Similarly as in the structured case, we first interpolate the solution
to the vertices of the triangle which contains the intended interpolation point. The values Φvi

at the vertices vi are defined by using inverse distance averaging:

Φvi

(∑
T

1

d(T,vi)

)
=
∑
T

ΦT

d(T,vi)
, (3.2)

where T ranges over all triangles that share the vertex vi and d(T,vi) denotes the distance
between this vertex and the center of triangle T . By using the vertex values it is then possible
to calculate the value at an arbitrary point in the triangle, according to:

Φ = ξ1Φv1 + ξ2Φv2 + ξ3Φv3 , (3.3)

where (ξ1,ξ2,ξ3) denotes the barycentric coordinates for the interpolation point.

3.4 Boundary condition for the single-species charge den-

sity at the physical boundary

Observe that the equation for the one-species charge density can be written as:

n · ∇ρ+
ρtotal
Eε0

ρ = 0, (3.4)

where n is the direction of the electric field. The left term can be viewed as the derivative
along n and we may hence write:

dρ

dn
+
ρtotal
Eε0

ρ = 0, (3.5)

which has the solution:

ρ(s) = ρ0 exp

(
−
∫ s

0

ρtotal(u)

E(u)ε0
du

)
. (3.6)

Here, s parametrizes the length of the field-line and ρ0 is an initial condition at s = 0.
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To use this to set a boundary condition for ρ at a given point on the physical boundary ΓE,
we can map the field-lines a given distance d such that the final position resides outside the
ionization region and evaluate (3.6) along this path with ρ0 taken to be the value of ρtotal at
the final position. This is done by approximating the integral in the exponent by a Gaussian
quadrature rule: ∫ d

0

ρtotal(u)

E(u)ε0
du =

n∑
i=1

ωi
ρtotal(ui)

E(ui)ε0
, (3.7)

where ui and ωi are determined by properties of the Legendre polynomials. Such quadrature
rule integrates polynomials of degree 2n − 1 exactly and is suited if the integrand can be
accurately represented as a polynomial. In addition to the evaluation of the integral we need
to determine sequences of points x(ui) along field-lines of interest. This is done by recursively
taking steps:

x(ui) = (ui − ui−1)ni−1 + x(ui−1), (3.8)

where ni is the normalized direction of the electric field at x(ui), u0 = 0, un+1 = d and x(u0)
is the boundary point of interest.

Finally, note that the evaluation of solution quantities along field lines involves search for
the triangle to which a given point belongs. This may either be performed occasionally, with
a list of triangle indices and coordinates x(ui) to speed up the evaluation, or each time a
boundary condition must be evaluated. In the implementation for the unstructured solver, we
use the former alternative. The mentioned list is then updated for a decreasing sequence of
thresholds for the total relative update in Section 2.3.

3.4.1 Accuracy in the one-species boundary condition and param-
eter selection

To perform calculations in the domain decomposition approach where we set a boundary con-
dition at the physical boundary, one must specify the distance d that shall be traced along
the field-lines and the number of quadrature points n. Here, we will use the geometry with
coaxial cylinders and a three-species solution that has been obtained from a one dimensional
finite element solver, to analyze the effect of various choices of d and n.

To begin with, we consider the single-species solutions that are obtained when the boundary
condition for the single-species solver is calculated with different values of d. This is shown
in Figure 3.2, which also includes the total charge density from the three-species model. The
values that were considered for d are given by 2 mm, 2.25 mm, 2.5 mm and 2.75 mm, yielding
positions that are slightly beyond the peak in the total charge density in the three-species
model, which identifies the ionization region. The figure shows that, for these values of d, there
is no discernible difference in the obtained single-species solution for the charge density.

A convergence study has been performed regarding the accuracy in the boundary condition
that is obtained for different numbers of quadrature points. Figure 3.3 shows the relative
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Figure 3.2: The one-species charge densities corresponding to the boundary conditions that are
implied by the method of characteristics, for field-lines extending distances of 2 mm, 2.25 mm,
2.5 mm and 2.75 mm into the domain. All of these are shown with the same marker and as can
be seen, there is no discernible difference for the different values of d. The figure also includes
the total charge density, according to the three-species model. The applied voltage between
the cylinders is -12 kV.

difference in the boundary condition when increasing the number of quadrature points. As can
be seen; using four or more quadrature points yields an accuracy of 1 % or better.

3.5 Boundary condition for the single-species charge den-

sity at an artificial boundary

Similarly to what was done in Section 3.2, we introduce an annulus with outer radius rc which
encloses the ionization region. The outer boundary of this annulus is implemented as an
immersed boundary, i.e. following the description in Section 2.2, and a boundary condition for
the negative ion charge density is obtained by interpolation of the local three-species solution,
using the procedures that were described in Section 3.3.
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Figure 3.3: The relative difference in the boundary condition for the charge density in the
one-species model as a function of the number of quadrature points, for a geometry with a pair
of coaxial cylinders.
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Chapter 4

Validation of implemented solvers and
approach with domain decomposition

This chapter validates the implemented three-species solvers by considering results in geome-
tries with coaxial cylinders. These geometries are one dimensional and accurate reference
solutions can been obtained by using a one-dimensional finite-element solver [10].

Initially, we verify the implemented unstructured three-species solver in cartesian coordi-
nates. This is performed by considering a pair of coaxial cylinders with dimensions ri = 0.5 mm,
ro = 3.765 mm and the applied voltage VE = 8 kV, where the notation is in accordance with
Figure 1.1. In addition to verifying that the solution from the unstructured solver agrees with
the one-dimensional counterpart, we make an analysis of convergence with respect to mesh
size.

After establishing the correctness of the implemented unstructured three-species solver in
cartesian coordinates, we turn the attention to the domain decomposition approach. Here, we
consider a validation case with a slightly larger outer cylinder with radius ro = 7.5 mm and
the applied voltage VE = 12 kV. The use of a test case with larger outer cylinder is motivated
by that the smaller geometry does not exhibit a region that essentially is dominated by one
species. We validate both approaches, that were described in Chapter 3, to couple a local
three-species and global one-species solver.

Finally, we note that we will in this presentation neglect the discussion of convergence
with respect to the choice of iterative cut-off. Investigations regarding this issue have been
performed in [10], where the accuracy was deemed sufficient when the relative update of the
solution had fallen below 10−4.
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Table 4.1: The relative l2-difference between solutions at consecutively finer meshes for the
unstructured three-species solver in cartesian coordinates. Here, the mesh size refers to the
size of the triangles close to the inner cylinder.

Number of triangles Mesh size [µm] φ ρe ρn ρp
38316 7.50 - - - -
150386 3.75 0.0003 0.0545 0.0345 0.0425
595042 1.88 0.0001 0.0380 0.0250 0.0317

Figure 4.1: Charge densities in a geometry with a pair of coaxial cylinders, calculated by using
the two dimensional unstructured three-species solver in cartesian coordinates (blue) and a
one-dimensional finite-element solver (black).

4.1 Validation of two-dimensional unstructured finite vol-

ume three-species solver in cartesian coordinates

Figure 4.1 shows the solution for charge densities in the validation case, calculated with the
implemented unstructured finite volume solver in cartesian coordinates. The solution has been
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calculated using a mesh with 595042 triangles and a mesh size of 1.88µm at the inner cylinder.
In the figure, we have also included the charge densities according to a solution from the
previously mentioned one-dimensional three-species solver. The relative difference in l2-norm
between the one- and two-dimensional solution is 0.07 % for the potential, 2.5 % for the electron
charge density, 1.7 % for the negative ion charge density and 2.1 % for the positive ion charge
density. As can be seen from the figure, much of these errors can be attributed to the noise
level in the two dimensional solution.

To investigate convergence with respect to mesh size, we have calculated the relative differ-
ence in l2-norm for solutions at three consecutively finer meshes. Table 4.1 shows the results
and it may be concluded that a mesh size in the range between 1.0µm and 10.0µm at the
inner cylinder, yields an accuracy of within a few percent.

4.2 Validation of domain decomposition approach

In Figure 4.2, we show the solution for charge densities in the validation case, for the two
different approaches with domain decomposition. In both cases, the mesh for the local solver
extended a distance 3.765 mm into the domain, with a mesh size of 1.88µm at the inner
cylinder. Furthermore, the coupling between the potential and charge density for the Newton
solver was suppressed for radial distances less than 3.0 mm from the center of the cylinders.
For the approach where the boundary condition is set on the physical boundary, the field-lines
were traced a distance of 2.5 mm. To evaluate the boundary condition at the inner cylinder,
six quadrature points were used. According to Chapter 3 this should give rise to an error of
less than 0.1 % due to the integration, which for meshes of similar type as in Section 4.1, can
be neglected. Regarding the approach with an artificial boundary, this boundary was located
at a distance of 3 mm from the center of the cylinders, i.e. the same boundary to which the
previously mentioned field-lines extended. Finally, regarding the mesh size for the global solver,
we used the uniform grid-spacing 0.1 mm, with two refinement levels close to the inner cylinder.

As can be seen from Figure 4.2, the charge densities that are calculated by a coupled
local and global solver agrees qualitatively to the one-dimensional counterparts. To give a
quantitative measure of the accuracy, we calculate the relative difference in l2-norm between
the negative ion charge density in the reference solution and the solution obtained by the global
one-species solver for radial distances larger than 3.0 mm. In the case where we set a boundary
condition for the single-species charge density at the physical boundary, we get the relative
l2-difference 1.34 %, whereas we get 2.55 % when the boundary condition is set at an artificial
boundary. It appears that we, for the given meshes, get a slightly better accuracy when setting
the boundary condition at the physical boundary than on the artificial boundary inside the
domain. On the other hand, this does not imply any conclusion about which method is to be
preferred as they put rather different restrictions on the choice of the single-species mesh.
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Figure 4.2: Charge densities that are calculated using the domain decomposition approach,
with different approaches to set the boundary condition for the one-species charge density. The
upper illustration corresponds to the case with a boundary condition that is set on the physical
boundary whereas the lower illustration corresponds to the use of an artificial boundary. The
one dimensional reference solutions are black, the one-species solutions are red and the local
three-species solutions are blue.
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Chapter 5

Applications of the domain
decomposition approach

In this chapter, the aim is to apply the developed code to analyze negative corona discharge
phenomena in geometries that are connected to industrial applications. We will consider two
examples, one which is of interest to electrostatic precipitators and one that concerns automo-
tive spray painting. In the former case, we consider a setup with wires between parallel plates,
which is illustrated in Figure 5.1. When presenting the results, we will especially put focus
on the single-species solution, i.e. the negative ion charge density and electric field, which is
essential for the charging and transport of polluting particles in the air flow of an electrostatic
precipitator. This forms the basis for the discussion in Chapter 6, where we determine the
particle collection properties of electrostatic precipitators.

Regarding the application to automotive spray-painting, we treat multipole geometries
similar to the ABB G1 rotary spray bell. This geometry consists of six needles (sharp tips)
that are arranged in a regular hexagon and held at a negative potential relative to a needle
at the origin. As this is a purely three-dimensional geometry, we will not be able to study it
by using the two dimensional local three-species solver in this thesis. Instead, we will make
a two-dimensional analogy, where the needles have been replaced by wires. The resulting
geometry is shown in Figure 5.2 and the wires will only exhibit a partial corona region in
the direction of the grounded wire. We consider this geometry as well as counterparts with
different numbers of wires. Based on this, we discuss the possibility to use the three-species
solution to parametrize boundary conditions for a one-species solver. This is of interest to
simulations that optimize automotive spray painting, where the use of the three-species model
is too computationally demanding. Instead, one wants to set a boundary condition for the
negative ion charge density for a single-species solver at a boundary that possibly is slightly
larger than the physical boundary of the wires.

Finally, note that by making the above mentioned examples, we wish to illustrate that the
approach with domain decomposition manages to make accurate three-species calculations in
geometries that are orders of magnitude larger than the scale of the corona phenomena and
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hence makes the method feasible for industrial applications.

Figure 5.1: Electrostatic precipitator with periodically positioned wires between a pair of
collector plates (marked G). The wires, with radii r, are separated by a distance d and
associated with the potential −VE. The width between the pair of grounded collector plates is
denoted w.

5.1 Parallel plate electrostatic precipitators

5.1.1 Geometrical configuration

Figure 5.1 illustrates a parallel plate geometry for an electrostatic precipitator. We have
a sequence of wires of radius r that are placed in the middle, between two parallel plates,
at a distance d from each other. The plate to plate distance is given by w and there is a
negative voltage −VE that is applied between the wires and the plates. Here, we will take
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Figure 5.2: Two dimensional analog of the ABB G1 rotary spray bell, where the needles have
been replaced by wires. There are six wires with voltage −VE and radius r that have been
placed at the corners of a regular hexagon, at a distance R from a grounded wire (marked G)
at the origin.

r = 0.5 mm and w = 0.5 m. Furthermore, we will consider a range of different wire-wire
separation distances, namely d = 5 cm, 10 cm, 15 cm, 20 cm, and 25 cm. These correspond to
the applied voltages VE = 70 kV, 40 kV, 35 kV, 30 kV, and 30 kV. The use of different applied
voltages is motivated by that the necessary voltage to obtain a steady state corona solution
increases as the distance between the wires decreases. Furthermore, in the simulations, we
consider an electrostatic precipitator with three periodically identical wires. In this particular
case, however, the symmetry of the problem would have allowed us to consider a setup with
only one wire. On the other hand, in geometries that occur in industrial applications it is
common that the bounding box is less symmetrical, which makes it necessary to include more
wires in the simulation. Finally, it can be mentioned that the solutions were iterated until the
relative update had fallen below 10−3 for each local solver.
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Figure 5.3: The electric field strength in a parallel plate electrostatic precipitator that contains
three wires, for a number of wire-wire separation distances d. Note that the scale for the
electrostatic field has been truncated. Due to this truncation, the electric field strength close
to the wires takes the maximum value that is admitted by the scale. The lower right part of
the figure shows the average electric field strength in the various geometries as a function of
the wire-wire separation.
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Figure 5.4: The potential in a parallel plate electrostatic precipitator that contains three wires,
for a number of different wire-wire separation distances d. We have also included contour-lines
to indicate the direction of the electric field.

5.1.2 Electrostatic properties

As previously mentioned, in Chapter 6, we consider particle collection properties for the elec-
trostatic precipitator geometries that are presented in this chapter. Regarding this issue, the
results from the electrostatic simulations primarily enter the problem through the model that
describes the charging of polluting particles and the transport of charged particles. The max-
imum charge that a particle can gain is dependent on the electric field strength, and there
is a time-constant for charging that depends on the charge density of negative ions. For the
transport, we are obviously also interested in the direction of the electric field.

In Figure 5.3, we show the electric field strength for different wire-wire distances. The
calculated electric fields are seen to exhibit the correct periodicity that can be expected from
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Figure 5.5: The charge density in a parallel plate electrostatic precipitator that contains three
wires, for a number of different wire-wire separation distances d. The lower right part of the
figure shows the average charge density in the various geometries as a function of the wire-wire
separation.

the geometry. We also show the average electric field strength as a function of the wire-wire
separation. With the chosen values for the potential, we get that the geometries with smaller
wire-wire distances on average have slightly stronger electric fields. To obtain an efficient
charging of particles, it is optimal to have a strong electric field in the parts of the domain that
are occupied by particles. Furthermore, as the applied voltage has an upper and lower limit
for which there exists a steady-state corona solution, it is beneficial if the electric field strength
is as uniform as possible throughout the domain. Although further investigations need to be
performed, this should, from a geometrical point of view, benefit the configurations with smaller
wire-wire separation. In addition to this, Figure 5.4 shows the potential with contour lines to
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indicate the direction of the electric field. As can be expected, shorter wire-wire separation
leads to that the electric field is more directed towards the grounded planes.

Finally, Figure 5.5 shows the negative ion charge density for different wire-wire distances.
In addition to this, the figure also shows the average negative ion charge density as a function of
the wire-wire separation, which can be used to estimate the time constant for particle charging.
It will be shown that this time constant is small compared to the residence time of a particle
in the precipitator. Hence, the more detailed description of the spatial variations of the charge
density is less important for the modeling of an electrostatic precipitator.

5.2 Multipole geometries

5.2.1 Geometrical configuration

As shown in Figure 5.2, we consider multipole geometries with wires that are arranged at the
corner points of a regular polygonal structure, which is centered around a wire in the middle of
the simulation box. The peripheral wires have radii r = 0.5 mm and are located at a distance of
R = 11.5 cm from the center wire. The bounding simulation box has a side-length of one meter
and is associated with a Neumann boundary condition. In this text, we consider geometries
with one to six peripheral wires that are held at a negative potential compared to the grounded
wire at the center.

Regarding the details of the geometrical configurations, the sides of the bounding box are
alligned with the coordinate axes. The positions of the wires can then be written as:

(R cos (n∆θ + θ0) , R sin (n∆θ + θ0)) , (5.1)

where n is an index for the wires, ∆θ is given by 2π/N with N being the number of peripheral
wires and θ0 is an angular displacement. For N = 1 and 2, we take θ0 = π/4, but set θ0 = 0
otherwise.

Similarly to the case with parallel plate electrostatic precipitators, we obtain that the range
of applied voltages, for which there is a steady-state solution, is strongly dependent on the
geometry. For the different geometries with one to six peripheral wires, we used the voltages
VE = 40 kV, 60 kV, 80 kV, 100 kV, 130 kV, and 140 kV. In Section 5.2.3, we will comment on
the implications of these choices, with regard to the resulting electric field-strength at a contour
that surrounds the wires. Finally, it can be mentioned that the solutions were iterated until
the relative update had fallen below 10−3 for each local solver.

5.2.2 Examples of local and global solutions

Figures 5.6 and 5.7 show the negative ion charge density and potential for the multipole geome-
tries with one to six wires; obtained by the global one-species solver. In all cases, we see that
negative ions primarily are located along the connecting lines between the grounded wire and
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Figure 5.6: The charge density for negative ions, as calculated by the global solver, for multipole
geometries with different number of wires. The wires are indicated by black dots and charge is
primarily transported along the respective directions that connect the peripheral wires to the
grounded center wire.

the wires that are held at a negative potential. Furthermore, both the solution for the negative
ion charge density and potential appears to exhibit the symmetries that can be expected from
the multipole geometry.

In addition to the negative ion charge density and potential, that are obtained by the global
one-species solver, we have charge densities for both positive and negative ions as well electrons,
which have been calculated by using a local three-species solver. In the current calculations,
these local solutions are defined in regions that extend a few millimeters from the center of
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Figure 5.7: The potential, as calculated by the global solver, for multipole geometries with
different numbers of wires. Note that the wires have been indicated by black dots.

the wires. We will not make an exhaustive study of local solutions, but limit our attention to
the special case involving the wire n = 0, for the six-pole geometry. This is shown in Figure
5.8. We see that charged particles primarily are created by ionization and attachment in the
direction of the grounded wire (to the left in the figure). In a similar way as in the validation
case, the positive ion charge density has a maximum at the wire. Also, the electron charge

39



Figure 5.8: Showing charge densities for negative and positive ions as well as electrons, obtained
from a local three-species solver, for the wire with n = 0 in the geometry with hexagonally
arranged wires. As can be seen, the corona region is directed towards the left, i.e. towards the
grounded wire, which is in agreement with Figure 5.6.

density exhibits a maximum slightly outside the wire, but vanishes beyond a short distance
due to the formation of negative ions. This is in particular important as it indicates that the
size of the local mesh is sufficient to resolve the presence of multiple species.

5.2.3 One species boundary condition at coronating boundary

As has been discussed in the introduction to this chapter, three-species simulations may be
computationally too expensive to incorporate in multi-physics simulations of automotive spray
painting. Instead, they are targeted at providing boundary conditions for the negative ion
charge density for a one-species solver, at a boundary that surrounds the ionization regions
(wires). To analyze the possibility of this, we consider the negative ion charge density at
circular contours that surround the wires that are held at a negative potential. This is shown
in Figure 5.9, for the different multipole geometries and a radius of rc = 1 cm for the contour.
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Figure 5.9: Showing the profile for the negative ion charge density at a circular contour with
radius rc = 1 cm, centered at the wire with n = 0, for the different multipole geometries.

In this figure, the solutions have been rotated such that the grounded wire at the center of the
geometry is positioned at the angle θ = 180◦, which also is the direction in which the charge
densities have their maximum values. As can be seen, the shape of the charge densities have a
high degree of similarity and may be approximated by a Gaussian function:

ρ(θ) = A exp

(
−(θ − θ0)2

B2

)
, (5.2)

where θ denotes the angular coordinate and A, B and θ0 are constants. Clearly, B and θ0
are quite similar for all cases, whereas the amplitude A is different. To be able to determine
A, we need some empirical relation between the charge density and the one-species solution,
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Figure 5.10: Showing the relation between the maximum charge density and electric field
strength, for the different multipole geometries, at a circular contour with radius rc = 1 cm,
which is centered at the wire with n = 0. The maximum electric field strength at the contour
was increasing with the number of wires, which can be used to identify the relation between
the points and different multipole geometries.

possibly in combination with properties of the geometrical configuration. For example, a simple
model would be to let A be a function of the maximum electric field-strength at the circular
contour. This has been done in Figure 5.10, where the amplitude of the charge density profile
can be seen to have a close to linear dependence on the electric field strength. This should
give an indication that empirical parametrizations of a one-species boundary condition can be
viable, although any such parametrization obviously depends on the choice of contour for the
boundary condition.
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Chapter 6

Applications to electrostatic
precipitators

This chapter serves as a concluding detour into the application of three-species negative corona
discharge simulations to electrostatic precipitators. We intend to determine particle collection
properties for electrostatic precipitators, by tracing the paths of particles (e.g. ash-particles)
that are subject to electrostatic- and fluid-forces. This has previously been studied in a range of
different approximations [11, 19, 6, 14, 4]. A common approach is to use the Kaptzov criterion
to set boundary conditions in a one-species model, when modeling the electrostatic properties.
Here, we will, in contrast to these studies, use the results from the three-species simulations in
Chapter 5 to parametrize boundary conditions for a one-species model.

In Figure 6.1, we illustrate the physics of an electrostatic precipitator in terms of a coupled
fluid-, electrostatic- and particle-problem. For each pair of problems, we have a two-way
coupling. The electrostatic field affects the fluid through the secondary electrohydrodynamic
force and the negative ions are convected due to the velocity of the fluid. Regarding the
particles and the electrostatic field, we have that the presence of negative ions causes charging
of the particles, which hence makes them subject to an electrostatic force. At the same time,
the presence of charged particles contributes to the space-charge and hence the electric field.
Finally, the fluid affects the particles with a drag force which also gives rise to a counter-acting
force on the fluid.

In the following simulations of electrostatic precipitators, some simplifications of the model
have been made. Of the interactions in Figure 6.1, the electrostatic force, charging of particles
and drag force must be included in any model of electrostatic precipitation. In addition to
this, the secondary electrohydrodynamic force has been shown to have a significant effect on
the flow, especially for lower air speeds [19, 6, 4, 21]. On the other hand, ion transport has a
shorter time-scale than the convection due to the air flow, which hence can be ignored. Finally,
in order for the inclusion of effects due to the presence of particles to be relevant, we need to
determine relevant particle concentrations. This will typically be application dependent and
we will in this work consider the limit with trace amounts of particulate pollution, which lets
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us ignore these effects.

Figure 6.1: Schematic illustration of interactions between the fluid, electrostatic field and
particles in an electrostatic precipitator. Interactions that are circumscribed by parentheses
are not treated in the implemented model for electrostatic precipation.

6.1 Model for particle collection in an electrostatic pre-

cipitator

In this section, we outline some details regarding the described model for an electrostatic
precipitator. Simulations have been performed using the multi-physics solver IBOFlow [16, 15].
This code contains functionality that previously has been used to simulate particles that are
subject to electrostatic- and fluid-forces in connection to automotive spray-painting. Some
adaptions of the code have been made to facilitate the simulation of electrostatic precipitators.
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6.1.1 Geometrical setups

We consider the geometry with parallel plate electrostatic precipitators, which was shown in
Figure 5.1. We will evaluate the particle collection properties for this kind of geometry for
the different wire-wire separations that were considered in Chapter 5. In the previous chapter,
we solely treated the electrostatic properties of the geometry. Here, we will also have an
air flow through the electrostatic precipitator. More precisely, air will enter through the left
boundary in Figure 5.1. To make the simulation results for the geometries with different wire-
wire separation as comparable as possible, the total length of the plates in the direction of the
air flow was taken to the same value 75 cm, in all cases. This means that the total number of
wires in the simulation volume will be different in the various cases.

6.1.2 Electrostatic boundary conditions

To solve the electrostatic problem, we will use the previously discussed one-species solver. This
solver needs a boundary condition for the negative ion charge density and potential at the wires.
To obtain such boundary condition, we surround the wires by an artificial circular boundary
with radius 5 mm, beyond which the one-species model is accurate. Boundary conditions for
this boundary are then obtained by interpolation of the three-species solutions in Chapter 5.

6.1.3 Evolution of particles

Particles are introduced in the air flow at random uniformly distributed positions at the inlet
boundary. When entering the simulation volume, their velocity is set to be the same as the
velocity of the air flow. The particles have a slight variation in size, which follows a log-
normal distribution. Furthermore, the particles are initially uncharged, but will subsequently
be charged due to the presence of negative ions. The model for the charging process is based
on [20, 26, 9]. Denoting the charge of a particle by Q, the model states that:

dQ

dt
=

Qmaxτ

(t+ τ)2
(6.1)

where Qmax is the maximum charge that can be acquired and is given by:

Qmax = 3Er2πε0

(
εr

εr + 2

)
. (6.2)

Here, E is the unperturbed electric field strength at the position of the particle, r is the radius
of the particle and εr is the relative permittivity of the particle. In the following calculations,
we take εr = 2. Finally, the time-constant τ is given by:

τ =
4ε0
µ|ρ|

, (6.3)
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where ρ is the negative ion charge density and µ is the mobility constant for negative ions.
To give an indication about typical values for the maximum charge Qmax and time-scale

for charging τ , we may consider the average values for the electric field strength and negative
ion charge density that were presented in Chapter 5. Based on this, we deduce that Qmax,
for a particle of size 10µm, is of the order of magnitude 10−15 C and that τ is of the order of
magnitude 10−2-10−1 s. The latter value can be compared to the time-scale that is implied by
the air speed in the electrostatic precipitator, which may be 1 m/s [6]. This indicates that the
time-scale for particle charging is significantly shorter than the expected residence time in the
electrostatic precipitator.

Finally, to evolve the particles, we integrate the equations of motion. The force term con-
sists of contributions from the drag force and electrostatic force. In addition to this, turbulence
effects are included based on an empirical model that was developed for simulations of automo-
tive spray-painting [17]. The trajectory of a particle is either evolved until the particle hits a
collecting plate or passes the outlet of the electrostatic precipitator. Based on this, the particle
collection efficiency can be determined as the ratio between the total number of particles that
have entered the domain and the number that have hit a collector plate.

6.2 Evaluation of particle collection properties for par-

allel plate electrostatic precipitators

In Figure 6.2, we show the particle collection efficiencies that were obtained for the parallel
plate electrostatic precipitators, with different wire-wire separation distances. The results are
based on simulation of 2 · 105 particles. The radial distribution was such that log(r) was
normally distributed with mean value log(10−5) and standard deviation 1. Note that the mean
value corresponds to the radius r = 10µm. Furthermore, the air speed was set to 1 m/s.
The collection efficiencies are seen to range between 60 % and 90 %. The geometries with
shorter wire-wire distances are associated with higher particle collection efficiencies, which is
probably associated with these having slightly stronger electric fields. Otherwise, the difference
in collection efficiency is probably too small to draw any systematic conclusion regarding which
geometry that is optimal. Since the maximum charge of a particle is proportional to the electric
field strength, we get that the electrostatic force is proportional to the squared electric field
strength. Hence, one may expect that the particle collection efficiency has a strong dependence
on the applied voltage.

In addition to particle collection efficiencies, we present Figures 6.3 and 6.4, which show
the distribution of the angle that is formed between the velocity vector of the particles and
the collecting plates upon impact and the distribution of the particles at the outlet of the
electrostatic precipitator. Whereas the angular distribution is quite similar for all geometries,
there are larger amounts of particles close to the center of the outlet for the geometries with
larger wire-wire separation. Hence, the acceleration of the particles towards the collecting plates
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is less efficient for the geometries with these wire-wire separations. On the other hand, it is clear
that in all cases, a substantial amount of the particles still have gained a velocity component
that is directed towards a collecting plates and if the length of electrostatic precipitator would
have been extended, these particles could have been collected as well.

Finally, note that the geometries for parallel plate electrostatic precipitators that were
considered here, have a slightly larger plate to plate distance than what commonly occurs in
other studies. The particular choice of plate to plate distance was inspired by a design that
occurs in industry. A consequence of this is that the obtained particle collection efficiencies are
difficult to compare to those in other studies. For example, Farnoosh et al [6] use a plate to
plate distance of 10 cm and observe particle collection efficiencies of above 99 %, whereas the
collection efficiencies in this study are significantly lower. Evidently, the larger plate to plate
distance can be an explanation for this. Furthermore, the applied voltages in this study were
not optimized to be as high as possible. They were chosen rather arbitrarily within the range
for which there exists a steady-state corona solution in the three-species model. In the purely
one-species model that is used by Adamiak et al, there are less restrictions on the choice of the
applied voltage.
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Figure 6.2: The particle collection efficiency, i.e. the quotient of the number of particles that has
been collected at the grounded boundaries and the total number of particles that has entered
the electrostatic precipitator, for configurations with different separation length between the
wires.
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Figure 6.3: The angle between the velocity vector of the particles and the the collecting plate
when the particles impact and hence are collected at the plate, for configurations with different
separation lengths d between the wires.
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Figure 6.4: The distribution of positions of particles at the outlet, i.e. of particles which the
electrostatic precipitator has failed to collect, for the different geometries. The position at the
outlet is parametrized by the length from one of the collecting plates. Note that the plate to
plate distance is 0.5 m and that the wires are positioned between the plates, which corresponds
to the coordinate 0.25 m.
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Chapter 7

Conclusions and outlook

In this thesis, we have demonstrated the possibility to split the three-species negative corona
discharge problem into a globally one-species and locally three-species problem. This is an
efficient approach since it limits the use of the computationally more complex three-species
model to a small part of the domain. The approach is validated and applied to analyze a range
of geometries that are relevant to automotive spray painting and electrostatic precipitators.

Regarding applications to electrostatic precipitators, we demonstrate how the three-species
model can be used to supply boundary conditions when simulating particle collection efficien-
cies. This is an improvement compared to previous works which e.g. make use of the Kaptzov
criterion to set boundary conditions in the parts of the domain where ionization occurs, but
which has limited range of validity. Here, we have considered rather idealized parallel plate
geometries. On the other hand, more complex geometries can be considered and the benefits of
using the three-species model can be expected to be greater as the corona phenomena becomes
more directional.

Regarding the application to automotive spray painting, we treated a two-dimensional ana-
log of the ABB G1 rotary spray bell. For this kind of geometry, we obtain a much more direc-
tional corona region than for the geometries with electrostatic precipitators. We demonstrate
some possibilities to parametrize boundary conditions for the charge density for a one-species
model, which could be an efficient way to incorporate results from the three-species model in
simulations that optimize the spray painting process.

Finally, we wish to indicate that guided by the results in this thesis, natural next steps
could involve:

• To more systematically compare the boundary conditions that are obtained for paral-
lel plate electrostatic precipitators, when using the three-species model instead of the
Kaptzov criterion. This could preferably be performed for a geometry with smaller plate
to plate distance than those that were considered in this thesis, e.g. the geometry that
was used by Farnoosh et al [6]. Obviously, it is also of interest to analyze to which ex-
tent the accuracy in the electrostatic boundary conditions affects the particle collection
properties.
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• To attempt to reproduce and compare results from experimental studies of electrostatic
precipitators with those that are obtained by the three-species model.

• To perform a study that analyzes a wider range of electrostatic precipitators. Specifi-
cally, focus could be put on geometries with sharp objects that exhibit a high degree of
local structure. Such designs are intended to locally enhance the electric field strength
which makes the ionization region partial, for which the use of the three-species model is
necessary and the solvers that are presented in this thesis are an efficient tool.

• Developing a three dimensional three-species solver. This would make it possible to ana-
lyze the ABB G1 rotary spray bell and some more elaborate geometries for electrostatic
precipitators. Note that the three-species problem in three dimensions will be very com-
putationally demanding as the size of the meshes increases drastically compared to the
two dimensional case at the same time as the model yields matrices with poor sparsity
patterns. Due to this, we expect that the use of domain decomposition can play an
even more significant role in limiting the computing power that is necessary to solve the
problem in three dimensions.
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