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Abstract

Program verification is a time-consuming task and prone to errors when done manu-
ally. Verification tools are therefore essential when dealing with verification in larger
scales. As of now, most verification tools use model checking when verifying pro-
gram properties. Model checkers search for contradictions to properties regarding
those programs, and if none are found then the property is considered valid. How-
ever, most model checkers are made for sequential programs, and with most modern
environments using concurrency, the demands on the verification tools increase ac-
cordingly.

With the success of model checking, formal proofs regarding concurrent programs
have gotten little attention the past years. Conducting formal proofs can be tedious
and error prone when done manually, but can also be very useful in terms certainty
and gaining a more intuitive understanding of the problems.

This thesis focuses on the development of a tool for formal proof checking of small
concurrent programs. The tool was developed using the functional programming
language Agda. A logic was implemented, along with a representation of a small
programming language and a proof construction system.

The final result of the project is a proof checking tool able to verify liveness proofs
regarding arbitrary programs of the specified language. The proofs are conducted
using predefined logic rules. If the proof can be implemented in the proof checker,
the proof is considered valid.

Agda turned out to be a useful tool for conducting formal proofs. The method of
formal proofs for concurrent programs is still not preferable due to the complexity
of the proofs, but with the development of more sophisticated automated theorem
provers, the method may become increasingly viable in the future.
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1

Introduction

This thesis was performed at Chalmers University of technology, partly in collab-
oration with a Bachelor’s thesis group. The purpose of this thesis is to develop
a proof-checker tool regarding proofs for concurrent programs. The properties of
these programs are represented using an extension of Linear Temporal Logic. The
goal involves constructing such a tool, as well as evaluating the proof methods and
potential future usage of similar systems.

1.1 Background

Verification of programs is a time-consuming task and prone to errors when done
manually. Verification tools are therefore essential when dealing with verification
in larger scales. This process is tedious enough when dealing with sequential pro-
grams, and having concurrency in programs further increases the complexity and
the demands on such verification tools. The established verification tools are mostly
limited to sequential programs [1, 2, 3|, and most research on verification have been
conducted in this area. Concurrency in programs introduces a new level of complex-
ity, making previous verification tools rather obsolete in comparison to the demands
of today. Therefore more sophisticated verification tools are required to handle this
problem.

A concurrent environment differs in many aspects from sequential ones. A typical
contemporary program communicates interactively with its environment, and has
many different subprocesses working concurrently. This is especially true for em-
bedded systems, where the concurrent behavior is essential; taking up a very large
proportion of the current code base [4]. In this case, the importance of reliable
concurrency is not just a matter of convenient interface, but rather the entire per-
formance of the systems. It is therefore crucial to further develop proof-checking
tools able to handle concurrent systems.

There are major problems that affect all system designs, first to express what the
system is supposed to do, then what the system actually does, and finally to show
that the two previous statements are satisfactorily related. Furthermore, it is im-
portant to show the completeness and consistency requirements of the system. We
can and should also show the consistency and completeness of the requirements we
make of the system. Operational semantics and linear temporal logic (LTL) [5]
have shown themselves over several decades to be suitable analytic tools for con-
current systems [6, 7]. There exist established tools for model checking that can
verify whether a property holds for system, or show an execution path leading to
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failure for a property. These tools are very useful since they can show why a prop-
erty fails. They cannot however show why a property holds, which usually is a far
more complex task. Showing why properties hold is best done by formal proofs.
The issue with formal proofs is that they often require long and detailed explana-
tions, even when proving trivial properties. Proof checking this way is very tedious
and time-consuming, and errors are likely to occur, even for smaller and simpler
proofs. Automatic proof checkers are therefore needed in order to prove proper-
ties in a reasonable time span. Unfortunately, most proof checkers are built for
sequential programs, since sequential programs makes the process of proof checking
significantly simpler. The need for having reliable, concurrent programs is however
increasing, which requires more complex proof checkers able to handle concurrent
programs. There has been some research on proof checking in the past. A paper by
Andersen, Harcourt and Prasad [8] proved a complete, data-dependent concurrent
program correct. There has however been very little follow-up on this subject.
Concurrency in programming adds a level of complexity, by introducing nondeter-
minism. Because the program may take different computing paths depending on
random events, the traditional tools are not sufficient for this task. Instead, a tool
for evaluating all possible outcomes at once is needed. In order to verify program
properties, a formal way of expressing properties is needed. LTL is suitable for
program verification, since the time dimension can easily be related to program ex-
ecution flow. The suggested tool must be able to verify LTL-formulae, extracted
from the property specifications of concurrent programs.

1.2 Context

As mentioned earlier, there has not been an extensive amount of studies in the
area of proof checking for concurrent programs. Previous studies of mechanical
verification have however been conducted. Goldschlag [9] described a proof system
for mechanically verifying concurrent programs, using the Boyer-Moore prover. This
paper shows this is possible using Boyer-Moore logic, which is not quite the same
as the logic framework that used for this thesis. However, it shows that extensive
work has been done in the area of proof checking.

Most relevant papers are quite old, but a recent paper from Sandip Ray and Rob
Sumners [10] shows promising results. They show that formal proofs can be handled
mechanically, by showing that the executions of the programs can be viewed as exe-
cutions of simpler systems, thus reducing the complexity of the proofs. This is quite
close to the subject of this thesis, which is a solid indication of potential to the study.

Another method of reasoning about program execution is presented in the paper
from Lamport [11]. The paper describes a formal specification language called TLA+
and was developed in order to model and verify behavior of concurrent systems. A
proof checking tool called TLAPS [12] was developed for proofs written in TLA+.
The proof-checking method involves translating program code into a purely logical
language. The supplied proof is then proof checked mechanically using the result-
ing logic formulae of the translation. The advantages of this black-box style proof
checker lie within the proof checker being rather independent from the program rep-
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resentation. However, it can also be considered a disadvantage due to the distancing
from the original problem, reducing the intuitive understanding of the proofs.

Looking back in time, a paper from Owicki and Lamport [13] presents a method for
proving properties of concurrent programs. The goal of the paper was to provide
a method for programmers to formalize logical reasoning mechanically, this while
still keeping references to program statements in the proofs. This method more
accurately aligns with the goal of this thesis, and the provided semantics easier to
implement. Large portions of the reasoning and methods presented in this thesis
are therefore inspired by that paper.

1.3 Goals and Research Questions

The goal of the thesis is to develop and evaluate a tool able to prove properties of
small concurrent programs. The final product should be a suitable complement to
the existing model checkers. A model checker says a lot about why a program fails
to uphold a relation or invariant. This tool however does the opposite, by instead
commenting about why a statement succeeds. As of now, students have no way of
checking the validity of their LTL-proofs, except for manually checking themselves.
This process is tedious, time-consuming and error prone, even for smaller proofs,
showing why such a proof checker is needed.

In order to construct such a tool, a logic has to be specified to represent properties
of the concurrent programs. The logic has to be represented in a general logical
framework in order to prove given properties. The framework chosen for this thesis
is the dependently typed programming language Agda [14]. Agda is a strict language
with extensive support for mathematical notations, making it suitable for this task.
A large part of the goal is to simply explore whether this method of verification will
be sufficient, and if it is worth further development.

Since dealing with concurrency is a complex matter, building a tool able to handle
more complex concurrent programs can be challenging. Although the goal is to
make the tool as sophisticated as possible, it is wise to limit the test cases to small
concurrent programs. The final product can then hopefully be developed further to
handle larger and more complex programs with relative ease. It would be preferred
to eventually extend the tool, including user friendly features to make it into a proof
assistant. This might not however be possible during the time span of this project
and will only be included if the time allows it.

An interesting aspect to consider arises when formalizing proof systems, especially
when based upon previous work. Even if a system appears to be rigid and bullet-
proof, minor errors or assumptions can be easily overlooked. Some might be minor
nuisances that can easily be adjusted, while others shake the foundation of the theory
it is built upon. Assumptions made for easier and more fluent theoretical reasoning
may prove too vague when implementing in a logical framework. The implication
of these details becomes apparent when introduced to the strictness of Agda. It is
therefore of importance to bridge the gap between paper and the digital world.
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Research questions to be answered in this thesis:

o Can a tool suitable for students be developed to aid in conducting logical
proofs about concurrent programs?

o Are previously established proof methods for concurrent programs complete
and solid enough to formalize in Agda?

o Is proof checking a suitable addition or alternative to model checking?

o Is Agda expressive enough for representing the undecidability of concurrency,
while still maintaining strictness for the proofs?

1.4 Methodology

The initial part of the project involved studies of previous work in order to deter-
mine the appropriate approach. The main goal of the initial study involved finding
similar work related to this study. In order to eventually formalize the work of
the studies, additional knowledge of the programming language Agda had to be
acquired. A learning period of Agda was therefore initialized in collaboration with
the previously mentioned bachelor’s group.

Following the study, a small concurrent programming language (CPL) was specified.
The CPL was used during the entire project and all the reasoning is built solely upon
this language. In order to reason about this CPL, a logic was defined based upon
Linear Temporal Logic (LTL) [5]. This extension of LTL is referred to as Extended
LTL (ELTL), and is extended with operators regarding statements of the CPL.

Along with the CPL and the logic, a satisfaction relation had to be defined between
the two. The satisfaction relation is meant to provide rules of inference for proofs
of the desired type. Using these rules, proof trees regarding these programs can be
constructed by manipulating the logic and its operators.

The programming language Agda was chosen as the general logical framework, where
the definitions were formalized. Previous studies show formal methods for reason-
ing about concurrency in programs. These methods are however not completely
formalized, which was a major challenge of the project. Using Agda, all the theory
from the literature studies had to be formalized and implemented in this framework.

Finally, by combining all the implemented components, the final product results in
a tool able to prove ELTL properties about programs of the defined CPL. During
the final phase of the project, various proofs had to be conducted in this system, as
well as showing properties that cannot be proved for certain programs.
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1.5 Ethical Aspects

The ethical aspects of this project are not obvious and rather limited due to not
involving any test subjects or any collected data that might be sensitive. Since the
testing and verification will be done using local test programs, there is no conflict
regarding ownership. The potential benefits from this study could not possibly be
used to cause harm of any sort, since the results of the study can only be used to
prove properties of programs.

The aim of this study is to further increase the selection of verification tools available
to students and potentially developers. It might not be obvious why verification is
so important and how it affects people’s everyday lives. However, people today
rely on automated systems every day, especially in traffic and production. Most of
us live our everyday lives without reflecting too much on the possible implications
should something go wrong in this regard. In most cases the effects of faulty systems
might not cause much harm or even be noticed at all. Malfunctioning systems could
however cause tremendous harm with the potential of lethal implications. A good
example of this would be automated vehicles, now close to being introduced into the
society. The passengers of such vehicles put their safety in the hands of the software
developers to ensure the correct behavior of the vehicles. There exists therefore an
underlying responsibility for all programmers dealing with these problems to ensure
that their products ensures the safety of the passengers. Having solid and flexible
verification tools is therefore not only a convince, but may also save lives in the
future.
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Concurrent Programming
Language

In order to reason about or prove anything about the execution of a program, the
programming language in which it is composed has to be clearly defined, both in
regards to functionality and its limitations. Therefore, a basic CPL suitable for the
goals of this thesis has been defined and is presented in this chapter. The proofs
presented in this thesis are conducted based solely on this language.

2.1 Language Definition

The CPL defined in this thesis covers the most fundamental operations required
to model simple concurrency. Despite being a rather minimalistic language, many
programs can be translated into this language without losing functionality. This
translation is made possible due to most advanced data structures and data types
can be simplified into their basic subparts. Having more complex data types does
not necessarily affect functionality, but are used mostly to enhance program struc-
ture, making it more accessible to programmers. It is beneficial to keep the set of
available operators to a minimum when reasoning about potential outcome of pro-
gram execution. An example of an abundant operator would be the addition of goto
statements to the CPL. In addition to being abundant, if program control is allowed
to be moved to an arbitrary statement, then a large portion of the inference rules
could be affected and no longer valid.

The language resembles imperative languages and is presented in a pseudo-code
style. Just like most imperative languages, data types are supported to be used
both for variables and regular expressions. The two supported data types are nat-
ural numbers and booleans; increasing the complexity of the system by adding
additional data types would not make the proofs any more rewarding. Let N* de-
note the set of natural number expressions, and B* the boolean expressions. The
program structure consists of statements, each labeled to enable referencing of the
statements when conducting proofs about the program.



2. Concurrent Programming Language

The following list shows all allowed statements of the programming language:

x :=mn, x is assigned the value of n, x variable of N*, ¢ € N*.

x:=b | x is assigned the boolean value of b, x variable of B*, b € B*.

S1; 895 ... 5 8; ,a block of i sequential statements.

if x then s, where x € B*, s a statement.

while x then s, where x € B*, s a statement.

cobegin p; || pe coend, spawns two statements p; and pe, representing two
processes running in parallel.

A

2.2 Program Structure

A program in this programming language is defined by a single main process. This
process decides the entry point of the program, where the first statement in the
statement block will always be the first to execute. A process is allowed to spawn
an arbitrarily amount of new processes. With regards to complexity reduction, each
process is only allowed to be executed once, meaning if control would be assigned
to the spawning statement more than once, control is simply moved to the following
statement and no new processes are spawned.

Each statement in this language belongs to a parent process, and cannot exist in-
dependently. Just like imperative languages, after executing a statement, program
control is moved to next statement. The program in figure 2.1 shows an example of
a valid program in this language.

Code 2.1: Example of a program in the defined CPL.

S0 - {
s1: p = true
so: q := false
s3: cobegin
S4: {
s5: p := false
s¢: while ~ q then
s7: x = b
}
[
sgi: {
s9: while p then
s19: if true then
s11: X == 6
S12: q = true
}
coend
S7 x =1
¥
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2.3 Limitations

Limitations have been introduced to the CPL in order to simplify the proof rules
of the proof checker. Once again, these limitations do not prevent functionality
noticeably.

All assignment statements of the CPL are considered atomic. The atomicity is intro-
duced to prevent unnecessary complexity. Otherwise, assignments would be overly
complicated for the cause of this project. If atomicity were not assumed, then in
order to reason about the eventual value of x for a statement x := v, an additional
proof of safety would be required. If any other statement could assign to x, then
no conclusions could be drawn from this assignment, since the possibility of race
conditions is introduced.

Another slight limitation of the system involves the spawning of processes. Consider
statement s3 in figure 2.1. Unlike most other languages with support for concurrency,
the program control is not moved from a statement after the spawning of new
processes. Instead, program control for s3 waits until both s4 and sg have terminated.
Having this property of the language enables easier reasoning about program flow,
without removing any significant functionality of the language.

As mentioned earlier, there is no way to "jump" in the program, meaning there are
no goto statements allowed, and no function calls or similar methods can be invoked.

Some fairness is assumed for the CPL, meaning if a statement is waiting for execu-
tion priority, it will eventually have priority. If fairness were not assumed, control
could get stuck at a statement forever, since priority would not be guaranteed at
some point. Not having fairness to at least some degree would make proofs about
termination impossible when dealing with concurrency.
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Extended LTL

Temporal logic has been proven a great tool when reasoning about program execu-
tion. The time dimension provides both rules and a set of symbols for expressing
program properties, as well as enabling reasoning about possible program execu-
tion. Linear temporal logic (LTL) is a temporal logic referring to time as future
paths. Possible program execution can be seen as the set of all future paths of
the program, making LTL suitable for dealing with formal proofs about concurrent
programs. This chapter briefly presents the fundamentals of linear temporal logic,
followed by the definition of the extension to the logic. The purpose of the extension
is to enable more intuitive program referencing in the logic. Finally a satisfaction
relation between the logic and the CPL defined in section 2 is presented.

3.1 Linear Temporal Logic

When reasoning about program execution, the liveness and safety properties be-
come interesting. The liveness property of concurrent programs states that eventu-
ally progress is made, despite the possibility of having multiple processes executing
simultaneously. This kind of property can be expressed using the "eventually'-
operator of LTL, and can be used for conducting termination proofs.

The safety property states informally that "nothing bad will happen". More formally,
a state where errors would occur cannot be reached from any legal program state.
Safety can be expressed using the "always'-operator, stating that a property will
always hold for each program state during an execution. The two operators [J and
¢ can then be defined as:

O ¢ : ¢ holds now or in the future (3.1)
O ¢ : ¢ always holds. (3.2)

In theory, all program properties can be represented using the propositions and
operators from LTL. This would however lead to a very abstract and unintuitive
reasoning about the programs. Therefore an extension of the logic is defined in
order to make the reasoning about proofs more convenient.

11
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3.2 Extended LTL

In order to express program execution for specific programs in an intuitive and easy-
to-follow manner, LTL requires extension with additional operators. This extended
logic is referred to as Extended Linear Temporal Logic (ELTL). LTL is a subset of
ELTL, thus all operators of LTL are available to ELTL. This extended logic contains
additional operators for expressing necessary properties about program execution.
The logic is extended with operators for dealing with variables and their potential
values, and program pointers referencing the execution state of the processes. The
set of additional operators regarding expressions and program pointers is the follow-
ing:

Let s be a program statement. Then

at s: Process control at s
in s : Process control in s
after s : Process control after s

b* : Any boolean expression b*, b* € B*

ELTL manages program pointers using the operators at, in, and after. Since all
program statements are labeled, these operators can be directly associated with
program statements. It is however important to note that even though the logic
uses program references as pointers, the programs are never executed when con-
ducting the proofs. The pointers simply enables reasoning about the implication
would a statement execute. This style of reasoning about program behavior is heav-
ily inspired by the work of Owicki and Lamport [13].

Extending LTL with additional operators referencing program statements impacts
the properties of LTL. Formulae of LTL are decidable [7], meaning for every LTL-
formula, there exists an algorithm for determining its validity. With ELTL being
more expressive, formulae can be expressed that are not decidable, an example being
the halting problem. With decidability being present, one could definitely argue for
the benefits of interactive theorem proving for ELTL.

3.3 Satisfaction Relation

The set of rules for ELTL plays an important role in the proof systems of this the-
sis, by introducing a satisfaction relation between programs and logic formulae. Let
P E ¢ denote that a program P satisfies the ELTL-formula ¢. A rule in this system
makes use of proved properties of P, but also references to statements of P. Each
rule is defined as a set of preconditions, and a postcondition. If all preconditions
are met, then the postcondition can be concluded. New properties about a program
can be deduced by applying rules to proved properties of the program.

12
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Note that F refers to entire programs and not subparts. Usually when dealing
with temporal logic, a satisfaction relation is defined between a sequence of states
and a property. If sequences were used to reason about a set of statements of
a program, it would be very difficult to determine the implications for the entire
program. Therefore the relation is defined over entire programs, enabling proving
new properties by using previously proved ones.

13
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3.3.1 Inference Rules

In this section, all inference rules, in the form of axioms and theorems, used in this
thesis are presented, with the exception of the inherited rules from LTL. Note that
for all inference rules, P F is omitted for convenience.

Program flow is defined by introducing a new operator, ~>. The formula ¢ F ¢
reads "¢ leads to ¢". More formally, (¢ = 1), where ¢ and ¢ are ELTL-
formulae. Most of the following inference rules use this operator to reason about
program execution flow.

¢ ~> ¢ 1/} ~> X (33)

~>-trans
o ~> X

Transitivity property of ~> (3.3), if ¢ leads to 1, and 9 leads to y, then ¢ leads to
X-

l:x:=w
at [ ~> after |

:=n-step (3,4)

Theorem 3.4, control will eventually proceed an assignment of type N*.

S:xT:=0
at s ~> after s N s ==v

Natural Assignment (3.5)

3.5, if statement s is executed, control will be after s and the value v is assigned to
the variable x.

[ : cobegin p; || p2 coend

i 3.6
2t 1 —> ot py A ot py Enter Cobegin (3.6)

Axiom 3.6, execution of cobegin-statement leads to control at both spawned pro-
cesses.

Si;Sj

affer 5, —> af 5, Control Flow (3.7)

Axiom 3.7, control flow of a sequence of s; and s; in a block.

14
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s:p1 || pe at p1 ~> after py at ps ~> after py
Join (3.8)
at s ~> after p1 N after po

Axiom 3.15, separate termination of two concurrent processes leads to both having
terminated at some point.

33P1HP2

after pi A after py — after s oond It (3.9)

Axiom 3.16, termination of two concurrent processes leads to termination of the
cobegin statement that spawned them.

¢~>2>Z’w 09 (3.10)

Axiom 3.10, if ¢ leads to v, and ¢ eventually holds, then 1 eventually holds.

O (3.11)

Axiom 3.11, if the immediate assertion of ¢ holds, ¢ eventually holds.

Program : s

o at 5 init (3.12)

Axiom 3.12, if s is the main statement of a program, control will eventually be at s.

s first in b

“atb > at s Enter Block (3.13)

3.13, if statement s is the first statement in the block b, then b leads to s.

15
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s : cobegin py || p2 coend

i 3.14
a5 ~> af pi A ot s Enter Cobegin ( )

3.14, if control at cobegin statement, enter parallel processes.

s : cobegin py || p2 coend at p1 ~> after py at ps ~> after py

in (3.15
at s ~> after p1 N after po Join ( )

3.15, if both parallel processes terminate, both processes will eventually be termi-
nated at the same time.

s:p1 | p2
after py N\ after po ~> after s

Coend Inf (3.16)

3.16, if both parallel processes are terminated, exit statement that spawned them.

$:T =0
at s ~> after s

:=n-step (3.17)

3.17, control will always proceed past natural assignment.

s : While b sg at s ~>0b at so ~> at s
at s ~> after s

Exit While (3.18)

3.18, if the condition of a while-loop is eventually never met, and control always
returns from the inner statement, control will proceed past the loop.

s : Block Sp : Stm Sp €S
at sg ~> at s

Infer Block (3.19)

3.19, if a statement of a block is executed, the head of its block was executed at
some point.

16
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s s1 || se

3.20
af 51 ~> at 5 Infer Par2 ( )

3.20, for any two parallel processes, if control is at the first process then the second
one will eventually execute.

s : While false s
at s ~> after s

Skip While (3.21)

3.21, control will always proceed past while-false statements.

s:b:= true

- Bool assign true (3.22)

3.22, if a boolean variable is assigned true, its immediate assertion is true.

17
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Agda Introduction

The chosen logical framework of this project is the programming language Agda,
which is a dependently typed functional programming language. Agda was devel-
oped with the intention of being a proof assistant in a functional-style environment.
The language and the code style strongly resembles that of Haskell, using pattern
matching and functions to construct expressions. Agda is however, compared to
Haskell, a very strict language. The strictness implies that all cases need to be
covered when pattern matching and no infinite patterns for functions are allowed.
It is therefore not possible to prove arbitrary properties by letting functions call
themselves, or excluding relevant cases during function construction. This makes
a proof of an Agda property very trustworthy since it is not possible to trick the
system; every possible outcome must be covered. Agda is therefore a very useful
tool when dealing with formal proofs.

This section gives a brief introduction to the Agda concept, as well as showing how
to conduct property proofs about simple data types in this system. It is meant as
an introduction for those inexperienced in functional programming, but also as a
way to introduce the implementation methods and motivate why Agda is used for
this thesis. Without at least some knowledge of the basic concepts of Agda, the
reasoning and the conclusions of the thesis will not be easy to follow. However basic
understanding of programming will be assumed to keep this section at a reasonable
level. The reader may skip this introduction if they are already familiar with similar
programming languages.

4.1 Data Types

Data types are the most fundamental parts of Agda. A data type consists of con-
structors, each constructor representing a possible way to build an instance of that
data type. Let us start by implementing one of the most basic data types in Agda,
the boolean type. For the boolean type, the only two possible constructors are true
and false. This is represented in Agda as:

Code 4.1: Representation of the boolean data type in Agda.

data Bool : Set where
true : Bool
false : Bool
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Data types can also be used in their own constructors. The data type for the natural
numbers N can be represented as:

Code 4.2: Representation of the natural number data type.

data N : Set where
zero : N
suc : (n : N) =—> N

By definition, zero is a natural number, and every successor of n, suc n, is also a
natural number.

Data types can also be indexed using other types. Consider the data type Fven n,
representing even numbers. The type is indexed over n, where n is an even number,
meaning the type itself takes a natural number as a parameter. The successful con-
struction of an instance of Even means the indexed number is in fact even. The type
contains two constructors, or axioms for the type, where zero is even by definition,
and for every n € N, n + 2 is also even. This can be represented as:

Code 4.3: Definition of Even

data Even : N —> Set where
evenZero : Even zero
evenStep : {n : N} —> Even n —> Even (suc (suc (n)))

The same approach can be applied for the odd numbers, figure 4.4

Code 4.4: Definition of Odd

data Odd : N —> Set where
0oddOne : Even (suc zero)
oddStep : {n : N} — Odd n —> Odd (suc (suc (n)))

Note the brackets around the first argument to evenDef, 4.3, and OddDef. The use
of brackets around n implies that the argument is implicit, meaning the parameter
is not passed by itself to the constructor, but used in other parameters.
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4.2 Functions

The functions in Agda behave more or less like functions of other functional lan-
guages. The difference lies in the strictness, since all possible patterns have to be
considered when defining functions.

Simple functions can be defined over the set N. For instance the add function can
be defined as in 4.5.

Code 4.5: Definition of the add function
+ : N—>N-—>N

ZEero + n =n
(suc m) + n = suc (m + n)

4.3 Basic Proofs

Constructors can be considered axioms of data types, thus not requiring proving.
From these axioms, theorems in the form of functions can be derived to prove prop-
erties about these types.

Consider the property stating that the addition of two odd natural numbers always
results an even sum. Let a function f represent this property. The definition of f is
shown in figure 4.6.

Code 4.6: Definition of the function f

— Proof definition of the sum of two odd numbers is even

f: {mn: N} = Odd m —> Odd n —> Even (m + n)

The function definition states that given two odd numbers, m and n, the sum m+n
sum must be an even number. A successful construction of this function proves the
hypothesis correct. By using pattern matching and recursion, each possible input
case can be covered. The implementation of f is presented in figure 4.7

Code 4.7: Implementation of f

— Implementation of f using pattern matching

f : {mn : N} = Odd m —> Odd n —> Even (m + n)

f oddOne oddOne = evenStep evenZero

f (oddStep x) oddOne = evenStep (ot+o=>e x oddOne)

f o0ddOne (oddStep y) = evenStep (o+o=>e 0ddOne y)

f (oddStep x) (oddStep y) = evenStep (o+o=>e x (oddStep y))
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Proofs about the CPL

This chapter presents the theory behind conducting proofs about the CPL defined
in section 2, and the limitations required to make those claims. Here, the method of
constructing proofs is defined, as well as the types of properties that can be proved
using this system. This chapter motivates the implementation methods presented
in chapter 6.

5.1 Formalizing Informal Proofs

When dealing with formal proofs, it is important to keep hand-waving to a minimum.
This is especially true if the proofs are to be formalized in a logical framework such as
Agda. Even when a method is throughly formal and consistent, details considered
trivial are often omitted due to convenience. However, the exclusion of details
may cause issues regarding the implementation of the methods. When formalizing
methods that has only been conducted on paper, the mistakes and missing parts
are revealed in a way that is not so obvious when studying them. It can be quite
a journey from handwritten proofs to formalization in logical frameworks. In the
19th century, Hilbert formalized Fuclidean geometry into axioms in his paper on
the fundamentals of geometry [15]. His work was later further formalized by the
finish mathematician Von Plato [16] [17], where Plato worked towards an actual
computer implementation of the logic. This thesis plays a similar role, although not
on a similar scale, but is instead mainly built upon the work of Lamport [13].

5.2 Liveness Proofs

Liveness properties are essential when reasoning about program execution, especially
when dealing with concurrent programs. A liveness property uses the {¢-operator to
assert that a specified property eventually holds. When dealing with temporal logic,
O ¢ means ¢ will be true for the immediate assertion or sometime in the future,
regardless of chosen path. This means that the validity of ) ¢ varies depending on
the current state of the program. However, for the proof checker system presented
in this thesis, reasoning about execution paths this way is not allowed, since the
satisfaction relation refers to the entire program.

The presented method for proving liveness properties involves applying inference

rules to previously proven properties of a program. The inference rules with ref-
erences to program statements, use the operator ~>, defined in section 3.3.1. By
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composition of previously inferred properties, using the transitivity property of ~>,
liveness proofs can be conducted. Depending on the goal of the proof and the type
of statement is presented, different rules of inference will be used to advance towards
the goal. A liveness proof consists of a tree structure, where each branch consists
of the application of rules on previous proven properties. If a proof tree can con-
structed, where the final property is the goal, then the program satisfies the desired

property.

5.3 Safety Proofs

Safety proofs about a concurrent program can be defined as proving properties that
hold for the entire execution of the program. Informally, "nothing bad will ever
happen". The formal approach would be to define a satisfaction relation between a
program p and a safety property ¢ = [J ¢). The relation between the program and
the property is defined as: p F ¢ = [ 1. This definition translates into: starting in
a state where ¢ holds, ¢ will hold for the entire execution. For simplicity, assume ¢
is always at sg, where sq is the starting point of the program. Let P be a program,
and S the set of all statements of P. Define a proposition R(s), that holds iff a
statement s is reachable, and V(s) that holds if s violates the safety property. In
order to prove the safety property, the property in equation 5.1 is required.

Vs € S;=R(s) vV =V (s); (5.1)

The problematic part of 5.1 occurs when defining the proposition R(s). The intro-
duction of the set of reachable states is often considered trivial and therefore not
well defined. When dealing with trivial properties, one might, for simplicity, look at
the program definition and assume the set of reachable states. This method gets out
of hand when programs become more complex, especially with concurrent processes,
where each process relies heavily upon the other. Therefore, a formal method for
defining R(s) has to be developed in order to formally prove safety properties.
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Implementation

In this chapter, a summary of the key components of the Agda implementation
of the proof checker is presented. The repository for the project can be found at
https://github.com/JohanHagg/Proof-Checker.

6.1 Approaches

During the planning phase, multiple approaches for building a proof checker were
tested and evaluated. Eventually, two methods were decided upon to get further
development. The first method is referred to as the proof by control flow. The
method allows for conducting faulty proofs, and will instead give feedback depend-
ing on the success of the proof. The advantage of this method lies in the program
representation, which is more intuitive and complete. However, proof construction
is tedious and difficult to get right. The method was developed in cooperation with
a bachelor’s group and the implementation is described in their thesis [18] and will
not be covered here.

The second method for proof checking is referred to as the proof by construction,
and is considered the main result of the thesis. It relies heavily on the strictness of
Agda, making for solid and quite intuitive proofs. The following sections describe
the fundamental components of the proof checker.

6.2 Program Representation

The implementation of the CPL closely follows the definitions from chapter 2. The
CPL module contains a program definition, where the program contains a reference
to the entry point of the program. The entry point is defined by a single statement,
working as the main process of the program.

The definition of statements is straightforward and presented in figure 6.1. The data
type Stm* is indexed over the label of a statement, thus representing a complete
statement. Since statements are labeled, they can be used in inference rules for the
programs.

25


https://github.com/JohanHagg/Proof-Checker

6. Implementation

Code 6.1: Statement definition in Agda

— Block of statements, 1 the label of the statement.

3 data Block : Set where

SIS

first : (1 : String) —> Block
i Block —> (1 : String) —> Block
— Program statement representation.
data Stm : Set where

_:=n_ : (x : String) — (n : Nx) —> Stm
_:=b_ : (x : String) —> (b : Bool*) —> Stm
block (b : Block) —> Stm
_ll_ (s1 : String) —> (s2 : String) —> Stm
if (b : Boolx¥) —> (1 : String) —> Stm
while : (b : Boolx) —> (1 : String) —> Stm
swapN : (x : String) — (y String) —> Stm
swapB : (x : String) —> (y : String) —> Stm
— Labeled statements
data Stmx : String —> Stm —> Set where
stm : (1l : String) — (st : Stm) —> Stmx 1 st

Constructing a program in this system requires defining all statements indepen-
dently. The block structure enables the sequencing of statements. The statements
are glued together using the initial statement of the program.

6.2.1 Satisfaction Relation

The satisfaction relation between the programs and the logic has already been men-
tioned earlier in section 3.3. The implementation strongly follows the previous
definition of satisfaction, using the notation of P F ¢, program P satisfies ¢. A
data type for this satisfaction relation, _F | is implemented using a set of rules
as constructors. The application of rules on known properties of a program helps
advancing proofs by taking steps. In order to apply a rule to a satisfaction, all
preconditions of the rule has to be met. The amount and type of preconditions
varies among different rules. In addition to this, the set of rules are divided into two
subcategories:

1. LTL rules, regular rules used to manipulate ELTL formulae.
2. Program rules, requires referencing the program as preconditions.

The LTL rules are used to modify ELTL formulae into the desired form. The data
type - is defined as ¢ F v, meaning v is a logical consequence of ¢, where ¢ and
are ELTL formulae. A relation between - and F is defined as: if for a program P,
PE ¢, and ¢ F 1, then P F 1. Note that these rules require no program reference,
other than the original program itself.
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The program rules define the relation between the program statements and the logic.
The rules follow a similar pattern as the ELTL-rules, but uses program references
instead of previously defined properties of programs. Program rules require state-
ments of the correct form in order to be legally applied to a satisfaction relation.
The figure shows the program flow rule for assignment to integer variables, stating
that given an assignment statement, P F at | ~> after 1. This entailment holds since
there is no condition preventing the program from moving forward when executing
an assignment. Since the operator ~> is transitive, if PF ¢ ~> ¢ and P F ¢ ~>
X, then P E ¢ ~> x. The transitivity property can therefore be used to construct a
chain of proved properties, directly related to liveness proofs of these programs.

6.3 Absurdity and Termination of Proofs

A key component to the implementation of the proof system is the data type L',
which represents absurdity. Since non-terminating proofs is not allowed, and state-
ments can be of arbitrary depth, the absurdity type lets you keep the flexibility of
the program representation by only allowing the construction of terminating data
structures. An example of a non-terminating structure could be a cyclic block of
statements.
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Results

The result of the project is a proof checker based upon the method of proof by
construction. In this chapter, the method of proof construction is demonstrated,
followed by example proofs. These proofs are presented using both mathematical
notations and code segments implemented in Agda.

7.1 Proof Construction

Let P be a concurrent program, and ¢ an ELTL property. A proof definition of
P E ¢ in the proof checker is defined in figure 7.1.

Code 7.1: Agda proof definition of P FE ¢.
f : {P : Prog sO 0} —> P FE ¢

If the function f can be constructed, then a proof has been found and the specified
property ¢ holds for the program P. Recall that the definition of Prog takes two
parameters, Prog sop n, where sq is the statement representing the main process,
and n the amount of assumptions made for the program. In order to chain lemmas
of partial execution, all functions must be parameterized with the same program
definition.

7.2 Liveness Proofs

In this section, two liveness proofs are presented. The first proof dealing with a very
simple program of two rather independent processes. The second example is slightly
more complex, where the execution of one process depends on the other.

7.2.1 Liveness 1

The first liveness example proves a liveness property regarding the eventual value of
a variable. The desired liveness property is defined in 7.1, where P is the program
in figure 7.2.

PEat s)g~> 2 == (7.1)
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Code 7.2: Simple program.

So - {
s1: cobegin
So: X = D
|
s3: X := 6
coend
Sa x = 1
}

The figure shows a simple program including two concurrent processes. The Agda
representation of the program is shown in figure 7.3.

Code 7.3: Agda representation of 7.2.

sO = stm "s0" (block ((first "s1") :: "s4"))
sl = stm "s1" ("s2" || "s3")

s2 = stm "s2" ("x" :=n (nat 5))

$3 = stm "s3" ('x" :=n (nat 6))

s4 = stm "s4" ('"x" :=n (nat 1))

By inspecting the program, termination of both processes is trivial, since there is
no conditional dependency between the two processes s; and ss. Proof trees about
liveness are constructed using the transitivity property of ~>, 7.2.

¢~>1p P ~>x
¢ ~> X

~>-transitivity (7.2)

The proof construction method involves chaining lemmas of partial execution of P,
using 7.2. The following lemmas are used for proving the liveness property:

at sg ~> at s1
at s1 ~> at sy N\ at s3
at sy N\ at s3 ~> after s,

Ll

after sy ~> x ==

Lemma (1) is derived from the Enter Block rule, 7.3. If statement s is the first
statement in the block of statements b, then b leads to s.

b : Block statement s head of b
at b~> at s

Enter Block (7.3)
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For lemma (2), the Cobegin Rule is applied to infer control at both concurrent
statements, 7.4. If s is a cobegin statement of p; and ps, then control at s leads to
control at p; and ps.

s : cobegin py || pe coend

i 7.4
ol 5 ~> ol py A at pa Enter Cobegin (7.4)

Lemma (3) is derived from the combination of the Join rule, 7.5, and the Coend-Inf
rule, 7.6. Join states that, if the two concurrent statements terminates indepen-
dently, then both will eventually terminate. Coend Inf requires that for a cobegin
statement, if both concurrent statements reach termination, then the cobegin state-
ment terminates as well.

s : cobegin py || p2 coend at p1 ~> after py at ps ~> after py J (7.5)
at s ~> after p1 A after po om A
s
P pe Coend Inf (7.6)

after p1 N\ after py ~> after s

In order to advance past s, both sy and sz are required to eventually terminate
according to 7.5. Therefore, two separate lemmas regarding termination of sy and
sz are required. In this case, the lemmas are trivial and takes only one inference
rule to reach the goal. Using the theorem N* Assignment Step, 7.7 , termination of
both statements is derived.

$:T =0
at s ~> after s

:=n-step (7.7)

The final lemma (4) uses the assignment rule for natural numbers, 7.8, if statement
s is executed, control will be after s and the value v is assigned to the variable x.
The formula then requires modification to get the desired form, by eliminating after
S.

S:x:=0
at s ~> after s N s ==v

Natural Assignment (7.8)

Some additional rules are defined for dealing with program flow, 7.9, and managing
the form of ELTL formulae, 7.10. Control Flow states that for a block of statements
b, if t follows s, then after s ~> at t.
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b : Block statement (s:t)eb

after s ~> at Control Flow (7.9)
¢ ~> P Ax
P VAX S A |
o>~ @ (7.10)

Using all the defined lemmas, the respective proof trees can be constructed, 7.11,
7.12, 7.14, 7.15.

S0
at sy ~> at s1

7.3 (7.11)

S1
at s1 ~> at so N\ at s3

7.4 (7.12)

> 7.8 %3 8
S1 at sy ~> after sy at s3 ~> after s3 7'5 (7.13)
at so A at s3 ~> after so N\ after s3 '
o1 7.6
7.13 after so A after s3 ~> after sy (7.14)
7.2
at sy N\ at s3 ~> after s,
Sy4
S1 at sy ~> after sy N\ x==1
after sy ~> at sy .9 at 84 ~> x==1 7.10 (7.15)

after sy ~>x ==1 72

Now, all required lemmas have been proved. The last step simply involves chaining
all these lemmas, using transitivity. The final proof of the liveness property is
presented in 7.16.
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r12 714 o,
at sy ~> after sy " 7.15
7.11 ats, —>a==1_, 7.2 (7.16)
at sg ~> x == :

The Agda code of the proof checker for this entire proof is presented in figure 7.4

Code 7.4: Agda proof of P F at sy ~> x equals 1.

s0s0~>s1 : {p : Prog sO 0} — p F (at "s0" ~> at "sl")
s0~>s1 = enterBlock s0 "sl1" (record {})

s1~>s2As3 : {p : Prog s0O 0} — p F (at "sl" (~> (at "s2" A at "s3"))

5 s1~>s2As3 = enterPar sl

7 §2~>s2"' : {p : Prog s0 0} —> p F (at "s2" (~> af "s2")
s 82~>s82' = :=n—step s2

$3~>s3"' : {p : Prog s0 0} — p F (at "s3" (~> af "s3")
s3~>s3' = :=n—step s3

3 82A83~>s1' : {p : Prog sO 0} —> p F ((at "s2" A at "s3") ~> (af "sl"))
8§2A83~>s81"' = ~>—t (join sl s2~>s2' s3~>s83') (exitPar sl)

i 81'~>x==1 : {p : Prog s0 0} — p F (af "s1" ~> (bx ('x" =n (nat 1))))

7 81 '~>x==1 = ~>—t (flow s0 (record {})) (~>—A—es (:=n-R s4))
s0~>x==1 : {p : Prog s0 0} —> p F (at "sO0" ~> (bx ('x" == (nat 1))))
8§0~>x==1 = ~>—t (~>=t (~>—t 80~>sl s1~>82As83) s2As83~>sl"') sl'~>x==1

7.2.2 Liveness 2

The following example includes a slightly more complicated program in comparison
to 7.2.1. The program, presented in figure 7.5, contains two concurrent statement
as processes, s;, and sg, where the termination of each process depends on the other.
The goal of this example is to show how and why some liveness proofs cannot be
found for certain programs, and what modification of the programs are required to
solve these issues.

Consider the program in figure 7.5, where there are two processes that depend on
each other for termination.
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Code 7.5: Program with co-dependent processes.
S0 - {
s1: p = true
so: q := false
s3: cobegin
S4: {
s5: p := false
s¢: while ~ q
s7: x = b

sg: while p
s10: while true
s11: x : = 6
S12: q = true

The goal of the proof is to prove termination of the program P, in other words P F
termination. For this example, trivial proof steps will be left out, since a similar
method has been covered in 7.2.1.

The following list shows the major lemmas to prove for the final proof.

PFE at sg ~> at s3

P E at sy ~> after sy

P E at sg ~> after sg

P FE at s3 ~> after s3

P = after s3 ~> termination

T W=

The lemma (1) is trivial and therefore left out.

In order to prove termination of s4 (2), the inner loop s must eventually terminate.
The chaining of at s4 ~> at sg and at sg¢ ~> after sg is sufficient to exit s4, where
the first lemma is trivial. One of the exit-while rules is used in order to exit sg, 7.17.

s : While b sg at s~>0b at so ~> at s
at s ~> after s

Exit While (7.17)
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Apply 7.17 to sg and then prove 7.18 and 7.19, where the latter is trivial.

at s¢ ~> 0 ~gq (7.18)
at s; ~> at sg (7.19)

To prove 7.18, inference rules for accessing current block parallel processes are used,
7.20 and 7.21.

s : Block Sp : Stm S0 € s
at 5 ~> at 5 Infer Block (7.20)
s8]l s
Ll s Infer Par2 (7.21)

at 51 ~> at Sy

Combining these, one can show that sg must eventually execute. The next step is
therefore to prove 7.22.

at sg ~> [ ¢ (7.22)

From sg, control will eventually be at sg. To exit sg using 7.17, inner termination of
the loop is required in addition to the condition ~ p. However, since the condition
of s1¢ is always met, inner termination is impossible. By modifying the condition of
s10 to false, 7.23 is used to exit the loop, yielding 7.24 using the flow control rule
7.9.

s : While false s

ot s > after s Skip While (7.23)
at sg ~> at sq9 (7.24)
s:bi=true g, assign true (7.25)

at s ~>b
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Here it would be preferred to use the safety checker to verify ¢ ~> [J ¢, but for
this example it will be assumed. Applying the bool-assignment rule 7.25 to s, and
chaining with the safety property proves 7.22. This lemma is then used to prove

Sg at s6 ~> b at s7 ~> at sg
at sg ~> after sg

7.17 (7.26)

The following steps simply involves chaining trivial lemmas of flow control 7.9, lead-
ing towards the termination of the program. Inspect 7.6 for the complete proof in
Agda.

Code 7.6: Complete proof of termination for co-dependent processes.
s0O~>ats2 : {p : Prog sO0 0} —> p F (at (s 0) ~> at (s 2))

> 80~>s2 = ~>—trans (enterBlock s0 "s1'") (~>—trans ((:=b—T-step sl) (
flow s0 (record {}))))

$2~>s3 : {p : Prog s0 0} — p F (at "s2" ~> at "s3")
5 $2~>83 = ~>—t (:=b—F—step s2) (flow s0 (record {}))

r postulate g=>0q : {p : Prog s0 0} —> p E ((bx (var "q")) ~> O (bx (var
uqn)))

; postulate ~p=>0-~p : {p : Prog s0 0} —> p F ((bx (~ (var "p"))) ~> O (b
* (~ (var 'p"))))

$8~>~p : {p : Prog s0 0} —> p E (at "s8" ~> (bx (~ (var 'p")
§8~>~p = ~>—t (infPar; s3) (~>—t (enterBlock s4 "s5" (record
N—es (:=b—-F-R s5)))

3 89~>89' : {p : Prog sO 0} —> p F (at "s9" ~> af "s9")
$9~>s9 ' = exitWhileT s9 (~>—t (infBlock s8 "s9" (record {})) (~>—t s8
~>~p ~p=>~p)) (~>>—t (skipWhile s10) (retWhile s9))

i s8~>s512 : {p : Prog s0 0} — p F (at "s8" ~> at "sl2")
§8~>512 = ~>—t (~>—t (enterBlock s8 "s9" (record {})) s9~>s9') (flow
s8 (record {}))

o s8~>s8' : {p : Prog s0 0} —>p F (at "s8" ~> af "s8")
$8~>88"' = ~>t ~>t s8~>s812 (:=b-T-step s12)) (exitBlock s8 (record {}))

22 88~>q ¢ {p : Prog s0 0} —> p = (at "s8' ~> O (bx (var "q")))
58’V>q = ~>t (~>—t s8~>s12 (~>—/\—62 (:b—T—R 512))) q:>[]q

25 s6~>s6' : {p : Prog sO0 0} —> p E (at "s6" ~> af "s6")
i 86~>s86' = exitWhileF s6 (~>—t (~>—t (infBlock s4 "s6" (record {})) (
infPars s83)) s8~>A—e2q) (~>—t (:=n—step s7) (retWhile s6))

25 s4~>s6"' : {p : Prog s0 0} ~> p F (at "s4" ~> af "s6")
20 84~>86"' = ~>—t (~>—t (~>—t (enterBlock s4 "s5" (record {})) (:=b-F-—

step s5)) (flow s4 (record {}))) s6~>s6'
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sd~>s4' : {p : Prog s0O 0} — p F (at "s4" ~> af "sd")
sd4~>s4"' = ~>—t s84~>s6' (exitBlock s4 (record {}))
$3~>s3"' : {p : Prog sO0 0} — p F (at "s3" ~> af "s3")
5 83~>83' = ~>—t (~>—t (enterPar s3) (join s3 s4~>s4' s8~>s8')) (exitPar
$3)

$3'~>s13 : {p : Prog sO 0} —> p F (af "s3" ~> at "sl13")
$3'~>s13 = flow s0 (record {})

s13'~>s0' : {p : Prog s0 0} — p F (at "s13" ~> af "s0")
$13'~>s0' = ~>—t (:=n—step s13) (exitBlock s0 (record {}))

pFterm : {p : Prog s0 0} —> p F term
pEterm = term (~>—t (~>—t s0~>s2 (~>—t (~>—t $2~>s83 s3~>s3') s3'~>sl3
)) s13'~>s0")

7.3 Safety Proofs

A safety checker has not yet been completed in this system, although the foundation
for development is in place. The dependencies between the liveness- and safety
checkers is established and both use the same satisfaction relation type and can be
used in the same proof; you don’t need a separate module for the safety proofs.

7.3.1 Property violation in Unreachable Clauses

The problems encountered when developing the safety checker were related to the
set of legal states of the programs. In order to establish safety properties, the proof
checker must be able to find the set of reachable states, since the mere existence of
a statement does not imply changes to the behavior of a program. In other words,
let P be a program, s a statement violating ¢, P FE at s ~> ~ ¢. Going back to the
context of the problem, this lemma only has meaning iff s is reachable. Therefore,
in order to determine P F [J ¢, one must first prove that s is unreachable from the
program starting point. In fact, this has to be made for every statement having
the ability to violate ¢. The proof checker would have to be significantly more
sophisticated in order to handle these problems, but is definitely not impossible to
achieve.
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Discussion

In this chapter, the outcome of the project is discussed. The research questions are
reflected upon and to what extent they were fulfilled. The design choices and the
chosen development tools are evaluated, followed by a future work section, discussing
the possible ways of extending the work in the future.

8.1 Was ELTL sufficient?

ELTL, as implemented in this thesis, revealed some issues regarding representing
values of variables. The method is quite clear when dealing with trivial cases in-
cluding assignment. For example, let s, :  := 5. In this case, if control is at s,, at
some point, x will eventually be assigned the value 5. However, as soon as assign-
ment based on variable values are considered, complications arise due to the complex
nature of concurrency. The implications of a statement incrementing a variable x
may seem trivial, but can cause trouble when dealing with concurrent systems. This
problem is present due to the programs are not actually being executed, but rather
potential execution is being reasoned about. In the current implementation, there is
no way of referring to previous values of variables, other than examining the values
at some point in time. Knowing the value of a variable at some point in time does
not help when incrementing based on immediate values, unless the variable holds
a constant value after a certain point. The problem is prominent enough when
dealing with a single statement, and gets increasingly complex when dealing with
loops executing in parallel. With two loops running in parallel and both assigning
to the same variable, reasoning about eventual values of the variable becomes tricky
in the presented system. The possibility of adding states was discussed during the
project, but since the goal included avoiding thinking about program execution, the
concept was discarded. If the proof checker were more sophisticated in regards to
safety verification, the handling of variables would be much more sufficient. The
derivation of the V-property would be simplified with a safety checker, which would
make dealing with variables much more manageable.

The strengths of the current implementation of ELTL lie in the liveness proofs.
Linear logic proofs, while being somewhat tedious, proved rather intuitive and easy
to follow when reasoning about program execution. For the examples presented
in this thesis, the logic revealed no further complications in regards to representing
program execution. With the method being tedious but straightforward, the method
for proving Liveness strongly depends on the proof assistant tool, in this case Agda.
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If the proof assistant is helpful and expressive, especially regarding automation of
proof steps, then the process is clearly manageable even for larger programs.

8.2 Agda as Formal Proof Assistant

Agda has been a helpful tool due to the strictness of the language and the native
support for mathematical notations. Agda helped simplify what would have been
unintuitive and time consuming in traditional languages, both in terms of mathe-
matical reasoning, but also the inference of statements. The implementation makes
great use of the strictness when construction proofs; if a proof can be constructed
then it is considered valid. A proof step is immediately rejected when the rule cannot
be inferred from the established theorems and lemmas. This immediate feedback is
of great assistance when constructing proofs and contributes to the intuitive feel of
the method.

The automatic theorem proving tool of Agda proved quite useful in certain cases.
While still being in its early stages of development, the theorem prover sometimes
managed to prove non-trivial theorems in a short period of time. The consistency
of the tool was however lacking since it often failed to prove seemingly trivial impli-
cations, thus not reliable in its current stage. It does however show the potential of
getting rid of much of the tedious elements of the proof system, thus making a solid
argument for its continued development.

8.3 Comparison to Model Checking

The dominance of model checking compared to formal proofs has been prominent
in the industry, mainly due to the accessibility of the method. A minimum of
overhead is required when using the tools, and results are often generated quickly,
provided the program is not overly complex. Model checking has however mostly
been developed for sequential environments, since the non-determinism introduced
by concurrency cannot easily be modeled using a pure algorithmic approach. While
a model checker is a useful tool, one must keep in mind is that the model checkers
do not produce proofs. The tool might fail to disprove a property, but that does
not imply validity. It simply means the checker could not find a counterexample.
Finding and understanding proofs and their intermediate steps is a great way of
getting an intuitive feel of the problems and their potential solutions. As a tool
for students, a proof assistant tool is definitely preferred over simply plugging in a
logical formula and hoping for positive results based on intuition. Therefore, even
though model checking is currently preferred in the industry, proof checking can still
hold significance simply for academic purposes alone.

The lack of support for concurrency is a major drawback of the model checking tools,

since most programs of today use concurrency to at least some degree. The question
therefore becomes whether proof assistants could be further developed with regards
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to user experience. Making the tools prove complex properties by themselves might
be too much to ask at the moment, but using automated systems as proof assistants,
where the user merely leads the proof checker towards the goal, could certainly be
both possible and useful. The built-in automatic proof assistant in Agda has proved
to be a useful feature when dealing with the tedious nature of formal proofs. The
feature in its current state manages to prove simple properties, but struggles when
dealing with even slightly complex proofs, and is mostly limited to the constructors
of data types. Additional information, or hints, can be provided to the assistant to
decrease the search span, leading to faster and more successful conclusions. How-
ever, the supplied hints do not seem to make a significant difference and are most
often not worth the effort. Expanding and improving this feature could therefore
make a significant contribution to the assisted proof verification.

Having completely automated proof systems is not necessarily always preferable. As
mentioned earlier, the goal of the thesis is to develop a tool with students as the
potential users. Students need to learn the methods of conducting proofs, but if all
steps on the way become automated, the learning aspect is removed. A significant
benefit from taking the time to deal with tedious proofs, is the learning outcome of
the process. It is however necessary to remember that the proofs conducted in the
presented systems largely consists of trivial modification of ELTL formulae. These
trivial proof steps are tedious and do not provide any significant learning benefits
after the basic knowledge has been established. Having automated proof assistants
to help with the trivial proof steps is therefore necessary in order to make the proof
checker worthwhile.

8.4 Tool for Students

One of the main objectives of the study involved researching the potential for this
tool to be used by students. In order for this to be feasible, the tool would have
to be sophisticated enough to handle common programming examples from student
literature, but also accessible and well documented. Additionally, the proof checker
would require thorough testing and verification. Since there is no graphical interface
implemented, the proof checker is simply an Agda-framework for proof construction.
The students would therefore be required to know Agda to some degree in order to
use the tool. This requirement can be seen as both an advantage and a disadvantage
depending on the educational background of the student. Having an interface be-
tween the user and the proof system could make it significantly more accessible for
beginners, and also provide an overview of the proofs. The proof could be visualized
using proof trees, giving an intuition of the progress and the current state of the
proof. The interface could also be extended with the program supplying possible
ways forward, in other words guiding the user towards the goal.

On the other hand, if the user is required to be familiar with Agda in order to use
the tool, the user will gain a deeper understanding of the underlying logic, as well
as gaining the ability to extend the library by contributing with new content. The
transition from handwritten proofs to an Agda implementation is not necessarily
difficult, since working with Agda is already being quite similar to writing proofs
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by hand. As long as the user is familiar with functional programming, the language
difficulties should be minimal.

It is however clear that the proof checker requires further development in order to
be useful to students, mainly due to the underdeveloped safety checker.

8.5 Future Work

In order for the system to be considered complete, an implementation of the safety
checker is required. If more interesting proofs are to be conducted, a combination of
liveness and safety is needed. The foundation of combining the two methods is al-
ready established in the same proof system, without having extensive dependencies
between the two. The safety checker can be implemented rather independently from
the liveness component, enabling usage of completely different construction methods
compared to the liveness module. The task involves coming up with a method to
handle variable states without going too much in the direction of program execution.

Another aspect to take into consideration is the verification of the proof checker
itself. As of now, the proof checker is based upon established LTL-rules and se-
mantics. While having that stable foundation is reassuring, it is definitely not a
guarantee for correct behavior or immunity to errors. Therefore, proving properties
such as soundness and completeness of the tool would be an interesting extension
to the project.

8.5.1 Automatic Proof Checking

As shown in the results of the thesis, even conducting proofs for small programs
can be tricky and time consuming. The automatic prover of Agda showed potential,
since rather trivial proof steps could be automated, thus saving time and effort.
The function is however still quite underdeveloped and had a hard time proving
even slightly complicated properties. Further development of the theorem prover
could therefore have a large impact on the potential of formal proofs for concurrent
programs.
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Conclusion

In this thesis, the implementation of a proof checker for extended linear temporal
logic has been presented. The results show how to conduct proofs about liveness in
the system, as well as describing a general method for verifying safety properties.
With further development of the proof checker automatic theorem prover of Agda,
this method could be useful for students or other academic purposes.

9.1 Research Questions

The research questions involve the development of a tool aimed towards students.
The results from chapter 7 are promising, but the proof checker tool is currently
underdeveloped for the purpose of general usage. The defined CPL and the proof
system are however fairly easy to use and are capable of representing a wide range
of common problems.

The proof checker was mainly build upon the theory of Lamport. The established
methods were useful and well defined, but a few issues arose during implementation.
Trivial proof steps were often omitted and the state of the proofs were sometimes
not clear. The safety requirements were often assumed by looking at the programs,
which is not suitable for implementation in Agda, giving rise to new methods for
representing program states.

The language Agda showed promising results as a logical framework, even when
dealing with an imperative-style language. The strictness of Agda regarding termi-
nation caused some issues when dealing with arbitrary programs of the CPL, but
these issues were resolved.
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