
Cyber security and IoT,
exploiting hardware
Master’s thesis in Communication Engineering

Hampus Lidén Martinsson

DEPARTMENT OF ELECTRICAL ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

Master’s thesis 2022

Cyber security and IoT, exploiting hardware

Hampus Lidén Martinsson

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2022

Cyber security and IoT, exploiting hardware
HAMPUS LIDÉN MARTINSSON

© HAMPUS LIDÉN MARTINSSON, 2022.

Technical Advisor: Torbjörn Tjelldén, Consat Engineering AB
Examiner: Henk Wymeersch, Department of Electrical Engineering

Master’s Thesis 2022
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Toradex Verdin iMX8M Mini SoC, mounted onto its development board.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2022

iv

Cyber security and IoT, exploiting hardware
HAMPUS LIDÉN MARTINSSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Cyber security (CS) is a well known and broad subject. However, the same cannot
be said for the Internet of Things (IoT). While the development of IoT is still in its
infancy, CS within this sector has up until now mostly been neglected. This paper
aims to research and analyze the Toradex hardware platform for security weaknesses.
The hardware is a System on Chip that is commonly used for IoT implementations.
The Toradex is a common IoT solution that shares much of its computer on module
structure with other similar companies. It therefore represents the overall security
of this types of devices quite well. Security in IoT is different from traditional CS
due to the larger attack surface. The focus of this thesis is firmly on one part of the
surface, the hardware. The Toradex is a Linux based (Debian), embedded system.
The hardware is used in IoT solutions and is therefore highly relevant in the IoT
sector. The weaknesses found are highlighted and possible solutions are proposed.
The problems are an exploitation of the bootloader (Uboot) and the recovery boot.
The research has found these to be possible entryways to the system. The boot-
loader can be flashed, allowing a new more open loader to be installed, which in
turn will open up the system. The recovery mode, hides its recovery port by using
its own USB driver on the host computer. This port does not require password to
install software onto the flash memory. This is exploited by using a malicious USB
driver to open the port. These are problems that needs to be taken into account
when using the hardware for IoT solutions.

Keywords: IoT, Cyber, Security, exploits, hacking, hardware, Uboot, Debian,
SoC.

v

Acknowledgements
I would like to thank everyone at Consat Engineering that helped me through this
project. In particular, I would like to thank Torbjörn Tjelldén, whose technical ex-
pertise was always available no matter the day. I would like to thank Daniel Skatt,
whose coding know-how enabled me to build my driver. Lastly, I would like to thank
Frida Williamsson for being the connecting web in between.

At Chalmers I would like to thank my examiner Henk Wymeersch and Yingqi Zhang
for helping me achieve the Chalmers standard in this thesis.

Hampus Lidén Martinsson, Gothenburg, June 2022

vii

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

CS Cyber security
CoM Computer on Module
CPU Central Processing Unit
EMI Electro Magnetic Interference
eMMC embedded MultiMediaCard
HDD Hard Disk Drive
IoT Internet of Things
JTAG Joint Test Action Group
OS Operating System
RAM Random Access Memory
SoM System on Module
SSD Solid State Drive
TFTP Trivial File Transfer Protocol
UART Universal Asynchronous Receiver-Transmitter

ix

Contents

List of Acronyms ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background . 1

1.1.1 IoT and Cyber Security . 1
1.1.2 Embedded systems and Toradex 3

1.2 Motivations . 5
1.3 Related work . 6

2 Theory 7
2.1 USB . 7

2.1.1 The protocol . 7
2.1.2 The hardware . 11

2.2 System booting process . 13
2.2.1 Post BIOS . 14
2.2.2 BIOS/Das Uboot . 14
2.2.3 Kernel . 15
2.2.4 Startup . 15

2.3 Containers . 15
2.4 Summary . 16

3 Investigation and testing methodology 19
3.1 Investigation methodology . 19

3.1.1 Background research . 19
3.1.2 Port evaluation . 20
3.1.3 Hypothesising solutions and evaluating threat 20

3.2 Common hardware hacks . 20
3.3 The Debug port . 23

3.3.1 The hardware . 23
3.3.2 The software . 27

3.3.2.1 Test 1: Memory dumping 27
3.3.2.2 Test 2: Bootloader scripting 29

3.4 The Recovery port . 30

xi

Contents

3.4.1 The hardware . 30
3.4.2 The software . 32

3.5 Summary . 34

4 Results 37
4.1 The Debug port . 37

4.1.1 Test 1: Memory Dumping . 37
4.1.2 Test 2: Bootloader scripting 40

4.2 The Recovery port . 41
4.3 Summary . 47

5 Discussion & Conclusion 49
5.1 Discussion . 49

5.1.1 Debugging port . 50
5.1.2 Recovery port . 51

5.2 Conclusion of investigation . 52

6 Future Work 55

Bibliography 57

A Available U-boot commands I

B Boot dump V

C Code used in project VII

xii

List of Figures

1.1 Example of a classic IoT system [1]. 2
1.2 CoM Verdin imx8m mini, front view. 4
1.3 CoM Verdin imx8m mini, back view. 4
1.4 Development board for CoM. 5

2.1 Description tree [2] . 8
2.2 USB driver layers for a Linux system [3] 10
2.3 Type-A connector [4] . 11
2.4 USB-C connector [4] . 12
2.5 Classic BPSK scheme in euclidean space 12
2.6 Single vs Dual signalling [5]. 13
2.7 Software containers vs Virtual machines [6] 16

3.1 An example of a flash clip used to attach to flash memory 22
3.2 UART disabled by cutting the transmission line [7] 22
3.3 Debug port X66 on development board 23
3.4 Zoom on Debug port X66 . 24
3.5 Zoom on UART chip . 25
3.6 Zoom on LED indicators . 26
3.7 Zoom on UART socket X16 . 27
3.8 Uboot shell, running the "bdinfo" command 28
3.9 Uboot shell, memory dumping from RAM 28
3.10 Recovery port X34 on development board 30
3.11 Buttons on the development board. 1: Power Switch, 2: Recovery

mode access, 3: Harware reset switch 31
3.12 Recovery port X34 on the schematic 31
3.13 Data lines from the recovery port to the DDR4 socket of the SoC . . 32
3.14 Recommended schematic to force recovery mode [8] 32
3.15 USBView on host, when the device is not in recovery mode 33
3.16 USBView on host, when the device is in recovery mode 33

4.1 Disassembled bootloader binary, code can be seen in appendix C . . . 41
4.2 Sniffed packets using Wireshark, before the easy installer has attached 42
4.3 Sniffed packets using Wireshark, after the easy installer has attached 43
4.4 Sniffed packets using Wireshark, endpoint 1 starts interrupting 44
4.5 Sniffed packets using Wireshark, new handshake and then interrupts . 45
4.6 Sniffed packets using Wireshark, new handshake and then bulk transfers 45

xiii

List of Figures

4.7 First set of Set_Reports sent by USB driver 46

xiv

List of Tables

1.1 CoM components for figures 1.2 & 1.3 4

2.1 Transfer classes with their transfer characteristics [2] 9

3.1 Connections of interest for the USB/UART interface 25

4.1 U-boot commands of special interest 38

5.1 Exploits tested for the debug port . 50
5.2 Exploits tested for recovery the port 51
5.3 Security breach severity, low, medium, high 53

xv

List of Tables

xvi

1
Introduction

Your credit card information is encrypted, but is it safe? If information is encrypted,
somewhere along the process a decryption have to occur. A chain is only as strong
as its weakest link and the same can be said for the security of any system. If
the online security of an IoT platform is impeccable, what if someone just stole it?
What type of information can be obtained? Can it be replaced with the hackers
own malicious hardware? These basic questions drive the research and analysis in
this thesis.

1.1 Background
An overview of cyber security and IoT is introduced. It also contains information
about the hardware used and a brief explanation as to what an embedded system
is. A more in-depth information about these concepts can be found in the theory
section.

1.1.1 IoT and Cyber Security

The basis for the project is IoT-technology. As seen in the acronym list, IoT stands
for Internet of Things. The fundamental idea is to move real-life data into the
virtual world, process and execute tasks that impact the real world [9, 10]. By
definition this means that any device that connects to the internet is a potential
IoT device. This gives access to huge amounts of data that is especially needed
when building AI applications. Usually these devices are embedded systems with
multiple types of sensors. For example, the more common IoT devices today are
smartwatches, smart TVs and cellphones. Slightly less obvious examples are IoT
devices in the automation industry. These can be, but are not limited to, embedded
systems sampling production speeds, production downtime and power consumption
etc. These types of devices enable an extreme accuracy when calculating cost of
production. IoT is not only the devices of course, it is also the cloud based platforms,
algorithms and user input. As a consequence, there are usually a large amount of
very different devices interconnected with each other. Which causes large issues
when considering the security of the platform. Multiple platforms means multiple
strategies are needed to guarantee the entire chains security.

1

1. Introduction

Figure 1.1: Example of a classic IoT system [1].

As mentioned CS is a well known subject and the IoT situation differs due its devices
unusually large heterogeneity. But what exactly is cyber security in its essence? The
purpose of CS is to secure all computer systems and networks from security breaches.
These breaches can lead to multiple consequences as a result, which include but are
not limited to, theft of sensitive information, theft or damage of hardware and
software, denial of service [11]. In general terms, the goal is to protect against any
type of tampering be it on hardware or in software. The methods of attack are
many, but some of the most common are [1, 11]:

• Denial of Service. As the name suggests its goal is to deny a user any
types of internet service. This is done by bombarding the target servers with
dummy requests until real user-requests cannot get through to the service.
An example might be, bombarding a bank with requests until their internet
service crashes.

• Phising. This type of attack is focused on the users themselves. The goal
of Phising is to "fish" information such as passwords and usernames from the
user by deceiving them. A classic fishing attempt is to use malicious links
that moves the user to a dummy page shaped exactly like a trusted page, e.g
twitter or facebook. When the user attempts to log in the malicious site saves
the password and username, whilst simultaneously logging the user into the
real site.

• Spoofing. Masquerading as a valid entity in order to get sensitive information.
This might be a malicious device replacing an ordinary user on a private
network, using faked IP addresses and MAC addresses. The network server,
thinking the device can be trusted, unknowingly hands sensitive information

2

1. Introduction

to the malicious device.

• Malware. The most obvious threat is malicious software. Any type of soft-
ware that masquerades its true purpose is considered malware. This might be
a file that pretends to only be an anti-virus program but simultaneously uses
the users computer for mining cryptocurrency.

As can be glimpsed in the examples above, the types of attack can vary greatly and
anything might be a weakness. This is the fundamental problem with IoT devices
security. The devices on the network are drastically different from each other and
therefore all face different types of attacks. This is what the unusually large attack
surface refers to. An example of a IoT network is shown in figure 1.1, it gives a
decent scope of device variety.

1.1.2 Embedded systems and Toradex

A normal computer system, e.g. a laptop, cellphone or iPad are all general purpose
in their design. Referring to their multiple functions such as a camera, microphone,
touch interface, network interface etc. An embedded system is designed to fulfill a
particular function/functions [12] and they are often connected to electrical and/or
mechanical hardware. The system is often limited in its power consumption, pro-
cessing power and memory storage. The system is usually purposefully limited due
to the well defined task: i.e, if the task is well defined, the same can be said for
its requirements to function. Low power platforms are cheaper and therefore often
used. A real-world example of an embedded system is a microwave. That contains
a microcontroller which in turn controls the electrical hardware and timer. Another
case can be a mouse or a keyboard, both peripherals are embedded systems that
contain circuitry and software to fulfil a very specific purpose.

In order to test the CS capabilities of hardware, a fitting platform was chosen as
a common implementation of IoT hardware. There are multiple companies that
provide similar hardware solutions such as Toradex AG which is used here, Variscite
or PHYTEC. The platform used for this research is the Verdin iMX8M Mini module
(fig 1.2 & 1.3) and the Verdin Development Board (fig 1.4) by Toradex. Toradex
is a company that originates from Switzerland. It focuses on easy user interface,
commercial off the shelf embedded computing products with premium quality and
long term availability. The module contains standard embedded hardware such
as e-mmc flash memory, an ARM processor and RAM (fig 1.2). It is attached
to peripheral circuitry using a standard SODIMM DDR4 socket. The platform
supports common and standard software when developing embedded IoT platforms.
These are for example Yocto project, Qt framework, Codesys, Linux embedded and
Docker. Toradex offers standard blueprints for peripheral boards that can be used to
tailor specific designs. The board used in this experiment is a standard development
board (fig 1.4). The board contains all available I/O that the module supports. In
reality, real designs used in finished products will not contain all of these I/Os, they
will most likely also disable some of the ports such as JTAG and UART debugger.

3

1. Introduction

Number Component
1 Wifi module
2 ARM Cortex CPU
3 2GB DDR4 RAM
4 Integrated PMIC
5 Ethernet module
6 16GB e-MMC flash

Table 1.1: CoM components for figures 1.2 & 1.3

Figure 1.2: CoM Verdin imx8m mini, front view.

Figure 1.3: CoM Verdin imx8m mini, back view.

4

1. Introduction

Figure 1.4: Development board for CoM.

There are also multiple examples of the Toradex family in use. These are provided by
the companies partners and are found on the Toradex website. One implementation
uses cloud enabled AI to recognize and categorize objects on a conveyor belt [13].
Another features a rotary evaporator controller with a LCD screen and GUI [14].
Both are connected to the cloud and are examples of IoT and Industry 4.0.

1.2 Motivations
Even if cyber security is a well known subject and has been studied extensively, its
implementation on IoT hardware remains new. The subject faces new challenges
due to rapid generations of hardware and software [15]. IoT is often considered
to be in its infancy, causing the industry to largely ignore its security in order to
implement a platform as fast as possible [1, 9]. This is changing swiftly throughout
the industry. However, as more and more attacks and breaches have occurred, the
industry is starting to realize the problem which had previously been ignored [1].
As stated initially, any link in the chain of security is a possible access point and
one of these links is the hardware itself. IoT solutions are usually placed out in the
field and are rarely under surveillance. This thesis aims to explore to what extent
a stolen platform can be used and what information can be accessed from it by the
malicious party. This is especially true with the type of SoCs investigated in this
project. These platforms are made to be as general purpose as possible and there is
an extra amount of public information published about them.

The key questions that the thesis attempts to answer are:

1. What are some of the most common hardware hacks and how can they be
mitigated?

2. What CS consideration does an IoT platform already have?

3. What weaknesses exists on the platform? How can they be exploited?

4. What can be done to remove these threats?

5

1. Introduction

The contribution of this thesis is the hardware analysis of a common IoT platform
called Toradex Verdin and the creation of basic security guidelines. CS is a broad
subject and any part could be relevant for this platform. But in order to deepen the
research, a specific area was chosen. Namely, the hardware. Due to limited research
time, the analysis are limited to finding proof of concepts for the exploits. Assuming
that any exploit is deemed possible during the course of the project. The hardware
analysis will also be confined to the relevant chips on the CoM and a few of the I/O
ports on the development board.

1.3 Related work
In previous work there has been multiple studies and surveys regarding the state
of the IoT security. The survey by Mardiana et al. [15] gives an overview of the
research trend, and by Vikas et al. [16], it specifies areas of IoT deemed critical
for security. The work in [17] focuses on hardware Trojans as a type of tampering
attack. This type of tampering occurs during design or production. This type of
tampering is incredibly dangerous since its undetectable by any software counter-
measures. The article suggests multiple countermeasures in both the design of the
hardware and the software used for design. The countermeasures being Rots of
Trust (RoT), Physical Unclonable Function (PUF) and Device Identifier Composi-
tion Engine (DICE). Similarly, this report will also focus on tampering attacks. But
whereas this article focuses on solely hardware Trojans, this thesis will attempt all
possible tampering available and define their efficiency.

Another article [18] studies side channel analysis attacks and hardware Trojans. The
side-channel analysis is performed by measuring power to the cryptographic device.
The hardware Trojans are commonly detected, in a non destructive way to the
card by analysing the circuits voltage and current. The article suggest a different
solution to both the side-channel hack and the hardware Trojan by dynamically
randomising the order of information coming in from different sensors. This would
make it impossible for the Trojan to activate on a predefined state and make the
side-channel unreadable. This possibility will be explored on the IoT platform, if
not the power supply to a cryptographic device than listening to I/O ports.

In a comprehensive study found in [19], tampering was listed as one of issues faced
by edge nodes. These nodes are usually placed out of sight and out of mind, making
their environment extremely hostile for tampering attacks. The suggested solutions
for malicious firmware and hardware Trojans were doing side-channel analysis. For
other tampering attacks, the study suggests self-destruct designs, electrical tamper
proofing, improving memory management and shielding etc. This article lists possi-
ble solutions to the problem faced by nodes out in the field. This thesis will choose
methods that might negate the successful exploits.

6

2
Theory

This chapter contains more in-depth information to the technologies the project
have touched upon. The goal of this chapter is to provide a strong theoretical base
in order to fully grasp the project. The sections features USB, the linux system
booting process, linux memory management and the portainer software.

2.1 USB
USB or Universal Serial Bus was created in order to allow for easier connections
between the PC and its peripherals. The goal was to replace a multitude of different
connectors with a single type of port. Hence the word "universal" in its name. The
port was developed by seven collaborating companies, Compaq, DEC, IBM, Intel,
Microsoft, NEC, and Nortel. The first port (USB 1.0) released in January 1996
with two signaling rates, 1.5 Mbit/s at low bandwidth and 12 Mbit/s at full speed.
Today the protocol is still in use and its latest version USB 4, released 2019, based
on the Thunderbolt 3 protocol [4]. The sections below will explain the hardware
itself i.e the physical ports and the protocol they use. The latest versions of the
USB protocol will not be touched upon however(USB 4 & thunderbolt), since they
are not used with the Toradex. The physical ports will be limited to the relevant
ones i.e Type-A and USB-C. Since they are the ones that exist on the board.

2.1.1 The protocol

The USB protocol is the crucial foundation that enables the port its plug and play
feature. Without it, the user experience would be much more complex. This section
will summarize the USB 2.0 protocol so that the packet analysis in chapter 4 is un-
derstandable. The other protocols will not be mentioned since they are not deemed
relevant to this project.

The protocol utilizes a master and slave structure, meaning that all communication
is decided by the master and the slave always follows. So the master is always the
one "asking" the slave for information and the slave answers. In this case the master
is always referred as the host and the slave, the device. The host in most cases

7

2. Theory

including this project is the PC/laptop, whilst the device is the Toradex. However,
usually the device is a peripheral, like a keyboard, mouse or a USB storage device.
When first connecting the device to the host lots of things happens very quickly.
First, the host sends GET requests to be able to understand what exactly the device
is. These requests are usually of three types and are seen below:

1. GET Descriptor Device

2. GET Descriptor Configuration

3. GET Descriptor String

There are more GET types than seen in the list, but these are the three that typically
begin the communication. First the host sends GET request no.1, this request
essentially asks the device to identify itself. The response will contain its vendor ID,
product ID, serial number and how many configurations it has. Then the host sends
GET request no.2. This request asks about the devices configurations and the host
dictates a standard length for the response. This is to first check if the full response
is needed to save time. The response will say if the device needs power sent through
the cable, how much amperage it tolerates, how long the full description is etc. If
needed (and it mostly is), it sends the same request again but with the full length
value it learned from the first response. The full length response contains the full
description tree (see fig 2.1) of the device. It contains its number of configurations,
its number of interfaces, the interface classes and the amount of endpoints each
interface needs etc.

Figure 2.1: Description tree [2]

The description tree in figure 2.1 is quite descriptive of the USB topology albeit with
some differences. Whereas a device might indeed have multiple configurations, only
one can be running at a time. To switch configuration all interfaces and endpoints
have to be terminated. This is why most devices usually only have one configura-
tion. A configuration might have multiple interfaces running at once though. These
interfaces are characterised by their class where some are listed below [4]:

8

2. Theory

• Human Interface Device, HID

• Mass Storage, MSC

• Physical Interface Device, PID

• Image, (PTP/MTP)

• Audio, (A)

The classes are generally used to assign higher level drivers. For example if a device
is using an interface with the HID class, a driver that is responsible for that par-
ticular class is attached. Usually those drivers are for mouse, keyboard or similar
peripherals. An interface is akin to a header which groups a number of endpoints to-
gether. Devices usually utilize multiple interfaces at once to fulfil a multi-functional
device. For example, a webcam might have an interface for audio and another for
video. Each interface can switch settings on the fly without needing to terminate
other interfaces. Each interface uses their own type of endpoints. The endpoints
are pipes used for data that uses a selected type of transfer. These pipes are al-
ways one way, either IN or OUT, from the hosts perspective. An interface uses at
least two endpoints. Where endpoint 0 is the control endpoint, this pipe is setup
immediately so that the device can send its settings. Even before the configuration
has been fetched. The other endpoints are used to fulfil the devices function. The
transaction types used by the endpoints are listed below [2]:

Transfer class Latency Bandwidth Error detection Packet retry
Control Guaranteed Minimum usage No Yes
Interrupt Guaranteed Minimum usage Yes Yes

Isochronous Upper bounded Guaranteed size Yes No
Bulk No Guarantee All available Yes Yes

Table 2.1: Transfer classes with their transfer characteristics [2]

The control transfer is typically used to setup the device. The data consists of
instructions and status requests sent from host. Interrupt transfers are typically
used by devices that require immediate attention whenever something happens.
A great example here is peripherals like a mouse or keyboard. The data has to
be processed immediately so the user does not experience lag when moving the
mouse or clicking. The transfer type guarantees a set latency and utilizes error
detection and next period retries, and dropped packets will be re-sent so that the
user does not have to click twice. The amount of data that can be sent is limited
though. Isochronous transfers are used for periodic and continuous transfers. They
are usually time sensitive but they happen at scheduled intervals. This transfer type
drops packets instead of retrying in order to keep the data stream on schedule. An
example is a stream from a webcam or audio to speakers. If a frame is dropped, it
is less likely to be noticed compared to if the audio suddenly got out of sync. Bulk
transfers are as the name suggests used for large transfers. The goal of this type is to
transfers as much data as possible whilst simultaneously guaranteeing data integrity.

9

2. Theory

That means full error detection with guaranteed packet retry until it arrives.

All of this is contained within the full device descriptor. The device essentially tells
the host what it needs in order to fulfil its purpose. This is not verified by the host
since the device is always considered trustworthy. The problem is also touched on
in the result chapter, in section 4.2. The host reads the descriptor and sends a SET
configuration request. This sets the entire tree of interfaces and endpoints. When
the device sends its acknowledged response, the device is considered configured. At
this point a a higher level driver is attached, usually based on class as mentioned.
Beforehand it was the host controller and usbcore that dealt with the device. There
are usually multiple drivers on top of each other, each raising the USB transfer closer
to the OS and application level. The layering can be seen in figure 2.2, where the
different drivers are stacked on top of each other until they reach userland. This
particular layout is of a linux system. This does not really matter however since all
operating systems use basically the same type of layout.

Figure 2.2: USB driver layers for a Linux system [3]

10

2. Theory

2.1.2 The hardware

The Toradex uses two types of USB ports. They are the Type-A port and USB-
C port. Type-A is usually the port that the host end of the connection uses i.e
a laptop or PC. Toradex in this case is the device, also have Type-A ports but
they are mostly used for peripherals i.e mouse, keyboard and USB storage. The
connection between the PC and Toradex is using a Type-A (host) to USB-C (device).
The Type-A port seen in figure 2.3.

The Type-A connector supports all but the very latest USB protocols. It supports
USB 1.0 up to 3.1, albeit with some added connectors for 3.0 and upwards. The
USB connection between host and device is USB 2.0 which looks exactly like figure
2.3. The transfer rate with the connector using 2.0 is at maximum 480 Mbps. This
does not necessarily mean that the actual speed used is at maximum. Usually when
not performing standard bulk transfers maximum speed is not needed. As can be
hinted below the USB-C port is much newer and more advanced.

Figure 2.3: Type-A connector [4]

As can be seen in figure 2.4, the USB-C connector contains more connection points.
These are the extra connection points needed for the newer protocols mentioned
before. These are essentially just added data lines that can now run in parallel with
the D+ and D- lines. The aforementioned conductors are of particular interest in
this project since the Toradex utilizes USB 2.0.

The first noticeable characteristic of USB is its twisted pair, differential signaling
structure. Differential means that the data lines will always mirror each other.
This is the reason for the ± sign when reading USB related work. The data pair
used in this project since its the 2.0 protocol, is the D±. The D lines utilizes half-
duplex communication i.e the communication can only move one way at a time.
The simplest method of transferring information is the single ended method, where
one wire sends one signal. Commonly there are set voltage thresholds which are
used to determine if a "one" or a "zero" is received. For example, a voltage below
0.3 is a zero and a voltage above 2.7 is a one. But with differential signaling, the
two lines will send the same information but with opposite polarity. The difference
between single-ended and differential is illustrated in figure 2.6. Since the signals
are mirrored the amplitude will be the same but with opposite polarity. Therefore

11

2. Theory

Figure 2.4: USB-C connector [4]

the receiver will detect the polarity difference between the two signals instead of a
voltage level, which is used in single-ended communication. The main benefit of this
type of communication is shown below.

Figure 2.5: Classic BPSK scheme in euclidean space

Viewing the 1 and 0 as two symbols in a binary phase shift keying constellation.
Binary meaning only two symbols, phase shift meaning they are shifted in phase of
each other. So there are two symbols and they are opposites in the real plane. Such
a constellation can be seen in figure 2.5, to the left a 1 and right a 0. The x-axis is
the real-axis and y the imaginary.

The dual signaling allows the euclidean distance to double between each symbol
without increasing the noise factor, effectively doubling the SNR. The power of the
signal Psignal is doubled whilst the noise Pnoise is not. This is because the amplitude
A is defined as

√
Es and Es in turn is defined as E = Psignal × t = U2

I
× t. Where

t is time, U the signal voltage and I the signal current. Since its only the polarity
difference that determines what symbol to choose, the amplitude of the difference
will be the combined absolute amplitude of the received signals. This voltage can be
seen in figure 2.6, where it is called VDM . There is also the common mode voltage i.e
the ground. To have a common ground will ensure that the zero point remains the

12

2. Theory

same to both conductors. This is not as important when using differential signaling
however. Since we are only looking at polarity differences, some drift from either
side will not impact the SNR to a noticeable effect. That is, until higher speeds are
used. In USBs case the two conductors do share a ground. Combining the signal of
multiple transmitters is a common method in communication, in order to increase
SNR. The main drawback is of course that the system will require a factor of two
conductors per communication line. The noise factor is slightly increased, but it is
negligible. The main interference will be caused by EMI effects due to the current
running through the connectors. But since the system uses two separate connectors,
the current is not increased in either, keeping the EMI sensitivity the same. Larger
currents mean larger EM-fields, which in turn will mean a larger sensitivity to EM-
interference. [5]

Figure 2.6: Single vs Dual signalling [5].

2.2 System booting process
The project works closely with USB protocols since the relevant ports use this.
These ports are also closely connected to the booting process of the platform. Since
the project works closely with the boot loader of the Toradex, this section will
summarize the booting process of a Linux system. The booting process of any PC
system can be split into these steps [20, 21]:

1. Post BIOS

2. BIOS

3. Kernel

4. Startup

13

2. Theory

2.2.1 Post BIOS

Any PC enthusiast will have heard about the BIOS (Basic Input Output System)
and most likely edit variables within its environment. But, in order to actually
load BIOS, some hardware have to initialized. This is where POST (Power On
Self Test) comes in. As the name suggests the POST is a self test to ensure all
hardware is functioning correctly. If this fails then the booting process is aborted
and the computer will not start. When POST has been passed, an interrupt called
INT13H is passed. This interrupt locates the boot sectors on any attached bootable
device. This device is usually a hard drive such as a SSD or HDD but it can also be
attached flash memories such as USB memories or a bootable DVD disk etc. The
boot sector is then loaded into RAM and executed. This boot sector contains the
larger part of the bootloader and after execution control is handed off to it. This
stage is essentially only there to initialize the hardware enough so that the first stage
of the bootloader can run. All computers do some form of this and the user can’t
really control this part. It is seen as a hardware process more then software.

2.2.2 BIOS/Das Uboot

The bootloaders main mission is always the same no matter the one the PC uses.
The difference usually lies in their debugging, logging capabilities, boot features and
some fine print steps in the booting process. These are not really of interest in this
report. The bootloader used in Toradex is the Das Uboot, bootloader, and therefore
the one that will be explained here.

The bootloaders purpose is to initialize the Kernel files, execute them and hand
off control to the kernel. So in its essence the bootloaders purpose is to load files
from hard memory i.e HDD, SSD or USB flash into RAM. The first stage of the
bootloader is the U-boot SPL (Secondary Program Loader). This is essentially a
bare bone version of U-boot that loads and initializes the rest of the hardware. Its
purpose is to do just enough so that the rest can be run. This is also the first moment
where the machine is running user-controlled code. Meaning that the code can be
compiled and changed by the user. From here in the embedded systems world, the
SPL might go and directly load the kernel. This will severely restrict the bootloader
capabilities however, so usually a more feature filled bootloader is instead loaded
before the kernel. This is seen as the second stage of the boot loader, even though
it might be skipped.

The second stage is the full bootloader with all of its capabilities. Usually this
means that there is an interactive shell with a plethora of different commands to
interact with. The loader also contains debugging tools and logging. The logging
for example is usually seen as a bunch of text that starts flowing on the screen as it
attempts to boot. This is when the bootloader prepares the kernel files, loads them
into memory and starts executing them. After execution is successful a handover
process is started and the kernel takes over[20, 21].

14

2. Theory

2.2.3 Kernel

The kernel as the name suggests, is the core of the operating system. These are
of course all different depending on the system used, but since the Toradex is an
embedded system, the OS of choice is Linux. Most of the kernel is still in a com-
pressed state to save space. The format of the files does allow for a self-extraction
however, which is the first thing the kernel does. When that is done the kernel
has full access to all of its files. With full access to all its boot files the machine is
seen as online, i.e, that it is technically running. It will still have to be prepared so
that more constructive work can be done in user space though. This is when the
kernel launches the last steps of the booting proccess by opening the systemd folder
[20, 21].

2.2.4 Startup

The folder include initializing secondary CPU cores and booting device drivers etc.
It also decompresses the user space of the attached hard drives and mount its file
system to them. This is when the well known file system structure of Linux can be
accessed. Finally it starts booting the user space which will lead to full access to
the user i.e the home screen of the operating system [20, 21]. Note that the startup
process is very complex in its full step by step walkthrough, this is only a summary.

2.3 Containers
One of the strongest aspects of the Toradex and many other IoT platforms is the
support of software containers. This section will summarize what a container is and
how it is different from a comparable method, a virtual machine.

Software containers are code packages designed to frame an executable and isolate
it from other applications (see fig 2.7a). The actual "frame" of the container can
be tailored to fit the device it is supposed to be deployed onto. For example, if a
container is to be deployed onto both an Arduino and a Raspberry pi, the frame
can be set to include one set of dependencies for each. When set up correctly, this
enables instant software deployment to devices that might be very different. Meaning
that they run different hardware and applications. Since the containers isolates the
application within, it is guaranteed that deploying a new container in parallel, will
not interfere with other applications. The closest alternative to containers are virtual
machines. A virtual machine attempts to simulate a separate device onto the host
computer. This will require a separate operating system and virtual hard drive
etc. Since that is needed for each separate instance, loading times, file sizes and
hardware requirements are much higher. In short, a virtual machine simulates on
the hardware level whereas a container simulates on top of the OS [6, 22].

As can be seen in figure 2.7a, since containers are layered on top of the OS, they

15

2. Theory

(a) Software container (b) Virtual machine

Figure 2.7: Software containers vs Virtual machines [6]

will require an engine on which to build the extra abstraction layer. In this case the
engine is called "Docker Engine", there are many different engines, this one came
recommended from Toradex and is therefore used here. The software using the
engine is called Portainer supplied by Docker Inc, again recommended by Toradex.

2.4 Summary
There were three concepts introduced, the USB protocol, the system boot and con-
tainers. The USB protocol utilizes classes to define the device connected, the most
important being Human Interface Device (HID). It also uses classes to define what
type of transfer is needed. These transfers are the control, interrupt, isochronous
and bulk. Control is used to setup the device so a data transfer can begin. Inter-
rupts are used when host response time has to be guaranteed, e.g, a mouse click
or movement. Isochronous transfers care more about timing than packets, it would
rather drop a few packets than fall behind schedule. Typical of video and audio
streaming. Bulk transfers usually for large transfers that are meant to happen as
fast as possible. It will use ALL available bandwidth at any given time. Packet
arrival is guaranteed by this class, it will retry until successful.

The booting process is quite similar for all computers. The process can be split into
four steps [20, 21]:

1. Post BIOS

• A simple hardware test and initialization of the hard drive.

• Loads SPL into RAM and executes

2. BIOS/Das Uboot

16

2. Theory

• SPL loads first, which is an extremely simplified version of BIOS

• SPL usually loads full BIOS but can also run kernel instead

• Full BIOS has a command line and will execute the kernel

3. Kernel

• System core that is different for all OS (Linux)

• Extracts all boot files

• Executes Systemd folder

4. Startup

• All CPU cores and device drivers are initialized

• Decompresses user space and mounts file system

• User space is loaded and home screen appears

Furthermore, the container structure is one of the strongest aspects of an embedded
system. A container is a framework of code that isolates applications from each
other in user space. The containers framework can be configured so that they are
adapted to each device, making it much easier to update large fleets of devices all
running on different hardware and with different applications. Since the applications
are isolated from each other, the chances of them interfering with each other is also
very low. The closest comparison is a virtual machine (VM), the difference being
that a VM runs multiple operating systems in parallel, whilst containers run on top
of the OS [6, 22].

17

2. Theory

18

3
Investigation and testing

methodology

This section will begin by outlining what the process for the investigation is. Then
there will be some information about the more common hardware hacks are and
how they function. These common hacks are usually found on forums or hacking
conventions. The most commonly used in this report is DEF CON. The conference is
attended by security experts and engineers and it therefore an excellent source. The
shown hacks are seen as known or common. Due to the aforementioned investigative
process there will also be two ports that were selected. These ports will be explained
and so will the tests that were developed to attempt to exploit them. The result of
the tests regarding the ports can be found in 4.2 and 4.1.2.

3.1 Investigation methodology
The project will need a structure to its investigation in order to fulfill its purpose.
This methodology is outlined below.

3.1.1 Background research

The first step as with any project is the background research. The goal of this
research was to familiarize with the platform. To understand how containers and
applications are developed and deployed, how to setup the platform and how to enter
Recovery mode. Also to find some of the more common hardware hacks and inves-
tigate if they can be done on this hardware. This is primarily to avoid researching
exploits that might already be well known and patched. Obvious entryways should
always be taken into account first. Below common hardware exploits are listed and
how they function.

19

3. Investigation and testing methodology

3.1.2 Port evaluation

First the potential of a port will have to be discovered. This is where the back-
ground research stage is most important. The research will highlight what types
of ports are usually targeted when hardware hacking. Ports with lots of access are
of particular interest. The investigation of the ports will vary as to their function.
But the common denominator for any port is to answer the following questions in
no particular order:

1. What function does the port have and how does it work?

2. Can I control its input/output?

3. How can I exploit its original purpose?

4. What hardware does the port have access to and can it be sniffed?

Depending on the answer to these questions, evaluation might take a long time. The
better the understanding about the ports and its related hardware, the more likely
a conclusion with high accuracy is. The problem herein is the time consumption of
the evaluation and the nature of the hack that is to be built. A proof of concept is
much more important then a actual functioning hack.

3.1.3 Hypothesising solutions and evaluating threat

The last stage strongly depends on the boards performance for each exploit and
its I/O. The goal is to evaluate the threat and pinpoint exactly how the hack can
be performed and what malicious activity can be done using the exploit. For each
weakness, possible solutions are discussed.

3.2 Common hardware hacks
Most of the common hardware hacks are usually discussed in hacking and CS com-
munities. One such community is the DEF CON convention which focuses on all
kinds of hacking, including hardware hacking. Here the most common hardware
hacks are openly discussed and explained. The presenters of these hacks are usu-
ally security researchers or security engineers, all there to showcase hacks that were
found and how to do them. All hacks shown use almost exclusively open source
tools and open resource software. The presentations usually contain a step by step
explanation as to how the hack is performed and what damage it can do. This
convention was a gold mine for this report so most of the hacks were actually taken
from DEF CON:

• USB fuzzing [23]

20

3. Investigation and testing methodology

• Firmware extraction [24, 25]

• Relay and replay [26]

• Finding UART and getting Shell [7, 24]

• Glitching [23, 27]

The first item called USB fuzzing, is a hack using USB traffic to cause a kernel panic.
The general idea is to use trusted product/vendor IDs from interfaces previously
connected to send junk data. Since the IDs are recognised by the OS, no notification
will be sent to the user and can be connected freely. The IDs are sniffed using a
packet sniffer like the one in section 3.4. This is generally how malicious USB
devices disguises themselves. The device might disguise its intent by opening a
second interface parallel to the devices shown interface. For example, a flash drive
will use an interface of the bulk transfer class. But if the flash drive opens a second
interface of HID class, the device might be able to access shell and write commands.
The device will show up as a normal flash drive inside the OS and unless the user
specifically checks the second interface will remain undetected. This principle is
used to send traffic through to device drivers and hopefully causing them to crash.
This will make the kernel panic which in turn will throw a crash dump. This dump
can then be used to hack the system[23].

Firmware extraction, as the name suggests, aims to access the systems files in order
to analyze them and find weaknesses. This weakness can then be used to gain access
to the system, preferably a shell with root access or something similar. The easiest
way to do this is by connecting to the flash memory using a flash clip (fig 3.1) and a
host computer. This allows the host to communicate with the flash like it was apart
of the same circuitry. All data that exists on the flash is then dumped as a binary
"blob" and can be analyzed. Analyzing binary blobs is a complex science on its own,
but there is multiple open source tools out there that can help. For example, one
such tool is binwalk, this tool searches the binary blob for any recognizable data
and labels it. This data might be an OS image or a bootloader image. There is
also some more advanced tools that are not free but anyone can purchase a license,
assuming someone does not simply pirate a copy. IDA pro is one such tool. IDA is an
advanced disassembler that can break down almost any binary data into assembler
code. The last step is then straightforward, if the flash can be connected to host in
this way then the flash can be written to. Since the layout of all data on the flash
is known, it would be easy to just inject a backdoor.[24, 25].

The relay and replay is in its essence a very basic hack. The example included
[26], is a recording of a nfc transaction and then replaying it in order to spoof as a
different card. This idea is generally the same across any type of device. Even if a
transaction is encrypted it can still be mimicked due to not needing to know what
exactly is being transmitted. The encryption can also be cracked by using known
encrypted phrases. An example of this might be if the incorrect pin is entered to
a payment terminal. The reply from the terminal, even if its encrypted, will most

21

3. Investigation and testing methodology

Figure 3.1: An example of a flash clip used to attach to flash memory

likely be something similar to "denied", "error" or "wrong pin". These keywords
can be searched and matched with the encryption to find the encryption key. This
is assuming all communication is encrypted, if only passwords are encrypted for
example, the encrypted phrase could still be sent in order to gain root privileges
[26].

Finding UART and shell is by far the most common method that is always tried
first. The port is almost always found as four pads on a line. These pads are the
standard communication types, e.g, transmitted data (TxD), received data (RxD),
power supply (VCC) and ground (GND). Depending on the type of device, these
types of debugging ports are sometimes not even password protected [7]. The idea
is quite simple, find the debugging port and connect to shell using any type of serial
client. With full access to the command line any hack is possible. There have
been multiple examples where the command line was simply disconnected inside the
hardware, like fig 3.2.

Figure 3.2: UART disabled by cutting the transmission line [7]

Lastly is the method of glitching the hardware [27]. This is one step that might
also go hand in hand with finding UART or firmware extraction. The general idea
is to glitch the boot up process in order to panic the bootloader. This will force
the bootloader to throw its command line even though the original OS shell was
password protected. This method is also a common way of accessing the bootloader
even though its disabled. The difficulty of this hack is the risk of destroying the
hardware. In order to glitch the booting process, I/O pins of essential hardware is

22

3. Investigation and testing methodology

grounded, shorted or set to high. Essential meaning chips required to boot the chip
e.g, CPU, flash memory or RAM. In the example found in [27], pins between the
flash and CPU was shorted using a small wire. This corrupted the data and the
bootloader could not load the kernel, which in made the bootloader dump its shell.
The following work using the bootloader in section 4.1.2, assumes that something
like this was most likely tried.

3.3 The Debug port
One of the two ports investigated is the debugging port. The port has access to
the OS and bootloader command line. It is commonly used when debugging and is
therefore very hard for the developer to remove even after the product is finished.
As outlined in the investigation methodology the behaviour of the port has to be
observed, but also how the port is connected to the hardware and what protocol it
uses. The debugging port is made as the name suggests for debugging and error
finding. Meaning that the port will have access to both Linux command line and the
bootloader. This is so that the port will work with or without the operating system.
Otherwise it would not be possible to troubleshoot the hardware if the operating
system stopped working.

Figure 3.3: Debug port X66 on development board

3.3.1 The hardware

Finding the debugging port on the schematic is trivial, in both the pdf version and
altium project it is separately labeled. Below are some outtakes of the schematic,
the figures 3.4-3.5 show the most important part of the schematic. View [28] for the

23

3. Investigation and testing methodology

full schematic, in order to get a more comprehensive overview of the system.

Figure 3.4: Zoom on Debug port X66

Figure 3.4 is the schematic from the connector to the USB/UART interface. The
only relevant connection for this project is the DPx and DNx connections. These are
the two data lines going from the USB-C connector into the interface. Most of the
connection from the port is either not connected at all or is terminated with ground.
This is due to the nature of the USB 2.0 protocol. See 2.1 for more information on
the USB hardware and protocol. Using the real chip for reference these two data
lines can be seen running straight up from the port in figure 3.3. The lines are
extremely tiny and can be hard to spot on this picture, but the point is to always
use the real board for reference if possible.

Following the D connections leads to the figure 3.5. This is the chip that is respon-
sible for the USB/UART interface. Continuing to use the real board for reference
in figure 3.3, this interface is the black chip in the middle. For the careful observer,
the letters FTDI can be seen written on it. FTDI is the manufacturer of the chip,
according to the blueprint. There is a huge amounts of connections going in and
out from it. Luckily, most of the connections are not interesting for this port. The
only interesting connections are to the bottom left and bottom right. Also listed
in the table 3.1 for easier reference. The pins starting with "EE" are the pins used
for the LED indicators. This is because the pins are connected to the Electrically
Erasable Programmable Read-Only Memory or EEPROM. What the EEPROM
is and exactly how it functions is not really important, but it is essentially the tiny

24

3. Investigation and testing methodology

memory inside the interface chip. So the things that happen to the memory will
show itself as a signal on the "EE" pins.

Following them will lead to figure 3.6, which clearly states that it is activity indi-
cators. Using the real board for reference again, the real led lights can be located
in order to confirm this is the correct connection. See figure 3.3, the LED lights
are the five white blocks on a line. The top most LED light is the status light, it
indicates if there is anything plugged into the port which is why it is currently on
in the figure. Connected before the diodes is a bit shift register, it will take a serial
input of 8 bits before outputting to its pins. The exact details of how the register
works is not really important, the relevant part is that the register uses the clock
signal from the interface and outputs the data bits to the LEDs. That means that
the input and output to the interface from the debug port is directly displayed on
the LED. By extension that also means that any debug input can be sniffed directly
from the LEDs.

EECS Chip Select signal
EECLK Clock signal
EEDATA DATA signal
DDBUS0 UART transmitted
DDBUS1 UART received

Table 3.1: Connections of interest for the USB/UART interface

Figure 3.5: Zoom on UART chip

25

3. Investigation and testing methodology

Figure 3.6: Zoom on LED indicators

Keeping the sniffing capabilities from the LEDs in mind, it is time to follow the
UART signal after the interface. If the UART signal is in parallel with a socket
there might be multiple places where the signal can be sniffed. In the table 3.1
there is also the "DDBUSx" signals. Also labeled in figure 3.5, with the prefix
"FTDI_UARTD_3.3V". There is two other connections that is not mentioned in
the table. These lead to test pads, used to test the chips functionality. These can
also be seen on the real circuit board as two of the four golden dots to the left of
the chip. Checking the blueprint also confirms that there is indeed two other test
pads connected to the "CDBUS2-3", hence the grouping of four. These pads do not
contain any of the data that is transmitted and is therefore not really of use here
however. Following the data connections Transmit x Data (TxD) and Received
x Data (RxD) will lead to a voltage controller before continuing outside of the
debug blueprint. The controller has multiple different functions but in this case it
us basically used to lower the voltage from 3.3 V down to 1.8 V.

Following the connection even further means the end of this particular blueprint.
Using the tag to find the next blueprint or simply double clicking it if viewed in
Altium, opens the full blue print for the figure 3.7. Figure 3.7 is zoomed in on
only the relevant part, there it shows multiple sockets. According to the blueprint
the debug signal is attached to the socket X16 and in parallel with X15 and X17
before arriving at the "SODIMM" pins, which can also be seen in figure 3.3 as
"UART_3_xx", albeit with some difficulty. The sockets means that it is even easier
to sniff the debug I/O from here. In reality these sockets would most likely not exist,

26

3. Investigation and testing methodology

but the same signal will still always go to the pins named to the left (fig 3.7), i.e
"SODIMM_147-153". These pins are a part of the DDR4 SODIMM socket which
the SoC module uses. Since these pins are always exposed on the DDR4 socket the
signal can also be sniffed here.

Figure 3.7: Zoom on UART socket X16

3.3.2 The software

The ports access to the bootloader command line gave rise to two tests. The goal
of these are to find what type of information can be accessed or changed using the
bootloader command line and also if it would be possible to run small scripts in
order to search for sensitive data.

3.3.2.1 Test 1: Memory dumping

This test was done in order to find the type of data that could be accessed inside the
bootloader command line. Also if it would be possible to change the applications
that were running at the time of the reset. The memory dump was done using
the serial client Putty, python code (APPENDIX C) for parsing and a bat script.
Using the hardware reset included on the SoC and every SoC made by Toradex, the
RAM content can be kept whilst forcing the bootloader shell to appear. Even if the
product uses a password protected shell, the containers that were running before the
reset will still store unencrypted data on the RAM. This content can be dumped
using the "md" command. Which is tested by building a container that stores some
variables and continuously prints them using a while loop (Appendix C).

The issue with finding the container is the raw size of the RAM (2Gb) and what
addresses to start from. This is solved by finding the start address of the RAM,
which can be found by the commonly included command "bdinfo". As can be seen in
fig 3.8, the command states the start address (0x40000000) and size(0x80000000).
Even though the size of the memory is relatively small, dumping 2 Gb over the
115200 baud serial-line would take over two days to dump fully. This is made even
slower due to the format of the memory dump when using "md". The dump will
contain symbols in both hex and ASCII, i.e the memory address, the memory data
as hex and in ASCII the data once again. Effectively making the dump three times
as large for each byte. See figure 3.9 for an example of a RAM dump. According

27

3. Investigation and testing methodology

to the datasheet of the CPU [29], the lower addresses will always be allocated first.
This means that starting the search from the lowest address first, guarantees that
the majority of the memory will not have to be scanned.

Figure 3.8: Uboot shell, running the "bdinfo" command

Figure 3.9: Uboot shell, memory dumping from RAM

In order to store and search this data for the container, two different methods
can be used. The first method is to store the dump directly into a text file and
analyze the file. A script is used to search for variable names, values and the name
of the container (See appendix C) inside the text file. This is done by entering
the dump command with a huge number of objects, closing Putty and running a
MSDOS command to pipe the data into a text file. Due to the baud-rate of the
communication line run time may well surpass eight hours.

For further clarification, the process was as follows:

1. In U-boot shell: md 40000000 ffffffff

2. Close Putty as fast as possible

3. In CMD (Windows): copy COMx myfile.txt

28

3. Investigation and testing methodology

4. Leave overnight

5. Copy file using file explorer

6. Close CMD

7. Analyze using python script

This method is easier to implement, but it is not as fast as the second method. It
also requires a .bat script to save the dumps.

The second method is very similar, but it pipes the data directly into the python
script which scans continuously. This is much faster since each match is immediately
discovered. The code is a bit more complex though since the piping is done using
libUSB. The script found in Appendix C does not store any of the data, it only
reads it and searches for the keywords. If a match is found the address is saved in a
log and a notification is sent using a API. The API makes sure that the notification
can be seen on any device. If the process was killed unexpectedly the latest searched
address is saved and a notification is sent.

3.3.2.2 Test 2: Bootloader scripting

The point of this test is to investigate the scripting capabilities of the bootloader
command line. The command line has a command called "go" which is capable of
executing small binaries. For example if a script could be used to find usernames,
password or credit card numbers this will prove to be a powerful exploit. Below are
the three simple steps outlined.

1. Compile script

2. Load into RAM

3. execute with "go"

Bootloader scripts require very specific dependencies due to the bootloaders low
abstraction layer. The dependencies vary depending on the U-boot version and the
hardware itself. For the Toradex these project files are included on their website.

29

3. Investigation and testing methodology

3.4 The Recovery port

Figure 3.10: Recovery port X34 on development board

The behaviour of the Recovery port is very different from the debugging port. The
port itself is not meant to be interacted with outside of the easy installer software
that Toradex provides. The installer being the software that transfers the U-boot
and OS image. In fact, the port remains completely undetectable by host OS until
the recovery mode is activated. The actual purpose of the port is to enable the
developer to install or re-install the bootloader and operating system. It does so
by only opening when the SoC is set to something called recovery mode. To enter
recovery mode the reset button is pressed (button 2) whilst holding the recovery
button (button 3). The buttons are shown in figure 3.11. Otherwise it remains
hidden as a USB hub. This enables the developer to save the platform even if the
OS system or/and the bootloader files corrupts. Whilst also hiding the port from
malicious parties. If the ports only means of security is hiding behind the USB
protocol then its hacking potential might be immense. It is strongly recommended
to read section 2.1 before continuing, the section will assume that the reader is
already aware of how the USB protocol functions.

3.4.1 The hardware

The behaviour of the recovery port is very different from the debugging port. This
also applies to the hardware and how it is connected to the SoC. Using the blueprints
supplied by Toradex, the first part of the connection between the port and the SoC
can be seen in figure 3.12. Following the data lines DP 1-2 and DN 1-2 will lead to
figure 3.13. According to the figure, the line completely bypasses any connection on
the development board. Instead, it leads straight to the SoC on pins 181 and 183.
This makes the port very hard to sniff, although not impossible. The SoC still uses
the DDR4 socket, which means that the pins on the socket can be sniffed albeit with

30

3. Investigation and testing methodology

Figure 3.11: Buttons on the development board. 1: Power Switch, 2: Recovery
mode access, 3: Harware reset switch

some difficulty. The Blueprint for the SoC is not general knowledge and is therefore
assumed to be a black box. It is not possible to see exactly where the connection
goes after the pins.

Figure 3.12: Recovery port X34 on the schematic

Even if the port cannot be sniffed on its way to the DDR4 socket like the debugging
port. The socket itself is open to sniffing, as well as the port. What is more
interesting is that the recovery mode is included on all SoCs by Toradex. Even if
the buttons used when opening the mode is not included in the finished product,
the DDR4 socket guarantees that it can be opened. If the pins are connected as seen
in figure 3.14, the recovery mode can be activated without the buttons. Since the
DDR4 socket is so exposed, this would be possible no matter the board connected
to the SoC.

31

3. Investigation and testing methodology

Figure 3.13: Data lines from the recovery port to the DDR4 socket of the SoC

Figure 3.14: Recommended schematic to force recovery mode [8]

3.4.2 The software

As mentioned the port will be inactive at first, but a different behaviour can be
observed when using the recovery mode and running the easy installer. At first
glance the port cannot be found, using the windows debugging tool called USBView
this is proven in figure 3.15. Pay special attention to "Port 1" under the second
to last root hub. As can be seen, the system does not detect the port at all. The
problem is that in order to communicate with the device, the port will have to open
or at the very least show itself as a type of device. Enter the recovery mode, this
mode is mentioned in multiple places in the Toradex documentation. The mode
exists for all SoCs provided by Toradex. In order to activate the mode a special
button is included on the development board figure 3.11, see the documentation
in [8] for further information. This button makes it easier to activate but it is not
required, see the hardware subsection. When the recovery mode is accessed the port
changes class into a HID, and can be seen as such using the USBView debugging
tool in figure 3.16.

32

3. Investigation and testing methodology

Figure 3.15: USBView on host, when the device is not in recovery mode

Figure 3.16: USBView on host, when the device is in recovery mode

In order to investigate the process of the port closer, especially how it opens up
for flashing the U-boot and OS, a test was developed. The goal of this test is to
analyse the process when the easy installer attaches itself to the port and transfers
the two images. When this process is understood, it might be possible to hijack the
transaction and gain full control of the port. As mentioned the port will remain
inactive until the recovery mode is activated. This mode opens the recovery port
and displays it as a HID device (more in 4.2). It is recommended to check the

33

3. Investigation and testing methodology

Toradex documentation for how to run the easy installer correctly. The test had the
following steps

1. Connect host PC to the recovery port

2. Activate sniffer

3. Activate recovery mode

4. Run easy installer and record transaction

5. Analyse transaction

6. Hijack process with a tailored USB driver

The easy installer will most likely look slightly different depending on the SoC in use.
However, the process will remain the same and the documentation from Toradex is
excellent. The sniffing is done with Wireshark and development of the USB driver
was done using a C library called libUSB 1.0. See subsection 4.2 for the result and
appendix C for the driver code.

3.5 Summary
As the section 3.1.1 suggests, the investigation begins with background research and
setting up the system. The background research also aims to find simple and com-
monly known hardware exploits. Some of them might work on this platform. Then
the investigation of two separate I/O ports is done. The investigation has multiple
questions that needs to be kept in mind. These summarized, are the functions of
the port, what hardware it is connected to and how this can be exploited. They are
all answered under their respective sections 4.1.2 & 4.2 and discussed under 5.1.1 &
5.1.2.

In summary, there are multiple simple hacks that were found. These were as listed
below:

• USB fuzzing [23]

– Done by opening as many endpoints of as many different classes as pos-
sible

– Can also be a way to disguise endpoints from user

– Goal is to get a crash dump or any type of access

• Firmware extraction [24, 25]

– Extracting the firmware code so it can be analysed and hacked

34

3. Investigation and testing methodology

– Can be done through UART or hijacking the ROM for example.

• Relay and replay [26]

– Record transfer transaction and replay it

– Can pretend to be a different nfc device

• Finding UART and getting Shell [7, 24]

– Many products hides UART inside the hardware so the debug port can
remain active.

– If found, root access is usually one standard password away.

• Glitching [23, 27]

– An attempt to crash the boot sequence

– Usually done by shorting or grounding flash, CPU or RAM pins.

Lastly there are multiple tests that were done, two for the debugging port and
one for the recovery port. The first one was memory dumping the RAM. The test
utilizes the Uboot command line to see if the containers image can be changed by
resetting the device whilst running. This is done by memory dumping large amounts
of data and then memory writing to RAM and proceeding with the boot process.
The second test is essentially port sniffing. This can be done in multiple ways, the
one used here is through Wireshark. The last test is trying to run the malicious
driver developed. The point is to see if the device responds to the data in a similar
fashions as the sniffed data. The script is launched and then the device put into
recovery mode.

35

3. Investigation and testing methodology

36

4
Results

This chapter contains the result of the investigation. It will provide evidence of the
security weaknesses and how these were found.

4.1 The Debug port
As mentioned in the methods subsection 3.3.2, two tests were developed to explore
the vulnerabilities found in the bootloader command line. The result of these two
can be found below.

4.1.1 Test 1: Memory Dumping

To investigate the port, it is necessary to interact with it and observe its behaviour.
The first step is then to plug into the port and observe its behaviour. As mentioned,
the port is called X66 on the development board and utilizes a USB-C connector
(fig.3.3). Since the port uses UART, putty was used to communicate with the device.

The startup text is very informative to the start of this port investigation. At the
top of the text (appendix B), there is two mentions of the U-boot version (excluding
the build info). This is due to the startup process. The system starts with a binary
injection called the SPL which in its turn boots the larger version of U-boot. See
2.2 for further information on this process. The mentioned lines can also be seen
below:

• "U-Boot SPL 2020.04-5.5.0+git.81bc8894031d (Jan 01 1970 - 00:00:00 +0000)"

• "U-Boot 2020.04-5.5.0+git.81bc8894031d (Jan 01 1970 - 00:00:00 +0000)"

The versions are important since they show how up to date the bootloader is. There
is a high number of products that updates its operating system but not its boot-
loader. This is why the OS and bootloader versions both, are very important. In this
case, the system is seemingly quite up to date. There are no known large security
gaps in this version. This can be found by googling around the version or checking
the Toradex errata and U-boot errata, both which are publicly known. Continuing

37

4. Results

down the text, it displays the board version, its serial number and DRAM size.
These can all be easily found on the Toradex website as well. The most interesting
text can be seen in the list below:

• "NOTICE: BL31: v2.2(release):toradex_imx_5.4.70_2.3.0-g835a8f67b2"

• "Hit any key to stop autoboot: 0"

• "Scanning mmc 0:1..."

• "Found U-Boot script /boot.scr"

The first item mentions the image file that is used to launch the bootloader from
memory. The name of the file indicates that it is a tailored version of the bootloader.
There is also a version number in the image files name. The version at this time
is the most recent bootloader supplied by Toradex. The next item mentions the
autoboot function. The autoboot is a timer that starts counting down until the
kernel is opened. During this timer it is possible to abort the booting process and
instead, open the boot shell. This should always be disabled, but in this case it
was not. Autoboot enabled is very promising but not necessary since the shell can
be forced to open, as mentioned in 3.2 and discussed in 6. For now, the next item
"Scanning mmc 0:1...", means that the device is using a MultiMedia Card (MMC)
when booting. The "0:1" says that the card is connected to socket 0 and the partition
scanned on the card is partition 1. The last item on the list confirms that this is
where the U-boot and therefore the operating system is located. This means that
all data from containers and other software will be on this device and partition.

Since booting the system the normal way will throw a login screen if configured
correctly, rest of the investigation focused on the bootloader. When in the boot-
loader shell, there is a help command that will display all available commands. See
appendix A for the full list of available commands in this U-boot version. The
amount of commands in the bootloader tend to vary depending on the product.
Since it is open-source, the majority of commands are implemented in the code but
deactivated by default when compiling. In the Toradex, the commands which had
the most potential were "md", "mw" and "mmc". See table 4.1 for the synopsis and
description of these commands.

md md [.b, .w, .l, .q] address [# of objects] Dump data from RAM adr
mw mw [.b, .w, .l, .q] address value [count] Write data to RAM adr

mmc read mmc read addr blk# cnt Read data from mmc adr
mmc write mmc write addr blk# cnt Write data to mmc adr

Table 4.1: U-boot commands of special interest

The commands are clearly designed to interact with either the RAMmemory or flash
memory. The obvious command of interest is the mmc command. The problem
however, is that the command uses raw memory addressing when reading. This
denotes that in order to access data on the flash, parts would systematically have

38

4. Results

to be moved to RAM and then moved out to the host PC using a serial connection
or tftp. Due to the size of the flash, this would take an incredible amount of time.
Especially if using the serial connection. This is still noted as a possibility, system
files can most likely be accessed this way. Proving this however, would leave no time
for anything else.

The result of the RAM dump search can be seen as examples below. There are
larger amounts of matches in total but these remain the most relevant:

5e4b2040: 00011040 00000000 736a6568 73206e61 @.......hejsan s
5e4b2050: 736a6576 000a6e61 00012fd1 3a434347 vejsan.../..GCC:
5e4b2060: 65442820 6e616962 2e303120 2d312e32 (Debian 10.2.1-
5e4b2070: 31202936 2e322e30 30322031 31303132 6) 10.2.1 202101
5e4b2080: 2c003031 02000000 00000000 00000800 10.,............

Match 1: Match for a char array containing the string "hejsan svejsan". Proving
that container string values can be found inside RAM.

85d9e240: 00000101 00000100 65480001 576f6c6cHelloW
85d9e250: 646c726f 0000632e 05000000 02090001 orld.c..........
85d9e260: 000007b4 00000000 4b090518 01040200K....
85d9e270: 04020022 02005901 022d0104 01010001 "....Y....-.....
85d9e280: 20554e47 20373143 322e3031 3220312e GNU C17 10.2.1 2
85d9e290: 30313230 20303131 696c6d2d 656c7474 0210110 -mlittle
85d9e2a0: 646e652d 206e6169 62616d2d 706c3d69 -endian -mabi=lp
85d9e2b0: 2d203436 662d2067 6e797361 6f726863 64 -g -fasynchro
85d9e2c0: 73756f6e 776e752d 2d646e69 6c626174 nous-unwind-tabl
85d9e2d0: 6d007365 006e6961 726f772f 6170736b es.main./workspa
85d9e2e0: 2f736563 6c6c6548 726f576f 6c00646c ces/HelloWorld.l
85d9e2f0: 20676e6f 69736e75 64656e67 746e6920 ong unsigned int
85d9e300: 736e7500 656e6769 68632064 6c007261 .unsigned char.l
85d9e310: 20676e6f 00746e69 6c6c6548 726f576f ong int.HelloWor
85d9e320: 632e646c 67726100 68730063 2074726f ld.c.argc.short
85d9e330: 69736e75 64656e67 746e6920 69687400 unsigned int.thi
85d9e340: 72747373 6f687300 69207472 6100746e sstr.short int.a
85d9e350: 00766772 00000000 00000000 00000000 rgv.............

Match 2: Left most column is the memory address, the rest is its content and
the ASCII representation of it. Match containing variable names and the file name
"HelloWorld.c". The file name is the main file from which the container was built
from.

85bcf890: 01000001 726f772f 6170736b 2f736563/workspaces/

39

4. Results

85bcf8a0: 7041796d 78652f70 752f0065 612f7273 myApp/exe./usr/a
85bcf8b0: 68637261 6c2d3436 78756e69 756e672d arch64-linux-gnu
85bcf8c0: 636e692f 6564756c 7469622f 65000073 /include/bits..e
85bcf8d0: 632e6578 01007070 6f630000 616e666e xe.cpp....confna
85bcf8e0: 682e656d 00000200 00010500 0a440209 me.h..........D.

Match 3: Match containing mentions of the workspace. The file path mentions the
workspace of the container and the toolchain when processed.

6a9bdbb0: 20746e69 6e696f70 20726574 0a207825 int pointer %x .
6a9bdbc0: 00000000 00000000 6e696f70 3a726574pointer:
6a9bdbd0: 20782520 0000000a 6c6c616d 2520636f %xmalloc %
6a9bdbe0: 00000070 3b031b01 00000040 00000007 p......;@.......

Match 4: This match contains the declaration of some of the variables. Proving
that variable declarations inside container images can be found inside RAM.

These matches will be further discussed in chapter 6, but the results here prove that
contents of a container can be found unencrypted in RAM. These matches gave
rise to another test as well, namely if changing any of the RAM data would impact
the contents of the container. The testing method meant doing the same thing as
before but adding a step at the end. For all matches the script found, the command
"mw" was used to manipulate the content. Variable values were changed, e.g a char
array containing "hello world!" was changed to "abcabcabcabc" or a integers number
were changed from "77777" to "99999". The container always prints its values when
launched, so if the change manifested itself within the container, the new values
would be seen in the portainer console. This change did no impact the container at
all however, why that is will again be discussed in chapter 6.

4.1.2 Test 2: Bootloader scripting

The result of this test was semi-successful, as can be seen in figure 4.1 the binary
has compiled successfully. The binary did not run inside the command line however.
This was due to missing dependencies that were hardware specific. The problem is
therefore in the linking process before compilation.

40

4. Results

Figure 4.1: Disassembled bootloader binary, code can be seen in appendix C

4.2 The Recovery port
In order to obtain more data about the recovery mode and how the easy installer
functions, a USB sniffer was used. See the test in subsection 3.4.2. The result can be
split into two different parts, the first being the communication when the recovery
mode is activated (seen in fig 4.2) and the second when the easy installer takes over.

No communication will happen until the recovery mode is activated. This is so even
though the USB hub it hides as can be seen in the device manager. When the mode
is activated communication starts immediately, as can be seen in figure 4.2. This
handshake is the first part of the communication. The port reveals itself to the
operating system by opening up a HID interface. When opened, the device tells
the operating system that it is a HID with a certain vendor and product ID. This
is most likely where the easy installer comes in and sets up the communication by
using an application layered driver.

Before showcasing the evidence for a second driver, the handshake and set reports
needs to be shown. As can be alluded to in the figure 4.3, the communication line
uses two endpoints. The endpoint number in Wireshark is displayed by the last
digit under the "Destination" label. The second number corresponds to the assigned
address and the first number the bus ID. For example, the first packets destination
is from the host PC to 2.45.0, which means bus 2, address 45 and endpoint 0.
For further clarification see subsection 2.1.1. The line clearly uses two points of
communication, endpoint 0, which is the control endpoint and endpoint 1 which

41

4. Results

Figure 4.2: Sniffed packets using Wireshark, before the easy installer has
attached

is the point going from the device into the host. This is very common when the
host wants to see further acknowledgement not coming from the USB protocol, but
some other software running on the device (it is therefore technically data). This
is where all communication ends until the installer is executed and the new driver
takes over. When the new driver is attached it starts setting up the device. For
any HID this is always done using the SET_REPORT Requests which can be seen
starting at the bottom of the figure 4.3. Due to the nature of the packet format, the
number of endpoints and the purpose of the easy installer, this section is theorized
to be the setup stage that unlocks the Toradex so that the bootloader and OS can
be installed.

The reason for why a second driver is most likely used, can be insinuated from
the nature of the communication. As can be seen in figure 4.3, endpoint 0 is set
to idle twice. This happens first when the device changes endpoint class to HID
with packets 9-10. At that point the installer is not running so it has to be the
OS specified driver that handles the handshake. The moment the installer runs the
second request is sent 17-18. This happened since the new driver does not know what
mode the HID is running. The "IDLE" mode is not contained inside the descriptor
objects, which any driver would have access to in order to find first time information
about the connection. It could therefore not know the mode without setting it itself.
When activating the driver, it searches for the device with the correct vendor and
product ID contained in the descriptor objects. It then attaches itself to the device
and sets it to idle, now sure about the mode of the device. This behaviour is made
even more obvious when activating the easy installer before the device enters its
recovery mode. The easy installer sits and waits for the correct user ID and no

42

4. Results

traffic is observed beforehand.

Figure 4.3: Sniffed packets using Wireshark, after the easy installer has attached

When the settings have been sent to the device using the set report format, the de-
vice start acknowledging changes in the system. This specifically happens through
endpoint 1 which can be seen happening in figure 4.4. Shortly after, the communi-
cation is aborted and renewed as a different device. This can be seen in figure 4.5,
where the handshake happens all over again. This time the descriptors are different
and a different configuration is used, the same can be said for the interface. The
new interface classes itself as a HID once more but instead uses three endpoints,
including the control endpoint 0. This time the new endpoints (1 and 2), are used
for sending commands in the form of interrupts. This is most likely due to the
host needing more bandwidth to send data to the device. Using the set report on
endpoint 0 also works but it limits bandwidth since it will have to be shared with
controller packets. The acknowledgement outside the protocol happens the same as
before through a separate endpoint, numbered 1 in this case. These are acknowl-
edgements are small data packets and are assumed to be some sort of confirmation
from the device software that the host can continue.

There is then a much more intuitive break in communication. This time the device
uses a new interface that again uses three endpoints. This time the endpoints are
defined as bulk transfer points however. The beginning of the packets can be seen in
figure 4.6. This is clearly the point were the actual data transfer of the bootloader

43

4. Results

Figure 4.4: Sniffed packets using Wireshark, endpoint 1 starts interrupting

and OS begins. The bulk class is always used when a long stream of data is to be
transmitted without a special need for guaranteed latency. This is also supported by
some of the ascii data inside the bulk packets. Some of them are obvious commands
such as "UCmd: setenv fastboot_buffer 0x42e00000" or "download: 0000 0bb0".
Right at the beginning of the maximum sized bulk transfers there is also the ascii,
"U-Boot fitImage for Toradex Easy Installer...". These leave little doubt as to the
nature of the data.

44

4. Results

Figure 4.5: Sniffed packets using Wireshark, new handshake and then interrupts

Figure 4.6: Sniffed packets using Wireshark, new handshake and then bulk
transfers

Since the only security found on the recovery port is seemingly hiding behind the
USB protocol, a separate driver was developed. The driver found in appendix C, is a

45

4. Results

proof of concept that the communication sent by the easy installer can be hijacked.
The goal was to send the exact same communication, whilst also sending a hijacked
version of U-boot. The resulting communication succeeded to a point as seen in
figure 4.7.

Figure 4.7: First set of Set_Reports sent by USB driver

The driver is currently able to send all set reports as recorded by the sniffer. The
device acknowledges and receives correctly without issue. The communication has
some slight differences though, e.g., there is no string descriptors requested and
endpoint 1 is not set to idle. These do not really matter since the actual data sent
and received is the same. Sending the rest of the packets using the different USB
classes, is only a matter of coding. The successful communication proves that there
is no encrypted handshake that is blocking a file transfer from a malicious host. Even
if there were, using a dissassembler to inject malicious code inside the bulk transfer
could be done. The only reason this was not fully completed is a lack of time, the
USB library used to develop this communication is extremely work intensive and the
documentation extremely poor. It is however beyond any reasonable doubt, possible.
The last steps would also take too long, they would require a separate compilation
of U-boot and intimate knowledge on how the flashing process works. Compiling U-
boot is extremely complicated and was therefore dropped at first. However, during
the later stages another entryway was found, this one without the driver. This
caused a revisit to the issue of compiling U-boot.

As mentioned, there exists a different possible entryway that does not require a
driver. When opening the easy installers system files and then the recovery folder,

46

4. Results

a file with the name "UUU" can be found. The UUU files were first assumed to be
an executable named strangely to obstruct hijacking the installer. Especially since
Toradex recommends running the installer with a .bat file and the file itself only
containing a command that runs the UUU.exe. The UUU turned out to be a tool
called Universal Update Utility. The tool is the very script that the easy installer
uses to flash e.mmc memory with the OS and bootloader. The system files also
contain the U-boot binary labeled clearly. This opens up many possibilities with
which to hack the system.

The first approach is to compile a separate U-boot and replace the U-boot binary
inside the installer folder. This was immediately tried but not completely finished.
Since this was discovered so late, setting up the toolchain and files needed to compile
took too much time. It is still very much a possible way in, in fact, Toradex offers
a guide on how to replace the current U-boot using the easy installer. In order to
replace the binary the file can be replaced but, there is also multiple steps in order to
prepare the raw binary so it can be flashed using the UUU tool. For example it will
need to be converted into a image file. Using a different compile for the U-boot also
opens up possibilities to compile U-boot scripts either directly into the U-boot code
or loading it as a binary into the U-boot shell. The U-boot repository has examples
exactly for this, for this project a hello world file was compiled and transferred into
to RAM using the bootloader. This proved semi-successful, the program will run
only if the correct assembler command is found inside the binary. It will also not
print the string since it requires the library "stdio.h", found in the toolchain. This
will be discussed more in the conclusion chapter.

4.3 Summary
The two chosen ports also came up with interesting results. Summarized the recovery
port showed the largest potential for hacking due to its easy installer. The test
successfully mimicked the transaction and could potentially inject harmful code
inside the Uboot. It would also be possible to just flash a separately compiled Uboot
that contains more harmful commands inside its command line. The mimicked
transaction would be make the code injection likelier to remain hidden, since it
uses the recommended Toradex version. Compiling Uboot would also work but the
versions signature could be checked and the code removed. The debugging ports
potential lies within the success of a glitching attempt. If the bootloader panics,
access to its command line would be granted. The debugging port would be able to
dump RAM, run malicious code bits and read the content of some applications that
were running on reset.

47

4. Results

48

5
Discussion & Conclusion

This chapter will discuss the results of the investigation and then conclude based
on that. The first section will discuss the exploits found that are general to all
hardware and also the ports of interest. There will also be some theorizing on how
these exploits can be avoided (if possible). Lastly there will be a conclusion of the
overarching questions found in section 1.2.

5.1 Discussion
The security state of the Toradex platform will heavily depend on the separately
designed platform. The easiest exploits found can be mitigated by simply deacti-
vating ports and setting passwords. As mentioned in introduction etc, the board all
tests were performed on was a development board. This board contains all available
I/O for this specific SoC. A finished product will most likely not contain as many
ports as this board. This excludes the two chosen ports however, these are required
in order to setup the system and debug. As for the more advanced threats such as
firmware extracting, glitching and USB fuzzing, there is not much that can be done.
For example, even if the pins to the flash memory is hidden using ball pins, the chip
could still be removed completely and then all information dumped. The glitching
issue is also incredibly hard to solve since the bootloader opens shell for a very good
reason. If the autoboot remained deactivated and only showed an error dump on
boot up failure, repairing the system might be impossible. It would be impossible
to access any system files, memory or bootloader variables. Barring removing flash
or RAM memory completely of course.

49

5. Discussion & Conclusion

5.1.1 Debugging port

Exploit Possible Can be mitigated Solution (if there is one)
Port sniffing Yes No -

Flash bootloader (if glitched) Yes Somewhat Disable port
Memory dumping (if glitched) Yes Somewhat Disable port
Bootloader scripts (if glitched) Yes Somewhat Disable port

Table 5.1: Exploits tested for the debug port

The exploits that were tried are displayed in table 5.1. The table summarizes the
possibilities of attempting to access the port using the exploit and if it can be
stopped. Following the evaluation template in 3.1.2, the following questions are
answered:

1. What is the ports intended purpose and how does it work? The ports
purpose is to access the linux and U-boot command line.

2. Can I control its input/output? The ports uses UART to communicate
and can be communicated with freely using any serial client.

3. How can I exploit its original purpose? The port can be forced to shell if
glitched. This will give access to the bootloader which allows for code injection,
memory dumping etc.

4. What hardware does the port have access to and can it be sniffed?
In essence, the port will have access to everything, assuming shell with root
access or using the bootloader. Everything sent through the port can be sniffed
either directly on the UART socket or on the SoCs DDR4 socket.

As highlighted by the table 5.1 and proven in section 4.2, the port will always be able
to be sniffed. There are even hardware sniffers that can be plugged directly onto the
wire without the host or device knowing. The port uses simple UART so encryption
isn’t really possible. The rest of the exploits assumes that the bootloader shell was
accessed by glitching the CPU, flash or RAM. It is still unclear how effective glitching
would be on this platform. The risk of breaking the platform made it impossible to
try the method. As seen in subsection 4.1.2, flashing the bootloader would be simple
from the bootloader shell, it would just need a new Uboot image easily downloaded
by a USB flashdrive. Memory dumping was done extensively (again in subsection
4.1.2) and can be seen containing information from the container code. Even if
the container image could not be changed, access to parts of the container variable
values and names is quite distressing. Especially if they were credit card numbers or
passwords. Bootloader scripts would be able to do anything within the processing
capabilities of the bootloader environment. It could download all of the user space
as a binary blob for example.

The largest security issue with this port is that even if the port is password protected,

50

5. Discussion & Conclusion

software deactivated and hardware deactivated, some way of activating it again will
most likely be needed. Without the port, no debugging will be possible on system
failure. Therefore the hacker would probably be able to find any activation sequence
on the hardware and then glitch through the command line password. Any security
measure on this port should therefore be seen as a deterrent more then anything.

5.1.2 Recovery port

Exploit Possible Can be mitigated Solution (if there is one)
Port sniffing Yes No -

Flash bootloader Yes Yes Encrypt transaction
Bootloader code injection Yes Yes Software signature

Table 5.2: Exploits tested for recovery the port

When answering the question it became increasingly clear that the port itself is
barely protected at all. As can be seen in table 5.2, all tried exploits would work
and can only be patched by trading functionality. The answers to the questions
from the section 3.1.1 are as follows:

1. What is the ports intended purpose and how does it work? The
ports purpose is to allow the host to recover the device by flashing a new OS
or bootloader. This is done by using the easy installer.

2. Can I control its input/output? As seen in subsection 4.2, communicating
with the hardware by mimicking the communication done by the easy installer
is possible.

3. How can I exploit its original purpose? The communication could be
mimicked down to the very bulk transfer that contains the U-boot and then
simply injected with a backdoor. Only flashing the U-boot would allow the
hacker to keep the data on the flash and then dump it as a bulk transfer.

4. What hardware does the port have access to and can it be sniffed?
The port has access to the CPU, RAM and flash memory. As mentioned in
the section 4.2, sniffing the port can be done using either the DDR4 socket or
Wireshark. Sniffing can essentially not be stopped which means that injecting
malicious binary into the bit stream will always be possible.

Port sniffing will always be possible on this port similar to the debugging port.
There might be room for encrypting the system files transfer however. Since the port
uses a personal driver through the UUU tool, some form of encryption could deter
sniffing. This would require extra hardware though since the tool is downloading
the bootloader straight down to its RAM and the CPU is not yet setup. Flasing
the bootloader or injecting code to a existing booloader will always be possible as
long as the port is activated. There was an attempt to prove this further by flashing
the U-boot with a personalized version. Even if there was no time to finish this

51

5. Discussion & Conclusion

process, the possibility is guaranteed. The binary was compiled and loaded into
RAM. The only issue that could not be fixed in time was removing the header that
the binary has, so that the "go" command could execute directly from the assembler
commands. The issue is within the compilation process and requires some intimate
knowledge on how to cross compile for U-boot. This could obviously be fixed given
enough time and is therefore a very strong way into the system. Disabling the port
is therefore the only option, which would trade away the ability to recover the device
if the bootloader corrupts.

There was an attempt by Toradex to obstruct this by using the easy installer as an
application layered driver and hiding the port as a HID. This is only a very basic
deterrent however. Since by simply using a different driver that can be controlled
by the hacker, this attempt is completely thwarted. There is no verification process
to speak of, neither is there a password.

5.2 Conclusion of investigation
It has become increasingly clear that the forensic toolbox, available to all, has be-
come more and more advanced. There exists USB sniffers, bus pirates and binary
analysis tools, either completely for free or for incredibly cheap prices. The security
of hardware is therefore increasingly impossible to safe-guard. In fact, the only way
to fully guarantee tamper-proof hardware is to secure it on site. That means camera
surveillance, guarding it and locking it up. This theme can be hinted at throughout
the discussion of the ports and general hardware hacks. There is always a way in
as long as the hardware can be accessed and there is enough time. Therefore the
security of hardware is a surveillance issue more then anything.

Referring back to the questions in section 1.2. The most common hardware hacks
are always the most obvious exploits. If the product has a debugging port it will
be targeted first since it has the most obvious access. There is also sniffing, which
would probably be done on-site. Whereas the platform might be protected form
wifi sniffing, simply plugging in a sniffer onto the chip would render it useless. As
mentioned this follows the trend that hardware hacks cannot be mitigated but they
can be deterred.

When investigating the platform it became clear that some CS consideration existed
for the hardware. Whilst for example, the easy installer is a clear security breach
that anyone with some embedded understanding could exploit, the actual SoC uses
hidden conductors and ball point pins. Likely, Toradex faced the issue of obstructing
developers if they were to do more. Therefore any higher consideration for CS would
have to come from the developer and the finished product.

The overall weaknesses found were as seen below:

The first items dealing with the ports are already discussed in their separate sections.

52

5. Discussion & Conclusion

Weaknesses Security risk Exposed data
Debugging port High Coredump (Full exposure if glitching succeeds)
Recovery port High Full exposure
DDR4 socket Medium All I/O
Easy installer High Full exposure

Table 5.3: Security breach severity, low, medium, high

But the DDR4 socket poses a real security issue for the hardware. Since the socket
has exposed pins, any information going from any I/O into the SoC, will be exposed.
Which means that basically any information sent to the platform can be sniffed. It is
unclear what can be done about this, even if the DDR4 socket were to hide its pins,
a secondary socket could still be place in between allowing for sniffing anyways.
It is possible to hide the pins and then solder the SoC onto the card of course,
but the obvious problem would then be that it is attached to the card no matter
what. Replacing the SoC if it were to break would be much harder and the cost
for soldering it would be more expensive. As mentioned, the bootloader problem
assumes that glitching is achieved. Doing so is always a bit risky since the platform
might just break instead. There is not much that can be done here as well sadly.
The easy installer could use some more work though. The installer is essentially
just the UUU tool (see 4.2) with some settings and then a image file and the U-boot
binary. Perhaps it would be better if a compiled executable was created instead. It
could then in turn check the integrity of its own system files before continuing. This
could of course be disassembled and hacked that way, but it would be much more
difficult and therefore a good deterrent. As it stands now, the U-boot binary could
just be overwritten and then installed the normal way.

53

5. Discussion & Conclusion

54

6
Future Work

There are several areas where the project will be able to continue. These are as an
example and in no particular order as seen below:

1. Investigate Glitching vulnerability

2. Investigate all remaining I/O

3. Research if there is an other solution to the man in the middle problem

4. Research if there is a way to detect a malicious USB device

As mentioned in the discussion, the glitching vulnerability was never tested. This
is due to it potentially breaking the platform. These particular types of SoCs share
similar designs, if the vulnerability is true for one it is very possible that all of
them are exposed. For the second item, many of the remaining I/O were never
investigated. There is for example a very similar port to the two researched here
that was never touched, namely the JTAG port. The second to last item is the man
in the middle issue. This particular problem has existed for a while and encryption
is not always possible when dealing with hardware. The last item is a problem that
many hackers exploit daily. The USB protocol is inherently designed to trust the
user, this allows many exploits that allows the hacker to crash the system or gain
access to the computer unbeknownst to the user.

55

6. Future Work

56

Bibliography

[1] S. Shea and I. Wigmore, “What is iot security? - definition from techtar-
get.com,” Mar 2022. [Online]. Available: https://internetofthingsagenda.
techtarget.com/definition/IoT-security-Internet-of-Things-security

[2] C. Peacock, “Usb in a nutshell,” Apr 2018. [Online]. Available: https:
//www.beyondlogic.org/usbnutshell/usb1.shtml

[3] J. Corbet, A. Rubini, and G. Kroah-Hartman, USB Drivers, 3rd ed. O’Reilly,
2005, p. 327–361.

[4] Wikipedia, “Usb,” Mar 2022. [Online]. Available: https://en.wikipedia.org/
wiki/USB

[5] C. Pinkle, “The why and how of differential signaling - technical articles,” Nov
2016. [Online]. Available: https://www.allaboutcircuits.com/technical-articles/
the-why-and-how-of-differential-signaling/

[6] Docker, “What is a container?” Apr 2022. [Online]. Available: https:
//www.docker.com/resources/what-container/

[7] F. Team, Hacker’s Guide to UART Root Shells, 2021. [Online]. Available:
https://www.youtube.com/watch?v=01mw0oTHwxg

[8] Toradex, “Verdin imx8m mini datasheet v1.1,” Jun 2021. [Online]. Available:
https://docs.toradex.com/108681-verdin-imx8m-mini-datasheet-v1.1

[9] M. Burgess, “What is the internet of things? wired ex-
plains,” Feb 2018. [Online]. Available: https://www.wired.co.uk/article/
internet-of-things-what-is-explained-iot

[10] Oracle, “What is the internet of things (iot)?” Mar 2022. [Online]. Available:
https://www.oracle.com/se/internet-of-things/what-is-iot/

[11] Wikipedia, “Computer security,” Mar 2022. [Online]. Available: https:
//en.wikipedia.org/wiki/Computer_security

[12] M. Barr and A. Massa, Programming embedded systems: with C and GNU

57

https://internetofthingsagenda.techtarget.com/definition/IoT-security-Internet-of-Things-security
https://internetofthingsagenda.techtarget.com/definition/IoT-security-Internet-of-Things-security
https://www.beyondlogic.org/usbnutshell/usb1.shtml
https://www.beyondlogic.org/usbnutshell/usb1.shtml
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/USB
https://www.allaboutcircuits.com/technical-articles/the-why-and-how-of-differential-signaling/
https://www.allaboutcircuits.com/technical-articles/the-why-and-how-of-differential-signaling/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.youtube.com/watch?v=01mw0oTHwxg
https://docs.toradex.com/108681-verdin-imx8m-mini-datasheet-v1.1
https://www.wired.co.uk/article/internet-of-things-what-is-explained-iot
https://www.wired.co.uk/article/internet-of-things-what-is-explained-iot
https://www.oracle.com/se/internet-of-things/what-is-iot/
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Computer_security

Bibliography

development tools. " O’Reilly Media, Inc.", 2006.

[13] K. Ranjan, “Cloud-enabled ai demonstration - toradex: Amazon web
services: Nxp,” Oct 2019. [Online]. Available: https://www.toradex.com/
videos/cloud-enabled-ai-demonstration

[14] A. Mhatre, “Industrial applications by gusto controls featuring custom carrier
boards for toradex soms,” May 2019. [Online]. Available: https://www.
toradex.com/videos/gusto-controls-industrial-applications-toradex-modules

[15] M. binti Mohamad Noor and W. H. Hassan, “Current research on internet of
things (iot) security: A survey,” Computer Networks, vol. 148, pp. 283–294,
2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1389128618307035

[16] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A survey
on iot security: Application areas, security threats, and solution architectures,”
IEEE Access, vol. 7, pp. 82 721–82 743, 2019.

[17] S. Sidhu, B. J. Mohd, and T. Hayajneh, “Hardware security in iot
devices with emphasis on hardware trojans,” Journal of Sensor and
Actuator Networks, vol. 8, no. 3, 2019. [Online]. Available: https:
//www.mdpi.com/2224-2708/8/3/42

[18] J. Dofe, J. Frey, and Q. Yu, “Hardware security assurance in emerging iot
applications,” in 2016 IEEE International Symposium on Circuits and Systems
(ISCAS), 2016, pp. 2050–2053.

[19] A. Mosenia and N. K. Jha, “A comprehensive study of security of internet-of-
things,” IEEE Transactions on Emerging Topics in Computing, vol. 5, no. 4,
pp. 586–602, 2017.

[20] D. Both, “An introduction to the linux boot and startup pro-
cesses,” Feb 2017. [Online]. Available: https://opensource.com/article/
17/2/linux-boot-and-startup

[21] A. Holt and C.-Y. Huang, Overview of GNU/Linux. Springer International
Publishing, 2018, p. 11–25.

[22] G. Cloud, 2022. [Online]. Available: https://cloud.google.com/learn/
what-are-containers

[23] M. DuHarte, DEF CON 23 - Hardware Hacking Village - Matt DuHarte
- Introduction to USB and Fuzzing, 2015. [Online]. Available: https:
//www.youtube.com/watch?v=KWOTXypBt4E

[24] ——, DEF CON 24 - Hardware Hacking Village - Matt DuHarte - Basic
Firmware Extraction, 2018. [Online]. Available: https://www.youtube.com/

58

https://www.toradex.com/videos/cloud-enabled-ai-demonstration
https://www.toradex.com/videos/cloud-enabled-ai-demonstration
https://www.toradex.com/videos/gusto-controls-industrial-applications-toradex-modules
https://www.toradex.com/videos/gusto-controls-industrial-applications-toradex-modules
https://www.sciencedirect.com/science/article/pii/S1389128618307035
https://www.sciencedirect.com/science/article/pii/S1389128618307035
https://www.mdpi.com/2224-2708/8/3/42
https://www.mdpi.com/2224-2708/8/3/42
https://opensource.com/article/17/2/linux-boot-and-startup
https://opensource.com/article/17/2/linux-boot-and-startup
https://cloud.google.com/learn/what-are-containers
https://cloud.google.com/learn/what-are-containers
https://www.youtube.com/watch?v=KWOTXypBt4E
https://www.youtube.com/watch?v=KWOTXypBt4E
https://www.youtube.com/watch?v=Kxvpbu9STU4
https://www.youtube.com/watch?v=Kxvpbu9STU4
https://www.youtube.com/watch?v=Kxvpbu9STU4

Bibliography

watch?v=Kxvpbu9STU4

[25] F. Team, How We Hacked a TP-Link Router and Took Home $55,000 in
Pwn2Own, 2021. [Online]. Available: https://www.youtube.com/watch?v=
zjafMP7EgEA

[26] S. Mendoza, NFC Payments The Art of Relay & Replay, 2018. [Online].
Available: https://www.youtube.com/watch?v=MVU3gbPnk0g

[27] T. Rigas, “Iot hacking field notes #1: Intro to glitching at-
tacks,” 2020. [Online]. Available: https://blog.nviso.eu/2020/02/21/
iot-hacking-field-notes-1-intro-to-glitching-attacks/

[28] Toradex, “Verdin development board design data v1.1,” 2022. [On-
line]. Available: https://developer.toradex.com/hardware/verdin-som-family/
carrier-boards/verdin-development-board/#designresources

[29] “Mimx8mm6cvtkzaa product information,” 2022. [Online]. Available: https:
//www.nxp.com/part/MIMX8MM6CVTKZAA#/

59

https://www.youtube.com/watch?v=Kxvpbu9STU4
https://www.youtube.com/watch?v=Kxvpbu9STU4
https://www.youtube.com/watch?v=Kxvpbu9STU4
https://www.youtube.com/watch?v=zjafMP7EgEA
https://www.youtube.com/watch?v=zjafMP7EgEA
https://www.youtube.com/watch?v=MVU3gbPnk0g
https://blog.nviso.eu/2020/02/21/iot-hacking-field-notes-1-intro-to-glitching-attacks/
https://blog.nviso.eu/2020/02/21/iot-hacking-field-notes-1-intro-to-glitching-attacks/
https://developer.toradex.com/hardware/verdin-som-family/carrier-boards/verdin-development-board/#designresources
https://developer.toradex.com/hardware/verdin-som-family/carrier-boards/verdin-development-board/#designresources
https://www.nxp.com/part/MIMX8MM6CVTKZAA#/
https://www.nxp.com/part/MIMX8MM6CVTKZAA#/

Bibliography

60

A
Available U-boot commands

? - alias for ’help’
askenv - get environment variables from stdin
base - print or set address offset
bdinfo - print Board Info structure
blkcache - block cache diagnostics and control
boot - boot default, i.e., run ’bootcmd’
bootaux - Start auxiliary core
bootd - boot default, i.e., run ’bootcmd’
bootefi - Boots an EFI payload from memory
bootelf - Boot from an ELF image in memory
booti - boot Linux kernel ’Image’ format from memory
bootm - boot application image from memory
bootp - boot image via network using BOOTP/TFTP protocol
bootvx - Boot vxWorks from an ELF image
cfgblock - Toradex config block handling commands
clk - CLK sub-system
clocks - display clocks
cmp - memory compare
coninfo - print console devices and information
cp - memory copy
dcache - enable or disable data cache
dhcp - boot image via network using DHCP/TFTP protocol
dm - Driver model low level access
echo - echo args to console
editenv - edit environment variable
env - environment handling commands
exit - exit script
ext2load - load binary file from a Ext2 filesystem
ext2ls - list files in a directory (default /)
ext4load - load binary file from a Ext4 filesystem
ext4ls - list files in a directory (default /)
ext4size - determine a file’s size
ext4write - create a file in the root directory
false - do nothing, unsuccessfully

I

A. Available U-boot commands

fastboot - run as a fastboot usb or udp device
fatinfo - print information about filesystem
fatload - load binary file from a dos filesystem
fatls - list files in a directory (default /)
fatmkdir - create a directory
fatrm - delete a file
fatsize - determine a file’s size
fatwrite - write file into a dos filesystem
fdt - flattened device tree utility commands
fstype - Look up a filesystem type
fuse - Fuse sub-system
go - start application at address ’addr’
gpio - query and control gpio pins
gpt - GUID Partition Table
gzwrite - unzip and write memory to block device
help - print command description/usage
i2c - I2C sub-system
icache - enable or disable instruction cache
iminfo - print header information for application image
imxtract - extract a part of a multi-image
itest - return true/false on integer compare
lcdputs - print string on video framebuffer
ln - Create a symbolic link
load - load binary file from a filesystem
loadb - load binary file over serial line (kermit mode)
loads - load S-Record file over serial line
loadx - load binary file over serial line (xmodem mode)
loady - load binary file over serial line (ymodem mode)
loop - infinite loop on address range
ls - list files in a directory (default /)
lzmadec - lzma uncompress a memory region
md - memory display
mdio - MDIO utility commands
mii - MII utility commands
mm - memory modify (auto-incrementing address) mmc - MMC sub system
mmcinfo - display MMC info
mtest - simple RAM read/write test
mw - memory write (fill)
nfs - boot image via network using NFS protocol
nm - memory modify (constant address)
part - disk partition related commands
ping - send ICMP ECHO_REQUEST to network host
pinmux - show pin-controller muxing
printenv - print environment variables
pxe - commands to get and boot from pxe files
random - fill memory with random pattern

II

A. Available U-boot commands

regulator - uclass operations
reset - Perform RESET of the CPU
run - run commands in an environment variable
save - save file to a filesystem
saveenv - save environment variables to persistent storage
setcurs - set cursor position within screen
setenv - set environment variables
setexpr - set environment variable as the result of eval expression
showvar - print local hushshell variables
size - determine a file’s size
sleep - delay execution for some time
source - run script from memory
sysboot - command to get and boot from syslinux files
test - minimal test like /bin/sh
tftpboot - boot image via network using TFTP protocol
true - do nothing, successfully
ums - Use the UMS [USB Mass Storage]
unzip - unzip a memory region
usb - USB sub-system
usbboot - boot from USB device
version - print monitor, compiler and linker version
videolink - list and select video link

III

A. Available U-boot commands

IV

B
Boot dump

V

B. Boot dump

VI

C
Code used in project

1 // /////////////////////////
2 // Container used f o r t e s t //
3 // /////////////////////////
4 #inc lude <l i b . h>
5 #inc lude <s t d i o . h>
6 #inc lude <mal loc . h>
7 #inc lude <uni s td . h>
8 s t a t i c i n t var = 77777 ; // Value to be pr in ted and i d e n t i f i e d
9 s t a t i c char mystr [] = " gene ra l kenobi \n " ; // St r ing to be pr in ted

10 s t a t i c i n t ∗ ip ; // In t eg e r po in t e r to the value
11

12 i n t main (i n t argc , char const ∗ argv [])
13 {
14 ip = &var ;
15 void ∗p=mal loc (1) ; // Trying to move out s id e o f p roce s s memory

space
16

17 whi le (1) {
18 f o r (i n t i = 50 ; i >0; i −−){ // Pr int address : symbol , p r i n t s the

s t r i n g backwards
19 i n t ∗ address = (i n t ∗)&mystr−i ;
20 p r i n t f ("%x : %x\n" ,&mystr−i , ∗ address) ;
21 }
22 p r i n t f (" s t r i n g : %s \n" , mystr) ; // Pr int address : symbol , p r i n t s

the s t r i n g forwards
23 f o r (i n t i = 0 ; i <50; i++){
24 i n t ∗ address = (i n t ∗)&mystr+i ;
25 p r i n t f ("%x : %x\n" ,&mystr+i , ∗ address) ;
26 }
27

28 p r i n t f (" i n t po in t e r %x \n" , ip) ;
29 p r i n t f (" po in t e r : %x \n" , &mystr) ;
30 p r i n t f (" mal loc %p\n" ,p) ;
31 s l e e p (10) ; // S leep f o r 10 s then pr i n t again
32

33 }
34 }

C.1 Container code

VII

C. Code used in project

1 #inc lude <s t d i o . h>
2 #inc lude " l i bu sb . h "
3 #inc lude <uni s td . h>
4 #inc lude <time . h>
5

6

7 #d e f i n e PRODUCT 0x0134 //Toradex product id
8 #d e f i n e VENDOR 0 x1fc9 //Toradex vendor id
9 #d e f i n e TIMEOUT 10 //Time u n t i l t imeout in seconds

10

11 // HID Class−S p e c i f i c Requests va lue s . See s e c t i o n 7 .2 o f the HID
s p e c i f i c a t i o n s

12 #d e f i n e HID_GET_REPORT 0x01
13 #d e f i n e HID_GET_IDLE 0x02
14 #d e f i n e HID_GET_PROTOCOL 0x03
15 #d e f i n e HID_SET_REPORT 0x09
16 #d e f i n e HID_SET_IDLE 0x0A
17 #d e f i n e HID_SET_PROTOCOL 0x0B
18 #d e f i n e HID_REPORT_TYPE_INPUT 0x01
19 #d e f i n e HID_REPORT_TYPE_OUTPUT 0x02
20 #d e f i n e HID_REPORT_TYPE_FEATURE 0x03
21

22 //
///

23 // ///////////////////////////DEBUG SETTINGS
//

24 #d e f i n e debug 0 // Act ivate debug s e t t i n g s
25

26 #i f debug
27 #d e f i n e USBSKIP 1 // Act ivate or deac t i va t e USB code
28 #d e f i n e mouse 1 // Act ivate mouse t e s t
29 #d e f i n e PRODUCT 0X6011
30 #d e f i n e VENDOR 0x0403
31 #i f mouse //debug mode t e s t with mouse
32 #d e f i n e PRODUCT 0xC534
33 #d e f i n e VENDOR 0x046D
34 #e n d i f
35

36

37 // e tc . .
38 #e n d i f
39 //

//

40 //
//

41

42

43 void de lay (i n t number_of_seconds)
44 {
45 // Converting time in to mi l l i_seconds
46 i n t mi l l i_seconds = 1000 ∗ number_of_seconds ;
47

48 // Stor ing s t a r t time

VIII

C. Code used in project

49 clock_t start_time = c lock () ;
50

51 // loop ing t i l l r equ i r ed time i s not achieved
52 whi le (c l o ck () < start_time + mi l l i_seconds) ;
53 }
54

55 unsigned char char_2byte (char a r r []) { // Converts char array to t h e i r
hex i . e ’ 0 ’ , ’ f ’ to 0 x0f

56 unsigned char outChar ;
57 i f (a r r [0] >= ’ 0 ’ && arr [0] <= ’ 9 ’) {
58 outChar = (ar r [0] − ’ 0 ’) ∗ 16 ;
59 }
60 e l s e {
61 outChar = (ar r [0] − ’ a ’ + 10) ∗ 16 ;
62 }
63 i f (a r r [1] >= ’ 0 ’ && arr [1] <= ’ 9 ’) {
64 outChar += (ar r [1] − ’ 0 ’) ;
65 }
66 e l s e {
67 outChar += (ar r [1] − ’ a ’ + 10) ;
68 }
69 re turn outChar ;
70 }
71

72 i n t port_open (l ibusb_dev ice ∗ dev , l ibusb_device_handle ∗∗ dev_handle) {
//Homebrew func . Re t r i e s a f t e r f a i l e d l ibusb_open

73 i n t count = 0 ;
74 i n t e r r = 0 ;
75 p r i n t f (" Attempting to open port . . . \ n ") ;
76 whi le (1) {
77 p r i n t f (" . \ n ") ;
78 e r r = libusb_open (dev , dev_handle) ; //Attempts to open port
79 i f (e r r == 0) {
80 break ;
81 }
82 i f (count>TIMEOUT) { //5 s without the port opening and i t w i l l

throw e r r o r
83 p r i n t f (libusb_error_name (e r r)) ;
84 re turn 1 ;
85 }
86 count++;
87 delay (1) ;
88 }
89 re turn 0 ;
90

91 }
92

93 s t a t i c i n t ta rge t_f ind (l ibusb_dev ice ∗dev , uint16_t vendor_id , uint16_t
product_id) { //Check f o r dev i ce . Libusb a l r eady had t h i s but i t was

done be f o r e I saw i t .
94 s t r u c t l ibusb_dev i ce_desc r ip to r my_dev ;
95 l ibusb_get_dev ice_descr iptor (dev ,&my_dev) ;
96 i f ((my_dev . idVendor == vendor_id) && (my_dev . idProduct == product_id

)) {
97 re turn 1 ;
98 }

IX

C. Code used in project

99 re turn 0 ;
100 }
101

102 i n t fragment_reader (FILE∗ ptr , unsigned char ∗ data) { //Read data
fragment (S n i f f e d from Wireshark)

103 unsigned char ch [2] = {0} ;
104

105

106 i f (NULL == ptr) {
107 p r i n t f ("USB DATA ERROR: F i l e can ’ t be opened \n") ;
108 re turn 1 ;
109 }
110

111 e l s e {
112 i n t index = 0 ;
113 whi le (! f e o f (ptr)) { //End o f data fragment
114 ch [0] = f g e t c (ptr) ;
115 i f ((ch [0] == ’ \n ’ | | ch [0] == ’ \ r ’)) {
116 break ;
117 }
118

119 e l s e {
120 ch [1] = f g e t c (ptr) ;
121 data [index] = char_2byte (ch) ; // Save one byte per index
122 }
123

124 index++;
125 i f (debug) {
126 p r i n t f ("%c%c " , ch [0] , ch [1]) ;
127 }
128 }
129 i f (debug) {
130 p r i n t f (" \n ") ;
131 f o r (i n t i = 0 ; i<index ; i++){
132 p r i n t f ("%x " , data [i]) ;
133 }
134 p r i n t f (" \n ") ;
135 }
136

137

138 re turn index ;
139 }
140 }
141

142 i n t device_opener (s t r u c t l ibusb_device_handle ∗handle , s t r u c t
l ibusb_dev i ce_desc r ip to r desc , s t r u c t l i bu sb_con f i g_desc r ip to r ∗
con f i g , unsigned char devname [2] [2 5 6] , uint16_t vendor_id , uint16_t

product_id) {
143 l ibusb_dev ice ∗∗ l i s t ;
144 l ibusb_dev ice ∗ found = NULL;
145 whi le (1) { // Finds dev i c e and opens port
146 s s i z e_t cnt = l ibusb_get_dev i ce_l i s t (NULL, &l i s t) ;
147 s s i z e_t i = 0 ;
148 i f (cnt < 0) {
149 p r i n t f ("USB ERROR: Could not f e t c h dev i c e l i s t \n ") ;
150 re turn 1 ;

X

C. Code used in project

151 }
152 f o r (i = 0 ; i < cnt ; i++) {
153 l ibusb_dev ice ∗ dev i c e = l i s t [i] ;
154 i f (ta rge t_f ind (device , vendor_id , product_id)) {
155 found = dev i ce ;
156 break ;
157 }
158 }
159

160 i f (found) {
161 p r i n t f (" Port found ! \ n ") ;
162 i f (l ibusb_get_dev ice_descr iptor (found , &desc)) { p r i n t f ("USB ERROR

: Unable to f e t c h dev i c e d e s c r i p t o r \n ") ; r e turn 1 ;}
163 i f (l ibusb_get_con f ig_desc r ip tor (found ,0 ,& c o n f i g)) { p r i n t f ("USB

ERROR: Unable to f e t c h c o n f i g d e s c r i p t o r \n ") ; r e turn 1 ;}
164 i f (port_open (found , &handle)) { p r i n t f (" \n Timeout ERROR: Could

not open port \n ") ; r e turn −1; }
165 l i bu sb_ge t_s t r ing_desc r ip to r_asc i i (handle , 1 , devname [0] , 2 5 5) ;
166 l i bu sb_ge t_s t r ing_desc r ip to r_asc i i (handle , 2 , devname [1] , 2 5 5) ;
167 p r i n t f (" Device : \"%s \" \"%s \" Opened ! \ n " , devname [0] , devname [1]) ;
168 break ;
169 }
170

171 l i bu sb_f r e e_dev i c e_ l i s t (l i s t , 1) ; // Free dev i ce l i s t so I can
r e f r e s h . Unclear i f t h i s i s needed though .

172 }
173 re turn 0 ;
174 }
175 // Supposed to open the dev i ce with s e l e c t e d ID
176

177 i n t main (void)
178 {
179

180 uint16_t vendor [2] = {0 x1fc9 , 0 x0525 } ;
181 uint16_t product [2] = {0x0134 , 0 xb4a4 } ;
182 #i f d e f USBSKIP
183 i f (USBSKIP) {
184 goto usb_skip ;
185 }
186 #e n d i f
187

188 i n t e r r = 0 ;
189 e r r = l i b u s b _ i n i t (NULL) ; // l i b u s b setup
190 i f (e r r != 0) {
191 p r i n t f ("LIBUSB ERROR: Could not i n i t i a l i z e \n ") ;

192 re turn 1 ;
193 }
194

195 // Def ine l i bu sb types
196 unsigned char devname [2] [2 5 6] = {0} ;
197 unsigned char buf [1 4 0] = {0} ;
198 s t r u c t l ibusb_dev i ce_desc r ip to r desc ;
199 s t r u c t l i bu sb_con f i g_des c r ip to r ∗ c o n f i g ;
200 s t r u c t l ibusb_device_handle ∗ handle ;

XI

C. Code used in project

201 unsigned char data [2 0 4 8] = {0} ;
202

203

204 e r r = device_opener (handle , desc , con f i g , devname , vendor [0] , product [0]) ;
205 i f (l i bu sb_se t_con f i gura t i on (handle , 1)) { p r i n t f ("USB ERROR: Could not

s e t c o n f i g u r a t i o n \n ") ; r e turn 1 ;} // Set c o n f i g 1 f o r device , should
conta in 1 i n t e r f a c e with two endpoints . I th ink .

206 i f (l i busb_c la im_inte r f ace (handle , 0)) { p r i n t f ("USB ERROR: Could not
c la im i n t e r f a c e \n ") ; r e turn 1 ;}

207

208 //
///

209 usb_skip : //// Skips the usb i n t e r f a c e complete ly . ONLY FOR DEBUGGING
!//

210 //
///

211 p r i n t f (" Sending t r a f f i c . . \ n ") ; //Send se t_repor t s
212 FILE∗ ptr ;
213 ptr = fopen ("C: / Users /hampus . mart insson /Min enhet /Exjobb − Master/

Recovery search / data . txt " , " r ") ;
214 i f (NULL == ptr) {
215 p r i n t f ("USB DATA ERROR: F i l e can ’ t be opened \n") ;
216 }
217

218

219 i n t numb_packet = 0 ;
220 whi le (! f e o f (ptr)) {
221 i n t wlen = fragment_reader (ptr , data) ;
222 // e r r = l i bu sb_ in t e r rup t_t ran s f e r (handle , con f i g −>i n t e r f a c e −>

a l t s e t t i n g −>endpoint−>bEndpointAddress , data , wlen ,&wlen ,1000) ;
223 // In t e r rupt t r a n s f e r seems to be i n c o r r e c t
224

225 // Set_Report Packets
226 i f (numb_packet == 0) {
227 e r r = l ibu sb_cont ro l_t ran s f e r (handle , 0 x21 ,HID_SET_IDLE, 0 , 0 ,NULL

, 0 , 0) ;
228 /∗
229 e r r = l ibu sb_cont ro l_t ran s f e r (handle , LIBUSB_ENDPOINT_IN |

//GET DESCRIPTOR HID Report , not needed though
230 LIBUSB_RECIPIENT_INTERFACE,
231 LIBUSB_REQUEST_GET_DESCRIPTOR, (LIBUSB_DT_REPORT << 8) | 0 ,

0 , buf ,
232 s i z e o f (buf) , 1000) ; ∗/
233 e r r = l ibu sb_cont ro l_t ran s f e r (handle , 0 x21 ,HID_SET_REPORT, 0 x201 , 0 ,

data , wlen , 0) ; // S e t t i n g s s t o l e n from wireshark packets sent here
234 // s t a tu s = l ibu sb_cont ro l_t ran s f e r (handle ,LIBUSB_ENDPOINT_IN |

LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE,0 x09 , addr & 0
xFFFF, addr >> 16 , (unsigned char ∗) data , (uint16_t) len , 1000) ;

235 numb_packet++;
236 }
237 e l s e {
238 e r r = l ibu sb_cont ro l_t ran s f e r (handle , 0 x21 ,HID_SET_REPORT, 0 x202 , 0 ,

data , wlen , 0) ; // S e t t i n g s s t o l e n from wireshark packets

XII

C. Code used in project

239 numb_packet++;
240 }
241

242 i f (err <0){
243 p r i n t f (libusb_error_name (e r r)) ;
244 p r i n t f (" \nINTERRUPT TRANSFER ERROR: Could not send packets \n ") ;
245 re turn 1 ;}
246 }
247 l i bu sb_c l o s e (handle) ;
248 f c l o s e (ptr) ;
249

250 e r r = device_opener (handle , desc , con f i g , devname , vendor [1] , product [1])
;

251 l i busb_ex i t (NULL) ;
252 re turn 0 ;
253 }

C.2 Tailored USB Driver

XIII

C. Code used in project

1 from cg i tb import r e s e t
2 import s e r i a l
3 import sys , getopt
4 import os
5 import time
6

7 n o t i c e = " c u r l https : // n o t i f y . run/YIbIqVmnzmKmcR3iNsm1 −d" #Adress to
n o t i f i c a t i o n API , n o t i f y in t h i s case

8 DEBUG = False
9 dump = []

10 START = " 50000000 " ;
11 SIZE = " 0 x f f f f f f f f " ;
12

13

14 de f pat_search (_l i s t , pattern) : #Search f o r pattern in l i s t
15 _str = " "
16

17 f o r va l in _ l i s t :
18 tmp=val . r s t r i p (" \ r \n ")
19 tmp=tmp . s p l i t (" ")
20 _str=_str+ " " . j o i n (tmp [8 :])
21 #Below are s t r i n g s to look f o r
22 i f pattern . lower () in _str . lower () : #Takes input arguments and looks

f o r match
23 pr in t (" Match found ! ")
24 re turn True
25 #Below are used i f more s t r i n g s are searched at once
26 i f " h e l l o world " in _str . lower () :
27 pr in t (" Match found ! ")
28 re turn True
29 i f " h e l l owor ld " in _str . lower () :
30 pr in t (" Match found ! ")
31 re turn True
32 #Add more depending on what to search f o r .
33 e l s e :
34 re turn Fal se
35

36 de f main (argv) :
37 g l o b a l dump
38

39 i f DEBUG == False : #Looking f o r a r e a l match
40 t ry :
41 opts , args = getopt . getopt (argv [1 :] , " h i : s : " , [" input=" , " search

="]) #Black magic , uses input args
42 except getopt . GetoptError :
43 pr in t (’ USB_sniffer . py −i <inputport> −s <search pattern>’)
44 sys . e x i t (2)
45 f o r opt , arg in opts :
46 i f opt == ’−h ’ :
47 pr in t (’ USB_sniffer . py −i <inputport> −s <search pattern>’)
48 sys . e x i t ()
49 e l i f opt in ("−i " , "−−input ") :
50 input = arg
51 e l i f opt in ("−s " , "−−search ") :
52 _search = arg
53 i f a rgs :

XIV

C. Code used in project

54 _search= _search+" "+ " " . j o i n (args)
55 pr in t (" S ta r t i ng search f o r ’ " + _search + " ’ in " + input)
56

57 i f DEBUG == True : #Simple debug too l , checks a normal t ex t f i l e f o r
a known value

58 input = "COM6"
59 _search = " n a s j j s a n "
60

61 ###USB beg ins here###
62

63 s e r i a l P o r t = s e r i a l . S e r i a l (port=input , baudrate =115200 , b y t e s i z e =8,
timeout =2, s t o p b i t s=s e r i a l .STOPBITS_ONE)

64 s e r i a l S t r i n g = " " # Used to hold data coming over UART
65 counter = 0
66 t imeout_start = time . time ()
67 s e r i a l P o r t . r e se t_input_buf f e r ()
68

69 s e r i a l P o r t . wr i t e (("md " + START +" " + SIZE +" \ r ") . encode (’ ut f −8 ’)
) #I n i t i a t e mem dump from START to START+SIZE

70

71 whi le 1 :
72 t ry :
73 t imeout = time . time ()
74 i f timeout−timeout_start >5: #I f input i s i d l e f o r 5 s c l o s e the

program and n o t i f y
75 tmp_str = ’ ’
76 i f pat_search (dump, _search) :
77 l og = open (" s n i f f _ l o g . txt " , " a ") #Append text to f i l e
78 l og . wr i t e (" Match found ! \ n " + ’ ’ . j o i n (dump))
79 l og . c l o s e ()
80 os . system ("cmd /c " + n o t i c e + ’ " Match found ! " ’) #

Not i fy that a match has been found
81 f o r va l in dump :
82 tmp_str=tmp_str + va l
83 l og = open (" s n i f f _ l o g . txt " , " a ") #Append text to f i l e
84 l og . wr i t e (" l a t e s t search : \n ’ "+tmp_str + " ’ ")
85 l og . c l o s e ()
86 s e r i a l P o r t . c l o s e ()
87 sys . e x i t ()
88 # Wait u n t i l the re i s data wai t ing in the s e r i a l b u f f e r
89 i f s e r i a l P o r t . in_wait ing > 0 :
90 t imeout_start = time . time ()
91

92 # Read data out o f the b u f f e r u n t i l a c a r r i a g e re turn /
new l i n e i s found

93 s e r i a l S t r i n g = s e r i a l P o r t . r e a d l i n e ()
94

95 # Print the contents o f the s e r i a l data
96 t ry :
97 _str = s e r i a l S t r i n g . decode (" A s c i i ")
98 i f l en (_str) == 67 :
99 dump . append (_str)

100 counter = counter+1
101 e l s e :
102 l og = open (" s n i f f _ l o g . txt " , " a ") #Append text to f i l e
103 l og . wr i t e (" Buf f e r r e s t : ’ "+_str + " ’\n ")

XV

C. Code used in project

104 l og . c l o s e ()
105 i f counter >2:
106 counter = 0
107 i f pat_search (dump, _search) :
108 l og = open (" s n i f f _ l o g . txt " , " a ") #Append text to

f i l e
109 l og . wr i t e (" Match found ! \ n " + ’ \n ’ . j o i n (dump))
110 l og . c l o s e ()
111 os . system ("cmd /c " + n o t i c e + ’ " Match found ! " ’)

#Not i fy that a match has been found
112 de l dump[0 : −1]
113

114 except :
115 pass
116 except KeyboardInterrupt :
117 tmp_str = ’ ’
118 f o r va l in dump :
119 tmp_str=tmp_str + va l + " \n "
120 l og = open (" s n i f f _ l o g . txt " , " a ") #Append text to f i l e
121 l og . wr i t e (" l a t e s t search : \n ’ "+tmp_str + " ’\n ")
122 l og . c l o s e ()
123 s e r i a l P o r t . c l o s e ()
124

125

126

127

128 i f __name__ == "__main__" :
129

130 t ry :
131 main (sys . argv)
132

133 f i n a l l y :
134 os . system ("cmd /c " + n o t i c e + ’ " S c r i p t shut t ing down" ’)

C.3 Searches for target match in memory dump

XVI

C. Code used in project

1 // Standard standa lone s c r i p t , p r i n t s a simpe h e l l o world //
2

3

4 #inc lude <common . h>
5 #inc lude <export s . h>
6

7

8 /∗
9 ∗ add at l e a s t one v a r i b l e . Without t h i s at l e a s t in some ca s e s the

10 ∗ standa lone a p p l i c a t i o n sometimes f r e e z e s , sometimes i t p r i n t s ’ random
’

11 ∗ s t u f f with p r i n t f . . .
12 ∗ I assume that t h i s f o r c e s al ignment o f some l i n k e r s e c t i o n s .
13 ∗/
14 i n t dummy_var_in_text = 1 ;
15

16 #i f d e f __thumb__
17 /∗
18 ∗ make thumb work by prov id ing a forwarder to the (thumb) entry po int
19 ∗ compiled f o r arm i n s t r u c t i o n s e t . Note that whi l e not needed t h i s
20 ∗ workes f o r arm i n s t r u c t i o n s e t too .
21 ∗/
22 void __attribute__ ((unused)) __attribute__ ((naked)) dummy2 (void)
23 {
24 asm v o l a t i l e (\
25 " . code 32\n " \
26 " . arm\n" \
27 " l d r pc ,= hel lo_world \n ") ;
28 }
29 #e n d i f
30

31

32 i n t he l lo_world (i n t argc , char ∗ const argv [])
33 {
34

35 i n t i ;
36 p r i n t f (" He l lo the re ") ;
37 // Pr int the ABI ve r s i on
38 app_startup (argv) ;
39 p r i n t f (" Example expect s ABI ve r s i on %d\n" , XF_VERSION) ;
40 p r i n t f (" Actual U−Boot ABI ve r s i on %d\n" , (i n t) get_vers ion ()) ;
41

42 p r i n t f (" He l lo World\n ") ;
43

44 p r i n t f (" argc = %d\n" , argc) ;
45

46 f o r (i =0; i<=argc ; ++i) {
47 p r i n t f (" argv [%d] = \"%s \"\n " ,
48 i ,
49 argv [i] ? argv [i] : "<NULL>") ;
50 }
51

52 p r i n t f (" Hit any key to e x i t . . . ") ;
53 whi le (! t s t c ())
54 ;
55 // consume input

XVII

C. Code used in project

56 (void) getc () ;
57

58 p r i n t f (" \n\n") ;
59 re turn (0) ;
60 }

C.4 U-boot script that prints hello world

XVIII

DEPARTMENT OF ELECTRICAL ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Background
	IoT and Cyber Security
	Embedded systems and Toradex

	Motivations
	Related work

	Theory
	USB
	The protocol
	The hardware

	System booting process
	Post BIOS
	BIOS/Das Uboot
	Kernel
	Startup

	Containers
	Summary

	Investigation and testing methodology
	Investigation methodology
	Background research
	Port evaluation
	Hypothesising solutions and evaluating threat

	Common hardware hacks
	The Debug port
	The hardware
	The software
	Test 1: Memory dumping
	Test 2: Bootloader scripting

	The Recovery port
	The hardware
	The software

	Summary

	Results
	The Debug port
	Test 1: Memory Dumping
	Test 2: Bootloader scripting

	The Recovery port
	Summary

	Discussion & Conclusion
	Discussion
	Debugging port
	Recovery port

	Conclusion of investigation

	Future Work
	Bibliography
	Available U-boot commands
	Boot dump
	Code used in project

