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Abstract

A method in the framework of statistical energy analysis (SEA) is developed. The

main purpose of the method is to characterise the sound transmission through

multilayered structures.

The transmission factor of a multilayer is calculated with the transfer matrix

method and spatially windowed to take the finite size of the structure into account.

This transmission factor is used in the SEA model to estimate the coupling loss

factors of two rooms separated by the multilayer.

The transmission factor is compared with available measurement data and it

is concluded that the method gives good agreement for a thin plate. For a cavity

wall, however, the method gives poor agreement with measurement data in the

frequency range from the double wall resonance up to the critical frequency.

The SEA model is compared with existing SEA software. The result is similar

for a thin plate, and it is proposed that this model gives a more detailed descrip-

tion of the power transmission.

Keywords: transfer matrix method, spatial windowing technique, statistical en-
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1 INTRODUCTION

1 Introduction

The main purpose of this thesis is to investigate if the transfer matrix method can

be used to improve modelling of multilayered structures with statistical energy

analysis (SEA). Usually, the non-resonant transmission is described by the simple

mass-law in SEA. With the transfer matrix method, a more detailed description

of the transmission can be implemented to improve the result.

1.1 Structure of the thesis

To fulfil the main purpose of the thesis the transfer matrix method is evaluated

together with the spatially windowing technique. The limitations and assumptions

of the methods are investigated. Based on this, a MATLAB script that performs

calculations of power transmission factor is designed, which is used within the

SEA framework. This is validated and compared with existing SEA software. The

structure of this report are described in the following.

Theory

The basic principles of sound transmission is treated, as well as the trans-

fer matrix method and spatially windowing technique. Some methods of

modelling energy losses is investigated, and the basics of SEA modelling are

reviewed.

The model

Based on the theory, a SEA model that uses the transmission factor calcu-

lated with the transfer matrix method is presented.

Validation

SEA modelling is performed with the software AutoSEA v. 1.5 to validate

and compare the results. Measurement data from references [1, 2] is also

used to validate the result.

1



2 BASIC PRINCIPLES OF SOUND TRANSMISSION

2 Basic principles of sound transmission

In this section, some characteristics of airborne sound transmission is presented

for single and double walls. Impact sound is not considered.

The power transmission factor τ of a surface is defined as the ratio of the

transmitted power Wt and the power incident on the surface Wi.

τ =
Wt

Wi

(1)

The sound reduction index (sometimes called transmission loss) is defined in dB

as

R = 10 log
1

τ
. (2)

With p denoting the pressure and v the particle velocity, the acoustical power is

defined as

W =
1

2
<{p∗v} =

|p|2

2
<{1/Zc}, (3)

where * denotes the complex conjugate, and Zc the characteristic impedance of

the medium, Zc = p/v. The power transmission factor can therefore be written as

τ =

∣∣∣∣ptpi
∣∣∣∣2 (4)

provided that the medium is the same on the input and output side [3]. The

power transmission factor can be seen as the ratio between the amplitude of the

transmitted and incident wave.

Another way to approach the power transmission factor is to consider two

rooms separated by a wall. Assume that the sound field in both rooms are diffuse.

The sound intensity at the wall in the sending room is given by

Wi =
p̃2
S

4ρ0c0

S (5)

where pS denotes the sound pressure in the sending room and S the surface of the

separating wall. The power transmitted through the wall is

Wt =
p̃2
R

4ρ0c0

AR. (6)
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2 BASIC PRINCIPLES OF SOUND TRANSMISSION

where p̃R and AR denotes the pressure and total absorption area of the receiving

room. Combining equation 5 and 6 gives an expression for the transmission factor,

τ =
p̃2
R

p̃2
S

AR
S
. (7)

And the sound reduction index

R = LS − LR + 10 log
S

AR
. (8)

The power transmission factor can therefore also be seen as the difference in sound

pressure level with a correction due to absorption in the receiving room. [4]

2.1 Single wall

The general behaviour of sound transmission through a single panel is given. First,

infinite panels are considered, then what happens when the panel is not of infinite

extent.

2.1.1 Infinite panel

At low frequencies, the wavenumber in air is smaller than the plate wavenumber,

kp > ka, and the wavelength in the plate is smaller than the wavelength in air.

There is no angle at which an incidence wave can fit to the wavelength in the struc-

ture. This means no resonant transmission. The incidence wave will experience

an obstacle with mass per unit area m′′. This mass will be excited with a forced

vibration. This type of transmission is called non-resonant transmission, or mass-

law, and the transmission factor comes from the plate impedance Zp = jωm′′. The

frequency where the wavelength in air is equal to the plate wavelength is called

critical frequency. Above the critical frequency, where kp < ka, there will always

be some angle at which the wavelength in the plate can match the wavelength

in air. Thus, the plate will be excited with free vibrations. In this frequency re-

gion, just above the critical frequency, the transmission is fairly high but as the

frequency goes up generally more and more of the vibrational energy in the plate

are transformed into heat.

3



2 BASIC PRINCIPLES OF SOUND TRANSMISSION

2.1.2 Finite panel

The edges of a finite panel give an increase in radiation efficiency in the frequency

range below the critical frequency. This is illustrated in figure 1. In case (a) the

wavelength in air is larger than the wavelength in the plate in both directions.

If the plate would be infinite, no radiation would occur, the radiated wave field

would consist of an acoustic short-circuit. But because of the finite size of the

plate, the short-circuit is unsuccessful at the corners. Going up in frequency, the

wavelength in one direction of the plate will be larger than the wavelength in air,

leading to case (b). And above the critical frequency effective radiation will occur

in the whole plate, case (c). [5]

470 M. J. CROCKER AND A. J. PRICE 

greater than the speed of sound in air are termed acoustically fast (A.F.). Modes with reson- 
ance frequencies below the critical frequency and thus having bending velocities less than the 
speed of sound are termed acoustically slow (AS.). 

It can be shown theoretically [4, 61 that the A.F. modes have a high radiation efficiency, 
whilst the A.S. modes have a low radiation efficiency. The AS. modes may be further sub- 
divided into two groups. A.S. modes which have bending phase speeds in one edge direction 
greater than the speed of sound and bending phase speeds in the other edge direction less than 
the speed of sound are termed “edge” or “strip” modes. A.S. modes which have bending phase 
speeds in both edge directions less than the speed of sound are termed “corner” or “piston” 
modes. Corner modes have lower radiation efficiencies than edge modes. 

The theoretical results for the radiation efficiency and classification of modes can also be 
given a simple physical explanation. Figure 1 shows a typical modal pattern in a simply- 
supported panel. The dotted lines represent panel nodes. 

(a) (b) (cl 

Figure 1. Wavelength relations and effective radiating areas for corner, edge and surface modes. 
(a) Comer mode; (b) X-edge mode; (c)surface mode. ??, Effective radiating area. 

The modal vibration of a finite panel consists of standing waves. Each standing wave may be 
considered to consist of two pairs of bending waves, the waves of each pair travelling in oppo- 
site directions. Consider a mode which has bending wave phase speeds which are subsonic in 
directions parallel to both of its pairs of edges. In this case the fluid will produce pressure 
waves which will travel faster than the panel bending waves and the acoustic pressures 
created by the quarter wave cells [as shownin Figure l(a)] willbecancelled everywhere except 
at the corners as shown. If a mode has a bending wave phase speed which is subsonic in a direc- 
tion parallel to one pair of edges and supersonic in a direction parallel to the other pair, then 
cancellation can only occur in one edge direction and for the mode shown in Figure l(b), the 
quarter wave cells shown will cancel everywhere except at the x edges. Acoustically fast 
modes have bending waves which are supersonic in directions parallel to both pairs of edges. 
Then the fluid cannot produce pressure waves which will move fast enough to cause anycancel- 
lation and the result is shown in Figure l(c). 

Since A.F. modes radiate from the whole surface area of a panel, they are sometimes known 
as “surface” modes. With surface modes the panel bending wavelength will always match the 
acoustic wavelength traced on to the panel surface by acoustic waves at some particular angle 
of incidence to the panel; consequently, surface modes have high radiation efficiency. This 
phenomenon does not happen for A.S. modes, the acoustic trace wavelength always being 
greater than the bending wavelength; A.S. modes have a low radiation efficiency. 

Figure 1: Wavelength relations and effective radiation area for corner, edge and

surface modes. (a) corner mode; (b) edge mode; (c) surface mode. The dark area in

the plates represents effective radiation. From [5].

But there are also other effects due to the finite size of the panel. The mode

shapes of of the exited panel are of importance as well as the stiffness of the plate.

At very low frequencies, the panel is stiffness controlled, leading to an increase in

reduction index.

A generally accepted approximation of sound reduction index of a wall are [4]

R =

 Rd − 10 log10

[
ln
(

2πf
c0

√
ab
)]

+ 20 log10

[
1−

(
f
fc

)]
+ 5 dB, f < fc

Rd + 10 log10(2η f
fc

) dB, f > fc

(9)
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2 BASIC PRINCIPLES OF SOUND TRANSMISSION

where Rd = 20 log10(m′′f) − 47 dB is the diffuse field mass-law. The mass-law

gives an increase in reduction index of +6 dB/octave. The term containing the

plate dimensions, a and b, takes the finite size of the plate into account. The

term with the ratio of the frequency and critical frequency, fc is close to zero at

low frequencies. But as the frequency approaches the critical frequency, this term

approaches −∞, leading to a very poor reduction index at the critical frequency.

Above the critical frequency the increase in reduction index is +9 dB/octave. The

damping of the plate, η is significant in this frequency region.

The reduction index of a gypsum board with dimensions 3 m × 3 m × 10 mm is

shown in figure 2. It is calculated with formulas given in SS-EN 12354-1 [6], which

is somewhat more complicated than equation 9. Figure 2 clearly shows the slope

of +6dB/octave in the mass law region, and the dip around the critical frequency.

The material characteristics of the gypsum board is given in table 2, in section 8.
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Figure 2: Sound reduction index of a single gypsum panel. Calculated with for-

mulas in SS-EN 12354-1 [6].
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2 BASIC PRINCIPLES OF SOUND TRANSMISSION

2.2 Double wall

Consider a double wall consisting of two single panels with reduction indices R1

and R2 separated by an air cavity, without structural connections. Assume diffuse

field in both rooms separated by the double wall, and also in the separating cavity.

This is only valid for high frequencies, where the wavelength is much shorter than

the depth of the cavity. In this case we can express the reduction indices, using

equation 8 as

R1 = LS − LC + 10 log
S

AC
(10)

R2 = LC − LR + 10 log
S

AR
. (11)

where S denotes the separating surface and L and A the sound pressure level and

total absorption area. The subscripts S, C and R represents the sending room, the

cavity and the receiving room. The sound reduction index of the double wall is

Rdw = LS − LR + 10 log
S

AR
. (12)

Inserting equation 10 and 11 gives

Rdw = R1 +R2 + 10 log
AC
S
. (13)

This expression is valid for frequencies above fd ≈ 55/d. For a cavity depth of

d = 50 mm this frequency is fd = 1100 Hz. In this frequency range the reduction

index of the double wall is dependent on the reduction indices of both single walls

as well as the cavity damping.

For lower frequencies the double wall can be seen as a mass-spring system, the

two leafs acts as masses coupled by the air cavity which acts as a spring. This

system has a resonance at

f0 =
c0

2π

√
ρ0(m′′1 +m′′2)

m′′1m
′′
2d

. (14)

For a cavity filled with porous material the resonance frequency will be slightly

different. [4] At this frequency, called the double wall resonance, there is a dip in

reduction index. Below this frequency the two plates vibrate in phase with forced

6



2 BASIC PRINCIPLES OF SOUND TRANSMISSION

vibrations, the two plates acts as a single plate, having a mass equal to the sum

of the masses of the plates.

Sharp (1978) presented the following empirical model for predicting the reduc-

tion index of double walls without structural connections, having the cavity filled

with a porous absorber,

R =


RM , f < f0

R1 +R2 + 20 log10(fd)− 29 dB, f0 < f < fd

R1 +R2 + 6 dB, f > fd

(15)

Here, RM is the reduction index of a panel with mass M = m′′1 + m′′2, R1 the

reduction index of the first panel and R2 the reduction index of the second panel. [4]
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Figure 3: Sound reduction index of a double gypsum panel. Calculated with

formulas in SS-EN 12354-1 [6] and the empirical model by Sharp, equation 15.

In figure 3, the reduction index of a double gypsum wall consisting of two

identical gypsum boards with dimensions 3 m × 3 m × 10 mm is shown. The

panels are separated by an air gap of 100 mm, and the material characteristics of

the gypsum boards are given in table 2, in section 8.
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2 BASIC PRINCIPLES OF SOUND TRANSMISSION

The critical frequency of the boards and the double wall resonance of the system

is indicated by a dip in reduction index, in figure 3. Below, the double wall

resonance, the slope of the reduction index is about +6 dB/octave, and at about

500 Hz, there is a change in slope. This is due to the frequency fd, which is

fd ≈ 550 Hz for this double wall.

2.3 Diffuse field

The final expressions for reduction index of a single and double wall (equation

9 and equation 15) where determined empirically. The expressions are not for a

certain incidence angle, but for the sum of all the incidence angles present. A

diffuse field is often assumed in calculations. This means that the sound energy

density is equal everywhere in the room, and the probability of sound coming from

a certain angle is equal for all angles. In the next chapters, an incidence angle

dependence is introduced for calculations of the transmission factor, i.e τ = τ(θ).

To calculate the transmission loss for diffuse field excitation, the contribution from

all angle is summed in an integral

τd =

∫ θlim
0

τ(θ) cos θ sin θ dθ∫ θlim
0

cos θ sin θ dθ
, (16)

where θlim = 90◦. However, sometimes θlim is reduced to about 80◦ to get better

agreement with measurements. [1]

8



3 TRANSFER MATRIX METHOD

3 Transfer matrix method

Figure 4 illustrates a plane wave impinging upon a material with thickness d, at an

incidence angle θ. The material is infinite in x1- and x2-direction. The incoming

wave give rise to a wave field in the finite medium, where the x1-component of

the wave number is equal to the x1-component of the wave number in air, ka sin θ,

where ka is the wave number in free air. Sound propagation in the layer is repre-

sented by a transfer matrix [T ] such that

V(M) = [T ]V(M ′), (17)

where M and M ′ are the points in figure 4 and the components of the vector

V(M) are the variables that describe the acoustic field at point M . Adopting

air finite medium air

M M'

x1

x3

d

θ

Figure 4: Plane wave impinging on a layer of thickness d, at incidence angle θ.

pressure p and particle velocity v as state variables, the relationship between the

state variables each side of the layer can be written as p(M)

v3(M)

 =

T11 T12

T21 T22

 p(M ′)

v3(M ′)

 . (18)

Note that the x3-component of the particle velocity is the state variable, i.e. the

velocity normal to the layer surface. For isotropic and homogenous layer the

following relations hold [7],

T11 = T22 (19)

T11T22 − T21T12 = 1. (20)

9



3 TRANSFER MATRIX METHOD

The latter of these two equations could also be stated as det(T ) = 1. Since it is

not zero, this indicates that the transfer matrix is invertible. For a multilayered

structure, the relationship between the state variables on the input and output

side are obtained by multiplication of the transfer matrix of each layer. [3, 4, 8]

3.1 Thin elastic panel

Consider a thin elastic panel, e.g. a wall or plate with sound wave incident at an

angle θ. The impedance of the panel, Zp is defined as the ratio between the pressure

difference across the panel and the velocity of the panel, Zp = (p1 − p2)/vp. By

assuming that the normal velocity is equal on both sides of the layer v1 = v2 = vp,

the transfer matrix is written asp1

v1

 =

1 Zp

0 1

p2

v2

 . (21)

An expression for the impedance of the panel is given in [4] as

Zp =
B

jω
(k4
a sin4 θ − k4

p), (22)

where B denotes the bending stiffness of the panel, ka the wave number in air,

kp the wave number for bending waves in the panel, and θ the angle of incidence.

Looking at equation 22 it is obvious that for ka > kp there exists an incidence

angle θ where Zp is equal to zero, making the panel velocity infinitely large. By

introducing some energy losses in terms of a complex bending stiffness B(1 + jη)

and also rewriting equation 22 in terms of the critical frequency fc the impedance

is given as

Zp = jωm

[
1− (1 + jη) sin4 θ

(
f

fc

)2
]
, (23)

where m denotes mass per unit area of the panel. Equation 23 clearly shows the

mass-law behaviour at low frequencies, well below the critical frequency. It is also

shown that for normal incidence, θ = π/2 the second term vanishes and only the

mass impedance remains.

10



3 TRANSFER MATRIX METHOD

3.2 Fluid layer

For a sound wave with incidence angle θ into a fluid layer of thickness d, with wave

number k and characteristic impedance Zc, the pressure and velocity in x-direction

is written as

p(x) = Ae−jk cos θx +Bejk cos θx (24)

vx(x) =
cos θ

Zc

(
Ae−jk cos θx −Bejk cos θx

)
, (25)

where A and B are amplitudes determined by boundary conditions. On the left

boundary of the fluid layer, where x = 0 the pressure and velocity are

p1 = p(0) = A+B (26)

v1 = vx(0) =
cos θ

Zc
(A−B) . (27)

Correspondingly, on the right-hand side, where x = d the pressure and velocity

are

p2 = p(d) = (A+B) cos(kd cos θ)− j(A−B) sin(kd cos θ) (28)

v2 = vx(d) =
cos θ

Zc
((A−B) cos(kd cos θ)− j(A+B) sin(kd cos θ)) . (29)

Insertion of equation 26 into equation 28 and equation 27 into equation 29 yields

p2 = cos(kd cos θ)p1 − j
Zc sin(kd cos θ)

cos θ
v1 (30)

v2 = cos(kd cos θ)v1 − j
cos θ sin(kd cos θ)

Zc
p1. (31)

Putting equation 30 and equation 31 in matrix form and inverting gives the transfer

matrix as p1

v1

 =

 cos(kd cos θ) j
Zc sin(kd cos θ)

cos θ

j
sin(kd cos θ)

Zc
cos θ cos(kd cos θ)


p2

v2

 . (32)

In order to be consistent with other literature the wave number is substituted by

the propagation coefficient Γ = jk [4],

11



3 TRANSFER MATRIX METHOD

p1

v1

 =

 cosh(Γd cos θ)
Zc sinh(Γd cos θ)

cos θ
sinh(Γd cos θ)

Zc
cos θ cosh(Γd cos θ)


p2

v2

 . (33)

As for the thin elastic panel, where energy losses were included as an complex

bending stiffness, losses can be included in terms of a power attenuation coefficient,

γ. This yields a complex propagation coefficient as Γ = γ/2+jk, which is discussed

in more detail in section 5.

3.3 Porous layer

A porous material is seen as a frame permeated by a network of pores filled with a

fluid. For an elastic frame a model that takes motion of the frame and its coupling

to the surrounding media into account is needed. Such a model is provided by

the Biot theory. To model the acoustical field in a poroelastic layer, six variables

instead of two are needed to describe the acoustical field in a fluid. This includes

two velocity components of the frame, one velocity component of the fluid, two

components of the stress tensor of the frame, and one in the fluid. [8]

If the frame of the porous layer can be seen as motionless, without displacement

and deformation, a more simple model for the porous layer can be used. This

situation occurs under acoustic excitations when the frame is heavy, constrained

and rigid. It can also occur for an elastic frame when the solid-fluid coupling is

negligible [9]. The porous layer is then modelled as an equivalent fluid, leading to a

transfer matrix similar to the transfer matrix of a fluid layer. The losses are taken

into account by a flow resistivity, r, from which a complex propagation coefficient

and a complex characteristic impedance are calculated. [4] This is discussed further

in section 5.

3.4 Interface to or from porous layer

As mentioned above, a porous layer is seen as a frame filled with the surrounding

fluid. If this is air, the porosity σ is defined as the ratio of air volume to the total

volume of the porous material, σ = Va/Vtot. At the interface of a porous layer

with porosity σ the pressure and volume flow is continuous. If the pressure and

12



3 TRANSFER MATRIX METHOD

the velocity at the air side, x = 0− are denoted p1 and v1, and at the porous side,

x = 0+ are denoted p2 and v2, the continuity can be stated as

p1 = p2 (34)

v1S = v2σS, (35)

where S denotes the cross section area of the interface. Writing this in matrix form

yields the transfer matrix of the interface into a porous layer.

Tto poro =

1 0

0 σ

 . (36)

The transfer matrix of the opposite case, from a porous layer is the inverse,

Tfrom poro = Tto poro
−1. Values of porosity typically lies very close to 1 [8].

3.5 The total transfer matrix

As a summary, the transfer matrices of different elements are given. The transfer

matrix of a panel is taken from equation 21,

Tpanel =

1 Zp

0 1

 . (37)

Similarly, the transfer matrix of a fluid layer is take from equation 33,

Tfluid =

 cosh(Γd cos θ)
Zc sinh(Γd cos θ)

cos θ
sinh(Γd cos θ)

Zc
cos θ cosh(Γd cos θ)

 . (38)

The transfer matrix of a porous layer with porosity σ is obtained as Tporous =

Tto poro · Tfluid · Tfrom poro, where Tfluid is the matrix in equation 38. This gives

the transfer matrix as

Tporous =

 cosh(Γd cos θ)
Zc sinh(Γd cos θ)

σ cos θ
sinh(Γd cos θ)

Zc
σ cos θ cosh(Γd cos θ)

 . (39)

13



3 TRANSFER MATRIX METHOD

For example, the transfer matrix of a double wall consisting of two panels

with an air gap in between is obtained by multiplying the transfer matrix of each

element.

Tdw = Tpanel,1 ·Tfluid ·Tpanel,2 (40)

3.6 Transmission factor from transfer matrix

The transmission factor of a structure is defined as the ratio of the transmitted

power and the incident power. Sound power can be written as W = 1
2
<{p∗v}.

With Zc = p/v the power is written as

W =
1

2
<
{
p∗p

Zc

}
=
|p|2

2
<{1/Zc}. (41)

Insertion of equation 41 in the definition of transmission factor yields

τ =
|pt|2

|pi|2
<{1/Zc,2}
<{1/Zc,1}

, (42)

where Zc,1 represents the characteristic impedance on the input side and Zc,2 the

characteristic impedance on the output side. This is illustrated in figure 5, where

T denotes the transfer matrix of the structure considered,p1

v1

 =

T11 T12

T21 T22

p2

v2

 . (43)

pi

pr
ptT

Input side, Zc,1 Output side, Zc,2

Anechoic termination

Figure 5: A system with transfer matrix T, with pressure field pi+pr on the input

side, and pt on the output side.

The pressure and velocity on the input side is written as

p1 = pi + pr (44)

v1 = (pi − pr)/Zc,1 (45)

14



3 TRANSFER MATRIX METHOD

and the pressure and velocity on the output side is written as

p2 = pt (46)

v2 = pt/Zc,2. (47)

Combining equation 44 and 45 gives

pi =
p1 + v1Zc,1

2
. (48)

Insertion of equation 43 yields

pi =
T11p2 + T12v2 + Zc,1(T21p2 + T22v2)

2
. (49)

With expressions for pressure and velocity on the output side equation 49 becomes

pi =
1

2

[
T11pt +

T12pt
Zc,2

+ Zc,1T21pt +
Zc,1T22pt
Zc,2

]
. (50)

Now we can express the ratio of the transmitted and incident pressure wave, which

gives an expression for the transmission factor as

τ =
<{1/Zc,2}
<{1/Zc,1}

4

∣∣∣∣T11 +
T12

Zc,2
+ Zc,1T21 +

Zc,1T22

Zc,2

∣∣∣∣−2

. (51)

If the surrounding medium is the same on both the input and output side of the

structure, the expression for transmission factor simplifies to

τ = 4

∣∣∣∣T11 +
T12

Zc
+ Zc,1T21 + T22

∣∣∣∣−2

. (52)

For an oblique incident wave, the transmission factor is instead written as [10]

τ = 4

∣∣∣∣T11 +
T12

Zc
cos θ +

Zc,1T21

cos θ
+ T22

∣∣∣∣−2

. (53)
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4 SPATIAL WINDOWING TECHNIQUE

4 Spatial windowing technique

By means of transfer matrices it is possible to predict the transmission factor of

a multilayered structure. This is however a prediction for a structure of infinite

size. To take the finite size of the structure into account the spatial windowing

technique, presented by Villot et al. [1] can be used.

4.1 Principle of the method

The method consists of spatial windowing of the pressure field on the input side

of the structure, calculation of the resulting velocity field of the infinite structure

and spatial windowing of the velocity field before calculating the radiated field on

the output side of the structure.

Figure 1. (a) Acoustically excited in"nite plate and (b) associated incident pressure wavenumber spectrum.

In this section, a qualitative explanation of the spatial windowing technique is given in
the wavenumber domain for a one-dimensional structure in order to better understand the
derivation of section 2.2.

2.1.1. Acoustical excitation

Figure 1(a) shows an in"nite plate acoustically excited by an oblique (angle !) incident
plane wave of amplitude A. In the wavenumber domain and at a given frequency ", the
excitation pressure "eld is then represented by a delta Dirac function as depicted in
Figure 1(b). A single wavenumber k

!
"k

"
sin ! is represented in the excitation spectrum

and a single wave with the particular wavenumber k
#
"k

"
sin ! will propagate in the in"nite

structure. Note that k
"

represents the wavenumber in the surrounding #uid (air) and
k
#

the structural wavenumber propagating in the structure (also denoted as trace
wavenumber [1]).

In the case of a "nite size system, it can be considered that the incident pressure wave goes
through a diaphragm (of length a) before impinging on the in"nite structure as shown in
Figure 2(a). In that case, the incident pressure "eld wavenumber spectrum, as seen in
Figure 2(b), is spread over the entire wavenumber domain. It should be noticed that even if
the excitation frequency is smaller than the plate critical frequency (i.e., the free #exural
wavenumber k

$
is greater than the acoustical wavenumber k

"
), the windowed pressure "eld

will not only generate a forced travelling wave (k
!

close to k
#
"k

"
sin !) but also a free

travelling #exural wave (k
!

close to k
$
) since there is excitation energy around k

$
.

2.1.2. Structural excitation

A structural excitation distributed over the small length l of the structure, as shown in
Figure 3(a) is now considered. This type of mechanical load can be decomposed into an
in"nite number of travelling normal stress waves as shown in Figure 3(b). In this case, no
windowing is required at the excitation stage.

2.1.3. Radiation

Figure 4(a) shows a given #exural plane wave (wavenumber k
#
) travelling along an

in"nite structure in the spatial domain (real space). The velocity wavenumber spectrum
includes, in that case, a single component at k

!
"k

#
as presented in Figure 4(b). Only

wavenumbers smaller than the wavenumber in the surrounding #uid k
"

(k
!
(k

"
), i.e.,
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Figure 6: (a) Acoustically excited infinite plate and (b) associated incident pressure

wavenumber spectrum. From [1].

Figure 6 shows an infinite plate, acoustically excited by a pressure wave with

incidence angle θ, amplitude Â and wavenumber ka. The associated incident pres-

sure wavenumber spectrum is also depicted, which is represented by the Dirac delta

function at kx = ka sin(θ). A single wavenumber kp = ka sin(θ) will propagate in

the structure. For low frequencies, below the critical frequency, the wavenumber

in air is smaller than the plate wavenumber. This indicates that the plate cannot

be excited, except for a forced wave, since there is no possibility to match the

wavenumber in air with the plate wavenumber.

Applying a spatial window can be seen as if the incident pressure wave passes

through a diaphragm before affecting the infinite structure as shown in figure

16



4 SPATIAL WINDOWING TECHNIQUE

Figure 2. (a) Spatial windowing of acoustic incident "eld exciting an in"nite plate and (b) associated incident
pressure wavenumber spectrum.

Figure 3. (a) Structural excitation on an in"nite plate and (b) associated stress wavenumber spectrum.

Figure 4. (a) Structural wave propagating in an in"nite structure and (b) associated velocity wavenumber
spectrum.

corresponding to a supersonic wave, participate in sound radiation; therefore, in the case
presented in Figure 4(b), sound radiation will occur (since k

!
(k

"
). On the other hand, if

k
!
'k

"
, no sound will be radiated in the far-"eld.

Considering only the length of the structure that contributes to the sound radiation
(see Figure 5(a)), leads to the velocity wavenumber spectrum shown in Figure 5(b). The
energy is once again spread over the whole wavenumber domain. In this case, if the

436 M. VILLOT E¹ A¸.

Figure 7: (a) Spatial windowing of acoustic incident field exciting an infinite plate

and (b) associated incident pressure wavenumber spectrum. From [1].

7. The wavenumber spectrum will now be distributed over the entire wavenumber

domain. This means that the plate can be excited even below the critical frequency

with free waves. Similarly, a spatial window is applied on the radiated sound field.

The transmission factor for the finite structure is obtained by applying a spatial

window as

τ =
σ

σinf
τinf , (54)

where σinf = 1/ cos(θ) and σ the radiation efficiency associated with spatial win-

dowing of the finite sized structure. If this i done twice it will result in

τ(f,θ) = τinf (f,θ)[σ(f,θ) cos(θ)]2. (55)

4.2 Radiation efficiency

Villot et al. [1] gives an expression for the radiation efficiency as a double integral

dependent of wavenumber in air, incidence angle and wave propagation angle in the

plate. Since the influence of wave propagation angle is slight, a spatially averaged

radiation efficiency over the plate is also given. This means no dependence of

propagation angle in the plate, but instead a triple integral, which leads to very

heavy calculations. A triple integral to be numerically evaluated for each frequency

and each angle.

Vigran [2] gives a simplified version of the spatial window technique. Instead

of plate dimensions a and b he uses one dimension L =
√
ab, this gives a much

simpler expression for radiation efficiency as

17



4 SPATIAL WINDOWING TECHNIQUE

σ(kp) =
Lka
2π

∫ ka

0

sin2
[
(kr − kp)L2

][
(kr − kp)L2

]2√
k2
a − k2

r

dkr. (56)

As before, ka denotes the wavenumber in air and kp the plate wavenumber. This

simplification can be made when the aspect ratio of the object is less than 1:2.
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Figure 8: The radiation efficiency σ(kp) of a 15 mm gypsum board calculated with

equation 56. The dashed line indicates the critical frequency, fc = 2.26 kHz.

The radiation efficiency is calculated with insertion of the plate wavenumber

for bending waves

kp =

(
ω2m′′12(1− ν2)

Et3

)1/4

(57)

in equation 56, were m′′ is the mass per unit area of the plate, E Young’s modulus

and ν Poisson’s ratio of the material. Figure 8 shows the radiation efficiency of a

1.4 m × 1.1 m × 15 mm gypsum board without internal damping, see table 2 in

section 8 for material data. Above the critical frequency, the radiation efficiency

behaves as the case of an infinite plate, with radiation efficiency approaching 1,
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4 SPATIAL WINDOWING TECHNIQUE

or 0 dB. Below the critical frequency however, the radiation efficiency is not zero.

This is an effect from the finite size of the plate.
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Figure 9: The radiation efficiency σ(ka sin(θ)) calculated with equation 56. The

black line represents the infinite case, σ(ka sin(θ)) = 1/ cos(θ). The coloured lines

from lowest to highest represents a spatial window of kaL = 2, kaL = 4, kaL =

8, kaL = 16, kaL = 32, kaL = 64, kaL = 128, kaL = 256.

The diffuse field radiation efficiency σ(kp = ka sin(θ)) is also calculated, which

is not dependent of the material of the structure, but only the dimensions of the

plate. Figure 9 shows the diffuse field radiation efficiency, for different values of

kaL. Small values of kaL, indicates small dimensions, at least in comparison with

the wavelength. For larger values of kaL the radiation efficiency approaches the

infinite case.

There is a dip of about 3 dB at small angles for all kaL. This is probably due

to the simplification of the formula for radiation efficiency, but Vigran states that

the accuracy in the end result may in practice be maintained by this simplified

procedure [2].

By looking at figure 9 it is seen that applying a spatial window with radiation
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4 SPATIAL WINDOWING TECHNIQUE

efficiency as in figure 9 diminishes the contribution from angles close to grazing

incidence to the diffuse field transmission factor. A similar effect is obtained by

reducing the incident field diffuseness, which is a frequently used trick to obtain

better agreement with measurement data, i.e. choose an upper limit θlim < 90◦ in

the integral in equation 96.

4.3 Variations of the spatial windowing technique

There are several different versions of the spatial windowing technique. Villot et

al. [1] states that the spatial window should be applied twice, whereas Vigran [2],

who presents a simplified version of the spatial windowing technique, states that

better agreement with measured result is obtained with a single spatial window.

A similar approach is the finite transfer matrix method. And as mentioned in the

previous section, the same type of result is obtained by reducing the diffusiveness

of the incidence sound field.

4.3.1 Finite transfer matrix method

Allard and Atalla [8] give an extension to the transfer matrix method, called finite

transfer matrix method (FTMM), which takes the finite size of the structure into

account, similar to the spatial windowing technique. The radiation efficiency is cal-

culated differently, but gives similar results as the spatial windowing technique [8].

In the FTMM a single correction is used, i.e. a single spatial window. Allard and

Atalla states that using a double spatial window in the calculations of the trans-

mission factor is in contradiction to the definition of the transmission coefficient.

They recommend that the correction should be applied to the transmitted power

only. But they also state that a correction may still be necessary to account for

the diffusiveness of the incident field.

4.3.2 Reducing diffusiveness

As stated above, the diffusiveness of the incident sound field is often reduced

from 90◦ to about 80◦ in order to get a better agreement with measurement data.

However, this has also a physical explanation. Figure 10 shows the angles of

incidence of all the modes in a 1/3 octave band as a function of incidence angle.
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4 SPATIAL WINDOWING TECHNIQUE

THE TRANSMISSION LOSS OF DOUBLE PANELS 325 

~(f?, W) is then integrated over a range of angles to give the mean transmission coefficient 
(see Appendix for a list of symbols used), 

Is’( ) ‘7 0,~ cosBsinBd0 

p(-) = +P~~~ ~~ . (I) 

J 
*cosOsinedB 

0 
8, is called the limiting angle above which it is assumed no sound is received, and varies 
between 70’ and 8~~. The easiest way to show that this treatment is reasonable is to plot 
the angles of incidence of all the modes in a one-third octave band (see Figure I). The 
figure shows that the number of modes in a small band increases gradually as angle 
increases and then falls sharply, there being no sound incident above about 84”. In a 
room containing absorption the higher-order modes with high angles of incidence are 
more heavily damped and are of lower intensity than the lower modes ; the value of O1 
decreases with the reverberation time. Equation (I) is thus seen to be approximately 
correct. The random incidence transmission loss of a panel is then found from the equation 

TL(w) = Iolog[I/?(w)]. 

r I-?- -iF-m m 
(2) 

Angle of incidence 

Figure I. Variation of mode density with angle of incidence. 

3. BERANEK AND WORK ’S THEORY 

Beranek and Work’s theory [I] has the advantage that it is theoretically exact. Solutions 
of the wave equation are stated for the various regions of a multiple panel and the arbitrary 
constants involved in these solutions are evaluated by means of the principle of the 
___L1_..IL-. _~,.~~~,~~., f..-.-_,_ .~~ _L L1_. f-1_ P ~~~ _I- .1 conrmuiry 01 dcoubtiL impeaance ar me inrerraces or me various media. Because of this 
exactness of Beranek and Work’s solution we must use results predicted by this theory as 
a guide to evaluating the worth of alternative formulae. Beranek and Work give equations 
that can be used to cover. a large number of possible panel constructions for normally 
incident waves. When appropriate values are put into their equations an expression for 
the sound pressure ratio across a double panel of surface mass M and air gap width d is 
found : 

where 

Pt 
Pface - 

pc coth (jkd+ @) cash Q, P ” 
- (pc coth (jkd+ CD) +&OH) - --- 

. -- 
cash (jkd+ @) (pc +jwM) ’ (3) 

@ = arcoth ( I +jwM/pr). (4) 

Figure 10: Scatter plot of modal density and incidence angle. From [11].

The number of modes increases gradually with incidence angle, and then falls

sharply, with no incident sound above 84◦ [11].

As can be seen in section 8, predicted result of double walls reduction index is

lower than measured values in the frequency range above the double wall resonance

and below the critical frequency. The reason for this is that in diffuse field, in this

frequency range, there will always be some angle for which the reduction index is

zero (without damping included), and thus a low diffuse field reduction index. [11]

4.3.3 Adding resistance term to panel impedance

Another approach to obtain better agreement with measured values of reduction

index of double panels is to add a resistance term R to the impedance of the

individual panels

Zp =
2R

cos θ
+ jωm

[
1− sin4 θ

(
f

fc

)2
]
. (58)

This leads to a real part of the plate impedance that represents energy losses in the

plates. Comparing with equation 23 it is obvious that the same type of behaviour

is obtained by a complex bending stiffness, with the imaginary part of the bending
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4 SPATIAL WINDOWING TECHNIQUE

stiffness, η representing the energy losses.

In this approach the resistance is divided by cos θ, leading to a real part that

approaches infinity for angles close to grazing incidence. This provides a reduction

of the contribution of transmission for high angles, which gives better agreement

with measurements. However, the resistance term appears to have no physical

explanation. [11]
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5 MODELLING ENERGY LOSSES

5 Modelling energy losses

Any real vibration object experiences energy losses, e.g. vibrational energy is con-

verted into heat. Some common methods for including energy losses are given in

this section. In SEA modelling, the term loss factor is used.

5.1 Losses in structures

The most common approach for including energy losses in a structure, such as a

plate, is to introduce a complex bending stiffness, with imaginary part η. This

gives a real or dissipative part of the panel impedance, see equation 23. [12]

5.2 Losses in fluids

In fluids, energy losses can be taken into account by adding an imaginary part to

the wave number,

k =
ω

c

(
1− η

2

)
. (59)

Remembering that the propagation coefficient is jk, this corresponds to adding a

real part, resulting in a complex propagation coefficient

Γ = j
ω

c
+
ωη

2c
. (60)

Another common approach to take losses into account by a complex propaga-

tion coefficient is by adding a real part γ/2, where γ is called power attenuation

coefficient. This gives pressure, exponentially decreasing with distance,

p(x) = p̂ e−Γx (61)

= p̂ e−γx/2 e−jωx/c (62)

= p0 e−γx/2, (63)

where p0 = p̂ e−jωx/c is the pressure without energy losses. Since energy is propor-

tional to the pressure squared, the energy will decrease exponentially,

E ∼ p2 ⇒ E = E0 e−γx. (64)

Hence the name power attenuation coefficient. The energy attenuation in dB per

metre is approximately

∆Lw = 10 log10(e−γ) ≈ −4.3 γ dB/m (65)
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Comparing the two approaches of including losses gives a relation between the

loss factor and power attenuation coefficient as [13]

η =
c

ω
γ. (66)

A different approach to include losses in wave propagation is to add a viscous

loss term in the governing equation relating pressure and particle velocity

∂p

∂x
= −ρ0

∂vx
∂t

+ rvx, (67)

where r is the airflow resistivity having dimension Pa · s/m2. This results in a

complex propagation coefficient and a complex characteristic impedance,

Γ = j
ω

c

√
1− j r

ρ0ω
(68)

Zc = ρ0c0

√
1− j r

ρ0ω
. (69)

Viscous losses are significant in porous materials. This is the simplest model for a

porous material, a so-called Rayleigh model.

How large attenuation in dB per metre is the energy attenuation of propagation

in a material with flow resistivity r? Remember that the energy attenuation for a

wave with propagation coefficient Γ is

∆Lw = 10 log10(e−<{2Γ}). (70)

The square root in the expression for the propagation coefficient complicates the

calculation. But using the following approximations

√
1− jx ≈

 1− jx/2, for x << 1

(1− j)
√
x/2, for x >> 1,

(71)

where x << 1 corresponds to high frequencies and/or low flow resistivity and vice

versa for x >> 1, the attenuation in dB/m is estimated to

∆Lw ≈

 −0.0106 r, for ω >> r

10 log10(e−0.038
√
ωr), for ω << r.

(72)
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The expression for ω << r is not very clear, but because of the square root, the

dependence is not linear so it can not be expressed as easy as for ω >> r. For

r = 10000 Pa · s/m2, which is a common value for mineral wool, the attenuation

is around -40 dB/m at 100 Hz. [4]

There are also several empirical models for porous materials. A model by De-

lany and Bazley is often used due to its simplicity. They give purely empirical ex-

pressions for the complex propagation coefficient and the characteristic impedance,

based on measurements on a wide range of materials having porosity of approxi-

mately one. The expressions are

Γ = j
ω

c0

[1 + 0.0978E−0.700 − j · 0.189E−0.595] (73)

Zc = ρ0c0[1 + E−0.754 − j · 0.087E−0.732], (74)

where E = ρ0f/r. It is assumed that E lies inside the range 0.01 − 1.0, which

indicates that the model works best for materials with high flow resistivity. [4]
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6 SEA modelling

In this section, the basic principle of statistical energy analysis is summarised. Two

important concepts in SEA, modal density and modal overlap factor, are explained

and the applicability of SEA is discussed. An SEA model of two rooms separated

by a common wall is given as an example. A system containing a double wall is also

given as an SEA model, as well as the SEA model of two rooms separated by any

element with known transmission factor. The damping loss factor and coupling

loss factor of some common subsystem are also given.

6.1 Principles of SEA

Statistical energy analysis is a method for high frequency modelling, where fi-

nite element modelling is not applicable. It is applicable to structures that can

be divided into subsystems coupled together, and it predicts the average sound

and vibration levels, time and frequency averages as well as averages within each

subsystem.

In SEA modelling the system is divided into subsystems and a power balance

for each subsystem is set up based on the conservation of energy. The power flowing

from one subsystem to another is assumed to be proportional to the difference in

their modal energies, or energy per mode. This is in analogy with heat transfer;

Energy flows from a hot subsystem to a colder until the temperature difference is

zero. In SEA, vibrational energy per mode represents temperature. If the energy

per mode is equal in two subsystems, the energy flow between them is zero. This

assumption is called coupling power proportionality.

The power flow is assumed to be proportional to the damping. The dissipated

energy from subsystem i is given by its damping loss factor (DLF) ηid,

Wid = ωηidEi, (75)

where Ei denotes the energy in subsystem i. Similarly, the power flowing from

subsystem i to subsystem j is proportional to the coupling loss factor (CLF), ηij

as

Wij = ωηijEi. (76)

The coupling power proportionality implies that the coupling loss factors satisfy
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the so called consistency relation

niηij = njηji, (77)

where n is the modal density, i.e. the number of modes per frequency.

6.2 Modal density and modal overlap factor

A standing wave pattern is caused by constructive interference. The amplitude

of the wave increases until the energy lost by damping is equals the power input

to the system. This standing wave pattern is called a mode (or resonance). An

assumption made in SEA is that the response of the subsystem is due to these

resonances and that other motion can be ignored. A result of this assumption is

that the response of a subsystem is directly proportional to the damping. [13]

Another assumption made in SEA is that there are enough resonances in a

frequency band for individual modes to be unimportant. The number of modes that

lies in an increment of frequency is called modal density, n(f). The expressions for

modal density of some common subsystems are given in table 1, but the derivation

is not described. For a room (3D cavity), V denotes the volume of the room, S ′

the total surface area and P ′ the the total length of all edges. For a plate and a

2D cavity, i.e. a room with one dimension to small for any wave motion in that

direction, S denotes the surface area.

Table 1: The modal density, n(f) in modes/Hz, of some common subsystems. [13]

Subsystem 3D cavity 2D cavity plate in bending

n(f)
4πf 2V

c3
0

+
πfS ′

2c2
0

+
P ′

8c0

2πfS

c2
0

πSfc
c2

0

A main assumptions in statistical energy analysis is that the response is de-

termined by resonant modes. The analysis is valid when there are many modes

present in every subsystem. If there is a insufficient number of modes in a subsys-

tem the estimation of coupling loss factor may have large errors. This condition

results in a lower frequency limit where statistical energy analysis is appropriate.

But the limit is quite fluent, there is usually a gradual increase in the error with

decreasing frequency. Suggested minimum number of modes in a frequency band

27



6 SEA MODELLING

necessary for statistical averaging lies between 2 and 30 modes per frequency band.

But the consideration of number of modes alone is insufficient in order to determine

the lower limit of SEA. [13]

The damping of the resonant modes is also important in SEA modelling. If

the damping is high the frequency response of a subsystem will be smoother than

if the damping were low. The modal overlap factor is defined as the ratio of the

modal bandwidth to the average frequency spacing between modes. It is a more

useful measure of the applicability of SEA, since it takes both the number of modes

and the damping of these modes into account. A high number of modes gives a

low frequency spacing between the modes, which results in a high modal overlap

factor. High damping gives a wider resonance peak and thus larger bandwidth

which results in a high modal overlap factor. [13]

Using half-power bandwidth the modal overlap factor, M is calculated as

M = fηn, (78)

where η is the total loss factor and n the modal density of the subsystem. If the

modal overlap factor i less than 1 a part of the frequency spectrum will not be

damping controlled, which is assumed in SEA. [13] However, if the damping is too

large the response is not determined by resonant modes, since the waves will be

attenuated before reflections at the edges occur.

6.3 Single wall

Win

W13

W31

W1d
W3d

1 3

W32

W23

W2d

2

W12

W21

Figure 11: The SEA model of two rooms separated by a common wall.

As an example, the SEA model of two rooms separated by a common wall

is considered. The SEA model of this system is shown in figure 11. The sending
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6 SEA MODELLING

room, i.e. the room containing the source is modelled as subsystem 1, the receiving

room subsystem 2 and the separating wall subsystem 3. Figure 11 illustrates the

power flow to and from the subsystems. For subsystem i, Wid represents the

dissipated power. Most often this is the energy that is transformed into heat.

The power flowing between subsystem 1 and 3 is due to the coupling between the

sending room and the wall, which mostly is important above the critical frequency

of the wall. Similarly, the coupling of the wall and the receiving room, represented

by W32 and W23 is important above the critical frequency. The direct coupling

between the rooms represents the mass-law or forced transmission, (see further

section 2.1). This is significant at low frequencies, but is sometimes negligible at

high frequencies, in comparison with the resonant transmission. [13]

Writing the power balance for this system leads to three equations,

Win +W21 +W31 = W1d +W12 +W13 (79)

W12 +W32 = W2d +W21 +W23 (80)

W13 +W23 = W3d +W31 +W32. (81)

Expressing the power flow in terms of energy, W = ωηE and rewriting in matrix

form gives
η1d + η12 + η13 −η21 −η31

−η12 η2d + η21 + η23 −η32

−η13 −η23 η3d + η31 + η32



E1

E2

E3

 =


Win/ω

0

0

 . (82)

Since the loss factor is a positive quantity, the matrix in equation 82 is positive

definite and thus invertible. So if all the loss factors and the input power is known,

the energy in all subsystems, E1, E2 and E3 can easily be obtained.

It may be convenient to introduce a total loss factor, ηi which is the fraction

of the total power leaving the subsystem i. In this case η1 = η1d + η12 + η13 is

the total loss factor for subsystem 1, η2 = η2d + η21 + η23 is the total loss factor

of subsystem 2 and η3 = η3d + η31 + η32 is the total loss factor of subsystem 3.
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6 SEA MODELLING

Equation 82 may then be rewritten as
η1 −η21 −η31

−η12 η2 −η31

−η13 −η23 η3



E1

E2

E3

 =


Win/ω

0

0

 . (83)

6.4 Double wall

If the two rooms instead are separated by a double wall, i.e. two panels separated

by a cavity, possibly filled with absorbing material. The SEA model now contains

five subsystems, as illustrated in figure 12. A non-resonant transmission path

between subsystem 1 and 2 could also be included. But this type of transmission

only occurs below the double wall resonance, see section 2.2. This resonance

typically lies below 100 Hz, a frequency where SEA modelling possibly is not very

appropriate.
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1 3
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W53
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W4d
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W41
W43

W34
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5

W35
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Figure 12: The SEA model of two rooms separated by a common double wall.

6.5 Total and damping loss factor

A common measure for damping in a room (3 dimensional cavity) is the rever-

beration time, T60, which is the time for the energy to decay 60 dB once a steady
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source has been turned off. The total loss factor and reverberation time are related

as

η =
2.2

fT60

(84)

In a cavity, where one dimension is too small for any wave motion to occur (2

dimensional cavity) the reverberation time is not convenient to characterise the

damping. The cavity may be filled with a porous absorber. There are several

methods for modelling the damping in a cavity, see section 5, but all methods lead

to a complex propagation coefficient Γ. As described in section 5, the damping

loss factor and complex propagation coefficient related as [4, 13]

ηd =
2<{Γ}
={Γ}

(85)

For panels, the damping loss factor is often stated together with other material

characteristics.

6.6 Coupling loss factor

The coupling loss factor between a panel and a room is defined as the fraction of

energy of the panel that is radiated into the room in one radian cycle. For a panel

with area S vibrating with velocity v the radiated power is

Wrad = v2ρ0c0Sσ, (86)

where σ is the radiation factor of the panel. By definition, the power radiated

from a panel, 1, to a room, 2, in SEA notation is

W12 = η12ωE1 = η12m
′′Sv2ω. (87)

Since the power flowing from the plate to the room is the same as the radiated

power, combining these expressions gives

η12 =
ρ0c0σ

2πfm′′
. (88)

The coupling loss factor from a room to a panel is obtained with the consistency

relation, n1η12 = n2η21. [13]
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The coupling loss factor between two rooms can be obtained if the transmission

factor of the separating element is known. For a reverberant room, the power

incident on a wall with area S is

Wi =
Ec0S

4V
. (89)

From the definition of transmission factor, the transmitted power is

Wt = τWi =
Ec0Sτ

4V
. (90)

In SEA notation, the power transmitted between any rooms 1 and 2 is

W12 = ωη12E1. (91)

Combining these two expressions gives the coupling loss factor as

η12 =
c0Lτd
8πfV1

, (92)

where τd is the transmission factor for diffuse field. This transmission factor is

used since SEA assumes diffuse field in the rooms.
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7 The model

In this section a model of two rooms separated by a multilayered wall is presented,

using the theory from previous sections. The wall is modelled with transfer ma-

trices. From the total transfer matrix the power transmission factor of the wall is

calculated, which is plugged into the SEA model.

7.1 SEA formulation

Two rooms separated by a multilayer is the system considered. The SEA model

of the system is shown in figure 13. The sending room is denoted subsystem 1

and the receiving room is denoted subsystem 2. The subsystems are defined by its

dimensions a×b×c, where S = a×b is the surface area of the separating wall, and

its total loss factor ηi. The coupling loss factors ηij and ηji are calculated from

the power transmission factor with equation 92. Setting up the power balance

equations and solving for energy as in section 6 gives the energy in subsystem 1 as

E1 =

[
η2

η1η2 − η12η21

]
Win

ω
, (93)

and the energy in subsystem 2 as

E2 =
η12

η2

E1. (94)

Win

W12

W21

W1d
W2d

1 2

Figure 13: The implemented SEA model.
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7.2 The transmission factor

The transmission coefficient is needed to estimate the coupling loss factors in the

SEA model of the system. It is calculated from the total transfer matrix of the

multilayered wall, which is calculated with equation 40 in the case of a double wall.

The total transfer matrix is a function of incidence angle and frequency, Ttot =

Ttot(f,θ). The power transmission factor, τinf (f,θ) is calculated with equation 53.

To take the finite size of the separating wall into account, a double spatial window

is applied to the power transmission factor of the infinite system.

τ(f,θ) = τinf (f,θ)[σ(ka sin(θ)) cos(θ)]2, (95)

where σ(ka sin θ) is the radiation factor calculated with the simplified formula,

equation 56.

Since the SEA model presented in the previous section assumes diffuse field

in the subsystems, the power transmission factor for diffuse field is required to

calculate the coupling loss factors. It is obtained by integration of the power

transmission coefficient over all angles of incidence

τd(f) =

∫ θlim
0

τ(f,σ) cos(θ) sin(θ) dθ∫ θlim
0

cos(θ) sin(θ) dθ
(96)

where θlim is the selected diffuse field integration limit, usually 90◦ [8]. With the

spatial windowing technique, there is no need to reduce the diffusiveness of the

incidence sound field [1].
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8 Validation

In this section, the model is compared to results from measurement data from

Villot et al. [1] and Vigran [2] and with AutoSEA v. 1.5. Three different separating

elements are considered, a single aluminium plate, a double glazing and a double

gypsum wall. The material data are given in table 2.

Table 2: Material characteristics. From references [1, 14].

Aluminium Glass Gypsum

Thickness 1.1 mm 4 mm 10 mm

Density 2700 kg/m3 2500 kg/m3 850 kg/m3

Young’s modulus 70.0 GPa 62.0 GPa 4.1 GPa

Poisson’s ratio 0.33 0.22 0.3

Internal damping 0.01 0.05 0.01

Critical frequency 10.9 kHz 3.18 kHz 2.82 kHz

8.1 Single aluminium plate

8.1.1 Transmission factor

The transmission factor for an aluminium plate is calculated as in section 7. The

transmission factor is calculated from the transfer matrix of the plate and spatially

windowed with a window of dimension L =
√

1.4× 1.1 m. The material charac-

teristics of the plate are shown in table 2. Figure 14 shows the reduction index

of the aluminium plate. Measured values of the reduction index is taken from

Villot et al. [1]. The red dash-dotted line represents an infinite system, i.e. not

spatially windowed. It differs from the measured values of about -6 dB in the

whole frequency range. For the red dotted line, the incident diffuse field is reduced

from 90◦ to 78◦. This gives better agreement with the measured data, but only

for high frequencies. For the blue line, the system is spatially windowed with a

double window, which seems to give good agreement with the measurement in the

whole frequency range. The blue dashed line is also spatially windowed, but with

a single window. It is suggested by Vigran [4] and Allard and Atalla [8] that a
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Figure 14: The sound reduction index of an aluminium plate. Measured data from

Villot et al. [1]. The blue lines represents the spatially windowed system, with a

single and a double window. The red lines represents the infinite system, one with

reduced incident field diffusiveness.

single spatially window is to be used, but in this case, the double window gives

better agreement with measurement data.

There is a slight deviation in reduction index between the measurement and

the double spatial window in the highest frequency range. It would be interesting

to compare them further up in frequency. The critical frequency of the plate is,

as stated in table 2, fc = 10.9 kHz. Unfortunately, the measurement data is only

available in the range 100-5000 Hz.

8.1.2 Energy levels

In this section, the aluminium plate is put as the separating wall between two

identical rooms. The SEA model of this system consists of three subsystems, as in

figure 11. The parameters of the model are given in table 3. This is modelled in

AutoSEA v. 1.5. The non-resonant transmission between the rooms is said to be
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due to the mass-law, with mass of the plate m = 4.57 kg.

Table 3: The parameters for the two rooms separated by a single aluminium plate

in AutoSEA.

Subsystem 1: Subsystem 2: Subsystem 3:

sending room receiving room plate

Wave type longitudinal longitudinal bending

Material air air aluminium

Dimensions (m) 1.4× 1.1× 2 1.4× 1.1× 2 1.4× 1.1× 0.0011

DLF 4.4/f 4.4/f 0.01

Power input 0.005 W

The system is also modelled with the implemented SEA model illustrated in

figure 13, with transmission factor as in figure 14. In this model, only subsystem

1 and 2 in table 3 are included. The behaviour of the panel is given by the

transmission factor.

Table 4: Frequency limits where the modal overlap factor is greater than 1, which

is assumed in SEA. Also frequency limits where the mode count is greater than 2

and greater than 30 for 1/3 octave bands.

Subsystem 1: Subsystem 2: Subsystem 3:

sending room receiving room plate

MOF > 1 f > 400 Hz f > 400 Hz f > 160 Hz

Mode count > 2 f > 160 Hz f > 160 Hz f > 25 Hz

Mode count > 30 f > 500 Hz f > 500 Hz f > 200 Hz

The calculated energy levels in the sending and receiving room is seen in figure

15. Some measures of the lower frequency limit where SEA modelling is applicable

is given in table 4. Above 500 Hz the modal overlap factor is greater than 1 and

there are more than 30 modes per 1/3 octave band in every subsystem. So above

this frequency, it is assumed that the SEA certainly is applicable. Above 160 Hz,
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there are more than 2 modes per 1/3 octave band in every subsystem, but the

modal overlap factor is less than 1 for the two rooms. So in the range 160 Hz to

500 Hz, the SEA model is probably not as accurate.
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Figure 15: Energy level in the sending room (subsystem 1) and receiving room

(subsystem 2), estimated with two different approaches. The implemented SEA

model, with transmission factor calculated with a double spatial window, and also

a SEA model as in figure 11, modelled in AutoSEA v.1.5.

Comparing the energy levels in figure 15 the predictions methods give a fairly

similar result. Just below the resonance peak at about 11 kHz, there is some

deviations in energy level in the receiving room. AutoSEA gives a lower energy

level than the implemented SEA model. The slope of the energy level in the

receiving room is also a bit different between the two methods.

At low frequencies, below 500 Hz, the energy level in the sending room is lower

for AutoSEA. But as stated earlier, below 500 Hz, there is less than 30 modes per

1/3 octave band, which indicates that SEA might not be accurate. And below 400

Hz, the modal overlap factor is less than 1 in both rooms, which is an even stronger

indicator that SEA is not applicable. If the modal overlap factor is less than 1,
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SEA usually overestimates the coupling loss factors [13]. This might be the reason

why the energy level in the sending room drops below 400 Hz with AutoSEA.
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Figure 16: Energy levels for the SEA model in table 3 calculated in AutoSEA v. 1.5.

Subsystem 1 is the sending room, subsystem 2 the receiving room, and subsystem 3

the aluminium plate.

But where does this energy go? The energy levels for all three subsystems

calculated with AutoSEA are shown in figure 16. There is a tendency that the

energy levels in both rooms drop at low frequencies, and the energy level increases

at low frequencies in the plate. This gives further evidence that the coupling loss

factors from the rooms are overestimated at low frequencies.

8.1.3 Power input to the receiving room

To further investigate the similarities and differences between AutoSEA and the

implemented SEA model, the power input to subsystem 2, the receiving room,

is compared. This can be seen in figure 17. The total power input for the im-

plemented SEA model and AutoSEA is similar to the energy level in the sending

room.
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Figure 17: The total power input to the receiving room, subsystem 2 calculated

with two different methods; The implemented SEA model with double spatially

windowed transmission factor, and calculated with AutoSEA v. 1.5.

The total input power to the receiving room, calculated with AutoSEA is split

up in its different contributions from the sending room and the plate. This is shown

in figure 18. It clearly shows that below the critical frequency the power input

mostly from the sending room, i.e. non-resonant transmission. The implemented

SEA model is also used, with transmission factor from the diffuse field mass-

law; Rd = R0 − 10 log10(0.23R0), where R0 is the mass-law in its simplest form,

R0 = 20 log10(m′′f) − 42.5 dB. The non-resonant transmission is fairly similar to

the diffuse field mass-law.

At 8 kHz the contribution from the plate, i.e. resonant transmission is noticed

in the total power input to the receiving room. This gives a increase in energy level

in the receiving room for frequencies around the critical frequency. For the energy

level calculated with the implemented SEA model, this increase is noticed already

at about 4 kHz, and the transition from non-resonant to resonant transmission

is much smoother compared to AutoSEA. This is most likely due to the angle
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Figure 18: Power input to subsystem 2, the receiving room. The total power input

is split up in its contributions from the sending room, non-resonant transmission, and

from the plate, resonant transmission. The power input is also calculated with the

implemented SEA model, with transmission factor from the diffuse field mass-law.

dependence in transmission factor.

8.1.4 The implemented SEA model

The implemented SEA model used in the calculations is compared with the same

SEA model with two subsystems in AutoSEA. The transmission factor is calculated

with a double spatial window and used as input in AutoSEA. In the SEA model,

the sending and receiving room is modelled with parameters as in table 3. The

resulting energy levels for both methods are shown in figure 19, and it shows that

both prediction models basically give the same result. There is a tiny deviation of

less than 1 dB for low frequencies.

In the MATLAB script, all coupling loss factors are calculated with equation

92. With the consistency relation, this indicates that the ratio of modal densities
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are equal to the ratio of the volume of the rooms,

n1

n2

=
V1

V2

. (97)

Looking at the expression for modal density of a room in table 1 this means that

only the first term is used. In AutoSEA the full expression containing all three

terms are used. This is the reason for the small deviation at low frequencies.
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Figure 19: The energy levels in the sending room (subsystem 1) and receiving

room (subsystem 2). Both methods uses the implemented SEA model, with a double

spatially windowed transmission factor.
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8.1.5 Radiation efficiency

The coupling loss factor calculated with AutoSEA can be used to estimate the

radiation efficiency, by rearranging equation 88. This is shown in figure 20 together

with the radiation efficiency σ(kp), which was calculated with equation 56. The

two different radiation efficiency agree well. The ripple at low frequencies is due

to the plate dimension L, which is included in equation 56.
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Figure 20: The radiation efficiency from the coupling loss factor between the plate

and the receiving room, which was calculated in AutoSEA v. 1.5. Also the radiation

efficiency σ(kp) calculated with equation 56.
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8.2 Double glazing

A double glass window is now considered, with two identical glass panels separated

by an air gap with depth d = 12 mm. The material data of the glass panel are

given in table 2. The special frequencies for this double wall is given in table 5.

Table 5: Interesting frequencies of the double glazing. fd=λ/6 is the frequency

where one sixth of a wavelength fits the depth of the cavity, which is a common

lower limit for diffuse field. Correspondingly, fd=λ/2 is the frequency where half the

wavelength fits the depth of the cavity. Above this frequency, modes can occur along

the depth.

Double wall resonance f0 = 244 Hz

Critical frequency fc = 3.18 kHz

λ/6 = d fd=λ/6 = 4.76 kHz

λ/2 = d fd=λ/2 = 14.2 kHz

8.2.1 Transmission factor

The transmission factor of the double glazing is calculated as in section 7. A double

spatial window with dimension L =
√

1.48× 1.23 m is applied to the transmission

factor to take into account for the finite size of the structure. Damping in the

cavity is included by a power attenuation coefficient γ = 0.2.

The reduction index of the structure is shown in figure 21. The first thing to

notice is the dip at around 250 Hz, which is due to the double wall resonance. All

prediction methods agree well with measurements here. The critical frequency of

the glass panels is seen at 3150 Hz, and prediction methods give similar reduction

index to the measured ones at this frequency. Apart from at those frequencies, the

differences between the measured and predicted result are quite large. The infinite

case, i.e the one without spatial window, fails to predict the reduction index in the

range from the double wall resonance, f0 = 244 Hz to the resonance frequency of

the panels, fc = 3180 Hz. The spatially windowed cases give a better agreement

with the measurements, especially the double spatial window. The infinite case

where the diffusiveness is reduced to 78◦ gives a strange result.
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Figure 21: The sound reduction index of a double glass panel. Measured data

from Villot et al. [1], and Rasmussen [2]. The blue line and the red dashed line

represents the spatially windowed system, with a single and a double window. The

black dotted line and the purple dash-dotted line represents the infinite system, one

with reduced incident field diffusiveness.

It seems as the double spatially windowed transmission factor agree best with

measurements in this case as well. But there is a difference in reduction index of

at most 10 dB compared to the measured values. So when plugging in this trans-

mission factor in the implemented SEA model, the energy level in the receiving

room is probably overestimated.

The double spatial window is compared with the empirical model by Sharp,

equation 15, discussed in section 2.2. This is shown in figure 22, which also shows

the reduction index calculated with transfer matrices, but with wave propagation

in the air cavity normal to the panels, i.e. letting θ = 0 in the transfer matrix of

the air cavity, equation 33. This gives a much larger reduction index compared to

the nominal model, but as seen in figure 22 this corresponds quite well with Sharp.

Letting θ = 0 in the transfer matrix of the air cavity leads to highest possible
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stiffness of the air cavity, leading to a higher reduction index than the nominal

case. Figure 22 indicates that the model by Sharp is based on the same condition,

with wave propagation normal to the panels in the air cavity.
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Figure 22: The sound reduction index of a double glass panel. Measured data from

Villot et al. [1], and Rasmussen [2]. The blue line represents the spatially windowed

system, with a double window. The red dashed line is calculated in the same way

as the blue line, but with wave propagation normal to the panels in the air cavity,

i.e θ = 0 for all angles of incidence. The green dash-dotted line are calculated with

formulas in SS-EN 12354-1 [6] and the empirical model by Sharp, equation 15.

8.2.2 Energy levels

In this section, the double glass panel is put as the separating wall between two

identical rooms. The SEA model of this system consists of five subsystems, as in

figure 12. The parameters of the model are given in table 6. This is modelled in

AutoSEA v. 1.5. The non-resonant transmission between the sending room and

cavity, and the cavity and receiving room is said to be due to the mass-law, with

mass of the panels m = 18.2 kg.
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Table 6: The parameters for the double glazing model in AutoSEA.

Subsystem 1 & 2: Subsystem 3: Subsystem 4 & 5:

rooms cavity panels

Wave type longitudinal longitudinal bending

Material air air glass

Dimensions (m) 1.48× 1.23× 2 1.48× 1.23× 0.012 1.48× 1.23× 0.004

DLF 4.4/f c0γ/ω 0.05

Power input 0.005 W (subsys. 1)

Table 7: Frequency limits where the modal overlap factor is greater than 1, which

is assumed in SEA. Also frequency limits where the mode count is greater than 2

and greater than 30 for 1/3 octave bands.

Subsystem 1 & 2: Subsystem 3: Subsystem 4 & 5:

rooms cavity panels

MOF > 1 f > 400 Hz f > 1000 Hz f > 160 Hz

Mode count > 2 f > 160 Hz f > 315 Hz f > 63 Hz

Mode count > 30 f > 500 Hz f > 1250 Hz f > 1000 Hz

The applicability of this SEA model is first investigated by looking at the modal

overlap factor and mode count, which is given in table 7. Since the separating

panel is fairly small, and the air cavity has a low damping loss factor, the lower

frequency limit is quite high. The condition of a modal overlap factor greater than

1 is fulfilled for all subsystems above 1 kHz. And the condition of more than 2

modes per 1/3 octave band is fulfilled above 315 Hz.

Figure 23 shows the energy levels in the sending and receiving room calcu-

lated with two different methods. The result from AutoSEA is compared to the

implemented SEA model, with measurement data of the reduction index. The Au-

toSEA model has two different cases; At low frequencies, the wavelength is much

larger than the depth of the cavity and thus it is modelled as a two-dimensional

cavity. For higher frequencies wave propagation occurs in all three dimensions of
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Figure 23: Energy levels of the sending and the receiving room separated by a

double glazing, calculated with AutoSEA v. 1.5. In 2D case, the cavity is modelled

as a 2D cavity, and in the 3D case it is modelled as a 3D cavity. The energy levels

are also calculated with the implemented SEA model, using measurement data of

sound reduction index from Villot et al. [1].

the cavity and thus it is modelled as a three-dimensional cavity. The transition

between a two-dimensional and three-dimensional model lies somewhere around

fd=λ/6 = 4.76 kHz and fd=λ/2 = 14.2 kHz. Comparing the two cases in figure 23,

it seems as the 3D model best describes the system above 2.5 kHz, which is a bit

lower than fd=λ/6.

The energy level in the receiving room from AutoSEA is chosen to

E2 =

 E2,2D, for f ≤ 2500 Hz

E2,3D, for f > 2500 Hz,
(98)

and this is displayed in figure 24 together with the energy level in the receiving

room calculated with other methods. AutoSEA agrees well with the energy level

that is based on a measurement of reduction index in the range from the double
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Figure 24: Energy level of the receiving room. The blue line represents the double

spatially windowed case, the red dashed line the infinite structure with reduced

incident field diffusiveness to 78◦, the green dash-dotted line from AutoSEA v. 1.5

and the black circles the implemented SEA model with measurement data of sound

reduction index from Villot et al. [1].

wall frequency up to 1 kHz. Below 315 Hz there are less than 2 modes per 1/3

octave band, which indicates that SEA is not reliable. Moreover, the non-resonant

transmission that dominates in this frequency region is based on the mass-law,

which means that the behaviour of the wall at low frequencies is not correctly

modelled.

Above 1 kHz, AutoSEA declines in comparison with the measurement, similar

to the single aluminium plate. But in this region AutoSEA agrees fairly well with

the case with a transmission factor without spatial window, but with reduced

incident field diffusiveness. The double spatial window do not agree at all with

AutoSEA in pretty much the whole frequency range.
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8.2.3 Radiation efficiency

The coupling loss factor calculated with AutoSEA is used to estimate the radia-

tion efficiency, by rearranging equation 88. The CLF between the second panel and

the receiving room is identical in the 2D and 3D model.The radiation efficiency is

shown in figure 25, together with the radiation efficiency σ(kp), which was calcu-

lated with equation 56. The two different radiation efficiency agree well. Just as

the radiation efficiency of the aluminium panel, ripple is seen at low frequencies.

This is due to the plate dimension L, which is included in equation 56.
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Figure 25: The radiation efficiency from the coupling loss factor between the second

plate and the receiving room, which was calculated in AutoSEA v. 1.5. Also the

radiation efficiency σ(kp) of a glass panel calculated with equation 56.

8.3 Double gypsum wall

In this section, a double gypsum wall is the separating element between two identi-

cal rooms. The SEA model is as in figure 12, with parameters given in table 8. As

in the previous cases, the transmission factor, calculated with transfer matrices,
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and spatially windowed with a double window, is used to estimate the coupling loss

factors in the implemented SEA model illustrated in figure 13. This is compared

to the conventional model in AutoSEA. The calculations are performed with two

different cavity depths, d = 50 mm and d = 100 mm, and with two different cavity

damping, η3d = 0.01 and η3d = 0.1.

Table 8: The parameters for the model of two rooms separated by a double gypsum

wall in AutoSEA.

Subsystem 1 & 2: Subsystem 3: Subsystem 4 & 5:

rooms cavity panels

Wave type longitudinal longitudinal bending

Material air air gypsum

Dimensions (m) 3× 3× 4 3× 3× d 3× 3× 0.01

DLF 4.4/f η3d 0.05

Power input 0.005 W (subsystem 1)

Table 9: Frequency limits where the modal overlap factor is greater than 1, which

is assumed in SEA. Also frequency limits where the mode count is greater than 2

and greater than 30 for 1/3 octave bands.

Subsystem 1 & 2: Subsystem 3: Subsystem 4 & 5:

rooms cavity panels

MOF > 1 f > 125 Hz f > 500 Hz (η3d = 0.01) f > 160 Hz

f > 160 Hz (η3d = 0.1)

Mode count > 2 f > 80 Hz f > 160 Hz f > 25 Hz

Mode count > 30 f > 250 Hz f > 630 Hz f > 200 Hz

The lower limits for SEA applicability of this system is given in table 9. The

cavity with damping η3d = 0.01 has a lower frequency limit of 500 Hz where

the modal overlap is greater than 1. And the mode count is more than two for

frequencies above 160 Hz. When the damping loss factor is increased to η3d =
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0.1 modal overlap factor is greater than 1 for frequencies above 160 Hz. Some

interesting frequencies of this double wall is given in table 10.

Table 10: Insteresting frequencies of the double gypsum wall. fd=λ/6 is the fre-

quency where one sixth of a wavelength fits the depth of the cavity, which is a

common lower limit for diffuse field. Correspondingly, fd=λ/2 is the frequency where

half the wavelength fits the depth of the cavity. Above this frequency, modes can

occur along the depth.

d = 50 mm d = 100 mm

Double wall resonance f0 = 130 Hz f0 = 92 Hz

Critical frequency fc = 2.82 kHz fc = 2.82 kHz

λ/6 = d fd=λ/6 = 1.1 kHz fd=λ/6 = 570 Hz

λ/2 = d fd=λ/2 = 3.4 kHz fd=λ/2 = 1.7 kHz

8.3.1 Comparison of different cavity depths

Two different cavity depths are compared in figure 26, which shows the energy

level in the receiving room. The cavity is modelled as a 3D cavity in AutoSEA

at high frequencies. This is indicated by the dashed lines. They are plotted for

frequencies above fd=λ/6.

The double wall resonance seems to be correctly described by the implemented

SEA model for the two different depths. The critical frequency as well, the peak in

energy level is at the critical frequency in both cases. Above the critical frequency,

there are some resonance behaviour, which is most likely due to modes along the

depth of the cavity. The energy level is not really affected by the depth of the

cavity in this frequency range. However, at frequencies between the double wall

resonance and the critical frequency, there is about 5 dB difference in energy level

between the two depths. The same difference is seen in AutoSEA.

From about 500 Hz up to the critical frequency there is a large deviation be-

tween the implemented SEA model and AutoSEA. Bearing in mind that the trans-

mission factor was underestimated between f0 and fc in comparison with measured

values, and the dip in energy level below the critical frequency was exaggerated
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for AutoSEA in comparison with the measured values, the true energy level prob-

ably lies somewhere in between these two cases. However, from figure 26 one can

conclude that the implemented SEA model responds to changes in cavity depth in

a similar manner as AutoSEA.

It could be noted that even though the modal overlap factor is less than 1 in

the cavity below 500 Hz, AutoSEA seems to give reliable result further down in

frequency.
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Figure 26: The energy level in receiving room, for two different cavity thickness.

The DLF of the cavity is 1% in both cases. Three different models has been used;

The implemented SEA model, AutoSEA v. 1.5 with the cavity modelled as two-

dimensional and AutoSEA v. 1.5 with the cavity modelled as three-dimensional.

8.3.2 Comparison of different cavity damping

Two different cavity damping are compared in figure 27, which shows the energy

level in the receiving room. The depth of the cavity is d = 100 mm in both cases.

The dashed lines represents the case with a 3D cavity, and they are plotted for

frequencies above fd=λ/6.
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The energy level decreases when the damping increases in both cases. This

seems to be correct since more energy is dissipated in the cavity. For high frequen-

cies, the resonance peaks in the implemented SEA model are attenuated when the

damping is increased, which also seems sensible. Between the double wall reso-

nance and the critical frequency, the highly damped case is about 3 dB lower than

the lightly damped case, for the implemented SEA model. In AutoSEA, however,

there is about 10 dB difference between the two cases.
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Figure 27: The energy level in receiving room, for two different cavity DLF. The

depth of the cavity is 100 mm in both cases. Three different models has been used;

The implemented SEA model, AutoSEA v. 1.5 with the cavity modelled as two-

dimensional and AutoSEA v. 1.5 with the cavity modelled as three-dimensional.
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9 Discussion

Three different systems have been used to validate the result, the single aluminium

plate, the double glazing and the double gypsum wall. In this section, the result

is summarised and discussed.

Single aluminium plate

The transmission factor for a single aluminium plate is calculated with the transfer

matrix method, and compared to measurement data. Different versions of the

spatially windowing technique are compared and it is concluded that the double

spatial window gives best agreement with the measurement data. Compared to the

method of reducing the diffusiveness of the incidence wave field to 78◦, the double

spatial window is proven to give better agreement in the whole frequency range.

Reducing the diffusiveness gives a steeper slope, which gives good agreement in

the high frequency range.

The calculated transmission factor is used to calculate the coupling loss factors

in the implemented SEA model. The energy levels are compared with a conven-

tional single wall model in AutoSEA v. 1.5, and good agreement is obtained. The

slope of the energy level in the receiving room is somewhat steeper in AutoSEA,

and the transition from non-resonant to resonant transmission is smoother in the

implemented SEA model.

By looking at the power input to the receiving room in AutoSEA it is seen

that the non-resonant transmission corresponds to the diffuse field mass-law. The

resonant transmission is only contributing to the total transmission at high fre-

quencies, and this transition from non-resonant to resonant transmission is very

sudden. The transmission factor is calculated for every incidence angle with the

transfer matrix method. Since there are always some angle where the transmission

is high, integrating over all angles gives this smooth transition from non-resonant

to resonant transmission.

The implemented SEA model with two subsystems is also modelled in Au-

toSEA, with the transmission factor as input. They give identical result, except

for very low frequencies, where AutoSEA drops in comparison with the model in

MATLAB and it is concluded that this difference is due to that AutoSEA uses

all three terms in the expression for modal density of the rooms, whereas in the
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MATLAB script, only the first term is used.

Double glazing

The transmission factor for a double glazing calculated with the transfer matrix

method shows poor agreement with measurement data in the frequency region

above the double wall resonance and below the critical frequency. The spatially

windowing technique improves the result substantially, but not enough. The reduc-

tion index is lower than the measured case. The trick of reducing the diffusiveness

of the incidence wave field to 78◦ gives a strange result, that does not agree with

the measurement data.

The reduction index is also compared with the model by Sharp, and it is shown

that it gives a much higher reduction index in the frequency range from the dou-

ble wall resonance and up. Compared to the model by Sharp, the implemented

MATLAB script seems to model the reduction index quite well, and it has the

advantage that it is conservative, i.e. it underestimates the reduction index.

By forcing the waves in the cavity to propagate normal to the panels for all

angles of incidence, i.e. letting the angle θ = 0 in the transfer matrix of the air

cavity, a model that agrees fairly well with Sharp is obtained. This probably means

that the model by Sharp is based on wave propagation normal to the panels in the

air cavity.

The transmission factor is used in the implemented SEA model to compare

the method with AutoSEA v. 1.5. Comparing AutoSEA with measured values of

transmission factor, they are similar from the double wall resonance up to about

1 kHz. Between 1 kHz and the critical frequency of 3.18 kHz there is a smooth

transition from non-resonant to resonant transmission for the measured values.

The effect of the resonant transmission in AutoSEA is not noticed until 2.5 kHz,

where it fully takes over the transmission. This gives a much lower dip in energy

level for AutoSEA compared to the measured values.

The implemented SEA model with a transmission factor with reduced incident

field diffusiveness shows the same dip in energy level as AutoSEA, just below

the resonance frequency. This is probably because the non-resonant transmission

through the two panels in AutoSEA is modelled with the diffuse field mass-law,

which is tuned to agree with measurement data, in the same way as the reduced
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diffusiveness is tuned to 78◦ to obtain the same agreement.

The transmission factor from the transfer matrix method with a double spatial

window gave a lower reduction index compared to measurement data, which indi-

cates that the energy level in the receiving room is too high with the implemented

SEA model. This is shown to be the case. However, one thing that could be noted

in the low frequency range is that the energy level seems to be correctly described

around the double wall resonance. This is not the case in AutoSEA, which only

uses the mass-law to describe the transmission at low frequencies.

Double gypsum wall

For the double gypsum wall, no measurement data of reduction index is avail-

able. The energy levels where calculated with the implemented SEA model and

compared with AutoSEA for two different cavity depths and two different cavity

damping. As for the double glazing, large differences in energy levels is seen. At

the double wall resonance the energy level is similar for both methods, but as the

frequency goes up AutoSEA drops much in comparison with the implemented SEA

model. The true energy level most likely lies between these two curves.

However, it is seen that the implemented SEA model and AutoSEA responds

similarly to a change in cavity depth. And for the implemented SEA model, the

double wall resonance is shifted down in frequency when the depth of the cavity

is increased, which is expected. Above the critical frequency the resonance peaks

present in the implemented SEA model are shifted when the depth of the cavity

is changed.

Comparing different cavity damping there are differences between AutoSEA

and the implemented SEA model. The energy level is decreased by about 10

dB when the damping is increased in AutoSEA. In the implemented SEA model,

the decrease is about 3 dB for frequencies between the double wall resonance

and the critical frequency. Above the critical frequency, the resonance peaks are

attenuated, which seems reasonable.

9.1 Limitations of the method

The transfer matrix method used in this thesis provides a relation of the pressure

and particle velocity on both sides of an infinite layer. The finite size of the
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structure is taken into account by applying a spatial window on the incidence wave

field and the vibration velocity field of the infinite structure before calculating the

radiated field. This is of course an approximation, but it seems to describe the

transmission of a plate with high accuracy. However, this method seems to be

giving an incorrect description of the wave field in the cavity, which results in a

underestimated reduction index. A possible reason for this is that reflections from

the edges of the cavity is not included since the cavity is of infinite size. Another

reason might be that the transmission factor is calculated for each angle separately,

and the contribution from each angle is summed in an integral.
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10 Conclusion

The transfer matrix method together with the spatial windowing technique gives

good agreement of reduction index with measured data, in the case of a single plate.

The implemented SEA model agrees with AutoSEA v. 1.5, and it is concluded

that the implemented SEA model gives a more detailed result. The transition

from non-resonant to resonant transmission is smoother in the implemented SEA

model, which seems realistic. It would have been interesting to study multilayered

plates as well.

The transfer matrix method underestimates the reduction index of a cavity

wall between the double wall resonance and the critical frequency. The result

is improved with the spatially windowing technique, but a good agreement with

measurement data is not obtained. Reducing the diffusiveness of the incidence

wave field does not provide satisfactory result either. Compared to the model by

Sharp, the implemented model appears as a qualified conservative model, since

Sharp gives a very exaggerated reduction index compared to measurements.

The reduction index is underestimated between the double wall resonance and

the critical frequency. Together with the implemented SEA model, the energy

level in the receiving room is overestimated. Comparing with AutoSEA v. 1.5 the

deviation in energy level is large in this frequency region. However, comparing

with measurements AutoSEA gives a much lower energy level below the critical

frequency. Hence it does not seems as if AutoSEA gives sufficient agreement either.

10.1 Suggestions for future work

The method agreed well with measurements and AutoSEA for a single plate, but

underestimates the reduction index for cavity walls (i.e a double wall), and it was

concluded that it is probably due to the model of the air cavity. One thing that

could be investigated is if the model is suitable for other multilayered elements

excluding cavity walls. On example of this a sandwich construction.

Further, the transfer matrix modelling could be extended to include other ele-

ments such as a solid layer or a porous layer with elastic frame. Both types requires

more than two variables to describe the acoustic wave field, giving larger transfer

matrices than 2 × 2. It would also be interesting to investigate if flanking trans-

mission could be included in the implemented SEA model by means of transfer
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matrices.

Finally, the validation could be extended to include more setups. It would

also be beneficial to conduct measurements to validate the method further. Also

to investigate the range of applicability, both in terms of frequency and layer

thickness.
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