
Object classification and localization
using machine learning techniques

Designing and training models for use in limited hardware-applications

Master’s thesis in Complex Adaptive Systems

CARL ASPLUND

Department of Physics
Chalmers University of Technology
Gothenburg, Sweden 2016

Master’s thesis 2016

Object classification and localization
using machine learning techniques

Designing and training models for use in limited hardware-applications

CARL ASPLUND

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2016

Object classification and localization using machine learning techniques
Designing and training models for use in limited hardware-applications
CARL ASPLUND

© CARL ASPLUND, 2016.

Supervisor: PER-LAGE GÖTVALL, Volvo Group Trucks Technology
Examiner: MATS GRANATH, Department of Physics, University of Gothenburg

Master’s Thesis 2016
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: The graphical representation of the two models developed in this thesis.

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Object classification and localization using machine learning techniques
Designing and training models for use in limited hardware-applications
CARL ASPLUND
Department of Physics
Chalmers University of Technology

Abstract

When working with object classification and localization in image data, the development
of traditional rule-based solutions has stagnated in recent years. In its place, machine
learning has become a major field of research in order to handle more and more complex
image recognition problems. With machine learning, new state-of-the-art models can be
developed by training a model instead of implementing an explicitly programmed feature
detector.
In this thesis, a literature study covering the field of machine learning has been carried
out on behalf of Volvo Advanced Technology and Research. Furthermore, with an au-
tonomous garbage handling project initiated by Volvo in mind, two machine learning
models meant for limited hardware-deployment have been designed and trained. The
classification model is based on knowledge distillation, where a compact model learns to
generalize from a more complex state-of-the-art model, and a localization model, where
a typical machine learning implementation is combined with computer vision solutions
from the OpenCV framework.
Both models, that were trained on images from the ImageNet database, produced poor
results in their respective tasks. The process of knowledge distillation, used to train the
classifier, was not achievable due to unfortunate choice of cumbersome model combined
with hardware limitations during training. The hardware was also an issue for the lo-
calization model, which due to this and unwanted performance from the OpenCV corner
detector converged early during training and ended up producing unchanged results for
different input. However, the thesis as a whole came to important conclusions regarding
a proper next step in order to stay competitive within the field of machine learning.

Keywords: machine learning, computer vision, classification, localization, neural net-
works, convolutional neural networks.

v

Acknowledgements

Firstly, I would like to thank my supervisor Per-Lage Götvall for taking on my project
and providing valuable feedback. I also thank Daniel Lexén, my initial supervisor, who
was very helpful and engaged in the project during the time he was involved.
Furthermore, I would like to thank Erik Ylipää and Abubakrelsedik Karali at SICS
Swedish ICT research institute for their input and advice regarding the technical de-
tails of the project.
Finally, I thank my family and friends for all their support and patience throughout my
entire education, but also for advice and proofreading during this thesis.

Carl Asplund, Gothenburg, June 2016

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1

1.1.1 The ROAR project . 1
1.1.2 Machine learning . 2

1.2 Purpose . 2
1.2.1 Specification of thesis aims . 2

1.3 Delimitations . 3
1.4 Outline . 3

2 Theory 5
2.1 Artificial neural networks . 5

2.1.1 Supervised learning . 5
2.2 Convolutional neural networks . 6
2.3 Stochastic gradient descent . 7
2.4 CUDA . 9
2.5 Caffe . 9
2.6 ILSVRC . 10

2.6.1 Licensing . 11
2.7 Knowledge distillation . 11
2.8 OpenCV . 13
2.9 Harris corner detector . 13
2.10 State of the art . 15

2.10.1 Classification . 15
2.10.1.1 Residual Networks . 15

2.10.2 Localization . 16
2.10.2.1 Faster R-CNN . 17

3 Methods 19
3.1 Hardware and software . 19

3.1.1 GPU . 19
3.2 Models . 20

3.2.1 Classification . 20

ix

Contents

3.2.2 Localization . 22
3.2.2.1 Harris corner detector from OpenCV 23

3.3 Dataset . 24
3.3.1 Preprocessing . 25

3.3.1.1 Classification . 25
3.3.1.2 Localization . 26

3.4 Training process . 26

4 Results 29
4.1 Classification . 29
4.2 Localization . 31

5 Discussion 33
5.1 General considerations . 33

5.1.1 Steep learning curve . 33
5.1.2 Hardware . 33

5.2 Evaluation of the models . 34
5.2.1 Classification . 34
5.2.2 Localization . 35

5.3 Future work . 36
5.3.1 Data collection . 36
5.3.2 Addressing the hardware issue . 36
5.3.3 Model development . 37

6 Conclusion 39

Bibliography 41

A Cross-entropy gradient derivation I

B Network graphs III
B.1 Classification model . IV
B.2 Localization model . V

x

List of Figures

2.1 An example of a residual mapping. The input x is fed into the network
building block, in this case consisting of two layers equipped with weights
(e.g. convolutional or fully connected) with an intermediate ReLU-layer.
The mapping performed by this block is denoted F (x). The input is also
fed via a shortcut around the block, resulting in an identity mapping. The
output of of the block and the shortcut are added up to F (x) +x, creating
the sought residual mapping. 16

3.1 The knowledge distillation setup. The ResNet-50 model is used to produce
the logits vi in advance. During the training process, logits zi are produced
by the designed classification model and are fed together with logits vi into
a high temperature Softmax layer. This layer then produces the cross-
entropy loss with associated gradients used to train the model. 21

3.2 The implemented Harris corner detector applied to an image [11] from the
training set. The left figure is the original image resized to 224×224. In the
middle figure, the image has been preprocessed according to Section 3.3.1.1
and then fed through the corner detector. The output is then presented
on top the original image, with green indicating found corners. The right
figure shows the actual output, where one-values are shown in green and
zero-values shown in black. 24

4.1 The label-based loss for the validation set during the training of the clas-
sification model as a function of the number of iterations. The loss can be
seen to decrease for about 190000 iterations, before it rapidly returns to
the initial level. The plot was produced using Matlab. 30

4.2 The accuracy for the validation set during the training of the classification
model as a function of the number of iterations. The accuracy can be seen
to increase for about 190000 iterations, before it rapidly returns to the
initial level. The plot was produced using Matlab. 30

4.3 The bounding box-based Euclidean loss for the validation set during the
training of the localization model as a function of the number of iterations.
The loss can be seen to start at a higher value before suddenly dropping.
The loss then stabilizes and remains about the same for the entire training
session. 31

xi

List of Figures

4.4 Examples of the bounding box-producing localization model applied to
images [11–13] from the training set. In the figure, the images are resized
to 224×224. The model can be seen to produce the same red box for each
image (at (41,43) with width 182 and height 180), which indicates that the
model performance stagnated during training. 32

B.1 A graphical representation of the classification model. Created using Caffe. IV
B.2 A graphical representation of the localization model. Created using Caffe. V

xii

List of Tables

3.1 Specifications for the hardware setup used in this thesis. 19
3.2 Specifications for the GPU used for performing computations in this thesis.

*: CUDA Compute Capability, an index to measure the GPU:s computa-
tional performance. 20

3.3 Table showing all the intermediate layers and their parameters for the
classification model. 21

3.4 Table showing all the intermediate layers and their parameters for the
localization model. 23

3.5 The number of images from the ILSVRC dataset used. For both classifi-
cation and localization, there was a training set and a validation set. The
images were of varying resolutions, and the ones in the localization set all
included one bounding box. 24

3.6 Table showing the used solver parameters. Test iterations is the number
of batches used during validation (1099 ∗ 20 = 21980). The Test interval
is how often (measured in iterations) the solver performs validation. The
learning rate policy being set to step means that every Stepsize iterations,
the learning rate (which from the start is set to Base learning rate) is
multiplied by γ. The momentum and weight decay parameters are the
same as µ and λ in equation (2.6) and are meant to stabilize the training
procedure. 27

xiii

List of Tables

xiv

1
Introduction

This chapter introduces the topic of the thesis and clarifies the purpose of this work and
what it aims to accomplish.

1.1 Background

With their products sold and serviced in more than 140 countries and a workforce of
17000 employees, Volvo Trucks is the second largest producer of heavy-duty trucks in the
world. About 95 % of their production capacity is located in Sweden, Belgium, Brazil
and the USA, so they are without a doubt a major industrial actor with heavy local
representation [35].

Volvo Trucks is a company that is used to being at the forefront of technology and
is always trying to keep up with new emerging fields of research. An example of a
technological innovation in recent years that drew a lot of public attention is the Dynamic
Steering system, promoted by the actor Jean-Claude Van Damme [36]. The ATR division
(Advanced Technology and Research), a part of Volvo Group Trucks Technology, invests
a lot of time and effort in evaluating emerging technologies and trying to assess their
compatibility with the Volvo Trucks business model. Apart from investigating interesting
fields of technology, Volvo ATR also takes part in different product development and
research projects.

1.1.1 The ROAR project

The Robot-based Autonomous Refuse handling project, ROAR, is based on a collabo-
ration between Volvo Group, Chalmers University of Technology, Mälardalen University,
Penn State University and Renova. The projects aims to present a robot that automat-
ically collects and empties refuse bins. Another important objective of the project is to
demonstrate the usefulness of smart machines [15]. Volvo foresees a world with more
automation, and a system like this would result in garbage handling that is less noisy and
involves no heavy lifting for the driver [16].

A drone located at the roof of the truck starts simultaneously with the robot and
scans the area to locate bins. The drone then communicates the position to the robot
which then handles the emptying of the bin. The whole process as well as the position
of the robot can be monitored by the driver inside the truck. Mälardalen University
developed the actual robot platform, Chalmers University of Technology developed the
task management system, and Penn State University has developed the graphical interface
handling overview and control of the process [15].

1

1. Introduction

In order to determine its own position, the robot already knows a map of the maneu-
verable area as well as likely bin locations. It uses several tools to keep itself positioned
inside the map, such as GPS, LiDAR (a system similar to RADAR that uses infra-red
light instead of radio waves), cameras and an IMU (inertial measurement unit). The
IMU is based on accelerometers, gyros and odometry (measure position over time). The
cameras are also used to, for example, detect people coming to close to the robot which
will abort the emptying process [15].

1.1.2 Machine learning

In applications such as object classification, detection and localization, hand engineered
solutions to address these task have plateaued in recent years [21]. In its place, a new
approach that appeared decades ago but has boomed during the last few years has be-
come an important option in order to develop new systems. It is called machine learning,
and it aims to encompass automatic computing and can, based on logical or binary op-
erations, learn a task from a series of examples. Given sufficient data, machine learning
can in theory represent any problem of any complexity [26]. With the two key prerequi-
sites, processing power and sufficient data, a machine learning system can produce highly
generalized non-linear mappings without using explicit programming. Since its rise in
popularity, the research around machine learning has increased rapidly and has already
resulted in the technology being tried on multiple industrial applications within different
fields [7, 24,30].

1.2 Purpose

The main purpose of this master’s thesis is to provide the Volvo ATR division a first
step into the up and coming-world of machine learning and its applications. This will
be carried out through a literature study, looking into the underlying structures, tools,
necessary hardware and the state-of-the-art models that exist today.

Furthermore, the techniques included in the machine learning field will be applied to an
existing Volvo project. The ROAR project is at this point reliant on an extensive mapping
of the usage area in order for the robot and drone to function properly. Considering that
the robot is equipped with cameras, a machine learning model made for classification and
localization of garbage bins would simplify the work of this system to a large extent. The
second main goal of this thesis is therefore, with the limited hardware access of the robot
platform in mind, to investigate the possibility to produce such a model using modern
machine learning solutions.

1.2.1 Specification of thesis aims

• Map the field of machine learning through a literature study, highlighting the state-
of-the-art.

• Investigate the development of models for object classification and localization tai-
lored for limited hardware-applications.

2

1. Introduction

1.3 Delimitations

In order to adapt the project to the master’s thesis time frame, which is relatively limited,
some limitations have to be set. Based on the nature of machine learning, the project
will mainly be limited by two aspects: data and computational power. When it comes
to data, the availability of free-to-use image databases makes it possible to cope with
the need of large amounts of labeled (annotated) data. However, in order to achieve
task-relevant results there is a large need for task-specific data, which depending on the
prior data collecting approach might be limited for the project at hand.

Should one manage to obtain the data needed, the next problem that occurs is the
computational power needed to perform the training. An ill-designed or too weak com-
putation setup may likely jeopardize important factors such as model complexity, the
amount of training data being handled at once and computation time. Within the time
frame of the project, learning the necessary theory, setting up the hardware and preparing
data has to be successfully executed before any training can be carried out. Hence, the
training time may be quite limited, and should it be that the model can not be large
or complex enough, the results and models produced may lack relevance. However, per-
forming any training and testing new approaches may still provide valuable conclusions
for the company.

The final major limitation for the prototype to be produced within this thesis project is
the actual industrial implementation. The goal is to achieve something of a prototype that
is as relevant as possible to Volvo in the evaluation of this technological field. However,
actually producing a functioning product that can be implemented in the real garbage
handling system proved to be very difficult to achieve during the course of the thesis,
mainly because of the extent of the project. The results will hopefully be of great interest
for the company, but its impact on actual products might probably come at a later stage
in this process.

1.4 Outline

In chapter 2, the necessary theory along with tools and state-of-the-art models will be
presented in a literature study. In chapter 3, the data used, its preprocessing, the models
designed and the training procedures will be presented. In chapter 4, the results of the
training will be presented. Chapter 5 will provide a discussion on the results produced
as well as the different techniques used, and look at what could be a suitable next step
within this field. Finally, chapter 6 sums up the conclusions drawn in this thesis.

3

1. Introduction

4

2
Theory

The theory for this project will include the fundamentals of machine learning based on
artificial neural networks and a walk through of the main principles and tools applied to
this particular project. It also includes descriptions of state-of-the-art-models within the
field.

2.1 Artificial neural networks

Even though computers are designed by and for humans, it is clear that the concept of a
computer is very different from a human brain. The human brain is a complex and non-
linear system, and on top of that its way of processing information is highly parallelized.
It is based on structural components known as neurons, which are all designed to perform
certain types of computations. It can be applied to a huge amount of recognition tasks,
and usually performs these within 100 to 200 ms. Tasks of this kind are still very difficult
to process, and just a few years ago, performing these computations on a CPU could take
days [18].

Inspired by this amazing system, in order to make computers more suitable for these
kinds of task a new way of handling these problems arose. It is called an artificial
neural network (ANN). An ANN is a model based on a potentially massive interconnected
network of processing units, suitably called neurons. In order for the network and its
neurons to know how to handle incoming information, the model has to acquire knowledge.
This is done through a learning process. The connections between the neurons in the
network are represented by weights, and these weights store the knowledge learned by
the model. This kind of structure results in high generalization, and the fact that the
way the neurons handle data can be non-linear is beneficial for a whole range of different
applications. This opens up completely new approaches for input-output mapping and
enables the creation of highly adaptive models for computation [18].

The learning process itself generally becomes a case of what is called supervised learn-
ing, which is described in the next segment.

2.1.1 Supervised learning

The concept of supervised learning, applied to an artificial neural network, is about tuning
its weights so that it performs a desired mapping of input to output activations. The
mapping itself is given by a so called pattern set, containing input activation vectors
and target activation vectors. The output vector produced by the network when given
a certain input vector should equal the corresponding target vector. The fitness of the

5

2. Theory

weights, in other words how well the network is doing, is measured using a so called loss
(alt. energy or cost) function that produces a total loss value for the network. Based
on this total loss, the weights are now shifted along a search direction in weight space.
This step in weight space is scaled by a learning parameter, usually known as the learning
rate. The direction of the step is most commonly given by looking at first order derivative
information, known as the gradient. This error adjustment then succesively propagates
through the network from output to input layer, a process known as backpropagation
[32].

2.2 Convolutional neural networks

Convolutional neural networks came along much later than the regular neural networks,
but still share many of their characteristics. They consist of neurons with learnable
weights and biases that process data and possibly pass it through non-linear functions.
They also use a loss function to compute an error that can be propagated through the
network. However, as the input data of a regular neural network is scaled up into, for
example, an image, the very extensive network connecting all neurons tends to grow un-
manageably large. The structure of a convolutional neural network is explicitly designed
to handle this issue, and it is all based on a set of layer types specialized for this task
[22].

The main feature is the so called convolutional layer. This layer accepts a three
dimensional input, typically an image with height H1, width W1 and a number of channels
(or depth) D1. It consists of a set of K three dimensional filters with sides according to
the set filter size (or kernel size) F and the same depth as the input, D1. The filters are
basically sets of neurons with weights and a bias that handle data just like in a regular
neural network. When producing output, each filter will sweep the input image, and
for each step produce a value to the output. How the filter steps through the image
is determined by the stride S, which is the distance between two points in the filter’s
image covering grid. In order to approach the edges of the image, another parameter
P determines the amount of zero-padding, meaning the number of layers of zero values
added around the image that will also be included in the sweep. This way, the output
size can equal the input size regardless of the kernel size. After all filters in the layer have
gone through the image input, the two-dimensional outputs of all filters are stacked up
to create the output volume with dimensions:

• width: W2 = (W1 − F + 2P)/S + 1
• height: H2 = (H1 − F + 2P)/S + 1
• depth: D2 = K

This structure have multiple perks when processing large input data such as images.
Since a relatively small filter can be used over the entire image, the amount of parameters
decreases heavily. Still, by having many filters working the image, different filters can
be trained to look for different features. Also, by having different filter sizes in different
layers, one can easily build a model that detects features at different scales in the image
[22].

Once a convolutional layer has processed and restructured the data from the input or
previous layer, the output volume is often sent through a ReLU-layer (Rectified-Linear).

6

2. Theory

It applies an elementwise activation function, most commonly a max(0,x)-function that
sets all negative values to zero. This becomes the activation function of the layer that
introduces non-linearity, which is crucial for the networks ability to map different types
of functions. It is important to note that this layer leaves the size of the output intact
[22].

In order to progressively reduce the spatial size of the output volume and decrease the
amount of parameters to be computed inside the network, it is common to periodically
insert what is called a Pooling layer in-between successive convolution layers. The down-
sampling operation performed by the layer is also important in the role of preventing
overfitting, where the network becomes too accustomed to the images it is being trained
on and performs worse on other images. The layer resizes the data spatially by sweeping
each depth slice in the input volume and applying a max-operation. Just like the con-
volutional layer, the pooling layer has a spatial extent (kernel size) F , where the local
max-operation is applied, and a stride parameter S. It is important to note that as the
kernels sweep the different depth slices, the total depth of the volume is unchanged. If a
volume with width W1, height H1 and depth D1 is fed into a pooling layer, the produced
output has dimensions:

• width: W2 = (W1 − F)/S + 1
• height: H2 = (H1 − F)/S + 1
• depth: D2 = D1

This changes if zero-padding is introduced, but this is not common for pooling layers.
Other operations than the max can also be used, such as average or L2 − norm. The
max has however been shown to work best for most situations. Since the function that
this layer applies is fixed, it introduces no new parameters to the model [22].

A convolutional neural network is often finished with regular feed forward layers,
which recently have adopted the name fully-connected layers. These are, as mentioned,
due to all neurons in the layer connecting to all neurons in the previous, expensive to
train. Being at the end of the network, the input is usually manageable and they are
used to compute the final output. This would, for example, mean the class scores for an
image classifier [22].

2.3 Stochastic gradient descent

When training neural networks the adjustment of the defining weights is usually handled
with backpropagation based on gradient descent. In recent years, however, as neural
networks have grown larger, a new variation on this algorithm has emerged and has
become a frequent option for large training processes: Stochastic gradient descent [3]. In
order to describe this algorithm, take a simple example of supervised learning. There are
n patterns (x,y) that are supposed to be mapped using a function f . This results in the
equation:

En(f) = 1
n

n∑
i=1

l(f(xi), yi) (2.1)

Here, l(f(x),y) is the loss functions that compares the output f(x) to the target y, and
En is the so called Empirical risk (basically average loss) based on the n patterns. In
order to look at the actual adjustment of the weights, let z represent a pattern pair (x,y)

7

2. Theory

and Q(z,w) = l(fw(x),y), where w represent the weights of the network and fw is the
network function using that set of weights. The weight update equation based on the
original gradient descent algorithm at time t can then be written as:

wt+1 = wt − γt
1
n

n∑
i=1
∇wQ(zi, wt) (2.2)

Here, γt is the learning rate at time t and ∇ is the gradient operator. The variable t
is the current time step or iteration. This algorithm will perform the training in the
sought way. However, as the network grows larger and the amount of weights increases,
this algorithm becomes computationally heavy. To address this issue, Stochastic gradient
descent handles this by not calculating the gradients based on all the patterns z in the
set. Instead, in each iteration, a random subset from {z1,...,zn}, S, is chosen. With the
amount of pattern pairs in S being nS, this results in the new weight update equation:

wt+1 = wt − γt
1
nS

∑
zi∈S
∇wQ(zi, wt) (2.3)

Even though (2.3) does not converge as fast as (2.2), the computational gains when
working with larger models are so big that is has become a common choice. It is hence
used primarily when training time is the bottleneck [3].

Another common addition to the training process is momentum. By adding a mo-
mentum term, the weight update step becomes:

∆wt+1 = −γt
1
nS

∑
zi∈S
∇wQ(zi, wt) + µ∆wt (2.4)

Here, ∆wt+1 is the new weight update step, ∆wt is the old update step and µ is the
momentum parameter. This parameter scales how much influence the previous weight-
step should have on the next one. This has been proven to be a good approach for a lot of
learning applications. It is however recommended to decrease the learning rate regularly
when using momentum in order to keep the training stable [32].

Just like the momentum, another common option when training a neural network is
weight decay. It means that all the weights decrease in value at a rate λ, which in practice
means multiplying them with (1 − λ). This has been proven to improve generalization
and suppress the effects of static noise in the data [28]. Adding the weight decay rate to
the weight update step results in:

∆wt+1 = −γt
1
nS

∑
zi∈S
∇wQ(zi, wt) + µ∆wt − λwt (2.5)

Concluding all these techniques, the final weight update equation now becomes:

wt+1 = wt − γt
1
nS

∑
zi∈S
∇wQ(zi, wt) + µ∆wt − λwt (2.6)

This equation is applied to each layer in the network in order to update its weights,
regardless of if it is a regular network or a convolutional one. Since the input to an
intermediate layer depends on the output (and thereby the weights) of the previous layer,
determining ∇wQ(z,w) is for most layers an instance of the chain rule. This way, the
error propagates back through the network, which is what is known as backpropagation.

8

2. Theory

2.4 CUDA

The rapid development within the field of computational science results in a never-ending
demand for more processing power and computational efficiency. Everything from finance
to physics is to a large extent relying on a modern hardware architecture in order to
produce interesting results in a reasonable amount of time. In recent years, looks have
turned towards the graphical processing unit, or GPU. These devices, that until just
recently were used solemnly to render graphical content, have become the future hope of
fast parallelized computing. An important step towards making full use of these devices
was in 2007 when Nvidia first showed their CUDA (Compute Unified Device Architecture)
platform [23]. Now, a large range of Nvidia GPU products could relatively easily be made
into specialized computation devices for use in both industry and academia.

The GPU is a massively parallel processor and supports thousands of active so called
threads. To make use of GPU computing however, one needs a programming model that
can express this level of parallelism in an efficient way. That is what CUDA provides.
When using CUDA, an application is portioned into so called kernels. Each kernel is
then executed by a grid of thread blocks on the GPU device. One of the things that
makes CUDA fast is that the threads in these blocks can cooperate and use a shared
memory. All of this is carefully orchestrated by the CPU, which communicates with the
GPU through CUDA [23].

2.5 Caffe

In order for the development of machine learning, deep neural networks and CNN:s to
really flourish, the steep learning curve of the hard-to-grasp world of GPU computing
has to be managed. The key to making this technology available and get academia to
really dig in to the science behind it is to offer an off-the-shelf, relatively easy to use,
development tool that makes use of CUDA as its backbone. That is what the Berkeley
Vision and Learning Center (BVLC) had in mind when they in 2014 released the platform
that they call Caffe, which stands for Convolutional architecture for fast feature embedding
[21]. Caffe is a C++ based open-source platform that offers all the tools you need to set
up your own deep machine learning process. It also features well-supported bindings to
both Python and Matlab, which makes getting started with it even easier. Caffe comes
with a whole library of functions and computational layers to design and train a machine
learning model. In recent years, most state-of-the-art performing models within this field
have been developed and trained in this environment [19,31].

One of the key features of Caffe’s success is the separation between representation
and implementation. The design and setting of all parameters in the model is done in
a separate description in the Google Protocol Buffer format. In this file, all layers (such
as fully connected, convolutional or pooling) are set up with all their parameters, the
data to be used in training is defined, and the loss layer saying what type error will be
propagated through the net is determined. Once the model is defined, it is loaded in the
Caffe solver (which is also defined in a Protocol Buffer file). The solver then communicates
and distributes the computations throughout the C++ code that is the foundation of the
platform. Caffe is also well integrated with CUDA, and switching between CPU and GPU

9

2. Theory

computing is as simple as one line in a file or one function call in Matlab or Python. The
representations remains the same, but the solver will then use the CUDA-versions of all
layers and functions. This seamless integration removes the need of specialized hardware,
since a model can be efficiently trained on a GPU system and then easily implemented
in a CPU-system without having to change the model definition [21].

Once the training is actually performed, the Caffe solver module offers multiple well-
tested learning algorithms, a common choice being the stochastic gradient descent de-
scribed in section 2.3. In order to make training as quick as possible, Caffe supports a
number of different well-established data formats that result in more efficient data han-
dling. Today, the first hand choice is the so called LMDB (Lightning Memory-mapped
Data Base) format that offers the greatest IO-performance to this date [8]. Once the
needed databases are prepared, the Caffe model handles the loaded training data in what
is called Blobs. These are four-dimensional vectors that are integrated with the com-
putational layer design. All of this combined results in groundbreakingly fast training
processes, which is key since the future of deep machine learning depends on the possi-
bility to perform heavy training processes within a reasonable amount of time.

2.6 ILSVRC

The ImageNet Large Scale Visual Recognition Challenge, or ILSVRC, is the benchmark
and state-of-the-art determining competition focusing on object category classification
and detection. Starting in 2010, the competition has been held annually, and the amount
of participants has been rising steadily. It resembles the older competition PASCAL VOC
that was first held back in 2005 [10]. Both PASCAL VOC and ILSVRC consist of two
main parts: the publically available dataset that is supposed to enable researchers to
deepen their knowledge in the field of object recognition and detection, and the annual
competition where solutions are discussed, developed, but first and foremost tested with
a standardized evaluation procedure. This way, each year, the number one categorical
object recognition algorithm can be determined [33].

The images used for the ILSVRC dataset are taken from the ImageNet database [9],
which is a large open database with subsets structured according to the WordNet archi-
tecture [27]. The database is today maintained by the Stanford Vision Lab, Stanford
University and Princeton University [2]. The images are manually annotated, but there
are also images meant for testing purposes that are not annotated. The annotations are
of two different kinds: image-level annotation, which holds for example class informa-
tion about the entire image, and object-level annotation, which usually means position
information about objects in the image. Manually annotating images became a major
challenge when moving from the PASCAL VOC challenge, which had about 20000 im-
ages in 20 different classes [10], to ILSVRC which includes more than 1.4 million images
in 1000 classes. The solution to provide accurate large scale annotations was to apply
different crowdsourcing solutions, such as the Amazon Mechanical Turk [33].

ILSVRC is divided into several subchallenges, where two are of certain interest for
this thesis. The first one is Image Classification, where the algorithms competing create a
list of objects categories that they conclude are present in the image. The dataset for this
challenge are photographs carefully collected from Flickr and other search engines (like all

10

2. Theory

images in ImageNet) and are manually labelled with 1000 categories. Each photograph
has an image-level annotation in the form of a ground truth class label. The training
set consists of 1281167 images (732 to 1300 for each class), the validation set has 50000
images (50 for each class), and finally the test set with 100000 unlabeled images [33].

The second subchallenge focuses on single-object localization. Here, the algorithm
should produce a list of object categories presumably present in the image, but also
a bounding box for each present category that is axis-aligned and properly scaled. The
dataset used is a subset of the one used in the Image Classification, limited by the amount
images that include object-level annotations in the form of bounding boxes. Each image
present in the subset includes one bounding box. The training set here consists of 523966
images (91 to 1268 for each class), but the validation set and test set are the same as for
the classification task [33].

2.6.1 Licensing

Regarding legal issues when making use of the ImageNet database, it is important to note
that ImageNet does not own the copyright to these images. They only provide access to
them for non-commercial and educational use [2]. Being internet photos collected from
search engines, they might very well be under copyright. The ImageNet metadata, such
as labels, bounding boxes etc., is declared to be freely available [2]. Uncertainty arises
when training a model using this data, is it then permitted to, for example, release this
model for unrestricted use? The research team behind the platform Caffe have faced
this particular problem, and their understanding is that no restrictions are placed on the
open release of the learned model weights. This holds since none of the original images,
in whole or in part, are distributed. Hence, the model itself is generally not considered
derivative work of the copyrighted images [1].

2.7 Knowledge distillation

When trying to achieve the highest accuracy possible with, for example, classification
models based on neural networks, a common option is to create an ensemble of large
models. These models can be specialized towards different tasks and by averaging their
results, usually with some kind of weighted sum, one can achieve very high accuracy.
It is no secret, however, that these big ensembles are very cumbersome and computa-
tionally expensive, which makes them unsuitable for real time applications [20]. Several
approaches have been tried to address this problem, and it has been shown that large
models or ensembles like these can in many cases, using new training structures, be com-
pressed into smaller models [6]. Using for example a highly generalized but cumbersome
model, one can use what is called distillation to transfer knowledge to a small model that
is more suitable for deployment.

When performing knowledge distillation, the goal is to make use of the entire prob-
ability distribution computed by the cumbersome model, not just train against a single
label. The relative probabilities of all the incorrect classes contain a lot of information
on how the cumbersome model tends to generalize. The goal is to, instead of trying to
optimize the small model on training data, use the pre-trained cumbersome model to

11

2. Theory

make the small model generalized and perform well on test data [20].
The class probability distribution from a classifying model is usually computed by

ending the model with what is called a Softmax-layer:

qi = ezi/T∑
j e

zj/T
(2.7)

Here, qi is the probability of class i, and T is the temperature of the Softmax implemen-
tation. A higher temperature results in a softer distribution of probabilities. The last
variable, zi, is the logit corresponding to class i, meaning its corresponding value from
the second last layer (the usually fully-connected layer before the Softmax that has the
same number of outputs). In order to make the distributions computed by both models
more easily and efficiently comparable, a higher temperature Softmax function is used
during training. Raising the temperature parameter smoothens out the distributions.
Using a high-temperature distribution as target is called using soft targets. Having high
entropy among these targets means that more information is included per training case
and results in less variance in the model gradients. On the other hand, in this context
training with regular labels and low temperature is called hard targets [20].

In order to describe the distribution matching model, the logits of both networks must
be used. Let zi be the logits of the distilled model (with probabilities qi) that is to be
trained, and vi the logits of the cumbersome model (with probabilities pi) which have been
produced in advance. The models are compared using a cross-entropy loss. Cross-entropy
is an information-theoretic distance between two probability distributions, basically a
measure of their similarity. A smaller cross-entropy corresponds to the distributions being
more similar. With the temperature of the Softmax used being T , the cross-entropy loss
C for the two probability distributions becomes [25]:

C(p,q) =
∑
i

pi · log
(
pi
qi

)
(2.8)

The resulting cross-entropy gradient ∂C/∂zi that controls the backpropagation becomes:

∂C

∂zi
= 1
T

(qi − pi) = 1
T

(
ezi/T∑
j e

zj/T
− evi/T∑

j e
vj/T

)
(2.9)

The derivation of this gradient is described in Appendix A. If the temperature T is high
compared to the magnitude of the logits, this can be rewritten as:

∂C

∂zi
≈ 1
T

(
1 + zi/T

N +∑
j zj/T

− 1 + vi/T

N +∑
j vj/T

)
(2.10)

Here, N is the number of classes. Assume that the logits are zero-meaned separately for
each transfer case, meaning that

∑
j zj = 0 and

∑
j vj = 0. Then (2.10) simplifies to:

∂C

∂zi
≈ 1
NT 2 (zi − vi) (2.11)

This concept has proven effective and has also been implemented for Caffe [38]. Regarding
the choice of temperature, Hinton et. al have shown that when the smaller model has

12

2. Theory

large intermediate layers T = 8 and above produce similar results. When these layers
are smaller, T = 2.5 − 4 shows better results than both below and above. Using this
concept, it has been shown that distilling works well for transferring knowledge from a
highly regularized model into a small and light model [20].

An important question to address is how to combine soft and hard targets when
training. Combinations of the two have shown promising results, for example using a
weighted average. Here, it is important that the training is more heavily based on the soft
targets to achieve good results. It must also be taken into account that the magnitudes
of the gradients for the soft targets scale as 1/T 2 and therefore has to be multiplied by
T 2. This way, the relative contribution stays the same when the temperature is changed
for the soft targets [20]. Another approach is to use the soft-targets as pre-training. The
hard targets are then used to perform fine-tuning on the model to make it more precise.
This has also proven to be successful [39].

2.8 OpenCV

Computer vision can be defined as the transformation of data from a still or video camera
into an actual decision or possibly a new representation. A new representation could
mean extracting and presenting contextual information, and a decision could be determing
whether certain information is contained in the data or not. As visual creatures, it is easy
to imagine this as a relatively simple task, but a computer is very different from the human
brain. The brain has an advanced prioritizing attention system that makes decision based
on reference. A computer on the other hand has to find the right information in a noisy
numeric grid without reference, which of course has proven to be a difficult task.

In order to hopefully improve the results within this field, in 2000, OpenCV was
released [4]. OpenCV is an open source computer vision library that aims to provide
basic tools for solving computer vision problems. It is written in C and C++ and runs
on all major platforms. Today it also features a Python binding. It is designed for multi-
core usage and includes hundreds of functions covering fields such as medical imaging,
security, stereo vision and robotics. Its high-level features may in many cases be enough
to handle the task at hand, but mostly it is about creating code using the basic features
and create a solution tailored for your task. Since computer vision and machine learning
go hand in hand, OpenCV also features a full-fledged machine learning library [5].

2.9 Harris corner detector

In the early days of image processing, state-of-the-art edge-filtering models were not able
to handle junctions and corners. A small change in edge strength or in pixellation would
cause large changes in the edge topology, which was a big issue. The solution was to
create a combined corner- and edge detector, and the result was what is called the Harris
corner detector [17].

The model considers a local window in the image. In order to avoid noise, it uses
a smooth and circular gaussian to describe the window. The point (u,v) in the win-
dow region w around the point (x,y) in the image can hence be written as wu,v =

13

2. Theory

e−((u−x)2+(v−y)2)/2σ2
, where σ is the variance. The model aims to determine the aver-

age changes of image intensity when shifting the window in different directions. If the
image intensity is written as I, the change E based on a shift (x,y) can be written as:

Ex,y =
∑
u,v

wu,v[Ix+u,y+v − Iu,v]2 (2.12)

By performing a taylor expansion, this can be rewritten as:

Ex,y =
∑
u,v

wu,v[xX + yY +O(x2,y2)]2 (2.13)

Here, X and Y are defined as:

X = I ⊗ (−1,0,1) ≈ ∂I

∂x

Y = I ⊗ (−1,0,1)T ≈ ∂I

∂y

(2.14)

The operator ⊗ is defined as the vector to the right applied (using multiplication) to each
position in the matrix to the left, then summed over to create a new matrix. For small
shifts, E can be written as:

E(x,y) = Ax2 + 2Cxy +By2 (2.15)

Where A, B and C are defined as:

A = X2 ⊗ w
B = Y 2 ⊗ w
C = (XY)⊗ w

(2.16)

Define the 2 × 2 symmetric matrix M:

M =
[
A C
C B

]
(2.17)

For small shifts, E can now be written as the matrix multiplication:

E(x,y) = (x,y)M(x,y)T (2.18)

The eigenvalues of M , α and β, are proportional to the principal curvatures. Using them,
it is possible to form a rotationally invariant representation of M . The result is one of
three cases:

• If both eigenvalues are small, the intensity is approximately constant
• If one eigenvalue is high and one is low, the functions is ridge-shaped in this region.

This indicates and edge.
• If both eigenvalues are high, the function has a peak. This indicates a corner.

With the determinant of M being αβ and the trace α+β, a final score R used to evaluate
the result of the algorithm is given by:

R = det(M)− k(trace(M))2 (2.19)

14

2. Theory

Here, k is a free parameter. When the magnitude of R is small, the region is flat, when R
is negative the region includes an edge, and when R is large the region is a corner. The
balance between these states is given by the parameter k.

This concludes the Harris corner detection algorithm, which can in fact detect both
edges and corners [17]. This algorithm also has a highly efficient implementation included
in the OpenCV library.

2.10 State of the art

In this section, today’s best performing models in different specialties are presented.

2.10.1 Classification

Classification is a typical machine learning task that has been steadily developed for
decades. It has in recent years however taken large steps because of the rapid development
of deep machine learning. The best model structure to date is the so called residual
network, which is presented below.

2.10.1.1 Residual Networks

The depth of a neural network has been shown to be of crucial importance. As larger
and deeper models are being developed and also have started converging, a so called
degradation problem has been exposed. As the network becomes deeper, its accuracy
tends to saturate and degrade rapidly. Surprisingly, this is not caused by overfitting, and
adding more layers to a suitably deep model actually increases the training error in many
cases. Since these layers could be modelled as identity mappings, the resulting training
error should be no higher than that of the original model. This phenomena suggests
that solvers could be struggling when approximating identity mapping using multiple
non-linear layers [19].

In order to tackle this issue, scientists from Microsoft research have developed a so
called deep residual learning framework [19]. Instead of hoping that a few stacked layers
will successfully get the underlying mapping, this framework forces them to explicitly fit
a residual mapping. This approach is supposed to be easier than matching the original
unreferenced mapping. This concept is realized by using shortcuts in the network that
represent an identity mapping. These shortcuts are made around network building blocks.
The input to the segment of stacked layers is added to its output, thereby creating a
residual mapping [19]. An illustration of this can be seen in Figure 2.1. The authors have
then created an ensemble of models making use of this framework. They are all trained
end to end on the ILSVRC dataset using stochastic gradient descent, backpropagation
and Caffe [19].

During the training of these models, the developers made three important observations
[19] :

• Models based on deeper networks tend to produce lower training errors, which also
is generalizable to validation. This insinuates that the degradation problem has
been addressed.

15

2. Theory

• The top-1 classification error (ratio of cases where the correct class does not get
the highest score) is reduced compared to state of the art models, which shows that
residual learning is effective on deep systems.

• For smaller depth, the results of the models trained show results comparable to
those from a plain model (without residual learning). However, the convergence of
the residual network is significantly faster!

Figure 2.1: An example of a residual mapping. The input x is fed into the network
building block, in this case consisting of two layers equipped with weights (e.g. convo-
lutional or fully connected) with an intermediate ReLU-layer. The mapping performed
by this block is denoted F (x). The input is also fed via a shortcut around the block,
resulting in an identity mapping. The output of of the block and the shortcut are added
up to F (x) + x, creating the sought residual mapping.

The 152 layer residual net developed in [19] is the deepest model ever to be trained
on and applied to ImageNet. Still, due to the new framework its complexity is lower
than for the well-established VGG16/19 networks [34]. It performs a 4.49% top-5 error
(ratio of cases where the score of the correct class is not in the top 5) on the ImageNet
classfication set, which outperforms all previous models. An ensemble of six residual
models, including two 152 layer deep ones, has managed to perform a top-5 error of
3.57%. This ensemble won first place in the ILSVRC 15 classification competition. Due
to its great generalization, the Microsoft Research team also ended up winning ImageNet
detection and ImageNet localization using models based on residual nets [19].

2.10.2 Localization

The object localization task has been considered very difficult throughout the years, but
recently even this field has seen groundbreaking development. Today, even real-time
applications are considered and developed. The latest and best performing concept so far
is the Faster R-CNN framework, presented below.

16

2. Theory

2.10.2.1 Faster R-CNN

Region-based convolutional neural networks (R-CNN) is today the number one choice in
object detection models. They were originally computationally very expensive, but due
to efficiency improvements such as convolutional implementations being shared among
object region proposals, this has recently changed. A late and established implementation
of this concept is the Fast R-CNN framework [14]. This can be used for near real-time
object localization using deep neural networks, but this is only valid if the time spent
on producing region proposals is ignored. Producing region proposals is a tedious and
inefficient process that usually is based on a CPU implementation. This causes problems
and eliminates the benefits of a synchronized GPU architecture. A GPU implementation
is the obvious solution, but even though a separate GPU implementation for detection
and for producing region proposals would be an improvement it would still not make use
of shared computation, which is more efficient [31].

In the new framework Faster R-CNN, developed by Microsoft Research, what is called
Region Proposal Networks (RPN) is introduced. An RPN shares convolutional layers with
the object detection network, thereby making computations much more efficient. It looks
at both map positions and objectness scores to create multiple region proposals that are
of both varying scales and aspect ratios. In order to train this integrated all-GPU-model
efficiently, a new training scheme that alternates between fine-tuning the region proposal
part of the model and the object detection part has been developed. The result is a unified
network that converges nicely. Faster R-CNN, which consists of RPN combined with Fast
R-CNN, is considerably faster than for example the benchmark method Selective search
[37] combined with Fast R-CNN. Its groundbreaking speed and high accuracy makes it
the state of the art of object localization [31]. Another show of this is that RPN was used
together with residual nets to win ImageNet localization challenge in ILSVRC 15 [19].
Fast R-CNN object detection, however, was not used, and the authors believe that using
this could improve results even further.

17

2. Theory

18

3
Methods

In this chapter, the methodology and materials used in this thesis are presented. Also
described are the structures of the produced models for classification and localization.

3.1 Hardware and software

The setup used to perform the training sessions included in this thesis was based on
a Dell Precision Workstation T7500. When purchased, this was a power house made
for simulations and graphics, and it still delivers the ability to perform many types of
high-performance computing. Its specifications are presented in Table 3.1.

Name Dell Precision Workstation T7500
CPU Double Intel Xeon X5660 (12 cores) @ 2.80 GHz
GPU Nvidia Quadro 4000
Memory 12 GB DRR3 RAM 1333 MHz
Storage 600 GB 15000 RPM
OS Ubuntu 14.04 LTS 64-bit

Table 3.1: Specifications for the hardware setup used in this thesis.

All programming done to perform preprocessing of the images and control the training
sessions was done in Python using the Anaconda Python distribution1 including a large
range of packages and modules. The used IDE (integrated development environment)
was PyCharm2. The GPU was using the Nvidia 352.21 graphics driver and handled
computations via CUDA release 7.5-18. Setting up, designing and training the neural
network models was done with Caffe through its Python binding module: pycaffe. The
graphs shown in chapter 4 were made using Matlab.

3.1.1 GPU

Because of the development of these models being based on GPU-computing for faster
and more efficient training, the GPU played a very important role for the results of this
thesis. The specifications of the GPU used in this work is presented in Table 3.2.

1https://www.continuum.io/why-anaconda
2https://www.jetbrains.com/pycharm/

19

https://www.continuum.io/why-anaconda
https://www.jetbrains.com/pycharm/

3. Methods

Name Nvidia Quadro 4000
Release year 2010
GPU clock 475 MHz
Memory 2 GB GDDR5
Memory clock 702 MHz
CUDA cores 256
CUDA CC* 2.0

Table 3.2: Specifications for the GPU used for performing computations in this thesis.3

*: CUDA Compute Capability, an index to measure the GPU:s computational perfor-
mance.

It should be mentioned that the Quadro 4000 is not a GPU specialized for compu-
tation, but rather for CAD and 3D graphics. As shown in Table 3.2, it was released
several years ago and it also has a CUDA Compute Capability (index used to grade
computational performance) of 2.0, which today is relatively low.

3.2 Models

This section will explain the design and structure of the models designed for the different
tasks. For each task, the actual Caffe model was specified in a Protocol Buffer file. This
file determined which LMDB databases to load, the batch sizes (which are used to create
the random subsets for stochastic gradient descent), all the layers and their parameters,
and the different outputs. Since the same file was used for both training and validation,
layers and features exclusive to one of the phases were specified as well (validation is
called TEST in Caffe).

3.2.1 Classification

For the classification task, the model was designed to be a compact convolutional network
that would be trained using knowledge distillation. By making use of the knowledge of a
larger network, one could produce a compact model that then could be fine-tuned towards
a certain task. The logits representing the cumbersome model were produced in advance
by the ResNet-50 model, a large but not very complex residual network developed by He
et. al [19]. This choice as the cumbersome model was made based on residual learning
having the role of state-of-the-art, but also because its size offered reasonable computation
time to produce the logits on the current hardware. An illustration of the knowledge
distillation setup is shown in Figure 3.1.

3http://www.nvidia.com/object/product-quadro-4000-us.html

20

http://www.nvidia.com/object/product-quadro-4000-us.html

3. Methods

Figure 3.1: The knowledge distillation setup. The ResNet-50 model is used to produce
the logits vi in advance. During the training process, logits zi are produced by the
designed classification model and are fed together with logits vi into a high temperature
Softmax layer. This layer then produces the cross-entropy loss with associated gradients
used to train the model.

The images and labels, for both training and validation, were imported using a data
layer. The logits were handled by a separate data layer.

During training, the batch size (for all data types) was 50, and for validation it was 20.
The model was designed as a small standard convolutional network using convolutional,
pooling, ReLU and fully connected layers to process the data. The number of outputs
and parameter values were based on the model being of a sought after size but still have
filters covering different scales and aspect ratios. The resulting structure of the model is
given in Table 3.3.

Name Type Nbr. of outputs Kernel size Stride Padding
conv1 Convolutional 256 11 5 1
relu1 ReLU - - - -
conv2 Convolutional 128 7 3 1
relu2 ReLU - - - -
conv3 Convolutional 128 5 1 1
relu3 ReLU - - - -
pool1 MAX Pooling - 4 3 0
fc1 InnerProduct 1024 - - -
relu4 ReLU - - - -
drop1 Dropout - - - -
distil logits InnerProduct 1000 - - -

Table 3.3: Table showing all the intermediate layers and their parameters for the
classification model.

The dropout layer is a simple function that, during training, sets each input to zero
with a probability based on a user set parameter. Here, that parameter was 0.5. For the
convolutional layers, the weights were initialized using a Gaussian distribution with mean
zero and standard deviation of 0.01. The biases were initiated as zero. The same went
for the final fully connected layer. The first fully connected layer, however, had its bias
set to one and weights initiated with a Gaussian with standard deviation 0.005. For all

21

3. Methods

layers included in the backpropagation, the bias experienced a double learning rate and
no weight decay.

After creating the distilled logits, three different layers were used to create the output
of the model:

• hard loss: A Softmax layer that produces a multinomial logistic loss based on the
image labels.

• soft loss: A high temperature (T = 6) Softmax that takes both the distilled logits
and the logits from ResNet-50, performs mean-value normalization on both, and
then computes a cross-entropy loss according to equation (2.8). Based on the Caffe
implementation by Noord [38].

• accuracy: Only included in validation, computes a ratio of correct predictions on
the validation set.

This concludes the classification model. A graphical representation produced in Caffe
can be seen in Figure B.1.

3.2.2 Localization

To take on the localization task, the model designed was something of a hybrid. To
extract relevant features from an image, it made use of the Harris corner detector in
OpenCV. This was implemented using the Python layer in Caffe, where custom Python
code can be run as a layer in a Caffe model. The output from this layer was then sent
through a small convolutional network in order to try and determine the bounding box.
The size of the model was very much determined by the limited memory of the GPU.

Just as in the classification case, the images for both training and validation were
imported into a data layer. Just like the logits, the bounding box values were imported
into a separate data layer. The batch sizes were also the same: 50 for training and 20 for
validation. The design of the network was, just like for the classification model, a standard
convolutional network. A difference was that the localization model did not include a
pooling layer. Since the model tries to work on singular pixel precision, downsampling
the data is not an option. The final structure of the network processing the data is shown
in Table 3.4.

For all the layers involved in the backpropagation, the weights were initialized accord-
ing to a Gaussian distribution with mean zero and standard deviation 0.01. The biases
were initialized with the value one, experienced double learning rate and no weight decay.

After producing the bounding box predictions, these were compared to the ground
truth values. This was done using a Euclidean loss layer, that then produced the final
output of the training and validation network: loss bbox. The euclidean loss between
the prediction- and target vector is computed using the expression:

1
2N

N∑
i=1
||x1

i − x2
i ||22 (3.1)

Here, N is the number of parameters defining the bounding box, x1 is the prediction
vector and x2 is the target vector. This concludes the localization model. A graphical
representation produced in Caffe can be seen in Figure B.2.

22

3. Methods

Name Type Nbr. of outputs Kernel size Stride Padding
corner harris Python - - - -
conv1 loc Convolutional 32 7 2 3
conv1 loc relu ReLU - - - -
conv2 loc Convolutional 128 5 2 1
conv2 loc relu ReLU - - - -
conv3 loc Convolutional 128 3 1 1
conv3 loc relu ReLU - - - -
conv4 loc Convolutional 32 5 1 0
conv4 loc relu ReLU - - - -
bbox pred InnerProduct 4 - - -

Table 3.4: Table showing all the intermediate layers and their parameters for the
localization model.

3.2.2.1 Harris corner detector from OpenCV

As mentioned above, the localization model used the Harris corner detector from OpenCV
as a layer in the network to perform the first step of feature extraction. The Caffe Python
layer used to implement this function was written as a regular Python file that imported
the Caffe layer structure. It was specified in the file that this layer would not handle any
backpropagation. The layer would thereby only be used in the forward computation and
be excluded in the learning process.

When an image was provided to the layer, it was converted to gray scale by averaging
over all channels. The resulting image was then sent to the OpenCV function, that would
take in three other parameters: blocksize, which is the size of the neighborhood considered
for detection, ksize, which is a parameter for the spatial derivative computation, and k,
which is the free parameter in the score equation (2.19). These parameters were set to
2, 3 and 0.04 respectively. Once the scores were calculated for all positions in the image,
the output of the layer (which was of the same dimensions as the gray scale image) was
set to one for all scores above 1% of the maximum score, and zero otherwise. This way,
corners in the original image were highlighted for the remaining parts of the model. An
example showing the method applied to an image from the training set can be seen in
Figure 3.2.

23

3. Methods

Figure 3.2: The implemented Harris corner detector applied to an image [11] from
the training set. The left figure is the original image resized to 224× 224. In the middle
figure, the image has been preprocessed according to Section 3.3.1.1 and then fed through
the corner detector. The output is then presented on top the original image, with green
indicating found corners. The right figure shows the actual output, where one-values are
shown in green and zero-values shown in black.

3.3 Dataset

The ImageNet database includes a synset named Ashcan, trash can, garbage can, waste-
bin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin that contains a considerable
amount of objects interesting to the purpose of this thesis amongst its 1315 images. This
synset is also included in the ILSVRC data set for classification and localization (CLS-
LOC), which resulted in the ILSVRC data being used as training and validation data for
the models in this thesis. The number of images from the data set used are shown in
Table 3.5.

ILSVRC Training Validation
Classification 1281167 21980
Localization 544546 21980

Table 3.5: The number of images from the ILSVRC dataset used. For both classification
and localization, there was a training set and a validation set. The images were of varying
resolutions, and the ones in the localization set all included one bounding box.

There were several reasons to why the numbers differed from the ones presented in
Section 2.6. First of all, the training set for the localization task had new images added to
it recently, hence the increased number. Furthermore, the size of the validation set (which
was the same for both tasks) was unfortunately decreased because of a faulty download
resulting in corrupt files (from 50000 to 21980 images). However, the remaining amount
was in the same order of size, close to evenly divided between classes, and its size could
be beneficial (from a training time perspective) when working with limited hardware
performance.

24

3. Methods

All images involved were JPEG color images (RGB) with varying resolutions. The
constellation of each image focuses on one specific object and was only labeled with one
class. All the images in the localization training set were also included in the classification
training set, but they also included one bounding box. The validation set was the same
for both tasks and all images in the set included a bounding box. For the training sets,
the label was given in the file name. For the validation set and the localization task, each
image came with a XML-file containing the label and the bounding box given as the four
values xmin, ymin, xmax and ymax.

3.3.1 Preprocessing

In order for Caffe to achieve the best possible IO performance when going through large
batches of images (or other data), a series of preprocessing actions had to be applied to
the datasets used. Most of the adjustments were made using the transformer module
included in Caffe, and the data was then packaged using the LMDB format.

3.3.1.1 Classification

For the classification task, images, their labels and their logits produced by the ResNet-50
model had to be prepared. Starting with the images, they were first resized to a resolution
of 224 × 224. Next step was to transpose them, so that the first dimension of the array
representing the image became the number of channels. Regarding colors, the channels
were switched to BGR (Blue-Green-Red) instead of the standard RGB. This was because
of Caffe preferring to handle images with this arrangement. The color channels were
then rescaled from the zero to one scale to zero to 255. The ImageNet-mean for each
channel (included in the Caffe distribution) was then subtracted in order to make the
color channels zero meaned. Once all of the training images had been randomly shuffled
(the validation images already were) to make sure different classes are not segregated,
the images were now ready to be entered into the LMDB database.

The database was built around objects called datums, which have their definition
included in Caffe. Data was entered into a key-value system, where each datum was
given an index. For each datum, the image data, the number of channels, the height,
the width and the label were entered separately. Once all datum objects were saved into
the database, the LMDB environment was closed and saved. The same procedure was
carried out for both the training set and the validation set.

For the logits, a special version of the ResNet-50 model was created where the final
smoothening Softmax-layer was removed. The new model output was then the logits
coming directly from a fully connected network. In order to create these, the model
was iterated through the newly created LMDB databases containing all the training and
validation images. Each image was passed through the network to create a vector with
1000 logits. Once the data was created, the logits were stored in the same kind of datum
objects as for the images, but with some modifications. The number of channels was set
to 1000, the height and width both set to one, and instead of using the standard image
data field the float data field was used to store the logits. The datum was then inserted
in a new LMDB database created specifically for the logits, where it was given the same
index as its corresponding image in the main LMDB. The same procedure was carried

25

3. Methods

out for both the training images and the validation images.

3.3.1.2 Localization

The images from the complete (shuffled) ILSVRC CLS-LOC training set that should also
be included in the localization training set were determined by checking the existence of
a corresponding XML-file to each image. Once the set of images to be used was known,
the image preprocessing happened in the same way as for the classification training set
described above. The validation set is the same for both tasks, hence the LMDB database
created for the classification task could be reused.

What separated the data preparation for the localization task were the bounding
boxes. As mentioned they were stored in XML-files as four variables: xmin, ymin, xmax
and ymax. For each image, these four values had to be rescaled according to the new size
of the images: 224 × 224. Since the XML-file also included values describing the original
image format, this action could be easily performed using Python. Once these values
were computed, they were inserted into separate LMDB databases, one for training and
one for validation. The data storage was formatted in the same way as for the logits in
the classification task using the float data field in the datum object. The indices used for
keys in this database of course matched the ones used for the image LMDB:s.

3.4 Training process

The training of the models described above was carried out using the Caffe SGDSolver
module (SGD stands for stochastic gradient descent). All the parameters of the training
were specified in a Protocol Buffer file. Once the training was started, the solver loaded
both the training- and validation network and calculated the amount of memory needed
for the computations. It then started training the model according to the specifications.
The solver was set to create a snapshot of both the weights and the solver state every 5000
iterations (one iteration being the processing of one batch). All the parameter settings
for the solver can be seen in Table 3.6.

Almost all of these parameter values were standard for the Caffe SGDSolver. The
learning rate, however, was decreased from 0.01 to 0.001 in order to offer better conver-
gence. Both when training the classification and the localization model, when to stop
the training was given by when the validation error started increasing (which indicates
overfitting) or when the loss value stagnated. The computation time was also a limiting
factor.

26

3. Methods

Test iterations 1099
Test interval 1000
Base learning rate 0.001
Learning rate policy step
γ 0.1
Stepsize 100000
Momentum 0.9
Weight decay 0.0005

Table 3.6: Table showing the used solver parameters. Test iterations is the number
of batches used during validation (1099 ∗ 20 = 21980). The Test interval is how often
(measured in iterations) the solver performs validation. The learning rate policy being set
to step means that every Stepsize iterations, the learning rate (which from the start is set
to Base learning rate) is multiplied by γ. The momentum and weight decay parameters
are the same as µ and λ in equation (2.6) and are meant to stabilize the training procedure.

27

3. Methods

28

4
Results

In this chapter, the results of the training processes executed using the models in the
previous chapter are presented.

4.1 Classification

The training of the classification model was first carried out using a combination of the
hard loss and the soft loss, with Caffe computing gradients based on both. Unfortunately,
the results were far from satisfactory, with the soft loss diverging into non-numerical values
after just a few iterations. Different learning rates were tested, all resulting in divergence.

The second approach tried was to use the soft loss only (pure knowledge distillation)
as pre-training in order to smoothen out the network output, before fine-tuning it using
the hard loss training. Even though this approach is supported by previous work, again
the soft loss diverged heavily and early. Also with this approach, the loss ended up taking
on non-numerical values, even when the learning rate was decreased.

The final approach was to start the training using only hard targets, basically a typical
machine learning training session using images and labels. This would move the model
closer to a proper classifier in weight space (at least closer than the randomly initiated),
and thereby allow the soft loss to generalize the results without divergence. The hard loss
training for the validation set can be seen in Figure 4.1. Its accuracy on the validation
set can be seen in Figure 4.2. The reason to why only the validation values are shown is
because they are based on the entire validation set. The training values in each iteration
are based only on the current batch of data (goes for both the classification and the
localization task).

29

4. Results

Figure 4.1: The label-based loss for the validation set during the training of the
classification model as a function of the number of iterations. The loss can be seen to
decrease for about 190000 iterations, before it rapidly returns to the initial level. The
plot was produced using Matlab.

Figure 4.2: The accuracy for the validation set during the training of the classification
model as a function of the number of iterations. The accuracy can be seen to increase
for about 190000 iterations, before it rapidly returns to the initial level. The plot was
produced using Matlab.

The training was allowed to run for 200000 iterations, which with a batch size of 50
corresponds to about 7.8 epochs of the complete training set. This process took about
four days to run. As can be seen in Figure 4.1, after about 190000 iterations, the loss
jumped back to a value close to the initial one. This can be the result of for example
overfitting. Either way, the last 10000 iterations are not interesting when moving on to
the next stage in the training process.

30

4. Results

The next step was to keep training the model (based on the snapshot from 190000
iterations), now using soft targets to smoothen out its mapping. Unfortunately, again,
training with the soft loss resulted in almost immediate divergence, even for lower learn-
ing rates. Throughout the try to train this compact model to perform above the level
proportionate to its size, the concept of knowledge distillation has not worked at all.

4.2 Localization

The results from the training of the OpenCV-hybrid based localization model are shown
in Figure 4.3, which is a plot of the validation loss against the number of iterations.

Figure 4.3: The bounding box-based Euclidean loss for the validation set during the
training of the localization model as a function of the number of iterations. The loss can
be seen to start at a higher value before suddenly dropping. The loss then stabilizes and
remains about the same for the entire training session.

As can be seen in the figure, the model exhibits rapid convergence to a steady value
that was held throughout the training. The training is allowed to run for 80000 iterations,
which with a batch size of 50 images corresponds to about 7.3 epochs of the localization
training set. This took about three days to run. Despite the fast convergence, the loss
value is still rather high considering the nature of the Euclidean loss. When applied to
images from the training set, the model seems to produce the same bounding box for each
image (after being cut to fit inside the image): positioned at (41,43) with width 182 and
height 180. Lowering the learning rate during training to 0.0001 does unfortunately result
in the same behavior. How the model produces bounding boxes on the actual training
set can be seen for a few example images in Figure 4.4.

31

4. Results

Figure 4.4: Examples of the bounding box-producing localization model applied to
images [11–13] from the training set. In the figure, the images are resized to 224 × 224.
The model can be seen to produce the same red box for each image (at (41,43) with
width 182 and height 180), which indicates that the model performance stagnated during
training.

32

5
Discussion

This chapter reflects on the results from this thesis, discusses its relevance and suggests
future course of action.

5.1 General considerations

Apart from the models developed, there are some aspects regarding the project as a whole
that are worth mentioning before moving on to the results.

5.1.1 Steep learning curve

As this thesis has developed, it has become clear that machine learning and its appli-
cations is a field that has a steep learning curve with a high threshold before actually
achieving relevant progress. The highly theoretical foundation of the concept makes it
some what unattainable, and it is easy to fall into a false sense of understanding. Machine
learning is by nature a black box-technique with very little insight, and in order to make
the most use of it, it is important to at least know what the different possibilities and
strategies are.

With high-level science comes high-level tools, and considering the amount of research
and follow up needed to successfully set up the hardware and software needed to perform
this kind of research, the original time frame of this thesis was some what skewed. GPU
computing is still in heavy development and the community around it is still of a very
academic nature. Hence, full-scaled out-of-the-box solutions are few. Taking the time
to research these tools, however, deepens the understanding of machine learning itself
heavily.

5.1.2 Hardware

The amount of research going into the field of machine learning in recent years have
been substantial, and with that comes a steadily increasing demand on powerful and
reliable hardware. This goes especially for GPU:s, which today are very important for
fast parallelized computing. Going into this thesis, the impression was that a under-
dimensioned GPU would mainly slow down, for example, a training process. As it turns
out, it results in even larger set backs than that. The computation time is definitely
increased, but an aged hardware architecture or, most importantly, an undersized memory
unit severely limits the opportunities of producing relevant results. For example, the GPU
used in this project had a CUDA Compute Capability of 2.0, where as Caffe is developed

33

5. Discussion

on systems with 3.0 or higher. The result is the older GPU showing flaws not even known
to BVLC (developers of Caffe).

Even so, for a thesis like this where the GPU is something of a weak spot, it still
performs many times better than the high-level CPU available. That is an important
fact that emphasizes even more the importance of GPU computing. This also hits both
ways, since in most cases the hardware is not powerful enough to support sophisticated
models in real-time applications, but neither light enough to be used in low-scale hardware
applications.

5.2 Evaluation of the models

In this section, the models for classification and localization produced are discussed. Their
design, results and academic relevance are covered.

5.2.1 Classification

When designing the classification model, it was known that the model itself was not
supposed to be a standalone model to handle the 1000 class ILSVRC dataset. The idea
was that the concept of knowledge distillation would produce a model that performed
beyond the expectations of a model that size, all to create something applicable to low-
scale performance setups. Unfortunately, the distilling process ended up producing no
relevant results due to heavy divergence. Exactly what this was caused by is hard to
pin-point. Usually, the training time provided to the system is a matter to discuss, since
there is often a possibility that the used loss function may experience another drop within
a reasonable amount of iterations. However, since the soft target loss diverged into non-
numerical values, there was never any chance that the tide would turn and the results
would come around. The training was lost at an early stage, and there must have been
a structural failure that did not allow the system to adapt to the provided logits.

A probable reason for the poor performance of the knowledge distillation would be the
choice of the cumbersome model providing the knowledge: the residual model ResNet-
50. In the literature that was studied regarding knowledge distillation, any explicit re-
quirements on the relationship between the structure of the cumbersome model and the
distilled model were never provided. Hence, the residual structure was considered merely
because of it being considered state of the art. It is clear that the architecture of a
residual model, with its typical identity mappings, is very distinct. It is likely that the
model to be distilled basically could not pick up on the mapping from the cumbersome
model, and therefore never learned from the logits. Structures with a stronger resem-
blance with residual networks were tried for the distilled model during development, but
did not perform differently.

Once it was clear that training the model on a combination of the two losses or pre-
training it using the logits did not work, there were few options. The available data was
not task-specific enough to fine-tune an existing but generalized model, which could have
been a good way to proceed. The ILSVRC set was chosen because it contained one class
out of 1000 that was at least task-relevant, and it would hopefully produce a generalized
model that could be fine-tuned at a later stage. Furthermore, the available hardware was

34

5. Discussion

not powerful enough to be able to train a model from scratch (on the entire ILSVRC set)
that would be academically relevant and better than any freely available state-of-the-art
model. The choice was therefore made to move on to pure hard loss training of the
distilled model. Again, the model was never expected to perform well on this training
alone, and when the soft target training still would not pick up even after the model
has been further specialized, it was clear that no relevant results would come out of it.
However, it is in itself quite extraordinary that a model this small would be able to (on
a data set with almost 22000 images) predict the correct class (out of 1000) one sixth of
the time.

5.2.2 Localization

The localization model showed great convergence at the early stages of training as its
training loss dropped several orders of magnitude. The loss did however stabilize at a
rather high value, and with a batch-average loss over 3000, the average error (according
to equation (3.1)) for one value in the bounding box prediction would be about 80 pixels.
Considering that the side of the resized image used is 224, this value is very large and
results in poor predictions. It was also shown when applied to images from the training
set that the model was producing the same output regardless of input. It is clear that
the training early converged into a local minimum resulting in very poor accuracy, which
surely has several reasons. One design choice that may have caused the convergence to
stagnate would be the use of a Euclidean loss. Due to its quadratic properties, the loss
minimization is done on the wrong scale. It is unable to perform correct adjustments on
the scale of singular pixels, which is what is needed to compute correct bounding boxes.
There is also the fact that Euclidean loss is mirrored in sign, meaning that negative pixel
positions could be accepted, and worse case, preferred during training.

Another important factor for the performance of the localization model is of course
the use of OpenCV and the Harris corner detector. The idea is that information would
be extracted and presented in an efficient manner, so that the machine learning part can
focus on the positioning of the bounding box. An apparent problem is that the OpenCV
function could be removing information useful to the model. Is its net contribution
really positive to the outcome? This is highly dependent on the used parameters. The
free variable, k, determining the score has a major impact on how the model treats the
images. The same goes for the parameters determining how to compute derivatives and
the spatial distribution. Also, when setting the output of the custom Python layer, it is
all based on the score corresponding to a certain ratio of the max score. This ratio is
also a crucial parameter, and this structure means that only corners are considered, not
edges. In order to determine the impact of all these parameters and design choices, a
proper mapping of the parameter space would have been necessary. With a larger time
frame, this kind of investigation would have been prioritized.

An important aspect of the use of OpenCV is that the Python layer reduces the data
amount, from input to output, to only a third. The Python layer therefore takes up
a lot of the available GPU memory, heavily reducing the amount of memory available
to the machine learning model. It is very likely that the main convergence problem for
the model is its very limited size. It should be noted that is was not given that many
iterations to train, but considering how quickly the initial convergence stagnates, it is

35

5. Discussion

likely that the model has reached its full potential. A larger graphics memory would have
allowed a larger machine learning implementation, and this kind of hybrid solution may
not have been optimal for this hardware setup.

5.3 Future work

This section addresses a proper course of action when developing the knowledge within
the topics included in this thesis. This section is one of the main contributions from this
thesis to the work at Volvo ATR, since it approaches the topic with a developing actor
in mind.

5.3.1 Data collection

In order to make machine learning a more easily applicable technique in the future, ex-
tensive data collection has to be integrated into the daily work of both industry and
academia. To efficiently design and train models made for certain tasks, large amounts
of task-specific but yet varied data has to be provided. One of the major issues is still,
however, that as much of the data as possible has to be annotated. Supervised learning
is still a very common approach when training for example a neural network, and then
labeling data properly is key. Manually labeling data as it is collected is tedious, and a
proper solution to this issue is yet to be found. A first step are the crowdsourcing solu-
tions offered, that aim to streamline large annotation projects for the benefit of machine
learning development. The Amazon Mechanical Turk service has been shown to be a
viable alternative for data collection [29].

Public data sets of different kinds, such as the ILSVRC data set used in this thesis,
are still popping up and can be used to create stable generalized models. These are still
of great importance for the development of the field. When looking at designing models
for industrial deployment, however, the need for data tailored for the application at hand
is obvious.

5.3.2 Addressing the hardware issue

To be competitive and produce valuable results using machine learning, investing in hard-
ware is key. As this field has developed, GPU:s tailored for computation have emerged,
and their prices are steadily dropping. Still, the more graphics oriented products that are
much cheaper can perform rather well for most applications. Depending on what is being
developed, different hardware might be needed during training and deployment. GPU:s
still need a lot of power and ventilation to function, so it is still complicated to make use
of these in, for example, embedded systems applications.

If equipping with state-of-the-art GPU:s for in-house training is not an option, there
is a growing industry around third-party actors offering GPU computing for rent. Com-
panies like Amazon engage in these kinds of services, which for many developers might
be the key to put idea into practice. This way, the opportunity to create and train highly
sophisticated models reaches out to more actors which is of benefit for the entire field.

36

5. Discussion

5.3.3 Model development

Regarding the models produced in this report, there are major flaws that need to be ad-
justed before getting even close to actual deployment. Even though these models perform
quite poorly, this thesis makes out the first step for establishment in the world of machine
learning. Starting from zero, the entire set up of both hardware and software has been
configured and tested, and actual training processes have been carried out successfully
using the state-of-the-art tool Caffe. Knowledge distillation has been shown to work very
well under the right circumstances in previous work, and a larger investigation of the pa-
rameter space and different structures has to be carried out. OpenCV offers well-designed
and efficient models for feature detection, and with the right hardware, these could prove
valuable in a compact machine learning model.

One of the keys to successfully develop new models is balance. Balance between using
existing material and starting from zero. Balance between fine-tuning pre-trained nets
and creating a generalized large-scale model. Balance between outsourcing computation
and investing in the right hardware. Machine learning has created an open community
spanning both academia and industry, and by finding the right balance, many actors have
the opportunity to create accurate and fast models ready for deployment.

37

5. Discussion

38

6
Conclusion

After establishing a solid theoretical foundation and setting up the hardware available,
two models were designed and trained. When applied, both models performed poorly
and did not produce academically relevant results for different reasons.

For the classification model, the knowledge distillation concept did not perform as
expected. A combination of a possibly poor choice of cumbersome model combined with
limited hardware and training time resulted in the model only being trained on traditional
labels. Knowledge distillation has, however, been proven to be effective, and could under
different circumstances be a good alternative for producing a model for limited hardware-
applications.

In the case of localization, the hybrid concept making use of the Harris corner detector
from OpenCV did not perform as hoped. The choice of loss function combined with the
machine learning part of the model being of limited size resulted in early convergence
into a local minimum, which in practice meant producing the same output for all input.
However, the hardware was an obvious issue, and it is not possible to rule out the concept
based on the results in this thesis.

Regarding future work, finding the balance within the two key factors of machine
learning, data and processing power, is crucial in order to be competitive and produce
models ready for deployment in the future.

39

6. Conclusion

40

Bibliography

[1] Caffe model zoo. http://caffe.berkeleyvision.org/model_zoo.html, 2016.

[2] Imagenet. http://image-net.org/index, 2016.

[3] Léon Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the
Trade, pages 421–436. Springer, 2012.

[4] Gary Bradski et al. The opencv library. Doctor Dobbs Journal, 25(11):120–126,
2000.

[5] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[6] Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression.
In Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 535–541. ACM, 2006.

[7] Real Carbonneau, Kevin Laframboise, and Rustam Vahidov. Application of ma-
chine learning techniques for supply chain demand forecasting. European Journal of
Operational Research, 184(3):1140–1154, 2008.

[8] Howard Chu. Mdb: A memory-mapped database and backend for openldap.
LDAP’11, 2011.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[10] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. International journal of
computer vision, 88(2):303–338, 2010.

[11] Flickr. http://farm2.static.flickr.com/1281/908219757_008953b095.jpg,
2016.

[12] Flickr. http://farm1.static.flickr.com/154/409264194_c8baa6ecf4.jpg,
2016.

[13] Flickr. http://farm3.static.flickr.com/2240/1616297688_78c5ed9be4.jpg,
2016.

[14] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1440–1448, 2015.

[15] Volvo Group. Drone to help refuse-collecting robot find refuse bins.

[16] Volvo Group. Refuse truck driver is supported by robot.

[17] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey
vision conference, volume 15, page 50. Citeseer, 1988.

[18] Simon Haykin and Neural Network. A comprehensive foundation. Neural Networks,
2(2004), 2004.

41

http://caffe.berkeleyvision.org/model_zoo.html
http://image-net.org/index
http://farm2.static.flickr.com/1281/908219757_008953b095.jpg
http://farm1.static.flickr.com/154/409264194_c8baa6ecf4.jpg
http://farm3.static.flickr.com/2240/1616297688_78c5ed9be4.jpg

Bibliography

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. arXiv preprint arXiv:1512.03385, 2015.

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[21] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[22] Andrej Karpathy. Convolutional neural networks for visual recognition. Unversity
Lecture, 2016.

[23] David Kirk et al. Nvidia cuda software and gpu parallel computing architecture. In
ISMM, volume 7, pages 103–104, 2007.

[24] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for detecting robotic
grasps. The International Journal of Robotics Research, 34(4-5):705–724, 2015.

[25] Chun Hung Li and CK Lee. Minimum cross entropy thresholding. Pattern Recogni-
tion, 26(4):617–625, 1993.

[26] Donald Michie, David J Spiegelhalter, and Charles C Taylor. Machine learning,
neural and statistical classification. 1994.

[27] George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

[28] J Moody, S Hanson, Anders Krogh, and John A Hertz. A simple weight decay can
improve generalization. Advances in neural information processing systems, 4:950–
957, 1995.

[29] Gabriele Paolacci, Jesse Chandler, and Panagiotis G Ipeirotis. Running experiments
on amazon mechanical turk. Judgment and Decision making, 5(5):411–419, 2010.

[30] Andry Maykol Pinto, Lúıs F Rocha, and A Paulo Moreira. Object recognition us-
ing laser range finder and machine learning techniques. Robotics and Computer-
Integrated Manufacturing, 29(1):12–22, 2013.

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
real-time object detection with region proposal networks. In Advances in Neural
Information Processing Systems (NIPS), 2015.

[32] Martin Riedmiller. Advanced supervised learning in multi-layer perceptrons—from
backpropagation to adaptive learning algorithms. Computer Standards & Interfaces,
16(3):265–278, 1994.

[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[34] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[35] Volvo Trucks. About us. http://www.volvotrucks.com/trucks/global/en-gb/

aboutus/Pages/about_volvo_trucks.aspx, 2012.

[36] Volvo Trucks. How volvo dynamic steering made world-first stunt pos-
sible. http://www.volvotrucks.com/trucks/global/en-gb/newsmedia/

pressreleases/Pages/pressreleases.aspx?pubId=16768, 2013.

42

http://www.volvotrucks.com/trucks/global/en-gb/aboutus/Pages/about_volvo_trucks.aspx
http://www.volvotrucks.com/trucks/global/en-gb/aboutus/Pages/about_volvo_trucks.aspx
http://www.volvotrucks.com/trucks/global/en-gb/newsmedia/pressreleases/Pages/pressreleases.aspx?pubId=16768
http://www.volvotrucks.com/trucks/global/en-gb/newsmedia/pressreleases/Pages/pressreleases.aspx?pubId=16768

Bibliography

[37] Jasper RR Uijlings, Koen EA van de Sande, Theo Gevers, and Arnold WM Smeul-
ders. Selective search for object recognition. International journal of computer vision,
104(2):154–171, 2013.

[38] Nanne van Noord. Caffe-kdistil. https://github.com/Nanne/caffe.git, 2015.
[39] Dong Wang, Chao Liu, Zhiyuan Tang, Zhiyong Zhang, and Mengyuan Zhao. Re-

current neural network training with dark knowledge transfer. arXiv preprint
arXiv:1505.04630, 2015.

43

https://github.com/Nanne/caffe.git

Bibliography

44

A
Cross-entropy gradient derivation

In the process of knowledge distillation, the cross-entropy loss is computed based on two
probability distributions: probability qi for class i for the distilled model (based on logits
zi), and probability pi for class i for the cumbersome model (based on logits vi). The
probabilities are produced using the Softmax function on the logits:

qi = ezi/T∑
j e

zj/T
, pi = evi/T∑

j e
vj/T

(A.1)

Here, T is the temperature of the Softmax function. Since p and q are probability distri-
butions, it is given that

∑
i pi = ∑

i qi = 1. The cross-entropy loss, measuring how well
the distribution q corresponds to p is calculated as:

C(p,q) =
N∑
i=1

pi · log
(
pi
qi

)
(A.2)

In order to perform knowledge distillation, the gradient of the cross-entropy loss with
respect to logit zi of the distilled model. This can be derived by first re-writing the
cross-entropy expression:

C(p,q) =
∑
i

pi · log
(
pi
qi

)
=
∑
i

pi (log(pi)− log(qi)) =
∑
i

pilog(pi)−
∑
i

pilog(qi) (A.3)

Since pi does not depend on zi, the gradient with respect to zi becomes:

∂C

∂zi
= ∂

∂zi

−∑
j

pjlog(qj)
 (A.4)

Using the expression for qj from (A.1), this can be written as:

∂C

∂zi
= ∂

∂zi

−∑
j

pjlog

(
ezj/T∑
k ezk/T

) (A.5)

With the derivative being a linear operation, the term where j = i can be treated sepa-
rately. The terms j 6= i will be handled first:

∂

∂zi

(
−pjlog

(
ezj/T∑
k ezk/T

))
= −pj

∑
k e

zk/T

ezj/T

∂

∂zi

(
ezj/T∑
k ezk/T

)
=

−pj
(∑

k

ezk/T

)
∂

∂zi

(
1∑

k ezk/T

)
= −pj

(∑
k

ezk/T

)(
− ezi/T

T (∑k ezk/T)2

)
=

pj
T

(
ezi/T∑
k ezk/T

)
= pjqi

T

(A.6)

I

A. Cross-entropy gradient derivation

The next step is to look at the term where j = i:

∂

∂zi

(
−pilog

(
ezi/T∑
k ezk/T

))
= −pi

∑
k e

zk/T

ezi/T

∂

∂zi

(
ezi/T∑
k ezk/T

)
=

−pj
∑
k e

zk/T

ezi/T

(
ezi/T (∑k 6=i e

zk/T)
T (∑k ezk/T)2

)
= −pi

T

(∑
k 6=i e

zk/T∑
k ezk/T

)
= −pi

T

∑
k 6=i

qk

 =

− pi
T

(1− qi)

(A.7)

Now, the final gradient can be obtained by adding all these terms together:

∂C

∂zi
= −pi

T
(1− qi) +

∑
k 6=i

pkqi
T

= 1
T

(qipi + qi
∑
k 6=i

pk − pi) =

1
T

(qi(pi +
∑
k 6=i

pk)− pi) = 1
T

(qi − pi)
(A.8)

Hence, the sought expression is derived.

II

B
Network graphs

This appendix includes the Caffe-generated graphical representations of the two models
produced in this thesis.

III

B. Network graphs

B.1 Classification model

Figure B.1: A graphical representation of the classification model. Created using Caffe.

IV

B. Network graphs

B.2 Localization model

Figure B.2: A graphical representation of the localization model. Created using Caffe.

V

	List of Figures
	List of Tables
	Introduction
	Background
	The ROAR project
	Machine learning

	Purpose
	Specification of thesis aims

	Delimitations
	Outline

	Theory
	Artificial neural networks
	Supervised learning

	Convolutional neural networks
	Stochastic gradient descent
	CUDA
	Caffe
	ILSVRC
	Licensing

	Knowledge distillation
	OpenCV
	Harris corner detector
	State of the art
	Classification
	Residual Networks

	Localization
	Faster R-CNN

	Methods
	Hardware and software
	GPU

	Models
	Classification
	Localization
	Harris corner detector from OpenCV

	Dataset
	Preprocessing
	Classification
	Localization

	Training process

	Results
	Classification
	Localization

	Discussion
	General considerations
	Steep learning curve
	Hardware

	Evaluation of the models
	Classification
	Localization

	Future work
	Data collection
	Addressing the hardware issue
	Model development

	Conclusion
	Bibliography
	Cross-entropy gradient derivation
	Network graphs
	Classification model
	Localization model

