
On Homogenization and Virtual Testing of Non-

linear Composites
Master’s thesis in Solid and Fluid Mechanics

ROBIN ANDERSSON

Department of Applied Mechanics

Division of Material and Computational Mechanics

CHALMERS UNIVERSITY OF TECHNOLOGY
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Göteborg, Sweden 2011



On Homogenization and Virtual Testing of Nonlinear Composites

ROBIN ANDERSSON

c© ROBIN ANDERSSON, 2011

Master’s thesis in Solid and Fluid Mechanics 2011:20

ISSN 1652-8557

Department of Applied Mechanics

Division of Material and Computational Mechanics

Chalmers University of Technology

SE-412 96 Göteborg
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Abstract

The mechanical properties of a macroscopic homogenous material, such as stiffness and yield

limit, depend on its physical structure on different subscales. To reveal the subscale mechanical

behavior, multiscale modeling and computational homogenization on Representative Volume

Elements (RVE) can be adopted.

The main purpose of this work is to establish computable upper and lower bounds of the

macroscale strain energy, for nonlinear response, within a given confidence due to statistical

sampling. Such bounds have previously been derived in the case of linear elasticity, but are here

extended to total deformation plasticity with linear hardening. Numerical examples are given

based on ”virtual testing” of RVEs with circular inclusions embedded in a matrix material.

Furthermore, a macroscopic constitutive model based on the energy bounds is constructed

by fitting constants to the results obtained by the virtual testing procedure. Finally, the

calibrated macroscopic model is compared to the ”best” RVE, i.e. the most representative

realization.
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1 Introduction

1.1 Background

The mechanical properties of a material, such as stiffness and yield limit, depend on its

physical structure on different subscales. Since all materials are heterogeneous at some length

scale, bridging the properties is an important topic, c.f. Besson et al. [2]. For example, the

macroscopic yield limit of a metal might depend on the grain size and orientation while the

properties of the grains depend on its phase structure etc.

Determining the behavior of the material on one length scale by information from other

length scales is known as multiscale modeling. One of the advantages of multiscale modeling,

in contrast to more empirical methods, is that subscale phenomenon can be revealed which

leads to a deeper understanding of the mechanisms that determine the material behavior, c.f.

Nilenius et al. [9].

The classical approach when constructing a constitutive model is to consider the material

at the macroscopic length scale as a homogeneous medium and the subscale heterogeneities

are accounted for only implicitly by for example fitting constants to experimental curves.

Another, more fundamental, approach is to account for subscale heterogeneities by averaging

the influence of their properties to obtain effective properties that holds on the macroscale. This

process is called homogenization, c.f. Besson et al. [2], Roters et al. [12], Ostoja-Starzewski [10]

and Geers et al. [4]. There exist several closed form analytical homogenization methods, but

also computer based schemes. The latter are often refered to as computational homogenization,

c.f. Geers et al. [4], Roters et al. [12] Miehe et al. [8], Asada and Ohno [1] and Doghri and

Ouaar [3]. In order to perform the computational homogenization, a finite cell that statistically

represents the subscale heterogeneities is considered. This cell is called a Representative Volume

Elment (RVE). The effective properties of the RVE should converge towards the true values as

the size of the RVE is increased.

In practice, Finite Element Analysis (FEA) is often used to solve problems in solid mechanics

and can of course also be used when studying multiscale modeling, see for example Quilici

and Cailletaud [11]. If for example the beam problem in Figure 1.1.1 should be considered,

the classical approach would have been to solve the problem for the unknown displacements,

calculate the strain and then put the strains in the Gauss points into a constitutive model in

order to obtain the corresponding stresses. If, however, multiscale modeling would have been

used, the strain in a Gauss point would have been considered as the macroscale strain for a new

FE-problem where a RVE should be considered. The RVE-problem would have been solved for

the displacements and in a postprocessing step the stresses should have been homogenized to

obtain the effective stress of the RVE, which would then been put back into the macroscale

beam problem. Techniques like these are called FE2, c.f. Geers et al. [4]. Also note that both

classical constitutive models and FE2 might be used in the same macroscale FE-model.

As the computers have become more powerful the last decades, the use of multiscale modeling

has grown and nowadays a lot of examples may be found. It is not possible to mention all of
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Figure 1.1.1: A meshed cantilever beam

them here but two are given below.

An interesting field is the one of corrosion of concrete steel, which is a problem that

might decrease the strength of a concrete structure. The steel becomes damaged by a high

concentration of chloride ions, which are transported through the porous material by moisture.

In order to investigate to what extent the microstructure of the concrete affects the diffusion

process, multiscale modeling have been used successfully, see Nilenius et al. [9].

Another example is Wellment et al.[14]. They have suggested a strategy for multiscale

modeling and homogenization of granular materials using the Discrete Element Method (DEM).

The strategy was then used to fit a elasto-plastic material model.

It is not only in material mechanics multiscale modeling is used. Nilenius et al. [9] mention

for example meteorology, particle dynamics and electromagnetism, so the range of disciplines

is wide.

1.2 Purpose and scope

The purposes of this study are listed below.

• Develop a strategy for generating a RVE given volume fraction, size and orientation of

the particles.

• Establish constitutive models for the components based on plasticity with linear hardening.

• Develop a strategy to compute the full macroscopic energy-strain response with given

confidence.

• Develop a strategy to compute the full macroscopic stress-strain response based on the

energy curve mentioned above.

Some things might be said about the objectives above. First of all, when it comes to

constructing bounds on the macroscopic energy, two intersting works are at hand; Larsson et al.

[7], which establishes computable upper bounds for linear elstic materials while approximating

the lower bound and Larsson et al. [6], which establishes both upper and lower bounds on

the energy for linear elastic materials. It will appear that these papers give a solid foundation
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on which upper and lower bounds might be constructed also for materials that are not linear

elastic.

Secondly, when it comes to constructing the macroscopic stress-strain response based on the

energy bound plots, no obvious foundation have been found. In a lot of studies stress-strain

curves have been constructed, but it has been difficult to find any that do it in the sense

described above. For example LLorca et al. [5] have constructed stress-strain curves, in the

case of elasto-plastic deformation, by averaging the FE-response from a number of RVEs and

compared the results with different homogenization methods, but these stress curves have not

been based on energy bound plots.

The report is organized in the following manner: The introduction chapter deals with the

background of multiscale modeling and homogenization as well as giving some examples of

earlier works within the subject. The theoretical background needed to understand the problem

is described in the two following chapters. A computational strategy is described in the Virtual

Testing chapter and some numerical examples are presented in the Numerical Results chapter.

The report is completed with a Conclusion chapter, which also discusses possible future work.
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2 Computational homogenization

2.1 Preliminaries

The following sections will discuss some basic topics regarding the general theory of computa-

tional homogenization which constitutes the basis for subsequent chapters.

2.1.1 The Representative Volume Element

As been mentioned earlier, most materials are heterogeneous at some length scale. In order to

understand different material mechanisms, it is of interest to account for the heterogeneities on

the subscales. However, it would be ineffective, not to say practical impossible, to consider the

influence of all the individual heterogeneities of a material during for example a stress analysis.

Therefore a computational cell of finite size is chosen to represent the material heterogeneities

in a statistical way. This kind of cell is called a Representative Volume Element (RVE), since

it is considered to be representative for the material at hand. The RVE is often taken as a

square in 2D and a cube in 3D and its side length is here denoted L�, while its volume (or

surface in 2D) is denoted Ω�.

The RVE is used to calculate effective properties via a homogenization of the heterogeneous

material. This can be thought of as replacing the heterogeneous material by a homogeneous

and the corresponding properties over the RVE are then called the effective properties. If we,

for example, are interested in computing the stresses in a material point given the macroscopic

strains, we apply the macroscopic strain ”load” as well as boundary conditions on the RVE,

compute the local strains and stresses and then homogenize them in order to obtain the effective

stress corresponding to the macroscopic strain.

An important question is how to choose the RVE in such a way that it really is representative

for the material at hand and a lot of literature has been devoted to this subject. c.f. Ostoja-

Starzewski [10] and Besson et al. [2]. A more detailed description of how the RVEs were chosen

in this study is presented later in section 4.1, but two general issues can be pointed out:

• The size of the RVE should be small enough compared to the macroscale dimensions of

the component of interest.

• The size of the RVE should be large enough compared to the subscale heterogeneities in

order to obtain a relevant resolution.

What ”small enough” and ”large enough” really means in practice depends on the problem

at hand. If for example a concrete bridge is analyzed it seems reasonable to chose a larger RVE

than in the case of a small particle reinforced metal matrix composite, since the heterogeneity

dimensions as well as the component dimensions differ considerably.
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2.1.2 Governing equations

The mechanical behavior of a solid is often described by partial differential equations (PDE).

By considering force equilibrium the following PDE is obtained:

−P ·∇ = f in Ω� (2.1.1)

where P is the first Piola-Kirchhoff stress tensor, ∇ is the spatial gradient, f are the volume

forces and Ω� is the domain where the PDE holds. Later it will be assumed that no volume

forces exist.

Moreover, it is assumed that the stress can be written as the partial derivative of the strain

energy, ψ with respect to the deformation gradient, H :

P (H) =
∂ψ(H)

∂H
(2.1.2)

where the deformation gradient is defined in the following way:

H
def
= u⊗∇ (2.1.3)

and u is the displacement.

The displacements might be divided into two parts, namely the macroscopic displacement

field, uM plus a subscale fluctuation, us:

u = uM + us (2.1.4)

This relation is illustrated in Figure 2.1.1. An usual assumption, c.f Larsson et al. [7], [6], on

the macroscopic displacement is that it vary linear within the RVE in the following way:

uM = ū(X̄) + H̄ · [X − X̄] for X ∈ Ω� (2.1.5)

where ū(X̄) is a constant macroscopic displacement, H̄ is the macroscopic deformation gradient

and X̄ is the centroid of the RVE. The assumption above is called first order homogenization.

Figure 2.1.1: The relation between u, uM

and uS.
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2.1.3 Boundary conditions

As mentioned briefly earlier, boundary conditions have to be imposed on the RVE. Since

the RVE is ”cut out” from the component of interest, it is not easy to know what type of

boundary condition that is the closest approximation of the real world situation. However, the

effective properties are expected to converge towards the true properties as the size of the RVE

approaches infinity, regardless choice of boundary conditions on the RVE, see Larsson et al. [6].

Three types of boundary conditions will be considered in this study, namely Dirichlet

(essential) where displacements on the boundary are prescribed, Neumann (natural) where

tractions on the boundary are prescribed and periodic ones. The periodic boundary conditions

are based on a cubic (or quadratic in 2D) RVE where the boundary Γ� is divided into two parts;

the Γ+ part and Γ− part, corresponding to the thick and thin boundary in Figure 2.1.2. Every

point X on the + part is mirrored onto the − part via a mapping function; X− = ϕ(X+).

Two assumptions are made for this kind of boundary condition:

• us(X+)− us(X−) = 0 Periodic fluctuations on the boundaries.

• t(X+) + t(X−) = 0 Anti-periodic tractions on the boundaries, see Figure 2.1.2.

Figure 2.1.2: A RVE with periodic boundary conditions. The thick boundary corresponds to the

Γ+ part, which is the image boundary, while the thin one represents the Γ− boundary which is

the mirror boundary. The meaning of anti-periodic tractions is also shown.

Periodic boundary conditions are exact for materials with a periodic substructure and a

good approximation for random substructures, c.f. Larsson et al. [6] and Terada et al. [13].

As will be shown later, the Dirichlet and Neumann conditions might be considered as special

cases of the more general periodic boundary conditions.

2.1.4 Effective properties

In this section some effective properties will be studied in detail. Effective properties, such as

the deformation gradient, first Piola-Kirchhoff stress and strain energy can be computed as the

volume (or area in 2D) average of the RVE:

〈•〉�
def
=

1

| Ω� |

∫
Ω�

•dΩ (2.1.6)
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where • is the quantity of interest. So, the effective properties mentioned above might be

determined by evaluating the following expressions:

〈H〉�, 〈P 〉�, 〈ψ〉� (2.1.7)

It is advantageous to study the first two entities in detail. We begin with the volume average

of the deformation gradient, H :

H̄
def
= 〈H〉� =

1

| Ω� |

∫
Ω�

HdΩ =
1

| Ω� |

∫
Ω�

u⊗∇dΩ =

= {Gauss’ theorem} =
1

| Ω� |

∫
Γ�

u⊗NdΓ (2.1.8)

Where H̄ is the macroscopic deformation gradient. We continue with the volume average of

the first Piola-Kirchhoff stress, P .

P̄
def
= 〈P 〉� =

1

| Ω� |

∫
Ω�

P dΩ =
1

| Ω� |

∫
Ω�

P · IdΩ =
1

| Ω� |

∫
Ω�

P ·∇⊗ [X − X̄]dΩ =

=
1

| Ω� |

∫
Ω�

(∇ · [P T ⊗ [X − X̄]]− [P ·∇]⊗ [X − X̄])dΩ = {Gauss’ theorem} =

=
1

| Ω� |

∫
Γ�

t⊗ [X − X̄]dΓ +
1

| Ω� |

∫
Ω�

f ⊗ [X − X̄]dΩ

(2.1.9)

Where P̄ is the macroscopic stress tensor and it was used that t
def
= N · P T . In the special

case of no volume load the equation above reduces to the following:

P̄
def
= 〈P 〉� =

1

| Ω� |

∫
Γ�

t⊗ [X − X̄]dΓ (2.1.10)

2.1.5 The Hill-Mandel condition

An important topic when it comes to homogenization is the so-called Hill-Mandel condition. It

states that the virtual work on the subscale must equal the virtual work on the macroscale:

〈P : H〉� = 〈P 〉� : 〈H〉� = P̄ : H̄ (2.1.11)

In order to check if the condition is fulfilled it might be useful to rewrite the left hand term in

the equation above in the following way:

〈P : H〉� =
1

| Ω� |

∫
Ω�

P : HdΩ =
1

| Ω� |

[∫
Ω�

f · udΩ +

∫
Γ�

t · udΓ

]
(2.1.12)

where Gauss’ theorem was used. If there are no volume loads, this reduces to:

〈P : H〉� =
1

| Ω� |

∫
Γ�

t · udΓ (2.1.13)

7



2.2 Canonical form of the RVE-problem

In the following section a canonical form of the RVE-problem will be presented. It is based

on the variational formulation presented in Larsson et al. [7] and [6]. Let us consider a RVE

occupying the volume Ω�. If no volume forces exist, force equilibrium yields:

−P ·∇ = 0 in Ω� (2.2.1)

Furthermore we assume periodic boundary conditions. As mentioned before, this demands

anti-periodic tractions along the boundaries. We also have a kinematic condition that relate

the displacements to the macroscale deformation gradient. This gives two equations:

t(X+) + t(X−) = 0 (2.2.2)

u(X+)− u(X−) = H̄ · [X+ −X−] (2.2.3)

If equation 2.2.1 is rewritten in weak form and scaled by 1
|Ω�|

, it yields:

a�(u; δu)− 1

| Ω� |

∫
Γ�

t · δudΓ = 0 (2.2.4)

where

a�(u; δu)
def
=

1

| Ω� |

∫
Ω�

P : [δu⊗∇]dΩ (2.2.5)

Before continuing the derivations, a new denotation will be introduced, namely the ”jump”,

which is defined as follows:

[[•]] def
= •(X+)− •(X−) = •(X+)− •(ϕ(X+)) on Γ+

� (2.2.6)

The second term in equation (2.2.4) might now be rewritten in the following way:

1

| Ω� |

∫
Γ�

t · δudΓ =
1

| Ω� |

∫
Γ+
�

t(X+) · δu+dΓ +
1

| Ω� |

∫
Γ−�

t(X−) · δu−dΓ =

1

| Ω� |

∫
Γ+
�

t · (δu+ − δu−)dΓ =
1

| Ω� |

∫
Γ+
�

t · [[δu]]dΓ (2.2.7)

Equation (2.2.4) combined with (2.2.7) yields:

a�(u; δu)− d�(t, δu) = 0 ∀δu ∈ U� (2.2.8)

where

d�(t, δu)
def
=

1

| Ω� |

∫
Γ+
�

t · [[δu]]dΓ (2.2.9)

and the function space

U� = {u sufficiently regular in Ω�, u(X0) = 0} (2.2.10)

where the second condition of the function space is needed to prevent rigid body translation.

8



Equation (2.2.3) can also be written on weak form, but instead of a variation of the

displacements a variation of the tractions is considered. Note that the boundary integrals

below are due to the fact that the displacements at hand live on the boundaries only.

1

| Ω� |

∫
Γ+
�

[[u]] · δtdΓ =
1

| Ω� |

∫
Γ+
�

δt · H̄ · [[X]]dΓ

= {H̄ · [[X]] = H̄ · [[X − X̄]] = [[H̄ · [X − X̄]]]} =

=
1

| Ω� |

∫
Γ+
�

δt · [[H̄ · [X − X̄]]]dΓ (2.2.11)

where X̄ = 〈X〉�. Equation (2.2.11) can be written in a shorter format:

d�(δt,u) = d�(δt, H̄ · [X − X̄]) ∀δt ∈ T� (2.2.12)

which is the weak form of equation (2.2.3). The function space is defined as follows:

T� = {t sufficiently regular on Γ�} (2.2.13)

One more derivation is needed in order to complete the equation system needed to solve a

problem with general periodic boundary conditions. Consider the expression for P̄ in the case

of no volume load from equation (2.1.10) and multiply it with a test function δH̄ . This yields:

〈P 〉� : δH̄ = P̄ : δH̄ =
1

| Ω� |

∫
Γ�

t⊗ [X − X̄]dΓ : δH̄ =
1

| Ω� |

∫
Γ�

t · [δH̄ · [X − X̄]]dΓ =

1

| Ω� |

∫
Γ+
�

t(X+) · [δH̄ · [X+ − X̄]]dΓ +
1

| Ω� |

∫
Γ−�

t(X−) · [δH̄ · [X− − X̄]]dΓ =

1

| Ω� |

∫
Γ+
�

t · [[δH̄ · [X − X̄]]]dΓ = d�(t, δH̄ · [X − X̄]) ∀δH̄ ∈ R(3x3)

(2.2.14)

So, to summarize, the RVE-problem with general periodic boundary conditions results in

the following equation system:

a�(u; δu)− d�(t, δu) = 0 ∀δu ∈ U�
d�(δt,u) = d�(δt, H̄ · [X − X̄]) ∀δt ∈ T� (2.2.15)

d�(t, δH̄ · [X − X̄]) = P̄ : δH̄ ∀δH̄ ∈ R(3x3)

It is possible to obtain Dirichlet and Neumann boundary conditions for both strain and stress

control by restricting the function spaces U� and T�, which is also the subject of the following

sections.

2.2.1 Dirichlet boundary conditions with strain control

The following section will consider the weak form of the RVE-problem with Dirichlet boundary

conditions and strain control. Strain control means that the macroscopic deformation gradient,

H̄ , is prescribed and the problem is solved for the macroscopic stress P̄ .

9



We start with equation (2.2.15) from section 2.2. However, this time U� is restricted

according to the Dirichlet boundary conditions:

UD
� = {u sufficiently regular in Ω�,u = Ĥ · [X − X̄] on Γ�, Ĥ ∈ R3x3} ⊂ U� (2.2.16)

We begin the derivation by considering (2.2.15)2. Since the equation refers to boundary

integrals, it might be written in the following way:

d�(δt, Ĥ · [X − X̄]) = d�(δt, H̄ · [X − X̄]) (2.2.17)

This can be expressed explicitly as:

[Ĥ − H̄ ] :
1

| Ω� |

∫
Γ+
�

δt⊗ [[X − X̄]]dΓ = 0 (2.2.18)

which gives that Ĥ = H̄ .

If equation (2.2.15)3 is developed it will state that P̄ = 〈P 〉� which is used in the post-

processing. Now, only equation (2.2.15)1 remains. Because of the Dirichlet conditions the

testfunctions are required to be zero at the boundaries. Therefore the RVE-problem might be

formulated as: Find u ∈ UD
� (H̄) such that

a�(u; δu) = 0 ∀δu ∈ UD
� (0) (2.2.19)

In order to investigate whether the Dirichlet boundary conditions fulfill the Hill-Mandel

relation equation (2.1.13) is used:

〈P : H〉� =
1

| Ω� |

∫
Γ�

t · udΓ =
1

| Ω� |

∫
Γ�

t · H̄ · [X − X̄]dΓ =

=
1

| Ω� |

∫
Γ�

N · P T ⊗ [X − X̄]dΓ : H̄ =
1

| Ω� |

∫
Ω�

P dΩ : H̄ = P̄ : H̄ (2.2.20)

So, the Hill-Mandel condition is fulfilled for Dirichlet boundary conditions.

2.2.2 Neumann boundary conditions with strain control

The following section will consider the weak form of the RVE-problem with Neumann boundary

conditions and strain control. As in the previous section, we start with equation (2.2.15) from

section 2.2. This time T� is restricted according to the Neumann boundary conditions:

TN� = {t = P̂ ·N on Γ�, P̂ ∈ R(3x3)} ⊂ T� (2.2.21)

It will appear that the following derivation is useful:

d�(P̂ ·N ,u) =
1

| Ω� |

∫
Γ+
�

(P̂ ·N ) · [[u]]dΓ = P̂ :
1

| Ω� |

∫
Γ+
�

[[u]]⊗NdΓ =

= P̂ : (
1

| Ω� |

∫
Γ+
�

u⊗NdΓ +
1

| Ω� |

∫
Γ−�

u⊗NdΓ) = P̂ :
1

| Ω� |

∫
Γ�

u⊗NdΓ =

= {Gauss’ theorem} = P̂ :
1

| Ω� |

∫
Ω�

u⊗∇dΩ = P̂ : 〈H [u]〉� (2.2.22)
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Furthermore, it should be noted that the following equality, which can also be derived from

equation (2.2.15)3, holds:

P̄ =
1

| Ω� |

∫
Γ�

t⊗ [X − X̄]dΓ = P̂ · 1

| Ω� |

∫
Γ�

N ⊗ [X − X̄]dΓ =

{Gauss’ theorem} = P̂ · 1

| Ω� |

∫
Ω�

∇⊗ [X − X̄]dΩ = P̂ (2.2.23)

So, with use of the equation above plus (2.2.15)1 and (2.2.15)2 it can be concluded that the

RVE-problem might be formulated as: Find u ∈ U�, P̄ ∈ R3x3 such that

a�(u; δu)− P̄ : 〈H [δu]〉� = 0 ∀δu ∈ U� (2.2.24)

δP̄ : 〈H [u]〉� = δP̄ : H̄ ∀δP̄ ∈ R3x3 (2.2.25)

In order to investigate whether the Neumann boundary conditions fulfill the Hill-Mandel

relation equation (2.1.13) is used:

〈P : H〉� =
1

| Ω� |

∫
Γ�

t · udΓ =
1

| Ω� |

∫
Γ�

P̄ ·N · udΓ =

1

| Ω� |
P̄ :

∫
Γ�

u⊗NdΓ =
1

| Ω� |
P̄ :

∫
Ω�

u⊗∇dΩ = P̄ : H̄ (2.2.26)

So, the Hill-Mandel condition is fulfilled for Neumann boundary conditions.

2.2.3 Dirichlet boundary conditions with stress control

The following section will consider Dirichlet boundary condition with stress control, which means

that the macroscopic stress, P̄ , is prescribed and the problem is solved for the macroscopic

strain, H̄ , in the case of a prescribed displacement on the boundaries. As before we begin with

equation (2.2.15) and restrict U� to UD
� .

Exactly like in the case of Dirichlet boundary condition and strain control, equation (2.2.15)2

imply that Ĥ = H̄ .

If it once again is required that the testfunctions should be zero on the boundaries, equation

(2.2.15)1 will lose its second term. Moreover, equation (2.2.15)3 can be expressed in the same

format as in equation (2.2.14). This yields that the RVE-problem can be stated: Find u ∈ UD
�

such that

a�(u; δu) = 0 ∀δu ∈ UD
� (0)

〈P 〉� : δH̄ = P̄ : δH̄ ∀δH̄ ∈ R3x3 (2.2.27)

2.2.4 Neumann boundary conditions with stress control

The following section will consider the weak form of the RVE-problem with Neumann boundary

conditions and stress control. This means that the macroscopic stress, P̄ , is prescribed and

the problem is solved for the macroscopic strain H̄ .
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With help of equation (2.2.22) the second term of equation (2.2.15)1 can be written as

P̂ : 〈H[δu]〉�. Moreover, equation (2.2.15)3 imply that P̂ = P̄ . So the problem might be

formulated as: Find u ∈ U� such that

a�(u; δu) = P̄ : 〈H [δu]〉� ∀δu ∈ U� (2.2.28)

With help of equation (2.2.22) it can also be understood that equation (2.2.15)2 imply that

H̄ = 〈H [u]〉�, which is used in the postprocessing.
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3 Energy bounds
In the following sections different statistical bounds on the energy of the RVE-problem will be

discussed. The aim is to establish computable upper and lower bounds on the strain energy.

3.1 Strain energy

The potential energy of the RVE-problem with macroscale strain control can be postulated as

follows:

Π�(u, t)
def
=

1

| Ω� |

∫
Ω�

ψ(H [u])dΩ− 1

| Ω� |

∫
Γ+
�

[[u− H̄ · [X − X̄]]] · tdΓ =

〈ψ〉� − d�(t,u) + d�(t, H̄ · [X − X̄]) (3.1.1)

Stationarity of the potential in the function space U�×T� requires that the partial derivatives

with respect to u and t vanish:

Π′�,u(u, t; δu) = 0 ∀δu ∈ U� (3.1.2)

Π′�,t(u, t; δt) = 0 ∀δt ∈ T� (3.1.3)

which give the following two relations:

a�(u; δu)− d�(t, δu) = 0 ∀δu ∈ U� (3.1.4)

d�(δt,u) = d�(δt, H̄ · [X − X̄]) ∀δt ∈ T� (3.1.5)

where equation (2.1.2) was used in the first relation. The two equations above are identical to

equation (2.2.15)1-(2.2.15)2 (periodic boundary conditions with strain control), so the choice of

potential energy is correct.

If the functions that fulfill the equations are found, the two latter terms of equation (3.1.1)

will vanish and the remaining one is the definition of the macroscopic strain energy, since

ψ̄�{H̄} = 〈ψ〉� = 1
|Ω�|

∫
Ω�
ψ(H [u])dΩ. This means that the macroscopic strain energy can be

obtained by a min max function in the following way:

ψ̄�{H̄} = min
û∈U�

max
ˆt∈T�

Π�(H̄ ; û, t̂) (3.1.6)

This requires that the second derivative with respect to the displacements is positive:

Π′′uu(u, t; δu, δu) = a′�(u; δu, δu) =
1

| Ω� |

∫
Ω�

[δu⊗∇] : L : [δu⊗∇]dΩ > 0 (3.1.7)

where L is the tangential stiffness.

The great advantage of writing the strain energy on the form of equation (3.1.6) is that in

order to obtain the strain energy for Dirichlet and Neumann boundary conditions, U� and T�
are simply restricted.
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3.2 Stress energy

In the case of macroscale stress control, it is possible to define the stress energy in the following

manner:

ψ̄∗�{P̄ }
def
= P̄ : H̄�{P̄ } − ψ̄�{H̄�{P̄ }} (3.2.1)

Furthermore, we might construct a potential for the stress energy:

Π∗�(û, t̂, Ĥ)
def
= P̄ : Ĥ − 〈ψ〉� + d�(t̂, û)− d�(t̂, Ĥ · [X − X̄]) (3.2.2)

Stationarity of the potential requires that the partial derivatives with respect to u, t and Ĥ :

Π∗
′

�,u(u, t, Ĥ ; δu) = 0 ∀δu ∈ U� (3.2.3)

Π∗
′

�,t(u, t, Ĥ ; δt) = 0 ∀δt ∈ T� (3.2.4)

Π∗
′

�,Ĥ
(u, t, Ĥ ; δĤ) = 0 ∀δĤ ∈ R� (3.2.5)

This gives that:

a�(u; δu)− d�(t, δu) = 0 ∀δu ∈ U� (3.2.6)

d�(δt,u) = d�(δt, Ĥ · [X − X̄]) ∀δt ∈ T� (3.2.7)

P̄ : δĤ = d�(t, δĤ · [X − X̄]) ∀δĤ ∈ R(3x3)
� (3.2.8)

These equations are identical to relation (2.2.15)1-(2.2.15)3 in the case of general periodic

boundary conditions with stress control, so the choice of potential is correct.

It is possible to write the stress energy in another fashion (which is discussed more in section

3.4.2) according to:

ψ̄∗�{P̄ } = max
ˆH∈RRxR

max
û∈U�

min
ˆt∈T�

Π∗�(P̄ ; û, t̂, Ĥ) (3.2.9)

Dirichlet and Neumann boundary conditions might be imposed by restricting the function

spaces, just as in the previous case of strain energy.

3.3 Fundamental bounds on the energy

As mentioned previous, equation (3.1.6) and (3.2.9) can easily be modified into the case of

Dirichlet or Neumann boundary conditions by restricting the function spaces U� and T�. So,

equation (3.1.6) with Dirichlet boundary conditions yields:

ψ̄D� {H̄} = min
û∈UD

�

max
ˆt∈T�

Π�(H̄ ; û, t̂) > ψ̄�{H̄} (3.3.1)

The last inequality can be understood from the following reasoning. UD
� is a subset of U�, see

Figure 3.3.1. We know that the correct solution is inside U� and will minimize the potential

energy. However, the space of admissible displacement functions are restricted and therefore
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Figure 3.3.1: The function space U� with subset UD
� .

ψ̄D� must be greater than ψ̄� or, if the true solution is inside UD
� , equal.

If Neumann boundary conditions are imposed, the strain energy might be expressed in the

following way:

ψ̄N� {H̄} = min
û∈U�

max
ˆt∈TN

�

Π�(H̄ ; û, t̂) 6 ψ̄�{H̄} (3.3.2)

The last inequality comes from the fact that we have restricted the function space from where

we chose the tractions that should maximize the potential energy but remained the function

space from where the displacements that minimizes the problem are chosen.

By the same reasoning as above, it might be concluded that the following two relations hold:

ψ̄∗D� {P̄ } = max
ˆH∈RRxR

max
û∈UD

�

min
ˆt∈T�

Π∗�(P̄ ; û, t̂, Ĥ) 6 ψ̄∗�{P̄ } (3.3.3)

ψ̄∗N� {P̄ } = max
ˆH∈RRxR

max
û∈U�

min
ˆt∈TN

�

Π∗�(P̄ ; û, t̂, Ĥ) > ψ̄∗�{P̄ } (3.3.4)

So, to summarize, for a given RVE the strain and stress energy are bounded by the Dirichlet

and Neumann strain and stress energy in the following manner:

ψ̄N� {H̄} 6 ψ̄�{H̄} 6 ψ̄D� {H̄} (3.3.5)

ψ̄∗D� {P̄ } 6 ψ̄∗�{P̄ } 6 ψ̄∗N� {P̄ } (3.3.6)

It should be noted that the relation between the stress and strain energy can be expressed

as below via Legendre transformations.

ψ̄∗�{P̄ } = max
ˆH∈R3x3

[P̄ : Ĥ − ψ̄�{Ĥ}] (3.3.7)

ψ̄�{H̄} = max
ˆP ∈R3x3

[P̂ : H̄ − ψ̄∗�{P̂ }] (3.3.8)

3.4 Computable bounds on the strain energy

As been mentioned earlier, it is expected that the influence of the boundary conditions will

vanish as the size of the RVE approaches infinity, i.e:

ψ̄{H̄} def
= lim
|Ω�|→∞

ψ̄�{H̄} = lim
|Ω�|→∞

ψ̄D� {H̄} = lim
|Ω�|→∞

ψ̄N� {H̄} (3.4.1)

ψ̄∗{P̄ } def
= lim
|Ω�|→∞

ψ̄∗�{P̄ } = lim
|Ω�|→∞

ψ̄∗D� {P̄ } = lim
|Ω�|→∞

ψ̄∗N� {P̄ } (3.4.2)
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However, it is practically impossible to use an infinitely large RVE and therefore we aim

for determining upper and lower bounds on ψ̄{H̄} and ψ̄∗{P̄ }. Since the strain and stress

energies are related to each other according to equation (3.3.7) and (3.3.8), it is enough to

derive bounds for one of them. In this study the focus is set on the strain energy. The following

two subsections will discuss how to obtain computable upper and lower bounds on the strain

energy.

3.4.1 Upper bound on the strain energy

If a certain realization of a RVE, Ω(�), is considered, it might be divided into N sub RVEs,

Ω�,i according to Figure 3.4.1.

Figure 3.4.1: The RVE realization Ω(�) divided into N Ω�,i sub RVEs.

It is possible to introduce further restrictions on the admissible test functions by introducing a

new function space:

ÛD
(�)(H̄) = {u ∈ UD

(�)(H̄) : u = H̄ · [X − X̄] on each ∂Ω�,i} ⊂ UD
(�)(H̄) (3.4.3)

If the new function space is used in equation (3.1.6) the following inequalities are obtained:

ψ̄(�){H̄} 6 min
û∈UD

(�)
(

¯H)

ΠD
(�)(û) 6 min

û∈ÛD
(�)

(
¯H)

ΠD
(�)(û) =

=
1

N

N∑
i=1

min
û∈UD

�,i
(

¯H)

ΠD
�,i(û) =

1

N

N∑
i=1

ψ̄D�,i{H̄} (3.4.4)

where ΠD
(�)(û) = 〈ψ(H̄ [û])〉�. The second inequality comes from the fact that the function is

minimized over a smaller function space. It is now possible to reformulate equation (3.4.1) in

the following way:

ψ̄{H̄} = lim
|Ω(�)|→∞

ψ̄�{H̄} = lim
|Ω(�)|→∞

ψ̄D� {H̄} 6 lim
|Ω(�)|→∞

1

N

N∑
i=1

ψ̄D�,i{H̄} (3.4.5)
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Note that the size of each Ω�,i is fixed and of finite size even if the size of Ω(�) approaches

infinity. The last term can be developed further:

lim
|Ω(�)|→∞

1

N

N∑
i=1

ψ̄D�,i{H̄} = {Fixed | Ω�,i |⇒ N →∞ as | Ω(�) |→ ∞} =

= lim
N→∞

1

N

N∑
i=1

ψ̄D�,i{H̄} = lim
N→∞

1

N

N∑
i=1

ψ̄D� {H̄ , ωi} = E[ψ̄D� {H̄ , ω̃}] (3.4.6)

where E is the expected value and ωi is one realization of the stochastic process ω̃, which

determine the properties of the RVE. The last equality says that studying N different sub

RVEs of one realization is equivalent to study N realizations of one RVE. This holds if ω̃ is

ergodic. To summary, we have that:

ψ̄{H̄} 6 E[ψ̄D� {H̄ , ω̃}] (3.4.7)

In practice it is impossible to compute the true expected value above. However, a sample

mean value, µ, can be calculated and for that mean value a confidence interval, c, of confidence

P̄ might be constructed. Therefore equation (3.4.7) can be developed further:

ψ̄{H̄} 6 E[ψ̄D� {H̄ , ω̃}] 6 µ[ψ̄D� {H̄ , ωi}Ni=1] + c[ψ̄D� {H̄ , ωi}, P̄ ]
def
= ψ̄UB� {H̄} (3.4.8)

where ψ̄UB� {H̄} is the computable upper bound of the strain energy.

Note that the following denotations sometimes are used:

ψ̄
D−V (∞)
� = E[ψ̄D� {H̄ ; ω̃}] (3.4.9)

ψ̄
D−V (N)
� = µ[ψ̄D� {H̄ , ωi}Ni=1] (3.4.10)

where V means Voigt sampling. The classical Voigt bound is defined as follows:

ψ̄V = lim
|Ω(�)|→0

ψ̄
D−V (∞)
� {H̄} = lim

|Ω(�)|→0
ψ̄
N−V (∞)
� {H̄} = nψinc(H̄) + (1− n)ψmat(H̄) (3.4.11)

where n is the theoretical volume fraction, ψinc is the strain energy in the inclusion material

and ψmat is the strain energy in the matrix material.

3.4.2 Lower bound on the strain energy

The next task is to derive an expression for the lower bound on the strain energy. It turns out

that it is not as straight forward as in the case of the upper bound. We begin by conclude that

for a finite RVE, Ω�, we can use equation (3.3.7) and the expression for the strain energy in

equation (3.1.6) to obtain the following expression:

ψ̄∗�{P̄ } = max
ˆH∈R3x3

�

[P̄ : Ĥ − ψ̄�{Ĥ}] = max
ˆH∈R3x3

max
û∈U�

min
ˆt∈T�

Π∗�(P̄ ; Ĥ , û, t̂) (3.4.12)
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where the stress energy potential is defined as before, which is identical to equation (3.2.9),

but now motivated.

As in the case of the upper bounds, we construct a ”super-RVE”, Ω(�), consisting of small

RVEs of fixed size Ω�. Now we are able to study the energy stress in the following way:

ψ̄∗(�){P̄ } = max
ˆH∈R3x3

[P̄ : Ĥ − ψ̄(�){Ĥ}] =

max
ˆH∈R3x3

max
û∈U(�)

min
ˆt∈T(�)

[P̄ : Ĥ − 〈ψ〉(�) −
1

| Ω(�) |

∫
Γ+
(�)

[[û− Ĥ · [X − X̄]]] · t̂dΓ] (3.4.13)

We can now replace the continuity by inserting the Lagrange multiplyers t̂ ∈ T̄(�), where

T̄(�) = {t sufficiently regular on (∪∂Ω�) \ Γ−(�)} (3.4.14)

The resulting expression is:

ψ̄∗(�){P̄ } = max
ˆH∈R3x3

max
û∈Ǔ(�)

min
ˆt∈T̄(�)

[P̄ : Ĥ − 〈ψ〉(�) −
1

| Ω(�) |

∫
Γ+
(�)

[[û− Ĥ · [X − X̄]]] · t̂dΓ

− 1

| Ω� |

∫
Γint

[[û]] · t̂dΓ]

(3.4.15)

where Γint = ∪∂Ω� \ (Γ+
(�) ∪ Γ−(�)) and the expanded displacement space is

Ǔ(�) = {u|Ω�,i
∈ Ǔ�,i} (3.4.16)

where Ǔ�,i is the space of sufficiently regular functions on each Ω�,i. Note that the only

difference between U�,i and Ǔ�,i are rigid body translation, which do not effect neither 〈H〉
or 〈ψ〉. On each Γint we define a unique normal N and define the jump over the boundaries

[[u]] = u+−u−. This is illustrated in Figure 3.4.2. Also note that T̄(�) contain the tractions in

T(�) too.

Figure 3.4.2: The figure shows the meaning of the jump over the internal boundaries of Ω(�) as

well as a normal direction.

If we use the restriction ˆ̄T(�) ⊂ T̄(�) defined as:

ˆ̄T(�) = {t̂ = P̂ ·N for constant P̂ ∈ R3x3} (3.4.17)
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we obtain:

ψ̄∗(�){P̄ } 6 max
ˆH∈R3x3 û∈Ǔ(�)

min
ˆP ∈R3x3

[P̄ : Ĥ − 〈ψ〉(�) −
1

| Ω(�) |

∫
Γ+
(�)

[[û− Ĥ · [X − X̄]]] · P̂ ·NdΓ

− 1

| Ω(�) |

∫
Γint

[[û]] · P̂ ·NdΓ] = max
ˆH∈R3x3 û∈Ǔ(�)

min
ˆP ∈R3x3

[P̄ : Ĥ + P̂ : Ĥ −
N∑
i=1

| Ω� |
| Ω(�) |

〈ψ〉�,i−

N∑
i=1

P̂ :
1

| Ω(�) |

∫
Γ�,i

û⊗NdΓ] =

{Ĥ =
1

N

N∑
i=1

〈H [û]〉�,i and
1

| Ω(�) |

∫
Γ�,i

û⊗NdΓ =
| Ω� |
| Ω(�) |

〈H [û]〉�,i} =

max
û∈Ǔ(�)

[
1

N

N∑
i=1

(P̄ : 〈H [û]〉�,i − 〈ψ〉�,i)] =
1

N

N∑
i=1

max
ûi∈Ǔ�,i

[P̄ : 〈H [ûi]〉�,i − 〈ψ〉�,i] =
1

N

N∑
i=1

ψ̄∗N�,i{P̄ }

(3.4.18)

So, in summary we can, with help of the same reasoning as for the upper bound regarding

an infinitely large RVE, conclude that:

ψ̄∗{P̄ } = lim
|Ω�|→∞

ψ̄∗�{P̄ } 6 lim
|Ω�|→∞

1

N

N∑
i=1

ψ̄∗N�,i{P̄ } =

lim
N→∞

1

N

N∑
i=1

ψ̄∗N�,i{P̄ } = E[ψ̄∗N� {P̄ }] (3.4.19)

Therefore, with help of (3.3.8), it must follow that the following expression holds:

ψ̄{H̄} = max
ˆP ∈R3x3

[P̂ : H̄ − ψ̄∗{P̂ }] > max
ˆP ∈R3x3

[P̂ : H̄ − E[ψ̄∗N� {P̂ }]] >

max
ˆP ∈R3x3

[P̂ : H̄ − µ[ψ̄∗N� {P̂ }]− c[ψ̄∗N� {P̂ }, P̄ ]] >

˜̄P : H̄ − µ[ψ̄∗N� { ˜̄P , ω̃i}Ni=1]− c[ψ̄∗N� { ˜̄P , ω̃i}Ni=1, P̄ ]
def
= ψ̄LB� {H̄} (3.4.20)

where ˜̄P ∈ R3x3 is arbitrary. This means that any choice of ˜̄P will result in a lower bound,

but it is of course of interest to chose the ˜̄P that results in the largest possible ψ̄LB� (H̄) in

order to get sharp bounds on the strain energy. Therefore ˜̄P could be obtained in the following

(optimal) manner:

˜̄P = arg max
ˆP ∈R3x3

[P̂ : H̄ − µ[ψ̄∗N� {P̂ , ω̃i}Ni=1]− c[ψ̄∗N� {P̂ , ω̃i}Ni=1, P̄ ]] (3.4.21)

Larsson et al. [6] also suggest a ”quasi-optimal” choice of ˜̄P in the following way:

˜̄P = arg max
ˆP ∈R3x3

[P̂ : H̄ − µ[ψ̄∗N� {P̂ , ω̃i}Ni=1]] (3.4.22)
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which of course is the optimal choice as c→ 0.

Note that the following denotations sometimes are used:

ψ̄
N−R(∞)
� {H̄} = max

ˆP ∈R3x3

[P̂ : H̄ − E[ψ̄∗N� {P̂ }]] (3.4.23)

ψ̄
N−R(N)
� {H̄} = max

ˆP ∈R3x3

[P̂ {H̄} : H̄ − µ[ψ̄∗N� {P̂ {H̄}, ω̃i}Ni=1] (3.4.24)

where R means Reuss sampling. The classical Reuss bound is defined as follows:

ψ̄R = lim
|Ω(�)|→0

ψ̄
D−R(∞)
� {H̄} = lim

|Ω(�)|→0
ψ̄
N−R(∞)
� {H̄} =

max
ˆP ∈R3x3

[P̂ : H̄ − nψ̄∗inc(P̂ )− (1− n)ψ̄∗mat(P̂ )] (3.4.25)

where ψ∗inc is the stress energy in the inclusion material and ψ∗mat is the stress energy in the

matrix material.
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4 Virtual testing
The following section describes how the virtual testing was performed. In order to avoid

unnecessary computational difficulties, only two dimensional problems were considered. This

resulted in that volume integrals from the general theory were replaced by surface integrals,

volume fractions with area fractions etc. Furthermore, only circular inclusions were considered.

Beside this, all virtual tests were strain driven.

4.1 The RVE generator

In order to perform proper virtual tests with RVEs the issue of RVE generation is of course

important. In this study, the following parameters were prescribed: The volume fraction, Vf
(inclusion volume/total volume), standard deviation of the inclusion radius, std[R], Vp (total

volume/number of inclusions), and window size, l�. The aim was then to generate RVEs in

such a way that the prescribed volume fraction, in average, would be retrieved. To avoid

difficulties regarding the implementation of periodic boundaries, a large RVE was generated

from where the window was centered in the middle on a offset distance Rmax, see Figure 4.1.1.

The reason for introducing the offset distance was to ensure that no inclusion on a L�-boundary

would affect the window.

Figure 4.1.1: The figure shows L�, l� and Rmax.

In order to implement this system in practice, a number of variables had to be computed.

The list below shows how this was done.

1. Vf , std[R], Vp and l� were chosen.

2. Given Vf , std[R] and Vp the expected value of the inclusion radius, E[R], could be

computed.

3. Given E[R] and std[R], the offset distance Rmax could be computed in such a way that

no boundary inclusion would affect the window.
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4. Given Rmax and Vp, the needed number of inclusions, N , could be computed.

5. Given N and Vp, the size of the large RVE, L�, could finally be determined.

When the variables above had been calculated, N number of inclusions with radius E[R] was

randomly placed on a RVE of size L� × L�. The inclusions were not allowed to overlap each

other. Then a window of size l� × l� was chosen and meshed. The window then become the

new RVE on which the actual computations took place.

4.2 The mesh

The RVEs were meshed with constant strain triangles in such a way that the boundaries of the

inclusions were accounted for, see Figure 4.2.1. The main problem regarding the mesh size

was to obtain a mesh with a resolution good enough not to influence the volume fraction but

coarse enough to avoid a unnecessarily high computation cost.

Figure 4.2.1: A typical RVE with a triangular mesh. The red part of the figure represents

circular inclusions while the blue part represents matrix material.

4.3 The constitutive model

In this study it was of interest to simulate a material with a linear hardening behavior.

Therefore the aim was to use a (strain driven) constitutive model that could generate stresses

and strain energy. One usual way of doing this is to use a model based on incremental theory

with internal variables. However, this would lead to unnecessary complexity, and in order to

simplify things a model based on the strain only (i.e. a type of elasticity model or a single step

of an incremental based theory) was used. The disadvantage of this type of theory is that no

study of unloading is possible, which implicate that no cyclic behavior could be modeled, but

only monotonically increasing stress.

The strain energy per unit volume might then be calculated as below:

ψ(H) = ψiso(HvM
e ) + ψvol(Hvol) (4.3.1)
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where HvM
e =

√
2
3
|| Hsym

dev ||. Hsym
dev is the deviatoric part of the symmetric part of H and

Hvol is the volumetric part of H . Furthermore,

ψiso(HvM
e ) =

{
3G
2

(HvM
e ) if HvM

e ≤ σy
3G

σ2
y

6G
(h/G− 1) + σy(1− h/G)HvM

e + 3h
2

(HvM
e )2 if HvM

e > σy
3G

ψvol(Hvol) =
1

2
KH2

vol

where h is a parameter related to the hardening, σy is the yield limit, G = E
2(1+ν)

, K = E
3(1−2ν)

,

E is the Youngs modulus and ν is Poissons ratio. A local constitutive model like this produces

a strain energy vs. strain curve according to Figure 4.3.1.

Figure 4.3.1: The principal look of a strain vs. strain energy plot.

According to the fact that P (H) = ∂ψ(H)

∂H the expressions above yield, after some manipu-

lations, that the following expression must hold for the stress:

P (H) = 2G∗(HvM
e )Hsym

dev +KHvolI (4.3.2)

where

G∗(HvM
e ) =

{
G if HvM

e ≤ σy
3G

σy(1−h/G)

3HvM
e

+ h if HvM
e > σy

3G

The typical look of this kind of local constitutive model is showed in Figure 4.3.2. Note

that even if the microscale stress strain relation results in a sharp wedge in the curve, the

homogenized response will be smooth.
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Figure 4.3.2: The symmetric deformation gradient vs. the von Mises-stress.

4.4 Choice of ˜̄P

As been mentioned earlier, the choice of ˜̄P is an important issue when calculating the lower

bound of the strain energy. Equations (3.4.21) and (3.4.22) suggested two methods. Equation

(3.4.21) offers considerable computational difficulties, regardless of the choice of material model

(even for linear elasticity), while equation (3.4.22) is straight-forward for the case of linear

elasticity.

Another method was used to construct ˜̄P . The following equation holds true by definition:

ψ̄
N−R(N)
� {H̄} = max

ˆP
[P̂ : H̄ − µ[ψ̄∗N� {P̂ }]] =

max
ˆP

[P̂ : H̄ − µ[max
ˆH

[P̂ : Ĥ − ψ̄N� {Ĥ}]]] (4.4.1)

If we now assume that Ĥ is the same for all realizations, which is the case if the RVEs are

similar, we can continue the derivation in the following manner:

max
ˆP

[P̂ : H̄ − µ[max
ˆH

[P̂ : Ĥ − ψ̄N� {Ĥ}]]] ≈ max
ˆP

[P̂ : H̄ −max
ˆH

[P̂ : Ĥ − µ[ψ̄N� {Ĥ}]]] =

max
ˆP

min
ˆH

[P̂ : H̄ − P̂ : Ĥ + µ[ψ̄N� {Ĥ}]]

(4.4.2)

Variation with respect to Ĥ infers that P̂ = µ[P̄
N
� {Ĥ}] and variation with respect to P̂

infers that Ĥ = H̄ .
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Therefore ˜̄P can be approximated by the sample mean of the stress from a strain-driven

Neumann problem:

˜̄P = µ[P̄
N
� {H̄}] ≈ arg max

ˆP ∈R3x3

[P̂ : H̄ − µ[ψ̄∗N� {P̂ , ω̃i}Ni=1]] (4.4.3)

As mentioned above, this choice will also result in a lower bound on the strain energy, but in

general it will not produce as tight bound as if the optimal choice-method would have been

used.

4.5 Strategy for obtaining stress-strain relation

Given a full strain energy versus strain relation, where the upper and lower bounds of the strain

energy has been calculated for a number of strains it is desirable to construct a full stress-strain

relation. Several more or less accurate options are available, but only one is considered in this

study. It is based on that the effective properties Ē, ν̄, h̄, σ̄y are determined in such a way that

the macroscopic strain response they produce fit the upper and lower bounds optimally. The

method is described in more detail below.

Given the upper and lower bounds of the strain energy a mid-curve, ¯̄ψ� might be constructed:

¯̄ψ� =
ψ̄UB� + ψ̄LB�

2
(4.5.1)

According to the constitutive model, it is possible to construct a macroscopic strain energy

response given Ē, ν̄, h̄, σ̄y and H̄. The effective properties can then be found by using the

least squares method, i.e. searching for parameters that minimize the distance between the

macroscale response and the mid-curve:

{Ē, ν̄, h̄, σ̄y} = arg min
Ê,ν̂,ĥ,σ̂y

N∑
i

1

2
[ ¯̄ψ�(H̄ i)− ψ̄(Ê, ν̂, ĥ, σ̂y; H̄ i)]

2 (4.5.2)

where N is the number of strain increments.

When the optimal parameters are found, these can be used in the constitutive model to con-

struct the corresponding strain energy curve, here called ψ̄expl where ”expl” denotes ”explicit”.

However, it is unknown how good this estimation really is. Therefore the corresponding strain

energy and stress for that RVE, for which the strain energy is closest to ¯̄ψ� in a least squares

sense, is investigated and compared with ψ̄expl. This is further discussed and presented with

some numerical results in Section 5.3.
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5 Numerical results

This chapter will present some numerical results based on the computational strategies described

previously.

5.1 Convergence of upper and lower bounds

Figure 5.1.1 shows how the upper and lower bounds, ψ̄UB� and ψ̄LB� , change with the size of the

RVE, L� for a given deformation gradient. The upper solid line represents the sample mean

value from equation (3.4.8) while the upper dashed line represents the confidence from the

same equation. The lower solid line corresponds to the two first terms of the lower bound of

equation (3.4.20) and the lower dashed line corresponds to the confidence of the same equation.

In this numerical example a confidence of approximately 95 % was chosen. Furthermore ˆ̄P was

chosen according to Section 4.4. Also note that ψ̄ref and Lref were chosen so that the upper

energy bound as well as the length axis should be one at the fourth data point.

Figure 5.1.1: The upper and lower bounds of the strain energy as a function of the RVE-size.

The figure clearly shows that a larger RVE creates tighter bounds on the strain energy.

When the size of the RVE approaches zero the bounds obviously diverge to two different

values. As a matter of fact, that kind if behavior is expected and it can be shown analytically

(although not done here) that the upper bound approaches the Voigt bound and the lower
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bound approaches the Reuss bound as the size of the RVE approaches zero.

5.2 Influence of ˜̄P on the lower bound

As been mentioned before, the choice of ˜̄P will affect the lower bound of the strain energy. In

order to investigate how good the approximation of section 4.4 really is, two other choices were

tested. Furthermore, a totally different approximation of the lower bound was investigated.

This is discussed in more detail below together with the results in Figure 5.2.1.

• The upper solid/diamond line of Figure 5.2.1 corresponds to the Voigt bound of the

strain energy. It is calculated as follows:

ψ̄V (H̄) = nψinc(H̄) + (1− n)ψmat(H̄) (5.2.1)

where ψV is the Voigt bound, n is the theoretical volume fraction, ψinc is the strain

energy in the inclusion material and ψmat is the strain energy in the matrix material.

• Number (1) shows ˜̄P : H̄−µ[ψ̄∗N� { ˜̄P , ω̃i}Ni=1], i.e equation (3.4.20) without the confidence

interval, when ˜̄P is chosen according to Section 4.4, i.e. ˜̄P = µ[P̄
N
� {H̄ , ωi}Ni=1].

• Number (2) shows ˜̄P : H̄ − µ[ψ̄∗N� { ˜̄P , ω̃i}Ni=1] from equation (3.4.20) when ˜̄P =

µ[P̄
D
�{H̄ , ωi}Ni=1].

• Number (3) shows ˜̄P : H̄ − µ[ψ̄∗N� { ˜̄P , ω̃i}Ni=1] from equation (3.4.20) when ˜̄P = P̄
V

and

the Voigt stress P̄
V

is defined as:

P̄
V

(H̄) = nP inc(H̄) + (1− n)Pmat(H̄) (5.2.2)

where P inc represents the stress for the inclusion material given H̄ and P inc is the

corresponding stress for the inclusion material.

• ”Approx. LB” represents the approximate choice of ψ̄LB� used in for example Larsson et al.

[7]. It is the sample mean of the strain energy from a Neumann problem; µ[ψ̄N� {H̄ , ωi}Ni=1].

• The lower dashed line in the figure is the approximate1 Reuss bound of the strain energy,

ψ̄R. It can be calculated according to:

ψ̄R = ˆ̃P : H̄ − nψ∗inc(
ˆ̃P )− (1− n)ψ∗mat(

ˆ̃P ) =

ˆ̃P : (H̄ − nH̄ inc(
ˆ̃P )− (1− n)H̄mat(

ˆ̃P )) + nψinc| ˆ̃
P

+ (1− n)ψmat| ˆ̃
P

(5.2.3)

In this case ˆ̃P was chosen to be equal to P̄
V

. Also note that both the true volume

fractions and the theoretical ones were used in the equation above. It appears that the

1The formal Reuss bound is obtained from equation (3.4.25). Here we consider the approximation ψ̄R(H̄) ≈
P̄

V
: H̄ − E[ψ̄∗(P̄

V
)] described above.
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”real” Reuss bound-curve is somewhat uneven due to the quality of the meshes and the

sample size, while the ”theoretical” Reuss bound-curve is a straight line since it is mesh

independent. The reason why the ”real” Reuss-curve is plotted is that it can be seen

that (3) converges to a value below the theoretical bound for L� → 0. However, it is

always above the ”real” Reuss curve, see the derivations below.

Figure 5.2.1: The figure shows different approximations of the lower bound. ”Approx. LB”

corresponds to µ[ψ̄N� {H̄ , ωi}Ni=1] and ”(1)-(3)” correspond to the three different approximations

tested for ˆ̄P . Furthermore the Voigt bound based on theoretical volume fractions and the Reuss

bounds based on both theoretical and real volume fractions are shown.

Some things might be concluded from Figure 5.2.1. First of all, it can be seen that the

approximate lower bound approaches the Voigt bound as the size of the RVE approaches zero.

This follows directly from equation (3.4.11) if the sample size approaches infinity.

Furthermore, it may be noticed that ”Approx. LB” is a relatively good approximation for

large RVEs. Besides, it is always larger than (1)-(3). This can also be showed analytically in
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the following way with help of equation (3.3.8):

µ[ψ̄N� {H̄}] =
1

N

N∑
i=1

( max
ˆP i∈R3x3

{P̂ i : H̄ − ψ̄∗N�,i{P̂ i}}) ≥

max
ˆP ∈R3x3

{ 1

N

N∑
i=1

(P̂ : H̄ − ψ̄∗N�,i{P̂ })} = max
ˆP ∈R3x3

{P̂ : H̄ − 1

N

N∑
i=1

ψ̄∗N�,i{P̂ }} =

max
ˆP ∈R3x3

{P̂ : H̄ − µ[ψ̄∗N�,i{P̂ }]} ≥ ˆ̄P : H̄ − µ[ψ̄∗N�,i{ ˆ̄P }] (5.2.4)

where ˆ̄P is an arbitrary choice.

5.3 Stress-strain relations

As been mentioned before, it is possible to construct ¯̄ψ� when ψ̄UB� and ψ̄LB� have been

calculated. With help of curve fitting it is then possible to obtain Ē, ν̄, h̄, σ̄y and create ψ̄expl�

as well as a stress-strain relation. But in order to evaluate these results, the RVE with a strain

diagram closest to ¯̄ψ�, here called ψ̄best� , might be investigated. This has been done for a case

with uniaxial strain control and a sample size of 100 RVEs.

The upper diagram of Figure 5.3.1 shows the strain energy curves for all RVEs of the test.

The lower diagram is the zoomed in version of the upper one, which makes it easier to see

what is meant by the energy curve closest to ¯̄ψ�. The solid line represents ¯̄ψ�, the dashed lines

energy curves for different RVE realizations and the solid line with the square is the curve for

that RVE closest to ¯̄ψ�.
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Figure 5.3.1: The upper diagram shows the strain energy curves, for every RVE, during uniaxial

strain loading. When it comes to the lower diagram, the solid line represents ¯̄ψ�, the dashed

lines are the energy curves for different realizations and the solid square line is the ”best” RVE.
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It is now possible to compare the ”best” RVE realization with ¯̄ψ� and ψ̄expl� . In Figure 5.3.2,

ψ̄UB� , ψ̄LB� , ¯̄ψ�, ψ̄best� and ψ̄expl� are compared. Since the bounds are relatively sharp it might be

difficult to identify the individual curves; therefore, the curves are zoomed in two steps.
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Figure 5.3.2: Comparison between ψ̄UB� , ψ̄LB� , ¯̄ψ�, ψ̄best� and ψ̄expl� . The two lower plots are

zoomed in versions of the upper plot.
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In order to investigate how close to ¯̄ψ� ψ̄
expl
� and ψ̄best� really are, the error can be plotted as

in Figure 5.3.3. Then it is possible to study the error for each strain increment.

Figure 5.3.3: The error, defined as in the figure, for each strain increment.

Finally, it is of course of interest to compare the actual stress-strain relations for the methods

of fitted parameters and the one of the ”best” RVE. This is shown in Figure 5.3.4. It can

clearly be seen that the curves are similar for each stress component, which also infers that the

method of fitted constants can be used to produce realistic results.
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Figure 5.3.4: The dashed line is constructed with the fitted parameters, while the solid one is

the (smooth) stress response from the ”best” RVE.

One last test was also done when the fitted parameters were used in the case of pure shear,

which means that γ̄12 = 2H̄
sym
12 was controlled. The corresponding stress curves were then

compared with the same ”best” RVE from the previous example. The result is shown in Figure

5.3.5. It can be seen that the normal components of the stresses are all zero or almost zero

compared to the magnitude of the shear stresses. The agreement between the ”best” RVE and

the curve based on fitted parameters is not as accurate as in the case of tensile strain loading

but the curves still show good agreement.
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Figure 5.3.5: The stress curves based on the fitted parameters are compared with the corre-

sponding curves from the ”best” RVE in the case of a pure shear strain load.

6 Conclusions

The purpose of this study was to obtain computable upper and lower bounds on the macroscale

strain energy for a two phase composite with circular inclusions and a linear hardening material

behavior. From these energy bounds it was desired to construct full macroscopic stress-strain

relations. A strategy for constructing the bounds on the macroscopic strain energy as well

as a strategy for obtaining the stress-strain relation has been presented. The energy and

stress-strain relations based on the method of fitted constants have also been compared to a

”best” RVE, i.e. the most representative realization, and shown a reasonable good agreement.

The strategy of obtaining a stress-strain-response with use of fitted constants could in the

future be used in engineering practice by considering RVEs based on real material structures

and real material properties. The constants could then be used in a material model and

implemented in a FE-program.

However, several issues remain to be developed in future works. One important thing of

interest would be to calculate ˜̄P according to equation (3.4.21), which produces the sharpest

lower bound. ˜̄P could then be compared with the approximate choices presented in this work.
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Furthermore, it could be of interest to implement a more advanced material model, involving

internal variables, so for example cyclic behavior could be modeled. That should be possible

by following the general strategy suggested in this study but requires tracing of the evolution

of the subscale deformation with time.
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