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Abstract
Robots employed in domestic settings need to manipulate and interact with objects
whose motion is constrained by the environment. For instance, motion constraints
can arise due to joints attaching an object to the environment. Commonly faced
examples of this are doors and drawers. Additionally, constraints can be imposed
by the contact between two objects, as for example, when an object is being ma-
nipulated on a supported surface. In this thesis we mainly consider the task of
manipulating objects with pivoting dynamics. The manipulation task consists of
rotating an unknown object around a pivot point by grasping the object in a way
that allows relative rotation between the gripper and the object. In this case, two
virtual revolute joints – one due to the pivot point on the surface and one due to the
non-fixed grasp – impose kinematic constraints on the object. To perform the task
we consider a velocity-controlled robot equipped with a force/torque sensor. The
control law is designed as a velocity input that utilises a feed-forward term control-
ling the motion along the unconstrained direction and a PI-controller controlling the
force along the constrained direction. Since the pivot point of the object is unknown,
the kinematic parameters utilised in the controller, such as the direction of motion
as well as kinematic parameters related to the object length and the rotation axis,
are estimated on-line. To address the estimation problem, we consider Kalman-Bucy
Filtering, Lyapunov-based adaptive laws and Immersion and Invariance (I&I)-based
adaptive laws. A simulation model, based on Simulink®/SimMechanics™is devel-
oped in order to evaluate the performance of the adaptive controller in different
scenarios. Considering both varying object lengths and sensor signals subject to
different levels of measurement noise, we investigate the performance of the pro-
posed estimators. Simulation results shows that the I&I-based adaptive controller
has better convergence properties than the other methods.

Keywords: Adaptive control, Immersion and Invariance (I&I)-based adaptive law,
Kalman-Bucy Filter, Lyapunov-based adaptive law parameter identification, state
estimation, force/motion control, uncertain kinematics, constrained kinematics, robotic
manipulation.
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1
Introduction

The influence of service robotics has been increased over recent years [1]. An indica-
tor for that is the growing trend towards using service robots not only for industrial
purposes, but also for personal and domestic usage. One crucial requirement for a
successful manipulation of a number of tasks is to control the interaction between the
robot and its environment. The best way to quantify the interaction is to measure
the interaction force at the end-effector, since high forces are undesirable in order to
avoid damage to the structure of the robot and the manipulated environment. The
environment can consist of surfaces or objects, which possesses static or dynamical
properties. In both cases, the permissible trajectory of the end-effector is restricted
by kinematic constraints.

po

pe

Figure 1.1: Object manipulation with pivoting dynamics.

There is a variety of possible interaction tasks. This thesis focuses on the manipula-
tion of objects with pivoting dynamics, shown in Figure 1.1, since their manipulation
enables to solve a wide range of problems within the service robotics field in domestic
environment, for example opening doors. The scheme in Figure 1.1 shows an object,
which possesses the aforementioned pivoting dynamics. More precisely, the object
has one degree of freedom, so that it can only perform rotational motion around
the supporting point on the surface. Assuming that the object and its posture is
unknown, implies that the position of the pivoting point is unknown. Within this
thesis a controller for a robot will be implemented to perform a manipulation task
for unknown objects.
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1. Introduction

1.1 Main research question

The objective of this thesis is to identify the relevant constraints of pivoting manip-
ulation (Figure 1.1), and use them in an adaptive controller in order to achieve the
following manipulation task: rotating an unknown object around a pivot point by
grasping the object in a way that allows relative rotation between the gripper and
the object. In this case, two virtual revolute joints – one due to the pivot point on
the surface and one due to the non-fixed grasp – impose kinematic constraints on
the object. Since the object posture and its length is unknown, an adaptive con-
troller has to be used to estimate these parameter uncertainties and to manipulate
the object. The research work will be applicable in performing service robots for
example to open unknown doors or turning a crank with a free knob.

1.2 Related Work

Since the topic of constrained manipulation is a common field of research in robotics,
it is well-studied and lots of publications dealt with this topic. The books [2], [3] and
[4] provide fundamental methods about modelling robot dynamics and kinematics in
areas of unconstrained (non-contact) and constrained (interacted) manipulation. Es-
pecially, the kinematic formulations in these books are important for the description
of the robot kinematics and its interaction with the environment. For this purpose,
the interaction is modelled as geometric (kinematic) constraints. Furthermore, the
aforementioned books give an overview of fundamental control techniques regarding
motion and force control. These control structures are also applied to regulate the
interaction of a robot with a dynamical environment assuming that the robot and
the environment are modelled as a rigid body system. Article [5] presents the mod-
elling of kinematic constraints and describes an example in which a crank with a free
knob is turned. The manipulation of this crank possesses pivoting dynamics with a
passive joint as is the case with the considered unknown object. Furthermore, arti-
cle [6] analyses a camera navigation task on passive wrist-based robots and pivoting
dynamics. Additionally, an adaptive PI-Cartesian position controller is presented
for achieving the geometric modelled task of a laparoscopic assistant robot. Kine-
matic constraints are frequently used for modelling the manipulation task, since it
simplifies the problem description. Article [7] analyses the manipulation with co-
operating robots under uncertain kinematic parameters and presenting an adaptive
controller which achieves parameter estimation during a desired object motion. The
articles [8] and [9] cover the topic of opening doors under uncertainties with the aid
of a velocity-controlled robot. The authors propose an adaptive controller which
estimates the unconstrained motion direction and the inverse length of a door. The
proposed adaptive laws - based on a Lyapunov function - are explained in this thesis
and used for comparing the performance of different estimation methods, since a
door possesses dynamics with pivoting characteristics. Moreover, in [8] the gripper
of the robot posses a fixed grasp such that the relative rotation velocity between the
end-effector and the door is zero. Article [9] additionally considers also a gripper
with a non-fixed grasp which allows rotational velocity between the gripper and the
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1. Introduction

unknown object. Both proposed velocity controllers rely on force measurements and
estimate the unconstrained motion direction, rotational axis and the relevant size of
the door.

Kalman-Bucy Filtering is the second used estimator in this thesis to estimate the
unconstrained motion direction and object length during the manipulation task.
Since Kalman Filtering is a widespread method to observe, smooth or filter signals,
there is a vast literature with theory and background. Therefore, this thesis focuses
on books [10] and [11] which present the theoretical background of different Kalman
Filters and describes their function. Moreover, these books show how to design a
Kalman Filter for discrete or continuous systems.

The third used estimator is based on a relatively new design method for synthesising
the adaptive laws. This framework is called Immersion and Invariance (I&I) and
the book [12] and its related articles, [13], [14] and [4] provide the relevant back-
ground. The related literature cover not only the theory and methods synthesising
I&I based adaptive controllers but also general used designing methods (e.g. Lya-
punov). Moreover, [12] provides examples of the different synthesising methods and
demonstrates the limits of the classical adaptive controllers.

1.3 Methodology
The research work is organised as follows:

• System modelling with constraints description
• Simulation environment development
• Adaptive controller design
• Scenario simulation
• Performance evaluation

First of all the dynamical system containing the unknown object and manipulator
have to be analysed. For this purpose the system is assumed to be a rigid multibody
system. The model building phase is an important step, since both, the simulation
model and the control method will be based on it. Furthermore, the simulation
model has to be implemented on a simulation platform, e.g. MATLAB®/Simulink®,
to run simulated experiments. Subsequently, an adaptive controller must be de-
signed to estimate on-line the object length and the unconstrained motion direction,
which are the uncertain parameters of the manipulated system. Furthermore, the
performance of the designed controller will be evaluated within the aforementioned
simulation environment.

1.4 Thesis Organisation
This master thesis is organised with the following structure. First of all, Chapter
2 provides the general mathematical notation and background knowledge on adap-

3



1. Introduction

tive control. Since the designed adaptive controller uses Kalman-Bucy Filtering,
Lyapunov-based adaptive laws and I&I-based adaptive laws for estimating the un-
known state and parameter, the background supplies the methods for synthesising
these estimators. Chapter 3 describes the kinematic model of the unknown object
and the robot. Additionally, this chapter formulates the control objective for a suc-
cessful task execution. Chapter 4, aims at developing the simulation environment
for testing the designed controller and synthesising the adaptive controller which
includes the control law and the estimators. The performance of the developed
adaptive controller is evaluated within different simulation scenarios in Chapter 6.
Finally, conclusions are drawn in Chapter 7.

4



2
Background

This chapter gives an overview of the used notation followed by relevant theory of
adaptive control. Furthermore, Kalman-Bucy Filtering, Lyapunov-based and I&I-
based adaptive controller are introduced for estimating parameters on-line.

2.1 Notation

The notation used in the thesis follows [15], [16] and [8] and is described in the
following.

Vectors and Matrices Small bold letters denote vectors and capital bold let-
ters denote matrices. Additionally, ·, ·̂ and ·̃ denote vectors with unit magnitude,
estimates and the error between the actual and the desired/estimated vector, re-
spectively. The vectors

a(t) :=
[
ax(t) ay(t) az(t)

]>
∈ R3,

b(t) :=
[
bx(t) by(t) bz(t)

]>
∈ R3,

are used in the following paragraphs to introduce further notation. Furthermore,
the time argument is often dropped out for notation convenience.

Projection Matrices A projection matrix projecting vectors along vector a is
defined as

P(a) = aa>

‖a‖2

and possesses the property P(a)> = P(a).

Matrix

P̄(a) = I3 −
aa>

‖a‖2 ,

where I3 ∈ R3 denotes the identity matrix, projects vectors on a space consisting of
the orthogonal complements of vector a and possesses the property P̄(a)> = P̄(a).

5



2. Background

Skew-Symmetric Tensor The skew-symmetric tensor

S(a) =

 0 −az ay
az 0 −ax
−ay ax 0


can be used for representing a cross product operation as follows

a × b = S(a)b.

Note that S(a)b = −S(b)a.

Rotation Matrix The orientation of a frame {I} with respect to the frame {J}
is described by the rotation matrix IRJ ∈ R3. In case of {I} or {J} is identical to
the robot base frame {B}, the associated index will be omitted. A transformation
from e.g. {J} to the base frame can be calculated as following

aI = RJ
JaI.

Note that a rotation matrix is orthogonal and the inverse transformation can be
written as R−1 = R>.

Integral I(a(t)) denotes the element-wise time integration of the vector a(t) and
is defined as

I(a(t)) =
∫ t

t0
a(τ) dτ.

2.2 Adaptive Control
The performance of a conventional static control system is limited for dynamical
processes, which have uncertain system parameters. These parameters could be, for
example, unknown or time variant. Due to the dependency of the control law on
the system parameters, the controller performance can be improved by an adaptive
control structure which is shown in Figure 2.1.

Figure 2.1: Block diagram of a direct adaptive controller.

6



2. Background

Consider the dynamical system

ẋ(t) = f (x(t), u(t),θ)
y(t) = h (x(t), u(t),θ)

(2.1)

where x(t) ∈ Rn denotes the state vector, u(t) ∈ Rm the input vector, θ ∈ Rq

the parameter vector and y ∈ Rr the output vector. The plant in Figure 2.1 is
represented by the dynamical system (2.1). Figure 2.1 shows also that the direct
adaptive control structure consists of a parameter estimator and a controller block.
The former provides the on-line estimates of the system parameters, which are the
arrays of the estimated parameter vector θ̂. Furthermore, the control law is designed
for the known parameter case, cf. [17]. There are many different methods to deal
with the on-line estimation. Since the performance of the adaptive controller highly
depends on the estimation quality, it is necessary to use suitable estimation methods.
The following sections introduce the estimation methods used in the present thesis.

2.2.1 Kalman-Bucy Filter
The Kalman filter is a Linear Least Minimum Mean Square Estimator (LLSME) for
a linear system, since it minimizes a quadratic function of estimation error, cf. [11].
This type of filters is often used for filtering, prediction and smoothing of states, cf.
[11]. The Kalman-Bucy filter is the continuous-time equivalent of the Kalman filter,
which is formulated in discrete time. The following theory regarding the Kalman
and Kalman-Bucy filter is based on the books [11] and [10].

Consider the dynamical system

η̇(t) = F(t)η(t) + G(t)w(t)
z(t) = H(t)η(t) + v(t)

(2.2)

where η(t) ∈ Rl and z(t) ∈ Rk denotes the state vector of a random process and the
measurement vector, respectively. F(t) ∈ Rl×l, G(t) ∈ Rl×w and H(t) ∈ Rk×l de-
note the time-varying dynamic coefficient, process noise coupling and measurement
sensitivity matrix, respectively. Furthermore, w(t) ∈ Rw and v(t) ∈ Rk are the
uncorrelated process and observation noise process, respectively. To ensure that the
estimated states η̂(t) converge to their actual values, the system (2.2) must be ob-
servable. Furthermore, Q(t) ∈ Rl×l and R(t) ∈ Rk×k, which donates the covariance
matrices of w(t) and v(t), are positive definite and are defined as

E〈w(t1)w>(t2)〉 = Q(t)δ(t2 − t1),
E〈v(t1)v>(t2)〉 = R(t)δ(t2 − t1),

where E〈·〉 and δ(·) stands for the expectancy operator and the Dirac delta function,
respectively. The update equation ˙̂η(t) for the state estimation is expressed as

˙̂η(t) = F(t)η̂(t) + K(t) (z(t)−H(t)η̂(t)) ,

7



2. Background

where K(t) ∈ Rl×k denotes the Kalman gain matrix and is defined as follows

K(t) = P(t)H>(t)R−1(t). (2.3)

The covariance matrix P(t) ∈ Rl×l in (2.3) are calculated with the aid of the fol-
lowing Riccati differential equation

Ṗ(t) = F(t)P(t) + P(t)F>(t) + G(t)Q(t)G>(t)
−P(t)H>(t)R−1(t)H(t)P(t).

The initial conditions for these estimated states and the covariance matrix is defined
as

η̂(0) := η̂0

P(0) := P0.

2.2.2 Lyapunov-Based Adaptive Law
Consider the dynamic system (2.1). As aforementioned, the adaptive control scheme
includes the controller and the on-line parameter estimation component, which com-
prises the control law u(x,θ) for the known parameters and the update law

˙̂
θ = w

(
x, θ̂

)
.

Lyapunov functions are often used for analysing the stability of nonlinear systems.
The direct Lyapunov method is also applicable for synthesising adaptive laws. In
particular the problem of designing an adaptive controller is formulated as stability
problem.

Theorem 2.2.1 (Lyapunov Function). V (x,θ) ∈ R is said to be a Lyapunov func-
tion of the system (2.1) if

V (x,θ) > 0 in D \ {0} (2.4)
V̇ (x,θ) ≤ 0 in D

is satisfied, where V̇ (x,θ) ∈ R and D = {x ⊆ Rn,θ ⊆ Rq} denotes the deriva-
tive with respect to time of the Lyapunov function and the domain, respectively.
Additionally, V (x,θ) has to be a continuously differentiable function, c.f. [18].

For further reading, Khalil [18] provides more details on the Lyapunov theory.

Assumption 2.1. There exists a Lyapunov function V (x,θ) so that the update law
˙̂
θ cancels the unknown parameter terms in V̇ (x,θ) and renders V̇ (x,θ) negative
semi-definite, c.f. [12].

The first step is to find a Lyapunov function candidate, which satisfies the require-
ment (2.4) of the Theorem 2.2.1. Furthermore, the update law ˙̂

θ has to be chosen
in such a way so that V̇ (x,θ) is independent of the unknown parameters.

8



2. Background

2.2.3 Immersion and Invariance Based Adaptive Law
The following background of the Immersion and Invariance (I&I) framework is based
on the book [12] and its associated articles [13], [14]. I&I is a relatively new method
for designing asymptotic stabilising controllers and adaptive laws for classes of uncer-
tain nonlinear systems. Since I&I relies upon the notions of system immersion and
manifold invariance, the knowledge of a suitable control Lyapunov function is not
necessary. In this section the application of I&I for designing adaptive controllers is
mainly described. The classical adaptive control design, as mentioned in Subsection
2.2.2, is often based on cancelling the θ dependent terms. The new framework of
Immersion and Invariance (I&I) increases the robustness of the whole control sys-
tem, since the cancellation of the parameter dependent terms in the Lyapunov-based
adaptive law is a fragile operation which causes a manifold of equilibria, cf. [12].

Consider again the dynamical system (2.1). The basic idea of I&I is to immerse the
given system into a system with predefined properties. Since f(·) is only partially
known, the real parameters θ has to be estimated with the following augmented
system

ẋ = f (x,u,θ)
˙̂
θ = w

(
x, θ̂

)
,

where
(
x, θ̂

)
∈ Rn+q defines the extended states. To apply successfully the Immer-

sion and Invariance (I&I) methodology, the following Assumption must be satisfied.

Assumption 2.2 (Adaptive stabilisability). There exists a full-information control
law u = vcl(x,θ) (e.g. for the known parameter case), which stabilises the closed
loop system

ẋ = f (x, vcl(x,θ) ,θ),
so that all its trajectories are bounded.

Definition 2.2.1. The system (2.1) will be classified as adaptive I&I stabilisable, if
Assumption 2.2 is satisfied and if there exist a function β(·) ∈ Rq and w(·) ∈ Rq,
so that the trajectories of the extended system

ẋ = f
(
x,vcl

(
x, θ̂ + β (x)

)
,θ
)

˙̂
θ = w

(
x, θ̂

) (2.5)

are bounded. Furthermore, the implicit manifold can be formulated as

M =
{
x ∈ Rn, θ̂ ∈ Rq : θ̂ − θ + β(x) = 0

}
.

Additionally, the off-manifold coordinate z := θ̂ − θ + β(x), with z ∈ Rq, has to
satisfy

lim
t→∞

z(t) = lim
t→∞

= θ̂(t)− θ + β(x(t)) = 0,

so that the manifoldM is attractive, cf. [12].

9



2. Background

More precisely, Definition 2.2.1 means that the trajectories of x and θ̂ asymptoti-
cally converges to the manifold M and remains there. Additionally, the unknown
parameter vector θ is replaced by the expression θ̂+β(x), such that the parameter
estimation is not directly applied to the extended system (2.5).
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3
System and Problem Description

Section 3.1 elaborates on the manipulation task and the interaction between the
manipulator, which is considered to be a robot, and the unknown object. After that
the kinematics of the manipulator are analysed and it is defined how the control
signal affects the end-effector velocity of the robot. Finally, Section 3.3 provides a
detailed description of the control problem by introducing the control objective.

3.1 Task Kinematics
In this section, the kinematic constraints involved in the manipulation task are
derived. The robot and the unknown object can be considered as a rigid body
system in which the end-effector is connected with the object by a passive joint.

zb

yb

xb

{B}

zw

yw

xw

{W}

zs

ys

xs

{S}

pb

ps

po

xe

ze
ye

{E}

pe

r

Figure 3.1: Coordinate system transformation of the frames World{W}, Base{B},
Supporting Point{S} and End-effector{E}.

Figure 3.1 shows an example for a possible constellation of the frames. The red
vectors denote the translational relation between the used frames. The world frame
{W} is a stationary reference coordinate system, which is the origin of a robot sys-
tem. Furthermore, all other frames are related to {W}. The base coordinate system
{B}, which is located at a robot’s base, is the reference frame of the robot. Fur-
thermore, the end-effector frame {E} represents the position and orientation of the
end-effector, which is mounted at the Tool Centre Point (TCP) of the manipulator.
The supporting point frame {S} is located at the contact point between the surface
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3. System and Problem Description

and the unknown object and is therefore the centre of the rotational motion of the
object. The unit vector zs ∈ R3 is normal to the surface, while xs ∈ R3, ys ∈ R3 can
be arbitrarily chosen. {H} denotes the handle frame which represents the position
and orientation of the moveable end of the unknown object. The origin of the handle
{H} and the end-effector frame {E} are located at the same position. This implies
the following constraint for the position of the end-effector:

pe − ph ≡ 0,

where pe ∈ R3 and ph ∈ R3 denotes the position vector of the end-effector {E} and
handle frame {H}, respectively.

Assumption 3.1. There exists no relative translation between the end-effector and
handle frame,

hṗe ≡ 0.

Assumption 3.2 (Planar Motion). The motion of the unknown object is assumed
to be planar. Therefore, the object can only afford one degree of freedom motion.
Additionally, the rotation axis zh ∈ R3 can be arbitrary and it is not necessary that
zh ∈ R3 and zb ∈ R3 are parallel.

Regarding Assumption 3.2, the orientation of {H} can be defined based on the
rotational axis zh ∈ R3 and the position of the unknown object and consequently
on the constraints of the manipulation task. The vector yh ∈ R3 is unit and points
towards the origin of the supporting point frame {S}. Since Cartesian right-hand
coordinate systems are used, the unconstrained motion direction xh ∈ R3 can be
formulated as

xh = S
(
yh

)
zh.

Figure 3.2 depicts an alternative parametrisation of the handle frame vectors, which
includes the rotation angle ϕ ∈ R of the unknown object. The following vectors xh,
yh and zh describe the orientation of the handle frame {H} with respect to the base
frame {B}

xh = Rs

cosϕ
0

sinϕ

 , yh = Rs

− sinϕ
0

cosϕ

 , zh = Rs

0
1
0

 , (3.1)

where Rs ∈ R3 is the rotation matrix between the base {B} and surface frame {S}.

Assumption 3.3 (Object Grasp). The end-effector grasps the unknown object in a
way that allows relative rotation between the end-effector and the object. Hence, the
grasping point is considered as a passive joint.

Due to Assumption 3.3, the orientation of {H} with respect to the end-effector
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3. System and Problem Description

Figure 3.2: Angle parametrisation.

frame {E} and therefore the rotation matrix eRh ∈ R3 can be time-varying.

The radial vector r ∈ R3 represents the unknown object and connects the origins of
the frames {H} and {S}. Since the origins of {E} and {H} are identical, r connects
also the origins of the frames {E} and {S}. Vector r can be defined based on po
and ph or pe as follows:

r := po − ph = po − pe (3.2)
The radial vector r is always parallel to yh, therefore

r = 1
κ

yh. (3.3)

is an alternative description for r, where κ ∈ R+
0 denotes the inverse length of

the object line. Figure 3.3 depicts an example object including the object line,
which always connects the end-effector and the contact point between the object
and surface. Additionally, κ describes the curvature of the end-effector trajectory.
By differentiating equation (3.2), the velocity ṙ of the unknown object is as follows:

ṙ = ṗo − ṗh = Ṙh
hr + Rh

hṙ
= Ṙh

hr = ṘhRh
T r

= S(ωh)r = −S(r)ωh,

(3.4)

where ωh ∈ R3 denotes the rotational velocity of the handle frame {H}. The handle
frame {H} is a body-fixed coordinate system of the unknown object, the rotational
velocity of the unknown object ω ∈ R3 can be expressed as

ω ≡ ωh.

The rotational axis of the object and zh are parallel, therefore an alternative ex-
pression of the rotational velocity vector is

ωh = ωzh, (3.5)
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3. System and Problem Description

Figure 3.3: Example object.

where ω denotes the magnitude of the rotational velocity. Since the end-effector
{E} and handle frame {H} has the same origin, the end-effector velocity v ∈ R3

can be expressed with the aid of (3.4) as

v = −ṙ = S(r)ω. (3.6)

During this manipulation task, the dynamics of the interaction between the robot
and its environment is restricted by kinematic constraints. In other words, the mo-
tion of the manipulated object is constrained, which causes forces, by moving along
the constrained direction, cf. [2]. Since the end-effector trajectory is constrained by
the object, the unconstrained motion direction is perpendicular to the radial vector
r. Because of the planar motion, xh is the motion direction by definition. From
this it follows that the end-effector velocity v can be parametrized as following

v = vxh, (3.7)

where v ∈ R denotes the velocity magnitude of the end-effector.

Projecting the end-effector velocity v along xh gives the scalar value

v = xh
>v (3.8)

of the end-effector velocity. Furthermore, equation (3.7) implies that the constrained
translational velocity of the end-effector is

P̄(xh)v = 0.

Additionally, Equations (3.3),(3.5),(3.6) and (3.7) give the following relation between
the translational and rotational velocities

v = ω

κ
(3.9)
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3. System and Problem Description

The differential kinematics of the unconstrained direction are given below:

ẋh = −S(xh)ω (3.10)

By substituting (3.5), (3.7) and (3.9) in Equation (3.10) gives

ẋh = −S(v)κ, (3.11)

where κ ∈ R3 denotes the scaled direction vector zh with length κ,

κ := κzh. (3.12)

3.2 Robotic Kinematics
In order to manipulate an object whose motion is constrained by the environment as
described in Section 3.1, it is necessary that the kinematic structure of the robot has
sufficient number of degrees of freedom (DOF). In case of the pivoting manipulation
task and considering that Assumption 3.3 is valid, 3-DOF are only enough if the
angle of the trajectory of the unknown object is |ϕ(t)− ϕ(0)| ≤ π. However, given
that the initial position of the unknown object ϕ(0) and the rotation axis zh are not
known, a robot with 6 DOF is considered.

Assumption 3.4 (Velocity-Controlled Robot). In this thesis it is assumed that the
end-effector motion of the manipulator can be velocity-controlled. The control signal

uref :=
[
vref
ωref

]

consists of the translational and rotational control signal vref ∈ R3 and ωref ∈ R3,
respectively. 1

Since the manipulation task is defined with respect to the end-effector, Assumption
3.4 simplifies the manipulation task formulation in terms of velocities instead of
positions. Furthermore, the control signal uref is specified in the task space and
the robot is supposed to be controlled in the joint space. The control signal uref is
related to the joint velocities as follows:

uref = J (q) q̇, (3.13)

where q̇ ∈ Rn denotes the joint velocities vector and J(q) ∈ Rn×6 the Jacobian
matrix, which depends on the joint position vector q ∈ Rn. To reconstruct the
joint velocities q̇ from the control signal uref , it is crucial to calculate the inverse
transformation of Equation (3.13),

q̇ = J+(q)uref , (3.14)
1Note that all control signals are expressed in the Base frame {B}.
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3. System and Problem Description

where J+(q) = J(q)>
[
J(q)J(q)>

]−1
∈ R6×n denotes the pseudo inverse matrix of

J(q), cf. [19]. Depending on the number of robot joints, the Jacobian matrix can
be not square and therefore the real inverse matrix does not exist.

A manipulator can be mechanically represented as a kinematic chain of multi rigid
bodies, cf. [2] The kinematic structure of a robot is nearly always driven by an
electrical actuator, which generates torque and thus accelerates the joints. There-
fore, a motion controller is required for regulating the joint velocities q̇ and thus
the end-effector velocity v.

Assumption 3.5 (Ideal Motion Controller). The inner motion control loop of the
robot is sufficiently fast and includes a force and torque compensation, so that the
joint velocity errors ˙̃q ∈ Rn between the desired and real value is negligible,

˙̃q := q̇ − q̇d ≈ 0.

Assumption 3.5 and Equation (3.14) implies that not only the error of the joint
velocities ˙̃q but also the error of the end-effector velocity:

ṽ := v − vref ≈ 0 (3.15)
ω̃ := ω − ωref ≈ 0

are negligible, where ṽ ∈ R3 and ω̃ ∈ R3. Furthermore, if Assumption 3.5 is valid,
the object mass and inertia will have a strong influence on the force signal, which is
generated by the wrist-mounted force sensors. Additionally, in order to reduce the
risk of injuring humans in the domestic environment, the following Assumption has
to be considered.

Assumption 3.6 (Object Mass and Inertia). The commanded velocity signals uref
of the end-effector and therefore, the unknown object is adequately low, such that the
influence of object dynamics on the force measurement is negligible.

3.3 Control Objective
Figure 3.4 shows the relevant parts and the interaction of the overall system. The fol-
lowing control objective is based on the article [9], that considers a similar manipula-
tion task - opening a unknown door. First of all the interaction force finteraction ∈ R3

between the unknown object and the robot has to be regulated. Consider the desired
interaction force fd ∈ R3, one goal is to adjust the control signal uref , so that the in-
teraction force converges to the desired force fd. The interaction force objective can
be satisfied by projecting the desired force along the constrained motion direction.
The following equation describes the aforementioned first control objective,

P̄ (xh)f → P̄ (xh)fd.
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3. System and Problem Description

Figure 3.4: Block diagram of the total system, c.f. [9].

The second objective of the designed controller is to move the object, with a desired
velocity vd ∈ R, on circular trajectory around the supporting point. Consider that
the unconstrained motion direction is expressed in the object fixed handle frame
{H},

vd = vdxh, (3.16)

where vd ∈ R3 denotes the desired velocity vector of the end-effector. The second
control objective is therefore,

v → vd

Due to the fact that the orientation and length of the object is not known, the
orientation and its differential kinematics have to be estimated in the end-effector
{E} or robot base frame {B}. Consider the vector κ from Equation (3.12) which
consists of the information of the rotation axis and the inverse length of the object
and therefore combines two unknown parameters in one vector.

Assumption 3.7 (Known Rotation Axis). The rotation axis zh of the handle frame
{H} is known.

Assumption 3.8 (Unknown Rotation Axis). The rotation axis zh of the handle
frame {H} is unknown.

Depending which one of the following Assumption is satisfied, the control problem,
especially the dimension of the estimation problem, changes.
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4
Controller Design

This chapter describes the control law and design of the different estimation al-
gorithms. Since the overall performance of the manipulation task depends on the
controller design, this part is an essential part of this master thesis.

4.1 Control Law
Let x̂h ∈ R3 denote the estimate of the unconstrained motion direction. Since the
robot is velocity controlled (Assumption 3.4), the output of the designed controller
is the signal uref . It is not necessary to control the rotational velocity of the end-
effector, since the robot grasps the unknown object in a non-fixed way (Assumption
3.3). An additional rotational controller is only required for avoiding collisions
between the unknown object and the end-effector or optimising the position of the
robot joints. Therefore, the control signal uref depends mainly on the translational
velocity control signal vref . As described in Section 3.3, the control law can be
divided into two orthogonal terms. The first term is a feed-forward term controlling
the motion along the unconstrained xh and the second term is the term which
controls the force along the constrained motion direction P̄ (xh). Consider the
following control law

vref = vdx̂h − P̄(x̂h)vf (4.1)
which consists of the aforementioned orthogonal terms, c.f. [9]. Since xh is not
known, the control law (4.1) depends on the estimated unconstrained direction x̂h.
Ideally, x̂h should have a unit magnitude, since it denotes a direction vector. If
‖x̂h‖ = 1 the velocity of the end-effector v converge to the desired velocity vd. The
gain of the estimated motion direction vd represents the desired velocity term of the
control law, based on Equation (3.16). The second term of the control law (4.1),
along the constrained direction, constructs the force controller. The vector vf ∈ R3

denotes the PI force feedback input with

vf = αf f̃ + βfI
[
P̄(x̂h) f̃

]
, (4.2)

where αf , βf ∈ R are positive control gains and

f̃ := f − fd

denotes the force error, c.f. [9]. The force control term (4.2) compensates the
kinematic uncertainties of the unknown object during the manipulation task. Addi-
tionally, term (4.2) also compensates partially the error between the estimated and
real motion direction, x̂h and xh respectively.

19
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4.2 On-Line Estimator Design
As mentioned in Section 2.2, the direct adaptive control structure contains a con-
troller and an on-line parameter estimation component. The following describes the
details of designing different on-line parameter estimators, that estimate the un-
known parameters xh and κ. This parameter estimation adapts the control law in
Subsection 4.1, since it uses these parameters for calculating the reference velocity
of the end-effector.

In order to design an on-line estimator for the unknown parameters, the estimation
errors have to be defined. In this regard, κ̃ ∈ R3 denotes the error of the scaled
rotation axis and is given by

κ̃(t) = κ̂(t)− κ. (4.3)

Since κ is constant, the derivative of estimation error of the inverse object length
vector has the following form

˙̃κ = ˙̂κ. (4.4)
The second estimation error is ψ(t) ∈ R which defines the angular error of the
motion direction. More precisely, it denotes the angle between the unknown xh and
estimated unconstrained direction x̂h. Since both directions are unit vectors, the
inner product can be formulated as

cosψ(t) = xh
>(t) x̂h(t). (4.5)

To get the relationship between the derivative of the error angle ψ(t) and the deriva-
tive of the estimated unknown direction, both sides of Equation (4.5) has to be
differentiated as follows:

d
dt
(

cosψ(t)
)

= d
dt
(
(xh

>x̂h

)
= ẋh

>x̂h + xh
> ˙̂xh

= (−S(v)κ)> x̂h + xh
> ˙̂xh

= −v>S(κ)x̂h + xh
> ˙̂xh

= xh
>
(

˙̂xh − vS(κ)x̂h

)
⇔ −ψ̇(t) sinψ(t) = xh

>
(

˙̂xh − vS(κ)x̂h

)
(4.6)

The differentiation of (4.5) reveals that the error angle ψ(t) depends on the esti-
mation rate and the object motion velocity, c.f. [9]. The velocity error ṽ can be
expanded into one term along x̂h and one term along its orthogonal complement
space. Substituting the object velocity (3.7) and control law (4.1) in the velocity
error formulation (3.15) leads to

ṽ = vxh − vdx̂h + P̄(xh)vf

= P (x̂h) v + P̄ (x̂h) v − vdx̂h + P̄(xh)vf

= v cosψ x̂h + P̄ (x̂h) v − vdx̂h + P̄(xh)vf

= P̄ (x̂h) (v + vf ) + (v cosψ − vd) x̂h.
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Assumption 3.5 and the resulting negligible velocity error implies the following
closed-loop relations

P (x̂h) vf = −vP (x̂h) xh (4.7)

v = vd
cosψ (4.8)

Taking the norm of the term along the complement space of x̂h gives

‖P (x̂h) vf‖ = |vd tanψ|. (4.9)

For example 4.9 shows, how the estimation error ψ affects the force errors and the
end-effector velocity error. Additionally, the closed-loop Equations (4.7), (4.8) and
(4.9) give the evidence that the higher the unconstrained direction error ψ is, the
higher the force on the object can be, c.f. [9].

4.2.1 Kalman Filter with Known Rotation Axis
If Assumption 3.7 (Known Rotation Axis) is satisfied, the linear parameter system
will possess the following form

θ̇(t) = F(t) θ(t)
z(t) = H(t) θ(t),

(4.10)

where θ(t) =
[
xh
>(t) κ

]>
∈ R4 is the parameter vector, which consists of the

unknown parameters and F(t) ∈ R4×4

F(t) =
[
0 −S(v(t))zh
0 0

]
denotes the time-varying dynamic coefficient matrix. Its first row is based on the
Equation (3.11) and since the object length is constant, κ is not varying. One
possible measurement is the velocity of the end-effector, which is captured in the
measurement vector z(t) ∈ R3. From this it follows, that the measurement sensitiv-
ity matrix H(t) ∈ R3×4 can be formulated as

H(t) =
[
v(t)I3 0

]
.

Since the robot is velocity-controlled the matrices F(t) and H(t) can be expressed
in terms of the reference velocity,

F(t) =
[
0 −S(vref (t))zh
0 0

]
H(t) =

[
vref (t)I3 0

]
.

Equation (3.8) and (3.15) shows that vref depends on the unknown state xh. Using
the expression

vref (t) = ‖vref (t)‖ sgn
(
x̂h
>(t) vref (t)

)
(4.11)
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it is possible to calculate vref without the knowledge of the motion direction for
x̂h
>xh > 0, c.f. [9].

The update equation for the parameter estimation with known rotation axis is de-
fined as

˙̂
θ = F(t)θ̂(t) + K(t)

(
z(t)−H(t)θ̂(t)

)
,

where θ̂(t) =
[
x̂h
>(t) κ̂(t)

]>
denotes the estimated parameter vector. Furthermore,

the Kalman gain matrix K(t) ∈ R4 can be calculated with the following equations,

K(t) = P(t)H>(t)R−1,

where R(t) ∈ R3×3 denotes the covariance matrix of the measurement noise. The
covariance matrix P(t) ∈ R4×4 is calculated with the aid of the Riccati differential
equation

Ṗ(t) = F(t)P(t) + P(t)F>(t) + G(t)Q(t)G>(t)
−P(t)H>(t)R−1(t)H(t)P(t),

where Q ∈ R3 denotes the covariance matrix of the plant noise. The initial condi-
tions for this Kalman filter are

θ̂(0) = θ̂0,

P(0) = P0.

4.2.2 Kalman Filter with Unknown Rotation Axis
In case of unknown rotation axis, Assumption 3.8 is satisfied, the parameter system
has the same form as (4.10). Consider the parameter vector θ(t) =

[
xh
>(t) κ>

]
∈

R6. The scaled rotation axis vector κ consists of the inverted length κ and the
rotation axis zh, as mentioned in (3.12). Since the time-varying dynamic coefficient
matrix F(t) ∈ R6×6

F =
[
0 −S (v(t))
0 0

]
does not include the information of the rotation axis zh, the parameter system
dimension increases to six. In this case the measurement sensitivity matrix H(t) ∈
R3×6 has the following form,

H =
[
v(t)I3 0

]
.

The Kalman gain matrix K(t) ∈ R6×3 and Riccati differential equation have the
same form as in the known rotation axis case, only the dimension is different.

4.2.3 Lyapunov-Based Adaptive Law
The following design of the adaptive laws are based on the Article [9]. As described
in the background, Section 2.2.2, the first step of the Lyapunov-based adaptive law
design is to find an appropriate Lyapunov function candidate V , which depends on
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the unknown motion direction xh and the scaled rotation axis vector κ. Consider
the estimation error definition (4.5) of the unconstrained direction and (4.3) of the
scaled object length vector.

Consider the Lyapunov function candidate

V = 1− cosψ + 1
2 κ̃
>Γκκ̃

which is positive definite for the domain D = {ψ ∈ R, κ̃ ∈ R3 : |ψ| < π
2}, cf. [9]. In

order to satisfy Theorem 2.2.1 and to synthesise the adaptive laws, we calculate the
derivative of the Lyapunov function V̇ (ψ, κ̃):

V̇ = ψ̇ sinψ + κ̃>Γκ
˙̃κ,

where Γκ ∈ R3×3 denotes a positive definite gain matrix. Substituting (4.3), (4.4)
and (4.6) in V̇ leads to the following derivation:

V̇ = −xh
>
(

˙̂xh − vS(κ̂− κ̃)x̂h

)
+ κ̃>Γκ

˙̂κ

= −xh
>
(

˙̂xh − vS(κ̂)x̂h + vS(κ̃)x̂h

)
+ κ̃>Γκ

˙̂κ

= −xh
>
(

˙̂xh + vS(x̂h)κ̂
)
− vxh

>S(κ̃)x̂h + κ̃>Γκ
˙̂κ

= −xh
>
(

˙̂xh + vS(x̂h)κ̂
)
− vκ̃>S(x̂h)xh + κ̃>Γκ

˙̂κ

= −xh
>
(

˙̂xh + vS(x̂h)κ̂
)
− κ̃>

(
vS(x̂h)xh − Γκ

˙̂κ
)

= −xh
>
(

˙̂xh + vS(x̂h)κ̂
)
− κ̃>

(
S(x̂h)v − Γκ

˙̂κ
)

(4.12)

According to Theorem 2.2.1, the next step is to select the adaptive laws such that
V̇ is negative semi-definite and the unknown parameters are cancelled. The article
[9] proposes the following update law for x̂h

˙̂xh = −vref S(x̂h)κ̂ − γvref P̄(x̂h)vf , (4.13)

where γ ∈ R+ is a positive constant control gain for tuning the update rate. Due
to Assumption 3.4 (Velocity-Controlled Robot) is valid, the scalar velocity of the
end-effector v can be substituted by the scalar reference velocity vref . The first term
update law (4.13) cancels the unknown parameters in (4.12) for sufficient high γ.
Since the unconstrained direction xh is time varying, the second term is necessary
to ensure the convergence of x̂h to the unknown motion direction xh. The update
law for x̂h depends on the estimation of the estimated scaled rotation axis κ̂, which
can be on-line estimated by the update law

˙̂κ = ΓκS(x̂h)vref . (4.14)

Projecting (4.7) along the motion direction xh and substituting (4.5) yields

xh
>P̄(x̂h)vf = −vxh

>P̄(x̂h)xh

= −vxh
>
(
I3 − x̂hx̂h

>
)

xh

= −v(1− cos2 ψ) = −v sin2 ψ.

(4.15)
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Due to the manipulator is velocity-controlled, v can be substituted by vref in (4.15).
Substituting the update laws (4.13) and (4.14) shows that V̇ is negative semi-definite
due to the cancelled terms and equation (4.15). Therefore, V satisfies the Theorem
2.2.1. Additionally, vref can be calculated in the same way as in (4.11).

The control law (4.1) suggests that the estimated motion direction vector x̂h must
be unit in order to achieve the desired control objective. The update law ˙̂xh ensures
that the norm of the unconstrained direction vector x̂h(t) is invariant. Projecting
˙̂xh along the x̂h yields

x̂h
> ˙̂xh = −vref x̂h

>S(x̂h)κ̂− γvref x̂h
>P̄(x̂h)vf

⇔ d
dt

(1
2‖x̂h‖2

)
= −vrefκ̂

>S(x̂h)x̂h − γvref x̂h
>
(
I3 − x̂hx̂h

>
)

vf

= −vrefκ̂
>S(x̂h)x̂h − γvref

(
x̂h
> − x̂h

>x̂hx̂h
>
)

vf = 0

From this it follows that ‖x̂h(0)‖ = ‖x̂h(t)‖, ∀t ≥ 0 and therefore, if the initial
value of the estimated motion direction is ‖x̂h(0)‖ = 1 the magnitude will be unit
at all time.

The article [9] provides more details on the stability analysis and the convergence
of the estimated parameters.

4.2.4 Adaptive Law Design via Immersion and Invariance
Considering the alternative parametrisation (3.1) of the handle frame {H} which
depends on the scalar parameter ϕ and Assumption 3.7 is satisfied. Therefore, the
estimation problem consists of two scalar parameters, the angle ϕ and the inverted
object length κ. Additionally, for this case the second column of the rotation matrix
Rs is known and the rotation axis zh can be calculated. Since the following problem
formulation is based on the angle error ψ and its dynamics ψ̇, the rotational velocity
of the object can be parametrised as

ϕ̇ = −vκ.

Furthermore, the aforementioned angle error ψ is defined in this case as

ψ := ϕ̂− ϕ. (4.16)

The derivative of (4.16) yields to the first-order differential equation, which is part
of the augmented system

ψ̇ = ˙̂ϕ+ vκ

˙̂κ = w,
(4.17)

where w ∈ R denotes the update law and define in the extended space (ψ, κ̂) ∈ R2

the implicit manifold

M = {ψ ∈ R, κ̂ ∈ R : κ̂− κ+ β(ψ) = 0} .
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The dynamics of the augmented system (4.17) is restricted by the manifoldM∈ R.
The invariance property of the manifoldM is described by the equation

ψ̇ = ˙̂ϕ+ v (κ̂+ β(ψ)) .

The update law for ϕ̂ can be analogous designed for the known rotation axis with
the angle parametrisation case as for the unknown rotation axis (4.13). In particular
the update law is proposed as follows:

˙̂ϕ = −γvdvf − v (κ̂+ β(ψ)) , (4.18)

where γ ∈ R+ denotes the update rate gain. Furthermore, vf denotes the scalar
expression of the PI-force controller of the control law (4.1) and is defined as

vf = ŷh
>vf ,

where ŷh is the estimated constrained direction (3.1). The next step of the I&I
method is to select an update law for κ̂ which renders the manifold M invariant.
Consider the off-manifold z is given by

z := κ̂− κ+ β(ψ). (4.19)

The following off-manifold dynamics ż, which is given by the time derivative of
(4.19), must be asymptotic stable.

ż = ˙̂κ+ ∂β(ψ)
∂ψ

ψ̇ (4.20)

= ˙̂κ+ ∂β(ψ)
∂ψ

[ ˙̂ϕ+ v (κ̂+ β(ψ)− z)
]

In the next step the update law ˙̂κ has to be chosen in such a way so that the manifold
M is invariant:

˙̂κ = −∂β(ψ)
∂ψ

[ ˙̂ϕ+ v (κ̂+ β(ψ))
]

(4.21)

Substituting the update law for κ̂ (4.21) in the off-manifold dynamics (4.20) yields

ż = −∂β(ψ)
∂ψ

z. (4.22)

Consider the Lyapunov function candidate V in order to analyse the stability prop-
erties of the off-manifold dynamics (4.22) by the direct Lyapunov method.

V = 1
2z

2 (4.23)

The Lyapunov function candidate V in (4.23) is positive definite for all z ∈ R\{0}.

V̇ (z) = zż = −∂β (θ)
∂θ

z2 (4.24)
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The selection of the function β(ψ) must consist of known components, since it
appears in the update law for ϕ̂. Proposing the function

β(ψ) = γβvf ,

where γβ ∈ R+ denotes a positive update rate gain. For further calculations the
relations of the velocities (4.8), (4.9) have to be transformed in the known rotation
axis case:

v = vd
1

cosψ
vf = vd tanψ

From this it follows, β(ψ) and ∂β(ψ)
∂ψ

can expressed in terms of ψ. Consider the β(ψ)
function and its partial derivative ∂β(ψ)

∂ψ
:

β(ψ) = γβvd tanψ
∂β (ψ)
∂ψ

= γβvd
(
1 + tan2 ψ

)
= γβvd

(
1 +

v2
f

v2
d

)
(4.25)

The function β (ψ) must be calculable with known values in order to apply this
function to the update laws for the estimated object angle ϕ̂ and inverse object
length κ̂. Furthermore, substituting (4.25) in the time derivative of the Lyapunov
function candidate (4.24) leads to

V̇ (z) = −γβvd
(
1 + tan2 ψ

)
z2

Given that vd is chosen positive, the derivative of the Lyapunov function V̇ is neg-
ative definite and therefore the off-manifold dynamics are asymptomatically stable
with the equilibrium at z∗ = 0, if ψ ∈ D.

In order to obtain the final update law ˙̂ϕ, β(ψ) has to be substituted in Equation
(4.18). The end-effector velocity v can be expressed in terms of the controlled end-
effector velocity vref , since the manipulator is velocity-controlled (Assumption 3.4).
This leads to the update law for ϕ̂,

˙̂ϕ = −γvdvf − vref (κ̂+ γβvf ) .

Furthermore, substituting Equation (4.18) and (4.25) in the update law for κ̂ (4.21)
leads to

˙̂κ = γγβvf
(
v2
d + v2

f

)
.

The aforementioned estimators in this subsection have different properties. The
following Table gives an overview of the properties and in what cases they could be
applied:
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4. Controller Design

Estimation Kalman-Bucy Filter Lyapunov-Based I&I-Based
Unconstrained
Motion Direction X X X

Object Line X X X
Rotation Axis X X

Table 4.1: Overview of the Estimators.

Table 4.1 shows that the I&I-based estimator is only applicable for objects with
known rotation axis.
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5
Simulation Model

In order to evaluate the performance of the designed adaptive controller, it is neces-
sary to create a testing platform. This could be in this case a simulation model or a
physical experiment. It is advisable to indicate the generality of the controller within
a simulation model, since the tests of different simulation scenarios can be imple-
mented in a short time. Additionally, the risk of damaging the experiment hardware
can be reduced by testing the approach first in simulation. Since a simulation model
is often an approximation of a real experiment setup, it is recommended to evaluate
the performance of the adaptive controller in further experiments. In the follow-
ing sections the used modelling method of the mechanical system and end-effector
actuation is introduced.

5.1 Object-orientated Physical Modelling

As Albert Einstein said: "Everything should be made as simple as possible, but
not simpler." This axiom could be applied for the simulation model which should
be as simple as possible. In order to depict all relevant dynamics the simulation
model should also be as close to the reality as necessary. Since the task kinematics
in Section 3.1 is described by the constraints and the object inertia is assumed to
be negligible (Assumption 3.6), it is reasonable to utilise a software platform for
object-orientated physical modelling. With this modelling method it is not neces-
sary to identify all dynamical equations of the system. The simulation environment
SimMechanics™ Second Generation is used for modelling the mechanical structure
of the systems, which is included in the SimScape™ toolbox. The considered rigid
body system can be modelled by using blocks representing body elements, joints,
frames and sensors in Simulink®, cf. [20].

Figure 5.1 depicts the modelling of the task kinematic which consists of the in-
teraction dynamics of the unknown object and the surface. This object-orientated
physical model contains body elements and joints which are linked by physical con-
nections. As described in Assumtion 3.2 the unknown object can rotate around the
pivoting point on the surface. This constraint is represented by a revolute joint
which also measures the angle, angular velocity and force between the unknown ob-
ject and the surface. The passive joint, which is shown in Figure 5.1, represents the
lose grasp of the unknown object by the robot end-effector. An additional advantage
to use SimMechanics™ is that this toolbox provides an included animation frame-
work. This animation gives users a visual feedback of the simulation and shows the
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5. Simulation Model

simulation results without any additional implementation.

Figure 5.1: Cut-out from the Simulink® model of the task kinematics.

5.2 Velocity Controller
During the manipulation task, the robot end-effector must be able to move the
object with a desired velocity. Since the SimMechanics™toolbox does not support
velocity commanded actuation, the end-effector is actuated by forces. Calculating
the desired forces with feed forward terms cause errors for objects with different
geometries or masses, therefore a velocity PI-controller is applied to regulate the
force fe ∈ R3 on the end-effector. This PI-controller has the following form

fe = αv ṽe + βvI
[
ṽe
]
,

where αv, βv ∈ R are positive controller gains and

ṽe := vref − ve

denotes the velocity error of the end-effector between the controlled velocity vref
and the end-effector velocity ve ∈ R3.
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6
Results

This chapter contains the development of the simulation scenarios, in order to eval-
uate the performance of the designed estimators Kalman-Bucy Filtering with un-
known rotation axis, Lyapunov-based adaptive laws and Immersion and Invariance-
based adaptive laws. Furthermore, different scenarios are presented for the purpose
to make inferences regarding the robustness of the adaptive controller. The simula-
tion results base on the simulation model in Chapter 5.

6.1 Simulation Results

The following scenarios cover different object lengths, different desired velocities
along the motion direction and the impact of the noise in the force sensor signal f.
With the aid of these scenarios, it is possible to demonstrate the robustness of the
different estimation methods and reveal their strengths and weaknesses.

Parameter Value
Velocity αv 25
controller βv 2
Force αf 5 · 10−2

Controller βf 5 · 10−3

P(0) 1 · 105I6
Kalman-Bucy R 1 · 10−4I3

Filter Q 1 · 10−5

G
[
1 1 1 1 1 1

]>
Lyapunov γ 2 · 104

Γκ 2 · 104I3
I&I γ 5 · 103

γβ 1 · 104

Table 6.1: Gains and parameters of the controllers and estimators.

The chosen parameters of the velocity PI-controller in the simulation model and the
force PI-controller in the control law are displayed in Table 6.1 and are same for
every scenario. Additionally, the initial values for the inverse object length and the
motion direction offset are presented in the following Table.
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6. Results

Parameter Initial Value Unit
κ̂(0) 7 m−1

ψ(0) 0.2 rad

Table 6.2: Initial estimates.

All scenarios are tested with the same update rate gains or in case of Kalman-Bucy
Filtering, Kalman parameters. In order to reduce the effect of velocity steps at the
start, the following smooth trajectory of the desired velocity vd(t) is used for the
scenario simulations, cf. [9]:

vd(t) = v∗d
(
1− e−10t

)
,

where vd(t) denotes the first order low pass filtered desired velocity for steps and
v∗d ∈ R denotes the end value. This has the advantage that jerk is reduced during
the manipulation task, because of avoiding sharp initial transients. Additionally,
the desired force fd = 0 is chosen for every scenario.

Parameter Value Unit
κ 5 m−1

v∗d 0.05 m
s

Table 6.3: Standard values of the parameters.

Figure 6.1 depicts the simulation with so called standard values of the parameters,
which are shown in Table 6.3.
As shown in Figure 6.1, the simulation results of these standard scenario reveals that
the estimated values with Kalman-Bucy Filtering, Lyapunov-based adaptive law and
I&I converges to the actual values. However, every estimation method generates an
overshoot of the estimated motion direction x̂h, which has the maximum for the
Immersion and Invariance-based adaptive law at approximately 0.3s

∆|ψ|
|ψ(∞)− ψ(0)| = |35 · 10−3|

|0− 0.2| = 17.5%, (6.1)

where ∆|ψ| denotes the magnitude of the overshoot. Equation (6.1) shows that the
relative overshoot is relatively large, however, the estimation of the motion direction
with the Immersion and Invariance-based adaptive law has the best settling time,
since the estimation error has the fastest convergence to zero. Furthermore, the
I&I-based estimator shows the best performance regarding the parameter κ̂ and
the state x̂h convergence. However, this estimator has the highest overshoot for the
estimated inverse object length κ̂, but this has no significant effect on the estimation
of the motion direction x̂h.
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(a) Estimation error response in the unconstrained direction.
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(b) Estimated response for the inveres object length.

Figure 6.1: Estimation response of proposed estimators for the standard parame-
ters, Table 6.3

.
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Figure 6.2: Simulated force error of the wrist mounted force sensor.

As depicted in Figure 6.2 the shapes of the sensor signals are similar, but the adap-
tive controller with Kalman-Bucy Filtering results to the slowest convergence to
zero. The responses of the adaptive controller with Lyapunov-based and I&I-based
adaptive laws are more or less the same.
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6.1.1 Simulation Results for Varying Object Length
In order to test the robustness of the adaptive controller with the different estimation
methods, the performance of the aforementioned three estimators are compared to
each other. Only the parameter inverse object length of the plant is varying in this
subsection. The controller and estimator parameters are the same. Table 6.4 shows
the used simulation parameters for the following scenario.

Parameter Value Unit
κ 2 m−1

v∗d 0.05 m
s

Table 6.4: Values of the parameter with varying inverse object length simulation.
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(a) Estimation error response in the unconstrained direction.
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(b) Estimated response for the inveres object length.

Figure 6.3: Estimation response of proposed estimators for inverse object length
κ = 2m−1.

Comparing the Figure 6.1a and 6.3a reveals that increasing the object length has no
significant affect on the estimation performance of the motion direction. Only its
settling time is slightly decreased. Changing of κ and keeping κ̂(0) constant means
that the initial estimation error is different for the object length varying scenarios.
The convergence speed of κ̂ increases for the Lyapunov-based adaptive law and
decreases for Kalman-Bucy Filtering in this scenario. The estimation performance
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6. Results

of the I&I-based adaptive law does not change. Table 6.5 shows the used simulation
parameters for the following scenario.

Parameter Value Unit
κ 20 m−1

v∗d 0.05 m
s

Table 6.5: Values of the parameter with varying inverse object length simulation.
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(a) Estimation error response in the unconstrained direction.
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(b) Estimated response for the inveres object length.

Figure 6.4: Estimation response of proposed estimators for inverse object length
κ = 20m−1.

Different object lengths imply different rotation velocities of the handle frame {H}
for constant vd. Figure 6.4a depicts that the overshoot for the unconstrained di-
rection error increases for Kalman-Bucy Filtering and the Lyapunov-based adaptive
law. This is caused by the the increased estimation rate, since both estimations
intersects the time-axis earlier compared to the standard value scenario. Comparing
the Figures 6.1a, 6.3a and 6.4a reveals that estimation performance for the motion
axis does not change significantly. Comparing the Figures 6.1b, 6.3b and 6.4b leads
to the same statement for the estimation of the inverse object length, whereby the
I&I-based adaptive law has the shortest settling time of the κ estimation. The vary-
ing object length scenarios shows that different κ and therefore different κ̃(0) has
no significant effect on the estimation with Kalman-Bucy Filtering and I&I-based
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adaptive law. In contrast, the settling time of the Lyapunov-based adaptive law
depends on the object length in this case.
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(a) Simulated error response of the force for the inverse object length
κ = 2m−1.
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(b) Simulated error response of the force for the inverse object length
κ = 20m−1.

Figure 6.5: Estimation force error response of proposed estimators.

Figure 6.5a and 6.5b show that the occurring peak force is independent of the
object length. Furthermore, the settling time of |f̃| is affected by the object uncer-
tainty of length, since the force error convergence for Kalman-Bucy Filtering and the
Lyapunov-based adaptive is faster for short objects. The simulation results of this
scenario indicate that the settling time for the I&I-based adaptive law is independent
of the object length.

6.1.2 Simulation Results with Varying Desired Velocity

In this scenario, the desired velocity of the end-effector vd is changing. Therefore,
the rotation velocity of the handle frame {H} is higher compared to the standard
value scenario. Table 6.6 shows the used simulation parameters for the following
scenario.
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Parameter Value Unit
κ 5 m−1

v∗d 0.1 m
s

Table 6.6: Values of the parameter with varying desired velocity.
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(a) Estimation error response in the unconstrained direction.
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(b) Estimated response for the inveres object length.

Figure 6.6: Estimation response of proposed estimators for desired velocity v∗d =
0.1m

s .

The higher velocity of end-effector significantly affects the settling time of the motion
direction in all three estimator cases, which can be recognised in Figure 6.6a. In
this case, the Lyapunov-based estimation has a negligible overshoot and the fastest
settling time compared to the other estimators. The response of the object length
is also different to the standard value scenario. First of all, the overshoot of the
inverse object length estimation significantly increased for Kalman-Bucy Filtering
and the I&I-based update law. Furthermore, the settling time of κ̂ decreased for all
three estimators.
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Figure 6.7: Estimation force error response of proposed estimators for the desired
velocity v∗d = 0.1m

s .

A comparison of Figure 6.2 and 6.7 shows that the peak force increases for a higher
desired velocity v∗d. Additionally, the shape of the force error of the Lyapunov-based
adaptive law and I&I adaptive law cannot be distinguished from each other. During
this scenario, f̃ has a lower settling time as compared to the standard parameter
scenario.

6.1.3 Simulation Results with Noise

In order to test the response of the adaptive controller with measurement noise, the
force sensor signal f is subjected to normally-distributed Gaussian noise with zero
mean and the variance σ2. Table 6.7 shows the used simulation parameters for the
following scenario.

Parameter Value Unit
κ 5 m−1

v∗d 0.05 m
s

σ2 1 · 10−6 N

Table 6.7: Values of the parameter with measurement signal noise.

As shown in Figure 6.8, the estimated motion direction and inverse object length
converge to the actual values. Comparing the standard parameter and the noise sce-
nario leads to the result that the performance of the Lyapunov-based and I&I-based
adaptive controller does not change significantly. Only for the estimation values
close to the actual values, the noise signal has a little influence on the estimation.
In contrast, the estimation performance of Kalman-Bucy Filtering decreased for the
noise subjected force signal f. This could be seen clearly by comparing the peak
value and the settling time of the error angle ψ in Figure 6.8 with Figure 6.1.
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(a) Estimation error response in the unconstrained direction.

0 0.5 1 1.5 2 2.5 3
t [s]

-20

0

20

κ̃
[1
/m

]

Kalman-Bucy Filtering
Lyapunov-Based
I&I-Based

(b) Estimated response for the inveres object length.

Figure 6.8: Estimation response of proposed estimators for force measurement
signal subjected to noise with variance σ2 = 1 · 10−6N.
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Figure 6.9: Estimation force error response of proposed estimators for force mea-
surement signal subjected to noise with variance σ2 = 1 · 10−6N.

Figure 6.9 depicts that not only the peak of the error angle ψ but also the peak
force increases. Furthermore, the peak force for the Kalman-Bucy Filter is higher
than the adaptive controller using the adaptive laws. Additionally, the settling time
for Kalman-Bucy Filtering is also higher compared to using the other estimators.
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6.1.4 Simulation Results with Varying Initial Error Angle
During this subsection, the initial value of the motion direction x̂h(0) is changed, in
order to evaluate the performance for different initial error angle ψ(0). The adaptive
controller in this scenario uses the standard parameters in Table 6.3. Additionally,
the used initial values are presented in the following Table.

Parameter Initial Value Unit
κ̂(0) 7 m−1

ψ(0) 0.5 rad

Table 6.8: Initial estimates.
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(a) Estimation error response in the unconstrained direction.
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(b) Estimated response for the inveres object length.

Figure 6.10: Estimation response of proposed estimators for initial estimation
error of the motion direction ψ(0) = 0.5rad.

Comparing Figure 6.1 and 6.10 indicates that the estimations possess the same
shape, but due to the higher initial error of ψ, the course of the estimations are
scaled up. That implies a higher peak and overshoot of the estimations.

The comparison of Figure 6.2 and 6.11 shows that the force error f̃ has the same
convergence property as the aforementioned estimation error ψ and κ̃. It follows
that a different initial motion direction offset ψ(0) has only influence on the peak
and overshoot values. However, the settling time remains the same for this scenario.
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Figure 6.11: Estimation force error response of proposed estimators for initial
estimation error of the motion direction ψ(0) = 0.5rad.

6.2 Discussion
The simulation results show that the Immersion and Invariance has the best perfor-
mance for estimating the inverse length κ of the unknown object. However, κ̂ has
a quite high overshoot all the simulated scenarios, which has no significant effect
on the manipulation task. The reason is that the control law of the adaptive con-
troller depends on the unknown motion direction of the object. The performance
of I&I-based adaptive laws with respect to the estimation of the motion direction
are comparable to the Lyapunov-based adaptive law. The latter one has often a
smaller overshoot, but has a longer settle time. Additionally, both estimators have
a sufficient high robustness against measurement noise. The simulated scenarios
revealed that the Kalman-Bucy Filter has the worst performance for estimating the
motion direction. Also, the simulation results show that the Kalman-Bucy Filter
possesses a good performance in estimating the scaled rotation axis. Furthermore,
the design method of the Kalman-Bucy Filter is quite simple compared to the other
tested design methods.
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7
Conclusion

In this master thesis a generalised adaptive velocity controller was designed for
manipulating objects with pivoting dynamics. The manipulation task consisted of
rotating an unknown object around a pivot point on a supported surface. Addi-
tionally, the object was grasped in a way that allowed relative rotation between the
end-effector and the object. To perform the manipulation task a velocity-controlled
robot with a force/torque sensor was considered. The adaptive controller consisted
of a control law using the force measurement signal and an on-line estimator for
estimating the object posture and length. Kalman-Bucy Filtering, Lyapunov-based
adaptive laws and I&I-based adaptive laws have been employed to solve this esti-
mation problem.

Considering the results of the simulations in Chapter 6, the proposed adaptive con-
troller with its three different estimators successfully estimates the unconstrained
motion direction and the inverse object length on-line. Additionally, it is neces-
sary to estimate the rotation axis of the object by Kalman-Bucy Filtering or the
Lyapunov-based adaptive laws. Since the Immersion and Invariance framework uses
a different parametrisation of the dynamical system, it is not necessary to solve
the estimation problem for estimating the rotation axis. Also, the main condition
ψ(0) ∈ {ψ ∈ R : |π2 |} must be satisfied for every estimator to guarantee their per-
formance.

In order to address possible extensions the following points could be added for further
research on this field:

1. Position control
2. Virtual joint instead of physical joint

First of all, controlling the position of the unknown object could be interesting for
door opening tasks, since a further manipulation task could consist of opening an
unknown door, tracking the door opening angle and passing the door if the angle is
large enough. The I&I-based estimator estimates the position of the object, since
its design based on the alternative parametrisation (3.1) with known rotation axis.
To take the estimation of the position for the other estimators into account, it is
necessary to change their parametrisation.

Modelling a virtual joint instead of a physical joint could be another extension of the
system. This means that the current revolute joint absorbs all forces, independent of
their direction or magnitude. Regarding the direction, a virtual joint would absorb
forces which have a positive normal force on the surface. However, for negative nor-
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mal force virtual joint would not absorb the force and the object would lose contact
with the surface. Another property of the virtual joint would be that it takes the
friction into account. More precisely, the object will start sliding if the lateral force
is high enough.

Additionally, in this master thesis the manipulation task of the object mainly consists
of pivoting dynamics. In order to expand the applicability of an adaptive controller
to more applications, it is possible to take friction and sliding effects into account
instead of assuming a revolute joint.
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